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Abstract. Window-based correlation algorithms are widely used for
stereo matching due to their computational efficiency as compared
to global algorithms. In this paper, a multiple window correlation
algorithm for stereo matching is presented which addresses the
problems associated with a fixed window size. The developed algo-
rithm differs from the previous multiple window algorithms by intro-
ducing a reliability test to select the most reliable window among
multiple windows of increasing sizes. This ensures that at least one
window is large enough to cover a region of adequate intensity
variations while at the same time small enough to cover a constant
depth region. A recursive computation procedure is also used to
allow a computationally efficient implementation of the algorithm.
The outcome obtained from a standard set of images with known
disparity maps shows that the generated disparity maps are more
accurate as compared to two popular stereo matching local
algorithms. © 2007 SPIE and IS&T. �DOI: 10.1117/1.2711817�

1 Introduction
Stereo matching is used to generate disparity or depth maps
for applications such as terrain mapping, robotics, and vir-
tual studios. Generally, depth information is obtained from
two broad categories of stereo matching algorithms: global
and local.1 Global algorithms, for example, those described
in Refs. 2–9, yield accurate disparity maps but involve high
computational costs. On the other hand, local algorithms,
for example, those described in Refs. 10–17, are computa-
tionally efficient but do not produce results as accurately as
global algorithms. This paper introduces a local algorithm
that generates higher-accuracy disparity maps as compared
to the commonly used local algorithms.

Local or area-based algorithms employ correlation tech-
niques to calculate the disparity between a left and a right
image. The disparity is calculated by determining a mea-
sure of similarity between the pixels within a window in the
two images. In local algorithms, cross-correlation �CC�,19

sum of squared differences �SSD�,10,11,16,28 and sum of ab-
solute differences �SAD�12,13 are the most widely used tech-
niques. However, in these techniques, the selection of win-
dow size plays a major role in determining the quality of
the resulting disparity map.14 This is because a fixed win-
dow size does not yield reliable disparity estimates for all
the pixels in a stereo pair of images. The empirical selec-
tion of window size results in two major problems: a noisy
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disparity map if the selected window is small, covering a
region of insufficient intensity variations, and a smoothed
disparity map or boundaries if the selected window is too
large, covering a region of varying disparities.

This paper presents a new multiple windows approach
for stereo matching that allows us to correct the above
problems. The most reliable disparity estimate is selected
on the basis of quantitative scores obtained from SSD in-
stead of the more commonly used winner-takes-all
approach.1 Before the developed algorithm is described in
detail, an overview of similar stereo matching algorithms is
mentioned in Section 2. A description of the standard area-
based matching using the normalized SSD is then discussed
in Section 3. In Section 4, the reason for using multiple
windows of increasing sizes is mentioned, followed by a
test, named the reliability factor, to select the most reliable
disparity estimate from multiple disparity estimates. An ef-
ficient computation procedure is also discussed in this sec-
tion. The experimental results are presented in Section 5
together with a comparison of the developed algorithm with
two popular local algorithms, namely symmetric multi-
window �SMW�10 and single matching phase �SMP�.12 Fi-
nally, the conclusions are stated in Section 6.

2 Overview of Previous Algorithms
Local algorithms normally use window-based correlation to
extract depth information from images. Generally, square
or rectangular windows are used due to their ease of
implementation.5,10–13,16,17 However, the reliability of depth
information is severely affected when a single window of
fixed size is used.14 For this reason, Kanade and Okutomi14

proposed an adaptive window solution. They modified the
window size and shape adaptively depending on the local
intensity and disparity variations. Although this algorithm
produced better results than the standard single-window al-
gorithms, its final output depended on the choice of the
initial disparity estimate. Also, as observed by Fusiello et
al.,10 this algorithm did not perform well in occluded re-
gions due to not utilizing the uniqueness constraint.15

Boykov et al.7 also developed an adaptive window algo-
rithm such that the shape of the window varied from pixel
to pixel. This algorithm was considerably faster than the
one in Ref. 14 as it did not employ an iterative scheme to
compute disparities. However, the improvement in the ac-

curacy of the final disparity map was not significant.
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Fusiello et al.10 and Jeon et al.11 used multiple windows
to overcome the drawbacks of single-window methods
without using an adaptive scheme. The former algorithm
employed nine windows, each with a different center. Al-
though the use of multiple windows with different centers
ensured that at least one window covered a constant-depth
region, the empirically selected fixed window size did not
generate accurate disparity estimates when the matching
was applied to low textured images. The latter algorithm
used eight windows to preserve edge information, thus
eliminating the blurring of boundaries. The windows were
expanded uniformly in all directions. This demanded a high
computational cost because of the use of eight simulta-
neously expanding windows. Both algorithms used the SSD
correlation and selected the disparity estimate of the win-
dow giving the least SSD, i.e., the winner-takes-all ap-
proach.

Efforts were also made to get improved results with a
single window by including certain modifications. The bi-
directional matching algorithm introduced by Fua16 ad-
dressed the low textured region problem by identifying and
removing wrong matches. In this algorithm, every pixel in
the left image was first matched to its best match in the
right image. Then the images were reversed and the match-
ing was repeated. Finally, the uniqueness condition was
checked to mark unmatched pixels. Stefano et al.12 dis-
cussed a matching algorithm that produced disparity maps
of more or less the same quality with respect to the bidi-
rectional matching algorithm by carrying out the matching
process only once. In their algorithm, older matches were
rejected when more reliable matches were found, thus sat-
isfying the uniqueness constraint.15 Although this consider-
ably improved the matching efficiency, the window size
used was still selected empirically, which sometimes re-
sulted in loss of details in disparity maps, especially in
those images containing small and fine objects. Muhlmann
et al.13 described an efficient algorithm for stereo matching
of color images. They showed that the color information
could improve the quality of disparity estimates in low tex-
tured regions.

In general, local algorithms are plagued by the problem
of blurring of edge boundaries, known in the literature as
boundary overreach or border localization.17,22 Okutomi et
al.17 addressed this problem with the help of a multibase-

18

Fig. 1 Stereo matching b
line stereo algorithm and using multiple windows de-

Journal of Electronic Imaging 013012-
scribed in Ref. 10. This problem occurs when correlating
windows overlap depth discontinuities. Hirschmüller et
al.22 introduced a border correction filter to improve
matches at object borders. The overall reliability of matches
was improved by using an error correction filter and mul-
tiple supporting windows. This algorithm can be considered
to belong to the real-time class of algorithms. The algo-
rithms developed by Faugeras et al.,19 Kanade et al.,20 and
Forstmann et al.21 are some of the other real-time algo-
rithms that deployed a window-based approach.

Global algorithms have been developed to deal with the
problems associated with local algorithms. These algo-
rithms, such as the ones described in Refs. 2–5, remove the
dependency of the disparity map on the window size. Gei-
ger et al.5 and Veksler6 used shifting windows to compute a
matching cost and then a global optimization method to
find the disparity map. Global algorithms rely on the mini-
mization of a global cost function, thereby satisfying most
of the constraints imposed by the stereo geometry.1 Due to
their global support nature, these algorithms provide reli-
able disparity estimates even for regions containing low
texture and occluded points.24 Many global algorithms such
as graph cuts,2 belief propagation,8 and maximum flow9

generate dense and highly accurate disparity maps as dis-
cussed in Ref. 1. However, due to their high computational
costs, their applicability was limited in real-time constraint
applications. For example, as discussed in Refs. 19 and 20,
only local algorithms were used to achieve computationally
efficient implementations.

Lastly, there is another category of algorithms known as
the cooperative algorithms. These algorithms use iterative
techniques to select the best disparity estimate instead of
the winner-takes-all policy. One of the best performing al-
gorithms in this category is developed by Zitnick and
Kanade.23

3 Area-based Correlation
Area-based correlation is the technique deployed by local
algorithms to compute dense disparity maps. In this section,
we briefly describe this technique based on a single win-
dow to set the stage for our multiple-window algorithm
presented in the next section.

Without loss of generality, let us assume that the stereo

ing correlation windows.
images are obtained from two cameras with parallel optical
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axes. This stereo geometry assumption prevents getting
projective distortion and reduces the matching complexity
as the search process is limited to one dimension.26 How-
ever, it should be noted that this assumption can be eased
by utilizing suitable algorithms, for example, the one in
Ref. 27, to make the epipolar lines parallel to image rows.

To compute a disparity value, a window is placed and
kept fixed over a specific region in the reference �left� im-
age, while it is shifted horizontally over a finite range in the
test �right� image. The range over which the window is
shifted is limited by the maximum disparity in the two im-
ages. Figure 1 illustrates the window shifting process over
the disparity range. The shaded region corresponds to the
window placed at a pixel �x ,y� in the left image and at �x
+d ,y� in the right image. The window is shifted only along
the x direction in the right image, indicated by the shaded
yth row. Correlation is then performed as the window is
moved to �x+dmax,y�, where dmax denotes the maximum
disparity. For matching, the normalized SSD function—see
Eq. �1�—is used:

SSDW�x,y,d�

=

�
i,j�W

�L̂�x + i,y + j� − R̂�x + d + i,y + j��2

� �
i,j�W

�L̂�x + i,y + j��2 �� �
i,j�W

�R̂�x + d + i,y + j��2

�1�

where

L̂�x + i,y + j� = L�x + i,y + j� − L�x + i,y + j� ,

R̂�x + d + i,y + j� = R�x + d + i,y + j� − R�x + d + i,y + j� .

W denotes a window of size �2w+1�� �2w+1�, i,

j� �−w ,w�, and L̂ and R̂ are the mean subtracted images of
the left and right images, respectively. The advantage of
using this equation is that it makes the result invariant to
any nonuniform lighting by removing the dc component in
the images. However, it significantly increases the compu-
tational burden.

A pixel in the test image is matched if the correlation
window centered on it produces a minimum value as com-
pared to the other values. However, the disparity map so
formed exhibits discrete disparity levels, which appear as
bands of varying intensities on the disparity map. To dimin-
ish such bands and generate a smooth disparity map, a sub-
pixel interpolation procedure is carried out, which involves
fitting a curve, e.g., a parabola, to the SSD function in the
vicinity of the minimum disparity. That is,

dsub = dm

+
SSDW�x,y,dm − 1� − SSDW�x,y,dm + 1�

2�SSDW�x,y,dm − 1� − 2SSDW�x,y,dm� + SSDW�x,y,dm + 1��
,

�2�

where dsub denotes the subpixel disparity and dm the dispar-
ity producing the minimum SSD value. The subpixel inter-

polation procedure refines the disparities, i.e., generates a
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gradual transition from one disparity level to another.

4 Selective Multiple-Window „SEL… Algorithm
Area-based correlation can be performed using multiple
windows. The use of multiple windows allows one to im-
prove the accuracy of the disparity map, albeit at the ex-
pense of a higher computational cost. Let us first describe
the advantage of using multiple windows.

As illustrated in Fig. 2, consider a possible scenario
where four single windows of different sizes are used to
match an arbitrary point near a depth discontinuity, where
there is a higher chance of incorrect matching due to either
occlusions or windows covering a nonconstant disparity re-
gion. The windows shown are considered to be of size 3
�3, 5�5, 7�7, and 9�9, respectively. Reliable disparity
estimation requires the windows to cover a region of suffi-
cient intensity variations as well as constant disparity. As-
sume that out of the four windows, only the size 3�3 and
5�5 windows satisfy the above condition, that is, the size
7�7 and 9�9 windows go across the depth discontinuity.
The disparity estimate obtained from the 3�3 window
may not be as accurate as the 5�5 window due to the
presence of noise. However, this does not imply that the
5�5 window would yield reliable estimates for all the
points. In other words, at another point, a different window
size could perform better. This makes the selection of the
window size of critical importance. The idea here is to uti-
lize an adaptive scheme to determine an appropriate win-
dow size automatically. Since conventional adaptive tech-
niques, such as the one described in Ref. 14, are
computationally inefficient, the focus of this work has been
on a computationally efficient multiwindow technique ca-
pable of yielding accurate disparity maps.

In our multiple-window algorithm, the windows grow in
size progressively, keeping their center pixel fixed, unlike
Fusiello et al.’s10 algorithm, which uses windows with dif-
ferent center pixels. The fixed-center pixel approach allows
having a uniform contribution from top, bottom, left, and
right pixels in the computation of correlation. Apart from
the position of the center pixel, three other issues need to be
addressed here: �1� the number of windows to use; �2� the
criterion for selecting a reliable disparity among the win-
dows; and �3� the computational complexity. The first issue
can be addressed by making the largest window equal to
the maximum disparity �dmax� and the smallest window of

Fig. 2 Multiple windows with increasing sizes.
size 3�3.
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The reason behind this choice is the requirement of local
algorithms to use windows covering a constant disparity
region. For an arbitrary point, not lying on a depth discon-
tinuity, with disparity d, the constant disparity region must
extend to at least d pixels. Since the search for the correct
disparity is limited to dmax, the extent of this constant dis-
parity region is therefore upper-bounded by dmax pixels.
This dictates the selection of the size of the largest window
equal to the maximum disparity. This disparity is identified
by inspection. That is to say, we identify some distinct
points on the foreground and background and find the shift
between those points in the two images. This way the dis-
parity range is approximated. dmax is found from the fore-
ground object closest to the camera and dmin from the back-
ground object farthest from the camera. The drawbacks of
this kind of a window selection process include the genera-
tion of incorrect disparity estimates for points near a depth
discontinuity and high computational complexity. The
former brings us to the second issue, i.e., how to select a
reliable disparity estimate. This is a challenging task in the
absence of any prior knowledge about the nature of the
image. The methods to select a reliable estimate from mul-
tiple windows and reduce computational complexity are ex-
plained in detail in the subsections that follow.

4.1 Reliability Test
Multiple windows result in multiple disparity estimates out
of which the most reliable estimate needs to be selected.
The selection cannot be based on the window giving the
least SSD value, as done in Refs. 10 and 11, because the
windows are of different sizes, and the smallest window
always yields the smallest SSD value. Another method to
select the disparity estimates of multiple windows is to nor-
malize the error score by dividing it by the number of pix-
els in the window. This approach will remove the depen-
dence on window size, but the selection of the disparity is
still based on the winner-takes-all policy and thus suffers
from the drawbacks associated with it.1,28 Hence, the deci-
sion must be made by taking into account the nature of the
SSD curve for each window over the entire disparity range.
For this reason, a quantitative test is introduced here that
analyzes the SSD curve for each window to assign a

Fig. 3 SSD curves of a point in
weight, named the reliability factor �RF�, to the disparity
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estimate of that window. The estimate corresponding to the
largest RF is then selected. This factor performs refining
disparities similar to the refinement reported in Ref. 25 with
one difference—the reliability calculations are part of the
algorithm and not a postprocessing step.

Figure 3 shows the SSD curves for a sample point lying
in a region of low-intensity variations using two windows:
one small �9�9� and one large �21�21�. The correct dis-
parity for the point is 13 pixels, and the SSD curves are
normalized with respect to the maximum SSD value.
Matching is affected by the presence of regions having low
or repetitive texture. Such regions generally produce jagged
curves with large peak-to-peak variations, as shown in Fig.
3�a�. To identify and discard such estimates, the RF is made
proportional to the local variation around the minimum
value. Hence, if there is a high local peak-to-peak variation,
the corresponding RF would be small. The local variation
�lv� is defined, similar to the one defined in Ref. 28 as
follows:

lv = �k�E � e�k� − e�k − 1�
max
k�E

e�k� − min
k�E

e�k��2

; E = dm − 2:dm + 2,

�3�

where e denotes the SSD score, dm is the position of the
minimum SSD score, and E is a five-pixel-wide region
around the position of the minimum. The denominator rep-
resents the difference between the maximum and minimum
values in this five-pixel region.

In order to assign high weights to the estimates of the
windows with a distinct global minimum �see Fig. 3�b��,
the following factor, ed, is included that signifies the dis-
tinctiveness of the global minimum:

ed = �
i=1

nlm

�ei − em� , �4�

where nlm denotes the number of local minima and ei a
local minimum. Moreover, RF is made inversely propor-
tional to the number of local minima, noting that the ambi-

enus image pair �see Fig. 12�.
guity in a disparity estimate increases with an increase in
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the number of local minima. Hence, the expression used to
compute the reliability factor is given by Eq. �5�,

RF =
ed

nlm
�k�E � e�k� − e�k − 1�

max
k�E

e�k� − min
k�E

e�k��2

. �5�

The window with the highest RF is selected, and the dis-
parity estimate associated with it is taken as the disparity of
the current pixel.

Points near a depth disparity in one image are generally
occluded in the other image. Finding a match for such
points is difficult and often left unmatched. To reliably
identify points near a depth discontinuity, first the variance
is computed for all windows. From our experimentations, it
is observed that the variance of points near depth disconti-
nuities exhibits a sudden rise or a peak. Figure 4 shows the
variance plots of a row of the Venus image for increasing
window sizes. This can be attributed to the fact that at this
point the window covers a region of a depth discontinuity.
As a result, the window has contributions from the region
in the background as well as the region in the foreground.
The magnitude of the peak depends on the area of each
region covered by the window. A valid peak is considered
to be the one with magnitude greater than 0.5. Then, the
consistency of the locations of these peaks is determined.
For instance, at pixel 150 near a depth discontinuity, there
is a peak seen in Figs. 4�c� and 4�d�; however, no peak is
found at that location in Figs. 4�a� and 4�b�. Thus, the vari-
ances for pixel 150, computed using all windows, exhibits a
step-like pattern: low values for windows covering a con-
stant disparity region and a sudden step change for win-
dows covering varying disparity regions. This suggests that
the window used in Fig. 4�b� is the largest window that will
give a reliable estimate of disparity at this point. Note that
at pixel 200, which is sufficiently away from the depth
discontinuity, all windows exhibit a low value. Finally, the
window sizes are compared based on the RF and the vari-
ance check. If the window given by the variance check is
already discarded by the RF, this point is marked as un-
matched. Thus, it is important to note that our algorithm
explicitly identifies occluded pixels near a depth disconti-
nuity.

4.2 Recursive Computation

Since the number of windows used for correlation depends
on the disparity range, for images with large disparity
ranges, the algorithm becomes computationally expensive.
To overcome this problem, the recursive technique intro-
duced in Ref. 12 is utilized and extended here to achieve an
efficient computation of SSD by eliminating the depen-
dency of the computation on the window size.

Before proceeding to the analysis of the recursive com-
putation, let us rewrite Eq. �1� in a simpler form as follows:

SSDW�x,y,d� =
NW�x,y,d�

D1W�x,y� � D2W�x,y,d�
,

NW�x,y,d� = � �L̂�x + i,y + j� − R̂�x + d + i,y + j��2,

i,j�W
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D1W�x,y� =� �
i,j�W

�L̂�x + i,y + j��2,

D2W�x,y,d� =� �
i,j�W

�R̂�x + d + i,y + j��2. �6�

The recursive procedure is now described with respect to
the numerator, as the denominators can be computed by
applying the same process with slight modifications. Once
the numerator and denominators are computed, the correla-
tion score can be easily obtained.

Consider a single window of size W= �2w+1�� �2w
+1� positioned at the coordinates �x ,y� in the reference
image and at �x+d ,y� in the test image. When the window
is shifted from a point �x ,y−1� to a point �x ,y�, the SSD at
the new point can be computed from the SSD at the old
point as stated below:12

NW�x,y,d� = NW�x,y − 1,d� + RDW�x,y,d� , �7�

where

RDW�x,y,d� = �
i=−w

w

�L̂�x + i,y + w� − R̂�x + d + i,y + w��2

− �
i=−w

w

�L̂�x + i,y − 1 − w�

− R̂�x + d + i,y − 1 − w��2,

RDW�x ,y ,d� denotes the difference between the SSD of the

�y+w�th and �y−1−w�th rows, and L̂, R̂ are the mean sub-
tracted images of the reference and test images, respec-
tively.

To have a better understanding of Eq. �7�, Fig. 5 pro-
vides a graphical description of it. When the window, indi-
cated by the thick black lines, is moved one pixel down, the
pixels along the row �y+w� �shaded dark� are the only ones
that get included in the area enclosed by the window, those
along the row �y−1−w� �shaded light� are left out. Hence,
the SSD value at the previous point can be updated based
on the SSD difference of these two rows. This immediately
reduces the number of operations per window from �2w
+1�2 to �2w+1�, where each operation is the squared dif-
ference of the pixel intensity in the reference and test im-
age.

Next, when the window is shifted horizontally, it is ob-
served that the SSD value of each row can be computed by
adding the difference of the SSD values of only two pixels
to the previous value. The two pixels correspond to the one
included in the row and the one excluded when the window
shifts by one pixel. The result of this operation corresponds
to the second level of recursion, which computes the row
difference RDW�x ,y ,d� from the row difference RDW�x

−1,y ,d�, as illustrated in Fig. 6. The lightly shaded pixels
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Fig. 4 Determining occluded pixels using variance of pixels.
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represent the pixels excluded when the window moves to
its current position. Equation �8� provides the second stage
of the recursive computation:12

RDW�x,y,d� = RDW�x − 1,y,d� + �L̂�x + w,y + w�

− R̂�x + d + w,y + w��2 − �L̂�x − 1 − w,y + w�

− R̂�x − 1 + d − w,y + w��2

− �L̂�x + w,y − 1 − w�

− R̂�x + d + w,y − 1 − w��2

+ �L̂�x − 1 − w,y − 1 − w�

− R̂�x − 1 + d − w,y − 1 − w��2. �8�

From Eq. �8�, we can see that the correlation score of each
pixel can be computed in only four operations, where each
operation is the squared difference of the pixel intensity in
the reference and test images. However, to initiate the re-
cursion, the SSD value of the first pixel must be computed
in a direct manner. This implies that for each window, the
SSD value of the first pixel must be computed before the
process is initiated. Thus, a third stage of recursion is in-
troduced here to reduce the computational cost arising from
the above operation. Matching begins when the largest win-
dow is placed over a particular pixel and the SSD associ-

Fig. 5 First stage o
Fig. 6 Second stage of rec
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ated with it is computed. When the window size is reduced
by one, the SSD computation for the new window �W1� is
performed by simply subtracting the SSD values of the two
outermost pairs of rows and columns �Wo� from the SSD
value of the larger window �W� as illustrated in Fig. 7.
Equation �9� provides the third stage of the recursive com-
putation:

NW1�x,y,d� = NW�x,y,d� − �
i=−w

w

�L̂�x + i,y − w�

− R̂�x + d + i,y − w��2 − �
i=−w

w

�L̂�x + i,y + w�

− R̂�x + d + i,y + w��2 − �
j=−w+1

w−1

�L̂�x − w,y + j�

− R̂�x + d − w,y + j��2 � �
j=−w+1

w−1

�L̂�x + w,y

+ j� − R̂�x + d + w,y + j��2. �9�

For a single window, after the first pixel, the recursion
makes the matching process almost independent of the win-
dow size. For multiple windows, the recursive computation
lowers the complexity, in terms of the number of SSD op-

rsive computation.
ursive computation.
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erations, from O�4MN�dr��i=1
dmaxwi

2� when no recursion is
used to O�4MN�dr�dmax� when using the recursions,
where MN represents the number of pixels and dr the dis-
parity range. For example, on a Pentium 4, 1 GHz PC, for
the Tsukuba image pair of size 288�384 �see Fig. 8�, the
recursive computation reduced the processing time from
1066 seconds to 22 seconds; that is a speed up by a factor
of 49.

4.3 Algorithm Summary
Basically, our stereo matching algorithm consists of the fol-
lowing four steps:

1. The input images are first compensated for photomet-
ric distortions by subtracting the means instead of the
Laplacian-of-Gaussian �LoG� approach.14,20 In this
step, the variance is also computed, to be used during
the reliability test. The input images are assumed to
be rectified so that the disparity only varies in the
horizontal direction.

2. Stereo matching is carried out using the SSD corre-
lation and multiple windows as described in Sections
3 and 4. The number of windows depends on the
disparity range between the two stereo images. The
maximum window size is selected to be equal to the
largest disparity. This means dmax number of win-
dows is deployed. This selection is based on the ob-
servation that windows larger than dmax do not pro-
vide any new information. Furthermore, a window of
this size induces an effect of global matching due to
its size.

3. Once the matching process using the multiple win-
dows is completed, the most reliable match is found
by applying the reliability test. The results of the re-
liability test and the variances computed in step 1 aid
in identifying occluded pixels without the need to
perform any bidirectional matching.

4. Finally, a subpixel interpolation is performed on the
disparity estimate of the selected window to refine
the match and generate a smooth map. A second-
degree curve is then used to interpolate the SSD
scores in the vicinity of the minimum disparity found
by the above steps.

5 Results and Discussion
This section includes the experimental results obtained by
our SEL algorithm on a set of standard stereo images from
the Middlebury College database29 with known ground

Fig. 7 Third stage
truths. The results are compared with the two popular local
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algorithms, symmetric multi-window �SMW� and single
matching phase �SMP�, to illustrate the effectiveness of the
SEL algorithm.

A preprocessing step was carried out, which consisted of
subtracting the image means to make the matching process
invariant to different lighting conditions seen by the cam-
eras. Some methods, for example, Refs. 14 and 20, use
Laplacian-of-Gaussian filtering for such a preprocessing.
The displayed results consist of six images: left input im-
age, right input image, ground truth disparity map, disparity
map generated by the SEL algorithm, disparity map gener-
ated by the SMW algorithm, and, finally, disparity map
generated by the SMP algorithm. For the SMW and SMP
algorithms, the images shown correspond to a 9�9 corre-
lation window, although the comparison tables provided
here include the outcomes for three window sizes: 7�7,
9�9, and 11�11.

The disparity maps of the Tsukuba stereo image pair are
shown in Fig. 8. This image pair contains objects at varying
depths and regions with low and repetitive texture. Com-
paring the map with the ground truth, it is observed that the
SEL algorithm recovers the disparity in the images well.
Even the disparity of fine objects, such as the legs of the
tripod, the handle of the camera, and the lamp wire, is
recovered. However, the map contains some wrong
matches caused by occlusions and poor texture. These
points are represented in white for visual identification. On
the other hand, the SMW and the SMP algorithms recover
the overall 3D structure of the objects but exhibit more
errors in recovering finer objects. The SMW algorithm re-
covers some of the fine objects, but some others are com-

Fig. 8 Tsukuba image pair: �a� left image; �b� right image; �c�
ground truth; disparity maps using �d� SEL; �e� SMW; and �f� SMP

rsive computation.
of recu
algorithms.
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Fig. 9 MAP image pair: �a� left image; �b� right image; �c� ground
truth; disparity maps using �d� SEL; �e� SMW; and �f� SMP
algorithms.
algorithms.
Fig. 10 Bull image pair: �a� left image; �b� right image; �c� ground
truth; disparity maps using �d� SEL; �e� SMW; and �f� SMP
algorithms.
Fig. 11 Saw image pair: �a� left image; �b� right image; �c� ground
truth; disparity maps using �d� SEL, �e� SMW, and �f� SMP

algorithms.

Journal of Electronic Imaging 013012-
Fig. 12 Venus image pair: �a� left image; �b� right image; �c� ground
truth; disparity maps using �d� SEL; �e� SMW; and �f� SMP
algorithms.
Fig. 13 Barn1 image pair: �a� left image; �b� right image; �c� ground
truth; disparity maps using �d� SEL; �e� SMW; and �f� SMP
Fig. 14 Barn2 image pair: �a� left image; �b� right image; �c� ground
truth, disparity maps using �d� SEL; �e� SMW; and �f� SMP

algorithms.
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pletely missed. The SMP algorithm recovers these objects,
too, but at the expense of the border localization problem in
addition to the loss of details in some regions.

The experimental results for seven more stereo image
pairs are shown in Figs. 9–15: Map, Bull, Saw-tooth, Ve-
nus, Barn1, Barn2, and Poster. These images consist of
simple objects including paintings and posters placed at
different depths. The images have large disparity ranges,
resulting in large occlusions. With the exception of the Map
image pair, which has a high textured pattern in the middle,
they are mostly low in texture. The performance of the
three algorithms for these images is quite similar except for
the Venus and Poster image pairs, where the SMW algo-
rithm produces poor results. In the Saw and Barn1 images,
the border localization problem is quite prominent as com-
pared to the other images for the SMP algorithm. In this
case for the window size 9�9, the SMW algorithm per-
forms better than the SEL and SMP algorithms. Due to the
large disparity ranges in these images, many points are oc-
cluded, especially near the edges. These points constitute
the bulk of the unmatched points and are represented in
white in the SEL and SMP disparity maps. In the SMW
disparity maps, such points are assigned to the disparity of
the deeper plane, as done in Ref. 30, and hence are not
represented in white.

Considering that the above images are composed of
mainly planar objects, two more image pairs were tested:
Teddy and Cones. These images are more realistic and offer
a more challenging test of the matching algorithm. Figure
16 provides the outcome of the three algorithms for the
Teddy image pair, while Figure 17 provides the same for
the Cones image pair. From the outcome of the Teddy im-
age pair, we can see that all the algorithms yielded errors
during the matching process. There are gross errors on the
slanting roof of the house as well as the doll lying on the
floor. Due to the large disparity range of this image, the
SMW algorithm does not process columns equivalent to the
disparity range of this image on both sides, leading to the
large black regions on the side. On the contrary, all three
algorithms performed well on the Cones image pair. The

Fig. 15 Poster image pair: �a� left image; �b� right image; �c� ground
truth, disparity maps using �d� SEL; �e� SMW; and �f� SMP
algorithms.
algorithms recover fine objects like the straws in the cup
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and the tips of the cones. The SEL algorithm exhibits a
better visual outcome than the other two algorithms.

In addition, a quantitative measure is applied to prove
the superiority of the SEL algorithm over the SMW and
SMP algorithms. This was achieved by using the percent-
age of correct matches. To do this quantitative assessment,
we used the measure defined in Ref. 1 to compute the per-
centage of correct matches, denoted by CP. To calculate CP,
all the pixels in an image were considered so as to provide
an absolute measure of accuracy and illustrate the capabil-
ity of the algorithm to assign correct disparities to pixels.
Matches are said to be correct if the absolute difference
between the obtained disparity and ground truth is less than
or equal to one. Therefore, for pixels near occluding bound-
aries �shown in white� and unmatched pixels, this differ-
ence will be always greater than one. As a result, the per-
centage of unmatched pixels would be simply 100 minus
CP. The following equation was thus used to compute CP
between a disparity map D and a ground truth map DT for
an image of size MN:

Fig. 16 Teddy image pair: �a� left image; �b� right image; �c� ground
truth; disparity maps using �d� SEL; �e� SMW; and �f� SMP
algorithms.

Fig. 17 Cones image pair: �a� left image; �b� right image; �c� ground
truth; disparity maps using �d� SEL; �e� SMW; and �f� SMP

algorithms.

Jan–Mar 2007/Vol. 16(1)0
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CP =
1

MN
	�

y=0

M−1

�
x=0

N−1

�d�x,y�
 � 100, �10�

where

�d�x,y� = 1 if �D�x,y� − DT�x,y�� � 1,

=0 otherwise.

Table 1 lists the computed percentages corresponding to the
three algorithms using different window sizes. In addition,
the root mean square �RMS� error measure was computed.
This measure reflects the overall error in a disparity map.

Table 1 Percentage of correct matc

Image

SEL

NSSD SAD 7�7

Tsukuba 92.18 92.12 91.04

Map 94.67 94.60 94.42

Bull 99.51 99.48 98.47

Saw 97.58 97.51 94.08

Venus 97.45 97.41 90.24

Barn1 98.87 98.86 95.61

Barn2 97.79 97.75 96.49

Poster 98.46 98.43 92.47

Teddy 83.59 83.38 76.73

Cones 92.22 92.18 82.24

Table 2 RMS errors for S

Image

SEL

NSSD SAD 7�7

Tsukuba 2.89 2.96 3.21

Map 2.31 2.33 2.43

Bull 0.48 0.51 0.67

Saw 0.68 0.72 1.27

Venus 0.86 0.90 1.63

Barn1 0.65 0.68 1.15

Barn2 0.87 0.92 1.47

Poster 0.72 0.74 1.46

Teddy 2.59 2.57 4.12

Cones 1.79 1.84 4.36
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Equation �11� was used to compute the RMS error between
a disparity map D and a ground truth map DT for an image
of size MN:

RMS =� 1

MN
�
y=0

M−1

�
x=0

N−1

�D�x,y� − DT�x,y��2. �11�

Table 2 lists the RMS values corresponding to the three
algorithms using different window sizes. To evaluate the
above metrics, we considered all the pixels in the images.
However, the ground truth for the Tsukuba image pair has

r SEL, SMW, and SMP algorithms.

SMP

11�11 7�7 9�9 11�11

91.23 89.26 89.71 89.43

94.60 90.32 90.56 90.67

99.27 98.92 99.30 99.38

95.46 97.21 97.95 98.06

92.84 97.31 97.79 97.80

95.80 97.91 98.18 98.23

97.17 96.34 96.72 96.74

93.23 97.40 97.84 97.96

78.45 80.86 81.63 82.08

85.21 87.57 89.03 89.77

W, and SMP algorithms.

SMP

11�11 7�7 9�9 11�11

3.12 4.68 4.41 4.56

2.38 3.49 3.42 3.37

0.51 0.58 0.51 0.49

1.12 0.79 0.66 0.62

1.33 0.93 0.84 0.81

1.11 0.78 0.72 0.67

1.40 0.97 0. 91 0.89

0.90 0.89 0.80 0.75

4.11 2.71 2.67 2.59

4.12 2.89 2.75 2.62
hes fo

SMW

9�9

91.30

94.52

99.23

95.24

91.63

95.73

97.03

92.84

77.81

83.48
EL, SM

SMW

9�9

3.02

2.39

0.53

1.17

1.49

1.13

1.41

0.95

4.07

4.19
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18 rows removed from the top and bottom and 18 columns
removed from its sides. This amounts to 11,772, or 10.6%,
of the total pixels that are not considered for the accuracy
test. However, in our case we have considered all the pix-
els. Since the border pixels correspond to the background,
we have extended the value of the background pixels by
these 18 pixels in all directions and used it to compute the
accuracy results. In other words, more pixels are used,
which is the reason for the low value of the percentage of
correct matches. Thus, the results in the table provide a true
measure of the accuracy of the algorithms. From the above
tables, it is evident that the developed algorithm outper-
forms the SMW and SMP algorithms with the exception of
the two image pairs Saw and Venus for the window sizes
9�9 and 11�11, although the outcomes for these images
are quite close. Furthermore, most importantly, it should be
noticed that the outcome of the SEL algorithm is not de-
pendent on the window size.

Table 3 lists the running times of the three algorithms on
a Pentium 4, 1 GHz PC. It is important to know that all the
implementations are in Matlab, which is the reason for the
higher run-time speeds as compared to some other algo-
rithms. For example, the implementations by Refs. 12, 13,
and 22, make use of optimized C and multimedia exten-
sions �MMX� available in most Pentium processors. From
the table, it can be seen that the SAD-SEL reduces the

Table 3 Processing times �speedup factors� fo
without recursion.

Image

NSSD SEL
�without

recursion� sec NSSD

Tsukuba 1066.3 21.8 �49�

Map 1164.4 36.4 �32�

Bull 1280.7 53.3 �24�

Saw 1265.2 48.6 �26�

Venus 1303.6 54. �24�

Barn1 1256.3 36.9 �34�

Barn2 1270.5 41.0 �31�

Poster 1283.1 53.4 �24�

Teddy 3214.3 178.5 �18

Cones 3187.7 185.5 �17

Table 4 Local algorithm outcome from the Middlebury College s

Algorithm

Tsukuba Venus

N A D N A

SEL 3.77 4.17 8.68 2.14 2.61

SSD-MF 5.23 7.07 24.1 3.74 5.16
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processing times considerably as compared to the process-
ing times of the NSSD-SEL algorithm. Furthermore, the
SAD-SEL algorithm yields processing times comparable to
those of the SMW and SMP algorithms, which is attributed
to the three-level recursive computational scheme.

Finally, in an effort to compare the developed algorithm
with other local algorithms, the results of the Tsukuba, Ve-
nus, Teddy, and Cones image pairs were submitted to
Middlebury College for evaluation. The only local algo-
rithm reported as part of this evaluation is the SSD-MF
algorithm.1 Table 4 lists the percentage of error in the three
regions identified in Ref. 1. As observed from Table 4, the
SEL algorithm outperformed the SSD-MF algorithm. In ad-
dition to the above comparison, the SEL algorithm was
compared to the algorithms on the Middlebury Stereo Vi-
sion Research page. Table 5 provides the results obtained
from this page. As seen from this table, the SEL algorithm
was listed as the 12th-best performing algorithm and the
2nd-best performing local or correlation-based algorithm
behind that in Ref. 31. However, in terms of computational
complexity, the SEL algorithm is more efficient. All the
other algorithms that fared better were global algorithms,
and none was as computationally efficient.

, SMW, and SMP with respect to NSSD SEL

SMW
9�9

SMP
9�9SAD

15.9 �67� 11.3 �94� 7.6 �140�

20.4 �57� 14.5 �80� 10.2 �114�

34.6 �37� 24.6 �52� 15.4 �83�

31.6 �40� 23.8 �53� 14.7 �86�

36.2 �36� 25.1 �52� 16.5 �79�

26.1 �48� 22.0 �57� 14.4 �87�

25.4 �50� 21.9 �58� 14.7 �86�

37.7 �34� 25.1 �51� 16.4 �78�

133.9 �24� 100.4 �32� 65.6 �49�

138.6 �23� 99.6 �32� 67.8 �47�

age evaluation; N �non-occlusion�, A �all�, and D �discontinuity�.

Teddy Cones

N A D N A D

1 14.1 14.0 15.1 7.63 8.53 14.6

9 16.5 24.8 32.9 10.6 19.8 26.3
r SEL

SEL

�

�

tereo p

D

21.

11.
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6 Conclusions
This paper has presented a selective multiple-window algo-
rithm to perform stereo matching. It is shown that by using
a series of windows with increasing sizes, one can ensure
that at least one window yields a reliable disparity estimate.
For low textured images, this approach provides a local–
global matching strategy with the large windows account-
ing for global matching and the small ones for local match-

Table 5 Comparison with the Middlebury College algorithms: SEL i
algorithms are global algorithms.
ing. A reliability test is introduced to select the most

Journal of Electronic Imaging 013012-1
reliable estimate among multiple windows, in particular,
increasing accuracy in low textured regions of an image. A
three-stage recursive computation is also used to have a
computationally efficient implementation. The recursion
scheme makes the matching process independent of win-
dow size. The results obtained from a standard set of image
pairs demonstrate that the developed algorithm provides
higher-accuracy disparity maps as compared to two popular

as the best-performing local algorithm; the other better-performing
s seen
stereo matching local algorithms. The results from the

Jan–Mar 2007/Vol. 16(1)3
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Middlebury College evaluation page also indicate that the
introduced algorithm is the second-best performing
correlation-based, multiwindow algorithm.
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