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Abstract
Adaptive seamless designs combine confirmatory testing, a domain of phase III tri-

als, with features such as treatment or subgroup selection, typically associated with

phase II trials. They promise to increase the efficiency of development programmes

of new drugs, for example, in terms of sample size and/or development time. It is

well acknowledged that adaptive designs are more involved from a logistical perspec-

tive and require more upfront planning, often in the form of extensive simulation

studies, than conventional approaches. Here, we present a framework for adaptive

treatment and subgroup selection using the same notation, which links the somewhat

disparate literature on treatment selection on one side and on subgroup selection on

the other. Furthermore, we introduce a flexible and efficient simulation model that

serves both designs. As primary endpoints often take a long time to observe, interim

analyses are frequently informed by early outcomes. Therefore, all methods presented

accommodate interim analyses informed by either the primary outcome or an early

outcome. The R package asd, previously developed to simulate designs with treat-

ment selection, was extended to include subgroup selection (so-called adaptive enrich-

ment designs). Here, we describe the functionality of the R package asd and use it

to present some worked-up examples motivated by clinical trials in chronic obstruc-

tive pulmonary disease and oncology. The examples both illustrate various features

of the R package and provide insights into the operating characteristics of adaptive

seamless studies.

K E Y W O R D S
adaptive design, clinical trials, closed test procedure, combination test, Dunnett test

1 INTRODUCTION

There is a long history of application of sequential methods in clinical trials to allow the monitoring of accumulating data at

a series of interim analyses (Jennison & Turnbull, 1999; Whitehead, 1997). Whilst most early work focussed on the aim of
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stopping the trial as soon as sufficient evidence has been obtained, this body of work has rapidly expanded to include the use

of interim data for other design adaptations, including sample size reestimation (Friede & Kieser, 2006; Proschan, 2009). Over

the past years, there has been considerable interest in using interim analyses for selection of treatments, with less effective

treatments dropped from the study, or for selection of patient subgroups, with recruitment following an interim analysis limited

to subgroup(s) in which a promising effect is indicated (Bauer, Bretz, Dragalin, König, & Wassmer, 2016; Pallmann et al.,

2018).

A major statistical challenge in the development of such methods is the control of the type I error rate when adaptations are

made on the basis of data that will also be included in the final analysis. This can be achieved by the combination test approach

of Bauer and Köhne (1994), which yields flexible designs for treatment selection (see, e.g., Bauer and Kieser, 1999; Posch et al.,

2005; Bretz, Schmidli, König, Racine, and Maurer, 2006) and subgroup selection (see Brannath et al., 2009; Jenkins, Stone, and

Jennison, 2011; Wassmer and Dragalin, 2015).

Earlier work has assumed that the adaptations would be informed by the pre-specified primary outcome, which is also used

for hypothesis testing. From a practical perspective, however, this can be a strong limitation. In particular, in chronic diseases

clinically meaningful endpoints might take some time to observe, which means that most or all patients are recruited by the time

the primary outcome is observed for the first patients. This is illustrated, for example, by Chataway et al. (2011) in the context

of secondary progressive multiple sclerosis. As a consequence, adaptations need to be based on early outcomes for adaptive

designs to be feasible in these situations. Therefore, some adaptive seamless designs have been extended to allow the use of

short-term endpoint data for decision-making at interim while the pre-specified primary endpoint is used for hypothesis testing

(Friede et al., 2011; Friede, Parsons, & Stallard, 2012; Jenkins et al., 2011; Kunz, Friede, Parsons, Todd, & Stallard, 2014, 2015;

Stallard, 2010; Stallard, Kunz, Todd, Parsons, & Friede, 2015).

It is acknowledged that these more complex designs require intensive simulation studies in the planning to evaluate their

operating characteristics (Benda, Branson, Maurer, & Friede, 2010; Friede et al., 2010). A limitation to the use of adaptive

methods in practical applications is often the availability of software to enable construction and evaluation of appropriate study

designs and to conduct the final analysis. A number of commercial software packages including ADDPLAN and EAST are

available for this purpose. Although some R packages for group-sequential designs including including gsDesign and gscounts
and adaptive group-sequential designs such as rpact are available from CRAN, there is still a shortage of comprehensive freely

available software for adaptive seamless designs with treatment or subgroup selection, with the exception of the R package asd
developed to plan clinical trials with treatment selection (Parsons et al., 2012).

Using the combination test approach, the aim of this paper is to present, to our knowledge for the first time, designs for

treatment and subgroup selection in a unified notation and to present an efficient simulation model for their evaluation. By

expressing the subgroup selection problem in a similar setting to that of treatment selection, the R package asd, originally

developed for treatment selection, was extended to include designs of both types, that is, with subgroup or treatment selection.

The methods implemented are based on the combination testing approach with at most two design stages. The designs obtained

are fully flexible, controlling the type I error rate for any data-driven adaptation including treatment or subgroup selection as

well as sample size adaptation.

Although the methods we propose can be based on p-values obtained from either summary statistics or individual patient data,

in order to provide a general and efficient simulation model, we base this on the simulation of standardized sufficient statistics.

The simulation model assumes multivariate normal distributions for the test statistics, but not for the individual observations.

Therefore, the simulation model is not only widely applicable but the simulations are also fast. Furthermore, early outcomes

informing the interim decisions are incorporated, since this is often important in practice as explained above. The application

of the methods using the R package asd will be illustrated by clinical trials in chronic obstructive pulmonary disease (COPD)

and oncology with treatment and subgroup selection, respectively.

2 METHODS

2.1 Notation and hypotheses
We consider first the setting of treatment selection designs. The study is conducted in up to 𝐽 ≥ 2 stages. In the first stage, patients

are randomized between 𝐾 experimental treatments and a control treatment. In a general setting, suppose that observations of

the pre-specified primary outcome from treatment group 𝑘, 𝑘 = 0,… , 𝐾 , where 𝑘 = 0 corresponds to the control treatment,

have a distribution depending on some parameter 𝜇𝑘, and that it is desired to test the family of null hypotheses 𝐻𝑘 ∶ 𝜃𝑘 = 0,

𝑘 = 1,… , 𝐾 , where 𝜃𝑘 = 𝜇𝑘 − 𝜇0. Let 𝑝𝑘𝑗 denote a p-value for the test of the null hypothesis𝐻𝑘 based on the data from patients
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first observed in stage 𝑗. These data may not be available at the time of the interim analysis following stage 𝑗, but become available

only later on in the trial (Friede et al., 2011). As we will explain in Section 2.2 below, the interim decisions need not necessarily

be based on the primary outcome but could, in principle, make use of any available outcome while still maintaining control of

the type I error rate.

Next we consider the setting of subgroup selection designs. Suppose that a single experimental treatment is to be compared

with a control treatment but that patients can be categorized as belonging to one or more predefined subgroups. Interest is

focused on the treatment effect in the full population and each subgroup, in particular in the subgroup with the largest treatment

effect.

As part of the aim of this paper is to make explicit the similarities between methodology for treatment and subgroup selection

designs, we will use similar notation for both settings when this does not cause confusion. Thus suppose that observations

come from patients in 𝐾 subgroups (including the full population as a special case) labeled 𝑘, 𝑘 = 1,… , 𝐾 . Suppose that data

for patients in subgroup 𝑘 receiving treatment 𝑟, 𝑟 = 0, 1 have a distribution depending on some parameter 𝜇𝑘𝑟. Setting 𝜃𝑘 =
𝜇𝑘1 − 𝜇𝑘0, it is desired to test the family of hypotheses 𝐻𝑘 ∶ 𝜃𝑘 = 0, 𝑘 = 1,… , 𝐾 . As above, 𝑝𝑘𝑗 denotes a p-value for the test

of null hypothesis 𝐻𝑘 based on the data from patients with an outcome first observed in stage 𝑗.

2.2 Interim selection rules
Although in both the treatment and subgroup selection settings, the testing strategies described here control the type I

error rate for any selection rule, it is good practice to specify selection rules in advance to enable calculation of operating

characteristics including sample size and power. In the following, we introduce some possible examples of interim selec-

tion rules based on the primary outcome, though these could equally be applied to an early outcome as we will explain

below.

One obvious way to proceed would be to select the treatment or subgroup which performs best in terms of some statistic

𝑍𝑗,𝑘 (where 𝑍𝑗,𝑘 is some estimator of 𝜃𝑘 following stage 𝑗). However, this might not be wise in situations where sample sizes

are relatively small given the differences between the treatments or subgroups, since there is a rather high risk of picking some

treatment or subgroup that is not optimal. The so-called 𝜖-rule proposed by Kelly et al. (2005) selects all treatments or subgroups

with statistics𝑍𝑗,𝑘 for which𝑍𝑗,𝑘 ≥ max𝑖 𝑍𝑗,𝑖 − 𝜖 (assuming that larger values of𝑍𝑗,𝑘 are better). For 𝜖 = 0, this rule reduces to

selecting the maximum only. For large 𝜖, no selection takes place as all treatments or subgroups are carried forward. Otherwise

varying numbers of treatments or subgroups are carried forward into the next stage. For practical applications, it is advisable to

study the operating characteristics of the design for a range of values for 𝜖. Comments on the optimal choice of 𝜖 are provided in

Section 4 of Friede and Stallard (2008). The authors conclude that “selecting only the best treatment is a simple selection rule

which is often optimal or close to optimal” (Friede & Stallard, 2008).

Multi-arm studies including several doses of an experimental drug motivate another selection rule. In some indications, it is

not uncommon to select not one but two doses for confirmatory testing in phase III. The COPD study discussed in more detail in

Section 5 is a good example for this. A more generalized version of this rule would be to select the best 𝐾⋆ out of 𝐾 treatments

or subgroups where 𝐾⋆ would be specified in advance.

The selection of treatments or subgroups in interim analyses could be informed by the primary outcome or, if this is not

feasible, by an early outcome. In situations where an early outcome informs an interim adaptation and the primary endpoint is

used for hypothesis testing, we refer to the primary endpoint also as the final outcome to distinguish it more clearly from the early

outcome. The early outcome need not necessarily fulfill all requirements of a surrogate endpoint (Burzykowski, Molenberghs, &

Buyse, 2005) as weaker conditions might suffice. Chataway et al. (2011) used the phrase of a “biologically plausible” outcome

that “gives some indication as to whether the mechanism of action of a test treatment is working as anticipated”. Nevertheless,

for the operating characteristics of the adaptive seamless design the correlation between the early and the final outcomes on an

individual patient level as well as the treatment effects on both the early and the final outcome (population level) are relevant as

we will see below.

2.3 Error rate control via the closed testing procedure
In either the treatment selection or the subgroup selection setting, the problem has been posed in such a way that it is desired to

test the null hypotheses𝐻𝑘 ∶ 𝜃𝑘 = 0, 𝑘 = 1,… , 𝐾 . It is desirable to conduct these hypotheses tests so as to control the familywise

error rate in the strong sense, that is to control the probability of rejection of any true null hypothesis within this family, at some

specified level, 𝛼. Strong error rate control may be achieved through a closed testing procedure in which, denoting by 𝐻𝒦 the
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intersection hypothesis ∩𝑘∈𝒦𝐻𝑘, all hypotheses 𝐻𝒦 for 𝒦 ⊆ {1,… , 𝑘} are tested at nominal level 𝛼, and 𝐻𝑘 rejected if and

only if 𝐻𝒦 is rejected at this level for all 𝒦 ∋ 𝑘 (Marcus, Peritz, & Gabriel, 1976).

Application of the closed testing procedure requires a test of the intersection hypothesis𝐻𝒦 for each 𝒦 ⊆ {1,… , 𝑘}. These

hypotheses tests must also combine evidence from the different stages in the trial. This may be achieved through the use of a

combination testing method, as described in detail in the next subsection.

2.4 The combination testing method and early stopping
Although the treatment or subgroup selection might be informed by an early outcome, hypothesis testing is for the primary

outcome. Extending the notation introduced above, let 𝑝𝒦𝑗 denote a p-value for a test of the null hypothesis 𝐻𝒦 based on

data from patients with an outcome first observed at stage 𝑗 = 1,… , 𝐽 . By construction, under 𝐻𝒦 , 𝑝𝒦𝑗 ∼ 𝑈 [0, 1], or if a

conservative test is used, 𝑝𝒦𝑗 is stochastically larger than or equal to 𝑈 [0, 1], for all 𝑗 and 𝒦 (Brannath, Posch, & Bauer, 2002).

We also assume that the conditional distribution of 𝑝𝒦𝑗 given 𝑝𝒦1,… , 𝑝𝒦𝑗−1 is stochastically no smaller than a 𝑈 [0, 1] for all

𝑝𝒦1,… , 𝑝𝒦𝑗−1 for all 𝑗, which is also referred to as the p-clud condition (Brannath et al., 2002). The condition is satisfied if the

p-values from different stages are independent. In practical applications, the p-clud condition is only satisfied asymptotically

and referred to as asymptotically p-clud (Brannath et al., 2009). In the following, we assume that all p-values are (at least

asymptotically) p-clud.

The p-values from the different stages can be combined using a number of combination functions (Bauer & Köhne, 1994;

Lehmacher & Wassmer, 1999) to give test statistics 𝐶𝒦𝑗(𝑝𝒦1,… , 𝑝𝒦𝑗) which, under the assumptions above regarding the

distributions of the p-values, have known distributions under 𝐻𝒦 irrespective of adaptations made to the study design. These

test statistics may thus be used to test hypothesis 𝐻𝒦 (Bauer & Kieser, 1999; Bretz et al., 2006).

Although a number of combination functions have been proposed, here we use the inverse normal combination func-

tion (Lehmacher & Wassmer, 1999), which is equivalent to the method of Cui, Hung, and Wang (1999). This gives test

statistics 𝐶𝒦𝑗 =
∑𝑗

𝑗′=1𝑤𝑗′Φ
−1(1 − 𝑝𝒦𝑗′ ) where 𝑤1,… , 𝑤𝐽 are specified in advance and the sum of their squares is equal

to 1, that is,
∑𝐽

𝑗=1𝑤
2
𝑗
= 1. Given the distributional assumptions under 𝐻𝒦 , 𝐶𝒦𝑗 are distributed as, or are stochasti-

cally no larger than, a multivariate normal distribution with mean zero, 𝑣𝑎𝑟(𝐶𝒦𝑗) = 𝑤2
1 +⋯ +𝑤2

𝑗
and 𝑐𝑜𝑣(𝐶𝒦𝑗 , 𝐶𝒦𝑗′ ) =

𝑤2
1 +⋯ +𝑤2

min{𝑗,𝑗′}.

Following Posch et al. (2005), we assume that hypotheses cannot be rejected once they are dropped, resulting in conservative

tests. Furthermore, applying the closed testing principle outlined in Section 2.3 in an adaptive design the p-value 𝑝𝒦𝑗 is replaced

by 𝑝𝒦∩ℐ𝑗 𝑗 where ℐ𝑗 is the set of hypotheses carried forward into stage 𝑗 (Posch et al., 2005).

If interim analyses are used for adaptation of the design but not for stopping the trial, a final test of 𝐻𝒦 may be based on

𝐶𝒦𝐽 . More generally, a sequential test of𝐻𝒦 may be conducted based on the joint distribution of 𝐶𝒦1,… , 𝐶𝒦𝐽 , rejecting𝐻𝒦
if 𝐶𝒦𝑗 ≥ 𝑢𝒦𝑗 for some critical values 𝑢𝒦 = (𝑢𝒦1,… , 𝑢𝒦𝐽 )𝑇 . To simplify the notation, 𝑢𝒦 and 𝑢𝒦𝑗 will generally be written

as 𝑢 and 𝑢𝑗 when it is clear which hypothesis is tested. The single constraint that the overall error rate should be at most 𝛼 is

insufficient to determine 𝑢 uniquely. A common approach in sequential analysis is to specify the type I error to be spent at each

interim analysis, and to find 𝑢𝒦1,… , 𝑢𝒦𝐽 to satisfy

𝑝𝑟𝐻𝒦
(𝐶𝒦𝑗′ ≥ 𝑢𝒦𝑗′ , some 𝑗′ ≤ 𝑗) = 𝛼∗

𝑗
, (1)

where 𝛼∗1 ≤ ⋯ ≤ 𝛼∗
𝐽
= 𝛼 are either specified in advance (Slud & Wei, 1982) or depend on the observed information in some

predetermined way (Lan & DeMets, 1983). Critical values 𝑢𝒦1,… , 𝑢𝒦𝐽 satisfying (1) can be found recursively with 𝑢𝒦𝑗 found

directly from the joint distribution of 𝐶𝐻𝒦1,… , 𝐶𝐻𝒦𝐽
via a numerical search once 𝑢𝒦1,… , 𝑢𝒦𝑗−1 are known. Computational

details are given by, for example, Jennison and Turnbull (1999).

Construction of the sequential test statistics 𝐶𝒦1,… , 𝐶𝒦𝐽 requires specification of p-values 𝑝𝒦1,… , 𝑝𝒦𝐽 for testing 𝐻𝒦 .

For elementary hypotheses, that is when |𝒦| = 1, 𝑝𝒦𝑗 can be obtained from a standard test, such as a t-test for normally dis-

tributed data or a chi-squared test for binary data. When |𝒦| > 1, 𝑝𝒦𝑗 should be calculated so as to allow for the multiple

comparisons implicit in testing 𝐻𝒦 . In the treatment selection setting, as comparisons are with a common control, a Dunnett

test (Dunnett, 1955) may be used. In the subgroup selection setting, the simple Bonferroni procedure, Simes’ procedure (Bran-

nath et al., 2009) or the Spiessens–Debois test (Spiessens & Debois, 2010), a Dunnett-type test with a generalized covariance

structure, may be used. In each case, the level of adjustment depends on the size of 𝒦.
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3 SIMULATION MODEL

As eluded to in Section 1, simulations are often required in the planning phase of a study to choose design options such as sample

sizes or interim selection rules. Here, we propose a simulation model that is efficient in the sense that population statistics are

generated rather than individual patient data. Therefore, computation times do not increase with larger sample sizes.

In a wide variety of settings, it is possible to obtain statistics that are, at least asymptotically, normally distributed with known

variance. When a series of interim analyses is conducted, these statistics follow a multivariate normal distribution with non-zero

correlations, since data obtained at earlier stages are also used at later ones. In the setting of treatment or subgroup selection,

these multivariate normal distributions may be extended to give the joint distribution of statistics corresponding to different

treatment comparisons or for treatment effects in different subgroups. To be clear, these statistics are not actually necessarily the

test statistics used to test the hypotheses but are rather some estimators of 𝜃𝑘. Similarly, the distributional forms assumed in the

simulations need not be used as the basis of hypotheses tests, since these, as described in Section 2.4, can use the combination

testing approach.

When considering adaptations to the trial design based on the observation of short-term endpoint data, it is helpful to further

extend the simulation models to include test statistics calculated based on different endpoints. The distributions of the resulting

test statistics are described briefly in this section. Additional detail is given in Appendix.

3.1 Treatment selection
Considering treatment selection designs, let �̂�𝑘𝑗 denote the estimate of the treatment effect, 𝜃𝑘, for treatment 𝑘 based on the

data available at the 𝑗th interim analysis, and 𝐼−1
𝑘𝑗

denote the variance of this estimate. As these estimates are often, at least

asymptotically normally distributed, our model will be based on an assumption of this distributional form. Assume that 𝐼𝑘𝑗 does

not depend on 𝑘, and so may be denoted by 𝐼𝑗 , and that the correlation between different treatment comparisons with a common

control group is 1∕(1 + 𝜆), as will often be the case if we have 1 ∶ 𝜆 randomization. Setting 𝑆𝑘𝑗 = �̂�𝑘𝑗𝐼𝑘𝑗 , we then have

(𝑆11,… , 𝑆𝐾1,… , 𝑆1𝐽 ,… , 𝑆𝐾𝐽 )′ ∼ 𝑁
(
𝐼 ⊗ 𝜃,Σ(𝐺𝑆)(𝐼)⊗ Σ(𝐶𝑆)

𝐾

( 1
1 + 𝜆

))
,

where 𝐼 and 𝜃 denote, respectively, the vectors (𝐼1,… , 𝐼𝐽 )′ and (𝜃1,… , 𝜃𝐾 )′ and

Σ(𝐶𝑆)
𝐾

(𝑟) =

⎛⎜⎜⎜⎜⎝
1 𝑟 ⋯ 𝑟

𝑟 1 ⋱ ⋮
⋮ ⋱ ⋱ 𝑟

𝑟 ⋯ 𝑟 1

⎞⎟⎟⎟⎟⎠
and

Σ(𝐺𝑆)(𝐼)(1) =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐼
(1)
1 𝐼

(1)
1 ⋯ 𝐼

(1)
1

𝐼
(1)
1 𝐼

(1)
2 ⋯ 𝐼

(1)
2

⋮ ⋮ ⋱ ⋮

𝐼
(1)
1 𝐼

(1)
2 ⋯ 𝐼

(1)
𝐽

⎞⎟⎟⎟⎟⎟⎟⎠
denote variance matrices of the 𝐾 ×𝐾 complex symmetric form and of that obtained in the usual group-sequential setting.

3.2 Subgroup selection
In the subgroup selection setting, let �̂�𝑘𝑗 denote the estimate of the treatment effect, 𝜃𝑘, for subgroup 𝑘 based on the data

available at the 𝑗th interim analysis. Again, assume that these estimates are normally distributed, let 𝐼−1
𝑘𝑗

denote the variance of

this estimate and assume that 𝐼𝑘𝑗 does not depend on 𝑘, and so may be denoted by 𝐼𝑗 . In the simplest case, in which 𝐾 = 2 and

subgroup 2 is the whole population and subgroup 1 a proportion of size 𝜏, setting 𝑆𝑘𝑗 = �̂�𝑘𝑗𝐼𝑘𝑗 , we have

(𝑆11, 𝑆21,… , 𝑆1𝐽 , 𝑆2𝐽 )′ ∼ 𝑁
(
𝐼 ⊗ 𝜃,Σ(𝐺𝑆)(𝐼)⊗ Σ(𝐺𝑆)

(
𝜏

1

))
.
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Extensions to the case when a short-term endpoint is also considered, and to more complex subgroup selection settings are

discussed in the Appendix.

4 SOFTWARE IMPLEMENTATION IN R

4.1 R package asd
The simulation models for two-stage treatment selection and subgroup selection designs, described in Section 3, can be imple-

mented in the R (R Development Core Team, 2009) package asd (Parsons et al., 2012), which is available from the Comprehen-

sive R Archive Network (CRAN) at http://cran.r-project.org/package=asd). This package comprises a number of functions that

allow the properties of seamless phase II/III clinical trial designs, potentially using early outcomes, for treatment or subgroup

selection to be explored and evaluated prior to a study commencing. An earlier version of this package, without the extension

to subgroup designs, enhanced options for a wider range of outcome measures or more complete output model description was

described previously by Parsons et al. (2012). The general structure of the code comprises a set of base functions that implement

lower level tasks such as hypothesis testing, treatment selection, and closed testing procedures. The base functions, which have

been described previously in the setting of treatment selection designs (Parsons et al., 2012), have been modified in the latest

version of the asd package to work with both subgroup and treatment selection designs. The higher level user facing function

asd.sim has been replaced by two new functions treatsel.sim and subpop.sim that are called directly by the user to imple-

ment hypothesis testing and simulations. The more general functions, gtreatsel.sim and gsubpop.sim can in principle be

called directly by the user, although due to the more complex input structure this is generally not recommended.

4.2 Function subpop.sim
Friede et al. (2012) extended the previously described combination test (CT) approaches, for co-primary analyses in a single pre-

defined subgroup and the full population, using the methods proposed by Spiessens and Debois (2010) to control the familywise

error rate (FWER) in the subgroup and the full population, and also proposed a novel method to obtain a critical value for the

definitive test using a conditional error function (CEF) approach; full details of these methods are given by Friede et al. (2012).

The function subpop.sim implements all the methods for subgroup selection in adaptive clinical trials reported by Friede et al.

(2012) and subsequent correspondence (Friede, Parsons, & Stallard, 2013). The authors described and explored the performance

of a number of methods in the setting described here, distinguishing between two distinct approaches to control the FWER, a

CT method (Brannath et al., 2009; Jenkins et al., 2011) and a CEF method.

4.2.1 Input arguments
An overview and brief description of the input arguments available for subpop.sim is shown in Table 1. The CT methodology

described by Friede et al. (2012) can be implemented in subpop.sim using either the Spiessens and Debois (2010) (SD), Simes

or Bonferroni testing procedures to control the FWER. These and the CEF approach can be selected using the method argument

to subpop.sim. The following options are available: (i) CT-SD (method="CT-SD"), (ii) CT-Simes (method="CT-Simes"),

(iii) CT-Bonferroni (method="CT-Bonferroni"), and (iv) CEF (method ="CEF").

The syntax providing the group sample sizes, for stages 1 and 2, for a putative trial design and effect sizes for early and final

outcomes is consistent across the available outcome types and comprises a list of the selected options. For instance, a design

where the required sample size per treatment arm is 100 for stage 1 and 200 for stage 2 would be implemented using the following

expression, n=list(stage1= 100,stage2=200). The assumption, in the current version of asd, is that the sample size in the

control arm of the study is the same as in the treatment arm. The default setting is that if the subgroup only is selected at the interim

analysis at stage 1, then the subgroup prevalence remains the same after stage 1. If an increase in the sample size in the subgroup

was planned, if this group only was selected (enrichment), then this can be implemented by adding an additional item to the list

to indicate this. For instance, if we wanted a sample size of 200 in the subgroup in this setting, irrespective of the subgroup preva-

lence, then we would modify the previous argument to the following n=list(stage1=100,enrich=200,stage2=200).

Effect sizes for early and final outcomes are also given as a list using expressions of the following structure, where the first

element of each vector is the effect size in the subgroup and the second element is the effect size in the full population. Setting

effect=list(early=c(0.3,0.1),final=c(0.3,0.1)) specifies an effect size of 0.3 in the subgroup and 0.1 in the full

population; the effect size in the control group is set by default to be zero. The default setting is for normal outcomes for both

early and final outcomes, outcome=list(early="N",final="N"), and the effects are interpreted given these options. The

http://cran.r-project.org/package=asd
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T A B L E 1 Brief description and available input arguments to R functions subpop.sim and treatsel.sim

Implementation
Argument Description Treatment selection (treatsel.sim) Subgroup selection (subpop.sim)
n Sample sizes for each

treatment group at

stage 1 (interim) and

stage 2 (final)

analyses

List of sample sizes; for example, 32 in

each group in stage 1 and 64 in stage 2,

list(stage1=32, stage2=64)

An additional list option can be used to increase

(enrich) the sample size in stage 2; for

example, enrich sample size to 128 in stage 2,

list(stage1=32, enrich=128,
stage2=64)

effect Effect sizes for early

and final outcomes

List of effect sizes for the control (first) and

each treatment group; for example, for

control (0) and two effects of size 0.1 and

0.2 for early and 0.2 and 0.3 for final

outcome,

list(early=c(0,0.1,0.2),
final=c(0,0.2,0.3))

The first element of each vector is the effect size

in the subgroup and the second is the effect

size in the full population; for example, for an

effect size of 0.4 in subgroup and 0.2 in the full

population for both early and final outcomes

list(early=c(0.4,0.2),
final=c(0.4,0.2)). An optional argument

can be included to set the effect size for the

control group; for example, default is zero,

control=list(early=0, final=NULL)

outcome Outcome type for early

and final outcomes

List of outcome types, options for normal (N), time-to-event (T), and binary (B) are currently

available; for example, normal for early and final outcomes list(early="N", final="N").

nsim Number of simulations An integer < 1 × 107

sprev Subgroup prevalence The prevalence of the subgroup in the main

population; 0 < 𝑠𝑝𝑟𝑒𝑣 < 1. Subgroup

prevalence can be either fixed or allowed to

vary at each simulation; default is

sprev.fixed=TRUE

corr Correlation between

outcomes

Correlation between early and final outcomes; −1 < 𝑐𝑜𝑟𝑟 < 1

seed Seed number Seed number to ensure repeatability of simulations

select Method for treatment

selection

Seven available options (see Section 4.3.1),

with default, select=0, to select all

treatments. For select=4, the epsilon

rule, can be used to allow more

flexibility, with default epsilon=1 and

for select=6, all treatments greater than

a threshold can be selected, with default

thresh=1

Two options are available. The default threshold

selection rule (select="thresh"), for which

limits must be set; for example,

selim=c(-1,1). A futility selection rule

(select="futility"; See Section 5.2) is

also available, for which limits must be set;

selim=c(0,0).

ptest Treatments for counts

of the number of

rejections

A vector of valid treatment numbers for

treatment specific counts of rejections;

for example, for four treatments,

ptest=c(1), ptest=c(1, 2) or

ptest=c(1,2,3,4) are all valid options

method Methodology used for

simulations; and for

subpop.sim either

Either method="invnorm" or "fisher"
to select inverse normal or Fisher

combination test

Select method="CT-SD", "CT-Simes",

"CT-Bonferroni" or "CEF" (see Section

4.2.1)

fu Follow-up options Subjects in the dropped treatment groups

can followed-up (fu=TRUE), with default

fu=FALSE (see Section 4.3.1.)

weight Stage 1 weight Stage 1 weight be defined with this option (0 ≤ weight ≤ 1); default weight=NULL

level Test level Test level must be set (0 ≤ 𝑙𝑒𝑣𝑒𝑙 ≤ 1); default level=0.025

file File name for output If unset will default to R console. For example, set file="output.txt", direct output to file in R

working directory (getwd())
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available options for outcome types are normal (N), time-to-event (T), and binary (B), and all combinations of these are allowed

for early and final outcome measures. Generally, it is assumed that higher means (N) and lower event rates (B or T) are better. A

detailed description of these options is left for the following section describing function treatsel.sim; the options described

there are analogous to those available for subpop.sim. In the simpler setting where group selection is based purely on the final

outcome, this can be implemented by setting the effect sizes for the early and final outcomes to be equal and the correlation

between the early and final outcomes to one (i.e., corr=1).

The subgroup prevalence is set by a single argument, namely (sprev). For instance, sprev=0.5 indicates that the sub-

group comprises half of the full population. The function subpop.sim randomly generates test statistics (with a seed number

set using seed) and accumulates results from usually a large number of simulations that must be set using the nsim option

(default setting, nsim=1000). The prevalence can be either fixed at the set value (sprev.fixed=TRUE) or allowed to vary

(sprev.fixed=FALSE) using a single realization of the binomial random variate generation function rbinom, at the set values

for the sample size and subgroup prevalence, at each simulation.

Subgroup selection at interim is implemented using the so-called threshold selection rule (Friede & Stallard, 2008; Friede

et al., 2012) (select="thresh"). If for the difference Δ of the test statistics for the full population and the subgroup holds

Δ ≤ 𝑙1, then the subgroup only is tested at the end of stage 2. IfΔ > 𝑙2 the full population only is tested. Otherwise both subgroup

and full populations are tested. The thresholds (𝑙1, 𝑙2) are set using the argument selim, which is a vector of standard deviation

multiples. If, for instance, large limits are set (e.g., selim=c(-10,10)) then both subgroup and full populations will always

be tested at the trial endpoint, whereas if selim=c(0,0), only the test regarding the population with the largest test statistic

at interim is taken into stage 2. Intermediate values for selim between these extremes provide more flexible selection options.

The weight for the CT approaches, if unset, is given by 𝑛stage 1∕(𝑛stage 1 + 𝑛stage 2) with 𝑛stage1 and 𝑛stage2 referring to the (full)

population sizes at stage 1 and stage 2, respectively. The test level is set by default to 0.025 (level=0.025).

4.2.2 Output
The output to subpop.sim first gives a summary of the simulation model, including expected values for the test statistics at each

stage of the study. The main summary table reports the number of times that hypotheses𝐻
{𝑆}
0 ,𝐻

{𝐹 }
0 ,𝐻

{𝑆,𝐹 }
0 were selected for

testing and rejected when the subgroup (𝑆), the full population (𝐹 ), or both were tested. Output from subpop.sim is by default

directed to the usual R console, but to save more detailed summaries of the simulation model, output can be directed to a file

using this as an argument to the file function (e.g., file="output.txt"). Section 5 shows how subpop.sim is used in a

practical setting with example data.

4.3 Function treatsel.sim
Function treatsel.sim replaces and generalizes the previous function asd.sim, with the name change made to make it much

more explicit that the code implements only simulations for treatment selection designs for multi-arm studies. Much of the

syntax and model setup is consistent between treatsel.sim and subpop.sim.

4.3.1 Input arguments
An overview and brief description of the input arguments available for treatsel.sim is shown in Table 1. One aspect of

the design setup that differs considerably between treatsel.sim and subpop.sim is the coding of the treatment effects.

Treatment effect sizes are given for the control group 𝜇0 and the test treatment or treatments 𝜇𝑘 and as vectors for both early

and final outcomes; for instance, effect=list(early=c(0,0.1,0.2,0.1), final=c(0,0.1,0.2,0.3)) indicates that

there are three test treatments with effect sizes 0.1, 0.2, and 0.1 for the early outcome and 0.1, 0.2, and 0.3 for the final outcome,

respectively; the control is set to 0 for both outcomes. The null hypotheses tested are𝐻𝑘 ∶ 𝜃𝑘 = 𝜇𝑘 − 𝜇0 = 0. There is no limit

to the number of test treatment groups 𝐾 . However, in practice, our experience is that the code runs slowly for designs with

eight or more treatment groups, that is,𝐾 ≥ 8. The setting of the effect sizes can be clarified further by considering the available

options for the outcome types (normal N, time to event T, and binary B), set using the option outcome, with the default being to

have both early and final outcomes normal (outcome=list(early="N",final="N")), with all nine combinations available.

Generally, it is assumed that higher means (N) and lower event rates (B or T) are better.

For normal outcomes, the test statistics for the simulation model for the 𝐾 test treatments, relative to the control group, are

given by
√
𝑛∕2 × (𝜇𝑘 − 𝜇0). For time-to-event outcomes, effects are interpreted as minus log hazard rates, with the control 𝜇0

set to zero and test statistics are given by
√
𝑜𝑘∕4 × (𝜇𝑘 − 𝜇0), where the expected total number of events in the control and

treatment groups 𝑜𝑘 for treatment 𝑘 is calculated under an assumed exponential model to be 𝑛 × (1 − exp(− exp(−𝜇0))) + 𝑛 ×
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(1 − exp(− exp(−𝜇𝑘))). Binary effects are characterized by log odds ratios,
√
1∕𝑜𝑘 + 1∕(𝑛 − 𝑜𝑘) + 1∕𝑜0 + 1∕(𝑛 − 𝑜0) × (𝜇𝑘 −

𝜇0), where 𝜇𝑘 is minus the log odds of the event and the observed number of events in treatment group 𝑘 is 𝑜𝑘 = 𝑛 × 1∕(1 +
exp(𝜇𝑘)). Some care must be taken when setting-up the simulation model, as clearly the interpretation of the effect argument

to treatsel.sim is dependent on the options selected for outcome.

The method argument to treatsel.sim allows either the inverse normal (invnorm) or Fisher’s (fisher) combination test

and the logical follow-up argument (fu) determines whether (i) patients in the dropped treatment groups are removed from the

trial and unknown test statistics in the dropped treatments are set to −∞ at stage 2 (fu=FALSE) or (ii) patients are kept in the trial

and followed-up to the final outcome, in the same manner as the patients recruited in stage 1 in the selected treatment groups

(fu=TRUE); Friede et al. (2011) called option (i), the default setting, discontinued follow-up and option (ii) complete follow-up.

Seven treatment selection rules based on stage 1 test statistics are available in treatsel.sim, and are chosen with the select
argument; (i) select all treatments (select=0), (ii) select the maximum (select=1), (iii) select the maximum two (select=2),

(iv) select the maximum three (select=3), (v) flexible treatment selection using the 𝜖-rule (Friede & Stallard, 2008; Friede

et al., 2011), with additional argument (epsilon) (select=4), (vi) randomly select a single treatment (select=5) or (vii)

select all treatments greater than a threshold, with the additional argument (thresh) (select=6).

The only additional argument available for treatsel.sim, that has not been covered in the section describing subpop.sim,

is ptest. This is a vector of valid treatment numbers for determining specific counts for the number of simulations that reject

the null hypothesis; for instance, for three test treatments and ptest=c(1,3), treatsel.sim will count and report the number

of rejections of one or both hypotheses for testing treatments 1 and 3 against the control, in addition to the number of rejections

of each of the elementary hypotheses.

4.3.2 Output
The output from treatsel.sim first gives a summary of the simulation model, including expected values for the test statistics at

each stage of the study. The main summary tables report (i) the number of treatments selected at stage 1, (ii) treatment selection

at stage 1, that is, how often each treatment was selected, (iii) counts of hypotheses rejected at study endpoint, for each of

the elementary hypotheses (𝐻
{1}
0 ,𝐻

{2}
0 ,… ,𝐻

{𝐾}
0 ), and (iv) the number of times that one or more than one of the hypotheses

identified in ptest are rejected. Section 5 shows how treatsel.sim is used in a practical setting with example data.

5 EXAMPLES

In this section, we illustrate the methods described above by two example studies using the R package asd. The first is a multi-arm

randomized controlled trial in COPD with treatment selection; which will be considered in Section 5.1. As a second example,

we consider trials in oncology with time-to-event outcomes and subgroup selection; this will be considered in Section 5.2.

5.1 Clinical trial in COPD with treatment selection
Barnes et al. (2011) and Donohue et al. (2010) report a seamless adaptive design with dose selection, which was also discussed

elsewhere (Cuffe, Lawrence, Stone, & Vandemeulebroecke, 2014). Patients were randomized to four doses of indacaterol (75 µ𝑔,

150 µ𝑔, 300 µ𝑔 and 600 µ𝑔), active controls, and placebo control. For the purpose of illustration, we ignore the active controls

in the following and use the observed results to illustrate the design process. The primary outcome was the percentage of days

of poor control over 26 weeks. As recruitment for the entire study took only 6 months, the interim treatment selection could not

be based on the primary endpoint. Trough forced expiratory volume in 1 s (FEV1) at 15 days was identified as a suitable early

outcome to inform the interim analysis. From Figure 1 of Barnes et al. (2011), difference in trough FEV1 compared to placebo

at 15 days is 150 ml, 180 ml, 210 ml, and 200 ml for the indacaterol doses 75 µ𝑔, 150 µ𝑔, 300 µ𝑔, and 600 µ𝑔, respectively.

Reported 95% confidence intervals suggest two standard errors of treatment difference is approximately 60 ml, so assuming

equal stage 1 sample sizes 𝑛1 = 110, then the standard deviation of the measurements is approximately 220 ml. Standardized

effect sizes are thus approximately 0.68, 0.82, 0.95, and 0.91 for the indacaterol doses 75 µ𝑔, 150 µ𝑔, 300 µ𝑔, and 600 µ𝑔,

respectively. Regarding the final outcome days of poor control (%) over 26 weeks, we gather from the report of stage 2 results at

http://clinicaltrials.gov/show/NCT00463567 that the placebo rate was 35%. Let us assume rates of 31%, 30%, 28%, and 29% for

the four doses of indacaterol (75 µ𝑔, 150 µ𝑔, 300 µ𝑔 and 600 µ𝑔). Based on reported standard errors, we estimate the standard

deviation to be approximately 30%. Hence, the standardized effect sizes are approximately 0.13 (75 µ𝑔), 0.17 (150 µ𝑔), 0.23

(300 µ𝑔), and 0.20 (600 µ𝑔). The approximate sample sizes per arm were 100 patients in stage 1 and 300 patients in stage 2.
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for thresholds on a standardized z-scale in the range 0–6

Since the aim was to select two doses of indacaterol at the interim analysis to take into stage 2, we consider an overall sample

size for the two stage of 5 × 100 + 3 × 300 = 1,400 patients. Furthermore, a moderate positive correlation between early and

final outcomes of 0.4 is assumed.

In the following, we will consider three settings: (i) continuous early and final outcomes and selecting always two doses for

the second stage, as in the original study; (ii) continuous early and final outcomes, as in the original study, but for the purpose

of illustration, we vary the selection rule using the threshold rule to allow varying numbers of doses being taken forward for

confirmatory testing in the second stage; (iii) as final outcomes are non-normal and early and final outcomes are on different

scales, we assume in another setting that the final is binary and not continuous.

5.1.1 Continuous early and final outcomes: Selecting always two doses for the second stage
As an example, we consider a fixed total sample size of 1,400 patients, which we can allocate between the two stages, with either

more or less resources for each stage. We consider the following combinations of 𝑛1 = 10, 25,… , 175 and 5 × 𝑛1 + 3 × 𝑛2 =
1,400. Each one of these sample size options can be tested using the following implementation of the treatsel.sim function
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for the setting with 100 patients per arm in stage 1 and 300 patients per arm in stage 2:

treatsel.sim(n=list(stage1=100,stage2=300), effect=list(early=c(0,0.68,0.82,0.95,0.91),
final=c(0,0.13,0.17,0.23,0.20)), outcome=list(early="N",final="N"),
nsim=10000,corr=0.4,seed=145514,select=2, level=0.025,ptest=c(3,4))

This code sets the sample sizes for each stage, and provides the effect estimates as described above, for a normal early outcome

(“N”) and a normal (“N”) final outcome. The correlation is set to 0.4, and the number of simulations to 10,000. The select=2
option implements the rule that chooses the two treatments with the largest test statistics an interim. The test level is set to 0.025

and the ptest options allows us to count rejections for either or both of the doses 300 µ𝑔 and 600 µ𝑔. Results from running

this code are as follows (omitting the parts describing the setup):

simulation of test statistics:
expectation early = 4.8 5.8 6.7 6.4
expectation final stage 1 = 0.9 1.2 1.6 1.4 and stage 2 = 1.6 2.1 2.8 2.4
weights: stage 1 = 0.5 and stage 2 = 0.87

number of treatments selected at stage 1:
n %

1 0 0.00
2 10000 100.00
3 0 0.00
4 0 0.00

Total 10000 100.00

treatment selection at stage 1:
n %

1 383 3.83
2 3282 32.82
3 8661 86.61
4 7674 76.74

hypothesis rejection at study endpoint:
n %

H1 183 1.83
H2 2067 20.67
H3 7206 72.06
H4 5541 55.41

reject H3 and/or H4 = 8469 : 84.69%

The first part of the output provides a summary of the model setup, and the second part values of the test statistics used in the

simulations. The squared weights are calculated, in this case, as 100/400 and 300/400. The results are summarized in the three

lower tables. The first indicates that two treatments were always selected at stage 1, the second gives the number of simulations

in which each treatment was selected and the third gives the number of simulations in which the elementary hypotheses were

rejected. The final statement gives the number of simulations in which at least one of the treatments picked using the ptest
options were rejected. Assigning the output for this function to an object that we for the sake of illustration call simply output,

then the summaries described here can be accessed directly, for instance, for plotting data or other analysis, using the syntax

output$count.total, output$select.total, output$reject.total, and output$sim.reject.

The results of the simulations suggest that given the large treatment effects on the early outcome (trough FEV1 at 15 days),

and the modest effects on the final outcome (days of poor control (%) over 26 weeks), the greatest power would have been

achieved by using a sample size of around 50 per group in stage 1 (see Figure 1).

5.1.2 Continuous early and final outcomes: Selecting varying numbers of doses for
the second stage
As an alternative to always selecting the best two performing treatments at interim, we now consider a threshold rule, where

all treatments with test statistics at interim analysis above a fixed threshold are taken into stage 2. If no treatments reach the



FRIEDE ET AL. 1275

threshold, the study is stopped for futility. Simulations are implemented using the same effect sizes as in setting 1, a stage 1

sample size of 40, and a stage 2 sample size of 400 in the following code for a threshold of 3:

treatsel.sim(n=list(stage1=40,stage2=400),
effect=list(early=c(0,0.68,0.82,0.95,0.91),
final= c(0,0.13,0.17,0.23,0.20)),
outcome=list(early="N",final="N"),
nsim=10000,corr=0.4,seed=145514,select=6,
thresh=3,level=0.025,ptest=c(3,4))

The select=6 option implements the threshold rule, with the fixed early outcome test statistic threshold set using the thresh
option. Results from running this code are as follows (omitting the parts describing the setup):

simulation of test statistics:
expectation early = 3 3.7 4.2 4.1
expectation final stage 1 = 0.6 0.8 1 0.9 and stage 2 = 1.8 2.4 3.3 2.8
weights: stage 1 = 0.3 and stage 2 = 0.95

number of treatments selected at stage 1:
n %

1 800 8.00
2 1634 16.34
3 3098 30.98
4 4175 41.75

Total 9707 97.07

treatment selection at stage 1:
n %

1 5083 50.83
2 7469 74.69
3 8914 89.14
4 8596 85.96

hypothesis rejection at study endpoint:
n %

H1 2480 24.80
H2 4882 48.82
H3 7769 77.69
H4 6642 66.42

reject H3 and/or H4 = 8600 : 86%

Although the probability for futility stopping is not given explicitly, it can be easily derived. The considered design was

stopped for futility only 3% (=100%− 97.07%) of the time; with all four experimental treatments being taken into stage 2 more

than 41% of the time. Running the above code for thresholds in the range 0 to 6 (at intervals of a half) and extracting output for

each option gives the results summarized in Figure 2.

The expected overall sample sizes for the scenarios in Figure 2, based on the simulated number of treatments selected at stage

1 and the fixed stage 1 and stage 2 sample sizes of 40 and 400, are as follows; 2199.5, 2197.3, 2188.1, 2164.3, 2109.0, 1991.2,

1802.5, 1548.2, 1264.0, 1004.2, 807.9, 688.2, and 631.0. The power drops off rapidly as the threshold increases from 3 to 5, as

futility stopping increases from 3% to 65%. When, on average, two test treatments are taken into stage 2, that is when the fixed

threshold is somewhere between 3.5 and 4 (overall sample size between 1548.2 and 1264.0), the power is lower (between 78.7%

and 65.4%) than the analogous setting in Figure 1 (86.6%). The early outcome effect sizes and distributions are such that a fixed

threshold that on average picks two treatments at interim, also stops for futility so often that it reduces the power considerably

compared to a design that always takes exactly two treatments.
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5.1.3 Continuous early and binary final outcome
The implementation described here has focused on normal outcome measures for both early and final outcomes. However, if

one or other outcome were binary, the changes necessary to implement this new scenario are relatively straightforward. For

instance, instead of using days of poor control over 26 weeks as the final outcome measure, we might use a threshold based on

this outcome. If this was the case, then success or failure of the treatment could be determined for each study participant, based

on some a priori threshold for the number of days that one might expect to maintain control over the 26 week period. For the

sake of example, let us consider the failure rate to be 50% in the control group, and 45% (75 µ𝑔), 45% (150 µ𝑔), 40% (300 µ𝑔),

and 40% (600 µ𝑔), at each dose, respectively. Given that every other aspect of the design is the same as the first setting in the

COPD example, then this design can be implemented using the following code.

treatsel.sim(n=list(stage1=100,stage2=300), effect=list(early=c(0,0.68,0.82,0.95,0.91),
final=c(0.50,0.45,0.45,0.40,0.40)), outcome=list(early="N",final="B"),
nsim=10000,corr=0.4,seed=145514,select=2, level=0.025,ptest=c(3,4))

This gives an overall rejection probability of 76.99%, by changing the outcome argument for the treatsel.sim function of

Section 5.1.2 to list(early="N",final="B") and the vector of final effect sizes to c(0.50,0.45,0.45,0.40,0.40).

5.2 Clinical trials in oncology with subgroup selection
Jenkins et al. (2011) suggested designs for adaptive seamless phase II/III designs for oncology trials using correlated survival

endpoints. Designs of this type can be implemented relatively straightforwardly using the subpop.sim function. Here, we

explore some design properties for a typical scenario from amongst the many that Jenkins et al. (2011) explored. We assume

early and final time-to-event outcomes with a hazard ratio of 0.6 in the subgroup and 0.9 in the full population for both, and

a correlation between endpoints of 0.5; in the setting of an oncology trial, the endpoints might be progression free and overall

survival. We set the stage 1 sample size to 100 patients per arm and the stage 2 sample size to 300 patients per arm, if we progress

in the full population, and to 200 patients per arm if we progress in the subgroup only. The subgroup prevalence is fixed at 0.3.

Using the futility rule for selection at interim, with limits for the subgroup and full population both set to 0, this scenario can be

implemented using the following code:

subpop.sim(n=list(stage1=100,enrich=200,stage2=300),
effect=list(early=c(0.6,0.9),final=c(0.6,0.9)),
sprev=0.3,outcome=list(early="T",final="T"),
nsim=10000,corr=0.5,seed=1234,select="futility",
selim=c(0,0),level=0.025,method="CT-SD")

The method="CT-SD" option implements the combination test method with Spiessens and Debois testing procedure. Given

test statistics at interim of 𝑆1 and 𝑆2 for the subgroup and the full population, respectively, and selection rule limits (𝑙1, 𝑙2), the

futility rule implements the following options: (i) continue with a co-primary analysis if 𝑆1 < 𝑙1 and 𝑆2 < 𝑙2, (ii) continue in

the subgroup alone if 𝑆1 < 𝑙1 and 𝑆2 >= 𝑙2, (iii) continue in the full population alone if 𝑆1 >= 𝑙1 and 𝑆2 < 𝑙2, and (iv) stop for

futility if 𝑆1 ≥ 𝑙1 and 𝑆2 ≥ 𝑙2. Results from running this code are as follows (omitting the parts describing the setup):

simulation of test statistics:
expectation early: sub-pop = -1.46 : full-pop = -0.58
expectation final stage 1: sub-pop = -1.46 : full-pop = -0.58
expectation final stage 2: sub-pop only = -3.76 : full-pop only = -1.01
expectation final stage 2, both groups selected: sub-pop = -2.52 : full-pop = -1.01
weights: stage 1 = 0.5 and stage 2 = 0.87

hypotheses rejected and group selection options at stage 1 (n):
Hs Hf Hs+Hf Hs+f n n%

sub 2225 0 0 2225 2309 23.09
full 0 48 0 54 227 2.27
both 5370 1658 1636 5407 6987 69.87
total 7595 1706 1636 7686 9523 -
% 75.95 17.06 16.36 76.86 95.23 -
reject Hs and/or Hf = 76.65%
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T A B L E 2 Selection probabilities, probability of futility stopping and power (probability of rejecting at least one elementary null hypothesis)

for a range of values of 𝑙S and 𝐼F

Selection (%)
𝒍F 𝒍S Subgroup Full Both Futility (%) Power (%)

0 0 23.1 2.3 69.9 4.8 76.7

0 −1 11.4 16.2 55.8 16.7 58.8

0 −2 2.3 45.1 26.5 26.1 34.2

0 −3 0.1 66.0 6.0 27.9 20.7

−1 0 60.0 0.4 32.3 7.3 83.9

−1 −1 37.4 4.0 29.7 29.0 61.4

−1 −2 12.3 16.5 16.9 54.2 30.3

−1 −3 1.5 28.4 4.8 65.4 13.8

−2 0 84.9 0.0 7.4 7.7 88.6

−2 −1 60.1 0.3 7.2 32.4 65.0

−2 −2 24.1 2.4 5.6 68.0 29.2

−2 −3 4.4 5.3 2.1 88.2 8.0

−3 0 91.6 0.0 0.7 7.7 89.7

−3 −1 66.7 0.0 0.7 32.6 66.0

−3 −2 28.6 0.1 0.6 70.7 28.8

−3 −3 5.6 0.4 0.3 93.7 6.1

The output reports that in 75.95%, 17.06%, and 16.36% of the simulations, the null hypothesis was rejected in the subgroup,

full population and both, respectively. The final two columns give a breakdown of the selections made at the interim analysis;

23.09% of the simulations were continued in the subgroup only, 2.27% in the full population only, 69.87% in both, and 4.77%

were stopped for futility. A concise summary of this table can be obtained for further analysis, by assigning to an output object

and accessing the results using the syntax output$results.

It is informative in understanding the futility rule to run the above code for a grid of futility rule limits in the range 0 to −3;

the results of this for each option are summarized in Table 2, where the notation 𝑙S and 𝑙F indicate the limits for the subgroup

and full population, respectively.

From Table 2, it is clear that as 𝑙S becomes more negative, the subgroup is selected progressively less often and similarly as

𝑙F becomes more negative, it is selected progressively more often. The balance between the two limits determines overall power

in this setting. With a strong effect in the subgroup and a much weaker effect in the full population, the best strategy is to always,

unless stopping for futility, test in the subgroup at the final analysis. For the grid of values tested here, this is best achieved when

𝑙F = −3 and 𝑙S = 0.

6 DISCUSSION

Adaptive seamless designs are recognized as a tool to increase the efficiency of clinical development programs by combining

features of learning and confirming in a single trial, while traditional development programs would have investigated these in

separate trials. However, their implementation is more involved than traditional designs (see, e.g., Quinlan and Krams (2006) for

a discussion). One aspect is the planning which is more complex, often requiring extensive Monte Carlo simulations (Benda et al.,

2010; Friede et al., 2010). Here, we presented a unified framework for adaptive seamless designs with treatment or subgroup

selection. Furthermore, we developed a flexible and yet efficient simulation model. This, as all other methods discussed, can

accommodate interim selection informed by an early outcome rather than the final one. Furthermore, we demonstrate how the

R package asd, freely available from CRAN, can be used to evaluate and compare operating characteristics of various designs.

Here, we employed the combination test approach to achieve type I error rate control. For treatment selection, alternative

approaches build on the work of Thall, Simon, and Ellenberg (1988, 1989) using the group-sequential method, but require that a

single treatment continues along with a control beyond the first stage (Stallard & Todd, 2003) or that the number of treatments at

each stage is specified in advance (Stallard & Friede, 2008). Methods based on the combination test approach are more flexible

(see, e.g., Bauer and Kieser (1999), Posch et al. (2005), and Bretz et al. (2006)), but may be less powerful in some settings
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(Friede & Stallard, 2008). Magirr, Jaki, and Whitehead (2012) proposed a group-sequential method that does allow completely

flexible treatment selection, though this may be at the cost of conservatism, that is, decreased type I error rate below the nominal

level, and an associated loss in power. Koenig et al. (2008) showed how the conditional error principle of Müller and Schäfer

(2001) may be used to extend the Dunnett test (Dunnett, 1955) to a two-stage design with flexible treatment selection. This has

been shown to compare well in terms of power with competing methods (Friede & Stallard, 2008).

There is a smaller body of work on clinical trials with subgroup selection, which has mainly used the combination testing

approach, although methods based on the conditional error principle (Friede et al., 2012; Placzek & Friede, 2019; Stallard,

Hamborg, Parsons, & Friede, 2014) and the group-sequential approach (Magnusson & Turnbull, 2013) have also been proposed.

The number of subgroups considered is usually small and different assumptions are made regarding the subgroup structure. For

instance, Placzek and Friede (2019) consider nested subgroups which might arise from using different thresholds on a continuous

(or at least ordinal) biomarker. An overview is provided in Ondra et al. (2016).

Although the development of some of the methods was motivated by applications in later development phases, that is, the

seamless progression from phase II to phase III, the methods are more widely applicable of course. The focus on later develop-

ment phases arises mainly because type I error rate is often not considered an issue in early development phases. However, in

development programmes that are different from traditional ones in that they do not include at least two independent confirma-

tory trials, this might be different as then evidence from earlier trials will also be considered by regulators for replication of the

effect demonstrated in a single phase III trial. These situations typically arise with rare diseases, in particular, rare cancers where

there is a move toward platform trials including basket and umbrella trials (Woodcock & LaVange, 2017). The application of

the simulation model and its implementation in the R package asd are subject to future research.

As the title of the paper by Woodcock and LaVange (2017) indicates, sometimes the application of both treatment and pop-

ulation selection might be of interest, in particular, in early clinical development. Motivated by late stage confirmatory trials,

here we considered only designs with either treatment or subgroup selection, but the testing procedure, simulation model, and

the implementation could be extended to designs where both treatments and subgroups are selected. Again, this could be subject

to further research.

Throughout the manuscript, we assume that the hypothesis tests are based on a single primary outcome and that this is not

changed during the trial. We consider this the likely scenario for confirmatory trials, although the adaptation of endpoints has

been discussed in the literature (Kieser, 2005). However, additional information arising from other outcomes can be used to

support the interim decisions. As discussed by Chataway et al. (2011), these need not be surrogate endpoints.

The testing procedures, the simulation model, and their implementation in the R package asd are quite general and are

applicable to a variety of outcomes including time-to-event endpoints. However, the assumptions made including the p-clud
condition must be satisfied at least asymptotically for the testing procedure and the simulation model to be valid. For time-to-

event endpoints, these can be easily violated resulting in substantial inflation of the type I error rate (Bauer & Posch, 2004). The

main reason lies in the fact that patients with censored observations in one data look will contribute data to the next look, which

is not an issue as long as the information is restricted to the censored observation times and does not include other information

such as baseline characteristics or other outcomes. This complication motivated some authors including Wassmer (2006) and

Jahn-Eimermacher and Ingel (2009) to propose extensions of the combination test approach which deal with the specific issues

of time-to-event endpoints. An overview and a discussion is provided in Chapter 9 of Wassmer and Brannath (2015).

There are of course some further limitations. Here, we focused very much on hypothesis testing, although the estimation of

the treatment effects is equally important. There has been some interest in improved estimators in adaptive seamless designs with

treatment (Bowden & Glimm, 2014; Brannath et al., 2009; Posch et al., 2005; Stallard & Kimani, 2018) or subgroup selection

(Kimani et al., 2015, 2018), in particular, in more recent years.

With regard to interim decisions, we considered here only fairly straightforward rules although Bayesian statistics (e.g.,

predictive probabilities (Brannath et al., 2009)) are also used as the basis for interim decisions. Currently, we consider expanding

the R package asd in this direction.
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APPENDIX: DERIVATION OF DATA SIMULATION MODELS
We consider first treatment selection designs. Let �̂�

(𝑖)
𝑘𝑗

be the estimate for treatment 𝑘, 𝑘 = 0, 1,… , 𝐾 with 𝑘 = 0 corresponding

to control, at stage 𝑗 , 𝑗 = 1,… , 𝐽 , for endpoint 𝑖, 𝑖 = 1, 2.

Assume, as often holds at least asymptotically, that �̂�
(𝑖)
𝑘𝑗

is normally distributed with
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For independent normal random variables with known variance 𝜎2, we have ℐ(𝑖)
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where 𝑛
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of observations at look 𝑗 for treatment 𝑘 on endpoint 𝑖.
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for all 𝑘 (for a single sample of known-variance

normals, this is equivalent to assuming that sample sizes are the same for all experimental treatments). In this case, considering

first a single endpoint, we get

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑆
(1)
11

⋮

𝑆
(1)
𝐾1

⋮

𝑆
(1)
1𝐽

⋮

𝑆
(1)
𝐾𝐽

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼ 𝑁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜃
(1)
1 𝐼

(1)
1

⋮

𝜃
(1)
𝐾
𝐼
(1)
1

⋮

𝜃
(1)
1 𝐼

(1)
𝐽

⋮

𝜃
(1)
𝐾
𝐼
(1)
𝐽

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,Σ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A1)
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where the variance matrix is given by

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼
(1)
1

𝐼
(1)
1

1+𝜆 ⋯
𝐼
(1)
1

1+𝜆
𝐼
(1)
1

1+𝜆 𝐼
(1)
1 ⋱ ⋮

⋮ ⋱ ⋱
𝐼
(1)
1

1+𝜆
𝐼
(1)
1

1+𝜆 ⋯
𝐼
(1)
1

1+𝜆 𝐼
(1)
1

𝐼
(1)
1

𝐼
(1)
1

1+𝜆 ⋯
𝐼
(1)
1

1+𝜆
𝐼
(1)
1

1+𝜆 𝐼
(1)
1 ⋱ ⋮

⋮ ⋱ ⋱
𝐼
(1)
1

1+𝜆
𝐼
(1)
1

1+𝜆 ⋯
𝐼
(1)
1

1+𝜆 𝐼
(1)
1

⋯

𝐼
(1)
1

𝐼
(1)
1

1+𝜆 ⋯
𝐼
(1)
1

1+𝜆
𝐼
(1)
1

1+𝜆 𝐼
(1)
1 ⋱ ⋮

⋮ ⋱ ⋱
𝐼
(1)
1

1+𝜆
𝐼
(1)
1

1+𝜆 ⋯
𝐼
(1)
1

1+𝜆 𝐼
(1)
1

𝐼
(1)
1

𝐼
(1)
1

1+𝜆 ⋯
𝐼
(1)
1

1+𝜆
𝐼
(1)
1

1+𝜆 𝐼
(1)
1 ⋱ ⋮

⋮ ⋱ ⋱
𝐼
(1)
1

1+𝜆
𝐼
(1)
1

1+𝜆 ⋯
𝐼
(1)
1

1+𝜆 𝐼
(1)
1

𝐼
(1)
2

𝐼
(1)
2

1+𝜆 ⋯
𝐼
(1)
2

1+𝜆
𝐼
(1)
2

1+𝜆 𝐼
(1)
2 ⋱ ⋮

⋮ ⋱ ⋱
𝐼
(1)
2

1+𝜆
𝐼
(1)
2

1+𝜆 ⋯
𝐼
(1)
2

1+𝜆 𝐼
(1)
2

⋯

𝐼
(1)
2

𝐼
(1)
2

1+𝜆 ⋯
𝐼
(1)
2

1+𝜆
𝐼
(1)
2

1+𝜆 𝐼
(1)
2 ⋱ ⋮

⋮ ⋱ ⋱
𝐼
(1)
2

1+𝜆
𝐼
(1)
2

1+𝜆 ⋯
𝐼
(1)
2

1+𝜆 𝐼
(1)
2

⋮ ⋮ ⋱ ⋮

𝐼
(1)
1

𝐼
(1)
1

1+𝜆 ⋯
𝐼
(1)
1

1+𝜆
𝐼
(1)
1

1+𝜆 𝐼
(1)
1 ⋱ ⋮

⋮ ⋱ ⋱
𝐼
(1)
1

1+𝜆
𝐼
(1)
1

1+𝜆 ⋯
𝐼
(1)
1

1+𝜆 𝐼
(1)
1

𝐼
(1)
2

𝐼
(1)
2

1+𝜆 ⋯
𝐼
(1)
2

1+𝜆
𝐼
(1)
2

1+𝜆 𝐼
(1)
2 ⋱ ⋮

⋮ ⋱ ⋱
𝐼
(1)
2

1+𝜆
𝐼
(1)
2

1+𝜆 ⋯
𝐼
(1)
2

1+𝜆 𝐼
(1)
2

⋯

𝐼
(1)
𝐽

𝐼
(1)
𝐽

1+𝜆 ⋯
𝐼
(1)
𝐽

1+𝜆
𝐼
(1)
𝐽

1+𝜆 𝐼
(1)
𝐽

⋱ ⋮

⋮ ⋱ ⋱
𝐼
(1)
𝐽

1+𝜆
𝐼
(1)
𝐽

1+𝜆 ⋯
𝐼
(1)
𝐽

1+𝜆 𝐼
(1)
𝐽

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that we can rewrite the right hand side of (A1) as

𝑁

(
𝐼 (1) ⊗ 𝜃(1),Σ(𝐺𝑆)(𝐼 (1))⊗ Σ(𝐶𝑆)

𝐾
( 1
1 + 𝜆

)
)

where 𝐼 (1) and 𝜃(1) denote, respectively, the vectors (𝐼 (1)1 ,… , 𝐼
(1)
𝐽

)′, and (𝜃(1)1 ,… , 𝜃
(1)
𝐾
)′ and

Σ(𝐶𝑆)
𝐾

(𝑟) =

⎛⎜⎜⎜⎜⎝
1 𝑟 ⋯ 𝑟

𝑟 1 ⋱ ⋮
⋮ ⋱ ⋱ 𝑟

𝑟 ⋯ 𝑟 1

⎞⎟⎟⎟⎟⎠
and

Σ(𝐺𝑆)(𝐼 (1)) =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐼
(1)
1 𝐼

(1)
1 ⋯ 𝐼

(1)
1

𝐼
(1)
1 𝐼

(1)
2 ⋯ 𝐼

(1)
2

⋮ ⋮ ⋱ ⋮

𝐼
(1)
1 𝐼

(1)
2 ⋯ 𝐼

(1)
𝐽

⎞⎟⎟⎟⎟⎟⎟⎠
denote variance matrices of the 𝐾 ×𝐾 complex symmetric form and of that obtained in the usual group-sequential setting.

When both endpoints are considered, the vector

(𝑆(1)
11 ,… , 𝑆

(1)
𝐾1,… , 𝑆

(1)
1𝐽 ,… , 𝑆

(1)
𝐾𝐽
, 𝑆

(2)
11 ,… , 𝑆

(2)
𝐾1,… , 𝑆

(2)
1𝐽 ,… , 𝑆

(2)
𝐾𝐽

)′
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is normally distributed with mean (
𝜃(1) ⊗ 𝐼 (1)

𝜃(2) ⊗ 𝐼 (2)

)
and variance (

Σ(𝐺𝑆)(𝐼 (1)) 𝜌Σ(𝐺𝑆)(𝐼 (12))

𝜌Σ(𝐺𝑆)(𝐼 (12)) Σ(𝐺𝑆)(𝐼 (2))

)
⊗ Σ(𝐶𝑆)

𝐾
( 1
1 + 𝜆

)

where is a 𝐽 -dimensional vector with 𝐼
(12)
𝑗

=
√
𝐼
(1)
𝑗
𝐼
(2)
𝑗
, 𝑗 = 1,… , 𝐽 .

We consider next designs with subgroup selection. In analogy to the notation used above, now let �̂�
(𝑖)
𝑘𝑗

be the estimate of the

treatment effect in subgroup 𝑘, 𝑘 = 1,… , 𝐾 at stage 𝑗 , 𝑗 = 1,… , 𝐽 , for endpoint 𝑖, 𝑖 = 1, 2. We will typically consider the case

of 𝐾 = 2, with 𝑘 = 2 corresponding to the entire population and 𝑘 = 1 corresponding to a subgroup comprising a proportion 𝜏

of the entire population.

Let (𝐼 (𝑖)
𝑘𝑗
)−1 denote the variance of �̂�

(𝑖)
𝑘𝑗

and let 𝑆
(𝑖)
𝑘𝑗

= �̂�(𝑖)
𝑘𝑗
𝐼
(𝑖)
𝑘𝑗

. As above, we will assume that the �̂�
(𝑖)
𝑘𝑗

are normally distributed

with mean 𝜃
(𝑖)
𝑘

and variance (𝐼 (𝑖)
𝑘𝑗
)−1 with

𝑐𝑜𝑣(�̂�(𝑖)
𝑘𝑗
, �̂�

(𝑖)
𝑘′𝑗′

) = (𝐼 (𝑖)max{𝑘,𝑘′}max{𝑗,𝑗′})
−1

and

𝑐𝑜𝑣(�̂�(𝑖
′)
𝑘𝑗
, �̂�

(𝑖)
𝑘′𝑗′

) = 𝜌(𝐼 (𝑖)max{𝑘,𝑘′}max{𝑗,𝑗′}𝐼
(𝑖′)
max{𝑘,𝑘′}max{𝑗,𝑗′})

−1∕2, 𝑖 ≠ 𝑖′.

Denote 𝐼
(𝑖)
𝑗2 by 𝐼

(𝑖)
𝑗

and assume further that 𝐼
(𝑖)
𝑗1 = 𝜏𝐼 (𝑖)

𝑗
for 𝑖 = 1, 2, 𝑗 = 1,… , 𝐽 (see Spiessens and Debois), then

(𝑆(1)
11 , 𝑆

(1)
21 ,… , 𝑆

(1)
1𝐽 , 𝑆

(1)
2𝐽 , 𝑆

(2)
11 , 𝑆

(2)
21 ,… , 𝑆

(2)
1𝐽 , 𝑆

(2)
2𝐽 )

′

is normally distributed with mean (
𝜃(1) ⊗ 𝐼 (1)

𝜃(2) ⊗ 𝐼 (2)

)
and variance (

Σ(𝐺𝑆)(𝐼 (1)) 𝜌Σ(𝐺𝑆)(𝐼 (12))

𝜌Σ(𝐺𝑆)(𝐼 (12)) Σ(𝐺𝑆)(𝐼 (2))

)
⊗ Σ(𝐺𝑆)

(
𝜏

1

)

where 𝐼 (𝑖) = (𝐼 (𝑖)1 ,… , 𝐼
(𝑖)
𝐽
)′, 𝐼12 = (𝐼 (12)1 ,… , 𝐼

(12)
𝐽

)′ with 𝐼
(12)
𝑗

=
√
𝐼
(1)
𝑗
𝐼
(2)
𝑗

, 𝜃(𝑖) = (𝜃(𝑖)1 , 𝜃
(𝑖)
2 ), and Σ(𝐺𝑆)(𝐼) and Σ(𝐶𝑆)

𝐾
(𝑟) are as

defined above.

If more than two subgroups are considered, or if these are nested in some other way than the second being a subset of the

first, the last matrix can be modified accordingly to reflect this.


