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Abstract 
The post-translational modification protein S-acylation (commonly known as 

palmitoylation) plays a critical role in regulating a wide-range of biological 

processes including cell growth, cardiac contractility, synaptic plasticity, 

endocytosis, vesicle trafficking, membrane transport and biased-receptor signalling. 

As a consequence, zDHHC-protein acyl transferases (zDHHC-PATs), enzymes that 

catalyse the addition of fatty acid groups to specific cysteine residues on target 

proteins, and acyl proteins thioesterases (APTs), proteins that hydrolyse thioester 

linkages, are important pharmaceutical targets. At present, no therapeutic drugs 

have been developed that act by changing the palmitoylation status of specific 

target proteins. Here, we consider the role that palmitoylation plays in the 

development of diseases such as cancer and detail possible strategies for 

selectively manipulating the palmitoylation status of specific target proteins, a 

necessary first step towards developing clinically-useful molecules for the treatment 

of disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 
Protein S-acylation, the reversible covalent attachment of fatty acids (chain 

length ranging between 16 and 20 Carbons (C)), typically palmitic acid (C = 16), to 

the thiol groups of specific cysteine residues in substrate proteins, has recently 

emerged as an important and common post-translational modification in a variety of 

tissues regulating a diverse range of physiological processes including cell growth, 

cardiac contractility, synaptic plasticity, endocytosis, trafficking and biased 

signalling [1-4]. Protein S-acylation occurs dynamically and reversibly in a manner 

analogous to protein phosphorylation [5], is catalysed by a family of zinc-finger and 

DHHC-motif containing protein acyltransferases (zDHHC-PATs) [1,3] and reversed 

by acyl protein thioesterases (APTs) [6]. Many different classes of protein have 

been identified as targets for acylation, including G-proteins [7], ion channels [8-13], 

transporters [14-16], pumps [17, 18], receptors [19-23] and protein kinases [24-26]. 

Acylation induces changes in the local structure (e.g. [27]) and, therefore, function 

of the intracellular regions of target proteins through their recruitment to the surface 

of a membrane bilayer via the acylated cysteine, and results in either a change in 

the activity and/or localisation of the modified protein [1,3]. 

zDHHC-PATs are zinc-finger-containing enzymes characterised by a 

cysteine-rich region with a conserved Asp-His-His-Cys (DHHC) motif [1,3] within 

the active site [28]; there are 23 human isoforms. zDHHC-PATs are expressed 

throughout the secretory pathway (including the cell surface) [29]. They typically 

have 4 transmembrane (TM) domains, with a conserved ~50 amino acid cytosolic 

core between TM2 and 3 which contains the DHHC motif. In contrast, the 

intracellular amino and carboxyl termini are poorly conserved, and likely contribute 

to zDHHC-PAT isoform substrate selectivity [3, 30].  

In contrast, APTs are soluble proteins that belong to the α/β-hydrolase family 

of serine hydrolases, which all have a characteristic active site serine essential for 

enzyme activity [6, 31-32]. The first acyl protein thioesterase to be discovered was 

APT1 [33], which has since been shown to depalmitoylate a diverse range of 

proteins including Gαs, endothelial nitric oxide synthase (eNOS) and SNAP-23 but 

not caveolin [34-36]. Subsequent bioinformatics analysis revealed a related 

depalmitoylase with 64% sequence identity to APT1 called APT2 [37]. For many 



years, it has been thought that APT1 and APT2 were the only enzymes that could 

remove palmitate from cytosolic cysteine residues but recently it has been shown 

that the ABHD17 family of serine hydrolyses can depalmitate N-Ras [38]. In 

humans, the serine hydrolase superfamily has more than 100 members [31], many 

of which have as yet unknown substrate specificity suggesting that there may be 

other depalmitoylases waiting to be discovered. 

 

Protein S-acylation and disease 
Given the vast number of cellular events regulated by palmitoylation, it is not 

surprising to discover that misregulation of palmitoylation is a significant causal 

factor in a range of human pathologies. The link between protein acylation and 

disease is probably best established for cancer [39-40], for which there are several 

established examples. For instance, non-small cell lung cancer growth is zDHHC5-

dependent [41], and palmitoylation of EZH2 by zDHHC5 is required for malignant 

development and progression of p53-mutant glioma [42]. zDHHC3 has been shown 

to play a vital role in regulating breast tumour growth, oxidative stress and 

senescence [43]. Development of EGFR mutated non-small cell lung cancer is 

dependent upon EGFR palmitoylation [44]. A mouse that developed a spontaneous 

truncation mutation in its Zdhhc13 gene had increased susceptibility to skin 

carcinogenesis compared to wild-type animals suggesting that zDHHC13 has a 

protective role against the development of skin cancer [45]. Palmitoylation of the 

nuclear transcription regulator SCP1 causes it to be located at the plasma 

membrane instead of the cell nucleus, which impedes its ability to promote both 

angiogenesis and tumour growth [46]. Palmitoylation is also known to regulate a 

wide range of neurological processes, and plays a causal role in a range of 

neurodegenerative diseases [47] including Alzheimer’s disease [48]. Last, blocking 

palmitoylation of the STING (stimulator of interferon genes) protein at a 

transmembrane cysteine reduces STING-mediated inflammatory cytokine 

production in both human and mouse cells, suggesting a possible therapeutic 

option for treating autoinflammatory disease [49]. These examples indicate the 

potential scope of pharmacological manipulation of protein palmitoylation for the 

treatment of disease.  



A full consideration of all diseases caused by aberrant protein acylation is 

beyond the scope of this review. Instead, three case studies will be presented here 

in depth explaining the regulatory role played by palmitoylation in several cellular 

processes, and how diseases related to these physiological events may potentially 

be tackled through modulating the acylation status of particular target proteins. 

 

Case study 1: Oncogenic Ras 

Ras proteins function as molecular switches transmitting signals from cell 

surface growth factor receptors to intracellular effector proteins cycling between 

inactive (GDP bound) and active (GTP) states [50, 51]. On binding GTP, Ras 

undergoes a conformational change that enables it to interact with and regulate 

proteins such as Raf (signalling cascade RAF-MEK-ERK-MAPK) [52, 53] and the 

P110 sub-unit of PI3K (PI3K-AKT-mTOR) [54, 55]. Ras GDP-GTP exchange is 

promoted by guanine nucleotide exchange factors (GEFs, e.g. SOS1) whereas 

GTPase activating proteins (GAPs) stimulate GTP hydrolysis, promoting Ras 

inactivation [56]. In humans, the genes HRAS, NRAS and KRAS encode three 

closely related proteins that are frequently mutated in cancer, the most common of 

which is K-RAS (86% of all RAS mutant cancers) with smaller contributions from N-

RAS (11%) and H-RAS (3%), that play a pivotal role in driving unregulated cell 

growth [51, 57-58]. The K-RAS gene gives rise to two splice variants (K-RAS4A, 

4B), both of which have their own distinct biochemical properties. Ras oncogenic 

activity requires the protein to be localised to the inner face of the plasma 

membrane suggesting strategies that cause Ras to be mistargeted within the cell 

may be effective in treating cancer [59, 60]. 

Ras membrane association is facilitated by two lipid post-translational 

modifications – farnesylation (all Ras isoforms) and palmitoylation (H-Ras, N-Ras 

and K-Ras4A only) – at specific cysteine residues located at the protein’s C-

terminus [61, 62]. As all Ras proteins are modified by farnesylation [61, 62], and 

this post-translational modification is required for correct membrane localisation of 

Ras [63], considerable effort has been expended trying to identify inhibitors of 

farnesyl transferase (FTase, the enzyme responsible for Ras farnesylation), two of 

which (Lonafarnib, Tipifarnib) made it to phase III clinical trials. Although both drugs 



showed encouraging preclinical activity [64, 65], they were found to be ineffective in 

patients who had pancreatic, colorectal or lung cancer caused by oncogenic K-Ras 

[66, 67]. This lack of clinical efficacy was due to the compensatory ability of a 

related enzyme geranylgeranyl transferase I to prenylate K-Ras and N-Ras in the 

presence of a FTase inhibitor [68]. As H-Ras is prenylated by FTase alone, 

however, it has been possible to use Tipifarnib to treat those squamous cell head 

and neck cancers caused by oncogenic H-Ras, thus demonstrating that the 

strategy of mistargeting Ras is clinically effective [69]. As yet, the therapeutic 

potential of blocking Ras palmitoylation has yet to be determined.  

 Ras is palmitoylated in the Golgi by an enzymatic complex consisting of 

zDHHC9 and GCP16 [70], which were identified as the human orthologs of Erf2 

and Erf4 respectively, proteins previously shown to be responsible for Ras 

palmitoylation in yeast [71, 72]. Although the palmitoylation reaction is carried out 

by zDHHC9, the stability and catalytic activity of the enzyme is dependent on the 

presence of GCP16 [70]. Ras palmitoylation occurs after it has been farnesylated, 

and this second lipid modification increases the affinity of Ras for membranes by 

more than 100-fold [73, 74]. Once palmitoylated, Ras is trafficked from the Golgi to 

the plasma membrane [5]. Palmitoylation of N-Ras is essential for both EGF 

mitogenic signalling in mouse embryonic fibroblasts [75] and the development of 

leukaemia [76]. Furthermore, downregulation of zDHHC9 expression in 

somatostatin-positive interneurons has been shown to cause reduced membrane 

localisation of Ras [77]. All together, the available evidence suggests that those 

Ras isoforms that get palmitoylated can be prevented from associating with the 

plasma membrane through inhibiting zDHHC9 activity. This said, however, 

developing an active site inhibitor of zDHHC9 as a means of blocking Ras 

palmitoylation is unlikely to be useful in the clinic as such a molecule would be 

expected to cause significant serious neurological side effects. Mutations in the 

gene encoding zDHHC9 are known to cause mild-to-moderate intellectual disability, 

seizures as well as speech and language impairment [78-81]. Furthermore, a 

Zdhhc9 knockout mouse has recently been shown to have seizure-like activity with 

increased frequency and amplitude of both spontaneous and inhibitory post-

synaptic currents [82]. If a molecule that prevents Ras from interacting with the 



zDHHC9-GCP16 complex can be identified, however, it may be possible to 

selectively block Ras palmitoylation. 

When the crystal structure of H-Ras was first reported, with the exception of 

the nucleotide-binding site, no large hydrophobic pockets on the surface of the 

protein that could readily accommodate small molecules were observed [83], 

suggesting that efforts to drug Ras itself would prove challenging, as indeed has 

been the case. In recent years, however, several groups have identified both small 

molecules [84-88] and peptides [89-90] that bind within shallow pockets on the 

surface of Ras preventing it from interacting with either SOS1 [84-85, 88-90] or c-

Raf [86, 88], reducing both downstream signalling and ultimately cell proliferation. 

Successful targeting of the contact interface between Ras and both SOS1 and C-

Raf suggests that it may also be possible to drug other protein-protein interactions 

made by Ras. For example, palmitoylation of Ras by zDHHC9-GCP16 must entail a 

physical contact between the enzyme complex and its substrate. The region of Ras 

surrounding its palmitoylation site is recognised by and likely binds within the 

enzyme’s active site [91, 92]. It is also conceivable, however, that Ras contacts the 

zDHHC9-GCP16 enzyme complex at (a) region(s) distinct from its palmitoylation 

site. If indeed this is the case, once those regions of Ras that interact with either 

zDHHC9 and/or GCP16 have been identified, it should be possible to develop 

molecules and/or peptides that block this interaction preventing H-, N- and K-

Ras4A from being palmitoylated.  

Selective blockade of Ras palmitoylation may prove to be a better 

therapeutic strategy than blocking the interaction between Ras and individual 

effector enzymes as Ras mislocalisation will block all downstream signalling 

events. This said, the strategy of targeting Ras palmitoylation will have no effect in 

those cancers caused by oncogenic KRAS4B as this splice variant associates with 

the plasma membrane via electrostatic interactions [93]. Furthermore, recent 

evidence has shown that in the absence of palmitoylation, K-Ras4A is still able to 

associate with the plasma membrane via two clusters of positively charged 

residues located within its hypervariable region [94], which suggests that targeting 

Ras palmitoylation for the treatment of cancer may only be a viable strategy for H- 

and N-Ras isoforms.  



 

Case study 2: MC1R and melanomagenesis 

The melanocortin-1 receptor (MC1R), a G-protein coupled receptor, is the 

key regulator of hair and skin pigmentation in people [95, 96]. Following exposure 

to ultraviolet radiation, the peptide α-melanocyte-stimulating hormone (α-MSH) 

binds to and activates MC1Rs in melanocytes (specialised skin cells), which results 

in cAMP signalling, melanin production and enhanced DNA repair [95-98]. Several 

non-synonymous single nucleotide polymorphisms (SNPs) in the MC1R gene have 

been discovered, and a group of them termed red hair colour (RHC) variants are 

associated with red hair colour, fair skin and poor tanning ability as well as 

increased risk of developing melanoma [99-103]. The MC1R has recently shown to 

be palmitoylated at C315 by zDHHC13 following exposure to UV-light [104]. 

Interaction between zDHHC13 and MC1R was promoted by phosphorylation of 

zDHHC13 at S8 by ATR (a kinase which is a central effector of the UVB response) 

[105]. MC1R palmitoylation was essential for signalling through the receptor, and 

was required for increased pigment production, ultraviolet-B-induced G1-like cell 

cycle arrest as well as control of senescence and melanomagenesis both in vitro 

and in vivo [104]. All together, these results show that MC1R palmitoylation is 

required for the receptor’s tumour suppression activity. In a follow-up study, the 

same group of researchers sought to address the question as to whether or not 

therapeutic interventions that enhanced MC1R signalling could reverse the 

increased melanoma risk associated with the RHC receptor variants [106]?  

It was found that targeted expression of zDHHC13 in melanocytes in C57BL/6J-

MC1RRHC mice inhibited melanomagenesis. Furthermore, administration of the 

selective APT2 thioesterase inhibitor ML349 [107-109] increased MC1R signalling 

and repressed UVB-induced melanamogenesis both in vitro and in vivo. Although 

these experiments have generated highly interesting proof of concept data neither 

therapeutic strategy (targeted cell-specific zDHHC13 overexpression, specific 

inhibition of a thioesterase that has numerous substrates) will be clinically useful. If 

a molecule that selectively blocks the association of APT2 and MC1R could be 

identified, however, it may be useful in helping to protect redheads against harmful, 

UV-containing sunlight.  



Case study 3: Checkpoint blockade therapy  
Immune checkpoints are inhibitory signalling pathways that regulate the 

magnitude and duration of T cell immune responses in peripheral tissues and, as a 

consequence, are essential for maintaining self-tolerance [110]. One such 

checkpoint is the interaction that occurs between programmed-death ligand 1 (PD-

L1) and its receptor programmed cell death 1 (PD-1), which contributes to the 

delicate regulatory balance between T-cell activation and tolerance. PD-1 is mainly 

found on the surface of activated T cells whereas PD-L1 is normally expressed on 

the surface of antigen presenting cells but can also occur on the surface of 

cancerous cells where it helps them avoid detection by the immune system. The 

vast majority of tumour infiltrating lymphocytes (TILs) isolated from prostrate and 

melanoma biopsies have been shown to have high PD-1 expression levels [111, 

112]. Furthermore, PD-L1 is commonly upregulated in a wide-range of cancers 

including melanoma, ovarian, haematological and non-small-cell lung cancer [113]. 

The net effect of having high levels of cell surface expression of both PD-1 and PD-

L1 on TILs and cancerous cells respectively is that the tumour is shielded from 

destruction by activated T cells. By blocking the interaction between PD-1 and PD-

L1 with antibodies targeted against either protein, however, a powerful anti-tumour 

immune response is unleashed that can be harnessed for the treatment of cancer. 

Indeed, anti- PD-1/PD-L1 antibodies have been used in the clinic as an anti-tumour 

immunotherapy to treat a wide range of cancers including melanoma, non-small 

cell lung carcinoma, bladder cancer as well as relapsed Hodgkin’s lymphoma [114-

118].  

Despite some incredible success stories, however, checkpoint blockade 

therapy has not been as effective as originally hoped. One reason for this lack of 

success is that PD-L1 is continuously trafficked between the cell surface and 

endosomes, which means that even in the presence of antibodies, it’s not possible 

to disrupt all of the PD-1/PD-L1 interactions, preventing T cell activation. Therefore, 

considerable effort has been invested to find ways of reducing the overall levels of 

PD-L1 within cells as an alternative/complementary approach to targeting PD-L1 on 

the cell surface [119]. Recently, it has been reported that PD-L1 is palmitoylated on 

its cytoplasmic C-tail by zDHHC3 [120]. This covalent modification blocked PD-L1 



ubiquitination suppressing its lysosomal degradation. The net effect of PD-L1 

palmitoylation, therefore, is increased cellular levels of PD-L1. The authors 

subsequently showed that non-selective inhibition of PD-L1 palmitoylation with 2-

bromopalmitate, knockdown of zDHHC3 as well as disruption of the zDHHC3/PD-

L1 interaction with a peptide all had anti-tumour activity both in vitro and in mice 

bearing MC38 tumour cells. In summary, targeting PD-L1 palmitoylation may help 

to overcome the problem of PD-L1-mediated immune evasion in cancer. 

 

Pharmaceutical targeting of protein palmitoylation for therapeutic purposes 

Unlike kinases where numerous inhibitors have been created and tested for 

clinical efficacy in the treatment of disease [121], no therapeutically useful 

molecular modulators of protein palmitoylation have been developed thus far. This, 

in no small part, is due to a fundamental lack of knowledge regarding the molecular 

basis of both enzyme catalysis and substrate recruitment by DHHC-PATs. Going 

forward, even if isoform-specific active site inhibitors can be developed their 

usefulness in the clinic may be restricted due to the off-target effects they will cause 

as a consequence of blocking the palmitoylation of the entire substrate ensemble of 

the DHHC-PAT where they act and not just the protein of interest (Figure 1a). In 

contrast, if the recruitment of particular substrate proteins to specific DHHC-PATs 

could be selectively manipulated, it may be possible to obtain molecules that are 

therapeutically useful and had fewer side effects (Figure 1b). Similarly, although 

active site inhibitors of thioesterases such as APT1 and 2 have been developed 

and are incredibly useful pharmacological tools for lab applications [107-109, 122], 

they are unlikely to be used in people as the enzymes to which they bind 

depalmitoylate a wide range of proteins, and would be expected to cause numerous 

off-target effects. Whether or not the contact interfaces between particular 

thioesterases and specific substrates can be pharmaceutically targeted remains to 

be determined.  

Efforts to identify small molecules that inhibit the activity of zDHHC-PATs 

have been on going for the last ten to fifteen years but thus far without much 

success [123-128]. In recent years, however, several novel screening assays have 

been devised that have allowed the identification of several small molecules that 



block the palmitoylation of certain target proteins. For example, compounds that 

inhibit the auto-palmitoylation of Erf2 (the Saccharomyces cerevisiae PAT 

responsible for catalysing the palmitoylation of Ras2, an ortholog of human Ras) 

activity were identified using a fluorescence-based coupled assay and validated 

utilising an orthogonal gel-based assay [129]. Furthermore, using a click chemistry 

approach, a high throughput screen run in 384-well format was used to identify 

inhibitors of human ras palmitoylation [130]. Most recently, an elegant screen 

based on fluorescence as a readout of subcellular localisation has been used to 

identify inhibitors of dual leucine-zipper kinase DLK palmitoylation, which are 

expected to be effective in limiting neurodegeneration following trauma [131]. 

Although these screens have identified molecules that alter the palmitoylation of 

particular target proteins, their mode of action (active site inhibitor versus substrate 

recruitment blocker) should be determined as part of assessing their potential 

clinical utility or otherwise.  

 

Perspectives 

Importance of the field 

• The key role that palmitoylation plays in regulating a diverse range of cellular 

events potentially allows manipulation of numerous physiological processes 

by targeted intervention with either small molecules and/or peptides.  

 

Summary of the current thinking 

• Recent proof-of-principle studies have shown that the palmitoylation status 

of particular proteins can be selectively altered.  

 

Future directions 

• Existing drug-screening assays to identify molecular modulators of protein 

palmitoylation will most likely result in the discovery of active site inhibitors 

with broad spectrum activities which may restrict their clinical usefulness due 

to off-target effects.  

• We favour targeting the recruitment of specific substrates to particular 

DHHC-PATs and/or APTs as we believe that this is the only way to 



selectively alter the palmitoylation status of specific proteins, an absolute 

prerequisite for use in the clinic.  

• To achieve this goal, a better understanding of how substrate proteins 

interact with both DHHC-PAT and APT enzymes is required, and assays will 

need to be developed that allow the identification of molecules that either 

promote or abrogate specific enzyme-substrate interactions. 
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Figure 1 Therapeutic targeting of zDHHC-PATs a. Targeting the active site, and b. 

Manipulating substrate recruitment 

Advantage: the enzyme active site is surface 
exposed and ligand-able 
Disadvantage: inhibitors will block palmitoylation of 
all substrates for the enzyme not just target protein  

Advantage: may be possible to selectively alter the 
palmitoylation status of particular proteins 
Disadvantage: more challenging to drug protein-
protein interactions than develop active site inhibitors    


