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Abstract

Movement is ubiquitous to almost all life with most individuals undergoing some spatial

change across their lifespans. Understanding how and why animals move through and

interact with their environment is therefore key in understanding some of the most open

and pressing questions in science; from the effects of climate and environmental change

on local species, to preventing the spread of disease and infection.

In this Thesis we show how theoretical approaches to modelling individual animal

movement can lead to a better understanding of the processes behind movement. By

using the framework of random walk (RW) theory we analyse observed movement data

to predict and interpret movement behaviour of individuals.

Chapters 2 and 3 introduce the field of Movement Ecology and concentrate on recent

developments within the subject along and include derivations of key mathematical prop-

erties of RW theory which will be the analytical framework for analysing movement used

throughout the Thesis. Chapter 4 uses a biased and correlated random walk (BCRW) as

a model of individual animal movement to demonstrate efficiency in navigation. Chap-

ter 5 explores the variation in movement of individual ground beetles (Poecilus cupreus)

and demonstrates how this variation effects predictions of important population level

movement dynamics, such as the expected displacement. Chapter 6 demonstrates that a

highly peaked, heavy-tailed distribution found in the distribution of turning angles across

an individual’s movement path can arise from the mixing of two distinct normal-type

distributions, and provides an example of how this can indicate the presence of multiple

behaviours in the movement path. Finally, Chapter 7 considers how animal ‘personality’

can effect individual movement behaviour by considering the movement of stickleback

fish (Gasterosteus aculeatus)across three differing experimental environments.
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1 Introduction

1.1 Movement Ecology Overview

Understanding how and why animals move through, and interact with, their environment

is fundamental to our understanding of some of the most important open questions in

science (Nathan et al, 2008); from how climate change will affect habitat use and home

range-shifts (Russell et al, 2014, 2016; Riotte-Lambertt, 2015) to better control and

prevention of infectious disease spread and of invasive species (Petroksvii et al, 2014;

Boulinier et al, 2016; Dougherty et al, 2018).

The processes which cause individuals to move through space are many and diverse

but movement itself is fundamental to all life, both animal and plant alike with almost

all organisms undergoing some spatial change across their lifespan (Holyoak et al, 2008).

Movement ecology is the field which aims to understand, describe and quantitatively

model animal movement. It strives to demonstrate how movement affects and relates

to key processes in individual and group level movement dynamics such as reaction to

predation risk, interaction behaviour, resource use and navigation.

Traditionally movement ecology studies were focused on understanding the spaces

within an environment visited by an animal in order to improve management and wel-

fare strategies and were largely informed by either capture-recapture techniques or by

simply visually tracking individuals. However, over the past 30 years the field has un-

dergone a rapid expansion, in large due to the increase in availability, affordability and

accuracy of electronic tagging devices; allowing for ever increasing levels of precision in

monitoring the movement of individual animals (Patterson et al, 2017). This has moved

the field from simple studies investigating where animals go, to describing the underlying

mechanisms behind animals’ behaviour and movement processes.

In general movement ecology takes a ‘bottom-up’ approach to population movement

dynamics, by seeking to model individual-level behaviour and then extrapolating up

to group or population level (Jeltsch et al, 2013; Patterson et al, 2017). Therefore,

understanding and modelling individual animal movement is crucial to the field. Along
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with the expansion in recorded data, the number of statistical techniques and models

available to movement ecologists has also dramatically increased within recent times,

ranging from simple explicit models of individual movement, such as random walk models

(Kareiva & Shigesada, 1983; Codling et al, 2008) to more complex statistical structures

such as hidden Markov Models (Parton & Blackwell, 2017; McClintock & Michelot,

2018). Whilst these developments in analytical approaches have potentially given greater

insights into animal movement, care must be taken when seeking to analyse data to

ensure that the statistical tools are appropriate for the type of data and for what is

sought from the data (Patterson et al, 2017). Movement is a composite process which

is known to be formed from many internal and external cues (Nathan et al, 2008),

therefore whilst simple models benefit from being easy to implement and cheap in terms

of computation cost, they will not in general pick up more intricate movement behaviours.

Whereas more complex models become less tractable for non-experts to utilise and can

also lead to overly complex behaviour being wrongly assigned to a simple movement

process. This can particularly be the case for small studies with limited individuals over

short time scales; as is often inherent in laboratory based experimental setups. As such

extensions to simple movement models can allow for intuitive aspects of movement to

be encapsulated within the framework of the model whilst simultaneously letting more

advanced and complex behaviour be captured, with random walks being a good example

of this.

Random walks have an established history with animal movement (Levin, 1986; Getz

& Saltz, 2008; Codling et al, 2008; Miller et al, 2019) in part due to the nature of move-

ment data often being recorded as a series of discrete locations. Since the work of

Kareiva & Shigesada (1983), correlated random walks (CRW), which are random walks

that incorporate an animal’s expected inherent ability to have some persistence in their

movement path (Patlak 1953), that is knowledge of their previous direction, have fre-

quently been used as null models to which real movement can be compared (McCulloch

& Cain, 1989; Fagan & Calabrese, 2014; Miller et al, 2019). The benefits of such a model

are that the parameters required to inform the model can be calculated straightforwardly
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without the use of lengthy computation (Fagan & Calabrese, 2014). Recently, these null

models are being replaced by more complex models (such as biased and correlated ran-

dom walks (BCRW); Benhamou & Bovet, 1992; McClintock et al, 2012; Duchesne et

al, 2015) which can more accurately account for the complexities inherent within an

animals movement and behaviour, for example switches in behaviour possibly due to

changes with the local environment or landscape (Schultz & Crone, 2001; McClintock

et al, 2012). RW theory also underpins many advanced statistical models used in mod-

ern movement ecology including state-space models (SSM) and hidden Markov models

(Patterson et al, 2017), therefore further development in the models utilising RW theory

as well as completing a more thorough mathematical understanding of RW theory will

continue to benefit and push forward the movement ecology field.

1.2 Thesis Objectives and Structure

This thesis is formed of two introductory chapters and four research chapters. Each

research chapter is distinct in their content as they are taken from work which has either

been published or is in preparation for submission featuring a mix of theoretical results

based on RW theory, with analysis of real world data and individual based models.

Chapter 2 introduces the historical background of movement ecology and outlines

the current research being undertaken within the field, explaining how the biological

and mathematical aspects of the field work together in informing modern movement

ecology.

Chapter 3 focuses on deriving some of the key mathematical properties of random

walk theory and introduces the concept of circular data and statistics. Both of which

are the key mathematical tools used throughout the research chapters.

Chapter 4 considers a BCRW movement model for an individual, which is an exten-

sion of a model first analysed by Bovet & Benhamou (1999). It is demonstrated that in

the case where the error on persistence is small (that is the animal has good knowledge

of its previous heading) then for long term motion, heading towards a preferred direc-

tion (or point at infinity) the most efficient method of moving is to put more weight
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into following the direction of the previous step than into the navigation. An analytical

approximation to the long term behaviour of the model is given and the uses of such a

model and the findings in the wider movement ecology field are discussed.

Chapter 5 looks at the analysis of the movement paths of the ground beetle Poecilus

cupreus. The movement paths were recorded in a featureless, homogeneous laboratory

setting at high frequency. The beetles were found to have the ability to disperse much

more rapidly than predicted by simple CRW models and demonstrate high individual

variability in movement behaviour. The findings demonstrate the importance of consid-

ering individual movement traits rather than aggregated population movement dynamics,

as important characteristics, such as the net displacement, can be greatly affected.

Chapter 6 concerns the distribution of turning angles found in movement data. It

is shown that the apparent presence of a heavy-tailed distribution (such as a wrapped

Cauchy distribution) can be due to the erroneous assumption that the observed move-

ment includes turning angles drawn from one probability distribution. This is demon-

strated analytically by considering the probability distribution formed by a mixing two

normal-type distributions and comparing this to a heavy tailed distribution (a wrapped

Cauchy distribution).

Chapter 7 looks at how changes in an environment can affect the movement be-

haviour of stickleback fish (Gasterosteus aculeatus). High-resolution image-tracking was

used to repeatedly record the movements of individual three-spined stickleback fish in a

simple environment that had either two, three or five shelters present. Subsequent anal-

yses of the movement paths indicated that changes in the environmental setup did not

explain variability in our sample, whereas a significant proportion of the observed varia-

tion was attributed to individuality. The findings demonstrate the link between animal

’personality’ theory and movement ecology and highlight the importance of including

such individuality when attempting to scale up individual models to inform group level

movement behaviour.
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2 Historical background and foundations of Mathe-

matical Ecology

2.1 Historical Background

Perhaps the earliest documented interest into the movement of animals comes from

Aristotle in the 4th Century BC where he stated in his text On the motion of Animals

(Aristotle)

• “We have inquired elsewhere into the details of the movement of the various kinds

of animals, the differences between these movements, and the causes of the charac-

teristics which each exhibit; we must now inquire generally into the common cause

of animal movement of whatever kind”

Despite this it took until the 19th Century for the seasonal migration of birds to be

noted, in part due to the discovery of the Rostocker Pfeilstorch found in 1822 (Berthold,

2001). Even noted Biologists such as Charles Darwin, despite writing in On the Origin

of species that animals tended to restrict their movement to small, local areas or ranges,

did not explore the importance of studying the methods and movement paths of animals

(Darwin, 1859).

2.2 Modern Movement Ecology

Modern research has come to realise the importance of understanding animal movement

as there are aspects in many of fields of science which inherently rely upon an under-

standing of movement ecology including; ecosystem management (Berkes et al, 2008),

animal behaviour (King et al, 2018), evolutionary science (Peck, 2001), population dy-

namics (Patterson et al, 2008; Holyoak et al, 2008), epidemiology (Boulinier et al, 2016)

and conservation science (McLane et al, 2011). A thorough knowledge of the expected

movement behaviour of animals is vital for controlling and managing the spread of dis-

eases and infestations as well as protecting degraded ecological areas and in protecting
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animal welfare whilst also allowing for sustainability in agriculture.

The modern field of movement ecology came into existence around the beginning of

the 21st century where work focused on testing empirical data with theoretical mod-

els and, subsequently, using the theoretical models to predict animal movement and

behaviour (Holden, 2006). Since then movement can be, and has been, classified in

numerous ways. It can be passive, such as spread caused by currents or the wind, or

purposeful and serve as relocationary, exploratory, fleeing, patrolling etc. and can take

place across time scales from minutes and hours to days and months, over spatial scales of

small home-ranges and patches (Schultz & Crone, 2001; Jonsen et al, 2005; Fortin et al,

2005; McClintock et al, 2012; Riotte-Lambert, 2015; Blackwell et al, 2016) to large inter-

continental migrations (Gardiner et al, 2015; Nicosia et al, 2017; Muheim et al, 2018).

Purposeful movement of animal is often, if not always, affected by the internal state of

the individual influenced by such things as levels of hunger, predation risk, stress, body

condition and health (Nathan et al, 2008). These internal states are hard to empirically

quantify, however, with advances in technology these can now be measured (Spiegel et al,

2013, Fürtbauer et al, 2015; Cox et al, 2016; Vazquez Diosdado et al, 2018). Due to this

wide range of movement types, over varying spatial and temporal scales, along with the

rapid expanse of the field there was no common terminology or best practice appropri-

ated by the community and, as is pointed out by Nathan et al (2008), this idiosyncratic

classification is further compounded by differing taxonomic groups using differing move-

ment models and studies despite clear overlaps. Hence, Nathan et al (2008) presented a

framework to unify the field by stating that any such model of animal movement should

include expressions for internal state wt, ability to move, Ω, navigational ability, Φ and

environmental factors rt. Giving the potential of moving to a new location ut+1 from a

current location ut, at a given time, t, as a function of these variables:

ut+1 = F (Ω,Φ, rt, wt, ut) (2.1)

This approach to integrating the separate factions of research into movement is in essence

what modern movement ecology has entailed over the past 10-15 years, and proved timely
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as the field underwent a dramatic increase in the number of publications listed under

the key word of “movement ecology” since 2007 (Fig. 2.1).

Perhaps the major development within the field in the last two decades has hinged upon

Figure 2.1: Demonstrating the number of publications found on Web of Science under
the keyword of “movement ecology” from 2007-2018 (Web of Science, 2019)

advancements within tagging technology and other methods of recording animal locations

(Robinson et al, 2010; Hazen et al, 2012; Cooke et al, 2013), as well as the dramatic

increase in computational power and advances in mathematical and analytical techniques

which have allowed researchers to exploit the increase in raw data. This has resulted in

a better and more robust understanding of animal behaviour and in greater detail then

was previously possible. Traditionally, acquiring accurate and quality movement data

was challenging involving great expense, both economically and in terms of field work,

however, with the aid of the advances in tagging technology and the increase in raw

computer power, it has become possible to record movement data at a high degree of

accuracy across longer time scales without burdening or obviously effecting the natural

movement of the animal in question.

2.3 Movement Data Capture

Data capture techniques have dramatically improved over recent years, not just in the

volume of data which can be recorded but also in the accuracy and the ability to record
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data other than simple location, such as temperature, pressure, humidity and depth.

This coupled with the relative inexpensiveness of such devices has caused an explosion

in the size and number of data sets, with data repositories now dedicated in storing

vast amounts of open access data; such as MoveBank (Movebank.org, 2019) and Dryad

(Datadryad.org, 2019). However, care must be taken when attempting to tag individuals

ensuring that any affect of a device upon an individual does not affect nor inhibit its

usual movement behaviour, similarly, care must be taken when attaching any device to

prevent any distress or harm; McMahon et al (2011) detail common potential effects of

tagging individuals and suggest best practice methods.

Commonly used tracking devices in the wild include global positioning system (GPS)

tags, which give highly accurate readings of global location as well as height, however,

such tags are usually larger and bulkier than alternative methods (Cagnacci et al, 2010;

Recio et al, 2011) and as such are best suited for larger animals, such as sunfish, Mola

mola, (Sims et al, 2009), elk, Cervus canadensis, (Fortin et al, 2005), green turtle Ch-

elonia mydas (Dujon et al, 2014) golden eagle, Aquila chrysaetos, and turkey vulture,

Cathartes aura (Bohrer et al, 2012). Smaller and cheaper alternatives exist, such as

the ARGOS Doppler tags, which will give locations most places on the globe, however,

whilst they are lighter than the GPS tags, the trade-off is in accuracy of data. These

tags have been used in tracking a wide range of animals, from smaller lightweight birds

such as snowy owl, Bubo scandiacus, (Therrien et al, 2015), African cuckoo Cuculus gu-

laris (Iwajomo et al, 2018) and Grasshopper Sparrows Ammodramus savannarum (Hill

& Renfrew, 2019) to larger mammals such as blue whale, Balaenoptera musculus, (Bai-

ley et al, 2009) and both the bearded seal Erignathus barbatus and Hawaiian monk seal

Monachus schauinslandi (McClintock et al, 2015). Finally, smaller and inexpensive al-

ternatives like VHF (Very high frequency) radio tags can be used, which are light and

unobtrusive enough to be attached to small birds, mammals and even insects, however

in general these require the animal to be within a short distance (order of kilometres) of

the recording receiver. These are often used to track populations where the home range

is known and as they have a long battery life they have been used in data recording
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of both brown bats, Eptesicus fuscus, and hoary bats, Lasiurus cinereus, (Castle et al,

2015), juvenile Eagle owls, Bubo bubo (Aebischer et al, 2010) and across a wide range of

insects (Gourret et al, 2011).

Other common tracking methods used include capture-recapture techniques. These

involve placing a series of traps across a given area and recording the presence of an

animal when it engages the trap. The individual will often be labelled then released and

as it engages with future traps, information about its movement can be extrapolated

from the occurrences of appearances in the traps. This technique has been extensively

studied in terms of conservation and population management (Williams et al, 2002;

King, 2012) and whilst modelling specific movement paths from this data is not usually

attempted due to the heavily discretised spatial and temporal nature of the data, it is an

important and commonly used practice in movement ecology as it allows for estimations

of important population level statistics such as animal density (Efford, 2011) and survival

probabilities (King, 2012).

Data is often also recorded in a laboratory setting where the environmental effects can

be carefully controlled and monitored. For obvious reasons these laboratory settings are

best suited for smaller animals and cannot be used to reproduce large scale, migratory

type movement. Data here can be found by live tracking the animal, such as through a

tracking sphere as is discussed in Chapter 5 and has been used for dessert ants in Dahmen

et al (2016). Or this can be done via video tracking devices, where a video recording of

the movement path is analysed by computational programmes tracking the movement

of individuals by considering the centre of mass of the animal and returning a simple

time series of location points (see Chapter 7) (Noldus et al, 2001, 2002; Qian et al, 2016;

Madan & Spetch 2014). Whilst these experimental setups benefit from the inclusion of

controlled and repeatable settings, care must always be taken when extrapolating results

into the real world setting (Englund & Cooper, 2003; Miller et al, 2004).

These advances in data capture techniques along with the explosion of interest of

applying mathematics to biology in the 20th and 21st century has given rise to many

new theoretical mathematical frameworks, which can be used in spatial ecology to help
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understand, interpret and predict animal movement and behaviour.

2.4 Mathematical Tools

Movement data which has been obtained and processed using computational methods

are usually stored as a time series of individual location points. This discrete process

is often recorded at regular intervals, although this is not always the case perhaps due

to loss of signal with tagging equipment or by the use of less dynamic forms of data

capture, such as fixed location traps or visual recordings.

A simple piece-wise linear reconstruction of the movement path can be made by

connecting the spatial locations in temporal order, which allow for the calculation of

descriptive statistics that are readily available from such data and are often used in

movement analysis including:

• step-lengths; the distance between two successive spatial locations. Usually this is

the standard Euclidean distance, but in large scale movements, such as migrations,

this might be measured by the orthodromic distance.

• instantaneous-speeds; these take the step-length and divide by the temporal dif-

ference between two points. These are often used in high frequency data as they

give a sense of the speed at which at individual is moving at a given point, despite

not working with continuous data.

• turning angles; the relative angle between direction of movement for successive

locations.

• headings/global orientations/bearings; the change in direction between two suc-

cessive locations taken from some absolute direction (magnetic North in the case

of bearings).

• intermittency; periods of time when the animal is stationary

It should be clear that the choice of which statistics to use is determinate upon both

the temporal and spatial scale of the data. High frequency data, recorded at multiple
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counts per second, will therefore need to be treated and analysed differently to data

which is recorded at timescales of hours or days.

Therefore, when analysing any such data, the type of data recorded, whether tem-

porally regular, spatially regular or intermittent in both spatio-temporal scales needs to

taken into account (Patterson et al, 2017).

2.4.1 Continuous Time Models

In the case when data has not been recorded at regular time intervals it is often nec-

essary to use continuous time models as these assume data has only been recorded at

certain temporal or spatial points with missing data in between. This allows the data to

be modelled without interpolation, sampling or aggregation (Johnson et al, 2008). Such

models are usually derived from some diffusive stochastic process, such as the Wiener or

Ornstein-Uhlenbeck process (OU). Johnson et al (2008) used a continuous time corre-

lated random walk (CTCRW) derived from an OU process to model the movement and

space-use of harbour seals (Phoca vitulina) and northern fur seals (Callorhinus ursinus).

This method accounts for the irregularity in the recorded data and therefore prevents

researchers from the sometimes arbitrary, decision of the temporal scale of data cap-

ture beforehand. Continuous time models utilising the OU process have been used in a

range of movement processes including; estimating home ranges (Nations & Anderson-

Sprecher, 2006), group movement (Niu et al, 2016) and the movement of central place

foragers (Fleming et al, 2015). Models utilising different continuous processes such as

velocity jump processes, which model the velocity at a given time as a random walk

rather than the spatial location (Codling & Hill, 2004), have been used in describing the

movement of a diverse range of animals from the ‘run and tumble’ movement of bacteria

such as Escherichia coli and L. fuscus (Berg, 1990; Hill & Hader, 1997; Taylor-King et

al, 2015) to the migration of the lesser black-backed gull (Larus fuscus) (Taylor-King et

al, 2015). A more general approach then using an OU process is to describe movement

as a stochastic differential equation (SDE). These can model more complex behaviour

than the OU process, such as by including a term which models the drift in movement
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towards (or away from) a certain direction or point. This drift term can be included

in a variety of ways, Bengtsson et al (Bengtsson et al, 2002) showed that by calculat-

ing the drift as a function of the distance between individuals, the dispersal patterns

in soil-living invertebrates (Onychiurus armatus) could be modelled and characterised,

whereas, Preisler et al (2001) used the angle between the heading of an individual and a

point source emitting male pheromones to model the movement of female bark beetles

(Ips paraconfusus). Whilst SDEs are more flexible than other continuous time mod-

els, their flexibility does come at a cost of increased computational time and decreased

statistical tractability (Patterson et al, 2017).

2.4.2 Discrete Time Models

Modern approaches for the analysis of data recorded at regular time intervals has relied

on advanced statistical tools such as Hidden Markov Models (HMMs) and state-space

models (SSMs), as these allow for efficient and accurate analysis of the large data sets

that modern movement ecology now entails (Cagnacci et al, 2010).

HMMs are especially effective in the case where the latent error in the location mea-

surement is small (Patterson et al, 2017), and can identify important aspects of movement

data such as auto-correlation, as well as identifying when animals switch movement be-

haviour (perhaps from more active to more sedantry behaviour) and have been used in

the analysis of a variety of animals, including elephants Loxodonta africana (McClintock

& Michelot, 2018), grey seal Halichoerus grypus (Whoriskey et al, 2017), woodpeckers

Picoides borealis (McKellar et al, 2016), cheetah Acinonyx jubatus (Grünewälder et al,

2012) and Drosophila fruit flies (Holzmann et al, 2006). The popularity of using HMM

techniques has been furthered by the relative ease of applying the methodology due to

readily available computational programme packages, such as the moveHMM (Miche-

lot et al, 2016) and momentuHMM (McClintock & Michelot, 2018), which can both be

implemented straightforwardly in R (R Team, 2019)

State-space models (SSM) combine a process model for the movement, as would be

used in an HMM, with a model for the accuracy of the observations that could take the
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form of the Gaussian error function, for example. In this way, an SSM can be thought

of as an extension of an HMM which allows for inaccuracies in the data recording, or

similarly, an HMM can be thought of as an SSM which assumes that the recorded data

comes from a discrete number of unobservable or hidden states (Patterson et al, 2008).

Parameters for both the movement and observation models are found from the data

itself, usually by either Bayesian or maximum-likelihood methods (Jonsen et al, 2005;

Johnson et al, 2008; Patterson et al, 2008; Pederson & Weng, 2013; McClintock et al,

2012; Alberrtsen et al, 2015). These models are particularly useful when data has been

recorded from the ARGOS system due to the known error in the recorded data, which

can be modelled as a stochastic process (Johnson et al, 2008; McClintock et al, 2012;

Alberrtsen et al, 2015).

Both HMMs and SSMs require an underlying model for which the movement data is

to be described, with perhaps the most commonly used model being a discrete random

walk (RW) (Patterson et al, 2017). Discrete random walks assume that animals travel by

a discrete path given as a time series of individual spatial locations and as such are well

suited for analysing, exploring and interpreting movement data. Random walks have

been used extensively within the field of movement ecology as models can, in general,

be informed by two parameters; a measure of distance travelled between locations (step-

lengths or instantaneous speeds) and a direction at each step (turning angle or global

orientation/bearing).

2.5 Use of Random Walks in Animal Movement

Random walk theory has a long history of being used to model individual animal move-

ment and navigation (Levin, 1986), and as a tool to classify and interpret observed

movement data using various path analysis techniques. RWs have been used to describe

and analyse the movement of insects such as cabbage white butterflies Pieris rapae

(Kareiva & Shigesada, 1983) and Cataglyphis desert ants (Dahmen et al, 2015) to large

mammals such as elk Cervus elaphus (Frair et al, 2005) and grey seal Halichoerus grypus

(McClintock et al, 2012). McLane et al (2011) gives a list of examples of recorded animal
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movement which were described by various types of RW.

One of the reasons for the tractability of RW theory in movement analysis is that

measures such as the distributions of the turning angles, step-lengths and bearings can be

readily calculated directly from recorded data and simple descriptive statistics useful for

practising ecologists can be freely obtained, such as mean square displacement (MSD),

sinuosity, preferred direction in movement and space-use.

In terms of movement modelling the three most commonly used types of RW are; the

isotropic simple random walk (SRW) in which the direction of a step is equally likely

across all possible directions at any given point in time or space; the biased random

walk (BRW) which differs from the SRW by featuring a preference towards a certain

direction at each time step. This can be towards a specific point in space, in which case

the orientation of the preferred direction will depend upon the location of the walker at

each step, or it can be towards a specific direction, for example magnetic North and it

can be consistent across time and space or vary depending upon location and/or time.

Finally, the correlated random walk (CRW), which assumes the direction of movement at

any given point is correlated to the previous movement direction (Kareiva & Shigesada,

1983; Codling et al, 2008). Fig. 2.2 demonstrates the difference in movement paths of

each of these types of RW and Fig. 2.3 compares of the final positions of a group of

walkers using each type of RW of a fixed length.

Since the work of Karieva & Shigesada (1983), the CRW has often been treated as

a null model for animal movement (Proulx et al, 2013; Fagan & Calabrese, 2014) as

closed expressions for the mean square displacement (MSD) can be derived (see section

3.3) which rely solely on the mean trigonometric and mean step lengths, values which

can be easily obtained from the observed data, therefore, giving a quick and simple

check for ecologists as to how well the standard CRW model fits observed data (Fagan &

Calabrese, 2014). However, as noted by Kareiva & Shigesda (along with others; Fortin

& Dale (2005), Shimatani et al, (2012), Fagan & Calabrese (2014)) whilst the CRW

may work well as a null model it is a poor simplification of real animal movement and
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Figure 2.2: Example paths for (a) SRW; (b) CRW; (c) BRW. Each with 10 walkers after
50 steps each of unit length.

explains none of the underlying motives for movement behaviour, as required for a deeper

understanding of animal movement (Nathan et al, 2008).

2.6 RW as a ‘step-and-turn’ Process

One common method of describing a RW is as a series of step-lengths, li, drawn from

some positive distribution, Λ, and angles (either global orientations/headings, φi drawn

from some distribution Φ with domain (−π, π], or turning angles θi drawn from some

distribution Θ also with domain (−π, π]; see section 3.7 for a discussion of such distri-

butions) (Fig. 2.4). It is by viewing the RW process in such a manner that allows for

many important and useful mathematical properties of RWs to be calculated, such as

mean location and mean square displacement, therefore allowing for direct comparisons

of these abstract models with observed data (Kareiva & Shigesada, 1983; Cheung et al,
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Figure 2.3: Final position of 1000 walkers for (a) SRW; (b) CRW; (c) BRW after 100
steps each of unit length. All starting positions were the origin, (0, 0).

2007; Fagan & Calabrese, 2014).

Using this definition of a RW we can classify an isotropic SRW as one in which the

distribution of the angles is uniform (this will be the case for both the distribution of

headings, Φ, and for turning angles, Θ).

For a CRW we would expect the distribution of turning angles, Θ, to be stable over

time (that is the distribution tends to a stable state as time increases) and symmetric

around 0 (assuming the walker is equally likely to take left and right turns). With a

taller peak at 0 corresponding to a walk with high persistence and a lower peak giving

a near isotropic SRW.

For a BRW with a global bias (that is a preference to always move in a certain

direction or to a point at infinity), we would expect the distribution of the global orien-

tations/headings, Φ, to be stable over time and centred around the angle of the preferred
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Figure 2.4: Discrete movement path as a step-and-turn process. Successive locations are
given by closed black circles with steps of length l, turning angles, θ, and headings, φ.

direction when compared to the direction from which the global orientation/heading is

taken (e.g. North). With a higher peak corresponding to a stronger bias and a flatter

distribution giving near isotropic SRW movement. This is only the case for global bias,

if the bias in direction is towards a specific point in space then then direction of the bias

at any other given point will depend upon the relative positions of the current position

and the goal position. Therefore, the distribution of angles will not necessarily stabilise

to a fixed distribution over time.

2.7 Extensions to SRW, CRW and BRW models

The three models described above are among the most straight forward versions of ran-

dom walks and as such are the most commonplace within the movement ecology litera-

ture. However, simple extensions which add extra realism in specific animal ecological

problems can also be calculated. Those which have been used specifically in animal

movement are briefly mentioned below.

2.7.1 Biased & Correlated Random Walk

Though pure CRW or BRW have been reported as models for animal movement, other

extensions to these models which take into account some of the short comings noted

by Kareiva & Shigesada (1983) and Fagan & Calabrese (2014) have recently been in-

corporated. One can consider a random walk which has both a biased and correlated

component, such biased and correlated random walks (BCRW) can be expressed in var-

ious ways but include an additional term which controls the weight, or preference, the

walker puts into the correlated and biased terms. Benhamou & Bovet (1992) considered

17



a weighted vector sum to describe a BCRW, where the length and direction of steps are

formed by a weighted sum of the vectors formed by pure CRW and BRW. A similar

form of the BCRW considers the angle at each step to be calculated by a weighted sum

(Schultz & Crone, 2001; Fortin et al, 2005), although this gives differing results to those

calculated utilising the vector sum method due to the periodicity of the trigonometric

functions.

2.7.2 Lévy Walk

A Lévy walk (LW) is essentially a SRW where the distribution of step lengths, Λ(l),

is given by a power law, Λ(l) ∼ l−α , where for some α > 1. This distribution for

step-lengths gives an infinite variance allowing for the unrealistic effect of instantaneous

propagation over an infinite domain. Technically this stochastic model is known as a

Lévy flight, whereas a Lévy walk assumes a finite constant velocity at each step causing

longer step-lengths to take proportionally longer time (Zaburdaev et al, 2015), how-

ever, assuming that we have a free boundary condition then Lévy flights can accurately

model Lévy walks (Dybiec & Gudowska-Nowak, 2017) and hence are often referred to

interchangeably in the literature.

Qualitatively a LW resembles periods of random movement concentrated in a small

area followed by a sudden large relocation to a new area and the process repeats. Such

heavy-tailed behaviour of the step-lengths is the indicative characteristic of Lévy be-

haviours and as such is usually the method for which movement is classified as Lévy

or not (Bartumeus et al, 2005;Viswanathan et al, 2011; Plank et al, 2013). Evidence

for Lévy type movement has been reported in various animals including wandering al-

batrosses, Diomedea exulans, (Viswanathan et al, 1996), black bean aphids, A. fabae

Scopoli, (Mashanova et al, 2009) and humans (Raichlen et al, 2014). Theoretical ap-

proaches have also been developed to show that Lévy behaviour can optimise search and

foraging movement (Bartumeus et al, 2002; Sims et al, 2012). However, the validity

of determining the presence of Lévy behaviour is a contentious topic (Pyke, 2015). It

has been shown that heavy tailed behaviour in step-lengths can be recovered by con-
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sidering a composite correlated random walk (CCRW) which consists of two distinct

phases of movement behaviour, one of intensive foraging involving movement in a small

localised area, and another of large displacement representing exploratory behaviour

(Plank & Codling, 2009; Auger-Méthé et al, 2014). Evidence to suggest the manner in

which movement paths are sampled can also cause apparent emergence of power laws

(Codling & Plank, 2011; Auger-Méthé et al, 2011). As Tilles et al (2017) highlights, data

which was initially classified as exhibiting heavy tailed step length distribution has since

been re-classified as “ ‘thin-tailed’ Brownian walkers”, notably wandering albatrosses,

Diomedea exulans (original analysis, Viswanathan et al, 1996; subsequent analysis Ed-

wards et al, 2007), mussels Mytilus edulis (de Jager et al, 2011; Jansen et al, 2012) and

Tenebrio beetles, Tenebrio molitor, (Reynolds et al, 2013; Bearup et al, 2016). The

presence of power laws is in general a non-trivial task to determine (Virkar & Caluset,

2014); it has long been held that power laws are present in almost all complex networks,

ranging from areas of computer and data science (Albert et al, 1999; Mislove et al, 2007)

to biology and the social sciences (Ichinose & Sayama 2017; Agler et al, 2017) and had

been widely reported on over the last couple of decades, however, recent work by Broido

& Clauset (2018), has demonstrated that such networks are in fact highly uncommon

when using recent advances in statistical methodology and tools.

2.8 Common Descriptive Characteristics of RW Paths

Directly comparing between movement paths is difficult, therefore, summary descriptive

statistics are often used to characterise paths of RWs. The most common of these are

the mean square displacement, which gives the square of the distance from the current

location to a certain reference point (often the initial starting point), and a measure

of tortuosity, which gives a measure of the amount of turning across the path. As

mentioned in section 2.2, movement ecology has a habit of including terminology with

no strict definition and this is true here as there are various methods for calculating the

tortuosity each of which are applicable and helpful in certain situations (Codling et al,

2008). However, certain specific types of tortuosity are well-defined, with common ones
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being listed in Table 2.1 (taken and adapted from Almeida et al, (2010) and Edelhoff et

al, (2016)). Almeida et al (2010) gives a complete comparison between five measures,

detailing how they compare with errors in recorded locations, sample sizes and scalings.

Measure Equation Parameters Refs

Straightness dE
L

dE = Euclidean
distance between
beginning and end of
movement path, L =
Total path length
.

Batschelet (1981)
, Gurarie et al
(2016)

Sinuosity
[
E[l]
4

(
1−c2−s2

(1−c)2+s2

)
+ b2

]−0.5

E[l] = mean step
length, c = mean
cosine of turning
angles, s =mean sine
of turning angles,
b =coefficient of
variation of step
length (see Eq. 3.27)
.

Bovet & Ben-
hamou (1988),
Benhamou
(2004), Codling
et al (2008)

Intensity use L√
A

L = total path
length, A =area of
movement

Hailey & Coulson
(1996), Loretto
& Vieira (2005),
Ferriera et al
(2017) .

Fractal
dimension, D

various computational
methods but always with
D ∈ [1, 2]

Usually requires the
length of path and
some measure of the
area through which
the path has tra-
versed.

Benhamou
(2004), Turchin
(1996), Mårell
et al (2002),
Tremblay et al
(2007)

Table 2.1: Various methods of determining the tortuosity of discrete movement paths

It should be mentioned that the use of the term fractal dimension (Table 2.1) is not

technically correct as the random walks and data discussed here and in the movement

literature are not strictly fractal in nature, since they have a minimum scale size. Also

it has been shown that at the scale of the animal itself movement is effectively linear

(Turchin 1996), however, measures of “fractality” have been successfully used in com-

paring movement paths for animals such as grey teal Anas gracilis (Roshier et al, 2008),

migrating wandering albatross Diomedea exulans (Fritz et al, 2003) and zooplankton
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(Seuront, 2015); see also Table 1 in Seuront (2015) for a list of studies on Fish and

Crustaceans.

True fractal analysis requires self-similarity across scales, however, as this is not the

case in animal movement, comparisons of paths using a measure of fractal dimension

can only be used at the same scales (paths considered to be Lévy in nature can be

compared across scales as, by definition, they are scale invariant due to the inherent

power law, however as discussed in section 2.8.2 the viability and existence of such scale

free movement paths is up for debate).

Almeida et al (2010) and Codling et al (2008) both highlight the importance of using

the correct measure of tortuosity in attempting to compare movement paths as each of

the suggested measures has limitations in certain contexts and can be affected by factors

such as error in data recording, sampling rate of movement and the scale at which the

data has been captured.

2.9 Limitations of RW Theory in Movement Analysis

Whilst the uses of RW theory in movement ecology have been discussed, there are limita-

tions to this modelling framework. Notably, analysis of the step length and turning angle

distributions requires accurate recording of the location data. Though this has rapidly

improved in recent years (see section 2.3) errors in the recording of data can give rise to

the incorrect use of models. For example, when considering the analysis of the distribu-

tion of turning angles the temporal scale at which the data is recorded can have a drastic

effect. Consider an insect or fish whose natural movement emits a sinusoidal motion,

either through the tripodal rocking of walking (Hughes, 1952; Holmes et al, 2006) or by

the wave like motion the body a fish uses for forward movement (Gray, 1933; Stephens

et al, 2003). If the data are recorded at a high frequency this rocking motion will be

assumed part of the movement path of the individual, despite the animal attempting to

walk in a straight line, and the rocking motion will cause the recorded path to appear

highly sinuous (Delcourt et al, 2013; Qian et al, 2016). Conversely, too large a temporal

scale, for example long term migrations where data can only be captured a few times
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a day, risks omitting the local level movement behaviour and can lead to non-sensical

descriptions of turning angle behaviour as changes in directions are considered to occur

only a few times a day. It has also been shown that the method for recording locations

can cause inaccuracies in the subsequent analyses with errors in GPS data locations

producing contrived large and 180◦ turns, which would falsely enhance the heavy-tailed

nature of recorded turning angles (Hurford, 2009). As mentioned previously (section

2.4) methods to address the inherent error in movement data have been developed, for

example with the use of state-space models (SSM).

It is also assumed by the RW model that the animal moves between data points in

a straight-line, again at large temporal scales this is an unreliable assumption. Mod-

ern methods which allow for the continuous nature of movement in connecting discrete

locations rely on Bayesian inference and usually require heavy computational implemen-

tation of advanced statistical techniques such as Markov chain Monte Carlo (MCMC)

algorithms (Blackwell et al, 2016) or Kalman filters (Fleming et al, 2017). An alternative

would be to employ spline techniques, which are used frequently in discrete point anal-

ysis in computer sciences and have been seen in animal movement such as in Buderman

et al (2016) who used spline techniques to give best fit curves between data points in the

analysis of Colorado Canada lynx (Lynx canadensis), providing a Bayesian based model

which could be used across temporal scales in order to obtain behavioural change point

locations in continuous time.

In fact the method of Buderman et al (2016) method takes into account the non-

trivial problem of the effects of missing data. Missing data can be corrected by simple

interpolation via generalised linear models (GLMs) which can infer the location of missing

data (Hanks et al, 2015), or through other techniques such as cluster analysis (Hanks

et al, 2011) or data augmentation (Johnson, London & Kuhn 2011), although as noted

in Buderman et al (2016) these techniques are not suitable for multiple data sources

and so in the case of data coming from multiple individuals other methods such as that

described by Buderman et al (2016) need to be incorporated.

Similarly, as data are usually recorded at specific time intervals the assumption in

22



the framework of discrete RW models is that the change in direction or speed/step-

length of an animal occurs at these precise discrete time points. Rosser et al (2013)

showed that the rate at which a movement path is sampled significantly affects the

statistics used in RW framework, such as the mean trigonometric moments and mean

step length. This is reinforced by the findings of Postlethwaite & Dennis (2013) who

showed that varying the sub-sampling rate from between 10-60 minutes substantially

changed the calculated mean trigonometric moments and mean step length, specifically

the turning angle distribution went from highly peaked at finer scales to broader and

closer to uniform at larger scales. Similar findings have been reported by Codling & Hill

(2004) who give a mathematical analytical justification for the change in value for the

parameters across scales, providing a method for estimating the values of the parameters

used in the original RW from the sub sampled path by assuming a linear relation between

sampling time step and the parameter values. However, Fryxell et al (2008) reported

in the movement of free ranging elk (Cervus elaphus) that at varying spatiotemporal

scales, whilst the parameters used to describe the movement behaviour may change,

the number of movements modes/strategies was apparent at all scales indicating that

mutliphase behaviour may still be captured and retained at varying scales using RW

framework.

Having discussed the importance of RW in movement ecology, we now look at the

mathematical framework of RW theory and demonstrate some of the key measures which

can be analytically calculated from the most useful and common forms of random walks

used within the field.
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3 Mathematics of Random Walks

Perhaps the first example of a random walk was famously introduced into the scientific

literature by the botanist Brown (Brown, 1828) who, whilst studying the movement of

pollen on an apparent still body of water, noted the random movement of the grains of

pollen across the meniscus. This random movement behaviour became known as Brow-

nian motion and was given a mathematical explanation by the French mathematician

Bachelier in his PhD thesis (Bachelier, 1900). Due to Bachelier’s work, the first use

of Brownian motion was applied to the stock market in an attempt to understand the

movement of stock prices in the early 20th Century, however, it wasn’t until the work

of physicists von Smoluchowski (von Smoluchowski, 1906) and Einstein (Einstein, 1905)

who, amongst other discoveries, derived the diffusion equation from the model of Brown-

ian motion and showed the mathematical and predictive power of random processes when

modelling averaged behaviour across systems with many particles. Although, at a similar

time to Einstein’s and von Smoluchowski’s discoveries, the great English mathematician

and statistician Karl Pearson wrote in a letter to Nature (Pearson, 1905)

• A man starts from a point O and walks l yards in a straight line; he then turns

through any angle whatever and walks another l yards in a straight line. He repeats

this process n times. I require the probability that after these n stretches he is at a

distance between r and r + δr from his starting point O.

This was answered by Lord Rayleigh in the same issue whose work on the superposition

of light waves some years previous had yielded equivalent and analogous results (Rayleigh

1905).

The link here for the use of RW in analysis of movement data seems now to be clear,

however, the initial models used were based on pure Brownian motion and as such treated

every step in the process to be independent of the previous one, giving no preference for

direction nor indeed the orientation of a walker at any specific step, hence providing a

purely Markovian process (Weiss 1994).

Movement which is akin to Brownian motion is referred to as an isotropic simple ran-
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dom walk (SRW), since the walker is equally like to step in any direction at any point in

time or space and, importantly, the direction of each successive step is uncorrelated, that

is the directions chosen are all statistically independent. In terms of animal movement,

this is an assumption which appears unrealistic as certainly in the terms of purposeful

movement (movement concerned with dislocation) a purely random direction selection

would seem nonsensical, with animals often wishing to move towards a specific target or

direction and most plausibly having knowledge of the direction from which they have just

travelled. These observations give rise to the two other important types of RW which

have become common in movement data analysis; the correlated random walk (CRW) in

which there is a correlation between successive steps described as persistence by Patlak

(1953), and the biased random walk (BRW), where there is a preference in direction (be

that towards a specific point in space or a perceived directional gradient).

We now consider the three discussed types of RW in detail and derive some of the

fundamental mathematical properties of each, which can be used to discern between

them.

3.1 Simple Random Walk

Here we briefly introduce some standard results from random walk theory, which will be

assumed in subsequent chapters.

3.1.1 SRW in Discrete Time and Space

If we assume we are in 1-dimensional discrete space with time steps from the index

set T = {1, 2, 3, ...}, then we can think of a SRW as a stochastic process Sn such that

{Sn, n ∈ T} given by

Sn = S0 +
n∑
t=1

Xt for all n ≥ 1,

where S0 is a constant and the random variables Xt are independently and identically

distributed (i.i.d.) for all n ∈ {1, 2, . . .}, with Pr(Xt = 1) = p and Pr(Xt = −1) = q =

1− p.

Using this formulation of a SRW starting at S0 = 0 we can calculate the expected
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value of a SRW as,

E [Sn] = E

[
S0 +

n∑
t=1

Xt

]

= S0 +
n∑
t=1

E [Xt]

= n · E [Xt]

= n · (p− q)

where E [Xt] = 1 · p+ (−1) · q = p− q.

Similarly, we can find the variance of a SRW after n steps to be

Var [Sn] = Var

[
S0 +

n∑
t=1

Xt

]

= Var

[
n∑
t=1

Xt

]

=
n∑
t=1

Var [Xt]

= n · Var [Xt] = 4npq

where

Var [Xt] = E
[
X2
t

]
−
(
E[Xt]

)2

=
(
12 · p+ (−1)2 · q

)
− (p− q)2 = 4pq

Hence, the MSD, E[S2
n] of a SRW is given by

E[S2
n] = Var[Sn] + E[Sn]2 = 4npq + n2(p− q)2

In the specific case for the SRW being isotropic, that is p = q = 1
2
, the expected
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value, MSD and variance becomes

Eiso[Sn] = n(p− q) = 0 Eiso[S2
n] = 4npq = Variso[Sn] = n (3.1)

This shows that in the case of the isotropic SRW the expected location after n steps is

in the initial starting location and that the MSD increases linearly with time.

It be shown that in continuous time and space, that the probability of a walker having

location, x, at time, t, is given by the Gaussian probability distribution

P (x, t) =
1√

4πDt
exp

(
−(x− vt)2

4Dt

)
(3.2)

where v is known as the drift velocity. Here, the initial condition is given by P (x, t) =

δ(x), where δ(x) is the Dirac delta function (Codling, 2003).

Considering the specific case of an isotropic random walk, with p = q = 1/2 we have the

drift velocity v equal to 0 in the exponential of Eq. 3.2 and hence, the expression for the

probability distribution of a walker being at location, x, after time t, in continuous time

and space when moving under an isotropic SRW is

P (x, t) =
1√

4πDt
exp

(
− x2

4Dt

)
(3.3)

which is the fundamental solution to the diffusion equation

∂P

∂t
= D

(
∂2P

∂2x

)
(3.4)

where D is defined as the diffusion coefficient.

Hence the expected mean location and MSD of an isotropic SRW in continuous time and

space is simply the first and second moments of the Gaussian distribution given in Eq.

3.3

E[x] = 0, E[x2] = 2Dt (3.5)

Therefore, a 1-dimensional isotropic random walk in continuous time and space has the
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expected location of the initial starting point, 0 and MSD which grows linearly with

time. Although it should be noted these values are valid only as n >> 1 or equivalently

as t→∞.

3.1.2 SRW in Higher Dimensions

One can find an expression for P (x, t) where x = (x1, . . . , xn) is an n-dimensional vector

by considering a random walk in continuous n-dimensional space (Rn). The resulting

expression is given by finding the fundamental solution to the n-dimensional diffusion

equation (Codling, 2003; Codling et al, 2008)

∂P

∂t
= D

(
∂2P

∂2x1

+ . . .+
∂2P

∂2xn

)
(3.6)

which is given by

P (x, t) =
1

(4πDt)n/2
exp

(
− r2

4Dt

)
(3.7)

where r2 = x2
1 + . . .+ x2

n, with initial condition of P (x, 0) = (δ(x1), . . . , δ(xn)).

In the specific 2-dimensional case we have the expected position of a walker at any given

time to be E[x, t] = E[(x, y), t] = (0, 0) and the MSD to be given as E[R2
t ] = E[r2] =

E[x2 + y2] = 4Dt (Codling, 2003), which increases linearly with time as in the one-

dimensional case.

In general solutions for the mean location and MSD can be generalised for any dimension,

n, given as

E[(x, t)] = 0 E[R2
t ] = 2nDt (3.8)

where x is a n-dimensional vector and 0 is the origin (initial starting point) of the walk.

As with the one-dimensional case it should be noted that these solutions are only asymp-

totic approximations for the values of mean location and MSD as we assumed in the

derivation that N →∞, therefore these values are not valid at short time scales.
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3.2 Biased Random Walk

As discussed, the biased random walk (BRW) differs from the SRW by featuring a

preference towards a certain direction at each time step. This can be towards a specific

point in space, in which case the orientation of the preferred direction will depend upon

the location of the walker at each step, or it can be towards a specific direction, for

example magnetic North. The latter of these allows for summary statistics such as

the MSD and expected location to be readily calculated, as the direction of the bias is

considered homogeneous across all space.

In the 1-dimensional case the expected location and the MSD of a BRW at time t is

given by

E[x] = vt, E[x2] = 2Dt+ v2t2 (3.9)

which are derived by finding the first and second moments of the probability distribution

function given in Eq. 3.2. In our case, as we have taken the probability of moving right

at any time step to be p then a bias towards the right direction will be given by having

p > q, and vice-versa for preference to head towards the left. Eq. 3.9 shows that the

expected location of a walker under a biased random walk increases linearly with time

towards the direction of the bias, whereas the MSD increases quadratically with time.

It’s worth noting here that the MSD in this case is calculated around the initial starting

point whereas a more sensible measure of spread would be to use the variance, since

this measures the spread around the mean location (Codling et al, 2008). Eq. 3.9 gives

us that the value for the variance, E[x2] − E[x]2, is 2Dt; an expression which increases

linearly with time and is therefore similar to the standard diffusion process.

3.2.1 BRW in Higher Dimensions

Throughout this thesis we will be focusing on random walks as a model for terrestrial

movement, therefore we look to calculate the expected mean location and MSD of a

BRW in two dimensions. Specifically, in accordance with movement data being recorded

at discrete intervals we focus on a BRW in continuous 2-dimensional space R2 but in
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discrete time.

To do this we consider a RW as a step-and-turn process. Recalling from section 2.6

this allows us to consider the walk as a series of step-lengths, li drawn from some positive

distribution Λ, and angles, φi drawn from a distribution Φ with domain (−π, π]. Here

we also include the conditions that angles and step-lengths are not correlated, nor are

successive step-lengths and nor are successive angles. As we are considering a BRW

we use global orientations/headings rather than turning angles, where the angle for the

heading is taken clockwise from the positive y-axis (see Fig. 3.1). Section 2.6 stated

that if the bias in movement is towards a specific point in space then the distribution

of the headings is not stable over time, as the preferred direction is dependent upon the

current location of a walker. Therefore, in this case deriving closed expressions for the

expected location and MSD are not possible; although they can be found via simulation.

Instead we consider the case in which the bias is towards a global direction (or a point

at infinity).

We first introduce terms which are used in describing the distributions found in

step-and-turn processes; mean cosine, E[cosω], and mean sine, E[sinω], which give the

expected cosine and sine values of the probability distribution, Ω, used to describe the

angles in the process, whether turning angles or global orientations/headings, and are

linked to the moments of such distributions (these are discussed further in sections 3.7

& 3.8), as well as the mean cosine-squared, E[cos2 ω] and mean sine-squared, E[sin2 ω]

along with the mean step length, E[l] and the mean square step length, E[l2]; all of which
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Figure 3.1: Calculating successive step locations using a step-and-turn process with
headings taken from the positive y-axis

are given by the expressions:

E[cosω] =

∫ π

−π
cosω Ω(ω) dω (3.10)

E[sinω] =

∫ π

−π
sinω Ω(ω) dω (3.11)

E[cos2 ω] =

∫ π

−π
cos2 ω Ω(ω) dω (3.12)

E[sin2 ω] =

∫ π

−π
sin2 ω Ω(ω) dω (3.13)

E[l] =

∫ ∞
0

l Λ(l) dl (3.14)

E[l2] =

∫ ∞
0

l2 Λ(l) dl (3.15)

To calculate the expected location and MSD for a BRW in continuous 2-space with

discrete time, let us consider that after N − 1 steps a walker is at position (xN−1, yN−1)

(Fig. 3.1). The walker will move to position (xN , yN) given by

(xN , yN) = (xN−1, yN−1) + (lN sinφN , lN cosφN) (3.16)

We can continue this process iteratively on the RHS allowing us to write (xN , yN) as

(xN , yN) =

(
N∑
i=1

li sinφi,
N∑
i=1

li cosφi

)
(3.17)

Therefore the mean location after N steps is found by taking the expectation of Eq.
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3.17, giving

E[x] = E[(x, y)] =

(
E

[
N∑
i=1

li sinφi

]
,E

[
N∑
i=1

li cosφi

])
(3.18)

with starting location assumed to be the origin, (x0, y0) = (0, 0).

Due to the expectation function being linear and recalling that the step-lengths and

angles are independent, Eq. 3.18 becomes

E[(x, y)] =

(
N∑
i=1

E[li]E[sinφi],
N∑
i=1

E[li]E[cosφi]

)
(3.19)

as all the step-lengths and angles are i.i.d we have that E[li] = E[l], E[cosφi] = E[cosφ]

and E[sinφi] = E[sinφ], hence Eq. 3.19 becomes

E[(x, y)] =

(
N∑
i=1

E[l]E[sinφ],
N∑
i=1

E[l]E[cosφ]

)
= N E[l] (E[sinφ],E[cosφ]) (3.20)

We note that this is similar to the 1-dimensional case with the drift velocity, v, now a

2-dimensional vector given by (E[l]E[sinφ],E[l]E[cosφ])

The MSD, E[R2
N ], after N steps can be calculated in a similar method. As the MSD

at any given point is R2
i = x2

i + y2
i we can use Eq. 3.17 to give

R2
N = x2

N + y2
N =

(
N∑
i=1

li sinφi

)2

+

(
N∑
i=1

li cosφi

)2

(3.21)

and hence

E[R2
n] = E

( N∑
i=1

li sinφi

)2

+

(
N∑
i=1

li cosφi

)2


= E

( N∑
i=1

li sinφi

)2
+ E

( N∑
i=1

li cosφi

)2
 (3.22)

Using the linearity of the expectation and recalling that successive step-lengths and
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angles are uncorrelated we can write the expected MSD after N steps as

E[R2
n] =N E[l2]

(
E[sin2 φ] + E[cos2 φ]

)
+N(N − 1)E[l]2(E[sinφ]2 + E[cosφ]2)

=N E[l2] +N(N − 1)E[l]2(E[sinφ]2 + E[cosφ]2) (3.23)

Finally if we assume we are in the long-term limit with N >> 1 then this will tend

asymptotically to

E[R2
n] = N E[l2] +N2 E[l]2(E[sinφ]2 + E[cosφ]2) (3.24)

which is analogous to the 1-dimensional case with the drift velocity, v, now a 2-dimensional

vector given as before to be (E[l]E[sinφ],E[l]E[cosφ]), and therefore v2 = (|v|)2 =

E[l]2 (E[sinφ]2 + E[cosφ]2)

As in the 1-dimensional case the MSD increases quadratically with time, unlike the

SRW. Fig. 3.2 demonstrates how the analytical solution for the MSD compares to a

simulation of one individual random walker across varying degrees of strength in the

bias term, due to the asymptotic nature of the solution the accuracy increases as the

number of steps increase.

3.3 Correlated Random Walk

Both RW discussed previously have assumed that the orientations of successive steps are

independent of each other. However, in a correlated random walk (CRW) it is assumed

that a correlation exists between the directions of successive steps, often referred to as

persistence (Patlak, 1953; Bovet and Benhamou, 1988, Wu et al, 2000; Codling et al,

2008).

This will produce a small scale local bias in preferred direction as the walker attempts

to follow the heading of the previous direction.

In the 1-dimensional case the expected mean location of a CRW with N steps in which

each step is of constant length, ∆x, starting at the origin and with N >> 1 is the origin
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Figure 3.2: Comparison of the predicted MSD against simulations for a BRW with 300
steps. Dashed lines are the predicted results and the solid lines are the simulated results.
The level of bias was given by the mean cosine, c, value of the distribution of angles (the
distribution was symmetric around 0 and hence the mean sine value was 0; see section
3.8) with c = 0.3 (red), c = 0.5 (green), c = 0.7 (blue) & c = 0.9 (cyan). Simulations
were for one random walker over 300 time steps.

itself. The MSD for a correlated walk tends asymptotically to

E[x2
N ] ∼ N(∆x)2 1 + γ

1− γ
(3.25)

where γ =
E[xixi+1]

(∆x)2
. As we assumed each step was of constant length then the term in

the numerator of γ must lie between 0 and (∆x)2 and hence we have that 0 < γ < 1.

The specific cases for E[xixi+1] = 0, 1 are precisely the cases for the isotropic SRW

and straight-line (ballistic) movement respectively. For all other values of γ Eq. 3.25

indicates that the MSD of a 1-dimensional CRW increases linearly with time but scaled

by the factor 1+γ
1−γ . As γ → 0 the MSD reduces to E[x2

N ] ≈ N(∆x)2, a result which is

comparable to the result found for standard diffusion in continuous time, E[x2] = 2Dt

(Eq. 3.5), however this will only happen for very large N as the local bias in the initial

orientation slowly decays.
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3.3.1 CRW in Higher Dimensions

Similar to the BRW in higher dimensions we consider a CRW in 2-dimensions, in con-

tinuous space but discrete time using the step-and-turn process.

Kareiva & Shigesada (1983) used this model of a CRW to compute the MSD in a similar

method to that used in the derivation of the BRW except here the correlation between

steps needs to be taken into acccount. Kareiva & Shigesada (1983) showed that after N

steps, E[R2
N ] is given by

E[R2
N ] = N E[l2] + 2 (E[l])2

(
N(c− c2 − s2)− c

(1− c)2 + s2
+

2s2 + (c2 + s2)(n+1)/2γ

((1− c)2 + s2)2

)
(3.26)

where γ = ((1− c)2 − s2) cos ((N + 1)θ0)− 2s(1− c) sin ((N + 1)θ0) and θ0 is the mean

turning angle, defined as tan θ0 = s/c.

In certain specific cases Eq. 3.26 becomes easier to handle, such as in the case for Θ

being the uniform distribution (that is where p(θ) = 1
2π

for all θ ∈ [−π, π); see section

3.7) we would expect Eq. 3.26 to return the MSD for a 2-dimensional isotropic SRW.

Using the uniform distribution we have s = c = 0 and therefore, E[R2
N ] ∝ N E[l2] as

N >> 1, which is equivalent to the expression for the MSD of a 2-dimensional SRW

given in Eq. 3.8 (with n = 2).

We can also consider the case for when the distribution, Θ, is symmetric around the

mean value, E[θ] = µ, which in terms of a random walker implies that clockwise turns

are equally likely to anti-clockwise turns of the same magnitude. This is a reasonable

assumption when considering animal movement in general, although there are specific

cases when this is not a valid assumption. In this case the symmetry of the probability

distribution reduces the mean sine term to s = 0 as sin θ is an odd function. 3.11. Thus

Eq. 3.26 reduces to

E[R2
N ] = (E[l])2

(
N

(
1 + c

1− c
+ b2

)
− 2c(1− cN)

(1− c)2

)
(3.27)

where b2 = (E[l2]/E[l]2) − 1, which is known as the coefficient of variation of the step
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length. Eq. 3.27 shows the effect on the MSD varying the distribution of step lengths

can have; in the simplest case with fixed step lengths we have E[l2] = E[l]2 and hence

b = 0.

Assuming we are in the long term limit, with N →∞, we have

E[R2
N ] ∼ N E[l2] + 2N E[l]2

c

1− c
, c 6= 1 (3.28)

This indicates that the MSD increases linearly with time and that distributions with

a value of c close to 1 gives a larger MSD value, which is to be expected since c → 1

implies that movement approaches straightline, ballistic behaviour.

Kareiva & Shigesada (1983) discuss the usefulness of these expressions for calculating

MSD using a CRW as they give a simple method for whether or not movement can be

interpreted as a CRW. By directly analysing the movement data, values for E[l],E[l2],

mean sine, s, and mean cosine, c, can be found which in turn can be substituted into Eq,

3.26 in order to predict the MSD as time increases. This can be directly compared to the

observed data allowing for a simple indicative check that movement can be considered

as a CRW. Fig. 3.3 shows the comparison of how the MSD of a CRW increases with

time for simulated results (solid lines) against the predicted results (dashed lines), for

a range of values representing the level of correlation between successive steps. Similar

to the γ term described in the 1-dimensional case (Eq. 3.25) the mean vector length,

r, defined as r = (c2 + s2)1/2, gives a measure of the correlation of movement. Values

close to 1 represent highly correlated movement and values close to 0 describe movement

with almost no correlation. The mean vector length can be used to give the directional

correlation between steps which are k places apart as rk+1, and if we exclude the case

for straight-line movement given when r = 1 then r ∈ [0, 1) which tends to 0 as k gets

very large for all values of r, indicating that a CRW sub-sampled at increasingly large

intervals appears similar to a SRW. This demonstrates that the mean location, E[(x, t)],

for a CRW tends to the initial starting point of the walk, the same for the isotropic SRW.

Note that this does require we are in the long term limit and t→∞, for example if we

assume a group of walkers all starting moving in the same direction then if the level of
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Figure 3.3: Comparison of the observed MSD of a CRW against the predicted results
given in Eq. 3.28. Solid lines show the simulated results and the dashed lines are the
predicted results. Results are for varying levels of correlation given by values of the mean
cosine, c as 0.9 (cyan), 0.7 (blue), 0.4 (green) & 0.1 (red). Simulations were calculated
by averaging over a group of 100 walkers

persistence is high (that is the ability to follow the previous direction is high, giving r

close to 1) the early movement will appear to drift in the initial direction of movement,

however, as time increases this apparent bias in movement direction will fall off and the

walk will appear closer to that of an isotropic SRW (Fig 3.4).

Generalising the expressions for the MSD of a CRW in 3-dimensions or above using

the methods of Kareiva & Shigesada is complex due to the need for spherical distri-

butions (or the higher dimensional analogues), however, closed expressions do exist for

the specific case where the distribution of turning angles are symmetric with respect to

cylindrical coordinates (Sadjadi et al, 2015). Note this is the 3-dimensional equivalent

of 2-dimensional case with a symmetric distribution in the turning angles, interpreted

as a left turn and right turn of the same magnitude are equally likely.

Sadajadi et al (2015) derived the expression for the MSD in 3-dimensions as

E[R2
N ] = N E[l2] + E[l]2

2E
1− E

(
N − 1− EN

1− E

)
(3.29)
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Figure 3.4: CRW in 2-dimensions with 100 walkers after (a) 10 steps; (b) 50 steps; (c) 100
steps; (d) 300 steps. The turning angles were drawn from a wrapped normal distriubtion
centred at 0 with concentration value ρ = 0.8. All walkers had initial direction of
movement towards the infinity in the positive x-direction. Step lengths were all of unit
length
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where

E =

∫ π

0

cos(φ) sin(φ) Φ(φ) d(φ) (3.30)

Here, Φ(φ), is the probability distribution for turning angle φ (the azimuth angle). With

the polar angle ψ (the angle which lies in the xy-plane) considered to be uniformly

distributed across φ, that is p(ψ1|φ) = p(ψ2|φ) for all ψ1, ψ2 ∈ [−π, π) and φ ∈ [0, π].

It should be noted that Benhamou (2018) derived the equivalent result using spherical

coordinates in a method echoing that of Kareiva & Shigesada (1983).

3.4 Diffusion, sub-diffusion and super-diffusion

As seen in sections 3.1-3.3 the rate at which the MSD of a RW increases is proportional

to some power of the time passed, E[R2
t ] ∝ tβ (Fig. 3.5). The cases in which the MSD

does not increase linearly with time (β 6= 1) are known as anomalous diffusion processes.

The specific value of β can help identify between types of RW and give rise to 5 cases:

• β = 0. This is the trivial case in which no movement occurs,

• 0 < β < 1. This case is known as sub-diffusion as the increase in MSD is less

than with the linear relationship of standard diffusion. This slower increase in

MSD can be seen in RWs with stopping times (Codling et al, 2008) and models of

“run-and-tumble” motion in bacteria such as E. coli (Thiel et al, 2013).

• β = 1. This is the case for standard diffusive behaviour, as is the case for an

isotropic SRW and a CRW (in the long term-limit) (see section 3.1 & 3.3)

• 1 < β < 2. This case is known as super-diffusion as the increase in MSD is greater

than the linear relationship of standard diffusion. This has been demonstrated to

be the case for Lévy walks (Viswanathan, 2008) due to the variance in step-lengths

being non-finite (Codling et al, 2008)

• β = 2. This is known as ballistic behaviour as the MSD increases at the greatest

possible rate with time, and is equivalent to an individual moving in a constant

direction away from the initial starting location.
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Remark. The case for β > 2 is not considered as having a value greater than 2 does

not make sense in terms of animal displacement.

Figure 3.5: Comparison of the MSD against number of time steps for SRW (red), CRW
(green), BRW (blue) and pure ballistic movement (grey). Simulations were run across
1000 walkers for 25 time steps, with each step having unit length

3.5 Circular Statistics and Distributions

Clearly the analysis of angular data is important in the RW model framework. Recorded

data gives rise to a time series of discrete angles, and due to the periodicity of angular

data traditional statistical techniques cannot be used, instead we introduce the notion

of circular statistics.

3.6 Circular Data

Discrete angular data can be described by various summary statistics, as fully described

in Fisher (1993); Mardia & Jupp (2000); Jammalamadaka & SenGupta (2011). Let

θ = (θ1, . . . , θn) be a series of n angles then we define the pth cosine moment, C̄p, and

pth sine moment, S̄p values as

C̄p =
1

n

n∑
i=1

cos pθi, S̄p =
1

n

n∑
i=1

sin pθi (3.31)
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where the specific case for p = 1 gives the mean cosine, C̄, and mean sine S̄ values

respectively.

Using the mean cosine and sine values we can define the mean resultant length R̄,

which is given by

R̄ =
(
C̄2 + S̄2

)1/2
(3.32)

The mean angle θ̄ is given by

θ̄ =


arctan

(
S̄/C̄

)
if C̄ ≥ 0

arctan
(
S̄/C̄

)
+ π if C̄ < 0

(3.33)

note here that θ̄ is not defined when R̄ = 0 and importantly θ̄ 6= (θ1 + . . .+ θn) /n due

to the periodicity of angular data.

The value of R̄ gives information as to the spread of angles around the unit circle, values

close to 1 indicate that the angles are clustered close together whereas a value closer to

0 indicates a near uniform distribution on the unit circle.

3.7 Circular Distributions

3.7.1 Wrapped Distributions

One can form a distribution around the unit circle by taking distributions along the real

line and transforming the real-valued random variable, X, into a circular random vari-

able, θ by reducing it modulo 2π (Mardia & Jupp, 1999; Jammalamadaka & SenGupta,

2001)

θ ≡ X mod 2π (3.34)

in particular this allows the distribution of the wrapped analogy of a linear distribution,

f◦(θ), to be written in terms of the linear distribution f(X) as

f◦(θ) =
∞∑

m=−∞

f(θ + 2πm), θ ∈ [−π, π), m ∈ N (3.35)
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The most straightforward of these distributions is the circular uniform distribution which

is the circular analogy of the uniform distribution on the reals.

Definition 3.1. Circular Uniform Distribution

The circular uniform distribution is given by

fCU(θ) =
1

2π
(3.36)

where θ ∈ [−π, π)

Two other examples which will be used throughout are the wrapped normal and

the wrapped Cauchy distributions, respectively formed by wrapping the usual normal

(Gaussian) and the Cauchy distributions, on the real numbers around the unit circle.

Definition 3.2. Wrapped Cauchy distribution

A wrapped Cauchy (WC) distribution is given by the density

fwc(θ;σ, µ) =
1

π

∞∑
m=−∞

σ

σ2 + (θ − µ+ 2mπ)2
m ∈ N (3.37)

where θ ∈ [−π, π). The location and dispersion parameters are given respectively by

µ ∈ [−π, π), σ > 0.

A useful trait of the WC distribution is that it can be written in closed form

fwc =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ − µ)
(3.38)

where ρ = e−σ is defined as the concentration parameter of the distribution.

Definition 3.3. Wrapped Normal Distribution

A wrapped normal (WN) distribution is given by the density

fwn(θ;σ, µ) =
1

σ
√

2π

∞∑
m=−∞

exp

(
− (θ − µ+ 2mπ)2

2σ2

)
m ∈ N (3.39)

where θ ∈ [−π, π). The location and dispersion parameters are given respectively by

µ ∈ [−π, π), σ > 0.
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A more general family of wrapped distribution, known as the symmetric wrapped

stable (SWS) distributions, includes distributions which are symmetric about their mean

value and can be defined as;

Definition 3.4. Symmetric Wrapped Stable Distribution

A symmetric wrapped stable (SWS) distribution has the density function given by:

fsws(θ; ρ, µ, a) =
1

2π

(
1 + 2

∞∑
n=1

ρn
a

cosn(θ − µ)

)
, n ∈ N (3.40)

where ρ ∈ [0, 1] is the concentration parameter of fsws, µ ∈ [−π, π) is the location

parameter around which the distribution is symmetric and a ≥ 0 (Jammalamadaka &

Sengupta, 2001; Chapter 2).

It can be shown that both the WC and WN distributions are SWS distributions with

(Jammalamadaka & Sengupta, 2001; Chapter 2);

• a = 1, for the wrapped Cauchy distribution with a concentration parameter calcu-

lated by ρwc = e−σwc

• a = 2, for the wrapped normal distribution with a concentration parameter calcu-

lated by ρwn = e−σ
2
wn/2

3.7.2 Non-Wrapped Distributions

Another important circular distribution which is not a member of the SWS distri-

bution family and therefore cannot be formed by wrapping a distribution on the real

line around the unit circle is the von Mises (vM) or Circular Normal (CN) distribution

(Stephens, 1963; Mardia & Jupp, 1999; Jammalamadaka & Sengupta,2001)

Definition 3.5. Von Mises Distribtuion

A von Mises distribution is given by the density function

fvM(θ;µ, κ) =
1

2πI0(κ)
eκ cos(θ−µ) (3.41)
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where θ ∈ [−π, π) and I0 is the modified Bessel function of the first kind with order 0.

The location and dispersion parameters are given respectively by µ ∈ [−π, π), κ ≥ 0.

The concentration parameter of the von Mises distribution, ρvM, is found using the

relation ρvM = I1(κ)
I0(κ)

where I1 is the modified Bessel function of the first kind with order

1.

It is well known that for any given WN distribution a vM can be found as an accurate

approximation (Stephens, 1963; Collett & Lewis 1981; Jammalamadaka & Sengupta,

2001). Hence, both give qualitatively similar results when used in random walk (RW)

models (Codling et al, 2010).

3.8 Trigonometric moments

Trigonometric moments of circular distributions are analogous to the conventional real-

valued moments of general probability distribution functions (E[Xn] for n ∈ Z+),

Definition 3.6. Trigonometric Moments

The nth trigonometric moment of a random variable θ with circular density function f◦

is given by

φn(θ) = E[einθ] =

∫ π

−π
einθf◦(θ)dθ, n ∈ N (3.42)

Using the properties of complex numbers φn(θ) can be written in terms of cosine and

sine, as

φn(θ) = E[einθ] = E[cosnθ + i sinnθ] = E[cosnθ] + iE[sinnθ] =: αn + iβn (3.43)

Remark. In the specific case where f◦ is symmetric around the centre value µ = 0, we

have βn = 0 for all n since

βn =

∫ π

−π
sinnθf◦(θ)dθ = 0 (3.44)

by the properties of sinnθ being an odd function and f◦ symmetric around 0. Hence,

all the trigonometric moments of a zero centred symmetric circular distribution (such as
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the SWS family with µ = 0; Def. 3.44) are real and involve only cosine terms.

The concentration parameter, ρ, of a SWS is linked to the trigonometric moments by

ρn
a

=
√
α2
n + β2

n (3.45)

(Jammalamadaka & SenGupta, 2001; Chapter 1) Eq. 3.44 shows that the first trigono-

metric moment of a symmetric distribution centred around 0 is given by φ1(θ) = α1 and,

therefore, from Eq. 3.45 we see that α
{wn}
1 = ρwn and α

{wc}
1 = ρwc demonstrating that

the concentration parameters for both WC and WN distributions are precisely the first

trigonometric moments of the distributions.

Using these and the definition of a SWS distribution (Def 3.4) we can write a SWS

distribution as

fsws(θ; ρsws, µsws) =
1

2π

(
1 + 2

∞∑
n=1

αn cosn(θ − µsws)

)
(3.46)

where αn is the nth cosine moment of fsws given as ρn
a

sws = αn as in Eq. 3.45.

Similarly WC and WN distributions can be written as

fwc(θ; ρwc, µwc) =
1

2π

(
1 + 2

∞∑
n=1

ρnwc cosn(θ − µwc)

)
(3.47)

fwn(θ; ρwn, µwn) =
1

2π

(
1 + 2

∞∑
n=1

ρn
2

wn cosn(θ − µwn)

)
(3.48)

The trigonometric moments of the von Mises distribution are given by

φvM
n =

1

2πI0(κ)

∫ π

−π
cosn(θ − µ)eκ cos(θ−µ)dθ

=
In(κ)

I0(κ)
(3.49)

where In is the modified Bessel function of the first kind of order n (Jammalamadaka &

SenGupta, 2001).
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This allows the von Mises distribution to be written in a similar form to the WC and

WN in Eqs. 3.47 & 3.48 as

fvM(θ;κ, µvM) =
1

2πI0(κ)

(
I0(κ) + 2

∞∑
n=1

In(κ) cosn(θ − µvM)

)
(3.50)

For a complete discussion of circular distributions and trigonometric moments see Mar-

dia & Jupp (2000) and Jammalamadaka & Sengupta (2001).

The previous Chapters have introduced and given an overview of the themes and

topics used throughout the thesis. The following Chapters represent the research portion

of the thesis.

46



4 Navigational efficiency in a biased and correlated

random walk model of individual animal move-

ment

This chapter is adapted from work which was published in Ecology (Bailey et al, 2018)

and includes contributions from J. Wallis (JW) (University of Oxford) and E.A. Codling

(EC) (University of Essex). JW and EC considered the derivation and analysis of the

basic model in section 4.2.1. EC contributed towards the writing of the published

manuscript (Bailey et al, 2018).

As discussed in the introductory chapter, understanding how an individual animal

is able to navigate through its environment is a key question in movement ecology as it

can give an insight into observed movement patterns and the mechanisms behind them.

Efficiency of navigation is important for behavioural processes at a range of different

spatio-temporal scales, including foraging and migration. Chapters 2 & 3 discussed that

a standard framework for modelling individual animal movement and navigation uses

random walk models. In this chapter we consider a vector-weighted biased and correlated

random walk (BCRW) model for directed movement (taxis), where external navigation

cues are balanced with forward persistence. We derive mathematical approximations

of the expected navigational efficiency for any BCRW of this form and confirm the

model predictions using simulations. We demonstrate how the navigational efficiency is

related to the weighting given to forward persistence and external navigation cues, and

highlight the counter-intuitive result that for low (but realistic) levels of error on forward

persistence, a higher navigational efficiency is achieved by giving more weighting to this

indirect navigation cue rather than direct navigational cues. We discuss and interpret the

relevance of these results for understanding animal movement and navigation strategies.
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4.1 Introduction

Animal navigation can occur across various spatio-temporal scales corresponding to a

wide variety of behavioural processes, ranging from short-term foraging and home-range

exploration (Schultz & Crone, 2001; Jonsen et al, 2005; Fortin et al, 2005; McClintock

et al, 2012) to large-scale migration events (Gardiner et al, 2015; Nicosia et al, 2015).

Chapters 2 & 3 demonstrated that random walk (RW) theory has a long history

of being used to model individual animal movement and navigation, and as a tool to

interpret observed movement data using various path analysis techniques (Jonsen et al,

2005; Codling et al, 2008; Langrock et al, 2012; McClintock et al, 2012). RW models

that incorporate a directional preference (e.g. preference to navigation towards a spe-

cific target, or towards a specific direction) were termed as biased random walks (BRW)

(Marsh & Jones, 1988; Benhamou, 2006; Codling et al, 2008; Codling et al, 2010) and

those which had a correlation in the direction of concurrent steps were termed corre-

lated random walks (CRW), with this preference to follow the previous heading referred

commonly as persistence (Patlak, 1953; Kareiva & Shigesada, 1983; Bovet & Benhamou,

1988; Benhamou, 2004; Codling et al, 2008). Movement processes that contain both a

short-term localised forward persistence and a global target can be modelled as biased

and correlated random walks (BCRW). In a BCRW the external navigation and forward

persistence components can be combined in a simple weighted vector sum (Benhamou &

Bovet, 1992; Benhamou, 2004; Codling et al, 2008), but other models are also possible

(Schultz & Crone, 2001; Codling et al, 2005; Peleg & Mahadevan, 2016).

Common navigation orientation mechanisms include taxis, where an animal directly

orientates in response to external directional cues, and differential klinokinesis (DKK),

where the level of turning in the movement path (sinuosity) depends on variations in

the magnitude of an external stimulus; both taxis and DKK lead to a long-term direc-

tional drift (bias) towards the target (Benhamou & Bovet, 1992). Empirical studies have

considered how a variety of different animals may balance taxis and persistence mecha-

nisms in order to navigate within their local environment, including butterflies (Schultz

& Crone, 2001), elk (Fortin et al, 2005), and grey seals (McClintock et al, 2012). Hence
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it is important to consider a theoretical basis for animal navigation and the underlying

mechanisms that may lead to improved navigational efficiency.

Benhamou & Bovet (1992) combined taxis and forward persistence to form a vector-

weighted BCRW model of movement, and found in a 1000-step random walk that the

best navigational strategy was to give approximately 10% weighting to external navi-

gation cues (taxis) and approximately 90% weighting to forward persistence. Such a

navigation strategy gave higher navigational efficiency than a movement process based

on taxis alone (a pure BRW), although it should be stressed that Benhamou & Bovet

(1992) only included error in their external navigation term and not in their forward

persistence term. The fact that the most efficient navigation strategy involved giving

a high weighting to persistence rather than taxis may seem to be a counter-intuitive

result, since movement based purely on persistence is known to be an inefficient navi-

gation strategy when compared to pure taxis (Cheung et al, 2007). A similar result to

Bovet & Benhamou (1992) was obtained by Codling & Bode (2014) who found that,

in the context of a collective movement model for navigating animal groups, the most

efficient navigational strategy was to give a high weighting to indirect navigational cues

(copying the movement of other group members) and a low (but non-zero) weighting to

direct individual navigational cues (taxis). In a follow-up study, Codling & Bode (2016)

included individual forward persistence in the collective movement model and showed

that giving a high weighting to indirect cues (copying neighbours or using forward per-

sistence) rather than relying on direct navigational cues gave the highest navigational

efficiency.

The findings of Benhamou & Bovet (1992) and Codling & Bode (2014, 2016) were

based on simulations only and the authors did not give a mathematical explanation for

these results. Here we consider a generalised form of the Benhamou & Bovet (1992)

BCRW navigation model, that includes error on the persistence term, and derive a

mathematical approximation for the expected navigational efficiency. The model predicts

that for a reasonably large (and realistic) range of navigation and persistence errors, the

highest navigational efficiency is achieved by giving a low weighting to direct navigational

49



cues. We discuss the relevance and implications of these findings in the wider movement

ecology context.

4.2 Mathematical model

The BCRW model of Benhamou & Bovet (1992) assumes a single random walker starts

at the origin, (0, 0), and moves through an featureless, homogeneous two-dimensional

environment. For simplicity, the target is assumed to be a ‘point at infinity’ located

along the positive x-axis (this effectively means we are only considering the large-scale

part of the navigation process when the animal is far from the target). Orientation

angles are measured counter-clockwise from the x-axis, and hence the target direction is

given by ΩT = 0. We assume the walker initially starts with no information about the

target direction; an initial movement direction, θ0, is randomly drawn from a uniform

circular distribution (this assumption does not affect our results as we will show that

the long-term navigational efficiency is independent of θ0). At each random walk step

the components of movement in each direction are given by a weighted vector sum of a

navigation term and a persistence term (Benhamou & Bovet, 1992):

∆xn+1 =rn+1 (w cos(ΩT + φn) + (1− w) cos(θn + δn)) (4.1)

∆yn+1 =rn+1 (w sin(ΩT + φn) + (1− w) sin(θn + δn)) (4.2)

Where rn+1 is the step length (distance moved) in the current step, ΩT = 0 is the target

direction (which is fixed as the x-axis for all steps), θn is the direction of movement

in the previous step (which varies at each step), δn is a persistence error term, φn is a

navigation error term, and w ∈ [0, 1] is the weighting given to navigation (and hence

(1–w) is the weighting given to persistence). In contrast to Benhamou & Bovet (1992)

(who only included an error in the navigation term), we include errors on both the

navigation and persistence terms. In principle it would be possible to have an even more

general BCRW model that includes an additional ‘output noise/error’ term in addition

to the navigation and persistence error terms. This output noise could represent either
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additional movement error because of environmental factors (e.g. turbulence) or could

represent a form of ‘voluntary’ error that the animal may use to modulate its behaviour

between behavioural states. However, these more complex model features are beyond

the scope of the current work.

The additive navigation and persistence random error terms, φn and δn, are drawn

from separate zero-centred symmetric circular distributions with respective mean cosine

values given by cφ ∈ [0, 1] and cδ ∈ [0, 1]. The level of navigation and/or persistence error

is determined by the mean cosine values, cφ and cδ: a value close to 0 corresponds to very

high error, and a value close to 1 corresponds to very low error. We assume that cφ and

cδ are fixed for all steps of the random walk, which implies that direction and persistence

errors are independent (no correlation of errors between successive steps) and are not

related to spatial location or any other external factor. Hence we do not consider possible

changes in navigation cue strength as the animal approaches the target, interactions with

other animals, or changes in behaviour and interactions with the environment such as

foraging or resting during the navigation process. Note that, as long as cφ and cδ are

defined, the choice of which circular distribution to use is not important since the results

only depend on the first trigonometric moment (the mean cosine value); the same results

are obtained using common circular distributions such as the wrapped normal, von Mises

and wrapped Cauchy (Section 3.7; Mardia & Jupp, 1999).

Similar to Benhamou & Bovet (1992), we define the navigational efficiency of a single

step of the movement process as:

Navigational efficiency =
Net distance moved towards target in x direction

Total distance moved
(4.3)

Hence, for the BCRW given by Eqs. 4.1 and 4.2 the expected navigational efficiency

at a given step is given by E[cos θn+1] since the target direction is the x-axis (ΩT = 0).

In the extreme case of a pure BRW (w = 1), navigational efficiency is given exactly by

E[cosφn] = cφ, while for a pure CRW (w = 0), navigational efficiency is given exactly

by E [cos(θn + δn)] = 0, since we assume a uniform initial orientation and there is no

external navigation cue.
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We now look to find a direct expression for the navigational efficiency at each step,

E[cos θn+1] the general case of 0 < w < 1.

4.2.1 First Analytical Approximation

In this first method of analytically solving the model we first normalise Eq. 4.1 and

rewrite using standard trigonometric identities to give

cos θn+1 =
w cosφn + (1− w) cos(θn + δn)√

w2 + (1− w)2 + 2w(1− w) cos (φn − (θn + δn))
(4.4)

which it should be noted is independent of the step length, rn+1. Taking the expectation

of Eq. 4.4 then gives

E [cos θn+1] = E

[
w cosφn + (1− w) cos(θn + δn)√

w2 + (1− w)2 + 2w(1− w) cos (φn − (θn + δn))

]
(4.5)

The expression on the right-hand side of Eq. 4.5 is non-linear so we cannot directly

calculate the expectation. Hence we assume we can approximate a solution using a

similar argument as given in Wu et al (2000) (equation 10), and we proceed by treating

the right-hand side of Eq. 4.5 as if it were linear. This approximation, along with the

fact that w is a constant, means Eq. 4.5 can be written as

E [cos θn+1] ≈ wE[cosφn] + (1− w)E[cos(θn + δn)]√
w2 + (1− w)2 + 2w(1− w)E [cos (φn − (θn + δn))]

(4.6)

If we assume θn, φn and δn are all independent, then

E[cos(θn + δn)] = E[cos θn]E[cos δn] (4.7)

and

E [cos (φn − (θn + δn))] = E[cos θn]E[cosφn]E[cos δn] (4.8)
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since

E[sinφn] = E[sin δn] = 0 (4.9)

(as δn and φn are drawn from symmetric circular distributions centred on zero; see

section 3.8). Under this assumption of independence and using standard trigonometric

identities, Eq. 4.6 can then be written as

E [cos θn+1] ≈ wE[cosφn] + (1− w)E[cos θn]E[cos δn]√
w2 + (1− w)2 + 2w(1− w)E[cosφn]E[cos θn]E[cos δn]

(4.10)

We now consider the long-term limit as n gets large. Hill & Häder (1997) demonstrated

that, in the long-term limit, the distribution of movement directions in a BCRW is sta-

ble and symmetric around the target direction. Hence, we assume that for large n in

our model we have E[cos θn+1] = E[cos θn] = E[cos θ∞], where E[cos θ∞] represents the

expectation of the long-term limit directional cosine in the target movement direction.

Hence from Eq. 4.3, E[cos θ∞] is exactly equivalent to the long-term navigational ef-

ficiency. Under this assumption and using the fact that E[cosφn ] = E[cosφ] = cφ and

E[cosδn ] = E[cos δ] = cδ we can rewrite Eq. 4.10 as

E[cos θ∞] =
wcφ + (1− w)cδ E[cos θ∞]√

w2 + (1− w)2 + 2w(1− w)cφcδ E[cos θ∞]
(4.11)

Now defining cθ = E[cos θ∞], and rearranging; Eq. 4.11 leads to a cubic polynomial for

cθ:

2w(1− w)cφcδc
3
θ +

(
w2 + (1− w)2(1− c2

δ)
)
c2
θ − 2w(1− w)cφcδcθ − w2c2

φ = 0 (4.12)

It is possible to show that this polynomial has precisely one root in [0, 1] for all feasible

values of cφ, cδ and w (see Appendix A1). This root can be calculated using Cardano’s

method, which gives a solution in the form

cθ =
3

√
A+
√
A2 +B3 +

3

√
A−
√
A2 +B3 − C (4.13)
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where

A =−
[
w2 + (1− w)2(1− c2

δ)

6w(1− w)cφcδ

]3

− w2 + (1− w)2(1− c2
δ)

12w(1− w)cφcδ
+

wcφ
4(1− w)cδ

B =−
[
w2 + (1− w)2(1− c2

δ)

6w(1− w)cφcδ

]2

− 1

3

C =
w2 + (1− w)2(1− c2

δ)

6w(1− w)cφcδ
(4.14)

Figure 4.1 shows the results of plotting the navigational efficiency, cθ, against weight-

ing factor on navigation, w, for a range of navigation error levels, cφ = 0.1 (black),

cφ = 0.3 (cyan), cφ = 0.6 (gold) & cφ = 0.9 (blue) with the value of the error on per-

sistence varying from cδ = 1 (the specific case for perfect persistence, as discussed in

Benhamou & Bovet (1992)) to cδ = 0.1, corresponding to a large error on navigation. In

all plots the solid lines represent the theoretical model predictions and the dashed lines

represent the results from simulations.

4.2.2 Second Analytical Approximation

Similar to the previous approach we start by normalising Eq. 4.1 to give

cos θn+1 =
w cosφn + (1− w) cos(θn + δn)√

w2 + (1− w)2 + 2w(1− w) cos (φn − (θn + δn))
(4.15)

We now square both sides and rearrange to give

cos2 θn+1

[
w2 + (1− w)2 + 2w(1− w) cos(φn − (θn + δn))

]
=

(w cosφn + (1− w) cos(θn + δn))2 (4.16)

Expanding and using standard trigonometric identities, then taking the expectation of

both sides and recalling that as before we consider ourselves in the long term limit and
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Figure 4.1: Plots of efficiency against weighting factor, w, for error on navigation, cφ,
taking values of 0.9 (blue), 0.6 (gold), 0.3 (cyan) & 0.1 (black). Error on persistence,
cδ, has value 1 (a)-(c) (equivalent to Benhamou & Bovet (1992) results), 0.99 (d), 0.95
(e), 0.9 (f), 0.7 (g), 0.5 (h) & 0.1 (i). Dashed lines show predictions from first analytical
model, solid lines are results of simulations. Plots (a)-(c) were run for simulations of
100, 1000, 10000 time-steps respectively all others ran for 1000 time-steps.
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hence

E[cos θn+1] = E[cos θn] = E[cos θ∞] (4.17)

E[cosφn] = E[cosφ], E[cos δn] = E[cos δ] (4.18)

and

E[sin θ∞] = E[sin δn] = E[sinφn] = 0 (4.19)

gives

0 =2w(1− w)E[cosφ]E[cos δ]E[cos3 θ∞]

+
(
w2 + 2(1− w)2(1− E[cos2 δ])

)
E[cos2 θ∞]

− 2w(1− w)E[cosφ]E[cos δ]E[cos θ∞]

−
(
w2 E[cos2 φ] + (1− w)2(1− E[cos2 δ])

)
(4.20)

Here we note we have terms of the form cosnX, and so we apply the trigonometric iden-

tities of cos3X ≡ 1
4

cos 3X+ 3
4

cosX and cos2X ≡ 1
2
(1+cos 2X) with the approximation

of E[cosnX] ≈ E[cosX]n. Finally, using the linearity of the expectation function and

employing the notation from the previous section of E[cosX] = cX , gives a cubic in

terms of cθ

w(1− w)cφcδc
3
θ +

(
w2 + (1− w)2(1− c2

δ)
)
c2
θ − w(1− w)cφcδcθ − w2c2

φ = 0 (4.21)

Note, we apply the approximation of E[cosnX] ≈ E[cosX]n to both φ and δ despite

knowing the precise distributions they are drawn from, since we wish to keep this ap-

proximation valid for all circular distributions and, hence, require using the first cosine

moment only.

Upon initial inspection, this cubic differs only slightly from the one discussed in the

previous section (Eq. 4.12) with the coefficients of c3
θ and cθ terms being halved. As

such the method for solving the cubic are precisely the same as described in section
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4.2.1; using Caradano’s solution given in Eq. 4.13 with slight modifications to the terms

A,B,C given in Eq. 4.14, which are now given as

A =−
[
w2 + (1− w)2(1− c2

δ)

3w(1− w)cφcδ

]3

− w2 + (1− w)2(1− c2
δ)

6w(1− w)cφcδ
+

wcφ
2(1− w)cδ

B =−
[
w2 + (1− w)2(1− c2

δ)

3w(1− w)cφcδ

]2

− 1

3

C =
w2 + (1− w)2(1− c2

δ)

3w(1− w)cφcδ
(4.22)

Figure 4.2 shows the results of plotting the navigational efficiency, cθ, against weight-

ing factor on navigation, w, for a range of navigation error levels, cφ = 0.1 (black),

cφ = 0.3 (cyan), cφ = 0.6 (gold) & cφ = 0.9 (blue). With the value of the error on

persistence varying from cδ = 1 (the specific case for perfect persistence, as discussed in

Benhamou & Bovet (1992)) to cδ = 0.1, corresponding to a large error on navigation. In

all plots the solid lines represent the theoretical model predictions and the dotted lines

represent the results from simulations.

An interesting question raised from the BCRW model is how maximum efficiency can

be achieved; that is, for any given values of the error terms, cφ, cδ what weighting value,

w, should be chosen in order to maximise the efficiency.

4.2.3 Maximum Efficiency and Optimal Weighting

The maximum navigational efficiency can be found by locating the peak of each of the

curves in Figs 4.1(d)-(i) and 4.2(d)-(i). For the simulated results (solid lines Figs 4.1

& 4.2) this value can be found by directly considering the results of the simulations

for fixed values of cφ and cδ, and simply choosing the largest value of cθ as w varies.

The optimal weighting will then be given by the precise value of w which gave the

largest cθ . Repeating this across all combinations of cφ and cδ will give the value of the

maximum efficiency along with the optimal value of w at which this occurs. However,

for the analytical solutions precise values for the maximum efficiency and optimal w can

be calculated directly from Eq. 4.12 for the first method and Eq. 4.21 for the second
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Figure 4.2: Plots of efficiency against weighting factor, w, for error on navigation, cφ,
taking values of 0.9 (blue), 0.6 (gold), 0.3 (cyan) & 0.1 (black). Error on persistence, cδ,
has value 1 (a)-(c) (equivalent to Benhamou & Bovet (1992) results), 0.99 (d), 0.95 (e),
0.9 (f), 0.7 (g), 0.5 (h) & 0.1 (i). Dotted lines show predictions from second analytical
model, solid lines are results of simulations. Plots (a)-(c) were run for simulations of
100, 1000, 10000 time-steps respectively all others ran for 1000 time-steps.
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Figure 4.3: Directly comparing the results from Fig. 4.1 & Fig. 4.2. Solid lines are the
results from simulations, dashed lines are the predictions from the first analytical model
and dotted lines are the predictions from the second analytical model.
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method, by finding the turning point of the dashed curves given in Fig 4.1 and the dotted

curves in Fig 4.2. This can be done by showing that Eqs. 4.12 & 4.21 when considered

as functions of w, have precisely one turning point in [0, 1] for all w, cφ, cδ (See Appendix

A3 for a complete proof of this).

Figure 4.4 shows heat maps of the optimal weighting factor, w, and the corresponding

maximum navigation efficiency values. Panels (a) and (b) show the respective simulated

results, (c) and (d) show the results for the first analytical method and (e) and (f) show

the results for the second analytical method.

4.2.4 95% Maximum Efficiency

Whilst achieving maximal efficiency is always preferable, it depends on precise knowledge

of the error value for navigation and persistence and as such it may be sensible instead

to consider the range of values of w which would yield near-maximal efficiency. These

values can be found by direct calculation; that is by calculating the maximum efficiency

for fixed cφ and cδ then finding the range of w whose corresponding efficiency values lie

within 95% of the maximum efficiency.

Fig. 4.5 indicates the range of values of the weighting factor, w, for which 95%

maximum efficiency is reached depending on the values of cφ and cδ. Panels a1−3 show the

results for simulated data whereas panels b1−3 show the results from the first analytical

solution. Figures plot the weighting value, w, against the error on persistence cδ with

the error on navigation taking values cφ = 0.1, 0.5, 0.9; for plots with subscripts 1, 2, 3

respectively. The shaded areas represent the values of w for which an efficiency of over

95% of the maximum efficiency is reached, with the red line representing the optimal

value w returning the maximum efficiency.

4.3 Results

4.3.1 Comparison of analytical methods

Comparing the results of the first analytical method (described in section 4.2.1) with the

simulated results (Fig 4.1) show that this method appears to consistently over predict
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Figure 4.4: Heat maps showing (a) the weighting factor, w, that leads to the maximum
navigation efficiency, (‘optimal w’), and (b) the corresponding maximum navigation
efficiency; calculated from simulations of 1,000 walkers moving for 1,000 steps. (c)-(d) &
(e)-(f) show the predicted results for the first and second analytical models respectively.
In each, cδ and cφ range from 0 to 1 at 0.01 intervals.
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Figure 4.5: Plots showing the weighting factor, w, against the error on persistence, cδ.
The error in navigation cφ takes values of 0.1, 0.5, 0.9 in subscripts (1)-(3) respectively.
The red dashed line represents the optimal w. Shaded regions between the black dashed
lines give values for w which return ≥ 95% maximum efficiency. Top row (a) gives results
from simulations and the bottom row (b) are the predictions from the first analytical
method
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First Error in persistence cδ
Method 1† 0.99 0.95 0.9 0.7 0.5 0.1

0.1 1.625* 2.367 2.229 1.796 1.035 0.633 0.386
Error in 0.3 2.202* 2.322* 2.976 3.403 2.473 1.794 1.114

navigation cφ 0.6 0.882* 1.104* 1.747* 2.193 2.866 2.664 2.235
0.9 0.045* 0.334* 1.013* 1.625 3.053 3.521 3.335

Second Error in persistence cδ
Method 1† 0.99 0.95 0.9 0.7 0.5 0.1

0.1 3.841 1.917* 0.626* 0.345* 0.235* 0.301* 0.346*
Error in 0.3 3.716 3.405 1.969* 1.089* 0.755* 0.970* 1.059*

navigation cφ 0.6 2.381 2.657 2.631 2.160* 1.674* 1.897* 2.157*
0.9 0.582 0.931 1.336 1.274* 1.670* 2.478* 3.155*

Table 4.1: Absolute difference between curves for the simulated results and the First and
Second analytical solutions respectively. Values marked with an asterisk (*) indicate the
method with the closer fitting solution

the efficiency value, whereas, comparing the second analytical method (section 4.2.2) and

the simulated results (Fig 4.2) gives results which consistently under-predict. Directly

comparing both methods with the simulated results (Fig 4.3) indicates that neither

method gives a perfect match with the simulated results often lying between the two

analytical results. As a simple measure of ‘best-fit’ the sum of the absolute differences

between the analytical curves and the simulated results was calculated for each plot.

Table 4.1 shows the results of the distance measure. Smaller values, corresponding to

the closer fitting curve, are marked with an asterisk (*). These results indicate that

the second method was generally the closer fitting curve, with it always giving the

better fitting result for all values of cφ whenever cδ ≤ 0.9. However, for large values

of cδ (corresponding to near perfect persistence) the first method gives the better fitting

results, particularly as cφ increases towards 1. Therefore, whilst neither method recreates

the simulated curves precisely, the second method appears to give consistently closer

results.

Considering the maximum efficiently and corresponding optimal weighting for the

simulated results and both analytical methods, Fig 4.4, we see a good fit for both math-

ematical approaches when visually compared to the simulated results. However, if we
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Error in persistence cδ
1† 0.99 0.95 0.9 0.7 0.5 0.1

First Method 0.794* 1.587* 2.987* 3.411* 3.614* 4.987 10.199
Second Method 1.668 4.169 9.646 12.105 11.046 4.353* 8.904*

Table 4.2: Absolute difference between curves representing the simulated results and
those given by the first and second analytical solutions for the optimal w, with fixed cδ
letting cφ vary. Results marked with an asterisk (*) indicate the analytical method with
the closer fitting solution curve

consider certain ‘slices’ of the heatmaps at specific values of the error on persistence, cδ

, to see how the two methods compare with the simulated results we can get a better

idea which fits the simulated results closer. Fig 4.6 shows the values of the optimal

weighting, w, which corresponds to the maximum efficiency, found for fixed values of

cδ in (0.1, 0.5, 0.7, 0.9, 0.95, 1) (the same values for cδ used in Figs 4.1-4.3) as the error

on navigation, cφ varies across [0, 1]. Here the simulated results are given by the green

line, the first analytical method by the black line, and by the second analytical method

by the red line. As before, visual inspection indicates that neither are perfect matches

for the simulated results and therefore, we consider the sum of the absolute differences

between the simulated and the analytical curves to find the closer fitting.

Table 4.2 indicates that by fixing cδ and letting cφ vary across [0, 1] then the first

method is the closer fitting for cδ > 0.5 and the second method is the closer fitting for

cδ ≤ 0.5. Whilst this shows that both methods can give the most accurate results over

roughly equal amounts of the parameter space, as we are mainly concerned with high

values of cδ, corresponding to good knowledge of previous step direction and hence good

persistence (see Discussion – Section 4.4), then the first method would give us the most

apposite results.

Another simple way to compare between the methods is to simply find the absolute

difference of the predicted results and the simulated results across the cδ, cφ parameter

space (the absolute errors) seen in Fig. 4.4. Fig 4.7 shows the results of calculating this

absolute difference for the optimal weighting (a) & (b) and the corresponding maximum

efficiency (c) & (d) for both the first and the second analytical methods respectively. The

darker the hue the larger the absolute value and the further away the prediction from
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the simulated value. Visual inspection appears to indicate that the first method differs

less than the second, shown by the lighter overall hue in both optimal weighting and

maximum efficiency plots, and simply summing across the entire parameter space verifies

this with εw,1 = 349.76, εw,2 = 827.37, εeff,1 = 111.46, εeff,2 = 199.81; where εw,i and εeff,i

are the sum of the absolute differences across the parameter space for the optimal w and

maximum efficiency respectively, when comparing the simulated results with analytical

method i. Therefore, neither analytical method matches the simulated results perfectly

and neither are consistently the closest fitting. However, an important aspect of the

model is to accurately reproduce the optimal weighting value (see Discussion - section

4.4) and therefore we chose the first method as the one which most accurately predicts

the simulated behaviour and is the one considered in direct comparison when comparing

the simulated and predicted results.

4.3.2 Simulated results and comparison with analytical method

We first consider the specific case of zero error on forward persistence, cδ = 1, which

was considered originally by Benhamou & Bovet (1992). In this case Eq. 4.12 can be

simplified and a limiting argument can be used to show that for all cφ > 0 (i.e. as long as

external navigation cues are present) then cθ → 1 as w → 1 (see Appendix A2 and Fig.

4.1(a)-(c)). It may seem counter-intuitive that more efficient navigation can be obtained

by giving a vanishingly small (but strictly non-zero) weighting to direct navigational

cues but this is explained by the fact that once a navigating animal is oriented towards

the target direction (which is always eventually possible if w is strictly non-zero), it can

then maintain this direction of movement indefinitely since there is no persistence error,

and hence no further external navigation cues are required. Nevertheless, the higher

the level of navigation error (i.e. the lower the value of cφ) the longer it will take (on

average) for the animal to orientate itself towards the target direction. Consequently,

the apparent navigational efficiency is highly dependent on the number of steps in the

observed movement process when there is zero persistence error (Fig. 4.1(a)-(c)). Ben-

hamou & Bovet (1992) only considered simulation results for a 1000-step BCRW and
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Figure 4.6: Plots comparing the optimal w against values of the error on navigation
cφ. Error on persistence, cδ, takes values of 0.1, 0.5, 0.7, 0.9, 0.95 & 0.99 in (a)-(f)
respectively. Green lines show results from simulations, black lines show predictions
from the first analytical model and red lines show predictions from the second analytical
model.
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Figure 4.7: Heat maps for the parameter space of error on navigation, cφ, and error on
persistence, cδ, showing the absolute difference between the simulated results and the
two analytical methods for values of optimal w (a & c) and corresponding maximum
efficiency (b & d). Top row is for the first analytical method and the bottom row is for
the second analytical method. In all plots cφ, cδ takes values from 0 to 1 at 0.01 intervals.
The darker the colour the larger the absolute difference, indicating the analytical model
did not closely match the simulated results.
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hence did not report this long-term limit result directly. For w > 0, the predicted

long-term navigational efficiency, cθ, monotonically decreases as w increases, indicating

that lower long-term navigational efficiency is obtained when giving a higher weight to

external navigation cues. This result is confirmed with the simulation results for the

10,000 step BCRW shown in Fig. 4.1c. In Fig. 4.1a and 4.1b where the BCRW runs for

only 100 or 1000 steps respectively, the curves showing the simulated navigational effi-

ciency are non-monotonic: the navigational efficiency is dependent on cθ with a peak for

0 < w < 0.2 similar to the result reported by Benhamou & Bovet (1992). This indicates

that even with zero error on forward persistence, a BCRW with a small number of steps

requires external navigational cues for efficient navigation.

In the case where there is error on both the navigation and persistence components of

the movement process (i.e. cδ, cφ < 1), the solution given in Eq. 4.13 predicts that as the

persistence error increases (cδ decreases), the navigational efficiency also decreases for

all cφ (solid lines in Fig 4.1(c)-(f)). The predicted solution curves are (in general) non-

monotonic with a peak indicating a maximum navigational efficiency for an intermediate

value of w. For low persistence errors (cδ = 0.99, 0.95, 0.9 in Fig. 4.1d-f) the maximum

navigational efficiency occurs for w < 0.5, and at lower values of w when cφ is also

small (higher navigation error). As the persistence error increases (cδ = 0.7, 0.5, 0.1 in

Fig 4.1g-i) the peak indicating the maximum navigational efficiency shifts to the right

corresponding to a larger value of the weighting given to navigation, w (Figure 4.1g-i;

Appendix A3). In general, the simulation results shown in Fig 4.1g-i show the same

qualitative behaviour as the predicted solution curves from Eq. 4.13. In contrast to

the case of zero persistence error, for the values of cδ < 1 considered here, there is very

little difference in the model predictions and simulated results for n = 100, 1000, 10000

and 10, 000 steps (see Appendix A4: Fig 4.8A). The inclusion of even a small error on

the persistence term means the effective long-term limiting solutions for navigational

efficiency are reached much faster than the case with zero persistence error.

The location of the peak corresponding to the maximum navigational efficiency for

each of the curves in Fig 4.1d-i can be calculated directly from Eqs. 4.12 and 4.13. More
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generally, it can be shown that Eq. 4.12 has precisely one turning point for w ∈ [0, 1],

and this turning point corresponds to the maximum predicted navigational efficiency

(see Appendix A3). The values of w leading to the theoretical maximum navigational

efficiency, together with the predicted values for this efficiency, are calculated from Eqs.

4.12 and 4.13 for a range of cφ and cδ, and are shown in Fig 4.5c and 4.4d respectively.

Fig. 4.4a and 4.5b show the equivalent results from simulations of the BCRW, and show

a good qualitative match to the theoretical predictions. Fig. 4.4a and 4.4c highlight the

result (also seen in Fig 4.1d-i) that when the persistence error is high (cδ < 0.1), the

maximum navigational efficiency occurs when giving a higher weighting to the navigation

term (w > 0.9), and when cδ ≈ 0 this efficiency is given exactly by cδ (Fig 4.4b and

4.4d) which corresponds to pure taxis. However, when the persistence error is low (cδ >

0.9), the maximum navigational efficiency typically occurs for w < 0.5 (more weighting

on persistence than direct navigation) even if the navigation error is also low (Figs

4.4a and 4.4c). Figs 4.4b and 4.4d highlight that a high navigational efficiency can be

maintained even when the navigation error is large (cφ < 0.5) because of the weighting

given to persistence: the contour corresponding to a long-term navigational efficiency of

0.5 extends well below cφ < 0.5 (Figs 4.4b and 4.4d).

In considering the range of values w can take for which 95% maximum efficiency

is reached, Fig. 4.5 demonstrates that when more weight should be put on naviga-

tion (optimal w > 0.5) the range of values the weighting can take and still yield 95%

maximum efficiency is reasonably large regardless of the values of cφ and cδ. However,

when the optimal value of w favours persistence (w < 0.5) this range is comparatively

small, indicating that in this case getting close to the optimal value of the weighting is

significant.

4.4 Discussion

We have developed the model of Benhamou & Bovet (1992) to include persistence error

and derived a mathematical approximation for the long-term navigational efficiency of

this form of BCRW. We have demonstrated how navigational efficiency depends on
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the weighting given between navigation and persistence at each step of the movement

process and the level of error in each term (Eq. 4.12; Fig 4.1d-i). In Fig 4.4a, the area

above the contour line corresponding to w = 0.5 indicates the region of the parameter

space where giving a lower weighting to direct navigation cues and a higher weighting

to persistence leads to the maximum long-term navigational efficiency. Interestingly,

the predicted contour line corresponding to w = 0.5 approaches cφ = 1 in Fig 4.4a,

indicating that even with close to zero error on the navigation cue, there is little loss of

navigational efficiency by giving equal weight to persistence. This potentially hints at

some interesting evolutionary advantages for animals that balance forward persistence

and external navigation cues in this way: giving a high weighting to persistence can

improve overall navigation efficiency if the error on navigation cues is high (cφ < 0.5),

and has little detrimental effect if the error on navigation cues is low (cφ > 0.9).

The vector-weighted BCRW navigation model discussed by Benhamou & Bovet (1992)

did not include error on the persistence term and the results given in their paper were for

a BCRW with only 1000 steps. We have shown mathematically (Appendix A2 and Fig

4.1c) that in this scenario the long-term maximum navigation efficiency is actually ob-

tained when the weighting on external navigation cues (taxis) tends to zero, i.e. cφ → 1

as w → 0. This may seem like a counter-intuitive result, given that a movement process

based purely on persistence with no taxis is known to be a poor navigation strategy

(Cheung, 2007). However, this result holds only for the long-term limiting navigation

efficiency, where the fact that there is zero error on persistence means an animal can

achieve maximum navigational efficiency simply by continuing in the same direction as

previously once it is moving in the target direction. At shorter time-scales navigation

will not be as efficient (Fig 4.1a-c), and the observed navigational efficiency is dependent

on the number of steps of the BCRW.

A possible further extension of this work would be to derive an expression for the

navigational efficiency that is valid for a small number of steps and not just the long-

term limit. However, Appendix A4: Fig 4.7A demonstrates how the sensitivity of the

navigational efficiency to the number of steps in the BCRW is less when persistence error
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is non-zero. When referring to the results in Fig 4.1a-c we are implicitly assuming that

a random walk with 1000 steps is 10 times longer than a walk with 100 steps and so on.

Instead, an alternative interpretation of the model and results is that the overall path

length is fixed and it is the reorientation frequency that changes (so that a single step

in a 1000-step path is 10 times shorter than that in a 100-step path). From Fig 4.1a-c,

this then implies that in a noisy environment an animal may improve its navigational

efficiency by increasing its rate of reorientation (effectively giving a larger sample size in

the navigational averaging process).

The BCRW model considered here is deliberately simple but could easily be ex-

tended to consider more complex scenarios, although this may come at the expense of

analytical tractability, and generalised predictions about navigation efficiency informed

by mathematical theory may not subsequently be possible. The BCRW model consid-

ered here assumes individuals do not change their behaviour over time or interact with

conspecifics. Nevertheless, the overall conclusion is similar to results observed by Codling

& Bode (2014; 2016) who used simulations to demonstrate that in a group navigation

context, the most efficient navigational strategy was to give a high weighting to indi-

rect cues (copying the movement of other group members or using forward persistence),

rather than relying on direct navigational cues. An obvious extension of the present

work would be to develop a mathematical model for the efficiency of a navigating group.

This is likely to be much more analytically difficult, although one approach would be to

use stochastic differential equations (SDE) to model the individual interactions within

the group. Binhi (2017) used SDEs to explore the “many wrongs” principle in group

navigation, giving analytical solutions which compared accurately with simulated results.

Our model also assumes a homogeneous environment with a fixed target direction

where navigation cues do not vary in space or time. Movement through a heterogeneous

environment could be modelled as a composition of shorter paths through different ho-

mogeneous regions and incorporate different localised behaviour where persistence and

navigation may be balanced in different ways over time such as foraging or exploratory

behaviour (Jonsen et al, 2005; Barraquand & Benhamou, 2008). However, it is not clear
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in such cases how a mathematical approximation for the navigational efficiency could

be easily derived. An alternative model structure to the vector-weighted BCRW model

proposed by Benhamou & Bovet (1992) could also be considered. For example, Codling

& Hill (2005a) considered a BCRW where the strength of the navigation cue was ei-

ther linearly or sinusoidally dependent on the orientation of the individual walker (to

respectively model phototaxis and gyrotaxis in swimming micro-organisms).

In the context of group navigation, Bode et al (2010) considered a model where

the behaviour of an individual at each time step was probabilistic and chosen to be

either purely persistent or purely local navigation, rather than using a vector-weighted

sum as we do here. Many migrating animals will undertake other behaviours during

the large-scale navigation process (such as resting, foraging etc), or may change their

behaviour in response to their local environment. Peleg & Mahadevan (2015) developed

a random walk model which includes periods of purely persistent behaviour followed by

a pause to reorient according to external navigational cues. By repeating this behaviour,

a walk which appears to be purely persistent (a CRW) in the short term can then be

described as a BCRW in the long term. This is in contrast to our model where we

assume the animal is continuously balancing persistence and navigation (taxis) at every

step of the movement path. Nevertheless, the relative weighting between navigation

and persistence in our model (w) can be directly compared to the relative navigation

reorientation frequency in the model of Peleg & Mahadevan (2015) since both effectively

give a way to balance persistence and navigation. In the context of group navigation,

Bode et al (2010) used a similar approach and considered a model where the behaviour

of an individual at each step was probabilistic and chosen to be either purely persistent

or purely local navigation. The probability of choosing persistence against navigation in

this model could be directly compared to the relative navigation weighting (w) in our

model.

To derive equation 4.12 a number of key assumptions were made to make analytical

progress. Specifically, moving from Eq. 4.5 to Eq. 4.6 we assumed a highly non-linear

expression could be treated as linear when taking the expectation, and moving from Eq.
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4.10 to Eq. 4.11 we assumed the long-time limit such that the distribution of movement

directions is stable. It is the former assumption that is likely the reason for the slight

discrepancy between the predicted and simulated results in Fig 4.1d-i. We have explored

ways to improve the predicted model to give a better fit to the simulated results but this

leads to significantly more complex expressions for the predicted navigational efficiency

with only a very slight improvement in the model fit (results not shown). The results in

Fig 4.1a-c illustrate how (for zero persistence error) the observed navigational efficiency

is highly dependent on the number of steps of the BCRW. A possible further extension

of this work would be to derive an expression for the navigational efficiency that is valid

for a small number of steps and not just the long-time limit as considered here. However,

Fig 4.7A demonstrates how the sensitivity of the navigational efficiency to the number

of steps in the BCRW is much less when persistence error is non-zero.

Predictions from our model about how animals should (in theory) balance persistence

and external navigation cues (taxis) to give the highest navigational efficiency should be

tested and compared to observations from empirical data. One of the most interesting

model predictions is shown in Fig 4.4a, where in the parameter region above the w = 0.5

contour line (corresponding to values of approximately cδ > 0.8 for low navigation error,

cφ < 0.5 and cδ > 0.9 for medium levels of navigation error, 0.5 < cφ < 0.9), it is more

efficient to give a higher weighting to persistence than direct navigation cues. Directly

comparing empirically reported values of cδ across the literature is known to be difficult

since processing and sampling of the data can change the estimated forward persistence

of an observed path (Bovet & Benhamou, 1988; Codling & Hill, 2005). Nevertheless,

high values for cδ have been reported for a wide range of species including insects and

nematodes (0.62 ≤ cδ ≤ 0.94 in Byers, 2001), elk (cδ = 0.68 in Fortin et al, 2005),

dolphins (cδ = 0.8 in Bailey & Thompson, 2006), foraging seabirds (cδ = 0.885 for

movement mode 3 in Boyd et al, 2014), and reindeer (cδ = 0.84 for exploratory movement

state 2 in Langrock et al, 2014). Hence, it seems clear that many animal species are

capable of moving in a highly persistent manner if they choose to do so.

The relative weighting between navigation and persistence in the movement be-
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haviour of a prairie butterfly was considered by Schultz & Crone (2001). They found

that when returning to within 10-22m of their home habitat they were observed to use a

BCRW movement that balanced persistence with navigation with a weighting of w = 0.38

(female) and w = 0.29 (male). However, the authors did not explore the levels of nav-

igation and persistence error within the observed butterfly movement paths. Fortin et

al (2005) considered the balance between forward persistence and directed movements

up-slope in the winter foraging of elk. Using a log-likelihood test, they showed that a

BCRW model fitted the data better than the alternative of a pure BRW or a pure CRW,

and that the weighting on directional bias was w = 0.17, implying that almost five times

more weighting was given to persistence than localised up-slope directed movements.

The results of Schultz & Crone (2001) and Fortin et al (2005) provide empirical evidence

that some animals do give a high weighting to persistence rather than directed move-

ment, although the contexts are slightly different to our abstracted navigation problem.

In contrast, McClintock et al (2012) used a multi-state generalised BCRW framework to

analyse and describe the movements of grey seals near to localised centres of attraction

(foraging areas or haul-out sites), and found that when close to the centres of attraction,

movement was almost entirely directed (w > 0.99). However, the ecological context of

their study (short-term foraging within a familiar territory) is different to our problem

(large-scale navigation via an external directional cue). In addition, McClintock et al

(2012) did not directly consider that localised forward persistence and directional bias

are often misclassified, especially in a short movement path, a fundamental problem

highlighted by Benhamou (2006).

A number of studies have considered strategies for maximising movement efficiency

in the context of foraging, although these are usually based on minimising energy ex-

penditure rather than optimising navigation efficiency. Fortin et al (2003) demonstrated

how theories from optimal foraging related to energy maximisation did not seem to hold

across varying temporal scales, with other factors influencing movement behaviour be-

coming more important at larger time-scales. Bartoń et al (2009) used simulations to

explore the survival of animals exploring a patchy landscape using a BCRW movement
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model that balanced persistence with biased movement towards patches of suitable habi-

tat. They found that “. . . when an organism’s ability to detect patches decreases with

distance from the patch, dispersal mortality is high if the organism engages in a walk

with a low degree of correlation. Thus, even if long distance detection of a patch is

poor, an individual can still have a good chance of surviving dispersal if it moves using

a more economical, highly correlated walk.” Hence, although the model of Bartoń et

al (2009) was based on short-scale localised navigation when foraging, their conclusions

seem to be consistent with the findings from our model, which is based on large-scale

navigation. Further work is now needed to test our model predictions and to determine

in more detail how real animals may balance persistence and taxis (and other possible

mechanisms) when navigating efficiently over a range of spatio-temporal scales.

4.5 Conclusions

• In this chapter we have given a method for modelling individual animal movement

which includes both a biased and correlated component, and seen how the effect

of increasing the error attached to each term affects the efficiency of navigating by

such a method.

• Our results suggest that it is more beneficial in the long term for an individual to

move towards a target direction putting more weight into following their previous

direction (persistence) rather than directly following navigational cues and have

given a mathematical justification for these results.

• We have extended the work done by Benhamou and Bovet (1992), showing how

the overall efficiency of a BCRW model for animal movement is affected by errors

on both the navigational and persistence terms.

• We have given a mathematical approximation which accurately predicts the simu-

lated results for the case of “perfect” persistence running in the long term.

• We have also given mathematical approximations to predict the simulated results

when we have an error on the persistence term, which give accurate predictions for
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values of w > 0.5, however, because of our assumptions and approximations made

the accuracy is not as good for w < 0.5. Similarly, our approximations are only

valid in the long term limit and therefore, not reliable for a small number of time

steps.

• The specific values of weighting required to return optimal efficiency have been

calculated and have shown to be a close fit to those predicted by our first mathe-

matical approximation method.

• The results show that in general, the maximum efficiency of the model was found

when more weight was put onto the navigational component, however, when the

error in the persistence is small (which is a realistic assumption for certain animal

movement) the optimal value of w is found to decrease implying that one should

favour persistence more than navigational ability.

• Questions still remain regarding this model, such as finding solutions which are not

based in the long term limit. Our findings could be better understood by a more

accurate and complete mathematical solution along with applying these findings

to empirical studies
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4.6 Appendices

4.6.1 Appendix A1 - Eq. 4.12 has precisely one root for cθ in the interval

[0, 1].

In this appendix we show that Eq. 4.12 in the main text has precisely one root for cθ in

the interval [0, 1]. We first show that there is at least one root in this interval and then

show that this must be the only root in the interval.

Existence of at least one root in [0, 1]

Recall Eq. 4.12 in the main text which is a cubic polynomial, f(cθ):

2w(1− w)cφcδc
3
θ +

(
w2 + (1− w)2(1− c2

δ)
)
c2
θ − 2w(1− w)cφcδcθ − w2c2

φ = 0 (4.23)

where 0 ≤ w, cφ, cδ ≤ 1.

This polynomial f(cθ) is well defined except for the special case where cδ = 1 and w = 0.

In this special case (where there is zero weighting given to navigation) we define the

navigational efficiency as cθ = 0. For all other cases:

(i) at cθ = 0, we have f(0) = −w2c2
φ ≤ 0;

(ii) at cθ = 1, we have f(1) = w2(1− c2
φ + (1− w)2(1− c2

δ) ≥ 0.

Now, if either f(0) = 0 or f(1) = 0 then we clearly have at least one root for cθ ∈ [0, 1].

Otherwise, we must have f(0) < 0 and f(1) > 0. Now as f(cθ is continuous and must

change sign in the interval [0, 1], we can use the intermediate value theorem (specifically

Bolzano’s theorem) to show that there must exist at least one root in this interval.

Existence of no more than one root in [0, 1]

77



We first rewrite f(cθ) as:

a(w, cφ, cδ)c
3
θ + b(w, cφ, cδ)c

2
θ + c(w, cφ, cδ) + d(w, cφ, cδ) = 0 (4.24)

where

a =2w(1− w)cφcδ,

b =w2 + (1− w)2(1− c2
δ),

c =− 2w(1− w)cφcδ,

d =− w2c2
φ (4.25)

We first show that only one root exists in [0, 1] when any of a, b, c or d = 0. These occur

when either (i) w = 1; (ii) w = 0; (iii) cφ = 0; (iv) cδ = 0.

Substituting these values into f(cθ) gives:

(i) w = 1:

c2
θ − c2

φ = 0 =⇒ cθ = cφ ∈ [0, 1] as required.

(ii) w = 0:

(1− c2
δ)c

2
θ = 0 =⇒ cθ = 0 or cδ = 1. However, we defined cθ = 0 when cδ = 1, w = 0, so

we have one root at cθ = 0.

(iii) cφ = 0:

[w2 + (1− w2)(1− c2
δ)] c

2
θ = 0. Either cθ = 0 or w2 + (1− w)2(1− c2

δ) = 0. However, we

note that w2 + (1−w)2(1− c2
δ) is strictly positive unless w = 0 and cδ = 1. In this case

we defined cθ = 0. Therefore we have one root at cθ = 0 as required.

(iv) cδ = 0:

[w2 + (1− w)2] c2
θ − w2c2

φ = 0 =⇒ w√
w2+(1−w)2

cφ. Note, that as w√
w2+(1−w)2

∈ [0, 1] and
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cφ ∈ [0, 1] then clearly w√
w2+(1−w)2

cφ ∈ [0, 1] and is unique as required.

We now consider the general cases when a, b, c, d 6= 0. Clearly 0 < a, b ≤ 1 and

0 > c, d ≥ −1, for all w, cφ, cδ ∈ [0, 1] and, hence f(cθ) has one change of sign across its

coefficients for positive cθ. From Descartes change of sign rule we know that this implies

the existence of at most one positive root.

Combining the general result with the cases where at least one of the coefficients

of f(cθ) is 0, shows that there exists at most one non-negative root for f(cθ) across all

values of w, cφ, cδ.

79



4.6.2 Appendix A2 - Eq. 4.12 implies that the navigation efficiency, cθ → 1

as w → 1 when cδ = 1

We show that in the specific case of cδ = 1, Eq. 4.12 in the main text implies that the

navigation efficiency, cθ → 1 as w → 1.

Eq. 4.12 in the main text is given by

2w(1− w)cφcδc
3
θ +

(
w2 + (1− w)2(1− c2

δ)
)
c2
θ − 2w(1− w)cφcδcθ − w2c2

φ = 0 (4.26)

where 0 ≤ w, cφ, cδ ≤ 1.

For w 6= 0 this simplifies to

2(1− w)cφcδc
3
θ +

(
w +

(1− w)2(1− c2
δ)

w

)
c2
θ − 2(1− w)cφcδcθ − wc2

φ = 0 (4.27)

Letting cδ = 1 this simplifies further to

2(1− w)cφc
3
θ + wc2

θ − 2(1− w)cφcθ − wc2
φ = 0 (4.28)

Now letting w → 0 we get

lim
w→0+

2(1− w)cφc
3
θ + wc2

θ − 2(1− w)cφcθ − wc2
φ = 2cφc

3
θ − 2cφcθ = 0 (4.29)

Finally, assuming cφ 6= 0 (the case for cφ = 0 is discussed in Appendix S1) this gives

c3
θ = cθ ⇐⇒ cθ = 1 as required.
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4.6.3 Appendix A3 - Eq. 4.13, considered as a function of w, has precisely

one turning point in [0, 1] for all w, cφ, cδ

We wish to show that Eq. 4.13 in the main text, when considered as a function of w, has

precisely one turning point in [0, 1] for all w, cφ, cδ. To show this we prove the existence

of precisely one root in [0, 1] for dcθ
dw

= 0.

Recall Eq. 4.12 from the main text, written as in Appendix A1:

f(cθ) = a(w, cφ, cδ)c
3
θ + b(w, cφ, cδ)c

2
θ + c(w, cφ, cδ)cθ + d(w, cφ, cδ) = 0 (4.30)

Differentiating this with respect to w, gives

d

dw

(
a(w, cφ, cδ)c

3
θ + b(w, cφ, cδ)c

2
θ + c(w, cφ, cδ)cθ + d(w, cφ, cδ)

)
= 0

=⇒ c3
θ

da

dw
+ 3ac2

θ

dcθ
dw

+ c2
θ

db

dw
+ 2bcθ

dcθ
dw

+ cθ
dc

dw
+ c

dcθ
dw

+ cθ
dc

dw
+
dd

dw
= 0 (4.31)

giving

dcθ
dw

= −
(
a′c3

θ + b′c2
θ + c′cθ + d′

3ac2
θ + 2bcθ + c

)
(4.32)

where a′ ≡ da
dw
, b′ ≡ db

dw
, c′ ≡ dc

dw
, d′ ≡ dd

dw
.

Special cases (no turning point exists)

Let us consider the cases when the denominator of Eq. 4.32 is zero (no turning point

exists). If such cases existed, then there would have to exist a cθ ∈ [0, 1] satisfying

ac3
θ + bc2

θ + ccθ + d = 0 and 3ac2
θ + 2bcθ + c = 0 (4.33)

where w, cφ, cδ are fixed. Giving

ac3
θ + bc2

θ + ccθ + d = 3ac2
θ + 2bcθ + c = 0 (4.34)
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=⇒ ac3
θ + (b− 3a)c2

θ + (c− 2b)cθ + (d− c) = 0 (4.35)

When cθ = 0 this reduces to

d− c = −w2c2
φ + 2w(1− w)cφcδ (4.36)

However, from Eq. 4.12 in the main text we see that cθ = 0 ⇒ −w2c2
φ and so either

w = 0 or cφ = 0 and, therefore, d− c = 0.

Hence, we have one solution at cθ = 0.

We now show there are no other solutions by showing Eq. 4.35 is monotonically decreas-

ing, across cθ ∈ [0, 1].

Differentiating Eq. 4.35 with respect to cθ we get

d

dcθ
ac3

θ + (b− 3a)c2
θ + (c− 2b)cθ + (d− c) = 3ac2

θ + 2(b− 3a)cθ + (c− 2b)

= 3acθ(cθ − 1) + 2b(cθ − 1) + c

≤ 0 (4.37)

as a, b ≥ 0, c ≤ 0 and 0 ≤ cθ ≤ 1.

Recalling that a = −c, this inequality is strict unless (i) cθ = 0, b = 0, a = 0, (ii)

cθ = 1, a = 0 or (iii) a = 0, b = 0.

From Eq. 4.12 in the main text and Appendix A1, we note that

a = 0 =⇒ w = 0, w = 1, cφ = 0 or cδ = 0.

b = 0 =⇒ w = 0 and cδ = 1.

cθ = 1 =⇒ w = 1 and cφ = 1 (recalling from Appendix A2 that when w = 0, cδ = 1 we

defined cθ = 0).

cθ = 0 =⇒ w = 0 or cφ = 0.

Therefore, the cases where d
dcθ

is not strictly less than 0 are precisely when (i) w = 0

and cδ = 1 or (ii) w = 1 and cφ = 1.

Since the gradient for the remaining values of w, cφ, cδ is constantly negative across

82



cθ ∈ [0, 1], Eq. 4.35 must be monotonically decreasing across the interval for these val-

ues.

Combining the cases of zero gradient, with the root found at cθ = 0, gives the special

cases for Eq. 4.32 needed to be considered as: (i) w = 1 and cφ = 1, (ii) cθ = 0, (iii)

w = 0 and cδ = 1.

Case (i) w = 1 and cφ = 1. As cθ = 1, which is clearly maximal, we take dcθ
dw

= 0 at this

point.

Case (ii) cθ = 0 =⇒ either cφ = 0 or w = 0. When cφ = 0 we have cθ = 0 for all w and

so there is no turning point and no optimal value for w. When w = 0 we recall from

Appendix A2 that as cθ = 0 which cannot be a maximum, the gradient must be strictly

positive and, therefore, not a turning point (except in the special cases of cφ = 0 which

was just discussed).

Case (iii) w = 0 and cδ = 1. This is a sub-case of case (ii) and hence was discussed above.

General case (turning point exists)

We now show that there is precisely one root for Eq. 4.32 with w ∈ (0, 1], cφ ∈ (0, 1],

cδ[0, 1], cθ ∈ (0, 1).

From Appendix A1 we calculate that

a′ = 2(1− 2w)cφcδ

b′ = 2w − 2(1− w)(1− c2
δ

c′ = −2(1− 2w)cφcδ

d′ = −2wc2
φ (4.38)

Allowing us to rewrite the numerator of Eq. 4.32 as

2(1− 2w)cφcδc
3
θ +

(
2w − 2(1− w)(1− c2

δ)
)
c2
θ − 2(1− 2w)cφcδcθ − 2wc2

φ (4.39)
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Considering the limit as w → 0+, noting that for this cθ > 0, we get

2cφcδcθ(c
2
θ − 1) + 2(c2

δ − 1)c2
θ (4.40)

which is strictly negative. We know from case (ii) above, that the denominator at w = 0

is strictly positive and hence Eq. 4.32 must be strictly positive (due to the negation

symbol in Eq. 4.32).

We now let w → 1−. From Appendix A2 we have cθ → cφ and the numerator of Eq.

4.32 becomes

2c2
φcδ(1− c2

φ) (4.41)

which is strictly positive, except for the specific cases of cφ = 1 or cδ = 0, in which

the function tends to 0, implying the existence of a local maxima for cθ at w = 1. The

denominator in this case tends to 2cθ, which is strictly positive and, hence, Eq. 4.32 is

strictly non-positive as w → 1−.

We now invoke the intermediate value theorem, which states that as we have passed

from a positive to a non-positive value in [0, 1] there must exist at least one root in [0, 1]

for Eq. 4.32. If we return to Eq. 4.13 from the main text we note that this can be

considered as a polynomial in w of maximum degree 2, and hence, can have at most one

turning point as w varies.

Combining this with what we have just shown, proves the existence of one local

maximum value in [0, 1] for Eq. 4.13 in the main text.
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4.6.4 Appendix A4 - Navigational efficiency of the BCRW model with cδ < 1

is relatively unaffected by the number of steps

In this appendix we include further plots illustrating how the navigational efficiency of

the BCRW model with cδ < 1 is relatively unaffected by the number of steps in the

random walk, in contrast to the case where cδ < 1 (as demonstrated in plots (a-c) in

Fig. 4.1, Fig. 4.2 & Fig. 4.3)
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Figure 4.8: Plots of navigational efficiency, cθ, against weighting factor, w, with non-zero
persistence error: (a) cδ = 0.9, (b) cδ = 0.5 (c) cδ = 0.1, considered over different time
scales: (a1, b1, c1) 100 steps, (a2, b2, c2) 1000 steps, (a3, b3, c3) 10,000 steps, and for
a range of navigation error levels, cφ = 0.1 (black), cφ = 0.3 (cyan), cφ = 0.6 (gold) &
cφ = 0.9 (blue). In all plots the solid lines represent the 10 theoretical model predictions
and the dashed lines represent the average results from simulations of 1000 individual
random walkers; w ranges from 0 to 1 at 0.01 intervals.
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5 Walking behaviour in the ground beetle Poecilus

cupreus: individual variation, intermittency, and

dispersal potential

This chapter is based on joint work with C. Benefer (Plymouth University), R. Black-

shaw (Blackshaw Research and Consultancy) and E.A. Codling (University of Essex).

All experiments were conceived, designed and performed by CB & RB.

In this chapter we see how RW theory can be used to analyse and characterise animal

movement data. The ground beetle (Poecilus cupreus), an important carabid predator

in agricultural land, were tracked at fine-scale by the use of a locomotion compensator

to quantify key characteristics of the observed movement, such as dispersal ability. Our

results showed that overall net displacement increased much more rapidly than predicted

by a simple correlated random walk model, with near ballistic behaviour observed in

some cases. Individuals displayed a latent ability to head on a constant bearing for a

protracted length of time, despite showing no clear evidence of a global orientation bias at

the population level. Intermittent bouts of movement and non-movement were observed,

with both the frequency and duration of bouts of movement varying at the inter- and

intra-individual level. Analysis of observed beetle movement suggests that individual

beetles have the potential to rapidly disperse over a much wider area than predicted

by simple movement models parameterised at the population level. This highlights the

importance of considering the role of individual variation when analysing movement data

and predicting dispersal distances.

5.1 Background

Dispersal is a key ecological process affecting population, species and community dy-

namics over small and large spatial scales. There is increasing interest in how individual

variation in movement behaviour contributes to dispersal and subsequent population
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distributions, since the movement of individuals can be very different to the ensemble

average movement across a population (Petrovskii et al, 2011; Chapman et al, 2011).

When using models to predict dispersal potential it is therefore important to consider

variation in individual dispersal propensity rather than simply pooling data to provide

population-level parameter estimates and hence (effectively) making assumptions that

all individuals behave in the same way (Hawkes 2009). For species of ecological and

economic importance, such as pest insects and their natural predators, it is essential

to understand how dispersal behaviour leads to observed population distributions in

order that effective management strategies can be implemented at appropriate scales

(Petrovskii et al, 2014).

Ground beetles (Coleoptera: Carabidae) are widely recognised to be important com-

ponents of terrestrial ecosystems, playing a major role in the food web as both predators

of a wide range of invertebrates and as prey to a number of bird and mammal species,

some of which are of conservation concern (Holland et al, 2006; Pocock & Jennings,

2007). They are also considered to be of bio-indicative value since they are sensitive to

cultivation impacts, and particularly to intensification of agricultural practices (Rainio

& Niemelä, 2003). For these reasons, and because of their importance in the natural con-

trol of invertebrate pests (Kromp, 1999) and weed populations (for seed feeding species;

(Bohan et al, 2011)) in agricultural land, the biology and ecology of species within this

family have been extensively studied.

Critical to their function in controlling pest populations within fields is their dispersal

ability. Movement is mainly via walking, though flight may be used under some circum-

stances, e.g. longer distance dispersal (Lövei & Sunderland, 1996), and many species

are highly mobile. Field margins act as refuges for natural enemy species and movement

occurs into cropped fields from these semi-natural areas (Thomas et al, 1997), as such,

‘beetle banks’ - raised earth banks between fields sown with grass species - have been

specifically created in farmland across the UK and Europe as overwintering habitats for

beneficial invertebrates (Thomas et al, 1991; MacLeod et al, 2004). Knowledge of dis-

persal into fields from such areas and the effects of biological characteristics of individual
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species and how this leads to their observed distribution in agricultural landscapes is key

to understanding the maintenance of metapopulations and the dynamics of predator-prey

interactions (Petrovskii et al, 2014; Bastola & Davis, 2018). This is particularly relevant

in the context of climate change and habitat fragmentation, for which it is important

to be able to predict effects of changes to the environment on species of economic and

ecological importance.

Previous studies investigating ground beetle dispersal have used mark-release-recapture

techniques (Rijnsdorp 1980; Thomas et al, 1997, 1998), though using this approach

means that estimation of movement distance is limited to the maximum distance at

which pitfall traps are set as discussed in section 2.3. Others have used harmonic radar

to track individuals (Wallin & Ekbom, 1994; Lövei et al, 1997), which is similar in

principle to mark-release-recapture since individuals are tagged and then located at a

later time point. However, neither of these approaches gives fine-scale detail of walking

movements since observation frequencies are low and often the majority of individuals

released are not recovered.

To try to overcome these limitations, individual-based simulation models have been

used, incorporating spatial and landscape parameters for forest carabids (Jopp & Reuter,

2005) and common agricultural (Pterostichus) species (Firle et al, 1998; Benjamin et al,

2008), or based on population level estimates of random walk movement parameters

for a range of insects including ground beetles (Byers, 2001). Although such models

may try to take into account factors that are likely to affect distribution and abundance

in the field, they are frequently based on data collected from field studies like those

described above, which do not explicitly consider inter- and intra-individual variation

in walking behaviours and how this affects dispersal distances. This is particularly

relevant when considering pest species and their natural enemies, since it is important

to know the extent of dispersal in differing situations i.e. under alternate cultivation

practices. Studies using high resolution movement data in a homogeneous featureless

environment have been recorded for mealworm beetles (Tenebrio molitor) (Reynolds et

al, 2013), where a power law distribution in the beetles’ step-lengths was found. In the
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same study, (Reynolds et al, 2013) also reported highly linear movements in Poecilus

beetles, although did not undertake a full analysis for this species. T. molitor beetles

were also studied experimentally by (Bearup et al, 2016), who found their movements

and dispersal within a circular arena could be described by a simple diffusive model of

a SRW/ Brownian motion.

Recent advances in tracking technology mean that fine-scale position data can now be

more easily collected from real animal movement paths in both the field and laboratory.

In this study we used a laboratory based technique, a locomotion compensator, to mea-

sure fine-scale walking movements of P. cupreus, one of the most common carabid species

in European agricultural land (Kromp 1999; Luff 2002). It is a diurnal, macropterous

species which is active in spring-summer and is found in relatively dry warm habitats

such as open grassland and agricultural fields (Luff 1998), and its abundance and domi-

nance in these habitats makes it an ideal species for investigating movement behaviour

within- and between- individuals. Although the locomotion compensator is not a new

technique (Kramer, 1976), to our knowledge it has not been used in this way before.

It should be noted that the artificial setup of the experiment results in limitations as

to the conclusions which can be reliably drawn from these results. Whilst such problems

regarding the artificiality and low generality of the setup are a recognised flaw in model

systems (Carpenter, 1996) and lead to the common ‘replication versus realism’ debate

(Srivastava et al, 2004; Schindler, 1998) there are inherent benefits of such model systems,

such as repeatability and ease of experimentation (Levins, 1984; , Srivastava et al, 2004).

In this experimental setup the use of the TrackSphere locomotion compensator allows for

data to be collected with relative ease and accuracy, giving data with high frequency and

greater accuracy than would be expected from simple video analysis or from capture-

recapture techniques. Similarly, the setup removes any impedimentary effect a tracker

attached to the beetle would have.

In the field insects’ movement and behaviour can be affected by a range of stimuli from

social interactions, landscape heterogeneity and fragmentation of landscape, weather

conditions as well as from seasonal and diurnal behavioural patterns and prey densities

90



(Firle et al, 1998; Mazzi & Dorn, 2012; Dahmen et al, 2018). Here we chose to focus on

measuring the dispersal potential of P. cupreus as well as discerning whether there were

significant differences in general movement patterns in an unobstructed environment.

We quantify the observed movement using standard path analysis measures (mean-

displacement, path straightness, distributions of instantaneous speeds/step-lengths and

turning angles, and the number and duration of movement and non-movement bouts)

and explore the level of inter- and intra-individual variation. We subsequently demon-

strate how simple random walk movement models, parameterised at the population level

from the observed data, do not adequately explain the observed dispersal behaviour.

5.2 Methods

5.2.1 Sample Collection

Adult P. cupreus (Fig. 5.1A) were captured daily using pitfall traps from a permanent

grazed grassland in Dartington, Devon, UK (OS grid reference SX 78366 62988) between

8th and 20th July 2012. The beetles were maintained at 16◦C in tanks containing soil,

leaf litter and dead wood in mixed populations with other ground beetle species and fed

on cat food every few days until needed for the experiment, whereby identified individuals

(using (Luff 2002)) were transferred to separate 20ml universal tubes containing a small

piece of damp tissue paper.

5.2.2 Tracking Beetle Walking Behaviour

A locomotion compensator (Tracksphere LC 300, Syntech, Hilversum, The Netherlands;

Fig. 5.1A; Syntech, 2004) was used to track and measure the movement paths (measured

in mm) for each beetle, which were tested three times each between 1st and 8th August

2012. Between trials individuals were maintained at 16◦C. The locomotion compensator

consists of a sphere (300mm diameter), onto which a beetle is placed, with a camera

located directly above that measures the beetle’s displacements. The sphere rotates

opposite to these displacements by means of two electric motors, and two encoders

contacting the sphere transmit the rotational movements to a computer as incremental
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Figure 5.1: (A) TrackSphere LC 300 locomotion compensator (Syntech, 2004) used to
track beetle movement. (B) Image of an adult Poecilus cupreus beetle (taken from
Schmidt, 2008).

(x, y) coordinates, which are recorded 10 times per second. Experiments were carried out

between 16.8 and 24.2◦C, recorded at the beginning of each trial, and were illuminated

by a fluorescent light located directly behind the sphere. A white cardboard screen was

placed around the sphere to prevent external influences affecting beetle behaviour and the

sphere was wiped clean with 70% ethanol after each trial. Individual beetles were allowed

to acclimatise on the sphere for one minute before recording began for ten minutes.

However, due to the sphere failing to properly compensate for the movements of eight

beetles for the full ten minute period, the final analysis was performed on data recorded

over a five minute span starting from 10 seconds into the track and finishing 5 minutes

later (this period of data collection was available for all experimental trials). Trials in

which beetles did not move at all during this period were removed from the dataset

completely, giving data from 22 individual beetles. In summary, walking movement data

((x, y) coordinates recorded 10 times per second) over a five minute period were obtained

for 22 individual beetles, repeated three times each (66 observations in total) (Fig. 5.2A

& 5.2B).
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Figure 5.2: (A) Individual beetle movement paths, one colour per beetle. (B) Displace-
ment over time for each individual beetle, using the same colours to depict beetles as
in (A). (C) Cosine of the turning angle (the angle between successive steps) against the
instantaneous speed at that step. The plot demonstrates that at high speeds the cosine
of the turning angle is close to 1, indicating a small turn, whereas, at slower speeds
the value of the cosine turning angle varies greatly, giving an almost uniform distribu-
tion across all turning angles. The vertical lines represent possible values for the speed
threshold value (5mm/s, 10mm/s and 15mm/s) which were used to distinguish between
purposeful movement and stationarity. Colours represent different beetles (as in (A) and
(B)) with each beetle having the same colour across all three trials. (D) Global orienta-
tion of movement at each step (and the cosine of the corresponding turning angle (the
angle between successive global orientations). Colours represent different beetles (as in
(A) and (B)). For all figures the sampling size used was 1Hz.
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5.3 Data Analysis

5.3.1 Initial Processing of Movement Path data

The raw movement data, recorded at a frequency of 10Hz using the locomotion compen-

sator, was found to have some artificial ‘pixelisation’ of the movement paths, leading to

artificially high turning angles being recorded. To overcome this problem, the raw data

were sub-sampled at a sampling rate of 1Hz to smooth the movement paths and avoid

pixelisation effects (i.e. only every 10th location recorded in the raw data was included in

the analysis). The choice of 1Hz as the subsampling rate was motivated by the frequency

of how often beetles were seen to take steps on the locomotion compensator, but was

nevertheless essentially an arbitrary choice. Hence other sampling rates of 2Hz, 0.5Hz

and 0.2Hz (i.e. respectively only every 5th, 20th or 50th raw data point included) were

also considered. Using these alternative sampling rates did not qualitatively change the

results (Appendix B3; Tables 5.7-5.16).

To classify bouts of ‘purposeful movement’ (movement associated with relocation in

space) and ‘stationarity’ (non-movement; periods where the beetle either turns on the

spot or stops moving entirely, leading to zero or limited relocation in space), a minimum

instantaneous speed threshold was used as an objective way to classify each step of the

movement paths: observed instantaneous speeds lower than the minimum threshold are

classified as stationarity; observed instantaneous speeds above the minimum threshold

are classified as movement. A range of minimum speed threshold values were considered:

5mm/s, 10mm/s and 15mm/s, as well as no minimum speed threshold at all. The

minimum speed threshold of 5mm/s was used for the main analysis presented as this

allowed for the retention of the largest number of data points while allowing objective

classification of bouts. The use of different minimum speed thresholds did not lead to

qualitatively different results (Appendix B3; Tables 5.7-5.16).

Using the minimum speed threshold for each step of the (1Hz sampled) movement

data leads to movement and non-movement bouts of very short length, due to noise in the

recording and processing of the data. To account for this the (1Hz sampled) movement
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data was smoothed, and bouts of movement and stationarity identified, through the

use of a cumulative sum algorithm similar to (Knell & Codling, 2012) (see Appendix

B1). Bouts that had not ended by the end of the experiment were considered to have

been artificially truncated and hence were not included in the analysis presented in

the main paper, since their true duration was indeterminable. However, results were

qualitatively similar if these truncated bouts were included, under the assumption that

they terminated at the end point of the experiment (see Appendix B4).

5.3.2 Path Analysis Measures

Standard path analysis measures adopted from random walk theory (Kareiva & Shige-

sada, 1983; Kramer & McLaughlin, 2001; Goodwin & Fahrig, 2002; Codling et al, 2008;

Benhamou, 2006) were quantified for each of the observed movement paths. In particu-

lar, for each step of each (1Hz sampled) movement path we determined the turning angle

between the directions of successive movement steps (Fig. 5.2C and 5.2D), the global

direction of movement at each step (Fig. 5.2D), and step length / speed (Fig. 5.2C; step

length and the instantaneous measured speed are exactly equivalent as we used a fixed

sampling frequency of 1Hz). The observed speeds were then used to determine bouts

of movement and stationarity as described in the previous section. Summary statistics

for each movement path were determined: total net displacement (mm; Fig. 5.2B),

mean cosine of turning angles, straightness (total track length/total net displacement;

a measure of tortuosity), mean speed (mm/s; determined for bouts of movement only),

number of bout transitions (movement to non-movement and vice versa), average bout

duration (s), variance in bout duration (s2), and proportion of time spent moving (%).

Temperature was included as a covariate in the initial analyses but was found not to be

significant and so was excluded from subsequent analysis.
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5.3.3 Statistical analysis

5.3.3.1 Intra- & inter- individual variation

To determine if there were significant intra-individual differences in the basic summary

path statistics, a repeated measures ANOVA was used to compare observed results across

the three trials. Inter-individual variation across the study population was tested by a

one-way ANOVA (or Kruskal-Wallis test for those summary statistics which violated the

homogeneity of variance assumption) on the mean of each summary statistic across the

three trials. These analyses were carried out using JASP v.0.8.0.0 (JASP Team, 2018)

and R (R Core Team, 2018).

To measure the consistency of behaviour among individuals, the repeatability, r, (also

known as the intra class coefficient, ICC (Lessels & Boag, 1987)) was calculated, where

ICC =
Vind

Vind + Vε
(5.1)

with Vind the variance among individuals and Vε the residual (error) variance (Nakagawa

& Schielzeth, 2010; Dingemanse & Dochtermann 2013; Houslay & Wilson 2017). There-

fore, ICC tells us the relative strength of the variance between individuals compared to

the total variance, with the total variance considered as the sum of the variance among

individuals, Vind, and the total variance within individuals Vε – whilst this variance is

technically a measure of the residuals, it is commonly referred to as within-individual

variation (Brommer 2013; Dingemanse & Dochtermann 2013; Brommer et al 2014; Dos-

mann et al, 2015). These variances were found using Linear Mixed Effect Models using

Restricted Maximum-Likelihood parameter estimation following the method described

in Nakagawa & Schielzeth (2010) by use of the rptR package (Stoffel et al, 2017) in R

(R Development Core Team, 2019).
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5.3.3.2 Correlation in movement parameters

Between individuals

To see if there were a correlation between any of the parameters at the between-individual

level, (e.g. does a beetle which has higher displacement on average also spend more

time moving than the average?) a bivariate (two-trait) mixed model was used (Houslay

& Wilson, 2017), with the individual beetle as the random intercept, the experiment

number (centred) as the repeat number, and the parameters (centred and scaled) as the

random effects, as per Houslay & Wilson (2017).

The model was then implemented by the MCMCglmm package (Hadfield 2010) in

R (R Development Core Team, 2019). In order to ensure auto-correlation was not an

effect, a large number of iterations were run 500,000 with a ‘burn-in’ period of 15,000

and a thinning of 100. Results were deemed to be significant if the confidence intervals

(95%) did not span 0, as is standard with Bayesian CI’s (Houslay & Wilson 2017).

The correlation between two parameters, rindα , rindβ , is then found by calculating their

between individual covariance, COVindα,indβ , and dividing by the square root of the prod-

uct of the between individual variances of the two parameters, Vindα , Vindβ (Dingemanse

& Dochterman 2013; Dosmann & Mateo, 2014; Dosmann et al, 2015).

rindα,indβ =
COVindα,indβ√
VindαVindβ

(5.2)

Within individuals

For any parameter whose residual variance Vε (equivalent to the variability within each

individual across the three trial runs) was seen to be high, we might wish to answer

the question whether a correlation exists within individual’s trial runs for each pair of

parameters e.g. did trials with a higher displacement also feature fewer bouts?

We use the same bivariate mixed effect model used to find the between individual

correlation (described above) to find any such correlation between two parameters, rεα,εβ ,

using a similar calculation as in Eq. 5.2 except we now consider the covariance of

the parameters at the within-individual level, COVεα,εβ , divided by the square root of
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the product of the variances of each parameter at the within-individual level Vεα , Vεβ

(Dingemanse & Dochterman 2013; Dosmann et al, 2014).

rεα,εβ =
COVεα,εβ√
VεαVεβ

(5.3)

One could ask why a simple correlation test (Spearman’s, Pearson’s, etc.) for each

individual trial or for the mean of each statistic across the three trials would not suffice

as a test of the relationship between parameters. However, such a method has shown to

be over generous with the significance level of any resulting correlations (Hadfield et al,

2010; Dingemanse et al 2012; Houslay & Wilson, 2017).

5.3.3.3 Analysis of population level movement dynamics

Global orientation of movement directions (corresponding to bouts of movement only)

were considered at both the population and individual level, to ascertain whether there

was a global or an individual preference in direction. As global orientations form circu-

lar data, the Watson Test was used to test if the distribution of orientations could be

described by the circular uniform distribution (see section 3.6). The Rayleigh test then

determined whether the distribution corresponded to a unimodal wrapped distribution

with specific resultant vector, where a resultant vector close to 1 would indicate a strong

preference in movement direction, while a resultant vector close to 0 would indicate no

preference in movement direction (Mardia & Jupp, 2000; Jammalamadaka & SenGupta,

2011).

The observed turning angles (corresponding to bouts of movement only) were fitted

to two standard circular probability distributions: the von Mises (which is a close ap-

proximation to the normal distribution on a circle) and the wrapped Cauchy (which is

a heavy-tailed circular distribution). These distributions were fitted using the CircStats

package in R. The Kuiper and the Watson-U2 tests were used to check the validity of

both models, with the Akaike Information Criterion (AIC) used to indicate the closer

fitting distribution. Evidence of unimodal turning angle distributions centred around 0

would indicate persistence in the beetles’ movements.
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Four distributions were considered for fitting the observed distribution of step lengths

(instantaneous speeds; corresponding to bouts of movement only), with the same dis-

tributions also considered for the movement and non-movement bout durations: power-

law, exponential, Weibull and log-normal. Distributions were fitted using the fitdistrplus

package in R, except for the power-law that was fitted using the power.law.fit function

in the iGraph package in R. We fit the power-law in two ways. Firstly, in order to ensure

the power-law fitted all the data, we used a restricted power-law where the xmin value was

set at the smallest non-zero value of the data rather than the value for xmin calculated by

power.law.fit function (Virkar & Clauset, 2014). Secondly, we also consider a power-law

fit to only the tail of the data, as this is one of the features described in the literature that

is indicative of Lévy walk behaviour (Sims et al, 2007; Edwards et al, 2007; Reynolds et

al, 2013; Ahmed et al, 2018). The tail of the data was calculated by using the best fit

xmin value calculated by the power.law.fit function, and then the potential distributions

were fitted only to the data points which were greater than this minimum value. As

the fitting algorithm for the power-law utilised a maximum likelihood estimation (MLE)

method to maximise the p-value for the Kolmogorov–Smirnov (K-S) test, a G-test was

also used to consider the fit of the distributions (Edwards et al, 2007).

Data for turning angles and step lengths (speeds) were fitted at the population level

(10045 data points from 66 movement paths) and at the individual path level (between

37 and 298 data points for each movement path).

5.3.3.4 Comparison of paths as a CRW or BRW

To further investigate whether the characteristics of the beetle movement paths could

be best classified as either a correlated random walk (CRW; i.e. movement is persistent

but not globally directed) or a biased random walk (BRW; i.e. movement is globally

directed), we measured the ∆ statistic from (Marsh & Jones, 1988):

∆ =
1

n2

[(∑
cosφi

)2

+
(∑

sinφi

)2
]
− 1

(n− 1)2

[(∑
cos θi

)2

+
(∑

sin θi

)2
]

(5.4)

99



where, φi is the global orientation and θi is the turning angle, at time i. The ∆ statistic

gives a relative measure of how well the observed data fits each of the two types of

random walk movement model by returning a positive value for a BRW and a negative

value for a CRW (see details in Appendix B5).

The ∆ statistic was calculated for each individual movement path separately and also

for all turning and global orientation angles aggregated at the population level. Data

for bout durations were fitted only at the population level due to the limited number of

data points from each individual path (326 data points from 66 movement paths).

An additional method was also used to determine evidence of either CRW or BRW

behaviour. This involved sub-sampling the observed movement data across a range of

steps and determining how the estimated mean cosine of turning angles changes with the

sub-sampling step used (Bovet & Benhamou, 1988; Codling & Hill, 2005; Benhamou,

2006). For a CRW the observed mean cosine of turning angles is expected to decrease to

0 as correlation between increasingly distant steps diminishes. However, for a BRW, the

observed mean cosine is expected to increase towards 1 as the movement path appears

increasingly more linear due to the global directional bias present.

5.4 Results

5.4.1 Basic Path Analysis Measures

Fig. 5.2C illustrates how the observed movement paths mainly consisted of bouts of

high speed and highly persistent movement (where the mean cosine of turning angles is

close to 1), interspersed with bouts of low speed (0-10mm/s) in which the distribution

of turning angles is more uniform. These periods of low speed were determined to be

periods of stationarity. A possible explanation of the recorded large turns during these

periods of stationarity is that the beetles paused during movement to engage in periods

of reorientation or to examine the local environment, before returning to move in near

straight line movement. This would be similar to movement observed in dung beetle

movement and subsequent movement models (Byrne et al, 2003; Baird et al, 2012).

The beetles’ net displacement ranged from 14 to 9785mm (Fig. 5.3A) with the
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measure of straightness of each individual path varying from 0.98 (near straight-line

movement) to 0.21 (tortuous) (Appendix B2 - Fig. 5.7). The average of the mean cosine

values was found to be 0.7795 with a standard deviation of 0.1462, indicating a small

range of values for the mean cosine across all trials, although, the spread of values across

individuals appears to vary significantly, as can be seen in Fig. 5.3C. On average the

beetles as a population spent 55.5% of the experiment moving, recording an average speed

when moving in the range of 5.65mm/s to 36.3mm/s with the population average being

12.47mm/s (Fig. 5.3B; Appendix B2 - Fig. 5.7). The number of transitions from bouts

of movement to stationarity (and vice-versa) in a single trial varied from 0 to 12 across

the population, with individuals exhibiting a wide range in the number of transitions

across their individual 3 trials (Fig. 5.3D), correspondingly the average bout length

varied from 17s, for the individual trial which displayed 12 completed bouts, to 293s for

the individual trial which displayed only one complete bout during the experiment.

5.4.2 Intra- and Inter-Individual Variation

There were significant differences (p < 0.05) in intra-individual behaviour across the

three trials for displacement (F (1.49, 31.292) = 4.032, p = 0.038; Fig. 5.3A), mean

cosine of turning angles (F (2, 42) = 4.43, p = 0.018; Fig. 5.3C), proportion of time spent

moving (F (2, 42) = 4.365, p = 0.019 ) and average speed when moving (F (2, 42) = 7.143,

p = 0.002; Fig. 5.3B). See Appendix B2 - Table 5.5 & Fig. 5.7; for complete results of

the ANOVA test for intra-individual variation.

There were also significant inter-individual differences (p < 0.05) between the 22 ob-

served beetles for mean cosine of turning angles (Kruskal-Wallis χ2 = 33.53, p = 0.041;

Fig. 5.3C), number of bout transitions (F (21, 44) = 1.883, p = 0.038; Fig. 5.3D) With

displacement (Kruskal-Wallis χ2 = 30.925, p = 0.075; Fig. 5.3A) and average bout

duration (Kruskal-Wallis χ2 = 31.091, p = 0.072) also indicating significant differences,

though not as strongly as mean cosine and number of bout transitions. (See Appendix

B2 - Table 5.6; for complete results of the MANOVA test for inter-individual variation).

This suggests a wide range of movement behaviours are possible, even across a relatively
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Figure 5.3: (A-D) (A) Total displacement, (B) mean cosine of turning angle, (C) mean
speed when moving, and (D) number of bout transitions of each beetle for each trial
(figures displaying variability across the other parameters are found in Appendix B2 -
Fig. 5.7). In all plots, circle points correspond to Trial 1, square to Trial 2 and triangle
to Trial 3.
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small sample of a natural population of beetles and indicates a lack of consistency in

individual movement behaviour across the three trials.

Repeatability

Considering the repeatability, ICC value, significant results were found for number

of bouts, time spent moving (%) and average speed when moving (p < 0.05). All

of these gave a repeatability of over 0.2, with the highest being average speed when

moving, ICC = 0.282, implying that the beetles displayed individual consistency across

the three trials. Whereas displacement, straightness, mean cosine of turning turn angles

and average bout duration had non-significant values (p > 0.05) indicating that there

was no evidence of individual repeatability for these parameters. When considering the

95% confidence intervals, we note that all the parameters admitted a large range, with

the difference from the upper and lower CIs giving values between 0.32 − 0.513 for all

parameters. It should be noted that whilst in Bayesian analyses CI’s which do not cross

zero are often assumed to indicate significance, in cases where the statistic in question

is constrained to be non-negative, then a lower bound of 0 is often indicative of low

confidence in a non-zero. Hence, as all parameters here have CI’s which are bounded

below by 0, with the exception of average speed. This indicates that there is no significant

consistency in behaviour for the beetles across these parameters.

However, the results do demonstrate that between 12.7-36.2% of the variance in the

parameters is caused by differences between individuals (Houslay & Wilson, 2017) in-

dicating that the majority of the variation in the parameters is due to the differences

within-individuals (Table 5.1).

Correlation in parameters between individuals

At the between individual level all combinations of parameters have confidence inter-

vals which span 0 and we can conclude that there is no evidence of statistically significant

correlation (Table 5.2A).
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Repeatability
ICC-stat CI (95%) p-value

Number of Bouts 0.227* [0, 0.478] 0.0515
Displacement 0.151 [0, 0.382] 0.146
Straightness 0.127 [0, 0.399] 0.192
Mean Cosine 0.200 [0, 0.444] 0.077

Av. Bout Duration 0.211 [0, 0.466] 0.0665
Time Spent Moving (%) 0.234* [0, 0.486] 0.0467

Average Speed 0.362* [0.013, 0.526] 0.0206

Table 5.1: Values of the ICC for the calculated parameters, along with the 95% CIs.
Values marked with an asterisk (*) indicate significant results (p < 0.05)

Correlation in parameters between individuals

At the within-individual level, a strong positive correlation (p < 0.01) between dis-

placement, straightness and time spent moving was observed, as well as between dis-

placement and average speed, as might be expected from standard movement. A strong

negative correlation (p < 0.01) between the average bout duration and the number of

bout transitions was anticipated: the longer a bout, the fewer there can be in a given

time period. However, a significant positive correlation (p < 0.01) between the average

speed when moving and the time spent moving was also found, indicating that the longer

the time the beetles spent moving, the faster on average they moved, an interesting and

unanticipated result (Table 5.2B).
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5.4.3 Global Movement Direction

If beetle movement is consistently globally directed at the population level, possibly due

to an external navigation cue, this would be evident in the distribution of the global

direction of movement at each step. Fig. 5.2D shows a near uniform distribution in

the global orientation angle, relative to the associated turning angle (the angle between

successive global orientation angles) for the pooled data across all beetles and trials.

This suggests that, at the population level, there is no consistent reorientation towards

a specific global movement direction.

A Rayleigh test undertaken at the population level revealed a slight bias towards a

global movement direction of µ̄ = 59◦, although the resultant vector was low (R̄ = 0.194)

suggesting this was only a weak effect. Further inspection highlighted that this weak

global directional bias was directly correlated to the initial movement direction of the

beetles at the start of recording, (presumably related to the initial orientation of the

beetle as they were released onto the tracking sphere), and the global bias towards this

specific orientation had disappeared by the end of each trial (Appendix B5). Hence,

we conclude that there is no evidence for a consistent global bias towards a particular

movement direction at the population level, as a result of an external source or from the

experimental setup (see Fig. 5.2A).

At the individual level, beetles were observed to have highly consistent oriented

movements, (resultant vector, R̄, ranging from 0.1942 to 0.9724, and mean = 0.6616,

s.d. = 0.2128) with the Watson test rejecting the possibility of a uniform distribution of

global movement directions when considered separately for each individual. This leads

to the interesting and counter-intuitive finding that, although there is no evidence for a

consistent global bias towards a particular movement direction at the population level,

movement at the individual level is highly directed with beetles moving consistently in

(individual-specific) global directions over a sustained period.
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5.4.4 Turning Angles

When considering the distribution of turning angles at the population level across all

beetles and trials, both the wrapped Cauchy (MLE parameters: ρ = 0.859, µ = 0.005)

and von Mises distributions (MLE parameters: κ = 6.431, µ = 0.001) were rejected

by the Watson test (U2
wc = 2.42, p < 0.01; U2

vM = 51.94, p < 0.01) and the Kuiper

test (Vwc = 6.79, p < 0.01; VvM = 21.06, p < 0.01) (Appendix B3 - Tables 5.7 &

5.8). However, the AIC favours the wrapped Cauchy over the von Mises distribution

(AICwc = 7032, AICvM = 10668), and visual inspection of the distributions (Fig. 5.4A)

indicates that the wrapped Cauchy is clearly the better fit to the data. Tests at other

sampling rates and speed thresholds revealed no significant differences from these results

(Appendix B3 - Tables 5.7 & 5.8).

At the level of each individual beetle and trial, a wrapped Cauchy distribution was

seen to be the best fitting distribution for 58 of the 66 trials. The resultant vectors for

each of the individual trials were generally high, indicating highly persistent behaviour

(R̄ ranging from 0.3972 to 0.9134 with mean = 0.7795, sd = 0.1473).

5.4.5 Step-lengths (Instantaneous Speeds)

When considering the distribution of the instantaneous speeds at the population level,

both the Kolmogorov-Smirnov (K-S) test and G-test rejected all four distributions (p <

0.01) when fitted to the tail of the data, although the AIC value indicated that the

Weibull distribution (MLE parameters; γ = 0.992, α = 9.668) was the closest fit (Ap-

pendix B3 - Tables 5.9-5.11). When considering the full data set and using a restricted

power-law with xmin = 5, the K-S test and G-test still rejected all the distributions

(p < 0.01), but the AIC value now favoured the log-normal distribution (Fig. 5.4B)

with MLE parameters µ = 1.69, σ2 = 1.28 (AIClog-norm = 60228, AICWeib = 60915,

AICexp = 61302, AICpower = 66472). Choosing different values for the sampling rate and

speed threshold did not qualitatively change these conclusions (Appendix B3 - Tables

5.9-5.11). Therefore, whilst no clear conclusion about the specific distribution of the

speeds could be drawn from these results, there is an indication that the distribution
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involves an exponential component, with no strong indication of power-law behaviour.

At the individual level, the log-normal and the Weibull distributions were favoured

in 65 of the 66 trials when considering the full data set, and 61 of the 66 when looking

only at the tail of the data.

5.4.6 Intermittency (movement and non-movement bouts)

Both the Weibull (MLE parameters; γ = 0.97, α = 45.73) and log-normal (MLE param-

eters; µ = 3.30, σ2 = 1.04) distributions were accepted by the G-test for the distribution

of the bouts of movement with the AIC value distinguishing between them by favouring

the log-normal distribution (Gweib = 26.562, p = 0.115; Glog-norm = 21.854, p = 0.292;

AICweib = 2977, AIClog-norm = 2902). For the bouts of stationarity, the G-test and

K-S test reject all the distributions (p < 0.01); although, again the log-normal distri-

bution (MLE parameters; µ = 3.00, σ2 = 0.94) is favoured when calculating the AIC

(AIClog-norm = 1373, AICexp = 1420, AICweib = 1422) and visual inspection implies a

reasonable fit here (Fig. 5.4C-D; Appendix B3 - Tables 5.15 & 5.16).

Subsequent analysis of the bout durations when considering different sampling rates

indicates no clear best fit distribution, although the log-normal distribution is favoured in

the majority of cases (Appendix B3 - Tables 5.15 & 5.16). As predicted by the lognormal

distribution an inverse relation was found between lengths of following bouts, with a long

bout often followed by a short bout, and bouts close to the median bout length mostly

followed by bouts of comparable length (Appendix B3 - Fig. 5.8).

5.4.7 CRW v BRW Behaviour

Calculating the Marsh-Jones ∆ statistic (Marsh & Jones 1988) at the individual level

indicates that that the observed data does not fit with the expected result from either a

CRW or BRW, with 60 paths giving an indeterminate result, five paths identified as most

like a CRW and only one most like a BRW (Appendix B5 - Table 5.19). Similarly, when

the population is considered as a whole, the statistic does not coincide with the expected

result from either a BRW or a CRW, however, in this case the value (∆ = −0.3346)
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Figure 5.4: (A) Histogram of the turning angles. The red line shows the best fit wrapped
Cauchy (WC) distribution with µ = 0.005, ρ = 0.859 and the blue line shows the best fit
von Mises (vM) distribution with µ = 0.001 and κ = 6.431. The Watson test rejects WC
(U2 = 2.42, p < 0.01) as does the Kuiper test (V = 6.79, p < 0.01), similarly the Watson
test rejects vM (U2 = 51.94, p < 0.01) as does the Kuiper test (V = 21.06, p < 0.01).
The AIC was used to determine the closer fitting distribution between the WC and vM,
with the WC found as the most likely option (AICwc = 7032, AICvM = 10668). (B)
Histogram for distribution of the instantaneous speeds. The green dashed line shows
log-normal distribution which, though rejected by the G2-Test (stat = 595, p < 0.01)
and K-S test (stat = 0.0692, p < 0.01), returned the lowest AIC value (AICl-n = 60228).
(C) & (D) Histograms showing the distribution of the length of bouts of movement and
stationarity. The golden line shows the best fitting log-normal distribution which had
the lowest AIC value of any considered distribution in both the distributions of the bouts
of movement and bouts of stationarity. In all cases, the sampling rate was 1Hz and speed
cut-off threshold was 5mm/s
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is strongly negative and much closer to the expected CRW value, indicating that, at

the population level, the movement is more like a CRW movement process. This is

consistent with the results from section 5.4.3, where movement appeared directed at the

individual level (similar to a BRW) but not at the population level, and section 5.4.4,

where movement was generally highly persistent across all paths, typical of a CRW.

However, when comparing the observed net displacement of beetles with that of a

CRW parameterised by population level estimates of the speed and turning angle mean

resultant length (Fig. 5.5A), it is clear that the beetles disperse considerably faster than

expected. At the population average level (Figure 5A), there is an initial period of super-

ballistic behaviour, with the beetles initially spreading at an increasing rate, and then

movement starts to follow a linear increase in net displacement over time as predicted by

a purely ballistic movement process. Interestingly, this type of diffusive behaviour has

been noted before with Tribolium confusum beetles (Morales & Ellner, 2002), where a

CRW model seemingly fit the movement data well despite the resulting model-predicted

net displacement greatly underestimating the actual observed displacement.

Fig. 5.5B shows results from artificial sub-sampling of each observed beetle move-

ment path to determine how the observed mean cosine, aggregated at the population

level, changes with increasing (temporal) distance between sampling steps. Results are

compared to the predicted change in mean cosine for a BRW and CRW under the same

sub-sampling process, which were parameterised from the population-level mean speed,

mean cosine of global movement directions (BRW), and mean cosine of turning angles

(CRW). It is clear from Fig. 5.5B that beetle movement is far more persistent over time

than is predicted from a CRW parameterised by the observed data. However, it is also

clear that the observed beetle movement does not exactly match a BRW (or ballistic

movement) either, and is in fact somewhere in-between a BRW and CRW. Similar re-

sults are obtained when considering each individual beetle separately (Fig. 5.5C), with

all beetles showing behaviour that is more persistent than expected from a pure CRW.

These results are consistent with those from section 5.4.3: beetles have highly persistent

movement at the individual level but there is no clear evidence of a global orientation
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bias in movement direction that is consistent across the population.

5.5 Discussion

Movement data of 22 P. cupreus beetles were collected over three replicate trials on

a locomotion compensator. Analysis of observed trajectories highlighted high levels of

inter- and intra-individual variation in movement path characteristics (Fig. 5.1 & 5.2),

with a correlation between time spent moving and instantaneous speed, suggestive of

possible ‘flight’ behaviour (Table 5.2). Observed turning angles were best fitted by the

wrapped Cauchy distribution with step lengths (instantaneous speeds) best described

by a log-normal distribution with no evidence of power-law behaviour (Fig. 5.4A-B).

Beetle movements were observed to be highly persistent at the individual level, with

beetles able to maintain forward movement towards a chosen direction over a sustained

period. However, no evidence of a global preferred direction of movement was found at

the population level. This could be an artefact of the experimental setup where such

an unfamiliar setting caused the beetles to engage in ‘flight’ behaviour where movement

was in a constant direction away from the starting location. Assuming the beetles were

not placed facing exactly the same direction at the start of the experiment, then this

along with the beetles’ inherent ability to travel in a straight line could explain the lack

of global direction.

Intermittency in movement was observed, with the lengths of the bouts of move-

ment and stationarity both best described by log-normal distributions (Fig. 5.4C-D).

Movement bouts were found to highly vary between individuals at both the inter- and

intra-individual level, with some trials consisting of bouts of constant movement and

others involving highly intermittent stop-start behaviour. The intermittency in move-

ment behaviour, along with the observation that bouts of short length are often followed

by bouts of similar length (Appendix B3 - Fig. 5.8), has been characterised as foraging

or searching behaviour in aphids (Mashanova et al, 2010) and has been reported for a

number of species including crickets, copepods and ghost crabs (Kramer & McLaughlin,

2001).
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Figure 5.5: (A) Net displacement of beetles over time. The thick black line shows the
mean net displacement of the beetle population with sampling rate 1Hz and no speed
threshold; the red dashed line is the expected result for a CRW with turning angles
taken from a zero centred wrapped Cauchy distribution with concentration parameter
ρ = 0.819, and step length drawn from the exponential distribution with mean, 1/λ =
8.33 (Appendix B5 - 5.8 & 5.11); the red solid line is ballistic movement. (B) Mean
cosine calculated from the beetle population (black solid line) against different imposed
sampling rates. The blue line shows the mean value for the population data for sampling
size ≥ 1. The red solid line represents pure ballistic motion, the red dashed line is the
expected result for a pure BRW and the red dotted is the expected result for a CRW.
The concentration parameter for BRW was determined by calculating the difference of
global direction at each step for each individual trial compared to the overall mean cosine
for that respective trial. The concentration parameter for the CRW was taken as the
MLE parameter found for the best fitting wrapped Cauchy distribution as described in
the main text (see section 5.4.4). The sampling rate is 1 Hz and the speed threshold is
5mm/s. (C) Same as in (B), except this shows the value of the mean cosine for the first
trial of each of the 22 beetles
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The ability for individual beetles to disperse over much larger distances than predicted

by a simple CRW movement model, while showing no evidence of a global preferred

direction at the population level, is an interesting finding. The beetles in this study

showed an innate ability to travel on a near constant bearing with high persistence (Fig.

5.2A; Fig. 5.5B) a phenomena found in other insects such as dung beetles (Byrne et al,

2013) but has been shown to not be present in other animals such as humans (Souman et

al, 2009). It is known that small errors in attempted straight line movement compound

over time (Biegler, 2000; Cheung et al, 2007), therefore, if an individual can continue

on a constant bearing for a protracted time period without any obvious external cues,

the method by which these small errors are negated is interesting and may be due to

some unknown internal cue. Similar underestimates of total displacement have also been

reported when considering parameterised CRW models for T. confusum beetles (Morales

& Ellner, 2002) and three Eleodes sp. (Crist et al, 1992). A possible explanation for

these discrepancies is that the parameterised models do not consider the use of internal

mechanisms or external cues that enable deviations in heading to be corrected so that

forward movement is maintained. However, it is far from clear in this context what such

mechanisms might be since there were no known visual navigation cues in the immediate

walled environment of the locomotion compensator that could have been utilised.

P. cupreus has been observed to use chemical cues to navigate, orienting towards prey

such as Heteromurus nitidus, a ground dwelling springtail (Mundy et al, 2000), though

it is unlikely that this was the case within the confines of this experiment. Highly

persistent movements have been observed in other beetle species, such as dung beetles,

(e.g. Scarabaeus sp. and Scarabaeini sp.), which are known for their ability to maintain

a constant orientation whilst walking backwards pushing their dung ball (Byrne et al,

2003; Baird et al, 2012). Dung beetles are thought to maintain forward movement in a

chosen direction by using the polarisation of light source(s) and not visual cues (Dacke

et al, 2004; Baird et al, 2012), and have been observed to successfully adjust course

to continue the initial straight-line direction when trajectories are forcibly adjusted or

obstacles placed in their path (Byrne et al, 2003; Baird et al, 2012). Although there were
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no direct visual cues in our experimental arena, there was a fixed light source on the

ceiling of the laboratory and it is possible that P. cupreus are using the polarisation of the

light source relative to their initial starting direction to maintain their forward movement.

This could be simply tested by running a similar experimental setup incorporating a light

polariser, which would allow for the polarisation of light to be directly manipulated. If

by changing the direction of polarisation during the experiment the beetles were seen

to alter their direction of movement, then this would be indicative of navigation using

polarisation. This method has been used to demonstrate the use of light polarisation in

dung beetle navigation (Dacke et al, 2004; Baird et al, 2012)

Other insect species, such as bumblebees and other arthropods, (Chittka et al, 1999;

and references therein) are thought to possess an internal magnetic compass that allows

forward navigation in the absence of other cues. Bumblebees also use odour cues to

direct movement within a featureless environment (Chittka et al, 1999) and are able to

discriminate between hydrocarbon scent marks excreted from the tarsi left by themselves

and conspecifics on flowers (Pearce et al, 2017); a similar mechanism in P. cupreus might

allow them to track their own footprints on the locomotion compensator, although we

have no direct evidence that this is the case

Whilst the experimental setup allowed for the collection of data both at a high

frequency and high level of accuracy, giving answers to the questions regarding the

dispersal potential and variability in movement behaviour of P. cupreus, the experimental

setup itself causes the conclusions and applications of our findings to be limited. Due to

the featureless conditions, caution must be taken in generalising these results as they are

not indicative of movement in natural environments, in which encounters with obstacles

or changing conditions would be present. However, a similar tracking device was used

in Dahmen et al, 2018 to compare the movement of desert ants (Cataglyphis sp.) under

experimental conditions to those observed in an open test field. They recorded movement

in a test arena both outside with natural light and inside a laboratory with a polarised

light source, comparing the observed movement to that recorded by using a cushioned

tracking sphere under similar conditions. The findings reported no significant differences
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between the movement recorded using the tracking sphere to that in the open test field.

Whilst this may be the case for this specific species of ant, as we did not engage in

similar direct comparisons of movement in natural settings to that on the TrackSphere,

it is not necessarily clear that movement recorded on such a device can act as a sensible

approximation for real world movement.

A specific area in which an understanding of the movement of P. cupreus would be

beneficial is in agriculture and integrated pest management (IPM) strategies (Burn et al,

1987; Metcalf & Luckmann, 1994). P. cupreus are known to have a beneficial effect for

crop yield as they can aid in controlling pests and weeds in valuable crops such as oil seed

rape (Langmaack et al, 2001; Šlachta & Vokoun, 2011; Bohan et al, 2011), cereals and

sugar beets (Kromp, 1999). Consequently, it is important that insect movement data is

accurately interpreted to provide reliable parameters for population dynamics, density

and dispersal when attempting to accurately implement IPM strategies (Petrovskii et

al, 2014; Bastola & Davis, 2018).

In order to promote biological control of crop pests in agricultural landscapes, a

thorough understanding of the movement behaviour and subsequent spatio-temporal

distribution of the beneficial inhabitant predator species, such as P. cupreus, is required.

Although the homogeneity of the experimental setup has been highlighted as a flaw in

scaling up our findings to movement in the real world, the agricultural landscapes P.

cupreus often inhabit, due to their beneficial pest nature, are by their cultivated na-

ture more homogeneous relative to non-agricultural landscapes. Therefore, our recorded

movement behaviour could be beneficial to studies which attempt to understand the

invasive potential of P. cupreus in crop management.

Banks et al (2019) looked at the expected affect ladybirds and P. cupreus had on

controlling aphid invasions of agricultural fields, with the aim of providing a pest man-

agement structure to efficiently eradicate aphid populations. Their model concluded

that using a population of ladybirds was the most effective compared to a mixture of

the two predators. However, the model explicitly relied on predicted movement rates of

P. cupreus which had been aggregated at the population level. Therefore, it could be
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interesting to see how our findings of the dispersal potential and movement behaviour

affects the outcome of the study. Though as mentioned care would be needed in drawing

conclusive results due to the artificiality of the model system

5.6 Conclusions

• The movement of P. cupreus beetles was observed to exhibit high levels of inter-

and intra-individual variation in movement path characteristics.

• Movement was observed to be highly persistent at the individual level, with beetles

able to maintain forward movement towards a chosen direction over a sustained

period despite being placed in a featureless, homogeneous environment.

• No evidence of a global preferred direction was found at the population level and

when recorded movement was compared to a simple CRW movement model, pa-

rameterised using the population level path characteristics, the beetles were seen

to exhibit the potential to rapidly disperse over a much wider area than predicted.

• Our results highlight the importance of considering the role of individual variation

when analysing movement data and predicting dispersal distances.

• P. cupreus is a beneficial biological control used in pest management strategies

helping to increase yields and alleviate the reliance of chemical pest controls on

agricultural crops (Burn et al, 1987; Metcalf & Luckmann, 1994). Specifically, P.

cupreus benefits high yield crops such as rape seed (Langmaack et al, 2001; Šlachta

& Vokoun, 2011; Bohan. et al, 2011), and therefore, a precise understanding of

the dispersal ability of P. cupreus is important for correctly implementing IPM

strategies (Petrovskii et al, 2014)

116



5.7 Appendices

5.7.1 Appendix B1 - Bout classification

The method to determine the transition between movement and stationary bouts is an

adjusted version of the algorithm described in (Knell & Codling, 2012)

Smoothing algorithm

1. Cumulative sum.

Determine the cumulative sum

Cτ =
∑τ

t=2 St, with C1 = S1, for τ = 2, . . . , T .

where Cτ denotes the cumulative sum of Sτ at time step τ and is calculated as:

St =


St−1 + vt, if vt > speed threshold value

St+1 − vt, if vt ≤ speed threshold value

(5.5)

where vt is the instantaneous speed calculated at time t.

2. Time series. Construct the time series Cτ vs. τ .

3. Termination criterion. Does a turning point exist within the generated time series?

- Yes: proceed to 4

- No: one cannot effectively analyse this movement path; terminate procedure.

4. Max-min algorithm. Determine turning points of the time series using the max-min

algorithm (see Appendix 2 in (Knell & Codling, 2012) for full algorithm). Essen-

tially, here the algorithm aims to find turning points (local maxima or minima) in

the time series Cτ vs. τ . To do this a moving window of size ε is applied to the time

series and for the case when Cτ+ε < Cτ a change is determined to have occurred

if for the current maximum value of the cumulative sum at time τ , Cτmax , we have

max{Cτ+1, Cτ+2, . . . , Cτ+ε} < Cτmax otherwise Cτmax is set at this max value and

the method continues starting now at τ + 1 (and similar for Cτ+ε > Cτ finding a
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local minimum). Therefore, in essence the value ε represents the minimum size of

a possible bout and is calculated by the algorithm to give the optimal value for

identifying true transition behaviour.

5. 5 Conclusion. Classify turning points as either transitions from movement to sta-

tionary behaviour or vice-versa.

An example of the results of using this algorithm is demonstrated in Fig 5.6. The figure

shows the variation in instantaneous speed over time for a single trial of an example

beetle. The red horizontal line represents the speed threshold value of 5mm/s, which was

used throughout the main analysis (other values were considered but did not qualitatively

change the results; see Appendix B2). The lower plot demonstrates how the smoothing

algorithm designated bouts of movement (state 1) and stationarity (state 0).

Figure 5.6: Demonstration of the bout classification algorithm

This algorithm requires calculating a value for the minimum possible length of a bout,
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Restricted Power-law Exponential Weibull Log-normal
Type of bout xmin α λ (rate) γ (shape) α (scale) µ (mean) σ2 (s.d.)
All 1 1.33 0.028 0.97 35.41 3.07 0.94
Moving 1 1.28 0.016 0.96 47.55 3.39 1.06
Stationary 1 1.31 0.020 0.97 32.97 3.10 0.99

Table 5.3: Parameter values for the best fit distributions when the median ε value was
used in the smoothing algorithm. Results shown are for same sampling rate of 1Hz and
threshold value of 5mm/s as was used throughout the analysis in the main text

ε, per beetle per experimental trial, which was found to range from 3 to 17. As this

value was not fixed for all experimental trials, results were also calculated when using

a fixed ε across all trials (calculated as the median value of all ε, which in the case for

the sampling rate being 1Hz and the speed threshold taking value 5mm/s gave, ε = 7).

However, this was not seen to significantly affect the outcome of the analysis (Table 5.3

& 5.4).
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5.7.2 Appendix B2 - Comparison of Summary Statistics

The summary statistics discussed in section 5.3.2 (and not included in Fig. 5.3) of the

main text are displayed here highlighting the variation across individuals as well as be-

tween individuals. The two tables (Table 5.5 & 5.6) show the full results of the ANOVA

and MANOVA tests for significance in the variation of these statistics. All tests are for

a sampling rate of 1Hz and speed threshold value of 5mm/s.

Sphericity
Correction

Sum of Squares df Mean Square F p

Displacement*
None 1.860e+7 * 2* 9.301e+6 4.032 0.025
Greenhouse-
Geisser

1.860e+7 * 1.49* 1.248e+7 4.032 0.038

Straightness None 0.114 2 0.057 1.823 0.174
Mean Cosine None 0.132 2 0.066 4.43 0.018
No. of Bouts None 2.758 2 1.379 0.152 0.86
Mean Bout
Duration

None 6669 2 3334 0.446 0.643

Variance in None 5.869e+7* 2* 2.934e+7 0.387 0.681
Bout Dura-
tion*

Greenhouse-
Geisser

5.869e+7 * 1.527* 3.843e+7 0.387 0.626

Time spent
moving (%)

None 7290 2 3645.2 4.365 0.019

Mean speed
(when mov-
ing)

None 473.7 2 236.83 7.143 0.002

Table 5.5: Repeated measures ANOVA test for variance in intra-beetle data per param-
eter. Test indicates that there significant differences in the behaviour across the three
runs for Displacement (F (1.49, 31.292) = 4.032, p = 0.038), mean cosine of turning an-
gles ( F (2, 42) = 4.43, p = 0.018), time spent moving (%) (F (2, 42) = 4.365, p = 0.019)
and the average speed when moving (F (2, 42) = 7.143, p = 0.002).
(*) Indicates Mauchly’s test of sphericity indicates that the assumption of sphericity is
violated (p < 0.05); therefore Greenhouse-Geisser corrected F-value should be used.
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Figure 5.7: (A-C) variability in the statistical parameters described in the main text
section 2.3.2 for each individual trial run per beetle; (A) Time spent moving, (B) Variance
in Bout Duration and (C) average length of bouts. (D - E) lengths of bouts of movement
and stationary respectively. In all plots, circle points correspond to trial 1, squares to
trial 2 and triangles to trial 3.
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5.7.3 Appendix B3 - Complete data analysis for all sampling rates and speed

thresholds

Results detailed here include fitting distributions to the turning angles (Tables 5.7 &

5.8), instantaneous speeds (Tables 5.9-5.14) and bout durations (Tables 5.15-5.16) for

all combinations of the sampling rates (2Hz, 1Hz, 0.5Hz and 0.2Hz) and speed threshold

(15mm/s, 10mm/s 5mm/s and no threshold value). In the case of the turning angles

(Tables 5.7-5.8), neither the Kuiper nor the Watson tests accepted either the wrapped

Cauchy or the wrapped normal distributions. However, when comparing between the

two, the AIC preferred the wrapped Cauchy distribution in all cases, and visual com-

parison confirmed that the wrapped Cauchy was a closer fit to the data.

Comparing the instantaneous speeds at differing sampling rates and speed thresholds,

the results reveal that there was no clear likely best-fit distribution, as the preference

for a particular distribution varied based on the speed threshold value regardless of the

sampling rate; with a propensity for exponential and Weibull distributions when the

speed threshold is high and a log-normal distribution for lower values of the threshold.

Tables 5.9-5.11. present the results of fitting distributions to the tail of the data, that

is the data which was greater than the optimal xmin value of the best-fit power law

distribution, which was used to infer the presence of a heavy-tailed distribution. As was

mentioned in the main text (Section 5.4.5), the findings indicate that at any sampling

rate and threshold value the power-law was not favoured over the other distributions.

In comparing the bout durations, distributions were considered for the length of

moving bouts only, stationary bouts only and both moving and stationary combined.

Tables 5.15-5.16 indicate that both the log-normal or Weibull distributions were accepted

for certain combinations of the sampling rate and speed threshold, although, the AIC

generally favoured the log-normal distribution over the Weibull. Data was not considered

for no threshold value as this resulted in no stationary bouts (section 5.3.1 of the main

text). Similarly, when the threshold value was too high (15mm/s) or the sampling

rate too low (0.2Hz) the number of bouts measured was too small to give meaningful

or accurate results and so have been omitted. Although, discerning an appropriate
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distribution for the frequency of the bouts was not clear, an inverse relationship between

the lengths of consecutive bouts was observed (Fig. 5.8A). That is, longer bouts were

followed by shorter ones and vice versa, and medium length bouts were followed by bouts

of similar length. Although (Fig. 5.8B-C), demonstrates that this is an expected result

given the distribution found which best describes the bout lengths.
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Figure 5.8: Comparing the lengths of following bouts. (A) displays the length of a
completed bout compared to the length of the following completed bout, taken from
the beetle data. The curve plotted in black shows the line of form k2/x, where k is a
constant shown in top right hand corner of the plot, which accounts for 90% of the plot
points being located between the curve and the axes. Comparing this inverse relationship
with the expected results from simulated models where the lengths of bouts were drawn
from the best fitting log-normal distribution (B) and a uniform distribution (C) shows the
similarity between the actual results and predicted log-normal results. This demonstrates
that this inverse relationship between bout lengths is most likely due to the lognormal
distribution of the lengths of bouts. Data was calculated with a sampling size of 1Hz
and speed threshold of 5mm/s.
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Wrapped Cauchy von Mises
Sampling rate (Hz) Speed cut-off (mm/s) µ ρ µ κ

2

none -0.001 0.814 -0.0108 2.1842
5 0.0026 0.8413 0.0041 4.5583
10 0.0049 0.8653 0.0055 6.7311
15 0.0028 0.8745 0.0037 8.192

1

none 0 0.8192 -0.0108 2.1842
5 0.0045 0.8586 0.0011 6.4313
10 0.0053 0.8768 0.0085 8.8482
15 0.0026 0.8814 0.0024 9.5947

0.5

none -0.0001 0.8049 0.0019 2.7213
5 0.0066 0.8466 0.0094 6.3378
10 0.0105 0.8649 0.0135 8.5942
15 -0.0034 0.8694 0.0031 9.4126

0.2

none 0.0061 0.7553 0.0175 2.4435
5 0.0004 0.8154 0.0189 4.9129
10 0.0042 0.8365 0.0207 6.2121
15 -0.0085 0.8454 0.0006 7.0781

Table 5.8: MLE for the parameters of the Wrapped Cauchy and von Mises distributions
when considering the turning angle distribution for all considered sampling rates and
speed threshold values.
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5.7.4 Appendix B4 - Analysis of data when including truncated bouts

As discussed in the main text (Section 5.3.1), bouts which had not ended by the end of the

experiment were not included in the final analysis as their true length was indeterminable.

Tables 5.17-5.18 show the results of the statistical analysis used in the main text when

these bouts were included (that is the final bout was deemed to have finished when

the experiment had ended) at a sampling rate of 1HZ and speed threshold value of

5mm/s. In general, the inclusion of these truncated bouts resulted in the statistical tests

rejecting the fitted distributions, with a higher frequency , with the G-test rejecting

all distributions for all types of bouts and the K-S test rejecting the distributions for

all bout types except for the exponential in the case of stationary bouts, the Weibull

in the case of moving bouts and the log-normal for both moving and stationary bouts

(p > 0.1). However, the log-normal distribution was favoured by the AIC likelihood

for all bout types, which is the same for the findings when the truncated bouts were

excluded (Appendix B3 - Tables 5.15-5.16).

Restricted Exponential Weibull Log-normal
Power-law

Type of bout xmin α λ (rate) γ (shape) α (scale) µ (mean) σ2 (s.d.)
All 1 1.30 0.019 0.90 48.69 3.32 1.08

Moving 1 1.29 0.018 0.94 54.10 3.44 1.09
Stationary 1 1.31 0.021 0.87 43.41 3.21 1.07

Table 5.17: MLE for the parameters of the four distributions considered for the bout
distributions when including truncated bouts. Results are for the data as a whole with
the fixed xmin value at the minimum non-zero value of the data. Results displayed are for
sampling size 1Hz and speed threshold 5mm/s, which were the values used throughout
the analysis in the main text.
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5.7.5 Appendix B5 - Categorisation of movement paths as a BRW or a CRW

Here we discuss the methods used to categorise the movement of the beetles as either a

CRW or a BRW at both the individual and population level.

It was noted in the main text that at the population level a slight preference in global

direction was found (section 5.4.3). H, however, when looking at the individual level this

apparent preferential angle can be explained by comparing the initial orientation of the

beetles along with their final positions.

Fig. 5.9A shows the direction of each individual trial run at the beginning of the

experiment, represented as a unit vector in the given direction (the direction was calcu-

lated by calculating the mean orientation across the first 10 moving steps of the trial).

Fig. 5.9B shows the final location of the beetle for each trial run represented as a unit

vector in the direction of the final position. These figures demonstrate that whilst the

initial distribution of orientation angles appears to have a concentration of orientation

angles be concentrated towards the top-right quadrant and away from the bottom-left,

the final positions of the beetles have become more uniform in distribution. The impli-

cation here is that the beetles began heading in a similar direction, perhaps due to the

initial orientation of their placement on the tracking sphere, and due to their observed

innate persistent ability continued to head towards this initial bearing. Had the initial

bearing been caused by some external source one would expect this dispersal to narrow

over time as all the beetles eventually navigated towards the external source, however,

over time the beetles dispersed over a greater space reflected in the location of the final

data points, leading to the conclusion that there is no evidence of a global bias in direc-

tion. Hence, we conclude that at the population level, there is no consistent long-term

global preferred direction of movement, and the slight preference in global orientation

found when analysing all steps of the movement paths is due to the initial distribution

of movement directions.

A direct method of ascertaining determining if a movement path is better described

likely formed by either a CRW or BRW is to calculate the Marsh-Jones ∆-statistic
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Figure 5.9: (A) Orientation of all the individual trials (shown as a unit vector in the
direction of the angle of orientation) at the start of the experiment (orientation was taken
as the mean of the first 10 steps of movement). In contrast (B) shows the final location
of the beetle at the end of the experiment (shown as a unit vector in the direction of the
final location). Each individual colour represents an individual beetle, as in Figures in
the main text.

(Marsh & Jones, 1988) (section 5.3.3.4 - Eq. 5.4); given by:

∆ =
1

n2

[(∑
cosφi

)2

+
(∑

sinφi

)2
]
− 1

(n− 1)2

[(∑
cos θi

)2

+
(∑

sin θi

)2
]

(5.6)

where, φi is the global orientation and θi is the turning angle, at time i.

The expected values of the ∆ statistic are calculated by extensive simulations and

thus depend upon the number of individuals and the number of time steps. Turning

angles are calculated as the angle between the direction of successive steps and the

global orientation of a given time step is calculated as the angle between the direction at

that time step and the positive y-axis. The resultant vectors for the distribution of the

orientation and turning angles are calculated directly from the observed data , with the

orientation distributions transformed to give a zero-centred distribution. The expected

values of the ∆ statistic are calculated by extensive simulations using the equivalent

number of data points as found in the observed data, therefore, the value of the statistic
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depends upon both the number of individuals and the number of time steps. The global

orientation and turning angles for these simulations are drawn from distributions with

resultant vectors calculated directly from the global orientations and turning angles of

the observed data.and thus depend upon the number of individuals and the number of

time steps.

The analysis of the results of calculating the ∆-statistic is given in the main text,

section 5.4.3. Table 5.1.9 shows how the ∆ statistic classified each individual trial, with

5 trials corresponding to a CRW and only one as a BRW. The remaining trials could not

be determined as being either type of random walk.

Beetle Trial ∆ observed Predicted ∆ (BRW) Predicted ∆ (CRW)

1 1 -0.0151 (-0.0079, 0.0626) (-1.0111, -0.4215)

2 1 -0.0145 (0.1441, 0.2113) (-0.7498, -0.6336)

3 1 -0.0779 (0.2214, 0.2385) (-0.6161, -0.5434)

4 1 -0.1473 (0.1567, 0.2196) (-0.87, -0.6652)

5 1 0.0433 (0.1669, 0.225) (-0.644, -0.5636)

6 1 0.0753 (0.1048, 0.1836) (-0.719, -0.619)

7 1 -0.0954 (0.0751, 0.1594) (-0.9646, -0.5823)

8 1 -0.2887 (0.0875, 0.1624) (-0.4506, -0.4046)

9* 1* -0.4143* (-0.0077, 0.0266)* (-0.4263, -0.3827)*

10 1 -0.111 (0.1157, 0.193) (-0.9065, -0.6538)

11 1 -0.0984 (0.1011, 0.1816) (-0.9191, -0.6444)

12 1 -0.5412 (0.0486, 0.123) (-0.6497, -0.5705)

13 1 -0.1998 (0.2153, 0.2386) (-0.6238, -0.5488)

14* 1* -0.2871* (-0.0073, 0.024)* (-0.2995, -0.2678)*

15 1 -0.3388 (0.205, 0.2378) (-0.7348, -0.6249)

16 1 0.0768 (0.0845, 0.1659) (-0.7536, -0.6344)

17 1 -0.3343 (0.1587, 0.2194) (-0.6182, -0.544)

18 1 -0.0491 (0.2226, 0.2374) (-0.5038, -0.4521)
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Beetle Trial ∆ observed Predicted ∆ (BRW) Predicted ∆ (CRW)

19 1 -0.1062 (0.2252, 0.2376) (-0.5697, -0.5057)

20 1 -0.1286 (0.166, 0.2251) (-0.8259, -0.664)

21 1 -0.1229 (0.2069, 0.2389) (-0.7173, -0.6145)

22 1 -0.0939 (0.2208, 0.2378) (-0.5412, -0.4822)

1 2 -0.1798 (0.1929, 0.2347) (-0.5347, -0.4768)

2 2 0.0821 (0.2045, 0.2381) (-0.5134, -0.4588)

3 2 -0.135 (0.2067, 0.2394) (-0.7297, -0.623)

4† 2† 0.0217† (0.0147, 0.0929)† (-0.9175, -0.6462)†

5* 2* -0.4462* (-0.0029, 0.0405)* (-0.4584, -0.4112)*

6 2 0.0636 (0.2094, 0.2395) (-0.5196, -0.4638)

7 2 -0.1473 (0.2065, 0.2389) (-0.5373, -0.4801)

8 2 -0.0093 (0.1448, 0.2095) (-0.2616, -0.2335)

9 2 -0.0559 (0.0417, 0.1143) (-0.1471, -0.1266)

10 2 0.044 (0.1911, 0.2355) (-0.5892, -0.5214)

11 2 -0.1272 (0.2225, 0.2392) (-0.664, -0.5824)

12 2 0.0366 (0.145, 0.2131) (-0.6917, -0.599)

13 2 -0.2612 (0.0413, 0.1136) (-0.3539, -0.3173)

14 2 -0.2799 (0.1629, 0.2209) (-0.5701, -0.5053)

15* 2* -0.6147* (0.1713, 0.225)* (-0.9516, -0.6057)*

16 2 -0.2787 (0.223, 0.2394) (-0.733, -0.6218)

17 2 0.0369 (0.2183, 0.2394) (-0.514, -0.4595)

18 2 -0.0736 (0.2257, 0.2379) (-0.5378, -0.4809)

19 2 -0.0409 (0.1654, 0.2226) (-0.3359, -0.3026)

20 2 0.1448 (0.155, 0.2182) (-0.5614, -0.4984)

21 2 -0.06 (0.052, 0.1266) (-0.1694, -0.1479)

22 2 -0.2325 (0.1278, 0.1987) (-0.4582, -0.4124)

1 3 0.0031 (0.0236, 0.1048) (-0.9285, -0.6358)
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Beetle Trial ∆ observed Predicted ∆ (BRW) Predicted ∆ (CRW)

2 3 -0.19 (0.0999, 0.1751) (-0.3687, -0.332)

3 3 -0.0977 (0.1002, 0.1805) (-0.9257, -0.638)

4 3 -0.4701 (0.1812, 0.2301) (-0.7996, -0.6538)

5 3 -0.0781 (0.1881, 0.2342) (-0.7211, -0.6184)

6 3 -0.2405 (0.1994, 0.2364) (-0.8602, -0.6691)

7 3 -0.3289 (0.0534, 0.1279) (-0.44, -0.3964)

8 3 -0.2201 (0.0247, 0.0903) (-0.2874, -0.2571)

9 3 -0.1472 (0.2258, 0.2381) (-0.6678, -0.5791)

10 3 -0.2246 (0.2163, 0.2396) (-0.6483, -0.5675)

11 3 0.0318 (0.2214, 0.2394) (-0.4081, -0.3677)

12 3 -0.0704 (0.1298, 0.2031) (-0.8328, -0.6674)

13 3 -0.1881 (0.149, 0.2128) (-0.4508, -0.4059)

14 3 -0.0104 (0.2004, 0.2375) (-0.6207, -0.5484)

15* 3* -0.7675* (0.0905, 0.1657)* (-0.9685, -0.5703)*

16 3 -0.2012 (0.2077, 0.2386) (-0.5973, -0.5288)

17 3 -0.2774 (0.1496, 0.2133) (-0.5446, -0.486)

18 3 -0.035 (0.1863, 0.2336) (-0.6828, -0.5931)

19 3 -0.0879 (0.2185, 0.2394) (-0.641, -0.5612)

20 3 -0.2363 (0.0296, 0.0989) (-0.3149, -0.283)

21 3 -0.3461 (0.0783, 0.1555) (-0.4961, -0.4437)

22 3 -0.1682 (0.2258, 0.2385) (-0.6897, -0.5979)

Table 5.19: The ∆ statistic calculated from the observed movement paths. The intervals
for the expected values of the BRW and CRW were calculated via extensive simulation of
random walks generated using the same number of steps as observed in the experiment,
and represent the 95% significance level for each respective RW type. Therefore any
observed ∆ falling outside these intervals can be rejected a the 5% significance level.
Those marked with (*) have observed ∆ corresponding to a CRW and those with a (†)
correspond to a BRW.
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6 Potential misinterpretation of directional data: ap-

parent emergence of a heavy-tailed distribution

from an underlying mixed distribution

In this chapter we demonstrate how a probability distribution formed by mixing two

wrapped normal distributions can give the appearance of a single circular heavy tailed

distribution. We show that this is dependent upon the values of the concentration pa-

rameters of the underlying wrapped normal distributions along with the value of the

mixing parameter and demonstrate the parameter space for when this occurs. As in-

ferring distributions is an important process in animal movement analysis, we conclude

that the presence of a heavy tailed distribution in angular data can, on occasion, be a

product of the data coming from two distinct distributions, possibly indicating multiple

movement behaviours across a movement path.

6.1 Introduction

The analysis and applications of circular statistics to directional data plays a significant

role in the study of many biological processes from plant phenology (Morellato et al,

2010) to the general movement patterns of animals and cells (Rivest et al, 2016; Landler

et al, 2018). Ascertaining the distribution which most closely describes circular data is

important as characteristics of circular distributions, such as heavy tails, have significant

effects on the qualitative and quantitative results of descriptive and predictive models.

The most common distributions used to describe angular data are the wrapped nor-

mal (WN), von Mises (vM) (or circular normal) and the wrapped Cauchy (WC) (Mc-

Clintock et al, 2012; McClintock & Michelot, 2018). These are defined by a probability

density function (PDF) on the unit circle, and in the case of the WN and WC distribu-

tions, can be formed by ‘wrapping’ the equivalent one dimensional distributions on the

real line around the unit circle (Stephens, 1963; Jammalamadaka & SenGupta, 2001;
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Mardia & Jupp, 2009). Although the von Mises and wrapped normal distributions have

differing PDFs, the two approximate each other very closely and produce similar qualita-

tive results (Stephens, 1963; Collett & Lewis, 1981; Jammalamadaka & SenGupta, 2001;

Mardia & Jupp, 2009; Codling et al, 2010). The WC distribution qualitatively differs

from the WN and vM as it has a taller peak around the mean value and heavier tails

which decay more slowly. Hence, many analyses classify angular data as being either

heavy tailed (and therefore similar to wrapped Cauchy) or near normal (and thus either

a von Mises or wrapped normal). For clarity the notion of ‘heavy-tailed’ in wrapped

distributions refers to distributions whose analogous non-wrapped distributions are con-

sidered as being ‘heavy-tailed’.

In particular, when modelling movement by random walk (RW) or step-turn processes

it is often necessary to understand the distribution of turning angles and movement di-

rections (Kareiva & Shigesada, 1983; Bartumeus, 2008; Codling et al, 2008; Parton &

Blackwell, 2017). Methods to determine the distribution which best describes observed

directional data typically involves finding MLE parameters for the model distributions

and choosing between them by the use of a likelihood or distance measure (Nilsen et

al, 2013; Li & Bolker, 2017). Evidence that a WC distribution is the ‘best-fit’ for the

distribution of turning angles or global orientations in a movement path has been found

across a wide range of animals from insects and beetles, such as pea aphids Acyrthosiphon

pisum (Nilsen et al, 2013) and the Baltimore checkerspot butterfly Euphydryas phaeton

(Brown & Crone, 2016) to larger animals such as common brushtail possums Trichosu-

rus Vulpecula (Postlethwaite & Dennis, 2013), cow elk, Cervus elaphus, (Morales et al,

2004), free-range cattle Nothofagus Antarctica (Seoane, 2015), Florida panthers, Puma

concolor coryi, (van de Kerk et al, 2015; Li & Bolker, 2017), California sea lions Zalo-

phus californianus (Breed et al, 2012), Giant tortoises Testudinidae (Blake et al, 2013),

American lobster Homarus americanus (Bowlby et al, 2007) and seals Erignathus bar-

batus and Monachus schauinslandi (McClintock et al, 2015). The studies mentioned

above range from high frequency data having locations given every second to large scale

movement with data sent every 24hr, illustrating that heavy tailed distributions occur
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across a range of scales.

A basic search on Google Scholar reveals that whilst both types of distribution have

been frequently used and reported in recent animal movement data analyses, there has

been a marked increase in the prevalence of the WC distribution over the last 10-15

years. A key word search of “animal movement” and “wrapped Cauchy” returns only

22 articles published before 2008, compared to the equivalent for either “von Mises” or

“wrapped normal” returning 81, a four-fold difference. However, since 2008 this ratio

has halved with 200 articles mentioning WC and 398 for WN demonstrating a marked

increase in the prevalence of the WC distribution.

In comparison the WN or vM distribution has been reported across a similarly wide

range of animals, from E. coli bacterium (Taylor-King et al, 2015), Fender’s blue but-

terfly Icaricia icarioides fender (Schultz & Crone, 2001) and bog fritillary butterfly

Proclossiana Eunomia (Schtickzelle et al, 2007) to larger animals such as red-cockaded

woodpecker Picoides borealis (McKellar et al, 2014), lesser black-backed gull L. fuscus

(Taylor-King et al, 2015), king penguin Aptenodytes patagonicus (Pistorius et al, 2017),

reindeer Rangifer tarandus (Langrock et al, 2014) and southern elephant seal Mirounga

leonine (Michelot et al, 2017).

One biological interpretation of the presence of a heavy tailed distribution is that

the individual mainly travels on a near constant bearing, with the majority of turns

occurring within small deviations from 0 whereas medium to large turns happen only

occasionally but with a similar frequency. This would indicate the animal has a tendency

for sudden large changes in direction of movement, rather than a gradual change in

orientation over a course of a series of larger turns which would be expected from a normal

or Gaussian distribution. Various RW movement models have shown that observably

different qualitative and quantitative results are produced depending upon whether a WC

or vM (heavy-tailed or not) distribution has been used (Bartumeus et al, 2008; Codling

et al, 2010), demonstrating the importance of accurately determining the underlying

distributions.

If the way in which data is collected, analysed or processed can affect how well a
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candidate distribution fits the observed data then this needs to be well understood and

acknowledged. For example it has been shown that errors in GPS data locations can

give rise to spurious large 180◦ turns, which would enhance the heavy-tailed nature of

recorded turning angles (Jerde & Visscher, 2005; Hurford, 2009). Other reported issues

with data collection which artificially increased the number of large turns include the

effect of recording data in a restricted area, where edge effects can cause sudden large

turns as the animal encounters a wall. Young et al (2013) found that flour beetles,

Tribolium confusum took smaller steps with larger turn angles closer to the border of

the experimental setup, which resulted in a flatter heavy-tailed distribution. Similar

results relating the experimental setup to artificially heavier tails in angular data has

been recorded in other species such as parasitic wasps, Encarsia formosa (Drose et al,

2000).

When considering movement behaviour it is known that animals can exhibit dif-

ferent movement modes when travelling (Schtickzelle et al, 2007; Gurarie et al, 2016;

Cagnacci et al, 2016), perhaps due to switching from a foraging/exploration phase to an

encamped/feeding phase which can lead to periods of small turns followed by periods of

larger turns (McClintock et al, 2015; Torres et al, 2017). Similarly, changes in the terrain

or climate could alter the movement behaviour (Patterson et al, 2009; Dahmen et al,

2017; Pérez-Barbeŕıa et al, 2015). The qualitative behaviour of each movement phase

will be best described by a specific model and set of parameters and if these strategies

are not known a priori the movement data could be analysed under the assumption of

a single movement strategy resulting in the mixing of the data from the individual be-

havioural states. The simplest example of such multiple movement behaviour is a two

state movement model where one phase is described by large variability in turning angles

between steps relating to highly tortuous movement perhaps indicative of foraging or en-

camped behaviour, and another phase with more directed, straighter movement where

the deviation in turning angles from the mean is smaller, akin to purposeful goal based

movement or flight behaviour (Patterson et al, 2010; Jonsen et al, 2013; Langrock et al,

2012; Parton & Blackwell, 2017; McClintock & Michelot, 2018; Nams, 2014).
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Here we demonstrate that a single heavy-tailed wrapped Cauchy distribution can

appear to fit directional data mixed from two different underlying wrapped normal dis-

tributions. We derive analytical expressions used to calculate the parameter space for

which this occurs. Our results show that, in general, when the two WN distributions

forming the mixed distribution have a large difference in their respective concentration

parameters (≥ 0.5) a WC is the best fitting single distribution, indicating that a mixed

distribution can enhance the appearance of a heavy tail in the distribution of turning

angles when interpreted as a single distribution.

6.2 Background: Circular Statistics and Distributions

6.2.1 Symmetric Wrapped Stable Distributions

A symmetric wrapped stable (SWS) distribution has the density function given by:

fsws(θ; ρ, µ) =
1

2π

(
1 + 2

∞∑
n=1

ρn
a

cosn(θ − µ)

)
, n ∈ N (6.1)

where ρ ∈ [0, 1) is the concentration parameter, µ ∈ [−π, π) is the location parameter

around which the distribution is symmetric and a ∈ (0, 2], with θ ∈ [−π, π).

In the specific case for a = 1 the SWS distribution returns the WC distribution and

for a=2 we get the WN distribution (Jammalamadaka & SenGupta, 2001).

It is well known that for any given WN distribution a vM can be found as an accurate

approximation (Stephens, 1963; Collett & Leiws, 1981; Jammalamadaka & SenGupta,

2001). Hence, both give qualitatively similar results when used in random walk (RW)

models (Codling et al, 2010). Therefore, we consider only a WN distribution as it allows

for easier algebraic manipulation.

If we let the SWS be centred around 0, (µ = 0), then ρn
a

= αn, where αn is the nth

cosine moment of fsws. Note that in this case we need only consider the cosine moments

the sine moments are all 0 (Mardia & Jupp, 2009; Jammalamadaka & SenGupta, 2001).
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6.2.2 Mixed wrapped distributions

One can also consider distributions formed by mixing two circular distributions, fmd,

where random variables are drawn from one of the two distributions according to a

certain probability, ω.

fmd(θ;ω) = ωf1(θ) + (1− ω)f2(θ)

where f1 and f2 are SWS distributions and ω ∈ [0, 1] is defined as the mixing param-

eter of the two initial distributions. Note that the trivial cases for ω = 0, 1 are equivalent

to fmd = f2 and fmd = f1 respectively.

Lemma 1. Let fmd(θ;ω) be a distribution formed by mixing two SWS distributions cen-

tred around zero (µ = 0), then fmd itself is a wrapped distribution with cosine moments,

α
{md}
n , given by

α{md}
n = ωα{1}n + (1− ω)α{2}n (6.2)

where α
{1}
n , α

{2}
n are the nth cosine trigonometric moments of f1 and f2 respectively.

Proof. Lemma 1 follows directly from the definition of fmd and fsws.

As both f1 and f2 are SWS distributions with µ = 0, we have

fmd(θ) =ω
1

2π

(
1 + 2

∞∑
n=1

α{1}n cos(nθ)

)
+ (1− ω)

1

2π

(
1 + 2

∞∑
n=1

α{2}n cos(nθ)

)

=
1

2π

(
1 + 2

∞∑
n=1

[
ωα{1}n + (1− ω)α{2}n

]
cos(nθ)

)

This is analogous the form of a general SWS given in Eq. 6.1 centred around 0 with

trigonometric moments ωα
{1}
n + (1 − ω)α

{2}
n as required. Note, as fmd is a wrapped

distribution, symmetric around µ = 0 the trigonometric sine moments are all 0 and

hence the trigonometric moments of fmd are purely the cosine moments.

6.2.3 Determining between best-fit circular distributions

When calculating a measure of the distance between two given PDFs, one can consider

many statistical measures (Gibbs & Su, 2002). However one of the simplest is to consider
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the sum of the squares of the differences between the distributions across their domain;

equivalent to finding the L2-distance. Hence, we will consider the distance, d(·, ·) between

two continuous probability functions, f and g, over the finite domain X as

d(f, g) =

∫
x∈X

[f(x)− g(x)]2 dx

We use the L2 distance throughout this study as it allows for simple algebraic manip-

ulation, however Appendix C1 and Figs 6.3-6.5 detail the results of using other metrics,

found using simulations and show they are qualitatively similar to those found using the

L2 distance (Fig. 6.1). Therefore, when comparing between multiple PDFs we infer the

closest fitting distribution as the one which minimises the L2 distance.

6.3 Fitting individual wrapped distributions to a mixed distri-

bution

6.3.1 Statement of main claim

Here we consider a mixed distribution formed from two WN distributions and demon-

strate the parameter space for which it is best described by either a single WN or single

WC distribution. By considering the L2 distance we derive expressions for calculating

the best-fitting WN and WC distributions as functions of the parameters of the mixed

distribution and determine the parameter space for whether a WN or WC best describes

the mixed distribution, by selecting the distribution with the smallest value L2 distance.

Proposition 1. Let Θ be a mixed SWS distribution formed by mixing two wrapped

normal distributions, defined as

Θ(θ;µ0, ρ1, ρ2, ω) = ωfwn(θ;µ0, ρ1) + (1− ω)fwn(θ;µ0, ρ2) (6.3)
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for θ ∈ [−π, π), with µ0 ∈ [−π, π), ρ1, ρ2 ∈ [0, 1) and ω ∈ [0, 1]. Define

∆wn(ρ, µ) =d (fwn(θ; ρ, µ),Θ(θ;µ0, ρ1, ρ2, ω))

∆wc(ρ, µ) =d (fwc(θ; ρ, µ),Θ(θ;µ0, ρ1, ρ2, ω))

Let ρwn, µwn minimise ∆wn and ρwc, µwc minimise ∆wc. Then there always exists a

parameter space for ρ1, ρ2, ω such that:

∆wc(ρwc, µwc) < ∆wn(ρwn, µwn) (6.4)

As ∆wn and ∆wc give the values of the L2 distance for each distribution compared to

Θ, the smaller value of ∆wn and ∆wc indicates the closer fitting distribution.

Note, as both distributions forming the mixed distribution, Θ, are from the same fam-

ily of distributions (Eq. 6.3) without loss of generality we can consider the distribution

with concentration parameter ρ1 to be the distribution which has the smaller probability

of being chosen and, therefore, by symmetry we need only consider ω ∈ [0, 1/2].

We only consider the distributions within the mixed distribution Θ to be WN rather

than WC as the latter leads to the mixed distribution always being classified as a single

WC and our main concern is determining when a heavy tailed distribution fits data

from non-heavy tailed distributions (see Appendix C2 and Figs. 6.6-6.7 for a complete

discussion of this along with the results of having a WC and a WN as the initial mixed

distributions). To demonstrate this proposition we give an analytical method for calcu-

lating the specific parameter values which minimise ∆wn and ∆wc for fixed ρ1, ρ2, ω. By

directly comparing these minimised values we show the parameter space for which the

WC distribution (or WN) is the closest fitting distribution when the L2 distance metric

is used.

6.3.2 Demonstration of main claim

First we note that if we assume µ = 0 for the two underlying initial WN distributions,

then clearly Θ is centred around 0 and we must have µwn = µwc = 0 (?).
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Using Lemma 6.1 we can write Θ from Prop. 6.1 as

Θ =
1

2π

(
1 + 2

∞∑
n=1

α{Θ}n cos(nθ)

)

with

α{Θ}n = ωα{1}n + (1− ω)α{2}n

where α
{1}
n and α

{2}
n are the nth cosine moments of the WN distributions with concen-

tration parameters ρ1 and ρ2 respectively.

Recalling that αwn
n = ρn

2

wn, we have

α{Θ}n = ωρn
2

1 + (1− ω)ρn
2

2

We now show that when considering the L2 distance between two zero centred SWS

distributions it suffices to calculate the sum of the squares of the differences between

their respective cosine moments.

Lemma 2. Let f1(θ) and f2(θ) be SWS distributions centred around 0 with cosine mo-

ments α
{1}
n and α

{2}
n respectively, then

d(f1, f2) =
1

π

∞∑
n=1

(
α{1}n − α{2}n

)2

Proof. As f1(θ) and f2(θ) are zero-centred SWS distributions, the square of the difference

between the distributions at any given value of θ ∈ [−π, π) is given by

[f1(θ)− f2(θ)]2 =

[
1

2π

(
1 + 2

∞∑
n=1

α{1}n cos(nθ)

)
− 1

2π

(
1 + 2

∞∑
n=1

α{2}n cos(nθ)

)]2

=

[
1

π

∞∑
n=1

(
α{1}n − α{2}n

)
cos(nθ)

]2

integrating over [−π, π) with respect to θ gives

∫ π

−π
[f1(θ)− f2(θ)]2 dθ =

∫ π

−π

[
1

π

∞∑
n=1

(
α{1}n − α{2}n

)
cos(nθ)

]2

dθ
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Expanding the right hand side gives

=
1

π2

∫ π

−π

[
∞∑
n=1

(
α{1}n − α{2}n

)2
cos2(nθ)

+ 2
∞∑
i=1

∞∑
j=i+1

(
α
{1}
i − α

{2}
i

)(
α
{1}
j − α

{2}
j

)
cos(iθ) cos(jθ)

]
dθ

By Fubini-Tonelli Theorem we have

=
1

π2

[
∞∑
n=1

(
α{1}n − α{2}n

)2
∫ π

−π
cos2(nθ) dθ

+ 2
∞∑
i=1

∞∑
j=i+1

(
α
{1}
i − α

{2}
i

)(
α
{1}
j − α

{2}
j

)∫ π

−π
cos(iθ) cos(jθ) dθ

]

noting that the integral in the first term yields π and the integral in the second gives 0,

this expression reduces to

1

π

∞∑
n=1

(
α{1}n − α{2}n

)2

For a more complete derivation including the intermediary steps see Supplementary

Material Appendix C

Therefore, we can re-write ∆wc and ∆wn as

∆wc(ρ, 0) =
1

π

∞∑
n=1

(
α{wc}
n − α{Θ}n

)2
=

1

π

∞∑
n=1

[
ρn −

(
ωρn

2

1 + (1− ω)ρn
2

2

)]2

(6.5)

∆wn(ρ, 0) =
1

π

∞∑
n=1

(
α{wn}
n − α{Θ}n

)2
=

1

π

∞∑
n=1

[
ρn

2 −
(
ωρn

2

1 + (1− ω)ρn
2

2

)]2

(6.6)

As ρwc and ρwn are the values which minimise ∆wc and ∆wn respectively, they can be

found by differentiating Eq. 6.5 & 6.6 with respect to ρ and equating for 0.

Hence, we require

0 =
d

dρ
∆wc =

1

π

∞∑
n=1

2nρn−1
[
ρn − (ωn

2

1 + (1− ω)ρn
2

2 )
]

(6.7)

0 =
d

dρ
∆wn =

1

π

∞∑
n=1

2n2ρn
2−1
[
ρn

2 − (ωρn
2

1 + (1− ω)ρn
2

2 )
]

(6.8)
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The precise values of ρ which satisfy Eq. 6.7 & 6.8 will therefore be the values for ρwc

and ρwn respectively, and can be found via numerical methods. Substituting ρwc and

ρwn back into the expressions for ∆wc and ∆wn in Eq. 6.5 & 6.6 yield the respective

minimum values. We can now determine the parameter space of ρ1, ρ2, ω for which a

WC distribution is favoured over a WN distribution when compared to Θ by considering

when ∆wc(ρwc, µwc) < ∆wn(ρwn, µwn). Therefore, calculating

D∆ = ∆wc(ρwc, 0)−∆wn(ρwn, 0)

will give us an indication, not only of which distribution is favoured (negative in the

case of a WC and positive for a WN), but also the relative ‘strength’; that is the larger

the absolute value, the larger the difference in the total variation distance between the

distributions, and thus the closer the preferred distribution is to the mixed distribution

relative to the other.

6.4 Results

Fig. 6.1 shows the results of plotting D∆ across the parameter space of ρ1, ρ2, ω with

the areas in yellow (areas bounded by the dashed line) representing combinations for

which the WN distribution is considered closer to the mixed distribution Θ and blue

areas showing where a WC is considered closer; the darker the colour the stronger the

preference.

In the simplest case where the mixed distribution is formed by mixing the two un-

derlying distributions equally (ω = 0.5; Fig 6.1K) the plot is symmetric about the lead

diagonal (corresponding to ρ1 = ρ2) as expected, with the WN favoured whenever |ρ1−ρ2|

is small, shown by the concentration of yellow near to the main diagonal. The areas for

which the WC is favoured occur predominantly when the difference between ρ1, ρ2 is

large (|ρ1 − ρ2| ≥ 0.5). However, in the case when both concentration parameters are

greater than 0.5, the area for which a WC is favoured is much smaller occurring now

only if 5ρ1 − ρ2 ≥ 4 (or 5ρ2 − ρ1 ≥ 4).
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Figure 6.1: Plots demonstrating the parameter space for where a single wrapped Cauchy
or wrapped normal is the favoured distribution for ρ1, ρ2 ∈ [0, 1] calculated at 0.001
intervals with the mixing ratio ω ∈ [0, 0.5] at 0.05 intervals (due to symmetry the results
for ω > 0.5 are not displayed - see section 6.3.1). Areas in blue represent parameter
combinations for which the wrapped Cauchy was favoured whereas areas of yellow/orange
show combinations for which the wrapped normal was favoured. The darker the hue, the
larger the difference between the distributions, indicating the favoured distribution was
closer to the mixed distribution. The dashed black line indicates where the transition
from preferred distribution occurs.
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In general the plots remain almost unchanged across 0.35 ≤ ω ≤ 0.5 (Figs 6.1H-J).

In particular, the areas of the plots above the lead diagonal (corresponding to ρ1 >

ρ2) remain remarkably unchanged for 0.1 ≤ ω ≤ 0.5. However, as ω → 0 the area

favouring the WC (blue) begins to vanish (demonstrated in Fig. 6.1B with ω = 0.05)

and disappears entirely when ω = 0 (Fig 6.1A) due to the the definition of the mixed

distribution, Θ (Eq. 6.3) (ω = 0 is equivalent to Θ = f2 and since f2 was chosen to be

WN it will never be best classified as WC).

Considering now the areas of the plots below the lead diagonal (corresponding to

ρ2 > ρ1), as ω decreases below 0.3 (Fig. 6.1A-G) the area favouring the WC shrinks and

only exists for large values of ρ2 (> 0.8). And for ω ≤ 0.15, corresponding to distributions

where the majority of angles are drawn from the distribution with parameter ρ2, the plots

indicate that there is no combination of parameters for which the WC will be favoured

when ρ2 > ρ1 (Figs 6.1A-C).

6.5 Example: analysis of elephant movement

As an example of data which is well-fitted by a single WC and after a simple analy-

sis appears to be better fitted by a mixed distribution, we use tracking data from bull

African elephants Loxodonta africana previously published in Wall et al, (2014b). Here,

location data were recorded for two elephants, we consider the data for the elephant

id: Habiba which had locations recorded every 15 minutes for a period of over 4 days

giving 1522 data points (data from Movebank data repository; Wall et al, 2014b). Vi-

sual inspection of the movement path (Fig. 6.2A) appears to show segments of high

tortuosity where the movement path includes large variations in turning angles, along

with periods of more straight-line behaviour with mainly small deviations in direc-

tion and fewer larger turns. Simply pooling the turning angles across the entire path

gives the distribution shown in Fig. 6.2B. Using the standard practice of best fitting

a WN and WC distribution using the packages in R (in this case CircStats) reveals

that a WN (green, ρwn = 0.3844, dwn = 0.599) is a poor fit, whereas a WC (blue,

ρwc = 0.4563, dwc = 0.00506) is a close fit, indicated by the respective L2 values (Fig
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6.2C). If instead, we assume turns are drawn from two distinct distributions, we can

consider the observed data to be a mixed distribution (as in Eq. 6.3). Further assum-

ing that the underlying distributions are WN, the best fitting mixed distribution can

be found by simply comparing the density distribution of the observed data (calculated

using the circular package in R (R Team, 2018) with all possible mixed distributions

formed with parameters ρ1, ρ2, ω at 0.01 intervals, selecting the specific combination of

parameters which minimises the L2 distance. In this case we find that the best fitting

mixed distribution is one with ρ1 = 0.24, ρ2 = 0.84, ω = 0.68 giving dmix = 0.0004 (Fig

6.2D). In calculating the continuous density curve for the discrete observed data, the

histogram bandwidth used was the automatic selection from R as would be the case for

a simple initial analysis, however, fixing this width at other values did not change the

qualitative results.

When comparing this mixed distribution with the best fitting WC we see that both

are close matches (Fig 6.2C & 6.2D), however, as the visual inspection of the movement

path indicated more than one movement behaviour then one could conclude the mixed

distribution is the better for describing the movement as it implies that the turning

angles across the elephant’s path came from two distinct distributions, with 32% of

angles drawn from a highly peaked distribution and 68% from a flatter, more uniform

distribution.

The possible presence of a mixed distribution could indicate two distinct movement

behaviours over the path, with one behaviour admitting turning angles drawn from a

distribution tightly peaked around 0 and the other behaviour with angles taken from a

flatter distribution. However, it should be noted that one cannot use this analysis as a

method of predicting such multiple state behaviour, as it provides no information of the

movement state any given part of the path is likely to be in, neither does it provide a

‘switching’ parameter which determines the likelihood of switching between states; as is

expected in behavioural state analyses although ω acts as a proxy for this (Johnson et al,

2008; Patterson et al, 2009; Parton & Blackwell, 2017; McClintock & Michelot, 2018).

Similarly, it does not consider any other covariates or parameters of the movement path
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typically used in CRW movement models, such as step-length or bout distribution, nor

any correlation between these parameters (i.e. having smaller step lengths when the

variation in turning angle is large and vice-versa).

A method of analysis which does consider switching parameters and other covariates

to predict behavioural states is the momentuHMM package in R which was introduced

in McClintock & Michelot (2018) and used to analyse the companion elephant dataset

from Wall et al (2014a)). The results found by applying this analysis to these data

gives the best-fitting mixed distribution formed from WN distributions to be one with

concentration parameters ρ1 = 0.11, ρ2 = 0.80 and a mixing parameter of ω = 0.56 (The

package requires using von Mises rather than WN distributions, however, as has been

discussed these distributions are known to be similar).

Whilst the results found considering a mixed distribution and those found using the

momentuHMM package are qualitatively similar, they are not equivalent since the HMM

method of McClintock & Michelot (2018) specifically attempts to identify periods of dis-

tinct behaviour taking into account various aspects of the movement path, whereas, our

results simply looked for the distribution which best described the distribution of turning

angles. The observation that the outcomes are similar indicates that this analysis on the

distribution of turning angles can give credible results for the underlying distribution

and demonstrates that multiple movement behaviours can lead to artificial heavy tails

in turning angle distributions. Also, in the specific case where HMM techniques wish

to be used to analyse movement behaviour, using the naive approach to get an initial

parameter selection for the concentration and switching parameters could be beneficial

due to HMMs sensitivity to the set of initial conditions.

6.6 Discussion

Accurately identifying parameters of movement models is clearly crucial when analysing,

predicting and understanding animal behaviour. Identifying the most accurate distri-

bution in turning angles is important as differing distributions can result in noticeably

different predictive outcomes (Bartumeus, 2008; Codling et al, 2010). In movement data
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Figure 6.2: Movement data analysis of African elephant (ID: Habiba) from Wall et al
(2014a). (A) shows the movement path recorded at 15 minute time intervals across a 4
day period (1522 data points); (B) is the corresponding turning angle distribution. (C)
shows the best fitting wrapped Cauchy distribution (blue; ρwc = 0.4563) and best fitting
wrapped normal (green; ρwn = 0.3844), visual inspection indicates that the wrapped
Cauchy is the closer fitting distribution and the total variance distance measure con-
firms this. (D) shows the best fitting mixed distribution (purple solid) determined by
numerical simulations with parameters ρ1 = 0.22, ρ2 = 0.89, ω = 0.68. Purple dashed
line corresponds to a wrapped normal with concentration parameter ρ1 and the purple
dotted line corresponds to a wrapped normal with concentration parameter ρ2. Com-
paring the actual data distribution (black; B) with the best fitting wrapped distribution
(blue; C) and the mixed distribution (purple; D) shows both are good fits however,
the total variance distance determines between them favouring the mixed distribution
(TVmix = 1.201 for mixed dist; TVwc = 1.720 for wrapped Cauchy)
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analyses it is often assumed that angles are drawn from a single underlying distribution,

here we have demonstrated the parameter space for when a mixed distribution can be

best described by a single distribution with either a normal type, WN, or a heavy tailed

distribution, WC; two distributions commonly associated with the analysis of directional

movement.

Our results indicate that a mixed distribution formed from two WN distributions will,

in general, be best fitted by a WC distribution when the difference between the concentra-

tion parameters of the underlying initial WN distributions is large (|ρ1−ρ2| ≥ 0.5). This

has been reported when analysing and classifying animal movement behaviour into two

movement states, such as “foraging” and “exploratory” (Langrock et al, 2014; McClin-

tock et al, 2018) The characteristic distributions found in such movement include a flat

almost uniform distribution attributed to the “foraging” stage, and would be equivalent

to a low concentration parameter in a SWS distribution, along with another much more

peaked distribution for the “exploratory” phase, given by a distribution with a concentra-

tion parameter close to 1. Evidence of such results after model fitting have been observed

in a range of animals including American lobster, Homarus americanus, (Bowlby et al,

2007), African elephants (McClintock & Michelot, 2018), Cataglyphis desert ants (Dah-

men et al, 2017) and elk, C. elaphus, (Parton & Blackwell, 2017). Specifically, Langrock

et al (2014), found that reindeer in a 2 state model exhibited angular distributions de-

scribed by a von Mises distribution with κ = 0.246 (approximately equivalent to a WN

with ρ = 0.1218) for the “foraging” behaviour and κ = 3.517 (approximately equivalent

to a WN with ρ = 0.8389) for the “exploratory” behaviour.

That this relatively straight forward approach of analysing movement data revealed

results consistent with those using more complex methods is interesting as it relies solely

on the angular data. However, as it gives no information as to which distribution any

particular part of the movement path belongs, it cannot be used as an indicator of

periods of behaviour. Discovering when a period of movement comes from a particular

state with prescribed model and parameter set is an active area of research, and as

such there has been much work on behavioural change point analysis (BCPA) utilising
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a range of methods from hidden Markov models (HMMs) (Michelot et al, 2016; Jonsen

et al, 2016; McClintock & Michelot, 2018) and Markov chain Monte Carlo processes

(McClintock et al, 2012; Parton & Blackwell, 2017), to wavelet analysis (Polansky et

al, 2010) and time series CUSUM techniques (Knell & Codling, 2012) (see Gurarie et al

(2016), for a more complete list). Currently the analysis described here may be used to

predict the values of the initial distributions required in HMM techniques (Michelot et

al, 2016; Jonsen et al, 2016; McClintock & Michelot, 2018), but could also be extended

to predict breaks in behaviour by including additional ‘smoothing’ techniques in order

to ascertain when a change from using one distribution to another has occurred, most

likely utilising a time-series break point analysis such as that used in Knell & Codling

(2012). For this to be the case, many improvements would be needed in the method

for finding the ρ1, ρ2, w parameters, for example a more efficient search algorithm, such

as Nelder-Mead (Nelder & Mead, 1965) could be used rather than the slow parameter

sweep method used here in section 6.5.

There are many other potential avenues for enhancing and extending the work shown

here, for example, this method could be extended to mixing more than two normal

distributions by simply including more ρi and mixing ratio terms in the summation for

the mixed distribution and editing the subsequent calculations appropriately. However,

interpreting the results obviously increases in difficulty due to the increasing dimension

of the required parameter space. It should be noted that Jammalamadaka & Kozubowski

(2017) have shown that a WC distribution can in fact be recovered precisely when one

considers mixing an infinite number of WN distributions and therefore taking the mixture

distribution as a continuous function across all possible concentration parameter values

in [0, 1] for the initial WN distributions.

Whilst we chose to focus on two particular distributions, other wrapped distributions

such as wrapped Gompertz and the wrapped exponential have also been used to describe

animal movement (Roy & Adnan, 2012; Ravindran & Ghosh, 2011) and could be included

in a more complete analysis. Similarly, families of distributions on the unit circle exist

such as the Jones-Pewsey (Jones & Pewsey, 2005), Kato-Jones (Kato & Jones, 2013) and
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wrapped t (Pewsey et al, 2007) all of which contain the wrapped normal and Cauchy

distributions as special cases and could have been considered. However, these are all

multi-parameter distributions and as such can prove computationally harder to fit to

actual data. Since our main aim here is to illustrate a possible mechanism for how heavy

tailed distributions, such as the wrapped Cauchy, may (incorrectly) emerge in observed

directional data, a full and and complete classification of mixed circular distributions

along with their combinations is beyond the scope of this work.

6.7 Conclusions

• We have shown that a distribution formed by mixing two wrapped normal distri-

butions can have the appearance of a single heavy tailed distribution, especially

when the underlying wrapped normal distributions have a large difference in their

concentration parameters.

• This indicates that when analysing circular data, care must be taken if the simplest

approach of best-fitting a single distribution is used as this can give unreliable

results and miss important details of the underlying process which produced the

data.

• It was shown that in certain circumstances the two underlying distributions in

the mixed distribution can be attached to specific behaviours in animal movement

and therefore, the presence of a heavy tailed distribution can (on occasion) be an

indicator that there may be more complex behaviour occurring across a movement

path.

• This multiple behaviour was demonstrated by using data from an Elephant’s move-

ment path (Wall et al, 2014a), which showed that by a simple analysis of the turning

angles in a movement path, a mixed distribution of two distinct normal-type distri-

butions best-fit the data, compared to a single distribution. This agreed with the

findings of more advanced statistical methods, which attributed each distribution

to a specific movement behaviour.
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• That a simple analysis based purely on the distribution of turning angles corre-

sponded with the findings of more advanced statistical analyses, indicates that this

finding could potentially lead to a method for deciphering movement behaviours

from animal paths, or help to improve upon those complex methods already in

place.
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6.8 Appendices

6.8.1 Appendix C1 - Alternative methods of calculating the distance be-

tween two PDFs

Here we consider how using alternative methods of calculating the distance between two

PDFs compares to the use of the L2 distance which was used throughout the main text

(Section 6.2.3). We demonstrate that the results are qualitatively similar to those found

by using the L2 distance and therefore conclude that the choice of the L2 distance does

not affect the results found.

The distances used to compare with the results from the main text were the Kullback-

Leibler (similar to the Jensen-Shannon), the Wasserstein and the Bhattacharyya (equiv-

alent to the Hellinger distance); there are many other distance metrics which could be

considered (see Gibbs & Su (2002) and philentropy package (Drost, 2018) in R, for a

more in depth list).

In order to compare results across the different distance metrics, the parameter space

for which a mixed distribution was best fit by either a WC or WN was calculated by

numerical simulations rather than by a derived analytical expression as was found in the

main text. For each of the three extra distance metrics, this parameter space was found

by the following process:

• For each individual distance metric, a mixed distribution, formed with parameters

ρ1, ρ2, ω, was considered.

• The best fitting WN distribution was then found by comparing the PDF of the

mixed distribution with the PDFs of WN distributions with concentration param-

eters, ρwn, ranging from 0 to 1 at 0.001 intervals and the distances between them

calculated using the distance function in the philentropy package in R. The con-

centration parameter which minimised the distance was then chosen as the best

fitting WN distribution.

• This was repeated with a WC in place of the WN to find the best fitting WC
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distribution.

• The distance between the best fitting WN and the mixed distribution, dwn, was

compared with the distance between the best fitting WC and mixed distribution,

dwc, with the smaller value giving the best fitting single distribution.

• The value,

D̃ = dwc − dwn

was then was then calculated, with negative values indicating areas where the WC

was favoured and positive values indicating were the WN was favoured.

• This was repeated across all combinations of the mixed distribution parameters

ρ1, ρ2, ω

The results of plotting D̃ using the Bhattacharyya, Kullback-Leibler and Wasserstein

distances against the parameters of the mixed distribution are shown in Figs 6.3-6.5

respectively. Areas of blue indicate where the WC was found to be the best fitting

distribution and yellow indicate areas where the WN was the better fitting. Here, values

for the concentration parameters of the mixed distribution, ρ1, ρ2, were calculated from

0 to 1 at 0.01 intervals with the mixing parameter, ω, taking values from 0 to 0.5 at 0.05

intervals.

Comparing Fig. 6.3-6.5 we can see that they are similar although with a few clear

discrepancies, indicating that there is little difference between using any of these three

distance metrics. Comparing these to Fig. 6.1 from the main text shows that the results

are qualitatively similar and quantitatively similar, allowing us to conclude that the

specific distance metric used in the computation of the distance between PDFs does

affect the results and hence, our use of the L2 distance in the main text does not affect

the results found.
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Figure 6.3: Indicating the parameter space for whether a wrapped normal (yellow) or
wrapped Cauchy (blue) was considered the closer fitting distribution when compared to
a mixed distribution formed of two wrapped normal’s with concentration parameters ρ1

(y-axis) and ρ2 (x-axis) using the Bhattacharyya metric
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Figure 6.4: Indicating the parameter space for whether a wrapped normal (yellow) or
wrapped Cauchy (blue) was considered the closer fitting distribution when compared to
a mixed distribution formed of two wrapped normal’s with concentration parameters ρ1

(y-axis) and ρ2 (x-axis) using the Kullback-Leibler metric
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Figure 6.5: Indicating the parameter space for whether a wrapped normal (yellow) or
wrapped Cauchy (blue) was considered the closer fitting distribution when compared to
a mixed distribution formed of two wrapped normal’s with concentration parameters ρ1

(y-axis) and ρ2 (x-axis) using the Wasserstein metric
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6.8.2 Appendix C2 - Considering mixed distributions formed from (i) two

wrapped Cauchy distributions; (ii) a wrapped Cauchy and a wrapped

normal distribution

(i) Considering a mixed distribution formed from two wrapped Cauchy dis-

tributions

Here we consider how forming the mixed distribution given in Prop. 1 in the main text,

from two WC distributions effects the results.

If we consider the mixed distribution given in Prop. 1 to be formed of two wrapped

Cauchy distributions, we have

Θ̃(θ;µ0, ρ1, ρ2, ω) = ωfwc(θ;µ0, ρ1) + (1− ω)fwc(θ;µ0, ρ2) (6.9)

for −π < θ ≤ π, with µ0 ∈ [−π, π) and ρ1, ρ2 ∈ [0, 1]. Following the exact arguments

from the main paper except now with α
{1}
p = ρn1 and α

{2}
p = ρn2 , (see section 6.2.1) we

get the amended expressions for Swc, Swn

S̃wc(ρ, 0) =
∞∑
n=1

[
ρn − (ωρn1 + (1− ω)ρn2 )

]2
(6.10)

S̃wn(ρ, 0) =
∞∑
n=1

[
ρn

2 − (ωρn1 + (1− ω)ρn2 )
]2

(6.11)

and hence,

0 = S̃ ′wc =
d

dρ
Swc =

∞∑
n=1

2pρn−1
[
ρn − (ωρn1 + (1− ω)ρn2 )

]
(6.12)

0 = S̃ ′wn =
d

dρ
Swn =

∞∑
n=1

2p2ρn
2−1
[
ρn

2 − (ωρn1 + (1− ω)ρn2 )
]

(6.13)

Denoting the roots for Eq. 6.12 & 6.13 as ρ̃wc, ρ̃wn and substituting these into Eq. 6.10 &

6.11 respectively gives the values of the distance between Θ̃ and the best fitting wrapped

Cauchy and wrapped normal distribution respectively.
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As in the main text, we can calculate the value of

D̃S̃ = S̃wc(ρwc, 0)− S̃wn(ρwn, 0) (6.14)

across the parameter space for ρ1, ρ2, ω and plot the results (Fig. 6.6).

Similar to Fig. 6.1 in the main text, areas in blue represent a negative value for Eq.

6.14, corresponding to the WC distribution being the closer fit to the mixed distribution,

Θ̃, and places in yellow corresponding to the WN distribution being closer. The lighter

the colour the smaller the magnitude of D̃. Fig. 6.6 shows only areas of blue and

therefore, the WC was always the preferred distribution regardless of the parameter

values.

These results show that in considering a mixed distribution consisting of two WC

distributions, the single distribution which best describes this mixed distribution will

always be a WC.

(ii) Considering a mixed distribution formed from one wrapped normal and

one wrapped Cauchy distributions

We can also consider the case for the mixed distribution being formed of one wrapped

Cauchy and one wrapped normal. Following the same method as described above and

in the main text (Section 6.3.2) we can calculate the parameter space for which a WC

will be the favoured distribution. The results for these cases are shown in (Fig. 6.7),

and as expected lie in between the initial case with the mixed distribution formed from

two wrapped normal distributions (Fig. 6.1) and the case with the mixed distribution

formed from two wrapped Cauchy distributions (Fig. 6.6).
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Figure 6.6: Similar to Fig. 6.1 except the mixed distribution is formed from two WC
distributions. Plots were calculated for ρ1, ρ2 ∈ [0, 1] at 0.001 intervals with the mixing
ratio ω ∈ [0, 0.5] at 0.05 intervals (due to symmetry the results for ω > 0.5 are not
displayed - see section 6.3.1) Areas in blue represent parameter values for which a single
WC was the favoured distribution and areas of yellow would indicate values for which a
WN was the favoured distribution, however, the results indicate that the WN is never
the favoured distribution in this case.
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Figure 6.7: Similar to Fig. 6.1 & 6.6 except the mixed distribution is formed from one
WN and one WC distribution. Plots were calculated for ρ1, ρ2 ∈ [0, 1] at 0.001 intervals
with the mixing ratio ω ∈ [0, 1] at 0.1 intervals (unlike Figs. 6.1 & 6.6 the results
for ω > 0.5 are displayed as the mixed distribution is formed from distributions from
different families - see section 6.3.1) Areas in blue represent parameter values for which
a single WC was the favoured distribution and areas of yellow would indicate values for
which a WN was the favoured distribution, however, the results indicate that the WN is
never the favoured distribution in this case.
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6.8.3 Appendix C – Detailed Proof of Lemma 2 from the Main Text

Lemma 3. Let f1(θ) and f2(θ) be SWS distributions centred around 0 with cosine mo-

ments α1
n and α2

n respectively, then

d (f1, f2) =
1

π

∞∑
n=1

(
α1
n − α2

n

)2
(6.15)

Proof. As f1(θ) and f2(θ) are zero-centred SWS distributions, the square of the

difference between the distributions at any given value of θ ∈ [−π, π) is given by

[f1 (θ)− f2 (θ)]2 =

[
1

2π

(
1 + 2

∞∑
n=1

α{1}n cos (nθ)

)
− 1

2π

(
1 + 2

∞∑
n=1

α{2}n cos (nθ)

)]2

=

[
1

π

∞∑
n=1

(
α{1}n − α{2}n

)
cos (nθ)

]2

integrating over [−π, π) with respect to θ gives

∫ π

−π
[f1 (θ)− f2 (θ)]2 dθ =

∫ π

−π

1

π

[
∞∑
n=1

α1
n − α2

n cos(nθ)

]2

dθ

=
1

π2

∫ π

−π

[ ∞∑
n=1

(
α{1}n − α{2}n

)2
cos2(nθ)

+ 2
∞∑
i=1

∞∑
j=i+1

(
α
{1}
i − α

{2}
i

)(
α
{1}
j − α

{2}
j

)
cos (iθ) cos (jθ)

]
dθ

Here we note that as (α1
n − α2

n)
2

cos2(nθ) is non-negative for all n then by Fubini-Tonelli

we can interchange the integral and summation in the first term. To show we can

similarly interchange the integral and summations in the second term we will show that

the expression is absolutely finite.
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Considering the expression in the second term in an absolute form, we have

∞∑
i=1

∞∑
j=i+1

∣∣∣(α{1}i − α{2}i )(
α
{1}
j − α

{2}
j

)
cos (iθ) cos (jθ)

∣∣∣
≤

∞∑
i=1

∞∑
j=i+1

∣∣∣(α{1}i − α{2}i )(
α
{1}
j − α

{2}
j

)∣∣∣
=
∞∑
i=1

∞∑
j=i+1

∣∣∣(α{1}i − α{2}i )∣∣∣ ∣∣∣(α{1}j − α{2}j )∣∣∣
=
∞∑
i=1

∣∣∣(α{1}i − α{2}i )∣∣∣ ∞∑
j=i+1

∣∣∣(α{1}j − α{2}j )∣∣∣
≤

∞∑
i=1

∣∣∣(α{1}i − α{2}i )∣∣∣ ∞∑
j=1

∣∣∣(α{1}j − α{2}j )∣∣∣
here we note that as the series of α

{1}
j corresponds to the trigonometric moments of

distribution f1(θ) and similar for α
{2}
j and f2(θ) with both distributions being stable and

finite across their domains then the sum of the trigonometric moments must be finite

(see Eq. 6.1 in Main Text), and hence, the absolute difference between the sums of the

trigonometric moments of two distributions must also be finite. Therefore we have that

∞∑
j=1

∣∣∣(α{1}j − α{2}j )∣∣∣ < K

Where K is some finite real value. Therefore we now have

∞∑
i=1

∣∣∣(α{1}i − α{2}i )∣∣∣ ∞∑
j=1

∣∣∣(α{1}j − α{2}j )∣∣∣ ≤ ∞∑
i=1

K
∣∣∣(α{1}i − α{2}i )∣∣∣

= K
∞∑
i=1

∣∣∣(α{1}i − α{2}i )∣∣∣
Using the same argument as before we must have that

∑∞
i=1

∣∣∣(α{1}i − α{2}i )∣∣∣ < K and

hence

K

∞∑
i=1

∣∣∣(α{1}i − α{2}i )∣∣∣ ≤ K ·K = K2 <∞

Therefore as
∣∣(α1

i − α2
i )
(
α1
j − α2

j

)
cos (iθ) cos (jθ)

∣∣ is finite across the entire summation

we can interchange the summations and integrals by Fubini-Tonelli. Giving Eq. 6.16
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now as

=
1

π2

[ ∞∑
n=1

(
α{1}n − α{2}n

)2
∫ π

−π
cos2(nθ) dθ

+ 2
∞∑
i=1

∞∑
j=i+1

(
α
{1}
i − α

{2}
i

)(
α
{1}
j − α

{2}
j

)∫ π

−π
cos (iθ) cos (jθ) dθ

]

=
1

π2

[ ∞∑
n=1

(
α1
n − α2

n

)2
(

sin (2nπ)

2n
+ π

)
+ 2

∞∑
i=1

∞∑
j=i+1

(
α1
i − α2

i

) (
α1
j − α2

j

)(2i sin (iπ) cos (jπ)− 2j cos (iπ) sin (jπ)

i2 − j2

)]

Noting that as n, i and j are positive integers all the sin terms in the above expression

are 0 and hence, this reduces to

1

π

∞∑
n=1

(
αn
{1} − α2

n

)2

as required
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7 Intraspecific movement specialisations and their

implications for ‘personality’ and movement ecol-

ogy research

This is joint work with A King, A Short, G Johns and I Fürtbauer (Swansea University).

Experimental setup and procurement of data was conducted by A Short, G Johns and

A King.

In this chapter we consider how consistency in individual behaviour can affect population-

level movement dynamics by observing the movement of a sample population of stickle-

back fish, Gastro aculealus, in response to changes in the number of objects present in

an otherwise featureless experimental environment. We will show that individuality has

a more significant impact in movement behaviour than the changes in environment al-

though there was evidence to suggest individuals became more active as the environment

became increasingly filled with objects. We demonstrate how a simple CRW model of

individual movement can give reasonable approximations for the population level move-

ment dynamics when a parameter controlling the proportion of time spent stationary is

included.

7.1 Introduction

As has been highlighted in previous chapters understanding and predicting animal space

use is central in ecological research (Nathan et al, 2008) as it leads to a better under-

standing of the effect of important ecological phenomena such as climate and landscape

change (Kanagaraj et al, 2013), biological invasions and species management (Barton

et al, 2015; Westley et al, 2018) as well as the control of pests and diseases (Fofana &

Hurford, 2017; Dougherty et al, 2018; Petrovskii et al, 2014).

In previous chapters we have assumed movement is through homogeneous environ-

ments with one model sufficient to describe all individuals within a given population. In
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the case for heterogeneous environments, it is common that the parameters of the model

might vary due to the characteristics of the environment but the underlying model is

assumed constant across individuals within the population, a simplification which is of-

ten used in modelling movement ecology (Fofana & Hurford, 2017; Moorcroft, 2012;

Reynolds, 2014; Grunbaum, 1998). However, these assumptions do not hold in general

as environments are rarely homogeneous and featureless, with animals frequently passing

through changing landscapes, resulting in possible differing movement strategies depen-

dent upon a given spatial location (Ben-Ari & Inbar, 2014; Hopkins, 2016; Lemasson

et al, 2009). Similarly, assuming that every individual within a population utilises pre-

cisely the same movement strategy incorporating the same parameter values (e.g. when

modelling using a step-turn process assuming fixed values for parameters describing step

length distribution and turning angle distribution) is naive and has been shown to not

reflect true animal movement in general (Herbert-Read et al, 2013; Herborn et al, 2010;

King et al, 2013). Clearly, in trying to predict population level movement dynamics and

attempting to understand the patterns found in ecological movement processes one must

take into account the within- and between- individual variation (Morales & Ellner, 2002;

Spiegel et al, 2017; Getz et al, 2018; Sih et al, 2018; Belgrand & Griffen, 2018; Dinge-

manse & Dochtermann 2013) as well as the effect of the spatial structure and features

of the landscape (Sueur et al, 2011; Lima & Zollner, 1996; With et al, 1999).

Interpreting the effects of individual differences on movement at the population level

has an established history, with much work in the last 15-20 years focusing on the role

of animal ‘personality’. Personality refers to behaviour of individuals which is consistent

across time and ecological contexts and has been used to help answer the question as

to why individuals differ consistently in various behaviours (Winanady & Denoel, 2015;

Biro & Stamps, 2008; Carter et al, 2013; Sih et al 2012; Sih et al 2004; Dall et al

2004; Sih & Bell 2008; Fürtbauer et al 2015). Traits which are attributed to personality

cover behaviours such as boldness/shyness, activity and aggression (Carter et al 2013),

and have clear impacts upon the movement behaviour of individuals. Personality has

been empirically demonstrated as having a clear effect upon the spatial dynamics of
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individual movement (Spiegel et al, 2017; Cote et al, 2010), despite this, the integration

of individual personality and movement ecology has yet to be fully achieved (Spiegel et

al, 2017; Nilsson et al, 2014). Therefore, understanding the spread of individuality across

a population must be taken into account when analysing data from a sample population

in order to correctly infer entire population level movement dynamics.

Personality can arise as a genetic effect or can be the result of developmental plasticity

where phenotypic changes in juvenile stage of development, due to local environment,

remain constant into adulthood (Del Giudice, 2015). Understanding the concept of

personality in a mathematical manner is a non-trivial task as measuring the ‘amount’

of variation in behaviour which is caused by the influence of the local environment

compared to that of a personality is non-trivial (Dochtermann et al, 2015). Similarly

attempting to discern how personality is formed requires this variation to be further split

by the influences of genetic effects as well as physical traits of the individual such as age,

size and sex. There are however many benefits to such a mathematical description of

personality as it allows questions around individual variation (such as repeatability and

statistical significance) to be tested by established and powerful statistical techniques

(Koski, 2011). Because of this, individual variation and therefore personality is often

quantified in terms of ‘repeatability’ (Dingemanse et al, 2012; King et al, 2013, 2015;

Fürtbauer et al, 2015; Sih et al, 2018). This quantitative framing of personality allows

for statistical and mathematical approaches to analysing evidence of personality, as well

helping to frame questions of personality in other biological fields such as evolutionary

ecology and evolutionary theory, where the concept of repeatability has an established

history (Dingemanse & Dochtermann, 2013; Penke et al, 2007). For this reason we

will consider that personality can be considered by the individual variance found in any

measurable quantity.

Here, we assess whether (i) changes in environmental features, and (ii) fish identity,

explain variation in the movement of stickleback fish (Gastro aculeatus). 15 fish were

observed in three different environments (two, three or five plastic plants), across two

experimental runs. Video tracking software was used to generate coordinates for indi-
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Figure 7.1: Adult Gasterosteus aculeatus (Offermans, 2004)

viduals, at a rate of 25Hz for a total of 10 minutes. This simple set-up provides sufficient

control for repetitive observations, and brings ecological realism without confounding

factors. We find that individual fish show highly repeatable movement and show that

fish identity, not environment, explained the variation in fish movement. However, as

more objects were included in the environment all fish were seen to decrease the amount

of time spent stationary. A simple CRW movement model (informed by our data) which

explicitly incorporates individuality by controlling the time spent stationary was created

to illustrate how different patterns of space use emerged from our sample population.

7.2 Methods

7.2.1 Subjects and Housing

Three-spined sticklebacks (Gasterosteus aculeatus), wild-caught on Swansea University

campus, Wales, were studied in autumn 2016 (Fig. 7.1). Subjects were kept in a holding

tank (300 x 390 x 1220 mm) containing gravel substrate, plants, and driftwood for 2

weeks prior to the experiment at a consistent temperature of 16◦C at 8L:16D photoperiod

regime, and kept in individual 2.8L gravel-lined, aerated tanks during behavioural tests.

Fish remained in these individual tanks for the experimental period when not being

assayed. Water was changed every two days and all fish were fed 5 defrosted bloodworms

(Chironomid larvae) each day.
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Figure 7.2: (a) Top-down schematic of the tank setup. The ’simple’ environment con-
tained two plastic plants (objects) – plants(1-2). The ’moderate’ environment contained
plants 1-3. The ’complex’ environment contained plants 1-5 (b) Experimental arena
setup. The tank contained 2, 3 or 5 plastic plants and was covered in a metal frame
shrouded with white sheeting. the camera, Panasonic HDC-SD60 HD, was suspended at
a height of 1.5m.

7.2.2 Behavioural Tests

Behavioural tests were conducted in a test tank that was surrounded by white sheeting

(PhotoSEL BK13CW White Screen) held up by a custom built metal frame (within a

metal frame: 1 x 1 x 1.5 m). Four photographer’s lights (each with 4 x 25w 240v 6400K

True Day light bulbs) lit the arenas from outside the white sheet, dispersing light evenly

over the four arenas . The arena was filmed using a Panasonic HDC-SD60 HD video

camera (Panasonic Corporation of North America, Seraucus, NJ, USA) mounted above

the arena. N = 15 fish were observed in an opaque plastic tank, 78 cm length by 55 cm

width by 16 cm height, lined with white gravel. The tank was filled with water to 12

cm and changed after each trial. Fish were observed for 15 minutes after being placed in

the bottom left-hand corner. Fish were observed in 3 different experimental setups: (i)

a ‘simple’ environment with 2 plastic plants (ii) a ‘moderate’ environment with 3 plastic

plants, and (iii) a ‘complex’ environment with 5 plastic plants (Fig. 7.2). Fish were

repeat tested one week later.
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7.2.3 Movement Data

Video recordings were processed using IDTracker software (Perez-Escudero et al, 2014)

to generate x, y coordinates, frame by frame (25 Hz recording). Data were then manually

checked and a value of 5mm/s was chosen as a threshold to determine between purposeful

and non-purposeful movement. A sub-sampling rate of 2.5 Hz was used to prevent false

large turns which can occur due to the processing of the video recording (Delcourt et al,

2013). The movement threshold and sub-sampling rates are in essence arbitrary values

however, they were chosen to retain as much information about the movement path,

whilst minimising any causal effects such sub-sampling can have on characteristics of

movement trajectories (Codling & Hill, 2005; Benhamou 2004, McClintock et al, 2014;

Gurarie & Ovaskainen, 2011, Marcus-Rowcliffe et al, 2012; Benhamou, 2014). (See

Appendix D1 for a complete discussion on the initial processing of the data) (Fig 7.3).

Movement was considered to be formed by a discrete step-turn process (see Intro-

duction) and as such models are generated using step lengths (instantaneous speeds)

and turning angles (Kareiva & Shigesada 1983; Lima & Zollner 1996; Codling et al,

2008; Lemasson et al, 2009; Sueur et al, 2011; Ben-Ari & Inbar 2014; Hopkins 2016) we

therefore extracted, for each fish and for each trial: (i) step-length mean value (SL), (ii)

mean cosine of turning angle (TA), along with an additional measure to quantify the

intermittency in movement, (iii) proportion of time spent stationary (%).

Additional descriptive values attributed to movement which are calculated as mea-

sures over the movement path as a whole were; (iv) sinuosity (S), calculated as: S =√
(−2 logR/s̄l) (Benhamou, 2004), where R = mean resultant vector, s̄l = mean step

length, and (v) Burst Frequency (the relative frequency of periods of movement with a

speed above 3 s.d’s of the mean step-length of the fish when moving (Kane et al, 2004)).

Measures calculated which directly corresponded to the spatial use of the experimen-

tal setup were (vi) Net Distance Moved (mm), (vii) Space Use (%) and (vii) Occupation

Time (%), all of which are statistics commonly used in animal personality studies (dis-

tance travelled and space-use (Dzieweczynski & Crovo 2011; King et al, 2013; Mamuneas

et al, 2015; Jolles et al, 2018)). Space Use was calculated by considering the amount
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of the tank the fish visited at least once along its movement path as a percentage of

the entire space. To calculate this, the tank was split into an n by n array. For the

analysis n was chosen as 50, other values were considered with the results unaffected for

n between 10-100 (see Appendix D2). Occupation Time (%) split the tank into three

distinct areas: ‘Near’ the wall (Occupation Time - Wall), ‘near’ an object (Occupation

Time - Object) and free water (Occupation Time - Free Water). Here ‘near’ was consid-

ered to be within 7cm, (other values were considered from 2cm to 15cm, but there were

no observable differences; except for the extreme values where the overlapping of areas

became an issue; Appendix D3).

7.2.4 Statistical Analyses

Analysis of the movement paths looked to answer the following:

1. Did the population level movement behaviour change depending on how many

objects were in the tank?

2. Did the environment affect the behaviour of fish at the individual level?

3. Did the environment affect the behaviour of the fish at the population level?

4. If the environment did not affect behaviour, were there differences in the behaviour

of fish when compared to each other disregarding the environmental factors?

5. Was the behaviour of individuals consistent throughout the experiment?

Whilst we do not directly compare correlations between statistics here, auto-correlation

between the movement parameters is expected (Boyce et al, 2010, Dray et al, 2010) and

is a common problem with the analysis of discrete step-turn processes which can be intro-

duced through the recording and sampling process (Nams, 2013). The standard approach

for such auto-correlation relies on lag times (Cushman, 2010; Boyce et al, 2010; Teimouri

et al, 2018) and has been introduced through the sub-sampling, therefore as we expect

some auto-correlation between the movement parameters we will not over-interpret the
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Figure 7.3: Examples of movement paths for 5 individual fish across the simple environ-
ment (black), moderate environment (red) and complex environment (green)
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results. This is in contrast to Chapter 5 where the correlations were explicitly calculated

and the auto-correlation effects were further accounted in the mixed-effects model.

To determine if there were significant differences in all the basic summary movement

statistics, a repeated measures ANOVA was used to compare observed results across

the three environments. As evidence for changes in behaviour would be expected to

be most stark when comparing between the simple (2 objects) and complex (5 objects)

environments, a Wilcoxon two-sample paired test was used to test for differences between

pairs of environments. The Wilcoxon test being used here as it does not assume normally

distributed data.

Variation between fish over each environment was tested by a one-way ANOVA (or

Kruskal-Wallis test for those summary statistics which violated the homogeneity of vari-

ance assumption) on the mean of each summary statistic across the two trials per envi-

ronment.

To test if the level of variance displayed by each individual fish across all of the trials

(2 per environment giving 6 in total) was consistent across the population, Levene’s test

was used and a subsequent ANOVA tested for significance differences in the fishes mean

values.

Repeatability of parameters (see section 5.3.3.1) was assessed by calculating intra-

class correlation coefficients (ICC) and 95% confidence intervals (CIs) and was also used

as an indicator for ’personality’ traits (see Carter et al, 2013 for a discussion of this)

The motivations for the various tests are summarised in Table 7.1. These analyses

were carried out using JASP v.0.8.0.0 (JASP Team, 2018) and R (R Development Core

Team 2019).

7.2.5 Movement Model

A simple individual movement model incorporating inter-individual variation was con-

structed to illustrate how different patterns of space use can emerge as a consequence of

incorporating individual variations. Predicting individual and group level dynamics of

stickleback fish is important to help understand and solve ecological questions such as
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Question to answer Test Motivation for test
1. Did the population
level movement
behaviour change
depending on how
many objects were in
the tank?

ANOVA Test for similarities in mean values.

2. Did the
environment affect
the behaviour of fish
at the individual
level?

Deviation from
mean

Test to see if individuals changed
behaviour as environment changed by
measuring differences from their mean
behaviour across all trials

3. Did the
environment affect
the behaviour of the
fish at the population
level?

MANOVA
Test for similarities in mean values of
the population across the three
environments

Wilcoxon-paired

Compared the population means in
pairs of environments (e.g. behaviour
in simple and moderate environments
may be similar but movement in
complex could be different). This
detail would not necessarily be picked
up by the MANOVA.

ANOVA Test for similarity of mean values.
4. If the environment
did not affect
behaviour, were there
differences in the
behaviour of fish
when compared to
each other
disregarding the
environmental
factors?

Levene’s
Test for similarity in variances for
each statistic between fish.

5. Was the behaviour
of individuals
consistent throughout
the experiment?

ICC

Measure of repeatability and for
indicating proportion of variance
which can be assigned to differences
within and between individuals

Table 7.1: Summary of statistical tests used in the analysis of the fish movement
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shoaling behaviour (Hoare et al, 2000; Harcourt et al, 2009), social interaction (Jolles

et al, 2015) and foraging activity (Giles, 1987). The complex group level movement

dynamics can be explained by building up models from rules of individual movement.

Therefore, an accurate model of individual movement can be used to describe group level

movement dynamics as well as inform predicted individual movement patterns (Gautrais

et al, 2012; Zienkiewicz et al, 2015).

Three simple models were initially considered and compared, with parameter values

derived from the data. These were: (i) a simple random walk (SRW) (See Chapters 2 &

3), (ii) a correlated random walk (CRW) (see Chapters 2 & 3) with turning angles drawn

from a wrapped Cauchy (WC) distribution with ρ = 0.7 (the best fitting distribution at

the population level, found using the circular package in R (Agostinelli & Lund, 2017)),

(iii) a CRW with turning angles from a WC distribution with ρ = 0.85 (average rho

value of the best fitting wrapped distribution of the 5 most active fish - that is the 5

recordings where the fish were deemed stationary for the least amount of time, across

any of the environments, for any fish and any run) and an additional parameter, ν,

controlling the amount of time spent stationary (%). These models were chosen as;

model (i) acts as a simple null model with essentially Brownian motion, model (ii) is the

simple CRW model often used in individual animal movement (Kareiva & Shigesada,

1983) and model (iii) gives a more complicated model utilising the time spent stationary

parameter as a proxy for individuality. The ρ value was not chosen as the parameter

to determine individuality as, though it would affect most space-use statistics, it would

not result in differences for Distance Moved. Whereas, varying time spent stationary

would affect all of these statistics. A more advanced model would take into account

varying both parameters, but here we wanted to consider only the simplest extension of

the traditional CRW model. Step lengths were all drawn from a truncated exponential

distribution, TEXP (x) which has form

TEXP (x;λ, k) =
λ−1 exp (−xλ−1)

1− exp (−bλ−1)

where, λ, is known as the rate and, k, the threshold value. Values for these parameters
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Figure 7.4: Method for calculating the new location in the movement model if a step
took the fish out of the bounds of the tank, or into an object. The step-length was not
changed but the new angle θnew was chosen so that the value |θold–θnew| was minimised
with the new location being inside the confines of the tank

were calculated directly from the data and were determined to be λ = 1/40 and threshold

value of k = 5 (corresponding to the movement threshold value discussed in section 7.2.3).

These were found using the fitdistrplus package in R (Delignette-Muller & Dutang, 2015).

For all models the rule governing the interaction of fish with the tank wall or the

objects was that if the initial step took the simulation past the wall or into an object,

the initial step length was kept and a new turning angle was calculated by finding the

smallest magnitude change from the original angle which would result with the new

location not being in a restricted area (Fig. 7.4). This was chosen for the model as the

recorded movement indicated that fish had a propensity to follow the walls of the tank

and the boundary of the objects (Fig 7.3).

To compare the accuracy of the models with the observed data, simulations were run

for the same number of fish (n = 15) and the same number of time steps (138).

7.3 Results

7.3.1 Comparing Between Fish per Environment

Individual fish displayed significant differences from each other in all three environment

(Simple (Sim) – 2 objects; Moderate (Mod) – 3 objects; Complex (Com) – 5 objects)

for Distance Moved (Sim F = 9.329, p < 0.001; Mod F = 5.712, p = 0.002; Com F =

5.763, p = 0.002) and SL (Sim F = 2.718, p = 0.036; Mod F = 8.343, p < 0.001; Com
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F = 5.151, p = 0.002). TA varied significantly for both the moderate (F = 3.827, p =

0.009) and complex environments (F = 2.595, p = 0.043) and the variance in Sinuosity

was found to be significant only in the complex environment (F = 4.400, p = 0.004) along

with Time Spent Stationary (F = 5.151, p = 0.002). Burst Frequency was found to vary

significantly only in the simple environment (F = 3.373, p = 0.015). The results showed

that the number of parameters with significant differences increased as the complexity

of the environment increased, which could be evidence that the fish display more varied

behaviour as the environment became more occupied with objects (see Appendix D4 for

the complete ANOVA test results).

7.3.2 Comparing Fish across Environments

7.3.2.1 Population Level

Aggregating the data at the population level for each environment and performing a

MANOVA to test for differences between mean values across all three environments in-

dicated that there were significant changes in Time Spent Stationary (F = 3.209, p =

0.048) and Occupation Time - Object (F = 6.934, p = 0.002) (Appendix D5). Visual

inspection of boxplots for the parameters (Fig 7.5) indicate that in general, there was

little variation across environments with the exception of Occupation Time - Object.

Interestingly, Time Spent Stationary does not clearly vary across the environments de-

spite the result from the MANOVA (Fig 7.5B; Appendix D5), although this is further

explained when considering the behaviour at the individual level (see section 7.3.2.2).

Conversely, Occupation Time - Wall does appear to vary across environments although

this was not picked up by the MANOVA (Fig 7.5H; Appendix D5).

To test for differences between pairs of environments the Wilcoxon two-sample paired

signed rank test was used. Table 7.2 demonstrates that in general, similar to the

MANOVA, there were not statistically significant differences between pairs of environ-

ments for any parameters, with the exception of Occupation Time - Free Water when

comparing between the simple and moderate environments (V = 332, p = 0.040) and

Occupation Time - Object between the simple and complex environment (V = 76, p =
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Sim-Mod Sim-Com Mod-Com
Stat (V) p-value Stat (V) p-value Stat (V) p-value

Distance
Moved

178 0.271 254 0.670 273 0.416

Time spent
stationary

447 <0.001* 437 <0.001* 352 0.013*

SL 190.5 0.567 182 0.449 225 0.882
TA 307 0.129 252 0.700 185 0.339

Sinuosity 304 0.146 254 0.670 163 0.158
Burst Freq. 239 0.903 183 0.318 191 0.405
Space Use 221 0.824 249.5 0.734 250.5 0.719
Occupation
Time -Free
Water (%)

332 0.040* 321 0.070 246 0.792

Occupation
Time - Wall

(%)
182 0.449 298 0.184 317 0.084

Occupation
Time - Object

(%)
141 0.061 76 0.001* 155 0.114

Table 7.2: Results of the Wilcoxon-paired test looking for similarities in the mean values
between pairs of environments. Results marked with an asterisk (*) indicate significant
(p < 0.05) differences between means

0.001). However, there was clear indication the median value for Time Spent Stationary

did change, supporting the finding of the MANOVA.

7.3.2.2 Individual level

Testing for statistically significant results in how individuals varied their behaviour be-

tween environments is unreliable due to the small number of repeats (2 per environment),

therefore a reliable direct comparison of measures such as variance, mean, median is not

possible. However, a simple line plot connecting the mean value of each parameter across

each environment, Fig. 7.6 appears to indicate that there is no general pattern in the

change of the parameter as the environment changed e.g. if Distance Moved was to de-

crease as the environment got more complex we would expect to see a constant negative

gradient across the majority of fish, however this does not appear to be the case. As

this relies purely on visual inspection a simple residual calculation was used to identify

if any trend existed in the change of the mean values. This calculated the sum of the
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Figure 7.5: Boxplots of calculated statistics for every individual run compared across
environments. Colours represent individual fish, with the same fish having the same
colour across all runs and environments
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distances of the two data points measured in each environment, from the mean of the

parameter across all 6 measurements for each individual. This measure gives an idea

of how much individuals varied their behaviour in each environment compared to their

average behaviour over all environments and therefore gives a clearer indication of trends

across the population. Figure 7.7 plots these values for all fish by environment per mea-

sured statistic. The plots indicate that Burst Frequency and Occupation Time - Free

Water, Occupation Time - Wall and Occupation Time - Object did not change as the

environment changed at the individual level. Both Distance Moved and Space Use (%)

displayed a general increase from the Simple to the other two environments although

this was not the case for all the fish, indicated by the plots straddling 0 for all environ-

ments. Sinuosity was seen to decrease, whereas SL and TA increased in general as the

environment got more complex indicating that on the whole fish swam in straighter lines

with longer steps, taking smaller turns as the environment became more complex. This

initially seems counter-intuitive as one might expect that the fishes’ movement would

become more tortuous, featuring smaller steps and larger turns as the environment be-

came more cluttered with objects, however, our findings could be explained by the high

correlation between these measures; that is large steps often occur with smaller turning

angles (see Appendix D1; Fig 7.13). Therefore in environments with more objects, the

fish are forced to swim in areas with less free water so they cannot take as meandering a

path and therefore, move with smaller turning angles. Most striking is the Time Spent

Stationary which is clearly shown to decrease as the environment complexity increases,

the plots are seen to hardly overlap indicating that for almost all fish there was a consis-

tent negative change across the environments. This shows that as the number of objects

in the environment increased, the amount of time fish spent moving also increased.

7.3.3 Comparing Fish disregarding environments

To look for evidence of consistent movement behaviour within individuals we consider

the variance of the calculated statistics for each fish across all environments; 6 data

points (2 runs per environment) per individual. Comparing the size of variation in the
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Figure 7.6: Line plots demonstrating how the calculated statistics varied for individual
fish across environments. The mean value of the two runs per environment are plotted
with each individual represented by a different colour
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Figure 7.7: Boxplots indicating the difference between the mean value for an individual
fish across all six individual trials and each individual trial. The 2 differences for each
environment were summed for each individual with plots representing these values for
the whole population (15 individuals)
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Distance

Moved

Time spent

stationary
Step-length TA (rho) Sinuosity

Stat (W) 2.4292 2.2065 0.80821 1.717 4.4776
p-value 0.007* 0.015* 0.641 0.07 <0.001*

Burst Freq. Space Use
Occupation Time

- Free Water

Occupation Time

- Wall

Occupation Time

- Object

Stat (W) 1.1769 1.3878 1.3568 1.6311 0.74517
p-value 0.311 0.180 0.196 0.090 0.723

Table 7.3: Results of Levene’s Test comparing between fish disregarding the change in
environment. Values marked with an asterisk (*) indicate significant results (p < 0.05)

statistics across all fish will give an indication if any statistic has a consistent level of

variability across the environments. Figure 7.8 indicates a similar level of spread around

the median value across the 6 data points for all fish, regardless of the median value.

Levene’s Test indicated that there was significant similarity across all fish for all of the

calculated statistics except for Distance Moved (W = 2.4292, p = 0.007), Time Spent

Stationary (W = 2.2065, p = 0.015) and Sinuosity (W = 4.4776, p < 0.001) (Table

7.3). However, it is worth noting that if the extreme outliers are removed from the data

(points which are greater than Q3 + 1.5× IQR or less than Q1− 1.5× IQR; where Q1,

Q3 are the lower and upper quartiles respectively and IQR is the inter-quartile range

of the population) then there is evidence that the variances across all fish for Distance

Moved are similar (W = 1.6326, p = 0.10). Similarly, the plot for Sinuosity (Fig 7.8E)

shows that Fish 6 is the clear outlier, giving a much larger spread than any of the other

individuals, without this the spread amongst the remaining fish is much closer.

As Levene’s Test revealed that the variances were similar across all measures an

ANOVA was then used in order to discern whether there was significant differences

in the means of the measures between fish. Table 7.4 demonstrates that there were

statistically significant differences between the fish across all the measures (p < 0.01),

indicating that the fish displayed highly variable behaviour when compared between each

other.

The results of calculating the ICC indicate that all the summary movement param-

eters and the space-use parameters have significant consistency (p < 0.05; Table 7.5)
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Cases Sum of Squares df Mean Square F p

Distance moved 1.391e+10 14 9.934e+8 5.987 <.001
Residual 1.244e+10 75 1.659e+8
Time spent stationary % 1.171 14 0.084 6.243 <.001
Residual 1.004 75 0.013
Step length 125.4 14 8.957 12.91 <.001
Residual 49.96 72 0.694
Turning Angle 0.331 14 0.024 2.514 0.005
Residual 0.706 75 0.009
Sinuosity 0.696 14 0.05 6.256 <.001
Residual 0.596 75 0.008
Burst Frequency 0.002 14 1.711e-4 1.984 0.03
Residual 0.006 75 8.622e-5
Space Use 0.786 14 0.056 10.18 <.001
Residual 0.413 75 0.006
Occupation - Free Water 0.698 14 0.05 2.228 0.014
Residual 1.68 75 0.022
Occupation - Wall 0.909 14 0.065 2.44 0.007
Residual 1.997 75 0.027
Occupation - Object 0.402 14 0.029 1.823 0.05
Residual 1.181 75 0.016

Table 7.4: Results of the ANOVA comparing between fish disregarding the change in
environment.
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Measure ICC 95% CIs p-value

Time spent stationary 0.54 (0.32, 0.77) <0.001
Step length 0.73 (0.56, 0.88) <0.001

Turning angle 0.20 (0.04, 0.48) 0.037
Sinuosity 0.50 (0.29, 0.74) <0.001

Burst Freq 0.50 (0.00, 0.81) 0.030
Space-use 0.62 (0.42, 0.82) <0.001

Distance travelled 0.83 (0.66, 0.94) <0.001
Occupation time – Free Water 0.17 (0.02, 0.44) 0.014

Occupation time – Wall 0.19 (0.03, 0.47) 0.007
Occupation time – Object 0.16 (0.00, 0.43) 0.019

Table 7.5: Results of calculating the ICC for the calculated statistics, along with the
95% CIs and the associated p-value

although the values at the 95% CI are quite wide for all parameters, indicating that

whilst there is evidence for consistency it is not conclusive.

The ICC also revealed that a statistically significant proportion of the variation in all

the parameters was attributed to variation among individuals. The variation in the key

descriptive movement parameters of Time Spent Stationary (ICC = 0.54 [0.32 − 0.77],

p < 0.001), SL (ICC = 0.73 [0.56− 0.88], p < 0.001) and TA (ICC = 0.20 [0.04− 0.48],

p = 0.0037), indicate that the fish displayed intra-specific movement specialisations.

That a significant proportion of the variation in fish activity (Distance Moved; ICC

= 0.83 [0.66 − 0.94], p < 0.001) and exploration (space use; ICC = 0.62 [0.42 − 0.82],

p < 0.001).

7.3.4 Movement Model

7.3.4.1 Model Selection

To compare between the three considered models (see section 7.2.5), the summary statis-

tics of Distance Moved, Space Use (%), Occupation Time – Free Water, Occupation

Time – Wall and Occupation Time – Object were compared in pairwise plots against

the observed data. From these it was clear that Model (iii), a CRW with a parameter

controlling Time Spent Stationary, most closely fit the observed data (see Appendix D6

for a more complete comparison). Whilst this is to be expected as model (iii) is the most

complex, that the model reproduces the observed results for the space use statistics,

199



200



Figure 7.8: Box plots indicating the spread of the calculated statistics for each individual
fish across all environments (red = Simple, blue = Moderate, green = Complex)
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despite only being a simple extension on the CRW in model (ii), is interesting.

7.3.4.2 Comparison between observed data and model

Having determined the model which most closely fits the observed data, we consider the

accuracy of such a model by directly comparing how the Distance Travelled, Space Use

and Occupation Time values vary against the Time Spent Stationary for the model and

the observed data.

Figure 7.9 shows the results when comparing the Distance Moved against Time Spent

Stationary (%). Figure 7.9A plots the results from the simulated data with the filled grey

triangles representing individual data points and the open red triangles representing the

calculated average in Distance moved, y, for a specific value of Time Spent Stationary,

x. This average was calculated as a type of moving average. Each plot point, (x̄, ȳ), was

found by considering all data points with x coordinate within ε of x̄. The corresponding y

values were mean averaged to find the value for ȳ. Here ε was chosen as 0.05 (for example

for x̄ = 0.5 all y values with corresponding x value between 0.45 and 0.55 were averaged

to give ȳ, the coordinate for x̄ = 0.5). Other values were considered for epsilon, with too

small values giving unreliable results as points on the x-axis (Time Spent Stationary)

were often too spread out, and too large values resulting in overly smoothed results.

However it should be noted that the results of differing epsilons gave similar results

when comparing between simulated and observed data. The dashed lines represent this

moving average value plus/minus the standard deviation of the data points within the

±ε window. Fig 7.9B plots the Distance Travelled against Time Spent Stationary from

the observed data, with the open black circles representing the same moving average

as described previously. Visual comparison of the moving average values for both the

simulated and observed data (Fig 7.9C) demonstrates a reasonable fit, however, there is

a clear difference in the level of variation observed, highlighted by the associated dashed

lines (corresponding to the s.d’s) with the observed data having a much wider range of

values, although the overall trend of the moving average is similar in both. The linearity

in the model results is expected due to the setup of the model since the expected distance
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travelled in the model can be calculated simply by, D = τ(1−ν)E[l], where τ = number

of time steps, ν = Time spent stationary (%), E[l] = expected step length. In model

(iii) the step lengths were described by an exponential distribution with rate = 1/40,

so E[l] = 40, and as τ was simply a constant, D will therefore decrease linearly as ν

increases.

Figure 7.10 shows the results for the Occupation Time. Similar to Distance Moved,

the moving average points show a good overall fit, however, the spread of values is not

as accurate (demonstrated by the dashed lines). The values here for Occupation Time

are for all environments combined as each individual environment was shown to give

quantitatively similar results.

Figure 7.11 directly compares the Space Use for all environments combined (Space

Use compared by each environment separately was seen to be similar with no notice-

able difference), here both the moving average and spread were closely matched by the

simulations.

In general the simulations seem to indicate that the simple model is a reasonable

reconstruction of the movement, for the specific confines of the experimental setup.

7.4 Discussion

Understanding how animals move through and interact with their environment is a

key aim in movement ecology. It has been shown in recent reports that in order to

understand a species’ utilisation of space, individual behaviour and variation must be

included in models especially when attempting to scale up behaviour to population level

(Dingemanse & Dochtermann 2013; Sih et al, 2018). Here individuality was incorporated

into a movement model by simply allowing the time spent stationary to vary, and it was

demonstrated that even this simple change resulted in a model with more accuracy than

a basic CRW.

Here we have demonstrated that individuality rather than environment plays a more

significant role in explaining the variation in movement of stickleback fish in our sample

population. Simple statistics used to describe and characterise movement, such as dis-
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Figure 7.9: Distance Travelled against Time Spent Stationary (%) for the simulated
model (A), the observed data (B) and comparing both of them grouping data from
all environments (C). Grey points represent each individual result, with the open red
triangles and open black circles giving the moving average as described in the text.
Dashed lines represent the moving average plus/minus the standard deviation within
epsilon of the x-values plot points.
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Figure 7.10: Comparing the Occupation Time (%) of the simulations (A-C) and the
observed data (D-F) as functions of Time Spent Stationary (%).

205



Figure 7.11: Space Use (%) against Time Spent Stationary (%) for the simulated model
(A), the observed data (B) and a direct comparison (C). Data is grouped from all en-
vironments. Grey points represent each individual result, with the open red triangles
and open black circles giving the moving average as described in the text. Dashed lines
represent the moving average plus/minus the standard deviation within epsilon of the
x-values plot points
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tance moved, space use and sinuosity were seen to take a range of mean values across the

population. However, the variance for each statistic was similar across all fish, possibly

indicating that whilst fish have the ability to move in a variety of manners at the pop-

ulation level, each individual will only deviate from its average behaviour by a similar

amount. Specifically, the finding that Space-Use and Distance Moved were also consis-

tent and repeatable within individuals (shown by ICC results, Table 7.5) is consistent

with other studies, which subsequently used this as evidence to suggest that sticklebacks

display ‘personality’ traits of shyness and boldness (Harcourt et al, 2009; Nakayama et

al, 2012; Dingemanse et al, 2012).

In general, the variance of each movement statistic was similar for each fish regardless

of the number of objects in the environment. However, the Wilcoxon-paired test (Table

7.2) found that there was significant differences in the Time Spent Stationary, when

comparing between environments. Our results indicated that as the number of objects

in the tank increased the fish spent more time active, which agrees with the finding

that in the simple environment, the majority of fish covered less distance on average

compared to the moderate and complex (Fig. 7.7A). A naive explanation for this could

be due to the fish having fewer novel objects to explore. However, as the time spent near

an object (Occupation Time – Object) did not noticeably increase with the number of

objects this suggests that this is not the case and therefore the reasoning for this increase

in movement is unclear.

The observation that fish varied from movement covering a large percentage of the

tank to less exploratory more localised movement has been noted in previous experiments

with sticklebacks and other fish (Zienkiewicz et al, 2015; Furtbauer et al, 2015, Gautrais

et al, 2009) and has been considered a further indicator of the personality traits of bold-

ness and shyness (Huntingford 1976). Characterising and understanding these specific

traits is an important question in fish ecology as they have demonstrable consequences

in key ecological tasks, such as foraging (Nakayama et al, 2012) and shoaling preference

(Harcourt et al, 2009).

Zienkiewicz (Zienkiewicz et al, 2015) noted that in a tank of similar dimensions to

207



the one used here, across a sample population of 20 zebrafish (Danio rerio), movement

was seen to highly vary across individuals, from tightly winding paths to more ‘fluid tra-

jectories’ which explored a large percentage of the tank. More specific characteristics of

the movement were also found to be similar to our observations, with many fish display-

ing movement interspersed with times of stationarity and sudden bursts of movement.

Interestingly, the movement model which Zienkiewicz found to be the most pertinent in

replicating the movement was a continuous time ‘Persistent Turning Walker’ (adapted

from the model of Gautrais; Gautrais et al, 2009; Gautrais et al, 2012) where constant

speed was insufficient in describing the individual variability, similar to the findings in

our simple model of the movement. However, in contrast to our model in which the time

spent stationary was controlled, a parameter controlling sudden burst movement was

included. Whilst the model of Zienkiewicz is more complex and detailed than the one

demonstrated here it is notable that both models represented individual variability in

movement purely by including some stochasticity in either sudden spontaneous increase

in speed (Zienkiewicz et al (2015), or as in our model, sudden bouts of stationarity.

Persistence in movement direction has also been a feature in other movement models

of fish (Gautrais et al, 2009; Mwaffo et al, 2014; Gautrais et al, 2012), and whilst

the simple model used here was not produced as a reliable reconstruction of general

stickleback movement, the inclusion of a parameter controlling the time spent stationary

made the simple discrete CRW a straightforward ersatz movement model of individual

sticklebacks. There are many ways in which the model could be adapted to become more

realistic, including a term representing sudden burst of activity would take into account

the fishes propensity for sudden movement (as mentioned above in Zienkiewicz et al,

2015). Similarly, as has been discussed previously there was a clear indication that the

time spent stationary decreased across the population as the number of objects in the

experimental arena increased, therefore adapting the current parameter to be a function

of the number of objects should increase the accuracy. However, as the model was only

intended to be a simple reconstruction of the movement for our specific experimental

setup, making complicated adjustments would likely return only small improvements
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without yielding any major insight into the movement behaviour of our population.

Ideally any improvements should allow the model to be scaled up to environments of

differing dimensions and features in order to explore and predict the expected behaviour

in more natural and less contrived environments. This could then allow for predictions of

important ecological questions such as foraging success (Day & McPhail, 1996; Webster

& Hart, 2006), encounter rate (Kozak et al, 2013) and dispersal ability or shoal selection

(Harcourt et al, 2009). In general the simple model compared qualitatively well to the

observed data and its simplicity results in a model which is easier to understand and use

then the more complicated alternatives found in other fish models (Mwaffo et al, 2015;

Zienkiewicz et al, 2014; Gautrais et al, 2009).

Bringing together movement ecology and personality theory is important as it will

lead to models of animal movement informed by observed data which can reliably and

accurately reproduce movement at both individual and population level leading to a

better and more complete understanding and predictability of movement across all spatial

scales (King et al, 2018). Although it should be said that social interactions and their

effects on individual movement behaviour must also be studied to better understand the

impacts social connections can have on movement behaviours (Herbert-Read et al, 2013;

King et al, 2015; Fürtbauer & Fry, 2018).

7.5 Conclusions

• We found that in 3 simple experimental environments containing differing number

of objects/shelters, stickleback fish movements were highly consistent within indi-

viduals but varied significantly between individuals. This indicates that fish in our

sample population had a range of possible mean behaviours. However, individuals

could only vary behaviour from their norm by a similar amount.

• Changes in the environment did not explain variability in the sample population,

with a significant proportion of the observed variation attributed to individuality.

• Fish were seen to increase their movement activity as the number of objects in the
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environment increased.

• Our findings highlight the importance of including individual variation when at-

tempting to analyse and understand population or group level behaviour. Future

work should further develop how measures of individual variation in movement

parameters can be used to understand and classify animal ‘personality’ and vice-

versa.

• We demonstrate that a CRW incorporating a parameter controlling time spent

stationary provides a straightforward model to recreate the observed measures

concerning space use.

• More experimentation would need to be done to analyse the simple model’s veracity

as in its current form it is unlikely to scale to differing size arenas including differing

spatial characteristics, since it relies heavily on values for parameters fitted to the

data from this particular experimental setup. However, as a simple measure to

understand the variation within a sample population of fish it matches the observed

data reasonably.
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7.6 Appendices

7.6.1 Appendix D1– Initial processing of data and population level analyses

Initial processing of data

The raw movement data, filmed using a Panasonic HDC-SD60 HD video camera (Pana-

sonic Corporation of North America, Seraucus, NJ, USA) and processed at a frequency

of 25Hz using IDTracker software (Pérez-Escudero et al, 2014), was initially analysed by

considering the distribution of turning angles in order to check for obvious issues caused

by the recording and processing methods.

Figure 7.12: Distribution of turning angles for the raw data

The distribution displayed “swan-tails” at the extremes (Fig. 7.12) indicating a high

frequency in near 180◦ turns. Whilst this could be a feature of the movement paths or a

possible indication of multiple movement phases (Chapter 6; Parton & Blackwell, 2017)

the raw data was checked for common problems associated with this type of movement

data analysis.

Firstly, similar to the data processing in Chapter 5, as movement would be clas-

sified into periods of purposeful movement and stationarity a minimum instantaneous

speed threshold was introduced (Chapter 5; Mashanova et al, 2010). Instantaneous

speeds (distance travelled between consecutive time steps) above this threshold would
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Figure 7.13: Step-length (x-axis) against the preceding cosine of the turning angle (y-
axis). Red vertical lines represent possible speed thresholds to determine purposeful
movement.

be classified as purposeful movement, whereas any speeds below would be considered as

non-purposeful movement and would therefore be given a speed of 0. This would help

separate movement attributed to true dislocation, from movement caused by attempting

to remain stationary such as movement due to currents or eddies in the tank. A range of

minimum speed threshold values were considered: 2mm/s, 5mm/s, 12.5mm/s , as well

as no minimum speed threshold at all (Fig. 7.13). The minimum speed threshold of

5mm/s was used for the main analysis presented as this allowed for the retention of the

largest number of data points while allowing objective classification of bouts. The use

of different minimum speed thresholds did not lead to qualitatively different results.

Closer inspection of the processed movement paths revealed that paths were formed

of jagged movement, despite the corresponding video showing no evidence of such piece-

wise movement (Fig 7.14). This is most likely due to the method used by the processing

software (IDTracker software) and the way in which it determines the ‘centre’ of the

moving fish when processing the videos. This gives slight variances in the precise central

position of the fish, similarly, it was noted that due to occasional activity around the

outside of the tank, there was occasional swaying visible during the recording itself.

To combat this, a sampling rate was introduced to help prevent false large turns being

recorded, which also ensured the fish had enough time to move between temporal points.
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Figure 7.14: A zoomed in segment of an individual path. The points are the location
found at the recorded level of 25Hz

Figure 7.15: Distribution of turning angles after the data had been sampled at a rate of
2.5Hz and a speed threshold of 5mm/s had been introduced.

Various sampling rates were used; 25Hz, 10Hz, 2.5Hz and 1Hz. In order to not lose the

fidelity of the turning angles, whilst still removing as many of the erroneous large turns

as possible, as well as giving a large enough temporal window between time steps to give

a reasonable spread of step-lengths, the 2.5Hz sampling rate was considered the most

accurate (Delcourt et al, 2013), although it should be noted the alternative sampling

rates did not qualitatively change the results.

The consequences of instigating a speed threshold as well as a sampling rate resulted

in a turning angle distribution which had smaller swan wings and was symmetric about

0 (Fig. 7.15).
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Figure 7.16: Demonstrating the locations of large turns with magnitude (> π/2). Green
points are closer to π/2 with red turns closer to π. Points are for all fish across all trials
in the simple environment only.

Finally, due to the confines of the experimental setup, the effect of the borders of the

tank were investigated to ascertain as to whether the majority of the large turns were

caused by the fish coming into contact or proximity with the walls of the tank. This was

tested by plotting the locations of all large turns (those with magnitude greater than

π/2). Fig. 7.16 demonstrates that these large turns were concentrated, not just at the

walls but also near to the objects, with fewer taking place within open water, although

there was a spread across the entirety of the experimental arena. Simply removing the

turns which took place within close proximity to the wall (in this case turns which took

place within 5cm of the wall), did not significantly alter the distribution of turning angles

(Fig A6) however, as this caused more data to be removed from the analyses without

altering the results these points were included in the final analysis. More advanced

techniques for interpreting interactions with walls and barriers have been considered by

Gautrais et al (2009) however here these were not included in order to keep the analysis

as simple as possible.

Therefore, in the final analysis a speed threshold of 5mm/s and a sampling rate of

2.5Hz was chosen, without any additional effects caused by barrier interaction taken into

account.
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Figure 7.17: Distribution of turning angles with a sub-sampling rate of 2.5Hz, a speed
threshold of 5mm/s and the removal of turns close to the border of the experimental
tank.

Simple Population level analysis

As a simple preliminary comparison of the effect the different environments had on

the movement of the fish when considered as a population, the distributions of turning

angles and the instantaneous speeds (step-lengths) were compared. Figures 7.18 & 7.19

indicate that at the population level there was no discernible differences between these

simple summary distributions.
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Figure 7.18: Distribution of step-lengths for the simple environment (2 objects) – black;
moderate environment (3 objects) red; complex environment (5 objects) – green. Data
were subsampled at a rate of 2.5Hz with speed threshold of 5mm/s

Figure 7.19: Distribution of turning angles for the simple environment (2 objects) –
black; moderate environment (3 objects) – red; and complex environment (5 objects) –
green. Data were subsampled at 2.5Hz with a speed threshold of 5mm/s)
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7.6.2 Appendix D2 - Effect of using a different array size for determining

space use

In order to estimate the percentage of the arena which the fish visited throughout the

experiment the tank was subdivided into an n by n array and the space use percentage

was calculated by counting the number of subdivisions which the fish visited at least

once divided by the total number of subdivisions. The results would depend upon the

number of subdivisions made with too few leading to large areas which would give falsely

high values for the space use measure, whereas too fine an array would result in many

cells registering as not being visited giving similar and falsely low values for space use.

Values considered for n ranged from 10 to 100 at intervals of 10. Fig 7.20 demonstrates

that in general the value for n did not affect the value for Space Use relative to each

other, although as expected small values of n gave high levels of space use and larger

values returned smaller values. The value 50 was chosen as this represented the value of

n for which the relative Space Use between fish was constant and it returned the value

at which the curves in Fig 7.20 began to return a shallow gradient.
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Figure 7.20: The effect of array size (n) against calculated Space Use (%). Results are
shown for both the first trial (left column) and the second trial (right column) across
each separate environment (rows). Each fish has the same colour in all plots.
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7.6.3 Appendix D3 - Effect of using a different value for dividing tank into

regions of Free Water, Near the Wall and Near an Object

When considering whether a fish was remaining within the proximity of either an object

or the boundary of the tank (wall) a fixed distance was required to be chosen. This

classified locations of fish into three distinct areas, Near to an Object, Near to a Wall

– where ‘Near to’ was considered being with the fixed distance; all other areas were

considered Free Water. In order to determine the most appropriate value for this distance

a range of values were initially considered from 10mm to 150mm at 10mm intervals. Fig

7.21 shows how the percentage of time in each location changed as the distance value

changed across each environment. In general the plots show a linear relationship between

the distance and the % Time for all locations across all three environments, a relationship

which becomes even clearer when considering the middle range of 40-100mm. Therefore,

whilst the specific choice of value to be used throughout the analysis was somewhat

arbitrary, 70mm was chosen as it lay within the middle of the viable range and is the

approximate body length of an individual fish.
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Figure 7.21: Demonstrating how distance for determining if fish were ’near’ to a part of
the environment (x-axis) effects the % of time spent in that section of the environment.
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7.6.4 Appendix D4 - ANOVA Results between fish per environment

An ANOVA was used to test for similarity in the mean values of the calculated statistics

between the 15 fish per environment (see section 7.2.4).

Tables 7.6-7.8 show the full results of the ANOVA tests for significance in the variation

of the summary statistics discussed in the main text across each other three environments.

All tests are for a sampling rate of 2.5Hz and speed threshold value of 5mm/s. Significant

results (those with p < 0.05) are denoted with an asterisk (*) and imply statistics for

which there were significant differences comparing between the 15 fish per environment.
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Simple Environment
Cases Sum of Squares df Mean Square F p

Distance Moved 2.200e+9 14 1.572e+8 7.246 <.001*
Residual 3.253e+8 15 2.169e+7
Time spent stationary 0.553 14 0.04 1.752 0.146
Residual 0.338 15 0.023
Step-length 38.39 14 2.742 2.718 0.036*
Residual 14.12 15 1.009
TA (rho) 0.147 14 0.011 0.827 0.636
Residual 0.19 15 0.013
Sinuosity 0.2 14 0.014 1.24 0.341
Residual 0.173 15 0.012
Burst Frequency 0.004 14 2.897e-4 1.497 0.224
Residual 0.003 15 1.935e-4
% Space used 0.326 14 0.023 2.893 0.025*
Residual 0.121 15 0.008
% Time Free Water 0.328 14 0.023 0.725 0.724
Residual 0.485 15 0.032
% Time Wall 0.336 14 0.024 1.205 0.361
Residual 0.298 15 0.02
% Time Object 0.112 14 0.008 0.688 0.755
Residual 0.175 15 0.012

Table 7.6: Results of the ANOVA comparing between individuals for the Simple envi-
ronment
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Moderate Environment
Cases Sum of Squares df Mean Square F p

Distance Moved 4.435e+9 14 3.168e+8 2.57 0.04*
Residual 1.849e+9 15 1.233e+8
Time spent stationary 0.374 14 0.027 1.598 0.189
Residual 0.25 15 0.017
Step-length 59.827 14 4.273 8.343 <.001*
Residual 7.171 15 0.512
TA (rho) 0.076 14 0.005 3.192 0.016*
Residual 0.026 15 0.002
Sinuosity 0.165 14 0.012 1.895 0.116
Residual 0.094 15 0.006
Burst Frequency 2.657e-4 14 1.898e-5 1.68 0.165
Residual 1.694e-4 15 1.130e-5
% Space used 0.319 14 0.023 4.447 0.003*
Residual 0.077 15 0.005
% Time Free Water 0.496 14 0.035 1.774 0.141
Residual 0.3 15 0.02
% Time Wall 0.512 14 0.037 1.226 0.35
Residual 0.448 15 0.03
% Time Object 0.365 14 0.026 3.166 0.017*
Residual 0.124 15 0.008

Table 7.7: Results of the ANOVA comparing between individuals for the Moderate
environment
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Complex Environment
Cases Sum of Squares df Mean Square F p

Distance Moved 4.435e+9 14 3.168e+8 2.57 0.04*
Residual 1.849e+9 15 1.233e+8
Time spent stationary 0.374 14 0.027 1.598 0.189
Residual 0.25 15 0.017
Step-length 59.827 14 4.273 8.343 <.001*
Residual 7.171 15 0.512
TA (rho) 0.076 14 0.005 3.192 0.016*
Residual 0.026 15 0.002
Sinuosity 0.165 14 0.012 1.895 0.116
Residual 0.094 15 0.006
Burst Frequency 2.657e-4 14 1.898e-5 1.68 0.165
Residual 1.694e-4 15 1.130e-5
% Space used 0.319 14 0.023 4.447 0.003*
Residual 0.077 15 0.005
% Time Free Water 0.496 14 0.035 1.774 0.141
Residual 0.3 15 0.02
% Time Wall 0.512 14 0.037 1.226 0.35
Residual 0.448 15 0.03
% Time Object 0.365 14 0.026 3.166 0.017*
Residual 0.124 15 0.008

Table 7.8: Results of the ANOVA comparing between individuals for the Complex envi-
ronment
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7.6.5 Appendix D5 - MANOVA Results

A MANOVA was used to test whether the mean values of the calculated statistics

changed at the population level as the environment changed (see section 7.2.4).

Table 7.9 show the full results of the MANOVA tests for significance in the variation

of the summary statistics when comparing the results for all fish at the population level

across the three environments. All tests are for a sampling rate of 2.5Hz and speed

threshold value of 5mm/s. Significant results (those with p < 0.05) are denoted with an

asterisk (*) and imply statistics for which there were significant differences comparing

between the environments.
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Sphericity

Correction
Sum of Squares Df Mean Square F p

Distance Moved None 1.693e+8† 2† 8.467e+7† 0.762† 0.471†
G-G 1.693e+8† 1.272† 1.331e+8† 0.762† 0.418†

Residual None 6.442e+9 58 1.111e+8
G-G 6.442e+9 36.9 1.746e+8

Time spent stationary None 0.041 2 0.02 3.209 0.048*
Residual None 0.366 58 0.006
Step-length None 0.956 2 0.478 0.738 0.483
Residual None 36.263 58 0.648
TA (rho) None 0.035† 2† 0.018† 1.765† 0.18†

G-G 0.035† 1.302† 0.027† 1.765† 0.192†
Residual None 0.581 58 0.01

G-G 0.581 37.76 0.015
Sinuosity None 0.017† 2† 0.009† 1.848† 0.167†

G-G 0.017† 1.54† 0.011† 1.848† 0.177†
Residual None 0.274 58 0.005

G-G 0.274 44.667 0.006
Burst freq. None 1.045e-4† 2† 5.223e-5† 0.587† 0.559†

G-G 1.045e-4† 1.247† 8.380e-5† 0.587† 0.484†
Residual None 0.005 58 8.897e-5

G-G 0.005 36.149 1.428e-4
Space Used None 0.007 2 0.004 0.847 0.434
Residual None 0.243 58 0.004
% Time Free Water None 0.07 2 0.035 1.663 0.198
Residual None 1.219 58 0.021
% Time Wall None 0.051 2 0.026 0.923 0.403
Residual None 1.606 58 0.028
% Time Object None 0.199 2 0.1 6.934 0.002*
Residual None 0.833 58 0.014

Table 7.9: Results of the MANOVA comparing within individuals as the environment
changed. Values marked with (†) indicates the assumption of sphericity is violated
found by Mauchly’s test of sphericity (p < 0.05), hence the G-G (Greenhouse-Geisser)
correction is implemented
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7.6.6 Appendix D6 - Movement Model Comparison and Selection

To compare between the three simple models for individual fish movement considered

in the main text (section 7.2.4), plots comparing the observed summary statistics to do

with spatial characteristics of movement (Net Distance Moved, Space Use (%), Occupa-

tion Time in Free Water, Occupation Time near Object, Occupation Time near Wall)

were compared with those found by running simulations for each of the models for an

equivalent number of individuals (15), trials (2) and environments (3). Figs. 7.22-7.24

show the results and indicates that the third model, a CRW with a parameter controlling

the Time Spent stationary, gave the closest results to the observed data.

Figure 7.25 gives examples of the movement created using the CRW movement model

with ν the parameter for time spent stationary. Plots show example movement through

the complex environment (5 objects) with 3 different values for time spent stationary

(ν), ν = 0.8, 0.6, 0.3 (Fig 7.25A-C respectively)
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Figure 7.22: Scatter-plots of the calculated statistics of Distance Moved, Space Use &
Occupation Time, comparing between the simulations for model (i) a SRW (orange) and
the observed data (black)
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Figure 7.23: Scatter-plots of the calculated statistics of Distance Moved, Space Use &
Occupation Time, comparing between the simulations for model (ii) a CRW (blue) and
the observed data (black)
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Figure 7.24: Scatter-plots of the calculated statistics of Distance Moved, Space Use &
Occupation Time, comparing between the simulations for model (iii) a CRW with waiting
times (gold) and the observed data (black)
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Figure 7.25: Example movement paths from a simulation of model (iii) a CRW with
waiting times, over the complex environment (featuring 5 objects) for a range of values
of Time Spent Stationary (ν)
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8 Conclusion

In this thesis we have used both theoretical and data driven techniques to analyse and de-

scribe individual animal movement. We have demonstrated how theoretical approaches

to modelling animal movement can help inform and understand the mechanics of move-

ment. Such as how the efficiency in navigation is affected by the level of uncertainty

in the knowledge of the location of a target (Chapter 4) and how the distribution of

turning angles across a movement path can indicate the presence of different movement

behaviours (Chapter 6).

We have used the framework of RW theory to investigate the dispersal potential of

P. cupreus beetles (Chapter 5), demonstrating that individual variability must be taken

into account when attempting to predict movement behaviour and that simply aggregat-

ing behaviour at the population level fails to predict the observed movement behaviours,

such as the expected displacement (Fig 5.5A). Similarly, we have explored how a sim-

ple change in experimental setup can affect movement behaviour of stickleback fish and

have indicated how movement parameters can relate to animal ‘personality’ (Chapter 7).

There are a number of ways in which the work here can be furthered, with many

having been highlighted in the Discussion sections of Chapters 4-7. Here the most

pertinent of these are briefly introduced and we highlight some of the other aspects in

the field of movement ecology which should be explored in future research.

8.1 Extending the BCRW model in Chapter 4 to include group

dynamics

One clear area in which the BCRW movement model described in Chapter 4 could be

extended is consider group navigation. This would require introducing extra parameters

describing how individuals interact with the group (Herbert-Read et al, 2011; Mann et

al, 2013; Eriksson et al, 2010; Pettit et al, 2013). This has been explored by Codling

& Bode (2014; 2016) who included an extra parameter which at each time step moved
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the individual along the averaged direction of the group from the previous step. The

results demonstrated that the most efficient navigational strategy was to give a high

weighting to indirect cues (copying the movement of other group members or using

forward persistence), rather than relying on direct navigational cues. However, this was

done through simulations only and an analytical approach could give more information

into why this finding is the case. It would also potentially lead to predictions of models

were the rules for the group interaction differ. Similarly, Ose & Ohmann (2017) have

demonstrated through extensive simulation that random noise in individual movement,

facilitates improvements in the efficiency of group movement as well as helping to ensure

compactness of the groups, an important factor in herd movement. Ose & Ohmann

(2017) used a Voroni cell configuration in their group interaction term, however, if an

analytical method for predicting the movement behaviour could be determined, then

this unexpected finding of randomness being beneficial for efficient movement could

be explained. Such analytical solutions would also allow for predictions of long term

movement behaviour without needing to run large scale simulations. Both these problems

would prove to be analytically difficult and utilising the method from Chapter 4 for the

individual case would be non-trivial as that method made use of many approximations

which will compound at the group level. Therefore another approach perhaps similar

to that of Binhi (2017) who used SDEs to model individual movement within the group

could be used.

8.2 Integrating animal ‘personality’ and movement ecology

Results from the analysis of the beetles’ and fish movement indicated that individuality

has a clear impact on movement dynamics at both the individual and the population

level. As ‘personality’ is often defined by consistency in individual behaviour across time

and changing environment then understanding how ‘personality’ traits are linked with

movement behaviour should have important ramifications in spatial ecology. ‘Person-

ality’ has already been shown to affect foraging behaviour, sociability (reactions and

interactions to others), exploration and migration (Nilsson et al, 2014).
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In general the integration of personality has not explicitly been included in movement

ecology studies (Nilsson et al, 2014; Spiegel et al, 2017; Patrick & Weimerskirch, 2014).

This has recently been addressed by Spiegel et al (2017) who focused on expanding

the framework of personality dependent dispersal behaviour to include methods from

movement ecology into what they term personality dependent spatial ecology. This aims

to link the spatial consequences of various personality traits with the effects these spatial

dynamics have on space-use, therefore, linking personality into important movement

ecological behaviour such as foraging strategy and efficiency. Expanding our simple

experimental setup from Chapter 7 to include the paradigm of Spiegel et al (2017)

could help integrate the two fields. Although there are many pitfalls which need to be

considered in any future work. Spiegel et al (2017) discussed many of these, including

the problem of identifying between changes in behaviour within movement data due

to the change in environment compared to changes in behaviour due to individuality.

Much work has been recently developed in identifying changes in behaviour in movement

ecology, through behavioural change point analyses (BCPA) (Gurarie et al, 2016; Parton

& Blackwell, 2017; Michelot & McClintock, 2018). Work to identify which common

movement descriptors are effected by personality traits, would allow the variation of

these parameters at both the within and between individual level to be included in

the methods used in these analyses, giving more accurate classifications of movement

behaviour, space-use and personality.

8.3 Understanding and analysing large data sets

As we have seen in Chapter 5 and 7 data can now be recorded at high frequencies and

high densities. Section 2.7 noted that as tagging methods become cheaper, smaller,

more accurate and more efficient the volume of movement data available for analysis

has rapidly increased and out-grown many of the current analytical techniques used in

movement ecology (Rodriguez et al, 2017; Munden et al, 2018)

An area in which handling such large-scale data has seen recent developments is that

of human behaviour. This has been caused by the rise of personal data-logging tech-
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nologies (Thums et al, 2018). Therefore, integrating the techniques used for analysing

and understanding these big data sets could lead to more accurate and efficient com-

putational techniques for movement ecology (Miller et al, 2019). Miller et al (2019)

identifies the similarities in the aims of the fields, such as measuring and classifying

interactions between individuals, analysing movement behaviours across a changing en-

vironment and/or time period, integrating covariates which are now readily measurable

alongside simple time-position data (e.g. temperature, humidity, depth, pressure) as well

as conditions of the individual themselves (e.g. heart rate, body temperature, breathing

rate). They suggest approaches which could be integrated into movement ecology taken

from the human movement literature, such as context-aware movement models which

investigate how a changing environment effects individual movement (Dodge, 2014) and

how interactions amongst individuals can be classified; building on the work of (Do &

Gatica-Perez, 2013; Sapiezynski et al, 2017) who used Bluetooth or Wi-Fi sensors in

mobile devices to infer the behaviour from interactions.

Similarly, Thums et al (2018) listed four main areas in which movement ecology

would benefit from a closer relationship with human mobility research due to the latter’s

adoption of dig data techniques; these were “(1) identification of emergent properties

in animal movement, (2) analysis of networks of animal movement and behaviour, (3)

development of machine learning algorithms to understand and characterise patterns

from “big” animal movement data and (4) advanced visualisation techniques for complex

datasets of movement” (Thums et al, 2018).

8.4 Extending the work in Chapter 6 for use in data analysis

The work in Chapter 6 indicated that the mixing of two normal-type circular distri-

butions could produce a highly peaked, heavy-tailed circular distribution and that it

was therefore possible to discern multiple behaviours in a movement path based on the

distribution of the turning angles. In the brief example using data from an African Ele-

phant (Wall et al, 2014a) it was demonstrated that two distinct behaviours in turning

angles could be found, along with the mixing parameter which described the relative
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frequency of drawing angles form one distribution compared to the other. An extension

here would be to then use these values to segregate the movement path into passages

from each distribution and therefore allowing for the classification of movement into two

behaviours.

Although as is mentioned in the example in Chapter 6 move advanced techniques

which take into account the distribution of step-lengths as well as other covariates,

already exist (Michelot & McClintock, 2018) and are therefore more powerful in their

analysis then this method would be. However, these advanced methods often rely on

using HMM techniques which are sensitive to initial conditions, therefore a more practical

use of the findings from Chapter 6 would be to find an efficient method for estimating the

concentration parameters of the two distributions for the turning angles and the mixing

parameter. This could be achieved by introducing an efficient search algorithm such as

Nelder-Mead (Nelder & Mead, 1965) rather than the slow parameter sweep method used

in the example (section 6.4). These parameter values could then be used to classify the

behaviour of the path in order to extract likely parameters for the step-lengths which

could then be used in the HMM technique as the initial conditions in order to give an

accurate final classification.

Other extensions for this chapter would be to expand to more than two distributions

in the initial case, therefore corresponding to more behaviours across the movement

path. In general, behavioural states of animals are limited to 2-3 in any given path

and so, any work beyond mixing three distributions would seem unnecessary. Also the

current techniques require numerical simulations and even simply increasing to three

distributions we increase the number of parameters by two (an additional concentration

parameter and mixing term) which will greatly affect any attempt to efficiently calculate

such parameters from actual data. Hence and increase in the number of distributions

without a more thorough method for discerning the best-fit distribution, would need to

be limited.

236



9 References

Aebischer, A., Nyffeler, P. and Arlettaz, R. (2010). Wide-range dispersal in juvenile

Eagle Owls (Bubo bubo) across the European Alps calls for transnational conser-

vation programmes. Journal of Ornithology, 151(1), 1.

Agostinelli C. and Lund, U. (2017). R package ’circular’: Circular Statistics (version

0.4-93). URL https://r-forge. r-project. org/projects/circular.

Ahmed, D.A., Petrovskii, S.V. and Tilles, P.F.C. (2018). The “Lévy or Diffusion”
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Bengtsson, G., Rydén, T., Öhrn, M. S. and Wiktorsson, M. (2002). Statistical analysis

of the influence of conspecifics on the dispersal of a soil Collembola. Theoretical

Population Biology, 61(2), 97-113.

Benhamou, S. (2004). How to reliably estimate the tortuosity of an animal’s path:

straightness, sinuosity, or fractal dimension? Journal of Theoretical Biology, 229(2),

209-220.

238



Benhamou, S. (2006). Detecting an orientation component in animal paths when the

preferred direction is individual dependent. Ecology, 87(2), 518-528

Benhamou, S. (2014). Of scales and stationarity in animal movements. Ecology Letters,

17(3), 261-272.

Benhamou, S., and Bovet, P. (1992). Distinguishing between elementary orientation

mechanisms by means of path analysis. Animal Behaviour, 43(3), 371-377.

Benjamin, R., Cédric, G. and Pablo, I. (2008). Modeling spatially explicit population

dynamics of Pterostichus melanarius I11. (Coleoptera: Carabidae) in response to

changes in the composition and configuration of agricultural landscapes. Landscape

and Urban Planning, 84(3-4), 191–9.

Berkes, F., Colding, J. and Folke, C. (Eds.). (2008). Navigating social-ecological sys-

tems: building resilience for complexity and change. Cambridge University Press.

Berthold, P. (2001). Bird migration: a general survey. Oxford University Press on

Demand.

Biegler, R. (2000). Possible uses of path integration in animal navigation. Animal

Learning and Behavior, 28(3), 257-277.

Binhi, V.N. (2017). Restrictions on the dynamic growth of navigation accuracy in

groups of animals. eprint arXiv:1702.00590

Biro P.A. and Stamps, J.A. (2008). Are animal personality traits linked to life-history

productivity? Trends in Ecology and Evolution. 23(7), 361-368.

Blackwell, P. G., Niu, M., Lambert, M. S. and LaPoint, S. D. (2016). Exact Bayesian

inference for animal movement in continuous time. Methods in Ecology and Evo-

lution, 7(2), 184-195.

Blake, S., Yackulic, C. B., Cabrera, F., Tapia, W., Gibbs, J. P., Kummeth, F., and

Wikelski, M. (2013). Vegetation dynamics drive segregation by body size in Gala-

239



pagos tortoises migrating across altitudinal gradients. Journal of Animal Ecology,

82(2), 310–321.

Bode, N.W.F., Faria, J.J., Franks, D.W., Krause, J. and Wood, A.J. (2010). How

perceived threat increases synchronization in collectively moving animal groups.

Proceedings of the Royal Society B, 277(1697), 3065-3070.

Bohan, D.A., Boursault, A., Brooks, D.R. and Petit, S. (2011). National-scale regula-

tion of the weed seedbank by carabid predators. Journal of Applied Ecology, 48(4),

888–98.

Bohrer, G., Brandes, D., Mandel, J. T., Bildstein, K. L., Miller, T. A., Lanzone, M.,

Katzner, T., Maisonneuve, C. and Tremblay, J. A. (2012). Estimating updraft

velocity components over large spatial scales: contrasting migration strategies of

golden eagles and turkey vultures. Ecology Letters, 15(2), 96-103.

Boulinier, T., Kada, S., Ponchon, A., Dupraz, M., Dietrich, M., Gamble, A., Bourret,

V., Duriez, O., Bazire, R., Tornos, J. and Tveraa, T. (2016). Migration, prospect-

ing, dispersal? What host movement matters for infectious agent circulation?.

Integrative and Comparative Biology, 56(2), 330-342.

Bovet, P., and Benhamou, S. (1988). Spatial analysis of animals’ movements using a

correlated random walk model. Journal of Theoretical Biology, 131(4), 419-433.

Bowlby, H. D., Hanson, J. M., and Hutchings, J. A. (2007). Resident and disper-

sal behavior among individuals within a population of american lobster homarus

americanus. Marine Ecology Progress Series, 331, 207–218.

Boyce, M. S., Pitt, J., Northrup, J. M., Morehouse, A. T., Knopff, K. H., Cristescu, B.,

and Stenhouse, G. B. (2010). Temporal autocorrelation functions for movement

rates from global positioning system radiotelemetry data. Philosophical Transac-

tions of the Royal Society B: Biological Sciences, 365(1550), 2213-2219

240



Boyd, C., Punt, A.E., Weimerskirch, A. and Bertrand, S. (2014). Movement mod-

els provide insights into variation in the foraging effort of central place foragers.

Ecological Modelling, 286, 13-25.

Breder, Jr C. M. (1954). Equations Descriptive of Fish Schools and Other Animal

Aggregations. Ecology, 35(3); 361-370.

Breed, G. A., Costa, D. P., Jonsen, I. D., Robinson, P. W., and Mills-Flemming, J.

(2012). State-space methods for more completely capturing behavioral dynamics

from animal tracks. Ecological Modelling, 235, 49–58.

Brommer, J. E. (2013). On between-individual and residual (co) variances in the study

of animal personality: are you willing to take the “individual gambit”? Behavioral

Ecology and Sociobiology, 67(6), 1027-1032.

Brommer, J. E., Karell, P., Ahola, K. and Karstinen, T. (2014). Residual correla-

tions, and not individual properties, determine a nest defense boldness syndrome.

Behavioral Ecology, 25(4), 802-812.

Brown, L. M. and Crone, E. E. (2016). Individual variation changes dispersal distance

and area requirements of a checkerspot butterfly. Ecology, 97(1), 106–115.

Brown, R. (1828). A brief account of microscopical observations made in the months

of June, July and August, 1827, on the particles contained in the pollen of plants;

and on the generalexistence of active molecules in organic and inorganic bodies,

Philosophical Magazine N. S.4 ,161-173.

Burn, A.J., Coaker, T.H. and Jepson, P.C. (Eds). (1987). Integrated pest management.

Academic Press; 1987.

Byers, J.A. (2001). Correlated random walk equations of animal dispersal resolved by

simulation. Ecology, 82(6), 1680-1690.

Byrne, M., Dacke, M., Nordström, P., Scholtz, C. and Warrant, E. (2003). Visual

cues used by ball-rolling dung beetles for orientation. Journal of Comparative

241



Physiology A, 189(6), 411-418.

Cagnacci, F., Boitani, L., Powell, R. A. and Boyce, M. S. (2010). Animal ecology

meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges.

Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2157-

2162.

Cagnacci, F., Focardi, S., Ghisla, A., van Moorter, B., Merrill, E. H., Gurarie, E.,

Heurich, M., Mysterud, A., Linnell, J., Panzacchi, M. and May, R. (2016). How

many routes lead to migration? Comparison of methods to assess and characterize

migratory movements. Journal of Animal Ecology, 85(1), 54–68.

Carter, A.J., Feeney, W.E., Marshall, H.H., Cowlishaw, G. and Heinsohn, R. (2013).

Animal personality: what are behavioural ecologists measuring? Biological Re-

views, 88(2), 465-475.

Carpenter, S.R. (1996). Microcosm experiments have limited relevance for community

and ecosystem ecology. Ecology, 77(3), 677–680

Carter, A.J., Marshall, H.H., Heinsohn, R. and Cowlishaw, G. (2013). Personality

predicts decision making only when information is unreliable. Animal Behaviour,

86(3), 633-639.

Castle, K. T., Weller, T. J., Cryan, P. M., Hein, C. D. and Schirmacher, M. R. (2015).

Using sutures to attach miniature tracking tags to small bats for multimonth move-

ment and behavioral studies. Ecology and Evolution, 5(14), 2980-2989.

Chapman, B.B., Hulthén, K., Blomqvist, D.R., Hansson, L.-A., Nilsson, J.-Å., Broder-
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Physics, 87(2), 483.

Zienkiewicz, A., Barton, D. A., Porfiri, M. and Di Bernardo, M. (2015). Data-driven

stochastic modelling of zebrafish locomotion. Journal of Mathematical Biology,

71(5), 1081-1105.

272


