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Abstract. In previous work we considered a model of a population where

individuals have an optimum level of social interaction, governed by a graph

representing social connections between the individuals, who formed or broke
those links to achieve their target number of contacts. In the original work an

improvement in the number of links was carried out by breaking or joining to a

randomly selected individual. In the most recent work, however, these actions
were often not random, but chosen strategically, and this led to significant

complications. One of these was that in any state, multiple individuals might
wish to change their number of links. In this paper we consider a systematic

analysis of the structure of the simplest class of non-trivial cases, where in

general only a single individual has reason to make a change, and prove some
general results. We then consider in detail an example game, and introduce

a method of analysis for our chosen class based upon cycles on a graph. We

see that whilst we can gain significant insight into the general structure of the
state space, the analysis for specific games remains difficult.

1. Introduction.

1.1. Modelling evolution in populations. In this paper, following [3], we con-
sider a population comprised of a network of individuals represented by a simple
graph. The composition of the population does not change, but the connections
between individuals do change following strategic decisions according to their pref-
erences. In particular, each individual has a target number of neighbours that they
prefer, and will try to achieve. There may be many types of individuals, where a
type is this target number.

Such networks can occur throughout biology, economics and sociology, and this
is the subject of a lot of recent research interest. Examples include companies
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2 CHRIS CANNINGS AND MARK BROOM

which trade with each other (economics), individuals who are friends (sociology) or
the owners of neighbouring territories or food webs ([10], biology). Social animals
also have dominance and mutualist interactions and, for example, primate social
structures can be complex and influence behaviours such as the level of cooperation
[32, 33].

In particular, individuals may have different levels of desire to interact with
others, known as “sociability”. Sociability has been investigated in, for example,
(non-human) primates [6], bottlenose dolphins [7, 34] and sheep [28]. In these cases
temporary links occur between individuals. The likelihood of a given link occuring
can depend upon many factors, such as gender, the relatedness of individuals, spatial
factors or dominance relationships. Links can be reciprocal, or initiated or broken
by the actions of a single individual. The presence or absence of a link may benefit
one individual but not the other (e.g. a female and a poor quality male). This
work is connected to an important related area of research on biological markets
and partner choice [20, 21].

We note that, since the population composition is fixed, our process is not an
evolutionary process. We discuss such models, and the relationship of our model to
them, in more detail in [3]. It could be considered as a detailed examination of a
snapshot in time of an evolutionary process; for instance a more complicated version
of the type of scenario modelled in [22, 23], where the rates at which links are formed
or broken depend upon the types of the individuals involved. It would be possible to
embed our model into their, or similar, models. For reviews of evolutionary models
involving structured populations see [1] and [25].

In the current paper we do not model complex behaviours, but simply the graph
of interactions. Individuals are represented by vertices, and pairwise links by edges.
Individuals are assumed to be identical, except in their target number of links. All
will try to make changes that get their number of links closer to their target, but
the actions of others can make an individual’s situation better or worse.

1.2. A dynamic network population model. In [3] we introduced a population
of individuals represented by the set V = {1, 2, . . . , n} and the simple graph G =
(V,X) with X = (xij)i 6=j=1,...n representing the links between pairs of individuals,
xij = 1 meaning there is a link, with xij = 0 otherwise. In particular we considered
a random process in discrete time on the evolving edge set Xt = (xij,t)i,j=1,...n.

At any time t individual i has ei,t edges, and the vector et = (e1,t, e2,t, . . . , en,t)
is referred to as the sequence et. At each time point an individual is chosen and
allowed to add or remove an edge. Each vertex has an acceptable range [mi,Mi]
of edges to other vertices, where 0 ≤ mi ≤ Mi ≤ n − 1. In much of the work
mi = Mi = ti, with ti denoted as the unique target of i, giving a target sequence
t=(ti)i=1,...,n. We shall assume this from now onwards.

We shall always give the targets in decreasing order of size, i.e. ti ≥ tj for all
i < j. If i was selected with ei < ti (called a Joiner) then it formed a new edge,
choosing one of the vertices it was not connected to at random. If ei > ti (a Breaker)
then it broke one of its edges at random. Otherwise, it neither created nor broke
an edge (a Neutral vertex).

Definition 1.1. The deviation of individual/vertex i is given by εi,t = |ti−ei,t| and
the deviation of the graph Xt is the sum of the vertex deviations, Υt =

∑
i=1,n εi,t.

Definition 1.2. The minimum value of the deviation over all possible graphs is
termed the score.
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If the score is 0 the sequence is called graphic. There has been a lot of work
considering graphic sequences, for example [12], [13],[14],[19],[26].

In [4] the conjugate vector v = (vi) of t was defined by vi = #{j : tj ≥ i} (where
# means “the number of”).

There, and in the working below, we define fk as

fk =

k∑
i=1

(ti + 1− vi), (1)

with f0 = 0. A sequence is graphic if and only if the sequence sum is even and
fk ≤ 0 for k = 1, . . . , λ, where λ = #{i : ti ≥ i} is the Durfee number [5].

Definition 1.3. The deficit of the sequence t is max0≤k≤λ fk.

We can explain this as follows. Suppose that we consider the first k vertices
and try to connect them to others to achieve their targets. Given that we can only
connect each of the k vertices to any other once, and assuming we are not allowed
to take any of the other vertices over target, fk is the number of such links that we
fail to make (if fk is negative, this represents the number of spare connections not
used with other vertices after we achieve our k targets). The deficit corresponds
to the largest value of fk over all k. The Durfee number is the number of vertices
which require at least some links with later vertices; we can thus stop the above
process there, as the targets of subsequent vertices will be achieved by connecting
with the previous vertices.

The peak µ denotes the largest value of k ≤ λ s.t. fk achieves the deficit. In
[5] we proved that the score is equal to the deficit or the deficit plus 1. Note that
the score of a target with odd (even) sequence sum is also odd (even), so given the
deficit of a sequence, the score immediately follows.

Examples A. Here we consider two example sequences to illustrate the defini-
tions above, 43210 and 33311.

For the target sequence 43210, consider the graph where vertex 1 is connected
to all other vertices, vertices 2 and 3 are connected and all other pairs of vertices
are split. This graph then has sequence 42211. The deviations of the five vertices
are thus 0, 1, 0, 0 and 1 repsectively, with graph deviation 2. This graph actually
achieves the minimum possible such deviation, the score, so that the score for 43210
is 2. We note that in general the score of any sequence can be found using a modified
Havel-Hakami algorithm [12],[14], following the method developed in [4].

To find the deficit, we need to find the vis associated with 43210. Four of these
five numbers are greater than or equal to 1, and hence v1 = 4. Similarly we
obtain v2 = 3, v3 = 2, v4 = 1. Precisely the first two satisfy vi ≥ i, so that
the Durfee number is 2. We have f0 = 0 (as always), f1 = 4 + 1 − 4 = 1 and
f2 = (4 + 1 − 4) + (3 + 1 − 3) = 2; the deficit is the maximum of these three
numbers, and so is 2.

For 33311, consider the graph where vertices 1,2 and 3 are all connected, and
the only other links are vertices 1 to 4 and 2 to 5. The graph has sequence 33211,
deviations are 0, 0, 1, 0, 0 and so the graph deviation is 1, which is also the
score. We have v1 = 5, v2 = 3, v3 = 3, v4 = 0, so the Durfee number is 3. We
have f0 = 0, f1 = 3 + 1 − 5 = −1, f2 = (3 + 1 − 5) + (3 + 1 − 3) = 0, f3 =
(3 + 1− 5) + (3 + 1− 3) + (3 + 1− 3) = 1, so that the deficit is 1.
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In general there is a set of sequences, with a corresponding set of graphs, which
achieve the score; these were termed the minimal set(s) and labelled J(min) and
K(min), respectively, in [4]. For the non-strategic case when random improving
moves are selected, we proved that from any starting point there is a path of possible
moves that reaches K(min), and since the deviation of the graph can never increase,
once J(min)/K(min) is reached, it cannot be left. Further we showed that K(min)
was connected for non-graphic sequences, and the process always converges to a
unique closed set of states. This is not the case for graphic sequences, where J(min)
of course has a unique element, but K(min) may have a number, and in this case no
further transitions can occur. We also showed in [4] a method to find all members
of K(min) (and hence J(min)) following Ruch-Gutman [26].

The Markov chain over K(min) was considered in [3] (all states not in this set
will be transient following the reasoning above). We showed that the process was
reversible and so with a unique stationary distribution. We also showed how to find
this stationary distribution. We finally considered the explicit form of the stationary
distribution for a specific class of sequence.

In [5] we considered detailed aspects of the structure of K(min). In [4] we
proved certain restrictions to exist on its elements, e.g. that for any such graph
we know that all Joiners (that is vertices that have degree less than their target)
must be joined. In [5] we extended such analysis to consider the possible sequences
of Joiners, Breakers (vertices with degrees greater than their target), and Neutrals
(the remaining vertices) through time. Vertices fall into four classes; those which
are always Neutral, those which are never Joiners, those never Breakers, and those
which can be either Joiners or Breakers. We specified rules regarding the possible
sequences of class memberships of the vertices (recall that we list all sequences in
decreasing order of their targets).

We then considered a model, which in contrast to those of [3] and [4] considers
the possibility that the individual at a vertex may choose between the available
possibilities according to some aspect of the future costs at that vertex. This is
complicated and hard to deal with in generality, and so we restricted ourselves to
considering one example in detail, and demonstrating the important concepts to
consider in any more extensive analysis. From that paper we saw this complex-
ity, but also that strategic choices lead to clearly different results than the simply
random process from [3].

In the current paper we shall focus on target sequences with score 1. These are
the closest sequences to graphical sequences, and yield certain simplifications that
will make them more amenabe to analysis. In particular, in the minimal set there
will always be precisely one individual which is missing its target, so if all individuals
play pure strategies, the subsequent evolution of the population state is completely
determined. We make significant progress in understanding the structure of the
state space, and find a method to analyse games for score 1 sequences by means
of cycles of a graph. Analysis of specific examples remains challenging in general,
however.

2. A strategic model. Our game involves n players trying to minimise the cost
for missing their target number of links (equivalent to maximising their payoff),
with the population following a random process where at each step an individual is
selected uniformly at random to potentially form or break a link. In this section we
define the other key elements of our game, namely the strategies available to the
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players and their respective payoffs, as well as how the population can evolve in our
system.

2.1. Strategies and payoffs. The population state is denoted by the edge set
X and in each state any individual can be selected to potentially change one of
their edges. When selected there are n available (pure) choices, namely to change
their edge to any of the other n − 1 individuals, or not to make any change. We
use uij to represent the probability that individual i chooses to change edge xij ,
conditional on i being selected to make the change, with uii being the probability
that no change is made. Thus uij = 1 (with all other elements in the ith row 0)
represents the pure strategy where individual i chooses to change edge xij ; similarly
i making no change is given by uii = 1. The set of all selected changes can then be
written as the strategy matrix U.

It is clear that U depends upon X, and so the full set of strategies of the pop-
ulation, representing the choices of every individual in every conceivable situation,
is denoted by UX, with elements uij(X). The strategy of individual i is the set of
the ith rows of the collection of matrices UX. For any x∗ which differs from x in a
single entry, where xij = 0, x∗ij = 1 or xij = 1, x∗ij = 0 for a given i, j,we have:

P (Xt+1 = x∗|Xt = x) =
uij(X) + uji(X)

n
. (2)

In [5] we had a unique target t, and changes were made that always reduced the
deviation of the individual where possible, with no change made otherwise (as this
would have made the immediate situation worse). This was called the strict system.
In this paper we also limit ourselves to consideration of the strict system. We note,
however, that in [5] we showed that assuming all other individuals play strictly, it
can sometimes be optimal for an individual to choose a non-strict move even when
the sequence is graphic (and indeed very simple in the example given).

Individuals want to minimise their deviation, and we shall simply consider their
payoff as minus their expected long term deviation. If a process with strategies UX

has a unique stationary distribution π(X) over X, the payoff to i is

Ri(UX) = −
∑
X

εi(X)π(X), (3)

where εi(X) is the deviation of i in state X.

2.2. Stability and strategy switches. Individuals can try to improve their pay-
offs by changing their strategy. In [5] two distinct types of allowable strategy changes
were considered: Local changes, where i can change the ith row of UX for a single
state X only; Global changes - individual i changes the ith row of UX for any num-
ber of states simultaneously. Making such global changes might be advantageous,
since any individual change would potentially affect the probabilities of particular
states being occupied and particular paths being followed, which in turn changes
the optimal choices at other states. A significant calculating ability may be required
to make good global choices, and we noted that an individual with limited abilities
may be restricted to only using strict moves and local changes.

We only allow one individual to consider making a change at any given time.
We assume that under all allowable changes UX → Ui

X for individual i (including
no change), it chooses a strategy that achieves maxiRi(U

i
X), i.e. it chooses a best
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reply to the current strategies of others. A strategy set is a Nash equilibrium under
local or global changes if, under all allowable changes by i : UX → Ui

X

Ri(U) ≥ Ri(Ui) i = 1, . . . , n. (4)

3. General results for score 1 sequences. When a sequence is graphic, all
individuals can eventually reach their target (though for some combinations of the
strategic choices of all individuals they may not, see [5]) and on the minimum set
there are no more changes in the population. Thus, assuming that K(min) is
reached, this situation is of minimal interest. The next simplest case is that of
score 1 sequences. Here in the minimal set, there is exactly one individual not on
target, so only one individual will want to change a link. If all individuals play pure
strategies, this would lead to a unique choice being made at every member of the
minimal set, and so the population will follow a unique path from the first time it
enters the minimal set. We consider an example game for this case in Section 4 in
detail.

In the current section, we mainly consider general results for score 1 sequences.
However, we note that Theorem 3.2 applies to all sequences.

3.1. The score and the deficit. In Theorem 3.1 we show that a sequence is a
score 1 sequence if and only if there is a graphic sequence to which it differs by 1 in
a single position. We can find all graphic sequences either using the variant of the
Havel-Hakimi procedure from [4], or the alternative criteria from [11]. Thus using
Theorem 3.1 we can find all score 1 sequences. As well of being of interest in itself,
this result is important in the categorisation that we use in Section 3.2 and in our
main general result, Theorem 3.3.

Theorem 3.1. For any sequence t, there is a graphic sequence g such that for some
i, |ti − gi| = 1 and tj = gj for all j 6= i, if and only if t has score 1.

Proof: Firstly note that from Theorem 8 of [4] adding or taking 1 from any
element of a graphic sequence gives a score 1 sequence. It thus remains to show
that every score 1 sequence is indeed reachable by this process from some graphic
sequence.

Consider a score 1 sequence. It is either score 1 and deficit 0 or score 1 and
deficit 1. In either case the sum of the targets

∑
ti must be odd.

a) If the sequence has deficit 0, then add 1 to tn. If after reordering this keeps tn
out of the first λ terms (or first λ + 1 terms if there is an increase in the Durfee
number), then it leaves the deficit unchanged at 0. If it does not keep tn out of the
first λ (correspondingly λ+ 1) terms, then we must have tλ+1 = . . . = tn = λ in the
original sequence. There are thus two cases to consider:
i) the Durfee number remains at λ,
ii) the Durfee number becomes λ+ 1.

Case i) occurs if tλ = λ, and case ii) if tλ ≥ λ + 1. Note that in both cases we
have v1 = . . . = vλ = n.
i) Clearly ti + 1 − vi is non-positive for the first λ terms so that the deficit is
unchanged at 0.
ii) We now have the extra term tλ+1 + 1− vλ+1 to add. As the Durfee number has
become λ+1, we know that this is λ+1+1− (λ+1) = 1. Thus the deficit is still 0,
unless ti+ 1− vi = 0 for all i ≤ λ. This only occurs if we have t1 = . . . = tλ = n− 1
in the original sequence. But then

∑
ti = (n−1)λ+λ(n−λ) = λ(2n−1−λ) which

is even, contradicting our assumption that the sequence has score 1.
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Thus the deficit remains unchanged at 0. But
∑
ti now changes from odd to

even. A deficit of 0 and an even target sum implies that the score is 0.
b) If the sequence has deficit 1, then take 1 off t1. If this keeps t1 within the first
µ terms (where µ is the peak), then the deficit is reduced by 1, since the deficit is∑µ
i=1(ti + 1 − vi). If it does not keep it within the first µ terms, this means that

the first µ terms must all be equal. There are then four cases to consider. Recalling
that the Durfee number is denoted by λ, we have:
i) t1 = . . . = tµ > t(µ+1) where µ < λ,
ii) t1 = . . . = tµ = t(µ+1) where µ < λ,
iii) t1 = . . . = tµ > t(µ+1) where µ = λ,
iv) t1 = . . . = tµ = t(µ+1) where µ = λ.

In cases i) and iii) t1 is still the µth biggest, and clearly as the deficit is greater
than 0, tµ+1−vµ > 0 (vµ is the smallest of the first µ v’s), so the deficit is reduced
by 1 to 0. Thus

∑
ti is even and the deficit is 0, which implies that the score is 0.

In case ii) prior to the change tµ + 1 − vµ > 0 so that t(µ+1) + 1 − v(µ+1) > 0,
which would mean that the peak is not at µ but at µ+ 1 (or later). Thus this is a
contradiction.
In case iv) t1 = . . . = tλ = t(λ+1). The only way this can happen is if all of these
take value λ (otherwise the Durfee number could not be λ). But then v1 = . . . =
vλ ≥ λ+ 1, so that the deficit is in fact 0. Thus this is also a contradiction.

Combining all of the above, the theorem is proved. �

In [5] we considered the dual sequence of t, denoted by s, where si = n−1−tn+1−i.
s corresponds to the target number of breaks (as opposed to links) of the vertices in
reverse order, i.e. in the order of increasing target of links and so decreasing target
of breaks. We shall refer to the score of s as the reverse score of t, and similarly
the deficit of s as the reverse deficit of t. We represent the conjugate sequence of s
by w. We denote λ∗ as the Durfee number from the back of t, which is n+ 1 minus
the Durfee number of s.

Examples A cont. For example 33311 we have s1 = 4 − t5 = 3, similarly
s2 = 3, s3 = 1, s4 = 1, s5 = 1. Consider the graph where there are no links between
vertices 3,4 and 5, vertices 1 to 4 and 2 to 5 are not linked, but all other pairs
of vertices are. The graph has sequence 33211, deviations are 0, 0, 1, 0, 0 and so
the graph deviation is 1, which is also the reverse score. All five s elements are
at least as large as 1, so that w1 = 5, and similarly w2 = 2, w3 = 2, w4 = 0, so
the Durfee number of s (i.e. from the back) is 2, and λ∗ = 6 − 2 = 4. We have
f0 = 0, f1 = 3 + 1− 5 = −1, f2 = (3 + 1− 5) + (3 + 1− 2) = 1, so that the reverse
deficit is 1.

For example 43210 we have si = 4− ti so that s is simply 43210, the same as t.
Consequently the reverse score and deficit of t are both 2, the conjugate sequence
of s is 4321, the Durfee number of s is 2, so λ∗ = 6− 2 = 4.

In Theorem 3.2 we show two symmetry results relating to the two important
sequence properties, the score and the deficit. This then means that results relating
to the minimal set of a sequence can immediately be carried over to its dual without
further analysis. This is intuitively obvious (but up to now not formally proved)
for the score, but less so for the deficit.

Theorem 3.2. The reverse score of a sequence t is equal to its score, and the
reverse deficit of t is equal to its deficit.
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Proof: Firstly we prove the equality of the score and the reverse score. This is
relatively straightforward, and in fact in [5] we stated that this result was easy to
show and omitted it, but we include it for completeness here.

For t and any graph g = (g1, g2, . . . , gn) the deviation is D(t,g) =
∑
i |ti − gi|.

For s and g∗ = (n−1−gn, n−1−gn−1, . . . , n−1−g1), the (reordered) complement
of g, the deviation is D(s,g∗) =

∑
i |(n− 1− tn+1−i(n− 1−−gn+1−i| = D(t,g). It

follows for target t that the set of deviations D(t,g) for g ∈ Gn, where Gn is the set
of all graphs with n vertices, is precisely the same as the set of deviations D(s,g∗).
Therefore the scores for t and s are equal, being the minima in the sets of deviations.
Note also that the members of the minimal set for t are the complements of the
members of the minimal set for s.

Now consider the deficit and the reverse deficit. Firstly note that we know that
for any sequence,

∑n
i=1 ti =

∑n−1
i=1 vi.

a) Suppose first that a sequence has deficit 0. This then means that

λ∑
i=1

(ti + 1− vi) ≤ 0⇒
λ∑
i=1

ti ≤
λ∑
i=1

vi − λ. (5)

We know from Theorem 4 of [5] that for all r = 1, . . . , n,
sr + 1− wr = vn−r − tn+1−r.

We know from Theorem 5 of [5] that the reverse deficit is either

(i)
∑n−λ−1
r=1 (sr + 1− wr) if there is a “gap” (λ∗ = λ+ 2) or

(ii)
∑n−λ
r=1 (sr + 1− wr) otherwise (λ∗ = λ+ 1).

In case (i) we have the reverse deficit given by the maximum of 0 and∑n−λ−1
r=1 (sr + 1 − wr) =

∑n−λ−1
r=1 (vn−r − tn+1−r) =

∑n−1
i=λ+1 vi −

∑n
i=λ+2 ti ≤

−λ+ tλ+1, from inequality (5).
The right hand side of the above inequality is clearly less than or equal to 0

otherwise the Durfee number is bigger than λ, and so the reverse deficit is 0.
In case (ii) we add the extra term sn−λ + 1− wn−λ = vλ − tλ+1, so we have∑n−λ
r=1 (sr + 1 − wr) ≤ −λ + tλ+1 + vλ − tλ+1 = vλ − λ = 0 (since in the “no gap”

case tλ+1 < λ).
Thus in either case, the reverse deficit is 0.
b) Following essentially identical working to the proof of Theorem 3.1 part b)

above, whenever the deficit is non-zero, taking 1 from t1 always reduces the deficit
by 1.

Similarly, whenever the deficit is greater than 0, adding 1 to tn always reduces
the deficit by 1. We can see this since v1 = . . . = vtn = n and so if µ ≤ tn the
deficit must be zero. Thus µ > tn. Increasing tn by 1 increases vtn+1 by 1, and so
reduces the deficit

∑µ
i=1(ti + 1− vi) by 1.

Suppose that the deficit is x and the reverse deficit is x + 1. From the above,
taking 1 from t1 gives a new sequence with deficit x − 1, but the new reverse
sequence is the old reverse sequence with sn increased by 1, so it has reverse deficit
x. Carrying on this process, eventually the deficit of the sequence will be 0, but its
reverse deficit will be 1. From a) we know that this cannot be true, so we have a
contradiction.

Thus the deficit and the reverse deficit are always the same. �

3.2. Vertex categorisation. In [5], we saw that for any given sequence we can
categorise the vertices into four classes, associated with the corresponding minimal
set K(min). There were:
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a) Vertices which are sometimes a Joiner and sometimes a Breaker (and also some-
times Neutral) for some elements of K(min), denoted by set SA;
b) vertices which are Joiners (or Neutrals) for some elements but never Breakers,
denoted by set SJ ;
c) vertices which are Breakers (or Neutrals) for some elements but never Joiners,
denoted by set SB ;
d) vertices which are always Neutral, denoted by set SN .

Below we shall investigate the categorisation of vertices for score 1 sequences. We
do this by considering the score of sequences close to any given score 1 sequence. In
particular, we know from Theorem 3.1 that any sequence of score 1 can be obtained
by starting from some graphic sequence, and adding 1 to, or taking 1 from, some
element of the sequence. Similarly any addition or subtraction of 1 from a graphical
sequence will yield a score 1 sequence. Here we consider what additional changes
of 1 in a single element of a score 1 sequence can recover a graphic sequence. For
the Durfee number λ, we consider four different possibilities for the first change:
A - an addition of 1 within the vertices with index 1, . . . , λ,
B - a subtraction of 1 within the vertices with index 1, . . . , λ,
C - an addition of 1 within the vertices with index λ+ 1, . . . , n,
D - a subtraction of 1 within the vertices with index λ+ 1, . . . , n.
There are the same four possibilities for the second change, which we shall equiva-
lently denote by a, b, c and d respectively.

We call a change an outer move if it increases the target for i ≤ λ or decreases
the target for i > λ (i.e. is an A or D move), and an inner move otherwise. Further
we define:
g(i) = i, h(m) = m if i ≤ λ and m ≤ λ,
g(i) = i, h(m) = tm if i ≤ λ and m > λ (if tm = λ and the Durfee number increases
then h(m) = λ+ 1),
g(i) = ti, h(m) = m if i > λ and m ≤ λ, (if ti = λ and the Durfee number increases
then g(i) = λ+ 1),
g(i) = ti, h(m) = tm if i > λ and m > λ (if ti = λ or tm = λ and the Durfee number
increases then g(i) = λ+ 1, h(m) = λ+ 1 respectively).
We note that given the potential change in Durfee number, for a given pair i,m,
the value of g(i) (h(m)) may depend upon whether the move at vertex i (m) was
an outer or an inner move, and so we denote these below as go(i) (ho(m)) and
gi(i) (hi(m)), respectively. In the majority of cases, we will have go(i) = gi(i) and
ho(m) = hi(m).

Using the above, we can now prove Theorem 3.3, our main theoretical result. This
result enables us to find the set classifications, i.e. the membership of SA, SJ , SB
and SN , for an arbitrary sequence of score 1 using straightforward calculations,
without having to investigate the membership of the minimal set, which is a much
more complicated task.

We shall consider a score 1 sequence obtained by a change at vertex i from a
graphic sequence with associated values f1, . . . , fλ where K is the largest index such
that fk ≥ −1 for k = 1, . . . , λ, and K ′ is the largest index such that fk = 0 for
k = 1, . . . , λ. If there is no such fk in either case, then K = 0,K ′ = 0 respectively.
For succintness of exposition, in Theorem 3.3 we shall consider the following:
Co = “the change was an outer move”
Ci(= Cco) = “the change was an inner move”
Ao = “there is no fk = 0 s.t. go(i) ≤ k < hi(m)”
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Ai = “there is no fk = 0 s.t. hi(m) ≤ k < gi(i)”
B = “neither of K ≥ max(go(i), ho(m)), K ′ ≥ min(go(i), ho(m)) hold”
Dl = “m ≤ λ”
Dg(= Dc

l ) = “m > λ”

Theorem 3.3. For an arbitrary score 1 sequence we have the following complete
set classifications for its elements:

Element m is in SA (except if the target after the change is 0 or n− 1, when m
is in SB and SJ respectively) if (Co ∩Ao ∩B) ∪ (Ci ∩Ai).

Element m is in SN if Co ∩Aco ∩Bc.
Element m is in SJ if (Co ∩ ((Dl ∩Ao ∩Bc)∪ (Dg ∩Aco ∩B)))∪ (Ci ∩Dl ∩Aci ).
Element m is in SB if (Co ∩ ((Dl ∩Aco ∩B)∪ (Dg ∩Ao ∩Bc)))∪Ci ∩Dg ∩Aci ).

Theorem 3.3 is proved in Appendix A.

Examples B. Below we consider example sequences 766543221 and 766444221,
shown in Tables 1 and 2. In each case we identify the appropriate fi values as well
as the values of λ,K and K ′, and list the changes, the score 1 sequence derived
from them (and which element is changed to reach it) and then the categories of all
elements within that sequence A, B, J or N (in the corresponding position to the
target sequence). For each sequence we also identify any changes which lead to a
new Durfee number, as this can change the values of g(i) or h(m).

Note that the two sequences labelled a and b in both tables are actually the same
sequence in each table, and so of course yield the same result. In general, most
score 1 sequences can be generated from a number of graphic sequences. For the
sequences from Table 1 in particular, extra care is needed when considering the fifth
element, as here often the Durfee number changes. For example, for the sequence
766553221 from Table 1 we have that go(5) = 4 and hi(5) = 5, which makes the
fifth element a member of SJ and not SN (this had to be true since here the fourth
and fifth elements have the same target, and so must be in the same set).

We note that whenever we have a vertex in SN , it is easy to see that we cannot
also have another vertex in the sequence that is in SA, as we already knew from [5].

3.3. Pure and Mixed Equibria; the 111 case. Suppose that we consider the
case with n = 3 and target 111, when the minimum score is 1. It is easy to
specify the transition graph, which has 6 vertices and is shown in Figure 1. Now
suppose the process which we consider allows when in state i for the deficit vertex
individual to choose either to move clockwise with probability pi and anticlockwise
with probability 1−pi. Here there are (at least) three Nash equilibria. If pi = 1 for
all i each choice moves the system clockwise and if pi = 0 for all i, anticlockwise.
Each state occurs with frequency 1/6 so the cost to each individual is 1/3. Should
any individual in any state opt to play differently then the system will immediately
return to that state and the system will oscillate giving a cost of 1/2 to the individual
who switches play. Thus these two sets of choice are pure Nash equilibria.

We also have a mixed Nash equilibrium when pi = 1/2 for all i. In general, for
any pi = p for all i we will have a uniform stationary distribution over the states and
so each vertex has cost 1/3. Suppose now we consider the case where the individual
off target in state 1 (and so also in state 4) considers switching to r and 1− r when
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766543221 f1 = −1, f2 = −2, f3 = −1, f4 = 0,
λ = 4,K = 4,K ′ = 4

866543221 i = 1, λ∗ = 5 for m = 5 up J J J JNBBBB
666543221 i = 1, λ∗ = 5 for m = 5 up AAAAAAAAA
776543221 i = 2, 3, λ∗ = 5 for m = 5 up J J J JNBBBB
765543221 i = 2, 3, λ∗ = 5 for m = 5 up AAAAAAAAA
766643221 i = 4, λ∗ = 5 for m = 5 up J J J JNBBBB
766443221a i = 4, λ∗ = 5 never AAAAAAAAA
766553221 i = 5, λ∗ = 5 for all but m = 4, 5 down J J J J JBBBB
766533221 i = 5, λ∗ = 5 never J J J JBBBBB
766544221b i = 6, λ∗ = 5 for m = 5 up AAAAAAAAA
766542221 i = 6, λ∗ = 5 for m = 5 up J J J JNBBBB
766543321 i = 7, 8, λ∗ = 5 for m = 5 up AAAAAAAAA
766543211 i = 7, 8, λ∗ = 5 for m = 5 up J J J JNBBBB
766543222 i = 9, λ∗ = 5 for m = 5 up AAAAAAAAA
766543220 i = 9, λ∗ = 5 for m = 5 up J J J JNBBBB
Table 1. Score 1 sequences generated from the graphic sequence
766543221. In each case we identify the set, one of SA, SB , SJ or
SN that each element is in, in the corresponding position to the
target sequence.

766444221 f1 = −1, f2 = −2, f3 = −1, f4 = −2,
λ = 4,K = 3,K ′ = 0

866444221 i = 1, λ∗ = 5 never J J J AAABBB
666444221 i = 1, λ∗ = 5 never AAAAAAAAA
776444221 i = 2, 3, λ∗ = 5 never J J J AAABBB
765444221 i = 2, 3, λ∗ = 5 never AAAAAAAAA
766544221b i = 4, 5, 6, λ∗ = 5 for m = 5 up AAAAAAAAA
766443221a i = 4, 5, 6, λ∗ = 5 never AAAAAAAAA
766444321 i = 7, 8, λ∗ = 5 never AAAAAAAAA
766444211 i = 7, 8, λ∗ = 5 never J J J AAABBB
766444222 i = 9, λ∗ = 5 never AAAAAAAAA
766444220 i = 9, λ∗ = 5 never J J J AAABBB
Table 2. Score 1 sequences generated from the graphic sequence
766444221. In each case we indentify the set, one of SA, SB , SJ
or SN that each element is in, in the corresponding position to the
target sequence.

in state 1. We have, where x[i] is the stationary distribution frequency for state i,

x[1] = x[6] ∗ p+ x[2] ∗ (1− p);
x[2] = x[1] ∗ r + x[3] ∗ (1− p);
x[3] = x[2] ∗ p+ x[4] ∗ (1− p);
x[4] = x[3] ∗ p+ x[5] ∗ (1− p);
x[5] = x[4] ∗ p+ x[6] ∗ (1− p);
x[6] = x[5] ∗ p+ x[1] ∗ (1− r).
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States and choices of  
the 111 target case. 
Red dot is deficient vertex. 

Figure 1. The transition graph for the target 111 with six states.
The vertex in deficit in each state is highlighted by a dot, and
corresponding possible transitions are shown.

Now the payoff for vertex 1 is x[1] + x[4] = p(x[3] + x[6]) + (1− p)(x[2] + x[5]),
and when p = 1/2 this implies that for any r the payoff for vertex 1 is still 1/3
so p = 1/2 is a mixed Nash equilibrium. We observe, from computer simulations,
that when p < 1/2 then the cost for vertex 1 is less when r < p, and more when
r > p, which suggests that this solution is unstable, and any slight deviation from
the equilibrium moves the population to one of the two pure Nash equilibria.

4. The example sequence 11111. We shall now consider a specific example
involving strategic decisions. This example allows us to demonstrate a methodology
for analysing score 1 games using cycles on a graph (the choice graph, defined below),
but at the same time demonstrates the general complexity of investigating games
for specific targets, even relatively simple-looking ones like this.

Suppose we have target 11111 which has score 1. There are two possible con-
figurations, which we refer to as states, for a graph in the minimal set. These
are: (̄i)(j, k)(l,m), the graph with edges (j, k) and (l,m), and (i, j̄, k)(l,m), the
graph with edges (i, j), (j, k) and (l,m); the overline indicating the deficit vertex
and i, j, k, l,m taking distinct values 1,2,3,4,5. There are 15 and 30 of these config-
urations respectively. Examples (1)(2,5)(3,4) and (2,1,5)(3,4) are shown in Figure
2.

In our model, in any state a vertex is selected at random; if it is a deficit vertex it
makes a move to improve that deficit. In the target 11111 case the deficit is always
1, so that there is precisely one vertex that can make a change at any time. The
possible transitions are:
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Figure 2. The two possible configurations for members of the
minimal set with target 11111. The uppermost vertex is the one not
attaining its target. There are 15 different cases of the configuration
on the left, and 30 of the configuration on the right.

(̄i)(j, k)(l,m)→ (i, j̄, k)(l,m); (i, k̄, j)(l,m); (i, l̄,m)(j, k) or (i, m̄, l)(j, k) and
(i, j̄, k)(l,m)→ (̄i)(j, k)(l,m) or (k̄)(i, j)(l,m).

At any state an individual will decide which of these options to take, which we
shall refer to as its choice. There will thus be such a choice at every state, and we
refer to this as the choice graph. Recalling that only strict moves are allowed, an
individual’s strategy is thus the set of all of its choices at the states for which it is in
deficit. The choice graph then simply represents the collection of strategies selected
by the players. We are thus interested in investigating the possible choice graphs
that can occur in our game, the long-term behaviours that result, and whether these
are stable (restricting ourselves to local changes, as defined in Section 2.2).

Consider for the moment the set of six states where there is always an edge
(3,4); specifically (1̄)(2,5)(3,4); (1,2̄,5)(3,4); (1,2)(5̄)(3,4), (2,1̄,5)(3,4); (1,5)(2̄)(3,4)
and (1,5̄,2)(3,4). The transitions between these states are just those of the set of
transitions for a target 111 on the remaining vertices 1,2,5, and the transition graph
for these vertices is thus just equivalent to the one shown in Figure 1, where the
numbering of the vertices shown is as in Figure 2. In the context of target 11111 we
observe that the three states in Figure 1 with a single edge are linked only to other
vertices in Figure 1, and not to any others in the transition graph of 11111. The
vertices with two edges, on the other hand, are each members of other restricted
sets. For example, if we consider, as above, the case with fixed edge (3,4) then
the configuration with edges (3,4) and (1,2) will also belong to the transition graph
of the case where only (1,2) is fixed. Thus the (5̄)(1,2)(3,4) vertex will belong to
two 111-transition graphs, as will the vertices (1̄)(2,5)(3,4) and (2̄)(1,5)(3,4). For
ease of reference we will refer to the transition graphs for the various 111 sub-cases
as (111)-triangles, where the vertices are the states with two edges, and the states
with one edge are placed at the centre of the line joining adjacent vertices. We have
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Figure 3. The Petersen triangle with associated sets. Vertices are
joined if the set-intersection is empty.

in the 11111 transition graph ten such triangles corresponding to the ten possible
pairs from {1,2,3,4,5}.

4.1. The associated extended Petersen Graph. Figure 3 shows the famous
Petersen graph, a non-planar, non-Hamiltonian cubic graph. There are ten vertices
each of which can be associated with a set of two elements drawn from the set
{1,2,3,4,5}. Two vertices are joined if, and only if, the associated sets are disjoint.
A possible labelling of the vertices is shown in Figure 3. The transition graph for
11111 can be constructed by actions on a Petersen graph.

We begin by constructing the triangle-replaced graph from the Petersen graph.
A triangle-replaced graph is derived from a cubic graph by replacing the subgraph
(a, b)(a, c)(a, d) by (e, b)(f, c)(g, d)(e, f)(e, g)(f, g) where f, g and h are new vertices,
for all vertices in the initial graph. Essentially this is a process in which at each
vertex a small “tetrahedron” is snipped off. Now we apply a further step by merging
the two new vertices which have been created on every original edge. In this way
we have created a 4-regular graph. This produces precisely the graph in Figure 4,
which shows the set of possible transitions between the 45 states for the minimal
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set for target 11111. Note that there are 15 corner states which are vertices in
the Petersen graph, and 30 edge states which appear midway along an edge of the
Petersen graph. Both corner states and edge states are vertices in the transition
graph. Each vertex of the Petersen graph gives rise to a triangle which is labelled
with a pair of numbers from {1,2,3,4,5}, matching those of the Petersen graph.

Now in our model each vertex, when it is the deficit vertex, can choose which
state to move to, and this is indicated by a directed edge. We see a graph where
the current choices, the choice graph, are shown in Figure 5. There are 60 edges
in the transition graph and 45 in the choice graph. We note in passing that the
Petersen graph is a hemi-dodecahedron; a hemi-graph is that obtained from a graph
by merging the opposite vertices (assuming these are well defined). Now an icosido-
decahedron, a polyhedron with 20 triangular faces and 12 pentagonal ones, can be
obtained from a dodecahedron by removing a tetrahedron at each vertex so that the
two tetrahedra on each edge share a common vertex. Our extended Petersen graph
is just a hemi-icosidodecahedron and the process used to obtain it is analogous to
that in obtaining an icosidodecahedron from a dodecahedron.

4.2. Cycles. For any given set of transitions, representing choices by the individu-
als, for any initial state, changes will continue until a state is revisited. Subsequent
changes will then follow those from before, so that we will continuously follow a cy-
cle of states. We begin by identifying what directed cycles can occur in the choice
graph. The Petersen graph has cycles of length 5, 6, 8 and 9. With the exception
of cycles of length two (e.g. 16 → 17 → 16 in Figure 4) and a 6 cycle round a
single triangle, a cycle in the choice graph (as distinct from a cycle in the Petersen
graph) will necessarily contain an edge, or two edges of a triangle, and then an
edge or two of a neighbouring triangle. We will call two triangles neighbours in a
sequence, if the sequence leads directly from one triangle to the other. Any cycle
in the Petersen graph corresponds to a sequence of neighbouring triangles and to
multiple potential cycles in the choice graph. For a Petersen cycle of length 5, e.g.
(24)(13)(45)(23)(15) we have cycles in the choice graph of length 2(2)20 (i.e. all
values from 2 to 20 inclusive in steps of 2). We need to specify the number of edges
each triangle contributes to the cycle. The lists of the number of triangle edges in
successive triangles are 11111, 11112, 11122, 11212, 11222, 12122, 12222 and 22222.
Those with 7 and 8 triangle edges have 2 distinct patterns. For a Petersen cycle
of length 6, e.g. (24)(13)(25)(14)(23)(15) there are cycles of length 12(2)24; those
with length 12, 14, 22, 24 have one pattern each while those with lengths 16, 18
and 20 have two patterns.

The situation for the other cycles of the Petersen graph is somewhat differ-
ent. In the cases with 5 and 6 triangles in the Petersen graph, triangles involved
are linked only to their immediate neighbours in that cycle; e.g. in the 6 cycle
above the triangle 24 is disjoint from 25, 14 and 23. This does not happen when
we consider 8 and 9 triangles. For example the 8 cycle in the Petersen graph
(35)(14)(25)(13)(45)(23)(15)(24)(35) has two pairs of triangles which are joined
(i.e. share a common vertex) although not neighbours, (14) and (23), and (13)
and (24). It follows that the shared vertex in each case can only be used in
one triangle in a cycle in the choice graph. We have therefore two triangles in
which we can only count one vertex in the cycle so that we have a maximum
cycle length of 28. For the cycle of length 9 we will have 3 intersecting trian-
gles which are not neighbours in the cycle so that the maximum cycle length will
be 30. For example for the 9-cycle, (12)(45)(23)(14)(25)(13)(24)(15)(34)(12), we
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Figure 4. The transition graph for the graphs within the minimal
set for target 11111. Each triangle is labelled internally with the
edge fixed in its configurations. Note that each edge has a vertex
at its mid-point. Each vertex is labelled a/b with a unique state
number a, and the vertex b which is deficient in state a. Three
vertices 1, 2 and 32 are duplicated (shown as different shapes) to
allow a planar representation.

have three pairs of triangles joined other than within the cycle, (13) and (45),
(15) and (23), and (34) and (25). In these pairs the first has one edge within
the cycle, the second has two edges in the cycle. The triangle (35) has zero
edges in the cycle being missing from the nine cycle on the Petersen graph. All
other triangles have two edges in the cycle. The cycle is (in terms of states)
(36,37,38,31,29,25,18,19,20,14,11,15,22,27,40,41,32,33,34,24,16,12,7,3,1,4,9,5,2,43,36)
and is shown in Figure 5.

We are interested in elucidating when there can be two directed cycles which
do not intersect, leading to two distinct long-term behaviours, depending upon the
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Figure 5. The choice graph for the graphs within the minimal
set for target 11111. Each vertex has an arrow which is the choice
that the deficient vertex would make in that state. There is a stable
cycle of length 30, specifically (36; 37; 38; 31; 29; 25; 18; 19; 20;
14; 11; 15; 22; 27; 40; 41; 32; 33; 34; 24; 16; 12; 7; 3; 1; 4; 9; 5; 2;
43; 36), which is shown in bold.

initial state. Clearly this can only happen in the Petersen graph when we consider 5
cycles (if we ignore for the moment the 2 and 6 cycles in the choice graph). Examples
are (12)(34)(25)(14)(35) and (15)(23)(45)(13)(24), and in fact for any five cycle the
complementary vertices form another five cycle. As discussed above, when we have
a 5-cycle in the Petersen graph this can lead to a 10-cycle in the choice graph.
Associated with this cycle will be 5 vertices (representing corner states), those not
used in the 5-cycle but in the set of the 5 triangles. Now this same set of 5 corner
vertices will also occur as the unused vertices of the 5-cycle for the complementary
vertices. In forming two non-overlapping cycles we can take the two 10-cycles, and
for each of the 5 extra vertices add it to neither cycle, to the first or to the second
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cycle, but not to both. The addition of each vertex increases the cycle length by
2 (the corresponding corner state and a neighbouring edge state). Thus we have
possible non-overlapping cycle lengths 2i and 2j where i ∈ [5, 10] and j ∈ [5, 15− i]].

4.3. Dynamics of the system. At any point in time there will be a single vertex
which is in deficit and there will be a choice graph. The deficit vertex will consider
the possible choices it may make (either 2 or 4). Figure 5 shows arrows, one at
each vertex, which are the choices which deficit vertices would make if the system
were in that state. For each possible move the path from the deficit vertex along
the various existing choices will be followed until a cycle is reached. The long-term
cost for a possible move will be the cost for the deficit vertex around this cycle.
The choice is then made between possible moves so as to minimise the cost, and
possibly a switch made in the choice graph. We consider in the main the case where
a switch is only made if a definite improvement in costs is achieved.

Suppose there is a cycle through states {v1, v2, . . . , vk}, with k > 2, then if we
begin the process with choices vi → vi+1 (all mod(k)) and for any other vertex w
such that w is a neighbour of some vi the individual in deficit at w chooses that
vi, then either that cycle will be stable, or a sub-cycle comprising a subset of the
same elements, but in the same order, will be stable. Necessarily the cost to each
individual in the cycle will be less than 1/2, and if it considers a possible swap
then either that state is pointing straight back so there is a cost of 1/2 (as per
state 27 considering choice 22 in Figure 6) or the neighbouring state will point to
another member of the cycle and either the new cost will be at least equal to the
current cost, so that no change is made, or the states that lie between the two in
the sequence will be missed out, leading to the corresponding sub-cycle.

Figures 4 and 5 show the numbering of the vertices and the deficit vertex for
that state. The cost incurred by each of the five vertices if the system were to
move around a directed cycle is just computed by counting the occurrence of each
vertex in deficit. For example for a three cycle in the Petersen graph (a 6-cycle in
the choice graph), necessarily a cycle around a specific triangle, the three vertices
have costs 1/3, e.g. triangle 24 has costs 1/3 for each of vertices 1,3,5 and costs 0
for vertices 2,4. We refer to the lists of costs as the cost vector, so for the 6 cycle
just referred to the cost vector is (2,0,2,0,2)/6 while for the 30 cycle in Figure 5 it
is (6,4,8,5,7)/30. These costs naturally play a key part in the dynamics which we
apply.

We now consider the possibility of there being multiple cycles arising from an
initial set of choices. Suppose that there is a stable cycle of length 6 (involving three
vertices). Then for each deficit vertex within that cycle we have cost 1/3. At any
of those vertices there are four possible choices, one forward around the cycle (cost
1/3), one backwards around the cycle (cost 1/2), and two away from the cycle. For
a stable cycle, if either of these leads to a vertex which chooses something outside
the three cycle it must give a higher cost. It is clear that no two stable triangles
can share a vertex. Accordingly there can be only as many such stable triangles as
the independence number of the Petersen graph, 4. We could have any set of four
triangles which share a number being simultaneously stable; e.g. (12)(13)(14)(15).

We observe that the system may move between cycles which intersect. For ex-
ample see Figure 7. Here there are two 14 cycles which share the 9 vertices in the
middle line, but differ in the 5 vertices in the two other rows. All missing edges
point into the cycles so have no influence. If the system at some stage reaches the
vertex 40, then the target vertex is 2 and since there is one target 2 in each of the
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Figure 6. The choice graph for the minimal set for target 11111.
Here we have a stable 24-cycle. (1; 4; 9; 5; 2; 6; 11; 14; 20; 21; 22;
27; 40; 41; 32; 23; 16; 17; 18; 13; 7; 3; 1).

sets of 5 the payoff for target 2 for the vertex 40 is the same for choices 27 and
45 in the model where a switch to a cycle with equal payoff to the current one is
allowed. If a switch is only allowed where an improvement is made then whichever
of the two 14 cycles is current will persist. Note that if we consider the reverses of
these “cycles” then when the vertex “29” is reached, the choice “31” is preferred to
“26” and so the system will only spend time on the lower cycle.

Finally we consider the case where a switch is made to the direction which leads
to the minimal cost for the current deficit vertex. If there is more than one such
minimal cost then we pick one of the corresponding directions at random with the
same probabilities. This implies that a switch may be made to a direction which
gives the same cost as the current direction. We suppose that the system becomes
fixed when a cycle occurs from which there is no switch. Thus if there is a pair of
cycles like those in Figure 7 one of the two would become fixed by chance; whichever
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Figure 7. Two intersecting 14-cycles with 9 common vertices.

Cycle-length 6 10 12 14 16 18 20 22 24 26 28 30
Frequency 358 436 735 319 96 29 17 7 3 0 0 0

Table 3. Frequencies of stable cycles resulting from 2,000 simula-
tions starting from randomly generated initial choice graphs.

was completed first. Now we exclude cycles of length 2 and 4. We exclude the first
since it would give a cost of 1/2 and this is the maximum possible, so here it cannot
be worth stopping the process. We exclude 4 since such a cycle always contains
a 2-cycle. Thus we are left with possible cycles of length (recall we cannot have
a cycle of length 8) 6 and 10(2)30. Table 3 records the frequecies of stable cycles
arising from 2,000 random initial choice graphs.

5. Discussion. In this paper we have considered a special case of the dynamically
evolving model of [3], [4], [5], where the score of the sequence is 1. This special
case is one where at any point within the minimal set, only one individual has an
incentive to change their number of links and so potentially simplifies analysis. It
also means that we consider sequences as close as possible to classical graphical
sequences [11],[12],[13], [14], [19],[26]. We analysed the set of score 1 sequences,
and found a general method of classifying the vertices of the sequences into one of
four types, which in turn provides information about the graphs that comprise the
minimal set of the sequence K(min). In particular using our Theorem 3.3 we can
specify the set membership of all vertices for any score 1 sequence.

We then considered a special case of the model. We were able to identify stable
sets of strategies which led to cycles around the choice graph. For this example the
minimal set contained 45 graphs. There were stable cycles of varying lengths, from
6 elements (as in Figure 1) to 30 (see Figure 5); in Figure 6 we saw a cycle of length
24. In Figure 7 we saw a case where potential cycles had elements in common,
and that one or other cycle would be fixed by chance as the process evolves. Our
simulations showed that the shorter to medium length cycles were more likely to
evolve in practice, with a third of simulations leading to a cycle of length 12.

For even such a relatively simple example, we thus saw that there were many
stable solutions, and which was reached was due to chance and initial conditions. It
would seem likely that this feature is present in real situations too; for example with
a given group of people, many friendship structures are possible, depending upon
the order in which they met. Of course for real situations, there are heterogeneities
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between individuals, and the simple preference for a given number of links in our
model would be replaced by more detailed preferences.

Whilst significant progress can be made on the general classification, as described
above, the analysis of particular cases, even with small sequences, is still very hard,
as this example and Figures 5 and 6 illustrate. The most important determinants
of the complexity of the game appear to be the size of the minimal set and the
score. As shown in [5] the game leads to a Markov process on the minimal set,
so that the transition matrix is |K(min)| × |K(min)|. A larger score, as well as
often leading to a larger minimal set, also makes more transitions have non-zero
probability from any given state, as many individuals may wish to make a move
from any given position. From [5] we saw that any number of elements of the set of
individuals that are always neutral SN can effectively be removed from a sequence
without changing the minimal set. Thus the number of elements that are not of
this type is also an important indicator of the potential complexity of analysing the
sequence.

How can progress be made? There are a number of ways that we can adapt
our game to potentially make the analysis more amenable (although in some cases
this might make analysis even more complex). We will consider finding the right
“simple” classes of strategy that keep the important features of the model but
simplify analysis; for example, maybe individuals cannot evaluate the stationary
distribution, and have a fixed preference order (e.g. always connecting to individual
2 first if possible). Alternative models, for example where both individuals must
agree to form and/or break a link, are likely to be easier to solve, but the long-term
dynamic nature of the process might be lost. We will also consider cases where
some links are banned or enforced. The case where links are banned corresponds
to our process occurring on a fixed underlying graph of potential links, with our
current work taking place over the complete graph (for any enforced link, analysis
will be identical to a banned link with appropriate adjustment of the targets of the
vertices involved). This can potentially make the process simpler or more complex,
depending upon the nature of the restrictions, but we will of course start to consider
the former cases, for example with underlying graphs such as the circle or star.

The models that we considered here are of a specific type, but they relate to a
number of models by other authors. They can be thought of as a special class of the
economic models of Jackson and colleagues [15, 16, 17, 18] where individuals form
connections to others and their payoff is determined by the network (see in particular
[2, 9] where links are formed unilaterally, as in our model). The work of Southwell
and Cannings [29, 30, 31] considers a population where individuals are born and (in
some cases) die, but where the strategic aspect of link formation is absent. Thus the
relationship between our model and these two classes of model could be more fully
explored. More generally, our models are examples of stochastic games [27], albeit
quite complex ones, and there is thus the potential of reformulating our models
correspondingly to see what existing stochastic game theory can tell us.

Finally, there are a variety of potential applications, as discussed in Section 1.
For example there is the area of biological markets developed by Noe and colleagues
[20, 21]. Alternatively, models of animal group formation and maintenance, such as
in chimpanzees [8, 24], can be considered. In such models heterogeneity plays an
important role, with some links being more valuable than others, and this would
thus be an important feature to include in the model.
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[13] W. Hässelbarth, Die Verzweightheit von Graphen, Comm. in Math. and Computer Chem.
(MATCH), 16 (1984), 3–17.

[14] V. Havel, A remark on the existence of finite graphs, (Czech)C̆asopis Pĕst. Mat., 80 (1955),
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Appendix A: Proof of Theorem 3.3. 1) We start by considering the different
pairs of changes labelled A-D, a-d as discussed prior to the statement of Theorem
3.3. It is possible that the Durfee number of the new sequence, following the two
changes, will have changed, either increasing by 1 or decreasing by 1 (it is easy to
see that it cannot change by more than 1). In every case only one of the changes
is possible, if any, and it is clear which one, as we see below; we shall refer to no
change being case (i) and a change being case (ii). Thus potentially we have all
combinations of A-D, a-d and (i), (ii) giving 32 in total.

We note that for any subsequences containing identical values, we shall assume
additions are at the top of the sequence (i.e. the element with the lowest index)
and subtractions from the bottom, to avoid unnecessary reordering of the elements.
It is possible that the two changes are of the same element in the same direction,
which might then lead to a potential reordering. We note that if this is the case,
then the higher element must only be one more than the lower one (in the case of a
double addition to the original lower one or a double subtraction from the original
higher one), but that this is equivalent to just adding 1 to both elements.

It is easy to see that Aa(ii), Dd(ii), Ad(ii) and aD(ii) are not possible. In addition
some combinations are equivalent, for example Ab(i) leads to the same possibilities
as aB(i), the only difference being the order of the changes. We refer to them
differently, since we will need to make comparisions between sequences after the
first change and after the second, making the order important. For now though, we
will treat them as equivalent. This then leaves us 17 distinct cases.

2) If we take 1 from two places within the first set of vertices 1, . . . , λ, add 1
to two places within the second set of vertices λ + 1, . . . , n or take 1 from one of
the first set and add 1 to one of the second set, then none of the terms fk can be
increased and so the score cannot be increased if the Durfee number is unchanged or
reduced. Suppose that such a change leads to an increase in the Durfee number; in
this case, for the original sequence we would have to have one of the changes being
an addition in the second set with tλ+1 = λ and tλ > λ. This means that the new
(tλ+1+1−vλ+1) can add at most 1 to fλ, which was previously less than or equal to
0. The second change, however, must take 1 from one of the tis or add 1 to one of the
vis in the summation for fλ, which means that the new fλ+1 is no greater than the
old fλ. Thus the score cannot be increased. The same is true for any combination of
one increase and one decrease where the decrease happens at the lower index (by the
convention above, if both targets are the same, we denote the addition as occurring
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at the lower index). Thus Bb(i), Bb(ii), Bc(i) = bC(i), Bc(ii) = bC(ii), Cc(i) and
Cc(ii) all yield graphic sequences.

3) This leaves 11 remaining cases, which we shall consider in turn. In each one we
shall consider vertices j < l as those where the changes happen, with + indicating an
addition of 1 and − indicating a subtraction of 1. Following the above arugment,
if there is an addition and a subtraction, we only need to consider the addition
occurring at the lower index.
Aa(i): assuming +s occur in positions j and l ≥ j, fk increases by 1 for j ≤ k < l
and by 2 for l ≤ k ≤ λ. Thus the sequence is graphic if fk < 0 k : j ≤ k < l and
fk < −1 k : l ≤ k ≤ λ.
Ab(i)=aB(i): assume + occurs in position j and − in position l > j. Sk increases
by 1 for j ≤ k < l; vλ will decrease by 1 if tl = λ (we would also have fk < −1
if k = tl = λ, but this cannot occur, as this addition and subtraction leads to a
reduction of the Durfee number, and so case (ii)). Thus the sequence is graphic if
fk < 0 k : j ≤ k < l.
Ab(ii)=aB(ii): for the change of Durfee number to occur, we must have + in a
position with a lower index than −. A change implies that tl = l = λ, so that the
new Durfee number is λ−1. We then have fk increasing by 1 from j to λ−1. Thus
the sequence is graphic if fk < 0 k : j ≤ k < l = λ.
Ac(i)=aC(i): fk increases by 1 from j and decreases by 1 from tl. Thus the sequence
is graphic if tl ≤ j and fk < 0 k : j ≤ k < tl.
Ac(ii)=aC(ii): A change of Durfee number implies that tl = λ and l = λ + 1, so
that the new Durfee number is λ + 1. fk increases by 1 from j to tl − 1 = λ − 1
and fλ is unchanged. We then add tλ+1 + 1 − vλ+1 = λ + 1 + 1 − (λ + 1) = 1 to
fλ. This means that we need fλ < 0 for the new sequence to be graphic. Thus the
sequence is graphic if fk < 0 k : j ≤ k ≤ tl = λ.
Ad(i)=aD(i): fk increases by 1 for min(j, tl) ≤ k <max(j, tl), and by 2 for max(j, tl)
≤ k ≤ λ. Thus the sequence is graphic if fk < 0 k : min(j, tl) ≤ k <max(j, tl) and
fk < −1 max(j, tl) ≤ k ≤ λ.
Bd(i)=bD(i): fk decreases by 1 from j and increases by 1 from tl. Thus the sequence
is graphic if j ≤ tl and fk < 0 k : tl ≤ k < j.
Bd(ii)=bD(ii): A change of Durfee number implies that tj = j = λ, so that the new
Durfee number is λ − 1. fk increases by 1 from tl to j − 1. Thus the sequence is
graphic if sk < 0 k : tl ≤ k < j = λ.
Cd(i)=cD(i): similarly to the above, we assume that + occurs in position j and −
in position l > j. fk increases by 1 for tl ≤ k < tj (we would also have fk < −1
if k = tj = λ, but this would lead to a change in Durfee number, and so case (ii)).
Thus the sequence is graphic if fk < 0 k : tl ≤ k < tj .
Cd(ii)=cD(ii): for the change of Durfee number to occur, we must have + in a
position with a lower index than −. A change implies that tj = λ and j = λ + 1,
so that the new Durfee number is λ+ 1. fk increases by 1 from tl to tj − 1 = λ− 1
and fλ is unchanged. We then add tλ+1 + 1 − vλ+1 = λ + 1 + 1 − (λ + 1) = 1 to
fλ. This means that we need fλ < 0 for the new sequence to be graphic. Thus the
sequence is graphic if fk < 0 k : tl ≤ k ≤ tj = λ.
Dd(i): fk increases by 1 from tl to tj − 1, and by two from tj to λ. Thus the
sequence is graphic if fk < 0 k : tl ≤ k < tj and fk < −1 k : tj ≤ k ≤ λ.

4) Now we shall consider the possible values of fk for k = 1, . . . , λ (see equation
1) for our starting sequence, which is graphic. In the working that follows the
ordering of the changes matters, e.g. Ad(i) is different from aD(i), since we will
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consider all subsequent changes from the score 1 sequence obtained from the first
change. Clearly for a graphic sequence fk ≤ 0 for k = 1, . . . , λ.

a) Suppose that fk < −1 for k = 1, . . . , λ. Following the working above, it is
clear that any two changes in the sequence lead to a graphic sequence. Thus for a
score 1 sequence that is obtained from a graphic sequence of this type by any single
change, any subsequent change (an increase or decrease at any vertex) leads to a
graphic sequence. Thus such a score 1 sequence has all elements in SA (except for
any with targets 0 or n− 1).

b) Now suppose that fk ≤ −1 for k = 1, . . . , λ, with at least one satisfying this
with equality. Let K be the largest such index. We note that this means that K is
the largest index for which fk ≥ −1 since there is no fk which takes value greater
than -1 (this is important for consistency with c) below).
Following the above working, there are only four cases where some pair of changes
lead to a sequence that is non-graphic. These are Aa(i), Ad(i), aD(i) and Dd(i).

For the four cases above, we have the following situations when the new sequence
is not graphic:
Aa(i): assuming that the original change (increase) is at vertex i ≤ λ, if K ≥ i then
the new sequence is not graphic if and only if m ≤ K, where m is the index of the
second change (increase).
Ad(i): assuming that the original change (increase) is at vertex i ≤ λ, if K ≥ i then
the new sequence is not graphic if and only if tm ≤ K, where m is the index of the
second change (increase).
aD(i): assuming that the original change (decrease) is at vertex i > λ, if K ≥ ti
then the new sequence is not graphic if and only if m ≤ K, where m is the index of
the second change (increase).
Dd(i): assuming that the original change (decrease) is at vertex i > λ, if K ≥ ti
then the new sequence is not graphic if and only if tm ≤ K, where m is the index
of the second change (increase).

Thus we have:
I. A score 1 sequence that is obtained from such a graphic sequence by an A move,
has all elements in SA (except for any with targets 0 or n− 1) if K < i. Otherwise,
it has all elements with index 1, . . . ,K in SJ , all elements with target less than or
equal to K in SB , and the remaining elements in SA (except for any with targets 0
or n− 1).
II. A score 1 sequence that is obtained from such a graphic sequence by a D move,
has all elements in SA (except for any with targets 0 or n−1) if K < ti. Otherwise,
it has all elements with index 1, . . . ,K in SJ , all elements with target less than or
equal to K in SB , and the remaining elements in SA (except for any with targets 0
or n− 1).
III. A score 1 sequence that is obtained from such a graphic sequence by a B or C
move, has all elements in SA (except for any with targets 0 or n− 1).

c) Now suppose that fk = 0 for at least some values of k.
The only cases that lead to graphic sequences for all pairs of changes are Bb(i),

Bb(ii), Bc(i) = bC(i), Bc(ii) = bC(ii), Cc(i) and Cc(ii). The four casesAa(i), Ad(i),
aD(i) and Dd(i) are a little different, and we deal with these at the end. We con-
sider each of the other cases below: we have the following situations when the new
sequence is not graphic:
Ab(i): assuming that the original change (increase) is at vertex i < λ, then a second
change at vertex m leads to a non-graphic sequence if and only if i < m and there
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is a k s.t. fk = 0 and i ≤ k < m.
aB(i): assuming that the original change (decrease) is at vertex i < λ, then a second
change at vertex m leads to a non-graphic sequence if and only if m < i and there
is a k s.t. fk = 0 and m ≤ k < i.
Ab(ii): assuming that the original change (increase) is at vertex i < λ, then a sec-
ond change at vertex m leads to a non-graphic sequence if and only if m = λ and
there is a k s.t. fk = 0 and i ≤ k < m.
aB(ii): assuming that the original change (decrease) is at vertex i = λ, then a sec-
ond change at vertex m leads to a non-graphic sequence if and only if m < i and
there is a k s.t. fk = 0 and m ≤ k < i.
Ac(i): assuming that the original change (increase) is at vertex i < λ, then a second
change at vertex m leads to a non-graphic sequence if and only if i < tm and there
is a k s.t. fk = 0 and i ≤ k < tm.
aC(i): assuming that the original change (increase) is at vertex i > λ, then a second
change at vertex m leads to a non-graphic sequence if and only if m < ti and there
is a k s.t. fk = 0 and m ≤ k < ti.
Ac(ii): assuming that the original change (increase) is at vertex i ≤ λ, then a second
change at vertex m leads to a non-graphic sequence if and only if i ≤ tm = λ and
there is a k s.t. fk = 0 and i ≤ k ≤ tm.
aC(ii): assuming that the original change (increase) is at vertex i > λ, then a second
change at vertex m leads to a non-graphic sequence if and only if m ≤ ti = λ and
there is a k s.t. fk = 0 and m ≤ k ≤ ti.
Bd(i): assuming that the original change (decrease) is at vertex i < λ, then a second
change at vertex m leads to a non-graphic sequence if and only if tm < i and there
is a k s.t. fk = 0 and tm ≤ k < i.
bD(i): assuming that the original change (decrease) is at vertex i > λ, then a second
change at vertex m leads to a non-graphic sequence if and only if ti < m and there
is a k s.t. fk = 0 and ti ≤ k < m.
Bd(ii): assuming that the original change (decrease) is at vertex i = λ, then a
second change at vertex m leads to a non-graphic sequence if and only if tm < i
and there is a k s.t. fk = 0 and tm ≤ k < i.
bD(ii): assuming that the original change (decrease) is at vertex i > λ, then a
second change at vertex m leads to a non-graphic sequence if and only if m = λ
and there is a k s.t. fk = 0 and ti ≤ k < m.
Cd(i): assuming that the original change (increase) is at vertex i > λ, then a second
change at vertex m leads to a non-graphic sequence if and only if tm < ti and there
is a k s.t. fk = 0 and tm ≤ k < ti.
cD(i): assuming that the original change (decrease) is at vertex i > λ, then a second
change at vertex m leads to a non-graphic sequence if and only if ti < tm and there
is a k s.t. fk = 0 and ti ≤ k < tm.
Cd(ii): assuming that the original change (increase) is at vertex i > λ, then a sec-
ond change at vertex m leads to a non-graphic sequence if and only if tm ≤ ti and
there is a k s.t. fk = 0 and tm ≤ k ≤ ti = λ.
cD(ii): assuming that the original change (decrease) is at vertex i > λ, then a sec-
ond change at vertex m leads to a non-graphic sequence if and only if ti ≤ tm and
there is a k s.t. fk = 0 and ti ≤ k ≤ tm = λ.

We note in the above that the conditions for the cases Ac(ii)/aC(ii)/Cd(ii)/cD(ii)
all involve k ≤ λ rather than k < λ for Ab(ii)/aB(ii)/(Bd(ii)/bD(ii) and k less than
some term in all other cases. In these four cases the change increases the value of
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the Durfee number from λ to λ + 1, with an increased element being equal to the
old Durfee number before the change and the new Durfee number after the change.

Now suppose that K is the largest index such that fk ≥ −1 for k = 1, . . . , λ, and
K ′ is the largest index such that fk = 0 for k = 1, . . . , λ.
Aa(i): assuming that the original change (increase) is at vertex i ≤ λ, if K ≥
max(i,m) or K ′ ≥ min(i,m), where m is the index of the second change (increase),
then the new sequence is not graphic.
Ad(i): assuming that the original change (increase) is at vertex i ≤ λ, if K ≥
max(i, tm) or K ′ ≥ min(i, tm), where m is the index of the second change (in-
crease), then the new sequence is not graphic.
aD(i): assuming that the original change (increase) is at vertex i > λ, if K ≥
max(ti,m) or K ′ ≥ min(ti,m), where m is the index of the second change (in-
crease), then the new sequence is not graphic.
Dd(i): assuming that the original change (increase) is at vertex i > λ, if K ≥
max(ti, tm) or K ′ ≥ min(ti, tm), where m is the index of the second change (in-
crease), then the new sequence is not graphic.

Thus we have:
I. A score 1 sequence that is obtained from such a graphic sequence by an A move,
has the following.
Element m is in SA (except for any with targets 0 or n− 1) if:
m ≤ λ, there is no fk = 0 s.t. i ≤ k < m, and neither of K ≥ max(i,m), K ′ ≥
min(i,m) hold.
m > λ, there is no fk = 0 s.t. i ≤ k < tm (≤ tm if tm = λ and there is a Durfee
change), and not both of K ≥ max(i, tm), K ′ ≥ min(i, tm) hold.
Element m is in SN if:
m ≤ λ, there is an fk = 0 s.t. i ≤ k < m, and at least one of K ≥ max(i,m), K ′ ≥
min(i,m) hold.
m > λ, there is an fk = 0 s.t. i ≤ k < tm (≤ tm if tm = λ and there is a Durfee
change), and both of K ≥ max(i, tm), K ′ ≥ min(i, tm) hold.
Element m is in SJ if:
m ≤ λ, there is no fk = 0 s.t. i ≤ k < m, and at least one of K ≥ max(i,m), K ′ ≥
min(i,m) hold.
m > λ, there is an fk = 0 s.t. i ≤ k < tm (≤ tm if tm = λ and there is a Durfee
change), and not both of K ≥ max(i, tm), K ′ ≥ min(i, tm) hold.
Element m is in SB if:
m ≤ λ, there is an fk = 0 s.t. i ≤ k < m, and neither of K ≥ max(i,m), K ′ ≥
min(i,m) hold.
m > λ, there is no fk = 0 s.t. i ≤ k < tm (≤ tm if tm = λ and there is a Durfee
change), and both of K ≥ max(i, tm), K ′ ≥ min(i, tm) hold.
II. A score 1 sequence that is obtained from such a graphic sequence by a B move,
has the following.
Element m is in SA (except for any with targets 0 or n− 1) if:
m ≤ λ and there is no fk = 0 s.t. m ≤ k < i.
m > λ and there is no fk = 0 s.t. tm ≤ k < i.
Element m is never in SN .
Element m is in SJ if:
m ≤ λ and there is an fk = 0 s.t. m ≤ k < i.
For m > λ, m cannot be in SJ .
Element m is in SB if:
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m > λ and there is an fk = 0 s.t. tm ≤ k < i.
For m ≤ λ, m cannot be in SB .
III. A score 1 sequence that is obtained from such a graphic sequence by a C move,
has the following.
Element m is in SA (except for any with targets 0 or n− 1) if:
m ≤ λ and there is no fk = 0 s.t. m ≤ k < ti (≤ ti if ti = λ and there is a Durfee
change).
m > λ and there is no fk = 0 s.t. tm ≤ k < ti (≤ ti if ti = λ and there is a Durfee
change).
Element m is never in SN .
Element m is in SJ if:
m ≤ λ and there is an fk = 0 s.t. m ≤ k < ti (≤ ti if ti = λ and there is a Durfee
change).
For m > λ, m cannot be in SJ .
Element m is in SB if:
m > λ and there is an fk = 0 s.t. tm ≤ k < ti (≤ ti if ti = λ and there is a Durfee
change).
For m ≤ λ, m cannot be in SB .
IV. A score 1 sequence that is obtained from such a graphic sequence by a D move,
has the following.
Element m is in SA (except for any with targets 0 or n− 1) if:
m ≤ λ, there is no fk = 0 s.t. ti ≤ k < m, and not both of K ≥ max(ti,m), K ′ ≥
min(ti,m) hold.
m > λ, there is no fk = 0 s.t. ti ≤ k < tm (≤ tm if tm = λ and there is a Durfee
change), and not both of K ≥ max(ti, tm), K ′ ≥ min(ti, tm) hold.
Element m is in SN if:
m ≤ λ, there is an fk = 0 s.t. ti ≤ k < m, and both of K ≥ max(ti,m), K ′ ≥
min(ti,m) hold.
m > λ, there is an fk = 0 s.t. ti ≤ k < tm (≤ tm if tm = λ and there is a Durfee
change), and both of K ≥ max(ti, tm), K ′ ≥ min(ti, tm) hold.
Element m is in SJ if:
m ≤ λ, there is no fk = 0 s.t. ti ≤ k < m, and both of K ≥ max(ti,m), K ′ ≥
min(ti,m) hold.
m > λ, there is an fk = 0 s.t. ti ≤ k < tm (≤ tm if tm = λ and there is a Durfee
change), and not both of K ≥ max(ti, tm), K ′ ≥ min(ti, tm) hold.
Element m is in SB if:
m ≤ λ, there is an fk = 0 s.t. ti ≤ k < m, and not both of K ≥ max(ti,m), K ′ ≥
min(ti,m) hold.
m > λ, there is no fk = 0 s.t. ti ≤ k < tm (≤ tm if tm = λ and there is a Durfee
change), and both of K ≥ max(ti, tm), K ′ ≥ min(ti, tm) hold.

Combining 4) parts a), b) I-III and c) I-IV leads to Theorem 3.3 as stated. �

E-mail address: Mark.Broom@city.ac.uk

E-mail address: c.cannings@sheffield.ac.uk

mailto:Mark.Broom@city.ac.uk
mailto:c.cannings@sheffield.ac.uk

	1. Introduction
	1.1. Modelling evolution in populations
	1.2. A dynamic network population model

	2. A strategic model
	2.1. Strategies and payoffs
	2.2. Stability and strategy switches

	3. General results for score 1 sequences
	3.1. The score and the deficit
	3.2. Vertex categorisation
	3.3. Pure and Mixed Equibria; the 111 case

	4. The example sequence 11111
	4.1. The associated extended Petersen Graph
	4.2. Cycles
	4.3. Dynamics of the system

	5. Discussion
	Acknowledgments
	REFERENCES
	Appendix A: Proof of Theorem 3.3

