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Significance of circadian rhythms in
severely brain-injured patients
A clue to consciousness?

ABSTRACT

Objective: To investigate the relationship between the presence of a circadian body temperature
rhythm and behaviorally assessed consciousness levels in patients with disorders of conscious-
ness (DOC; i.e., vegetative state/unresponsive wakefulness syndrome or minimally conscious
state).

Methods: In a cross-sectional study, we investigated the presence of circadian temperature
rhythms across 6 to 7 days using external skin temperature sensors in 18 patients with DOC.
Beyond this, we examined the relationship between behaviorally assessed consciousness levels
and circadian rhythmicity.

Results: Analyses with Lomb-Scargle periodograms revealed significant circadian rhythmicity in
all patients (range 23.5–26.3 hours). We found that especially scores on the arousal subscale
of the Coma Recovery Scale–Revised were closely linked to the integrity of circadian variations in
body temperature. Finally, we piloted whether bright light stimulation could boost circadian
rhythmicity and found positive evidence in 2 out of 8 patients.

Conclusion: The study provides evidence for an association between circadian body temperature
rhythms and arousal as a necessary precondition for consciousness. Our findings also make a case
for circadian rhythms as a target for treatment as well as the application of diagnostic and therapeu-
tic means at times when cognitive performance is expected to peak. Neurology®2017;88:1933–1941

GLOSSARY
ANOVA 5 analysis of variance; BLS 5 bright light stimulation; CRS-R 5 Coma Recovery Scale–Revised; DOC 5 disorder of
consciousness; DPG 5 distal–proximal skin temperature gradient; HL 5 habitual light; IS 5 interdaily stability; MCS 5
minimally conscious state; NTBI 5 nontraumatic brain injury; SCN 5 suprachiasmatic nuclei; TBI 5 traumatic brain injury;
UWS 5 unresponsive wakefulness syndrome; VS 5 vegetative state.

We are governed by manifold rhythmic processes that affect our body at all levels from gene
expression to higher cognitive functions.1–3 Many of these processes follow a circadian pattern;
that is, they have a period length of approximately 24 hours and are under tight control of
a biological master clock located in the suprachiasmatic nuclei of the hypothalamus.4,5 More-
over, rhythms spanning all levels of physiology and behavior are well-orchestrated and, thus,
often strongly coupled. For example, Wyatt et al.6 found variations in cognition to parallel the
circadian temperature rhythm such that alertness and performance peaked around the core body
temperature maximum (i.e., at about 4 PM in the average healthy day-active person). Subsequent
studies have confirmed this relationship, although its magnitude seems to be task-dependent (see
reference 7 for a review).

Given the circadian variations in global states like alertness, it is not surprising that conscious-
ness also varies rhythmically in healthy individuals. One very prominent example of this rhythm
is the sleep-wake cycle, during which consciousness fades and recovers on a diurnal basis. With
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regard to prevailing theories of consciousness,
it can be speculated that circadian variations
also directly affect the brain’s ability to (1)
integrate information (information integration
theory)8,9 or (2) modify the likelihood that
neuronal activation results in ignition and
broadcasting of information to the whole
brain (global neuronal workspace model).10

In fact, this notion is supported in a recent
study by Ly et al.,11 who report circadian mod-
ulation of cortical excitability, a background
condition for consciousness.

From a clinical perspective, misalignment
of circadian rhythms, which occurs when the
sleep–wake schedule is at odds with the
light–dark cycle as in the case of night shifts,
can cause considerable stress, have detrimental
effects on the immune system, and impair
cognitive abilities such as attention and
learning.12,13 Moreover, temporal disorgani-
zation of circadian rhythms, i.e., the un-
coupling of different rhythms, has been shown
to have pathologic significance in critically ill
patients and it has been suggested that this
may hinder recovery.14,15 Despite the knowl-
edge that entrained circadian rhythms are
important for healthy body and brain func-
tioning, very little is known about circadian
rhythms in patients diagnosed with a disorder
of consciousness (DOC) following a severe
brain injury. DOC states comprise the vege-
tative state (VS, also referred to as unrespon-
sive wakefulness syndrome [UWS]) and
the minimally conscious state (MCS). While
patients in VS/UWS present periods of
wakefulness with eye opening and sleep, they
are presumably unconscious. Patients in MCS,
in contrast, present inconsistent but identifi-
able signs of conscious awareness.16 When
patients in MCS recover the ability to func-
tionally interact with their environment, they
are classified as exit MCS.17

Studying circadian rhythms in DOC patients
may be especially interesting and important for
several reasons. First, the presence or absence of
circadian rhythms as well as anomalies in them
could be informative about the state of the
patient as well as the potential for recovery. Sec-
ond, this could provide information about time
points that best capture remaining cognitive
functions, e.g., with behavioral scales such as

the Coma Recovery Scale–Revised (CRS-R),18

thereby minimizing the risk of misdiagnoses.
Only recently has it been shown that the diag-
nosis established during CRS-R assessment
varies with the time of day.19 Beyond this,
examining circadian processes may also inform
about targets for therapeutic interventions such
as light stimulation, which has proven successful
in individuals with circadian sleep disorders (see
reference 20 for a review). Few studies have
examined circadian rhythms in DOC patients
taking into account variations in hormone secre-
tion21 as well as blood pressure and heart
rate.22,23 Bekinschtein et al.24 measured skin
temperature during 2 weeks in 5 DOC patients
who were in VS/UWS and found that those
with traumatic etiology had a circadian temper-
ature rhythm whereas those with anoxic brain
damage did not, which they concluded may be
due to the extent and severity of the lesion.
Matsumoto et al.25 recorded core body temper-
ature for 72 hours in 10 elderly DOC patients
and found a period length of 24 hours in 7
patients and 6, 12, and 63 hours in the other
3. However, conclusions are difficult to reach
from these 2 studies, because sample sizes were
small, samples were highly heterogeneous
(e.g., included patients with dementia as well
as brain injury), or ambient light levels were
not controlled for.

The aim of the present study was to investi-
gate circadian temperature rhythms in a larger
DOC patient population also covering the
whole range of DOC states, that is, VS/UWS,
MCS, and MCSexit. More specifically, we stud-
ied temperature rhythms under a habitual light
(HL) condition for 1 week and tested (in a sub-
sample) the potential of bright light stimulation
(BLS) to enhance circadian rhythmicity and
improve entrainment to a 24-hour zeitgeber.

METHODS Patients. A total of 20 patients (14 females) were

included in the study sample, 8 of whom (3 female) completed

both HL and BLS conditions. Two patients were excluded from

further analyses. For more detailed information on patients, see

table 1, figure e-1, and supplementary material at Neurology.org.

Standard protocol approvals, registrations, and patient
consents. Informed consent was obtained from the patients’

legal representatives and approval of the local ethical committee

was obtained.

Experimental protocol. The study protocol comprised 1 to 2

weeks: 1 week in the HL and for a subsample a second week with
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Table 1 Patient information

Patient ID
Experimental
condition Diagnosis, HL

CRS-R S

score, HL Diagnosis, BL
CRS-R S

score, BL

Age, y
Time since
incident, mo

Etiology

Peak period, h Normalized power
Temperature
maximum

HL BL HL BL HL BL HL BL HL BL

P01 — VS/UWS 6 — — 19 — 15 — TBI 23.8 — 428.1 — 21:10 —

P02 2 MCSexit 11 MCSexit 11 43 43 39 38 NTBI 24.4 24.7 313.2 434.9 14:40 15:00

P03 2 VS/UWS 6 VS/UWS 6 24 25 99 98 NTBI 24.2 24.7 404.3 457.3 16:15 17:42

P04 — VS/UWS 7 — — 53 — 60 — NTBI 23.9 — 380.3 — 19:55 —

P05 — VS/UWS 6 — — 24 — 12 — TBI 24.4 — 158.6 — 11:40 —

P06 2 VS/UWS 7 VS/UWS 4 60 60 7 5 NTBI 26.3 24.9 214.5 395.3 11:05 10:40

P07 — VS/UWS 6 — — 22 — 48 — NTBI 24.0 — 785.4 — 18:50 —

P08a 1 VS/UWS 3 MCS 9 50 50 4 6 NTBI 23.5 26.5 39.8 152.4 20:50 11:40

P09 — VS/UWS 6 — — 17 — 168 — NTBI 23.7 — 388.7 — 16:05 —

P10a 2 VS/UWS 7 MCS 12 60 60 7 6 NTBI 23.7 23.5 160.7 259.4 05:30 12:00

P11 2 VS/UWS 3 VS/UWS 5 70 9 8 TBI 25.1 27.2 222.9 96.8 14:10 17:15

P12 — MCS 11 — — 49 — 9 — NTBI 24.0 — 393.6 — 14:20 —

P13 — VS/UWS 7 — — 66 — 2 — NTBI 25.3 — 132.2 — 04:30 —

P14 — VS/UWS 1 — — 71 — 24 — NTBI 23.6 — 169.8 — 16:25 —

P15a 2 VS/UWS 3 MCS 7 70 70 15 12 NTBI 23.6 23.6 276.4 131.0 10:50 14:20

P16 1 MCSexit 23 MCS 10 61 61 9 10 NTBI 23.7 24.0 383.8 228.9 15:30 14:10

P17 — MCS 13 — — 53 — 10.5 — NTBI 23.6 — 195.8 — 04:00 —

P18 — MCS 9 — — 68 — 1.5 — TBI 24.9 — 388.4 — 11:45 —

Abbreviations: BL 5 bright light; CRS-R 5 Coma Recovery Scale–Revised; HL 5 habitual light; MCS 5 minimally conscious state; NTBI 5 nontraumatic brain injury; TBI 5 traumatic brain injury; UWS 5 unresponsive
wakefulness syndrome; VS 5 vegetative state.
Condition: 1 5 HL 2 BL; 2 5 BL 2 HL.
aPatients with a change of diagnosis between HL and BL conditions.
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BLS. Patients were assessed behaviorally with the CRS-R18 by 2

trained experts at the end of each week. For an overview of the

CRS-R assessment results, see tables 1, e-1, and e-2. For further

details on the experimental design, see the supplementary material.

Physiologic data collection and analysis. Temperature data

were collected using external skin sensors (iButton DS1922L;

Maxim Integrated Products, Inc., San Jose, CA). In total, 4 sen-

sors were placed on the patients’ skin, 2 in a proximal location

relative to the center of the body and 2 in a distal location. For

data processing and analysis, we used R version 3.2.5.26 Artefacts

were removed automatically and, if necessary, data were inspected

manually. Following data preprocessing, the distal–proximal skin

temperature gradient (DPG) was computed. This gradient has

been shown to parallel changes in core body temperature and thus

serves as a proxy for it.27,28 First, values from proximal and distal

sensors were pooled. Subsequently, distal values were subtracted

from the proximal ones (see figure 1A for a DPG example). The

DPG then served as the input for the computation of the Lomb-

Scargle periodogram,29,30 a method that can be used to detect

rhythms in time series data (see figure 1B for individual perio-

dogram analysis results). We calculated 2 parameters for each

patient: (1) the peak period, i.e., the period with the strongest

contribution to the variability in the data; and (2) the normalized

power. Specifically, we looked for the peak period closest to 24.18

hours (i.e., circadian peak, as the unmasked endogenous period of

the human temperature rhythm is 24.18 hours on average).31

Besides the peak period, we were also interested in the normalized

power, i.e., a goodness of fit measure of the periodicity or strength

of a rhythm, corresponding to the circadian peak. Table 1 pro-

vides an overview of the peak period and normalized power for

each patient and condition. The significance level of the perio-

dogram analyses was set to a 5 0.01. In addition, we applied

a method previously suggested for the analysis of actimetry data

(for methodologic details, see reference 32). We were specifically

interested in the interdaily stability (IS) of the rhythm, an index

that informs about how well the patients’ temperature rhythms

were entrained to a 24-hour zeitgeber (i.e., the light–dark cycle).

IS should thus mirror both period length as well as normalized

power of the circadian peak. For explorative purposes, we also

calculated and report the time of occurrence of the temperature

maximum for each patient (see figure e-2 for times of occurrence

in the HL and figure e-3 for a comparison of HL and bright light

conditions). For more details on the physiologic data analysis, see

the supplementary material.

Statistical analyses. We investigated group differences in

period length, normalized power, and interdaily stability (depen-

dent variables) in the HL condition between diagnosis (i.e., VS/

UWS, MCS, and MCSexit), consciousness (VS/UWS vs MCS/

MCSexit), as well as the etiology subgroups (traumatic brain

injury [TBI] and nontraumatic brain injury [NTBI]) using

advanced nonparametric approaches.33 Here, we report the anal-

ysis of variance (ANOVA) type test with permutation test p values
(50,000 permutations). We also investigated the relationship

between patients’ CRS-R scores (total sumscore as well as sub-

scale scores), the deviation of the period length from 24.18 hours,

normalized power of the circadian peak in the periodogram, and

interdaily stability of the temperature rhythm using the Kendall

tau. For all analyses, the significance level was a 5 0.05 with p
values , 0.1 being interpreted as marginally significant. For the

comparison of the condition differences in period length, nor-

malized power, and interdaily stability (dependent variables) in

the HL and the BLS condition, we used advanced nonparametric

methods for repeated measures designs,34 for which we report the

Figure 1 Skin temperature variations, Lomb-Scargle periodogram results, and
boxplot of period lengths of circadian rhythms

(A) Skin temperature variations. Example data from one patient (P01) show variations in the
distal–proximal skin temperature gradient (DPG) across approximately 7 days. (B) Lomb-
Scargle periodogram results. This plot shows the results of the Lomb-Scargle periodogram
analysis for all participants. The x-axis shows the period length in hours, the y-axis shows the
normalized power (arbitrary units). The dashed vertical line indicates 24.18 hours. (C) Box-
plot of period lengths of circadian rhythms. The dashed vertical line indicates 24.18 hours,
i.e., the supposedly ideal period length reported in well-controlled studies on healthy in-
dividuals. The box shows the quartiles, the vertical line in the box represents the median.
Whiskers of the boxplot indicate the 1st and 3rd quartile 61.5 times the interquartile dif-
ference. Note that all patients show a circadian temperature rhythm. MCS 5 minimally
conscious state; UWS 5 unresponsive wakefulness syndrome; VS 5 vegetative state.
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ANOVA-type statistic. The number of VS/UWS vs MCS/

MCSexit diagnoses in each of the conditions was analyzed using

the McNemar x2 test. For more details on the statistics, please see

the supplementary material.

RESULTS HL condition. Lomb-Scargle periodogram
analyses revealed circadian rhythms in all patients
with period lengths ranging from 23.5 to 26.3 hours
(median 23.95 hours) (figure 1, B and C). Patients
with traumatic etiology (i.e., TBI) exhibited a margin-
ally significantly longer period length than patients

with nontraumatic etiology (TBI: mdn 5 24.64
hours vs NTBI: mdn 5 23.8 hours; TA 1,9.75 5

4.4, p 5 0.096). For further (nonsignificant) group
analyses, see the supplementary material.

Correlation analyses of the relationship between
circadian period length and subscales of the CRS-R
indicated that the less patients’ rhythms deviated
from 24.18 hours, the higher they scored on the
auditory (t 5 20.41, p 5 0.018) and the arousal
(t 5 20.39, p 5 0.022) subscales (figure 2). Corre-
lations with the oromotor/verbal (t 5 20.31, p 5

0.066) and the communication (t 5 20.30, p 5

0.079) subscales were marginally significant.
Correlation analyses between normalized power

and CRS-R subscales indicated that higher normal-
ized power was associated with higher scores on the
arousal (t 5 0.27, p 5 0.089) and the auditory
(t 5 0.31, p 5 0.054) subscales with these effects
being marginally significant (figure 3).

Analyses of correlations between IS and CRS-R
values revealed correlations with the auditory (t 5

0.46, p 5 0.009), the oromotor/verbal (t 5 0.41,
p 5 0.021), as well as the arousal (t 5 0.43, p 5

0.014) subscales (figure 4). Besides these correla-
tions, analyses yielded marginally significant corre-
lations between IS and the motor subscale (t 5

0.26, p 5 0.096), the communication subscale
(t 5 0.33, p 5 0.056), and the total CRS-R score
(t 5 0.25, p 5 0.094). As IS should mirror both
period length and normalized power, these results
confirm preceding analyses.

BLS condition. Statistical comparisons between the 2
conditions did not yield significant results (see supple-
mentary material). Three patients (P8, P10, and P15)
showed a change of diagnosis from VS/UWS during
the HL condition to MCS or MCSexit during BLS.
In these 3 patients, the time of occurrence of the tem-
perature maximum shifted from the evening to noon
(P8) and from (early) morning to (after)noon (P10 and
P15) hours, respectively (table 1 and figure e-3).

DISCUSSION We demonstrate in a clinical sample of
severely brain injured (DOC) patients that circadian
variations in body temperature are related to the behav-
ioral state of the patients. Importantly and in contrast
to earlier studies by Bekinschtein et al.24 and Matsu-
moto et al.,25 we detected circadian rhythms in all
patients irrespective of etiology or diagnosis, which
may be due to increased sensitivity of our analysis
methods. More precisely, our results indicate that the
less the patients’ circadian temperature rhythm devi-
ated from healthy rhythmicity, i.e., the better it was
entrained to the 24-hour light–dark cycle and the more
pronounced the circadian rhythm (i.e., the higher the
normalized power of the circadian peak in the perio-
dogram), the better the behavioral repertoire and the

Figure 2 Correlations between Coma Recovery Scale–Revised (CRS-R) and the
absolute deviation from 24.18 hours

Correlation plots between the CRS-R scores on the (A) auditory and (B) arousal subscales as
well as the absolute deviation from the ideal period length of 24.18 hours (see upper x-axis
for corresponding period lengths). Note that the less the circadian temperature rhythm de-
viates, the higher the scores on the CRS-R subscales, i.e., the better the behavioral state of
the patient. MCS5minimally conscious state; UWS5 unresponsive wakefulness syndrome;
VS 5 vegetative state.
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state of the patient (as measured with the CRS-R).
Generally, our findings are well in line with studies
ascribing pathologic significance to disturbances of
circadian rhythms in critically ill patients.14,15

Although the relationship between the circadian
indexes investigated here and the patient’s state was
also observable on other subscales of the CRS-R, it
was especially pronounced for the arousal subscale.
Importantly, despite the arousal level not being a diag-
nostic criterion for VS/UWS or MCS, a patient’s
arousal level is inherently related to the diagnosis

and, thus, other subscales. This is because sufficient
cortical arousal or wakefulness promoted by regions
in the brainstem such as the ascending reticular acti-
vating system is a necessary background condition for
consciousness and indeed in simplified descriptions of
consciousness it is often conceptualized as the com-
bination of 2 factors, arousal and awareness (for re-
views, see references 35 and 36). Functionally, body
temperature is thought to be crucially involved in the
regulation and stabilization of sleep–wake cycles and
thereby also in the stabilization of arousal levels,
which are known to fluctuate in DOC patients (for
a review, see references 28 and 36). Thus, preserved
circadian temperature rhythms may stabilize the
integrity of patients’ sleep–wake patterns, which in
turn would support sustained arousal and eventually
attention and (residual) awareness. From a clinical
perspective, this renders circadian rhythms promising
targets for therapeutic approaches and our findings
therefore make a case for treatment aiming at the
promotion and stabilization of circadian rhythms.

Generally, ambient light is the key zeitgeber for en-
training the biological master clock in the suprachias-
matic nuclei (SCN) of the hypothalamus,4 whose
output regulates a wide range of processes throughout
the entire organism including body temperature. Light
exposure has been effectively used for treating circadian
rhythm sleep disorders in normal healthy people as
well as in clinical populations.37 In a pilot study, we
therefore also tested the effects of BLS in a subsample
of patients. In this protocol, patients received BLS 3
times per day (7 AM, 1 PM, and 7 PM) for 1 hour over
the course of 1 week. Interestingly, in 3 of these pa-
tients who were classified as VS/UWS during the HL
condition, classification in the BLS condition changed
to MCS/MCSexit. As 2 of these patients were assessed
under BLS conditions first and only 1 and 3.5 months
later under HL conditions, the factor time is unlikely
to account for the observed improvements. Thus, these
results provide some support for the notion that BLS
may have had a beneficial effect on consciousness lev-
els. Statistically, however, no effects of BLS were evi-
dent in this first small pilot sample. We suggest that
a proof of principle study should be considered before
drawing conclusions about the usefulness of BLS. Spe-
cifically, the light stimulation protocol introduced here
should be tested with a larger sample size allowing for
a stratification of the sample according to etiology and
severity of disturbance of the circadian rhythm thereby
allowing for a differential evaluation of the effects.
Such a study may eventually also allow for the evalu-
ation of the potential influence of factors such as sex,
age, or accompanying medical conditions on circadian
temperature rhythms.

Interestingly, in the 3 patients who showed behav-
ioral improvement with BLS, the temperature

Figure 3 Correlation between Coma Recovery Scale–Revised (CRS-R) and nor-
malized power

Correlation plot between the CRS-R scores on the (A) auditory and (B) arousal subscales and
normalized power, i.e., the goodness of fit. Note that the more pronounced the circadian
rhythm, the higher the scores on the CRS-R subscales, i.e., the better the behavioral state
of the patient. MCS 5 minimally conscious state; UWS 5 unresponsive wakefulness syn-
drome; VS 5 vegetative state.
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maximum, which has previously been found to occur
at about the same time as the circadian peak in alert-
ness and performance in healthy individuals (see ref-
erence 7 for a review), was shifted. Specifically, it
occurred closer to the times when the temperature
maximum would be expected in healthy individuals6

and closer to the times of the CRS-R assessments in
these cases, thereby underlining the potential clinical
usefulness of BLS. Even more importantly, we can
speculate that a prespecified temperature rhythm
could be useful in guiding the time of assessment of
patients, thereby decreasing the risk of misdiagnoses,
and we propose that it may be advantageous if assess-
ments took place around the time of occurrence of
the temperature maximum. Future studies should
specifically test this hypothesis, i.e., that behavioral
performance improves the closer to the temperature
maximum the assessment takes place. Beyond this, the
variability in the times when patients’ body tempera-
ture was maximal (figure e-2) may further underline
the significance of light/dark cycles on DOC patients.
While light levels were generally low (,500 lux, fig-
ure e-1), patients varied in the amount of time their
eyes were closed and ambient light levels were modu-
lated by, e.g., weather conditions. Although very low
light levels (1.5 lux) have been shown to be sufficient
to entrain circadian rhythms in healthy individuals,38

this may be different in clinical populations.
A possible limitation of the present study is that no

(magnetic resonance) imaging data were available to
evaluate the extent of brain injury and potential dam-
age to the hypothalamus and the SCN in particular.
However, especially the circadian temperature
rhythm has been proposed to be robust. Rodent stud-
ies have shown that even damage to the SCN that on-
ly spares a small number of cells does not eliminate
circadian temperature rhythms, although it may alter
them.39 Future studies should extend the findings
presented here to other body rhythms and examine
the coupling among different oscillators (e.g., hor-
mones, rest-activity cycles, temperature). Moreover,
they should investigate the relationship of variations
in peripheral rhythms such as body temperature to
variations in well-established measures of central
brain activity that are known to differentiate reliably
between different states of consciousness in healthy

Figure 4 Correlations between Coma Recovery Scale–Revised (CRS-R) and in-
terdaily stability (IS)

Correlation plots between the CRS-R scores on the (A) audi-
tory, (B) oromotor, and (C) arousal subscales and interdaily
stability (range 0–1; 0 indicates Gaussian noise whereas 1
indicates perfect entrainment to a 24-hour zeitgeber, i.e.,
the light–dark cycle). Note that the better the temperature
rhythmwas entrained to a 24-hour zeitgeber, the higher the
scores on the CRS-R subscales, i.e., the better the behav-
ioral state of the patient. MCS 5 minimally conscious state;
UWS 5 unresponsive wakefulness syndrome; VS 5 vege-
tative state.
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individuals as well as DOC patients independently
from behavioral signs of consciousness such as the
so-called perturbational complexity index,40 which
can be derived from studies combining transcranial
magnetic stimulation and EEG. Recent research by
Ly et al.11 for example suggests that body temperature
variations could actually be causally involved in the
regulation of cortical excitability.

Our results show that the integrity of circadian tem-
perature rhythms is related to the behavioral repertoire
and therefore the state of a patient as measured by the
CRS-R in a sample of severely brain-injured individuals.
This relationship is especially pronounced for arousal
levels, a precondition for consciousness, thereby also
suggesting that patients’ circadian rhythms may repre-
sent an interesting therapeutic target. BLS, which is easy
to apply at bedside and cost-efficient, may depict one
such therapeutic approach.
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