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ABSTRACT 

This study presents a new beam element formulation following a Hellinger-Reissner functional 

for composite members considering coupling between bond-slip and shear deformations. A 

robust state determination along with new stability criteria for the mixed-based formulation is 

proposed. The constitutive laws of the concrete, steel, and shear connectors are used to derive 

the inelastic coupled axial-flexural-shear interaction of the composite element. To consider 

shear deformations, a Timoshenko beam theory has been adopted in deriving the section 

kinematics equations. J2 plasticity following radial return mapping algorithm and fixed crack 

smeared softened membrane model are used to simulate the multi-axial stress state in steel and 

concrete respectively. The accuracy and efficiency of the mixed-based formulation was 

evaluated by comparing the responses at local and global levels with the displacement-based 

formulation. 

 

INTRODUCTION 
In today’s engineering practice, it has become imperative to have a robust and reliable 

numerical model to design new structures and to assess existing structures for the purpose of 

rehabilitation to achieve a desirable seismic performance following the performance based 

seismic design philosophy. This inelastic analysis-driven design process requires the 

evaluation of global load-deformation response of the structures under moderate to high 

seismic hazard to determine various damage states, which in turn are controlled by the failure 

modes of the individual components of the structures. This failure mode depends on the 

material, structural detailing, geometry and multi-axial stress state present in the system. 

Traditionally axial-flexure interaction has been studied extensively because of its determinate 

nature of stress condition, while the shear deformation brings an internal indeterminacy which 
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requires the extra compatibility conditions to reach a unique solution, making the research 

problem more complex for frame elements.  

Continuum finite element analysis is best suited for the simulation of multi-axial stress states 

present in the system as the degrees of freedom of continuum elements can capture the 

nonlinear variation of deformations along all the three directions of the geometry 

simultaneously. However, it needs large numbers of degrees of freedom to reach the converged 

deformation, which makes it very expensive for analysing global structures.  

This research work develops new two-dimensional beam-column frame elements considering 

axial-flexure-shear interaction through implementing multi-axial constitutive material models 

for reinforced concrete and steel. Performance evaluation of the developed inelastic frame 

element formulation with respect to accuracy, efficiency and robustness is essential to satisfy 

two conditions together: 1. Equilibrium of force in the interior of the element and 2. 

Displacement compatibility with adjacent elements. Accuracy is a measure of the degree of 

agreement between the numerical and experimentally-measured response of structural 

members. Robustness refers to its numerical stability while efficiency refers to the 

computational cost of the whole member simulation. The element developed adopts a mixed-

based formulation that exhibits more robust and accurate behaviour than that of the 

displacement-based formulation, and is quite efficient for inelastic analysis of large structural 

systems throughout the loading history.  

 

BACKGROUND 
There are several types of steel-concrete composite systems available in the literature. The 

current research work focuses on conventional two-layer steel-concrete composite deck 

systems where the concrete slab is connected to the steel beam through shear studs. It was 

earlier thought that the concrete slab in two-layer composite systems contributes a small 

amount to the overall shear resistance, and hence concrete contribution in shear has not been 

included in design standards. However, recent experimental studies (Nie et al., 2004) has 

proved that the concrete layer provides 33% to 56% shear resistance, which cannot be neglected 

and should be included into design standards in a rational way. In this type of composite 

systems, shear studs deform due to their finite stiffness and thus transfer the shear force 

between the concrete and steel layers. Hence, it is imperative that analysis tool should be 

capable of simulating the experimentally-observed material inelasticity. 
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There are mainly two types of analysis procedures used in previous research works, i.e. 

analytical formulations (Challamel and Girhammar, 2011; and Martinelli et al. 2012) and finite 

element analysis. The analytical formulations are based on linear elastic material and simple 

boundary conditions. Therefore, it is difficult to simulate the experimentally-observed 

behaviour through analytical formulations especially when the complex nature of load resisting 

process with material nonlinearity under multi-axial stress interactions is involved. On the other 

hand, finite element analysis can handle this type of behaviour efficiently. There are two types 

of elements that are generally used in finite element analysis i.e. continuum elements and 

structural frame elements. Researchers have performed detailed finite element analysis with 

continuum elements by using available commercial software to reproduce the experimentally-

observed responses (Liang et al., 2005; Vasdravellis and Uy, 2014; Liu et al., 2016). However, 

this type of analysis involves a large number of degrees of freedom and hence, they are suitable 

for simulation of local regions and often used to calibrate and/or validate frame element 

models. On the other hand, frame finite element analysis is the alternative one which has been 

used by various researchers as it can efficiently simulate both local and global behaviour of 

complete composite structures with reasonable accuracy and much less computational cost 

compared to that of continuum elements. 

Extensive amount of frame finite element studies have been carried out considering axial-

flexure interaction in the past. Interested readers are referred to Spacone and El-Tawil, (2004) 

and Lee and Filippou, (2015) for flexure-critical frame element formulations. The current 

research work focuses on the simulation of shear-critical composite structures. Schnabl et al. 

(2007) developed a strain-based Timoshenko composite beam element with partial interaction 

through the modified principle of virtual work where the strain field vector is the unknown 

quantity. Silva and Sousa, (2009) presented a displacement-based Timoshenko composite 

beam element where partial interaction is simulated by zero thickness four-node continuum 

interface elements. Hjiaj et al. (2012) proposed a displacement-based Timoshenko composite 

beam element considering nonlinear geometry effect where displacement shape functions are 

derived from the closed-form solution of the governing differential equations. Chakrabarti et 

al. (2012) formulated a displacement-based composite beam element considering both 

longitudinal and vertical slip following higher order beam theory. Batista and Sousa, (2013) 

proposed a Timoshenko composite beam element with partial interaction for multi-layered 

systems where the stiffness matrix has been determined by inverting the flexibility matrix 

which is analytically determined by solving the governing differential equations. Santos and 

Silberschmidt, (2014) developed an equilibrium-based Timoshenko composite element with 
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partial interaction where the Lagrangian multiplier method is used to impose inter-element 

equilibrium. Taig et al. (2015) formulated a composite beam element by considering 

generalized beam theory where section warping and distortion are built into the formulation. 

Keo et al. (2016) proposed a displacement-based composite Timoshenko beam element where 

the prime variables are the slips and shear deformations. So far, all the mentioned element 

formulations are able to capture the axial-flexure-shear interaction for linear elastic materials 

only. Zona and Ranzi, (2011) developed a displacement-based Timoshenko fibre composite 

beam element considering partial interaction where normal and shear stress is uncoupled in the 

concrete material model. Nguyen et al. (2014) developed a force-based Timoshenko beam 

element considering both material and nonlinear geometry effect; however, inelastic flexure-

shear interaction in concrete is uncoupled. Uddin et al. (2018) developed a displacement-based 

composite beam element considering higher order beam theory for both material and geometric 

nonlinearity where axial-flexure-shear interaction is achieved through von Mises plasticity 

theory with an isotropic hardening rule for concrete in compression and steel; while for 

concrete in tension, a damage mechanics theory is adopted.  

From the above literature survey of frame element formulations of steel-concrete composite 

members, it can be observed that most of the research works have been performed for linear 

elastic material considering axial-flexure-shear interaction. Very limited amount of research 

works have been recently conducted to include inelastic axial-flexure-shear interaction into the 

frame element formulation with plasticity-based concrete models. Many opportunities remain 

to implement more efficient and robust reinforced concrete constitutive models developed from 

shear panel testing to model multi-axial stress states to simulate the softening effect along with 

cracked Poisson ratio of concrete due to crack-induced anisotropy. So far there are basically 

two types of fibre element formulations that have been developed which are able to simulate 

the axial-flexure-shear interaction, i.e. displacement-based and force-based elements. 

Therefore, there is still a large scope remaining for other types of elements, such as mixed 

formulations which are more efficient and robust. The current research work aims to extend 

the two-field mixed-based formulation by Ayoub and Filippou, (2000) to account for shear-

critical composite members by implementing coupled multi-axial constitutive laws for 

materials, along with new stability criteria. 
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COMPOSITE SHEAR ELEMENT FORMULATION 
In this research work, a new shear-critical composite frame element based on distributed 

inelasticity approach, and considering the partial interaction between the two mediums i.e. steel 

and concrete, is developed following the Hellinger-Reissner variational principle. Unlike other 

formulations available in the literature, this element is comprehensive in the sense of 

constitutive model of materials considering multi-axial coupling among various stress 

measures and shear deformation in both mediums. Distributed inelasticity-based frame element 

formulation is essential to develop the inelastic analysis-driven design process such as 

performance based design methodology for steel-concrete composite systems with partial 

interaction. 

 

ELEMENT KINEMATICS 
The axis of the proposed composite frame element is a straight line joined by nodes I and J in 

the statically determinate basic reference system in which rigid body displacements are 

removed by choosing the simple support boundary conditions as shown in Figure (1). The 

frame element is composed of several sections along its axis. Every section is composed of 

several fibres which are identified by their position from the reference axis and individual 

cross-section area. 

The section displacement vector 𝒖𝒖(𝑥𝑥) collects two axial translations 𝑢𝑢𝑠𝑠(𝑥𝑥),𝑢𝑢𝑐𝑐(𝑥𝑥) in the X 

direction, one translation 𝑣𝑣(𝑥𝑥) in the Y direction, and one rotation 𝜃𝜃𝑧𝑧(𝑥𝑥) about the Z axis. 

 

𝒖𝒖(𝑥𝑥) =  [𝑢𝑢𝑠𝑠(𝑥𝑥)𝑢𝑢𝑐𝑐(𝑥𝑥)𝜃𝜃𝑧𝑧(𝑥𝑥)    𝑣𝑣(𝑥𝑥)]𝑇𝑇                                          (1) 

 

It is to be noted that in the current research work, the Engesser-Timoshenko uniform shear 

model (Challamel and Girhammar, 2011) has been adopted. A differential shear model, where 

independent rotational degrees of freedom are considered in each layer, will be pursued in 

future research work. 

The element nodal displacement vector 𝒖𝒖𝑰𝑰𝑰𝑰collectsthe nodal displacements with respect to 

global axes according to the section displacement vector in Equation (1). In the proposed 

composite frame element, an additional middle node with axial and rotational degrees of 

freedom is included, which will be statically condensed out at the element level before the 

assembly process: 
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𝒖𝒖𝑰𝑰𝑰𝑰 =  �𝑢𝑢𝐼𝐼𝑠𝑠𝑣𝑣𝐼𝐼𝜃𝜃𝑧𝑧𝐼𝐼𝑢𝑢𝐼𝐼𝑐𝑐𝑢𝑢𝐽𝐽𝑠𝑠𝑣𝑣𝐽𝐽𝜃𝜃𝑧𝑧𝐽𝐽 𝑢𝑢𝐽𝐽𝑐𝑐𝑢𝑢𝐾𝐾𝑠𝑠  𝑢𝑢𝐾𝐾𝑐𝑐 𝜃𝜃𝑧𝑧𝐾𝐾�
𝑇𝑇
                                                               (2) 

 

The element deformation vector 𝒗𝒗collects the relative translation 𝑢𝑢 at nodes I, J and K in the 

X direction, rotations 𝜃𝜃𝑧𝑧 at nodes I and J and middle node K with respect to the basic reference 

axes as shown in the Figure (2): 

  

𝒗𝒗 =  �𝜃𝜃𝑧𝑧𝐼𝐼𝑢𝑢𝑏𝑏𝐼𝐼𝐶𝐶 𝑢𝑢𝑏𝑏𝐽𝐽𝑆𝑆 𝜃𝜃𝑧𝑧𝐽𝐽𝑢𝑢𝑏𝑏𝐽𝐽𝐶𝐶 𝑢𝑢𝑏𝑏𝐾𝐾𝑆𝑆 𝑢𝑢𝑏𝑏𝐾𝐾𝐶𝐶 𝜃𝜃𝑧𝑧𝐾𝐾�
𝑇𝑇
                               (3) 

 

The relation between element nodal deformation 𝒗𝒗anddisplacements 𝒖𝒖𝑰𝑰𝑰𝑰can be uniquely 

determined by the compatibility matrix 𝒂𝒂𝒄𝒄with constant coefficients under linear geometry 

conditions, where L is the undeformed length of the element: 

 

𝒗𝒗 = 𝒂𝒂𝒄𝒄𝒖𝒖𝑰𝑰𝑰𝑰            (4) 

 

Where, 

 

𝒂𝒂𝒄𝒄 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡0 1

𝐿𝐿
1 0 0 −1

𝐿𝐿
0 0 0 0 0

−1 0 0 1 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0 0 0
0 1

𝐿𝐿
0 0 0 −1

𝐿𝐿
1 0 0 0 0

−1 0 0 0 0 0 0 1 0 0 0
−1 0 0 0 0 0 0 0 1 0 0
−1 0 0 0 0 0 0 0 0 1 0
0 1

𝐿𝐿
0 0 0 −1

𝐿𝐿
0 0 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

       (5) 

 

SECTION KINEMATICS 

The material strain displacement vector 𝜺𝜺(𝑥𝑥,𝑦𝑦)can be related with the section displacement 

vector 𝒖𝒖(𝑥𝑥)as follows: 

       

𝜺𝜺(𝑥𝑥,𝑦𝑦) = 𝒂𝒂𝑠𝑠(𝑦𝑦)𝒅𝒅(𝑥𝑥)                      (6) 

 

Where the section deformation vector 𝒅𝒅(𝑥𝑥)and section compatibility matrix𝒂𝒂𝑠𝑠(𝑦𝑦) are: 

 



7 
 

𝒅𝒅(𝑥𝑥) = �𝜕𝜕𝑢𝑢𝑠𝑠(𝑥𝑥)
𝜕𝜕𝑥𝑥

𝜕𝜕𝑢𝑢𝑐𝑐(𝑥𝑥)
𝜕𝜕𝑥𝑥

𝜕𝜕𝜃𝜃𝑧𝑧(𝑥𝑥)
𝜕𝜕𝑥𝑥

   (−𝜃𝜃𝑧𝑧(𝑥𝑥) + 𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝑥𝑥

) �
𝑇𝑇
                  (7) 

 

𝒂𝒂𝑠𝑠(𝑦𝑦) = �
1 0 −y 0
0 1 −y 0
0 0 0 1

�          (8) 

 

EQUILIBRIUM 

The differential equilibrium equation of a segment of length 𝑑𝑑𝑥𝑥 of a composite element with 

shear slip, as shown in Figure (3), can be written down as follows: 

 

𝑳𝑳𝑇𝑇𝑫𝑫(𝑥𝑥) − 𝑳𝑳𝑏𝑏𝑇𝑇𝜏𝜏𝑥𝑥𝑏𝑏 = 0                      (9) 

 

Where 

 

𝑫𝑫(𝑥𝑥) = [𝑁𝑁𝑥𝑥𝑠𝑠𝑁𝑁𝑥𝑥𝑐𝑐𝑀𝑀𝑥𝑥𝑉𝑉𝑥𝑥]𝑇𝑇                   (10) 

 

𝑳𝑳𝑇𝑇 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

d
dx

0 0 0

0 d
dx 0 0

0 0 d
dx

−1

0 0 0 d
dx ⎦
⎥
⎥
⎥
⎥
⎥
⎤

                   (11) 

 

𝑳𝑳𝑏𝑏𝑇𝑇 = �
−1
1
H
0

�                     (12) 

           

Here 𝑁𝑁𝑥𝑥𝑠𝑠 ,𝑁𝑁𝑥𝑥𝑐𝑐 ,𝑀𝑀𝑥𝑥,𝑉𝑉𝑥𝑥, 𝜏𝜏𝑥𝑥𝑏𝑏are the axial forces in the steel beam, axial force in the concrete beam, 

bending moment, shear force and interface bond force per unit length respectively; and H is 

the distance between the centroids of steel and concrete beams. 

 

COMPATIBILITY 

The components of the generalized section deformation vector 𝒅𝒅(𝑥𝑥) are the axial strain 𝜀𝜀0𝑠𝑠 in 

steel, the axial strain 𝜀𝜀0𝑐𝑐 in concrete, the curvature ∅𝑧𝑧 about the 𝑧𝑧 axis and the shear deformation 

𝛾𝛾𝑦𝑦 in the 𝑦𝑦 direction respectively: 
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𝑳𝑳𝒖𝒖(𝑥𝑥) − 𝒅𝒅(𝑥𝑥) = 0                               (13) 

 

Where 

 

𝑳𝑳 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

d
dx

0 0 0

0 d
dx 0 0

0 0 d
dx

0

0 0 −1 d
dx⎦
⎥
⎥
⎥
⎥
⎥
⎤

                    (14) 

 

The interface slip 𝑆𝑆(𝑥𝑥) between the steel beam and the concrete slab is: 

 

𝑆𝑆(𝑥𝑥) = 𝑳𝑳𝑏𝑏𝒖𝒖(𝑥𝑥)                    (15) 

 

where 𝑳𝑳𝑏𝑏 = [−1 1 H 0]                   (16) 

 

CONSTITUTIVE LAW 
The section constitutive law is as follows: 

 

𝑫𝑫(𝑥𝑥) = 𝑓𝑓𝑠𝑠𝑠𝑠𝑐𝑐(𝒅𝒅(𝑥𝑥))                    (17) 

 

Here 𝑓𝑓𝑠𝑠𝑠𝑠𝑐𝑐 is a non-linear function that relates the section force and deformation fields. The 

section is discretized with 2D fibres. Fibre integration is used to determine the section force-

deformation relation. 

The bond constitutive law is defined as follows: 

 

𝜏𝜏𝑥𝑥𝑏𝑏 = 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆(𝑥𝑥))                   (18) 

 

Where 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is a non-linear function that defines the bond stress-interface slip constitutive law. 

For the bond-slip constitutive relations, the Eligehausen et al. (1983) law has been used. 
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MATERIAL MODELS 
To couple normal and shear stresses at the material fibre level, multi-axial constitutive laws for 

materials are essential, which in turn help comprise the interaction of axial force, bending 

moment and shear force at the element section level. This section presents the constitutive 

models of steel and reinforced concrete materials implemented in the current study. In this 

research work, the softened membrane model (Hsu and Zhu, 2001) for concrete; and the J2 

plasticity model for steel along with a radial return mapping algorithm, have been adopted to 

simulate the biaxial interaction between normal and shear stress at the material fibre level. In 

the following, the significant features of both material models, which have been implemented 

in this mixed composite shear element for the first time, are presented.  

 

REINFORCED CONCRETE 

Three coordinate systems are defined as shown in Figure (4) to formulate the softened 

membrane model. The local coordinate of the fibre element at the basic frame of reference is 

defined by the first coordinate system (X, Y).The applied principal stresses of reinforced 

concrete membrane panel, which has an angle 𝜃𝜃1 with respect to X axis, is represented by the 

second coordinate system (1, 2); while the rebar coordinate system which has angle 𝜃𝜃𝑠𝑠with 

respect to the X axis is defined by the third coordinate system (𝑋𝑋𝑠𝑠,𝑌𝑌𝑠𝑠). The formulation has the 

capability to consider inclined rebars in the concrete deck; however, in the current research 

work, the rebars are horizontal. In the current formulation, bond-slip between rebars and 

concrete has not been considered. However, it is to be noted that the current formulation can 

be extended to multi-layered composite systems straight forwardly to include the bond-slip 

between concrete and rebars in the concrete deck as can be seen in Figure 6. The stress vectors 

in 1-2 and X-Y coordinate axes are represented by{𝜎𝜎1𝜎𝜎2𝜏𝜏12}𝑇𝑇and�𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦𝜏𝜏𝑥𝑥𝑦𝑦�
𝑇𝑇
. The strain 

vectors in 1-2 and X-Y coordinate axes are represented by�𝜀𝜀1𝜀𝜀2
1
2
𝛾𝛾12�

𝑇𝑇
and 

�𝜀𝜀𝑥𝑥𝜀𝜀𝑦𝑦
1
2
𝛾𝛾𝑥𝑥𝑦𝑦�

𝑇𝑇
respectively. The biaxial strains from the X-Y system are converted to the 1-2 

system through the following transformation matrix: 

 

�
𝜀𝜀1
𝜀𝜀2

1
2𝛾𝛾12

� = [𝑇𝑇(𝜃𝜃1)] �
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦

1
2𝛾𝛾𝑥𝑥𝑦𝑦

�                    (19) 
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The iterative process of determining 𝜃𝜃1is based on strain state, equilibrium of vertical stress 

and state of stress; and can be found in details in Mullapudi and Ayoub, (2010). 

Equivalent uniaxial strains in the 1-2 system are converted from biaxial strains in the 1-2 

system by using cracked concrete Poisson ratio µwhich is known as Hsu/Zhu ratio (Zhu and 

Hsu, 2002): 

 

�
𝜀𝜀�1
𝜀𝜀�2

1
2𝛾𝛾12

� = [𝜇𝜇] �
𝜀𝜀1
𝜀𝜀2

1
2𝛾𝛾12

�                    (20) 

 

Tensile and compressive strength of concrete has been derived from the equivalent uniaxial 

smeared stress-strain relation of concrete. However, the compressive strength of concrete 

depends on the material state of stress. For tensile-compressive state, the compressive strength 

gets softened due to tensile strains acting in the perpendicular direction. Hsu and Zhu, (2001) 

derived the following softening coefficient 𝜉𝜉 in the compression-tension section, which is 

employed in the present concrete model: 

 

𝜉𝜉 = ( 5.8
��́�𝑓𝑐𝑐(𝑀𝑀𝑀𝑀𝑀𝑀)

≤ 0.9)( 1
�1+400𝜀𝜀�1

)(1− |𝛽𝛽|
24°)                 (21)             

 

Where, 

 

𝛽𝛽 = 0.5 tan−1( 𝛾𝛾12
𝜀𝜀1−𝜀𝜀2

)                    (22) 

 

Where 𝜀𝜀1̅ is the equivalent uniaxial lateral tensile strain and 𝛽𝛽 represents the deviation angle 

which is determined from the difference between the rotating angle 𝜃𝜃𝑟𝑟 and the applied stress 

angle 𝜃𝜃1. For compressive-compressive state of stress, the enhanced compressive strength due 

to the compressive stress acting in the perpendicular direction through the enhancement factor 

developed by Vecchio, (1992) and Kupfer et al. (1969) has also been considered. However, the 

tensile strength of concrete gets influenced in a very minimal way due to the presence of 

perpendicular tensile stresses. 

The uniaxial compressive softened monotonic stress-strain relation defined by Hsu and Zhu, 

(2001) is adopted in this study. The uniaxial tensile stress-strain relation of concrete developed 
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by Zulfiqar and Filippou, (1990) which can simulate tensile stiffening effect due to rebars, has 

been used in this research work with the above mentioned softened stress-strain relationship. 

Once the strength of concrete has been determined in the equivalent uniaxial 1-2 coordinate 

system, shear strength and stiffness (G) can be developed as follows (Zhu et al., 2001): 

 

𝐺𝐺 = 𝜎𝜎1−𝜎𝜎2
𝜀𝜀1−𝜀𝜀2

                     (23) 

 

𝜏𝜏12 𝑎𝑎𝑎𝑎 (𝑎𝑎 + 1) = 𝜏𝜏12 𝑎𝑎𝑎𝑎 (𝑎𝑎) + 𝐺𝐺(∆ 𝛾𝛾12
2

)                 (24) 

 

The equivalent uniaxial strain of concrete can be transformed into uniaxial strain of rebars as 

follows: 

 

�
𝜀𝜀�1𝑠𝑠
𝜀𝜀�2𝑠𝑠
1
2𝛾𝛾12

� = [𝑇𝑇(𝜃𝜃𝑠𝑠 − 𝜃𝜃1)] �
𝜀𝜀�1
𝜀𝜀�2

1
2𝛾𝛾12

�                   (25) 

 

The stress and stiffness of rebars can be determined from the uniaxial rebar model. In this 

study, the inelastic model developed by Menegotto and Pinto, (1973) and Filippou et al. (1983) 

has been adopted for the rebars in the reinforced concrete deck. However, the effect of concrete 

on rebar needs to be accounted for as proposed by Belarbi and Hsu, (1994). 

The stress vector of reinforced concrete panel in the X-Y coordinate system is determined from 

the following equilibrium equations: 

 

�
𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦
𝜏𝜏𝑥𝑥𝑦𝑦� = [𝑇𝑇(−𝜃𝜃1)] �

𝜎𝜎1
𝜎𝜎2
𝜏𝜏12� + ∑ [𝑇𝑇(−𝜃𝜃𝑠𝑠𝑠𝑠)]𝑠𝑠 �

𝜌𝜌𝑠𝑠𝑠𝑠𝜎𝜎𝑠𝑠𝑠𝑠
0
0 �                                      (26) 

 

Here, 𝜌𝜌𝑠𝑠𝑠𝑠 is the average steel ratio in direction i. 

The 2D fibre stiffness matrix [𝐷𝐷] of reinforced concrete material in the X-Y coordinate system 

can be determined from the equivalent uniaxial stiffness of concrete and steel at their respective 

coordinate systems as follows: 

 

[𝐷𝐷] = [𝐷𝐷𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑟𝑟𝑠𝑠𝑐𝑐𝑠𝑠] + [𝐷𝐷𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠]                   (27) 

 

Where, 
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[𝐷𝐷𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑟𝑟𝑠𝑠𝑐𝑐𝑠𝑠] = [𝑇𝑇(−𝜃𝜃1)][𝐷𝐷𝑢𝑢𝑏𝑏𝑠𝑠𝑀𝑀𝑥𝑥𝑠𝑠𝑀𝑀𝑠𝑠𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑟𝑟𝑠𝑠𝑐𝑐𝑠𝑠][𝜇𝜇][𝑇𝑇(𝜃𝜃1)]                (28) 

 

[𝐷𝐷𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠] = ∑𝑠𝑠 [𝑇𝑇(−𝜃𝜃𝑠𝑠𝑠𝑠)]�𝐷𝐷𝑢𝑢𝑏𝑏𝑠𝑠𝑀𝑀𝑥𝑥𝑠𝑠𝑀𝑀𝑠𝑠
𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠 �[𝑇𝑇(𝜃𝜃𝑠𝑠𝑠𝑠 − 𝜃𝜃1)][𝜇𝜇][𝑇𝑇(𝜃𝜃1)]              (29) 

 

[𝐷𝐷𝑢𝑢𝑏𝑏𝑠𝑠𝑀𝑀𝑥𝑥𝑠𝑠𝑀𝑀𝑠𝑠𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑟𝑟𝑠𝑠𝑐𝑐𝑠𝑠] = �
𝐸𝐸𝑐𝑐1 𝐷𝐷12 0
𝐷𝐷21 𝐸𝐸𝑐𝑐2 0

0 0 𝐺𝐺
�                  (30) 

 

Here 𝐷𝐷12 = 𝑏𝑏𝜎𝜎1
𝑏𝑏𝜀𝜀�2

 and 𝐷𝐷21 = 𝑏𝑏𝜎𝜎2
𝑏𝑏𝜀𝜀�1

 are coupling material stiffness terms which exist only for a 

tensile-compressive state of strain due to the presence of the softening coefficient.  

 

�𝐷𝐷𝑢𝑢𝑏𝑏𝑠𝑠𝑀𝑀𝑥𝑥𝑠𝑠𝑀𝑀𝑠𝑠
𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠 � = �

𝜌𝜌𝑠𝑠𝑠𝑠𝐸𝐸𝑐𝑐 0 0
0 0 0
0 0 0

�                   (31) 

 

STRUCTURAL STEEL 

To simulate the biaxial interaction between normal and shear stresses at the material fibre level 

for steel beam sections, the J2 plasticity model has been implemented in this study. The 

significant features of the J2 plasticity model along with the implemented radial return mapping 

algorithm is presented in the following discussion.  

The yield function is defined by the deviatoric stress s, the back stress variable 𝒔𝒔𝒃𝒃representing 

the distance of yield surface centre from the origin of the deviatoric stress space, and the linear 

isotropic hardening modulus 𝐻𝐻𝑠𝑠: 

 

𝑓𝑓(𝒔𝒔, 𝒔𝒔𝒃𝒃,𝐻𝐻𝑠𝑠) =  ‖𝒔𝒔 − 𝒔𝒔𝒃𝒃‖ −  �2
3

(𝜎𝜎𝑦𝑦 + 𝐻𝐻𝑠𝑠𝛽𝛽)                 (32) 

 

Here, 𝜎𝜎𝑦𝑦 is the uniaxial tensile yield strength and 𝛽𝛽 is the isotropic hardening variable with 

nature of plastic strain. 

The plastic flow rule is:  

 

𝒆𝒆�̇�𝒑 =  𝛼𝛼 𝜕𝜕𝑓𝑓
𝜕𝜕𝒔𝒔

                     (33) 
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Here 𝛼𝛼 and 𝜕𝜕𝑓𝑓
𝜕𝜕𝒔𝒔

are the plastic consistency parameter and the normal to the yield surface 

respectively: 

 
𝜕𝜕𝑓𝑓
𝜕𝜕𝒔𝒔

=  (𝒔𝒔−𝒔𝒔𝒃𝒃)
‖𝒔𝒔−𝒔𝒔𝒃𝒃‖

                     (34) 

 

The hardening rules are: 

 

�̇�𝛽 =  �2
3
𝛼𝛼                     (35) 

 

𝒔𝒔�̇�𝒃 =  2
3
�̇�𝛼𝐻𝐻𝑘𝑘

𝜕𝜕𝑓𝑓
𝜕𝜕𝒔𝒔

                     (36) 

 

Where 𝐻𝐻𝑘𝑘 is the kinematic hardening modulus. 

The plastic consistency parameter 𝛼𝛼 satisfies the following loading and unloading Kuhn-

Tucker conditions: 

 

�̇�𝛼 ≥ 0,     𝑓𝑓 ≤ 0,     �̇�𝛼𝑓𝑓 = 0                   (37) 

 

Also, the following consistency condition needs to be satisfied: 

 

𝛼𝛼𝑓𝑓̇ = 0                     (38) 

 

A step by step summary of the material state determination through the integration of the above 

mentioned governing equations with the backword-Euler integration scheme, which results in 

a radial return mapping algorithm, is presented in Figure (5) for a single material point. A more 

detailed explanation can be found in Saritas and Filippou, (2009) and Simo and Hughes, (1998). 

The summary focuses on a single iteration 𝑖𝑖 for reaching vertical stress equilibrium at the 

material point (Klinkel and Govindjee, 2002). 

 

DISPLACEMENT-BASED FORMULATION 
The principle of virtual displacements forms the basis of the principle of minimum potential 

energy that uses displacements as the only independent field. The potential energy functional 
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(∏ )p  is written in terms of the independent nodal displacement (u) field in the basic frame of 

reference which does not include rigid body motions as follows: 

 

∏ (u)p =  ∫ W (εu(x, y)) dvv + ∏ (u(x))b − ∏ �u(x)�ext − ∏ (u)bc              (39) 

 

The potential energy functional of Equation (39) can be written without body force and surface 

traction with section level variables in the following form: 

 

∏ (u)p =  ∫ dT(x) D(x) dxL +  ∫ sT(x) τxb(x) dxL − uTP∗               (40) 

 

where P∗ is the applied nodal boundary forces. 

Transformation of this functional from the material level to the section level needs a 

compatibility condition through appropriate section kinematics. In this formulation, distributed 

inelasticity at the section level is considered through fibre discretization. The section resisting 

force and stiffness are obtained from the integration of the fibre level variables. It is to be noted 

that by adopting a fibre model, coupling of axial, shear and bending response is a natural 

process. This is a significant advantage over section-based models where coupling needs extra 

care through plasticity formulations.  

The variation of potential energy functional in Equation (40) can be written in the following 

form: 

𝛿𝛿∏ (𝒖𝒖)𝑝𝑝 =  ∫ 𝛿𝛿𝒅𝒅𝑇𝑇(𝑥𝑥)𝑫𝑫(𝑥𝑥) 𝑑𝑑𝑥𝑥𝐿𝐿 +  ∫ 𝛿𝛿𝛿𝛿𝑇𝑇(𝑥𝑥) 𝜏𝜏𝑥𝑥𝑏𝑏(𝑥𝑥) 𝑑𝑑𝑥𝑥𝐿𝐿 − 𝛿𝛿𝒖𝒖𝑇𝑇𝑷𝑷∗              (41) 

 

The solution of the variational in Equation (41) is non-linear under inelastic material 

conditions, so the problem is linearized about a state 𝒖𝒖𝑠𝑠 as follows: 

 

𝛿𝛿∏ (𝒖𝒖𝒊𝒊+𝟏𝟏)𝑝𝑝 =  𝛿𝛿∏ (𝒖𝒖𝒊𝒊)𝑝𝑝 + 𝜕𝜕𝜕𝜕
∏ (𝒖𝒖)𝑝𝑝

𝜕𝜕𝑢𝑢
|𝒖𝒖𝑠𝑠  ∆𝒖𝒖                 (42)

    

Where ∆𝒖𝒖 is the incremental nodal displacement vector. 

   

At equilibrium, Equation (42) can be written in the following expanded form: 
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∫ 𝛿𝛿𝒅𝒅𝑇𝑇(𝑥𝑥)𝑫𝑫𝒊𝒊(𝑥𝑥) 𝑑𝑑𝑥𝑥𝐿𝐿 +  ∫ 𝛿𝛿𝒔𝒔𝑇𝑇(𝑥𝑥) 𝜏𝜏𝑥𝑥
𝑏𝑏,𝑠𝑠(𝑥𝑥) 𝑑𝑑𝑥𝑥𝐿𝐿 − 𝛿𝛿𝒖𝒖𝑇𝑇𝑷𝑷∗ +  �∫ 𝛿𝛿𝒅𝒅𝑇𝑇(𝑥𝑥) 𝜕𝜕𝑫𝑫(𝑥𝑥)

𝜕𝜕𝒖𝒖
 𝑑𝑑𝑥𝑥𝐿𝐿 +

 ∫ 𝛿𝛿𝒔𝒔𝑇𝑇(𝑥𝑥) 𝝏𝝏𝜏𝜏𝑥𝑥
𝑏𝑏

𝝏𝝏𝒖𝒖
 𝑑𝑑𝑥𝑥𝐿𝐿 − 𝛿𝛿𝒖𝒖𝑇𝑇 𝜕𝜕𝑀𝑀

∗

𝜕𝜕𝑢𝑢
� ∆𝒖𝒖 = 0                             (43) 

 

By using Equations (9), (13), (15), (17) and (18) and assuming conservative applied loads, and 

from arbitrariness of 𝛿𝛿𝒖𝒖, Equation (43) can be written in the following expanded form: 

 

�∫ 𝑩𝑩𝒔𝒔
𝑇𝑇(𝑥𝑥)𝑲𝑲𝒔𝒔(𝑥𝑥)𝑩𝑩𝒔𝒔(𝑥𝑥)𝑑𝑑𝑥𝑥𝐿𝐿 + ∫ 𝑩𝑩𝑏𝑏

𝑇𝑇(𝑥𝑥)𝑲𝑲𝒃𝒃(𝑥𝑥)𝑩𝑩𝒃𝒃(𝑥𝑥)  𝑑𝑑𝑥𝑥𝐿𝐿 � ∆𝒖𝒖 = 𝑷𝑷∗ −

 ∫ 𝑩𝑩𝒔𝒔
𝑇𝑇(𝑥𝑥)𝑫𝑫𝒊𝒊(𝑥𝑥) 𝑑𝑑𝑥𝑥𝐿𝐿 −  ∫ 𝑩𝑩𝒃𝒃

𝑇𝑇(𝑥𝑥) 𝜏𝜏𝑥𝑥
𝑏𝑏,𝑠𝑠(𝑥𝑥) 𝑑𝑑𝑥𝑥𝐿𝐿                (44) 

 

Where, 𝑩𝑩𝒔𝒔(𝑥𝑥) and 𝑩𝑩𝒃𝒃(𝑥𝑥) are the strain-displacement and slip-displacement matrices. 

 

Equation (44) can be written in the following concise form: 

 

(𝑲𝑲𝒄𝒄+𝒔𝒔 +  𝑲𝑲𝑩𝑩)∆𝒖𝒖 =  𝑷𝑷∗ −  𝑷𝑷𝒄𝒄+𝒔𝒔𝒓𝒓 −  𝑷𝑷𝒃𝒃𝒓𝒓                  (45) 

 

𝑲𝑲∆𝒖𝒖 =  𝑷𝑷∗ −  𝑷𝑷𝒓𝒓                    (46) 

 

where 𝑲𝑲 is the composite element stiffness matrix which consists of the combined concrete 

and steel beam stiffness 𝑲𝑲𝒄𝒄+𝒔𝒔 and bond stiffness 𝑲𝑲𝑩𝑩, and 𝑷𝑷𝒓𝒓 is the composite element resisting 

vector which consists of the combined concrete and steel beam resisting forces  𝑷𝑷𝒄𝒄+𝒔𝒔𝒓𝒓  and the 

bond resisting force 𝑷𝑷𝒃𝒃𝒓𝒓 . The detailed state determination process of the displacement-based 

formulation can be found in Das (2019). 

 

MIXED-BASED FORMULATION 
The composite beam element with partial interaction has been formulated by using independent 

fibre displacements and stress functions following the two-field Hellinger-Reissner (HR) 

functional which is written in the basic frame of reference as follows: 

 

∏ (𝒖𝒖,𝝈𝝈)𝐻𝐻𝐻𝐻 =  −∫ 𝑊𝑊 �𝝈𝝈(𝑥𝑥,𝑦𝑦)�𝑑𝑑𝑣𝑣𝜕𝜕 +  ∫ 𝝈𝝈𝑇𝑇𝜺𝜺𝒖𝒖𝜕𝜕 𝑑𝑑𝑣𝑣 + ∏ (𝒖𝒖(𝑥𝑥))𝑏𝑏 − ∏ �𝒖𝒖(𝑥𝑥)�𝑠𝑠𝑥𝑥𝑐𝑐 − ∏ (𝒖𝒖)𝑏𝑏𝑐𝑐

                      (47)       

Where 𝑊𝑊(𝝈𝝈) is the complementary energy function. 
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HR energy functional of Equation (47) can be written without body forces and surface tractions 

with section level variables in the following form: 

 

∏ (𝒖𝒖,𝒑𝒑)𝐻𝐻𝐻𝐻 =  −∫ 𝑫𝑫𝑇𝑇𝒅𝒅(𝑫𝑫)𝑑𝑑𝑥𝑥𝐿𝐿
0 +  ∫ 𝑫𝑫�𝑇𝑇(𝒑𝒑)𝒅𝒅(𝒖𝒖)𝐿𝐿

0 𝑑𝑑𝑥𝑥 +  ∫ 𝒔𝒔𝑇𝑇(𝒖𝒖) 𝜏𝜏𝑥𝑥𝑏𝑏 𝑑𝑑𝑥𝑥𝐿𝐿
0 − 𝒖𝒖𝑇𝑇𝑷𝑷∗  

                                            (48)        

In this element formulation, the beam section forces 𝑫𝑫 �are independently derived from the 

element nodal forces 𝒑𝒑degree of freedom as follows: 

 

𝑫𝑫�(𝑥𝑥) = 𝒃𝒃(𝑥𝑥) 𝒑𝒑                    (49) 

 

𝒃𝒃(𝑥𝑥) =

⎣
⎢
⎢
⎢
⎢
⎡1 −

𝑥𝑥
𝐿𝐿

𝑥𝑥
𝐿𝐿

0 0 0 0

0 0 1 − 𝑥𝑥
𝐿𝐿

𝑥𝑥
𝐿𝐿 0 0

0 0 0 0 𝑥𝑥
𝐿𝐿
− 1 𝑥𝑥

𝐿𝐿

0 0 0 0 −1
𝐿𝐿

− 1
𝐿𝐿⎦
⎥
⎥
⎥
⎥
⎤

                  (50) 

Here 𝒃𝒃(𝑥𝑥) is the matrix of force interpolation functions which has been derived by coalescing 

the centroids of both layers through a single reference point. 

It is to be noted that bond forces are determined through bond constitutive relations. Therefore, 

the equilibrium matrix 𝒃𝒃(𝑥𝑥) only satisfies the differential equilibrium Equation (9) partially 

without the contribution of bond stresses. It is in synchronization with HR energy functional 

as in this variational principle there is no subsidiary condition required. However, the 

composite element formulation derived from the complementary energy functional loses its 

most powerful credibility for not satisfying the differential equilibrium equations in their strong 

form fully. 

The variation of HR energy functional in Equation (48) can be written in the following form: 

 

𝛿𝛿∏ (𝒖𝒖,𝒑𝒑)𝐻𝐻𝐻𝐻 = −∫ 𝛿𝛿𝑫𝑫𝑇𝑇𝒅𝒅(𝑫𝑫)𝑑𝑑𝑥𝑥𝐿𝐿
0 + ∫ 𝛿𝛿(𝑫𝑫�𝑇𝑇(𝒑𝒑))𝒅𝒅(𝒖𝒖)𝐿𝐿

0 𝑑𝑑𝑥𝑥 + ∫ (𝑫𝑫�𝑇𝑇(𝒑𝒑))𝛿𝛿(𝒅𝒅(𝒖𝒖))𝐿𝐿
0 𝑑𝑑𝑥𝑥 +

∫ 𝛿𝛿𝒔𝒔𝑇𝑇(𝑥𝑥) 𝜏𝜏𝑥𝑥𝑏𝑏(𝑥𝑥) 𝑑𝑑𝑥𝑥𝐿𝐿
0 − 𝛿𝛿𝒖𝒖𝑇𝑇𝑷𝑷∗                              (51) 

 

Under inelastic material state, the solution of the variational in Equation (51) becomes non-

linear, hence the nonlinear function needs to be linearized with respect to a state of both 

principle arguments𝒖𝒖𝑠𝑠 and 𝒑𝒑𝑠𝑠 as follows: 
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𝛿𝛿∏ (𝒑𝒑𝒊𝒊+𝟏𝟏,𝒖𝒖𝒊𝒊+𝟏𝟏)𝐻𝐻𝐻𝐻 =  𝛿𝛿 ∏ (𝒑𝒑𝒊𝒊,𝒖𝒖𝒊𝒊)𝐻𝐻𝐻𝐻 + 𝜕𝜕𝜕𝜕∏ (𝒑𝒑,𝒖𝒖)𝐻𝐻𝐻𝐻
𝜕𝜕𝑝𝑝

|𝒑𝒑𝑠𝑠,𝒖𝒖𝑠𝑠  ∆𝒑𝒑+ 𝜕𝜕𝜕𝜕∏ (𝒑𝒑,𝒖𝒖)𝐻𝐻𝐻𝐻
𝜕𝜕𝑢𝑢

|𝒑𝒑𝑠𝑠,𝒖𝒖𝑠𝑠  ∆𝒖𝒖              (52)     

 

Where ∆𝒑𝒑 and∆𝒖𝒖are the incremental nodal force and displacement vector respectively. 

At equilibrium, from Equation (52), the following equation can be written: 

 

𝛿𝛿∏ (𝒑𝒑𝒊𝒊,𝒖𝒖𝒊𝒊)𝐻𝐻𝐻𝐻 + 𝜕𝜕𝜕𝜕∏ (𝒑𝒑,𝒖𝒖)𝐻𝐻𝐻𝐻
𝜕𝜕𝑝𝑝

|𝒑𝒑𝑠𝑠,𝒖𝒖𝑠𝑠  ∆𝒑𝒑+ 𝜕𝜕𝜕𝜕∏ (𝒑𝒑,𝒖𝒖)𝐻𝐻𝐻𝐻
𝜕𝜕𝑢𝑢

|𝒑𝒑𝑠𝑠,𝒖𝒖𝑠𝑠 ∆𝒖𝒖 = 0              (53) 

 

By using Equations (9), (13), (15), (17), (18) and (49) along with the assumption of 

conservative external load, Equation (53) can be written in the following form: 

 

𝛿𝛿𝒖𝒖𝑇𝑇 �∫ 𝑩𝑩𝑠𝑠
𝑇𝑇(𝑥𝑥)𝒃𝒃(𝑥𝑥) 𝑑𝑑𝑥𝑥 Δ𝒑𝒑 +  ∫ 𝑩𝑩𝑏𝑏

𝑇𝑇(𝑥𝑥)𝑲𝑲𝒃𝒃(𝑥𝑥)𝑩𝑩𝑏𝑏(𝑥𝑥)𝑑𝑑𝑥𝑥 Δ𝒖𝒖 + ∫ 𝑩𝑩𝒔𝒔
𝑇𝑇𝑫𝑫(𝑥𝑥)𝑑𝑑𝑥𝑥𝑳𝑳

𝟎𝟎 +𝐿𝐿
0

𝐿𝐿
0

∫ 𝑩𝑩𝒃𝒃
𝑇𝑇𝜏𝜏𝑥𝑥𝑏𝑏(𝑥𝑥)𝑑𝑑𝑥𝑥𝑳𝑳

𝟎𝟎 − 𝑷𝑷∗� +  𝛿𝛿𝒑𝒑𝑇𝑇 �−∫ 𝒃𝒃𝑇𝑇(𝑥𝑥)𝒇𝒇𝒔𝒔(𝑥𝑥)𝒃𝒃(𝑥𝑥)𝑑𝑑𝑥𝑥Δ𝒑𝒑+ ∫ 𝒃𝒃𝑇𝑇𝑳𝑳
0 (𝑥𝑥)𝑩𝑩𝒔𝒔(𝑥𝑥)𝑑𝑑𝑥𝑥Δ𝒖𝒖𝐿𝐿

0 +

 ∫ 𝒃𝒃𝑇𝑇(𝑥𝑥)𝐿𝐿
0 𝒅𝒅(𝑥𝑥)𝑑𝑑𝑥𝑥 − ∫ 𝒃𝒃𝑇𝑇(𝑥𝑥)𝐿𝐿

0 𝒅𝒅�(𝑥𝑥)𝑑𝑑𝑥𝑥 � = 0                                       (54)                                                                          

 

where 𝒇𝒇𝒔𝒔(𝑥𝑥) is the section flexibility matrix and 𝒅𝒅�(𝑥𝑥) is the section deformation vector 

determined from section force vector 𝑫𝑫�(𝑥𝑥) with the help of the section flexibility matrix. 

From arbitrariness of 𝛿𝛿𝒖𝒖and 𝛿𝛿𝒑𝒑, Equation (54) can be written in the following matrix form: 

 

�
∫ 𝑩𝑩𝑏𝑏

𝑇𝑇𝐿𝐿
0 𝑲𝑲𝑏𝑏𝑩𝑩𝑏𝑏𝑑𝑑𝑥𝑥 ∫ 𝑩𝑩𝑠𝑠

𝑇𝑇𝒃𝒃𝑑𝑑𝑥𝑥𝐿𝐿
0

∫ 𝒃𝒃𝑇𝑇𝑩𝑩𝑠𝑠
𝐿𝐿
0 𝑑𝑑𝑥𝑥 −∫ 𝒃𝒃𝑇𝑇𝒇𝒇𝑠𝑠𝒃𝒃𝑑𝑑𝑥𝑥

𝐿𝐿
0

� �∆𝒖𝒖∆𝒑𝒑� = �
𝑷𝑷∗ − ∫ 𝑩𝑩𝑠𝑠

𝑇𝑇𝑫𝑫𝑑𝑑𝑥𝑥 − ∫ 𝑩𝑩𝑏𝑏
𝑇𝑇𝜏𝜏𝑥𝑥𝑏𝑏𝑑𝑑𝑥𝑥

𝐿𝐿
0

𝐿𝐿
0

∫ 𝒃𝒃𝑇𝑇(𝒅𝒅�𝐿𝐿
0 − 𝒅𝒅)𝑑𝑑𝑥𝑥

�                   (55) 

 

Equation (55) can be written in the following concise form: 

 

�𝑲𝑲𝐵𝐵 𝑮𝑮𝑇𝑇
𝑮𝑮 −𝑭𝑭𝒄𝒄+𝒔𝒔

� �∆𝒖𝒖∆𝒑𝒑� =  �𝑷𝑷
∗ − 𝑷𝑷𝒄𝒄+𝒔𝒔𝒓𝒓 −  𝑷𝑷𝒃𝒃𝒓𝒓

𝒖𝒖𝑟𝑟
�                 (56) 

 

Here, 𝑭𝑭𝑐𝑐+𝑠𝑠 is the element flexibility matrix, 𝑮𝑮 = ∫ 𝒃𝒃𝑇𝑇𝑩𝑩𝑠𝑠
𝐿𝐿
0 𝑑𝑑𝑥𝑥, and 𝒖𝒖𝑟𝑟 is the element residual 

deformation vector. To satisfy element level compatibility, the element residual deformation 

vector 𝒖𝒖𝑟𝑟needs to be iterated until convergence to make it virtually zero. 

Two different numerical algorithms are possible for the two-field mixed element formulation. 

In the first algorithm, both element independent nodal displacement and force degrees of 
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freedom become available to the solver and the solution of Equations (56) are carried out by 

the solver simultaneously for both fields. However, with this algorithm the force fields become 

continuous between inter-element boundaries, which may not represent the actual scenarios 

under concentrated loading conditions. The implementation of this first strategy is rare in finite 

element analysis as a global solver needs to be coded for both displacement and force variables, 

and therefore, this algorithm has not been adopted in this research work.  

The second algorithm considers the static condensation of the element nodal force field from 

Equation (56) and makes available only the element nodal displacement degrees of freedom to 

the solver, which is very common in finite element analysis. As a result, the force field is not 

continuous at element boundaries. 

In a nonlinear structural analysis algorithm, the element state determination defines the 

computations of the element resisting force vector and the element tangent stiffness matrix 

corresponding to the given current element nodal displacements and their increments.  

In this formulation, after the static condensation of the force fields at the element level, 

Equation (56) becomes: 

 

𝑮𝑮𝑇𝑇[𝑭𝑭𝑐𝑐+𝑠𝑠−1 ][𝑮𝑮∆𝒖𝒖 − 𝒖𝒖𝑟𝑟] + 𝑲𝑲𝐵𝐵∆𝒖𝒖 = 𝑷𝑷∗ − 𝑮𝑮𝑇𝑇𝑷𝑷𝒄𝒄+𝒔𝒔𝒓𝒓 −  𝑷𝑷𝒃𝒃𝒓𝒓                (57) 

 

Here, the choice of storing of element residual deformation vector 𝒖𝒖𝑟𝑟 in Equation (57) between 

subsequent global iterations creates two algorithms. A non-iterative solution algorithm where 

no internal element iteration is necessary exists, as storing element residual deformations is 

eliminated through the inclusion of 𝒖𝒖𝑟𝑟 in the element forces at the basic frame of reference. 

Whereas for an iterative solution algorithm, internal element iterations are necessary until the 

deformation vector is adjusted to satisfy compatibility at the element level by forcing the 

element residual deformation vector 𝒖𝒖𝑟𝑟to reach a value less than a tolerance amount.  

In this formulation, an iterative solution algorithm has been adopted and the choice of 

displacement and force interpolation functions follows the Babuska-Brezzi condition along 

with the principle of limitation (De Veubeke, 1965). However, it has been established by 

Ayoub, (2001) that the principle of limitation criteria is the prime governing criteria to choose 

the correct order of displacement and force interpolation functions to achieve an accurate 

solution. Stability criteria of the mixed formulation are described in the following section. Once 

convergence is reached at the element level, i.e. 𝒖𝒖𝑟𝑟 becomes zero, Equation (57) can be written 

as follow: 
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(𝑮𝑮𝑇𝑇[𝑭𝑭𝑐𝑐+𝑠𝑠−1 ]𝑮𝑮 + 𝑲𝑲𝐵𝐵)∆𝒖𝒖 = 𝑷𝑷∗ − 𝑮𝑮𝑇𝑇𝑷𝑷𝒄𝒄+𝒔𝒔𝒓𝒓 −  𝑷𝑷𝒃𝒃𝒓𝒓                 (58) 

 

(𝑲𝑲𝒄𝒄+𝒔𝒔 +  𝑲𝑲𝑩𝑩)∆𝒖𝒖 =  𝑷𝑷∗ −  𝑮𝑮𝑇𝑇𝑷𝑷𝒄𝒄+𝒔𝒔𝒓𝒓 −  𝑷𝑷𝒃𝒃𝒓𝒓                  (59) 

 

𝑲𝑲∆𝒖𝒖 =  𝑷𝑷∗ −  𝑷𝑷𝒓𝒓                               (60) 

 

A step by step summary of the state determination algorithm is presented in Table (1) for a 

single composite element. The summary focuses on a single global iteration 𝑖𝑖 at the structural 

level through the Newton-Raphson method with a load counter 𝑘𝑘. The nodal displacements of 

the structural model in the global frame of reference are collected in the displacement 

vector𝑼𝑼𝑔𝑔. The detailed procedure of mapping structural nodal displacements relative to global 

coordinates to the element nodal deformations at the basic frame of reference, transformation 

of element stiffness matrix and resisting forces from basic to global level, and assembling of 

global stiffness matrix and resistance forces of all elements to the assembled structural stiffness 

matrix 𝑲𝑲𝑔𝑔 and structural resistance vector 𝑷𝑷𝑔𝑔𝑟𝑟are described in details in Filippou and Fenves, 

(2004). 

 

STABILITY CRITERIA – MIXED FORMULATION 

The order of displacement (𝑛𝑛𝑏𝑏) and force (𝑛𝑛𝑓𝑓) shape functions are interconnected through the 

compatibility and constitutive relations in the two-field mixed-based formulation. The order 

and continuity of both shape functions are critical in mixed-based formulations; otherwise non-

meaningful results will be produced as observed by Zienkiewicz and Taylor, (1989). Stability 

of the algorithm can be achieved by following De Veubeke’s principle of limitation (1965) 

which states that the order of stress field should be less or equal than that of strain field. 

For flexure-critical mixed composite element formulations (Ayoub and Filippou, 1999), a 

linear axial force distribution without the presence of axially distributed loads, requires 

quadratic distribution of axial displacements along the length of the element. Whereas, a linear 

moment field requires a linear curvature field which in turn requires cubic distribution of the 

vertical displacement field along the axial direction of the element. Using Hermitian 

polynomial shape functions for the vertical displacement field, two-node beam elements will 

be sufficient for the dependent rotation field to satisfy the principle of limitation stability 

criteria for flexure-critical conditions. However, one additional middle degree of freedom for 
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the axial field needs to be included, which will get statically condensed out at the element level 

before the assembly process. 

For shear-critical mixed composite element formulations, a linear axial force distribution 

without the presence of axially distributed loads, requires quadratic distribution of axial 

displacements. Whereas, a linear moment field requires a linear curvature field which in turn 

requires a quadratic distribution of the rotation field along the length of the element. As for 

shear, a constant shear force distribution along the length of the element requires a cubic 

vertical displacement field to match the same order of the rotation field. Therefore, the 

following relations are proposed for the newly developed shear-critical mixed element: 

 

For the axial field: 

 

𝑛𝑛𝑓𝑓 = 𝑛𝑛𝑏𝑏 − 1                     (61) 

 

For the moment field: 

 

𝑛𝑛𝑓𝑓 = 𝑛𝑛𝑏𝑏 − 1                     (62) 

 

For the shear field: 

 

𝑛𝑛𝑓𝑓 = 𝑛𝑛𝑏𝑏 − 3                     (63) 

 

Using quadratic polynomial shape functions for axial and rotational fields, two-node beam 

elements will not be sufficient to satisfy the principle of limitation stability criteria for shear- 

critical conditions. Therefore, one additional middle degree of freedom for the axial and 

rotation field is a must for shear-critical two-field mixed beam elements, which will get 

statically condensed out at the element level before the assembly process. 

 

CORRELATION STUDIES 
This section presents several correlation studies of the newly developed composite beam 

element with partial interaction based on two-field mixed formulations for shear critical steel-

concrete composite members. Two different types of composite systems are considered for the 

correlation studies, i.e. steel-concrete-steel sandwiched systems and conventional steel-
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concrete composite deck systems; to establish the versatility of the proposed composite beam 

element. Larger energy dissipation capacity of steel-concrete sandwiched components 

compared to that of reinforced concrete members, make it more cost effective and efficient for 

seismic and blast-resistance systems. The correlation studies start with a numerical evaluation 

of sandwiched steel-concrete composite beams followed by a steel-concrete composite deck 

system to validate the newly developed composite element formulation with the implemented 

multi-axial material models. 

 

STEEL-CONCRETE-STEEL COMPOSITE BEAM 

A sample sandwiched beam problem (Figure 6) is analysed to determine the efficiency and 

accuracy of the newly developed mixed-based composite element formulation by comparing 

the responses derived from the displacement-based formulation. The beam span is 2000 mm 

and is under a central point vertical loading with simply supported boundary conditions. The 

shear span to depth ratio is 3.3. The top and bottom plate thickness is 8 mm each. The concrete 

section depth is 288 mm. The width of the beam section is 300 mm. The diameter of tie bars is 

9.5 mm and the spacing is 240 mm along the length of the beam and 200 mm along the section 

width. The headed studs’ diameter is 13 mm and the spacing is 120 mm along the length of the 

beam and 100 mm along the section width. The concrete compressive strength is 26.8 MPa. 

The yield strength of steel is 350 MPa and bond strength of shear studs is 317 MPa. 

It is to be noted that to model sandwiched members, the degrees of freedom at the section and 

element level need to be adjusted accordingly. Two, eight, and twenty elements have been used 

to model the entire beam specimen for the displacement-based formulation; while only two 

elements are used for the mixed-based formulation along with 5 section integration points in 

each element for both formulations.  

Figure (7) presents the comparison of vertical load versus mid-point deflection response 

between the mixed-based and displacement-based formulations. It can be observed that the 

displacement-based formulation needs 20 elements to accurately simulate the inelastic global 

load-deflection response compared to that of mixed-based formulation with 2 elements. The 

bending moment distributions at different load stages, for both the displacement and mixed 

models are shown in Figures (8) and (9) respectively. The two load stages A and B are shown 

in Figure (7). 

In the absence of any distributed loads, the bending moment distribution is linear which does 

not depend on the existence of bond shear forces at the interface levels. The mixed model is 

able to predict the exact linear moment distribution as shown in Figure (9), while the 



22 
 

displacement model fails to do so with a small number of elements as shown in Figure (8), and 

converges to the true distribution only when a large number of elements were used. 

Figures (10) and (11) show the top plate axial force distributions for both models. The mixed 

model clearly better predicts the axial force distribution than that of the displacement-based 

model, which also reveals nonlinearity and jumps at inter-element boundaries. 

Figures (12) and (13) depict the shear force distributions at different load stages for both the 

displacement and mixed models respectively. The displacement-based formulation needs more 

elements to accurately simulate the shear force distribution, although slight jumps are observed 

at the element boundaries. The mixed-based formulation accurately reproduces a constant shear 

force distribution with only 2 elements. 

Figures (14) and (15) show the bottom interface slip distributions for both models. The 

displacement-based formulation does not produce any jumps at element boundaries as the slip 

field is directly determined from the element nodal deformations. However, it needs larger 

number of elements to reasonably reproduce the comparable slip distribution with that of the 

mixed-based formulation.  

This numerical example has established that the newly developed mixed element formulation 

is more accurate, efficient and computationally less expensive than the element formulation 

based on the displacement approach. 

 

COMPOSITE BEAM of NIE et al. (2004) 

Nie et al. (2004) carried out static monotonic tests on a series of 16 steel-concrete composite 

beams to investigate the effect of shear span aspect ratio,  as well as the width and thickness of 

the concrete flanges on the shear resisting mechanisms and strength of composite beams. It has 

been concluded that the concrete shear contribution by the concrete flange is 33% to 56% of 

the applied total ultimate shear, which motivated the development of the composite beam 

element with partial interaction considering inelastic axial-flexure-shear interaction in both 

concrete and steel materials. Two types of shear failure modes in the concrete flange have been 

observed in the experiment, i.e. diagonal tension failure and diagonal shear crushing. Shear 

yielding followed by local buckling in the web of steel sections has also been observed in the 

experiment for those specimens which failed in a shear mode.Out of these specimens, the 

composite beam CBS-2, in which a shear failure mode has been observed in the experiment, is 

chosen for the purpose of the correlation study. The beam span is 2800 mm. The beam is under 

two-point vertical loading 600 mm away from each end. The shear span to depth ratio is 2.0. 

The cross-section details of the composite beam are shown in Figure (16). The width and depth 
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of the concrete flange is 680 mm and 100 mm respectively. Reinforcement in the concrete 

flange along the beam axial direction and across the section width is provided with 100 mm 

spacing and a diameter of 6 mm. The diameter of headed studs is 8 mm, and they are spaced 

90 mm along the length of the beam and 80 mm along the section width. The concrete 

compressive strength is 30.06 MPa. The yield strength of steel in the web and flange regions 

is 340 MPa and 273 MPa respectively. The bond strength of shear stud is considered to be 346 

MPa. 

Four elements have been used to model the entire composite beam specimen using the mixed-

based formulation with 5 section integration points in each element. Figure (17) presents the 

vertical load versus mid deflection response of the member; and it can be observed that the 

newly developed mixed-based composite beam element with partial interaction has reasonably 

reproduced the overall experimentally-observed load-deflection response. The shear stiffness, 

ultimate shear resistance, and shear deformation capacity have been captured well by the 

model. It is also noted that the shear resistance capacity gets increased while the shear 

deformation capacity gets decreased when full interaction is considered by increasing the bond 

stiffness of shear studs. An opposite behaviour can also be observed when the bond stiffness is 

reduced significantly for the no-interaction situation. These observations emphasize the 

necessity to the formulation of shear critical composite frame elements with partial interaction 

to simulate the shear behaviour accurately, which in turn will help to develop an inelastic 

analysis-driven design process of composite members. It can also be observed that 4, 14 and 

28 elements using the displacement-based formulation and 4 elements using the mixed-based 

formulation produce essentially the same global load-deflection response under four point 

loading conditions. 

Figures (18) and (19) show the shear force and bending moment distributions respectively 

along the length of the beam in the inelastic zone of the load-deflection response, i.e. point A 

in Figure (17). It can be observed that both displacement and mixed formulations have 

excellently produced a smooth variation of shear force along the length of the beam. Similar 

observation of shear force distribution has also been reported by Zona and Ranzi, (2011) with 

displacement-based elements. However, jumps about the true distribution of bending moment 

obtained at element boundaries have been observed for the displacement-based formulation. 

Figure (20) shows the interface slip distribution along the length of the beam in the inelastic 

zone of load-deflection response, i.e. point A in Figure (17). It can be observed that both 

displacement and mixed formulations have essentially produced almost the same distribution 
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of relative slip along the length of the beam, as the slip field has been determined from nodal 

displacement degrees of freedom for both formulations. 

The axial force distributions at point A in Figure (17) for the steel and concrete sections are 

shown in Figures (21) and (22) respectively. It can be observed that the mixed formulation with 

4 elements has excellently produced a smooth linear variation of axial force along with exact 

equilibrium between steel and concrete axial section forces. However, the displacement-based 

formulation has shown a jump at element boundaries, and reasonable performance has been 

achieved only when the number of elements has increased to 28. It is to be noted that larger 

number of elements are required to successfully simulate the local response using 

displacement-based formulations compared to that of the global response.  

Figure (23) shows the distribution of the applied stress angle 𝜃𝜃1 (Figure 4) along the length of 

the beam at point A in Figure (17) for the middle fibre of the concrete section. It can be 

observed that the mixed formulation has excellently produced the accurate variation of applied 

stress angle as observed in the experiment. Meanwhile, the displacement formulation has 

shown a reasonable performance only when the number of elements has been greatly increased. 

Figure (24) shows the curvature-loading response at the loading point. It can be observed that 

the mixed formulation with 4 elements excellently produced localized curvature distributions 

compared to that of the displacement based formulation with 28 elements. 

From Figure (25), it can be observed that the principle compressive strain of the top concrete 

fibre in the concrete deck reached a substantial amount. The displacement-based formulation 

was not able to produce a good result, even with 28 elements. 

Figure (26) shows the axial strain-loading response of the bottom rebar in the concrete deck at 

the loading point. It can be observed that the strain does not exceed the yield limit and it started 

unloading at the later stage of loading to satisfy equilibrium. This signifies that flexural action 

does not dominate in the concrete deck. This local behaviour has been excellently produced by 

the mixed formulation. The displacement-based formulation was not able to reproduce this type 

of local behaviour even with large number of elements. 

Figure (27) shows the axial strain-loading response in the compression rebar at the concrete 

section. It is to be noted from Figure (22) that the concrete section remains under compressive 

stress conditions. It should be realized that the compressive strain in the top rebar started 

unloading at the later stage of loading. As a result, the rebar reaches the tensile zone, and also 

the peak amount of compressive strain is substantially less than that of the top concrete fibre 

(Figure 25). This observation indicates that the flexure energy in the concrete deck does not 
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play an important role at the later stage of loading as the shear energy dominates and resists 

the external input energy. 

The aforementioned results have verified the superiority of mixed-based formulations relative 

to the displacement-based approach. These results confirm that the proposed mixed 

formulation is capable of simulating the global and local behaviour of shear critical composite 

beams along with failure modes. Moreover, the inherent limitation of displacement-based 

formulation to reproduce local behaviour, even with large number of elements, is a warning 

sign. The need of mixed-based shear composite elements, which can successfully reproduce 

local behaviour and help to formulate inelastic analysis-driven design process, has been 

established through this research work. 

 

CONCLUSION 
A new composite beam element formulation is presented following two-field mixed-based 

variational principles and considering bond-slip and axial-flexure-shear interaction, which are 

essential to accurately simulate the stiffness, resistance and deformation capacity of shear- 

critical partially-connected steel-concrete composite members. A robust state determination 

along with new stability criteria for the mixed-based formulation has been proposed. Softening 

of compressive strength of concrete under compressive-tensile biaxial state of stress along with 

cracked Poisson ratio due to crack-induced anisotropy has been considered explicitly in the 

formulation of beam-column composite element with partial interaction. Numerical studies of 

experimentally-tested shear-critical composite beams established the accuracy and efficiency 

of the mixed formulation over the standard displacement-based model with respect to local 

deformations and force fields, along with considerable reduction of computational cost; which 

will be very useful in the development of performance-based design procedures for composite 

structures. 

 

ACKNOWLEDGEMENTS 
The first author is grateful to the University Doctoral Studentship awarded by City, University 

of London, and is very honoured to be the recipient of this prestigious scholarship. 

 

REFERENCES 
Ayoub, A. S., and Filippou, F. C. (1999). “Mixed formulation of bond slip problems under 

cyclic loads.” J. Struct. Eng., 125 (6), 661-671. 



26 
 

Ayoub, A., and Filippou, F. C. (2000). “Mixed formulation of nonlinear steel-concrete 

composite beam element.” J. Struct. Eng., 126 (3), 371-381. 

Ayoub, A. (2001). “A two-field mixed variational principle for partially connected composite 

beams.” Finite Elements in Analysis and Design, 37 (11), 929-959. 

Batista, J., Sousa, M. (2013). “Exact finite elements for multi-layered composite beam-

columns with partial interaction.” Comput Struct; 123:48–57. 

Belarbi, A., Hsu, TTC. (1994). “Constitutive laws of concrete in tension and reinforcing bars 

stiffened by concrete.” Struct J Amer Concrete Institute; 91(4):465–74. 

Chakrabarti, A., Sheikh, A., Griffith, M., Oehlers, D. (2012). “Analysis of composite beams 

with longitudinal and transverse partial interactions using higher order beam theory.” Int. 

J. Mech. Sci. 59; 115–125. 

Challamel, N., Girhammar, U.A. (2011). “Variationally-based theories for buckling of partial 

composite beam–columns including shear and axial effects.” Eng Struct 33:2297–2319. 

Das, D. (2019). “Mixed formulation for seismic analysis of shear critical reinforced concrete, 

steel and composite structures.” Doctoral Thesis; City, University of London. 

De Veubeke, B. F. (1965). “Displacement and equilibrium models in the finite element 

method.” Stress Analysis, Wiley, pp. 145-197. 

Eligehausen, R., Popov, E.P., and Bertero, V.V. (1983). "Local Bond Stress-Slip Relationships 

of Deformed Bars Under Generalized Excitations". Report No. UCB/EERC 83-23, 

Earthquake Engineering Research Center, University of California, Berkeley, p. 178. 

Filippou, F.C., Fenves, G.L. (2004). “Methods of analysis for earthquake-resistant structures”, 

in: Y. Bozorgnia, V.V. Bertero (Eds.), Earthquake Engineering, From Engineering 

Seismology to Performance-Based Engineering, CRC Press LLC. 

Filippou, F.C., Popov, E.P., and Bertero, V.V. (1983). "Effects of Bond Deterioration on 

Hysteretic Behavior of Reinforced Concrete Joints". Report No. UCB/EERC-83/19, 

Earthquake Engineering Research Center, University of California, Berkeley, 191 pp. 

Hjiaj, M., Battini, J.-M., Nguyen, Q.H. (2012). “Large displacement analysis of shear 

deformable composite beams with interlayer slips.” Int. J. Non-Linear Mech. 47; 895–904. 

Hsu, T.T.C., and Zhu, R. H. (2001). “Softened Membrane Model for Reinforced Concrete 

Elements in Shear” Structural Journal, American Concrete Institute, Vol 99, No 4, pp.460-

469. 

Keo, P., Nguyen, Q-H., Somja, H., Hjiaj, M. (2016). “Derivation of the exact stiffness matrix 

of shear-deformable multi-layered beam element in partial interaction.” Finite Elements in 

Analysis and Design, 112, 40-49. 



27 
 

Klinkel, S., Govindjee, S. (2002). “Using finite strain 3D-material models in beam and shell 

elements.” Eng Comput 19:902–921. 

Kupfer, H. B., Hildorf, H. K., & Rusch, H. (1969). “Behavior of concrete under biaxial 

stresses.” Structural Journal, American Concrete Institute, 66(8), 656–666. 

Lee, C-L., and Filippou, F. C. (2015). “Frame Element with Mixed Formulations for Composite 

and RC Members with Bond Slip. I: Theory and Fixed-End Rotation.” J. Struct. Eng., 

DOI: 10.1061/ (ASCE) ST.1943-541X.0001273. 

Liang, Q. Q., Uy, B., Bradford, M. A., and Ronagh, H. R. (2005). “Strength analysis of steel-

concrete composite beams in combined bending and shear.” J. Struct. Eng., 131(10), 

1593–1600. 

Liu, X., Bradford, M.A., Chen, Q-J., Ban, H. (2016). “Finite element modelling of steel-

concrete composite beams with high-strength friction-grip bolt shear connectors.” Finite 

Elements in Analysis and Design, 108 (1), 54-65. 

Martinelli, E., Nguyen, Q.H., Hjiaj, M. (2012). “Dimensionless formulation and comparative 

study of analytical models for composite beams in partial interaction.” J. Constr. Steel Res. 

75(0); 21–31. 

Menegotto, M. and Pinto, P. E. (1973). “Method of Analysis for Cyclically Loaded Reinforced 

Concrete Plane Frames Including Changes in Geometry and Non-Elastic Behavior of 

Elements under Combined Normal Force and Bending.” IABSE Symposium on Resistance 

and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, 

Lisbon. 

Mullapudi, T., Ayoub, A. (2010). “Modeling of the seismic behavior of shear-critical 

reinforced concrete columns.” Eng Struct; 32(11):3601–15. 

Nguyen, Q.-H., Hjiaj, M., Lai, V.-A. (2014). “Force-based FE for large displacement inelastic 

analysis of two-layer Timoshenko beams with interlayer slips.” Finite Elem. Anal. Des. 

85; 1–10. 

Nie, J., Xiao, Y., Chen, L. (2004). “Experimental Studies on Shear Strength of Steel–Concrete 

Composite Beams.” Journal of Structural Engineering, ASCE; vol. 130; No. 8; 1206–13. 

Santos, H.A.F.A., Silberschmidt, V.V. (2014). “Hybrid equilibrium finite element formulation 

for composite beams with partial interaction.” Comput. Struct., 108, 646–656. 

Saritas, A., and Filippou, F. C. (2009). “Frame element for metallic shear-yielding members 

under cyclic loading.” J. Struct. Eng. 135 (9): 1115–1123. 

Schnabl, S., Saje, M., Turk, G., Planinc, I. (2007). “Locking-free two-layer Timoshenko beam 

element with interlayer slip.” Finite Elem. Anal. Des. 43; 705–714. 



28 
 

Silva, A.R., Sousa, J.B.M. (2009). “A family of interface elements for the analysis of composite 

beams with interlayer slip.” Finite Elements in Analysis and Design 45 (5); 305–314. 

Simo, J. C. and Hughes, T. J. R. (1998). “Computational Inelasticity.” New York, Springer-

Verlag. 

Spacone, E., and El-Tawil, S. (2004). “Nonlinear analysis of steel-concrete composite 

structures: State of the art.” J. Struct. Eng., 10.1061/(ASCE) 0733-9445(2004)130:2(159), 

159–168. 

Taig, G., Ranzi, G., Dias-da-Costa, D., Piccardo, G., and Luongo, A. (2015). “A GBT Model 

for the Analysis of Composite Steel–Concrete Beams with Partial Shear Interaction.” 

Structures; 4:27–37. 

Uddin, M-A., Sheikh, A., Brown, D., Bennett, T., Uy, B. (2018). “Geometrically nonlinear 

inelastic analysis of steel–concrete composite beams with partial interaction using a 

higher-order beam theory.” Int. J. Non-Linear Mech. 100; 34–47. 

Vasdravellis, G. and Uy, B. (2014), “Shear strength and moment-shear interaction in steel-

concrete composite beams”, J. Struct. Eng., 140(11), 04014084. 

Vecchio, F. J. (1992). “Finite element modeling of concrete expansion and confinement.” 

Journal of Structural Engineering, ASCE, 118(9), 2390–2405. 

Zhu, RRH., Hsu, TTC., Lee, JY. (2001). “Rational shear modulus for smeared crack analysis 

of reinforced concrete.” Struct J Amer Concrete Institute; 98(4):443–50. 

Zhu, RRH., Hsu, TTC. (2002). “Poisson effect of reinforced concrete membrane elements.” 

Struct J Amer Concrete Institute; 99(5):631–40. 

Zienkiewicz, O. C., and Taylor, R. L. (1989). “The finite element method. Vol. 1, Basic 

formulation and linear problems”, McGraw-Hill, London. 

Zona, A., Ranzi, G. (2011). “Finite element models for nonlinear analysis of steel– concrete 

composite beams with partial interaction in combined bending and shear.” Finite Elem. 

Anal. Des. 47(2); 98–118. 

Zulfiqar, N., and Filippou, F.C. (1990). "Models of Critical Regions in Reinforced Concrete 

Frames under Seismic Excitations". Report No. UCB/EERC-90/06, Earthquake 

Engineering Research Center, University of California, Berkeley. 

 

  



29 
 

Table 1. State Determination Process – Mixed Formulation 

Step 1: Determine the incremental structural nodal displacement and its update with respect 

to global axes of reference by the solver: 

∆𝑼𝑼𝑠𝑠+1 = �𝑲𝑲𝑠𝑠�
−1

(𝑷𝑷𝑘𝑘+1 − 𝑷𝑷𝐻𝐻𝑠𝑠 )   (By the solver) 

Where 

𝑷𝑷𝑘𝑘+1 = 𝑷𝑷𝑘𝑘 + ∆𝑷𝑷𝑘𝑘+1    (Update of applied load vector) 

𝑼𝑼𝑠𝑠+1 = 𝑼𝑼𝑠𝑠 + ∆𝑼𝑼𝑠𝑠+1    (Update of global nodal displacement vector) 

Step 2: Determine the incremental element nodal deformation and its update with respect to 

the basic axes of reference with the help of nodal compatibility and extraction of rigid body 

modes: 

∆𝒖𝒖𝑰𝑰𝑰𝑰𝒆𝒆𝒆𝒆𝒆𝒆
𝒊𝒊+𝟏𝟏 = 𝑨𝑨𝑰𝑰𝑰𝑰∆𝑼𝑼𝑠𝑠+1    (By the solver) 

Where 𝐴𝐴𝐼𝐼𝐽𝐽 is the structural compatibility matrix. 

∆𝒗𝒗𝑠𝑠+1 = 𝒂𝒂𝒄𝒄∆𝒖𝒖𝑰𝑰𝑰𝑰𝒆𝒆𝒆𝒆𝒆𝒆
𝒊𝒊+𝟏𝟏    (By Element Subroutine) 

𝒗𝒗𝑠𝑠+1 = 𝒗𝒗𝑠𝑠 + ∆𝒗𝒗𝑠𝑠+1    (Update of element nodal deformation vector) 

Step 3: Determine the incremental element nodal force and its update with respect to the 

basic axes of reference for a given element nodal deformation vector which remains 

constant for element iteration loop counter 𝑗𝑗: 

∆𝒒𝒒𝑗𝑗 = 𝒌𝒌𝒆𝒆𝒆𝒆𝒆𝒆
𝒋𝒋−𝟏𝟏(𝑮𝑮∆𝒗𝒗𝑠𝑠+1 − 𝒖𝒖𝑟𝑟,𝑗𝑗−1) 

𝒒𝒒𝑗𝑗+1 = 𝒒𝒒𝑗𝑗 + ∆𝒒𝒒𝑗𝑗    (Update of element nodal force vector) 

Step 4: Determine the incremental section deformation and slip and its update with respect 

to the basic axes of reference for a given element nodal force vector: 

∆𝒅𝒅𝑗𝑗 = �𝒌𝒌𝒔𝒔𝒆𝒆𝒄𝒄
𝒋𝒋−𝟏𝟏�

−𝟏𝟏
(𝒃𝒃∆𝒒𝒒𝑗𝑗) 

𝒅𝒅𝑗𝑗+1 = 𝒅𝒅𝑗𝑗 + ∆𝒅𝒅𝑗𝑗    (Update of section deformation vector) 

𝒒𝒒𝒔𝒔𝒆𝒆𝒄𝒄𝑗𝑗+1 = 𝒒𝒒𝒔𝒔𝒆𝒆𝒄𝒄𝑗𝑗 +  (𝒃𝒃∆𝒒𝒒𝑗𝑗)   (Update of section force vector) 

∆𝒔𝒔𝑠𝑠 = 𝑩𝑩𝒃𝒃(𝑥𝑥)∆𝒗𝒗𝑠𝑠+1 

𝒔𝒔𝑠𝑠+1 = 𝒔𝒔𝑠𝑠 + ∆𝒔𝒔𝑠𝑠    (Update of slip) 

Step 5: Determine the section tangent stiffness (𝒌𝒌𝒔𝒔𝒆𝒆𝒄𝒄
𝒋𝒋+𝟏𝟏) and resistance vector (𝒑𝒑𝒔𝒔𝒆𝒆𝒄𝒄

𝒋𝒋+𝟏𝟏)  for a 

given section deformation vector with mid-point integration rule and material state 

determination. Also, determine bond forces𝜏𝜏𝑥𝑥
𝑏𝑏,𝑠𝑠+1and bond stiffness𝑲𝑲𝒃𝒃

𝒊𝒊+𝟏𝟏from the bond 

constitutive relations. 
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Step 6: Determine the element residual deformation and flexibility matrix and update the 

element nodal forces with updated section deformation and forces for the next element 

iteration until the norm of element nodal energy becomes less than the specified tolerance 

value to dissipate the element residual deformation: 

𝒇𝒇𝒆𝒆𝒆𝒆𝒆𝒆
𝒋𝒋+𝟏𝟏 = �𝒃𝒃𝑻𝑻 �𝒌𝒌𝒔𝒔𝒆𝒆𝒄𝒄

𝒋𝒋+𝟏𝟏�
−𝟏𝟏
𝒃𝒃 

𝒖𝒖𝑟𝑟,𝑗𝑗+1 = 𝒖𝒖𝑟𝑟,𝑗𝑗 + ∑𝒃𝒃𝑻𝑻 �𝒌𝒌𝒔𝒔𝒆𝒆𝒄𝒄
𝒋𝒋+𝟏𝟏�

−𝟏𝟏
(𝒒𝒒𝒔𝒔𝒆𝒆𝒄𝒄𝑗𝑗+1 − 𝒑𝒑𝒔𝒔𝒆𝒆𝒄𝒄

𝒋𝒋+𝟏𝟏)(Update of element nodal residual 

deformation vector) 

𝒒𝒒𝑗𝑗+2 = 𝒒𝒒𝑗𝑗+1 − �𝒇𝒇𝒆𝒆𝒆𝒆𝒆𝒆
𝒋𝒋+𝟏𝟏�

−1
𝒖𝒖𝑟𝑟,𝑗𝑗+1 

𝒅𝒅𝑗𝑗+2 = 𝒅𝒅𝑗𝑗+1 + �𝒌𝒌𝒔𝒔𝒆𝒆𝒄𝒄
𝒋𝒋+𝟏𝟏�

−𝟏𝟏
�𝒒𝒒𝒔𝒔𝒆𝒆𝒄𝒄𝑗𝑗+1 − 𝒑𝒑𝒔𝒔𝒆𝒆𝒄𝒄

𝒋𝒋+𝟏𝟏� − �𝒌𝒌𝒔𝒔𝒆𝒆𝒄𝒄
𝒋𝒋+𝟏𝟏�

−𝟏𝟏
(𝒃𝒃�𝒇𝒇𝒆𝒆𝒆𝒆𝒆𝒆

𝒋𝒋+𝟏𝟏�
−1
𝒖𝒖𝑟𝑟,𝑗𝑗+1) 

𝒒𝒒𝒔𝒔𝒆𝒆𝒄𝒄𝑗𝑗+2 = 𝒒𝒒𝒔𝒔𝒆𝒆𝒄𝒄𝑗𝑗+1 −  (𝒃𝒃�𝒇𝒇𝒆𝒆𝒆𝒆𝒆𝒆
𝒋𝒋+𝟏𝟏�

−1
𝒖𝒖𝑟𝑟,𝑗𝑗+1) 

Step 7: Determine the element stiffness matrix and resistance vector in iteration counter 𝑖𝑖 

for the given nodal element deformation upon the convergence of element compatibility at 

the basic frame of reference: 

𝑲𝑲𝒆𝒆𝒆𝒆𝒆𝒆
𝒊𝒊+𝟏𝟏 = 𝑲𝑲𝒄𝒄+𝒔𝒔

𝒊𝒊+𝟏𝟏 + 𝑲𝑲𝑩𝑩
𝒊𝒊+𝟏𝟏 

𝑲𝑲𝒄𝒄+𝒔𝒔
𝒊𝒊+𝟏𝟏 = 𝑮𝑮𝑻𝑻�𝒇𝒇𝒆𝒆𝒆𝒆𝒆𝒆

𝒋𝒋+𝟏𝟏�
−1
𝑮𝑮 

𝑲𝑲𝑩𝑩
𝒊𝒊+𝟏𝟏 = �𝑩𝑩𝒃𝒃

𝑻𝑻𝑲𝑲𝒃𝒃
𝒊𝒊+𝟏𝟏 𝑩𝑩𝒃𝒃 

𝑷𝑷𝒓𝒓,𝒊𝒊+𝟏𝟏 = 𝑷𝑷𝒄𝒄+𝒔𝒔
𝒓𝒓,𝒊𝒊+𝟏𝟏 + 𝑷𝑷𝒃𝒃

𝒓𝒓,𝒊𝒊+𝟏𝟏 

𝑷𝑷𝒄𝒄+𝒔𝒔
𝒓𝒓,𝒊𝒊+𝟏𝟏 = 𝑮𝑮𝑻𝑻𝒒𝒒𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊+𝟏𝟏 

𝑷𝑷𝒃𝒃
𝒓𝒓,𝒊𝒊+𝟏𝟏 = �𝑩𝑩𝒃𝒃

𝑇𝑇𝜏𝜏𝑥𝑥
𝑏𝑏,𝑠𝑠+1 

Step 8: Determine the element stiffness matrix and resistance vector in iteration counter 𝑖𝑖 at 

the global frame of reference: 

𝑲𝑲𝒆𝒆𝒆𝒆𝒆𝒆,𝒈𝒈𝒆𝒆𝒈𝒈
𝒊𝒊+𝟏𝟏 = 𝒂𝒂𝒄𝒄𝑻𝑻𝑲𝑲𝒆𝒆𝒆𝒆𝒆𝒆

𝒊𝒊+𝟏𝟏𝒂𝒂𝒄𝒄 

𝑸𝑸𝒆𝒆𝒆𝒆𝒆𝒆,𝒈𝒈𝒆𝒆𝒈𝒈
𝒊𝒊+𝟏𝟏 = 𝒂𝒂𝒄𝒄𝑻𝑻𝑷𝑷𝒓𝒓,𝒊𝒊+𝟏𝟏 
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Figure 1. Basic Reference System without Rigid Body Modes 

 

 

 

 

 

 

 

 

 
Figure 2. Element Nodal Deformations 
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Figure 3. Section Differential Equilibrium 

 

 

 

 

 

 

 
 

Figure 4. Applied Principal Stresses and Reinforcement Directions of RC Element 
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  For a given total strain vector and its volumetric part at time(𝑎𝑎 + 1),  

    Determine deviatoric elastic trial stress 

𝒆𝒆𝒕𝒕+𝟏𝟏 = 𝜺𝜺𝒕𝒕+𝟏𝟏 −
1
3
𝜃𝜃𝑐𝑐+1𝟏𝟏 

𝒔𝒔𝒕𝒕+𝟏𝟏 = 2𝐺𝐺(𝒆𝒆𝒕𝒕+𝟏𝟏 − 𝒆𝒆𝒕𝒕
𝒑𝒑) 

𝒔𝒔𝒆𝒆𝒇𝒇𝒇𝒇,𝒕𝒕𝒓𝒓𝒊𝒊𝒂𝒂𝒆𝒆
𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝒕𝒕+𝟏𝟏 − 𝒔𝒔𝒃𝒃,𝒕𝒕 

 

 

Determine yield surface limit 

𝑓𝑓𝑐𝑐+1(𝒔𝒔, 𝒔𝒔𝒃𝒃,𝐻𝐻𝑠𝑠) =  �𝒔𝒔𝒆𝒆𝒇𝒇𝒇𝒇,𝒕𝒕𝒓𝒓𝒊𝒊𝒂𝒂𝒆𝒆
𝒕𝒕+𝟏𝟏� −  �

2
3

(𝜎𝜎𝑦𝑦 + 𝐻𝐻𝑠𝑠𝛽𝛽𝑐𝑐) 

 

 

 

𝑓𝑓𝑐𝑐+1(𝒔𝒔, 𝒔𝒔𝒃𝒃,𝐻𝐻𝑠𝑠) ≤ 0 

 

 

 

Determine elastic tangent matrix and stress 

𝑬𝑬𝑐𝑐+1 = 𝐾𝐾𝑛𝑛𝑛𝑛𝑇𝑇 + 2𝐺𝐺(𝑙𝑙 − 𝑙𝑙𝜕𝜕𝑏𝑏𝑠𝑠) 

𝝈𝝈𝑐𝑐+1 = 𝐾𝐾𝜃𝜃𝑐𝑐+1𝟏𝟏 + 𝒔𝒔𝒕𝒕+𝟏𝟏 

Return 

 

 

Determine consistency parameter and normal to yield surface 

∆𝛼𝛼 =
𝑓𝑓𝑐𝑐+1(𝒔𝒔, 𝒔𝒔𝒃𝒃,𝐻𝐻𝑠𝑠)

2𝐺𝐺 + 2
3

(𝐻𝐻𝑠𝑠 + 𝐻𝐻𝑘𝑘)
 

 

𝜕𝜕𝑓𝑓
𝜕𝜕𝒔𝒔𝑐𝑐+1

=  
(𝒔𝒔𝒆𝒆𝒇𝒇𝒇𝒇,𝒕𝒕𝒓𝒓𝒊𝒊𝒂𝒂𝒆𝒆

𝒕𝒕+𝟏𝟏)
‖𝒔𝒔𝒆𝒆𝒇𝒇𝒇𝒇,𝒕𝒕𝒓𝒓𝒊𝒊𝒂𝒂𝒆𝒆

𝒕𝒕+𝟏𝟏‖
 

 

 

 

 

Yes 

No 
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 Determine the updated hardening variable, plastic strain and back stress 

𝛽𝛽𝑐𝑐+1 = 𝛽𝛽𝑐𝑐 + �2
3
∆𝛼𝛼 

𝒆𝒆𝒕𝒕+𝟏𝟏
𝒑𝒑 = 𝒆𝒆𝒕𝒕

𝒑𝒑 + ∆𝛼𝛼
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Figure 5. Radial Return Mapping Algorithm- J2 Plasticity 
 
 

 

 

 
 

 

Figure 6. Geometry of Sandwiched Beam 
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Figure 7. Load-Deflection Response 

 

 

Figure 8. Bending Moment Distribution (Displacement Model) 
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Figure 9. Bending Moment Distribution (Mixed Model) 

 

 

Figure 10. Top Plate Axial Force Distribution (Displacement Model) 
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Figure 11. Top Plate Axial Force Distribution (Mixed Model) 

 

 

Figure 12. Shear Force Distribution (Displacement Model) 
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Figure 13. Shear Force Distribution (Mixed Model) 

 

 

Figure 14. Bottom Interface Slip Distribution (Displacement Model) 
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Figure 15. Bottom Interface Slip Distribution (Mixed Model) 

 

 
Figure 16. Cross-Section of Composite Beam CBS-2 
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Figure 17. Load-Deflection Response of SC Beam CBS-2 

 

 
Figure 18. Shear Force Distribution along the Length of Beam 
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Figure 19. Bending Moment Distribution along the Length of Beam 

 

 

Figure 20. Interface Slip Distribution along the Length of Beam 
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Figure 21. Axial Force Distribution along the Length of Beam in Steel Section 

 

 

 
 

Figure 22. Axial Force Distribution along the Length of Beam in Concrete Section 
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Figure 23. Applied Stress Angle Distribution along the Length of Beam in Middle Fibre of 

Concrete Section 

 

 
 

Figure 24. Curvature-Loading Response at loading point 
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Figure 25. Principle Compressive Strain-Loading Response of top concrete fibre at loading 
point 

 
 

 
 

Figure 26. Axial Strain-Loading Response of bottom rebar of concrete deck at loading point 
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Figure 27. Axial Strain-Loading Response of top rebar of concrete deck at loading point 
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