University of Dundee

A Mendelian randomization study provides evidence that adiposity and dyslipidemia lead to lower urinary albumin creatinine ratio, a marker of microvascular function

Casanova, Francesco; Wood, Andrew R.; Yaghootkar, Hanieh; Beaumont, Robert N.; Jones, Samuel E.; Gooding, Kim M.
Published in:
Diabetes

DOI:
10.2337/db19-0862

Publication date:
2020

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Casanova, F., Wood, A. R., Yaghootkar, H., Beaumont, R. N., Jones, S. E., Gooding, K. M., ... Tyrrell, J. (2020). A Mendelian randomization study provides evidence that adiposity and dyslipidemia lead to lower urinary albumin creatinine ratio, a marker of microvascular function. Diabetes. https://doi.org/10.2337/db19-0862

[^0]A Mendelian randomization study provides evidence that adiposity and dyslipidemia lead to lower urinary albumin creatinine ratio, a marker of microvascular function
Francesco Casanova ${ }^{1}$, Andrew R. Wood², Hanieh Yaghootkar ${ }^{2,3}$, Robert N. Beaumont², Samuel E. Jones ${ }^{2}$, Kim M. Gooding ${ }^{1}$, Kunihiko Aizawa ${ }^{1}$, W. David Strain ${ }^{1}$, Andrew T. Hattersley ${ }^{1}$, Faisel Khan ${ }^{4}$, Angela C. Shore ${ }^{1}$, Timothy M. Frayling ${ }^{2}$ \& Jessica Tyrrell ${ }^{2}$

1. Diabetes and Vascular Medicine, NIHR Exeter Clinical Research Facility and Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
2. Genetics of Complex Traits, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
3. Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
4. Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK

Address for correspondence:

Dr Jessica Tyrrell

Genetics of Complex Traits

Institute of Biomedical and Clinical Science, University of Exeter Medical School

Level 3 RILD Building

Royal Devon and Exeter Hospital

Barrack Road

Exeter

EX2 2DW
+44 1872258137
J.Tyrrell@exeter.ac.uk

Abstract

Urinary albumin-creatinine ratio is a marker of diabetic nephropathy and microvascular damage. Metabolic-related traits are observationally associated with ACR but their causal role is uncertain. Here, we confirmed ACR as a marker of microvascular damage and tested whether metabolic-related traits have causal relationships with ACR.

The association between ACR and microvascular function (responses to acetylcholine and sodium nitroprusside) were tested in the SUMMIT study. Two sample Mendelian randomization (MR) was used to infer the causal effects of eleven metabolic risk factors, including glycemic, lipid and adiposity traits on ACR. MR was performed in up to 440,000 UK Biobank and 54,451 CKDGen participants.

ACR was robustly associated with microvascular function measures in SUMMIT. Using MR we inferred that higher triglyceride and LDL-cholesterol levels caused elevated ACR. A one standard deviation (SD) higher triglyceride and LDL-C level caused a 0.062 [$95 \% \mathrm{Cl}: 0.040$, 0.083] and a 0.026 [$95 \% \mathrm{Cl}: 0.008,0.044$] SD higher ACR respectively. There was evidence that higher body fat and visceral body fat distribution caused elevated ACR, whilst a metabolically "favourable adiposity" phenotype lowered ACR.

ACR is a valid marker for microvascular function. MR suggested that 7 traits have causal effects on ACR, highlighting the role of adiposity related traits in causing lower microvascular function.

Introduction

The urinary albumin-creatinine ratio, a marker of diabetic nephropathy, is used as a proxy for damage to the systemic microcirculation (1) and predicts first myocardial infarction and mortality in those with diabetes, post stroke and the general population (2-4). There is evidence linking metabolic-related traits, including adiposity, dyslipidemia and insulin resistance with elevated ACR levels and microvascular damage ($5 ; 6$). It is well accepted that tight glucose control in patients with type 2 diabetes (T2D) reduces the risk of microvascular retinal complications (7; 8) and there is evidence that adiposity per se is associated with increased ACR. For example, population studies suggest that microalbuminuria is associated with central adiposity (9) and results from The Framingham Heart Study show that visceral but not subcutaneous fat is associated with increased albuminuria (10). Not all evidence linking metabolic-related traits come from randomized control trials and, in absence of these, the next best evidence of causality comes from genetic studies using a technique known as Mendelian randomization (MR, Figure 1).

In MR, genetic variants that are strongly associated with the risk factor of interest are used to test its causal effect on an outcome (11). The MR approach exploits the natural experiment of genetic variants being randomly assigned at conception, which means they are less likely to be associated with confounding factors and should not suffer from reverse causality (12). MR studies investigating the role of metabolic traits in increasing microvascular damage, including ACR, infer causal relationships for higher blood pressure (13) but not for lipids (14), but the latter study was small, limited in power and focused only on people with diabetes.

Here, we utilised data from 743 participants in the SUrrogate markers for Micro- and Macrovascular hard endpoints for Innovative diabetes Tools (15) study to first confirm that ACR is a suitable proxy for early systemic microvascular damage, by testing its association with two validated measures of microvascular function - skin microvascular response to iontophoresis of vasodilators acetylcholine (endothelial dependent) and sodium nitroprusside (endothelial independent). Second, we tested the observational associations between ACR and 9 metabolic
risk factors in 438,075 participants in the UK Biobank. Finally, we used MR to test the effects of 11 metabolic risk factors on microvascular function using ACR as a proxy in the UK Biobank and summary results for 54,451 participants in the CKDgen GWAS results.

Methods

Populations studied

UK Biobank

The UK Biobank study recruited over 500,000 individuals aged between 37 and 73 years between 2006 and 2010. The study collected detailed information from all participants, via questionnaires, interviews and measurements (16). Here we used 438,075 individuals of White European ancestry (defined through principal component-based analyses (17) with ACR available. We also defined a subset of 368,754 unrelated individuals of European ancestry. Related individuals were defined using a KING Kinship and an optimal list of unrelated individuals was generated to allow maximum numbers of individuals to be included. Ancestral principal components were then generated within these identified individuals for use in subsequent analyses.

SUMMIT

Data for observational association and functional measures of microvascular function were collected in 743 individuals from two centres (Exeter and Dundee) participating in the vascular imaging cohort of the SUMMIT study. SUMMIT is a multicentre study aiming at identifying markers that predict the risks of developing diabetes related chronic micro- and macro-vascular complications (15; 18).

Validation of ACR as a proxy for microvascular function

In SUMMIT, skin microvascular function in the forearm is measured using laser Doppler fluximetry. A laser Doppler imager (LDI, Moor Instruments MODEL LDI2) was used to measure perfusion before and after iontophoresis of endothelium dependent (acetylcholine, ACH) and
endothelium independent (sodium nitroprusside) vasodilatory stimuli. The full protocol of the techniques used are detailed elsewhere (18).

ACR was measured in SUMMIT from random spot urine collection (Exeter Pathology Services, Royal Devon and Exeter NHS Foundation Trust, and Dundee Pathology Services, Ninewells NHS trust), in accordance with the UK national quality assessment scheme. Analysis of albumin concentration was performed using immunoturbidimetric method a detection limit of $3.0 \mathrm{mg} / \mathrm{L}$ (Cobas system, Roche), creatinine was measured using the Jaffe methods. In order to maintain a consistent approach with UK Biobank analysis, values below detection limit were set at 2.9 mg / L prior to the calculation of the ratio. The ACR variable was inverse normalised prior to analysis.

The relationship between the gold standard microvascular functional measures and ACR was explored using linear regression models, with age and sex included as covariates.

Exposure and outcome measures in UK Biobank

We selected 11 metabolic markers which have previously been associated with ACR and have strong genetic instruments available in the form of multiple variants (Supplementary table 2) identified in large genome wide association studies (GWAS). More information on how the outcome and exposures were defined in the UK Biobank are explained below.

OUTCOME: Albumin to creatinine ratio (ACR)

A continuous measure of ACR was derived using urinary measures of albumin and creatinine. If albumin was $<6.7 \mathrm{mg} / \mathrm{L}$ (the detection level of the assay in UK Biobank, http://biobank.ctsu.ox.ac.uk/crystal/docs/urine_assay.pdf) then the albumin was set at $6.7 \mathrm{mg} / \mathrm{L}$ prior to the calculation of the ratio, an approach consistent with that of previous studies (13; 19). Albumin was measured using immuno-turbidimetric analysis method (Randox Bioscience, UK) while creatinine was measured using enzymatic analysis method (Beckman Coulter, UK). The ACR variable was inverse normalised prior to analysis.

EXPOSURES:

Nine of the eleven metabolic markers were measured in the UK Biobank.

Lipids

Serum concentrations of LDL-Cholesterol (LDL-C, N=417,386) were obtained using an Enzymatic Selective Protection analysis method (Beckman Coulter AU5800, Beckman Coulter (UK), Ltd), HDL-Cholesterol (HDL-C, N=382,598) using a Enzymelmmuno-inhibition analysis method (Beckman Coulter AU5800, Beckman Coulter (UK), Ltd) and triglycerides (TG, N=417,825) using Enzymatic analysis method (Beckman Coulter AU5800, Beckman Coulter (UK), Ltd). More details on the acquisition of these biomarkers can be found here:
http://biobank.ndph.ox.ac.uk/showcase/docs/serum biochemistry.pdf

Body composition

We used three measures of body composition: body mass index (BMI), waist hip ratio (WHR) adjusted for BMI and, using genetics, a measure of higher body fat percentage but lower metabolic disease risk, termed favourable adiposity. BMI was calculated for all participants from measured weight and height $\left((\mathrm{kg}) / \mathrm{height}(\mathrm{m})^{2}\right)$ and was available for 436,631 individuals with ACR and genetic data available. WHR was calculated from measured waist and hip circumference measures and adjusted for BMI, this was available in 436,530 individuals. Body fat percentage was calculated from bioelectrical impedance data collected using Tanita BC418MA body composition analyser and was available in 430,546 individuals.

Blood pressure

Systolic blood pressure (SBP, $\mathrm{N}=437,121$) and diastolic blood pressure (DBP, $\mathrm{N}=436,394$) were measured. The blood pressure readings were obtained from averaging two readings obtained in a seated position 5 minutes apart using an automated blood pressure device (Omron 705 IT , Omron Healthcare Europe B.V. Hoofddorp, The Netherlands). In participants where only one
valid blood pressure was available this was utilised. Blood pressure medication use was accounted for by adding 10 and 15 to diastolic and systolic measures respectively.

Type 2 diabetes (T2D)

Type 2 diabetes cases were defined through self-report of diabetes using the baseline questionnaire. Cases were participants diagnosed at >35 years of age, and without reporting of insulin use within the first year of diagnosis (20). This resulted in 13,799 cases and 415,908 controls (Table 1).

Metabolic predictors not available in the UK Biobank

Two measures of glycemic control were not measured in the UK Biobank at the time of study: fasting glucose (FG) and fasting insulin (FI).

For all continuous measurements in UK Biobank values more than 4.56SD away from the mean were excluded. These variables when then inverse normalised prior to analysis.

The observational associations between the measured exposures and ACR were tested in UK Biobank using linear regression models, adjusted for age, sex and assessment centre.

Genetic variants

For Mendelian randomization (MR) independent genetic variants were selected from the UK Biobank imputation dataset. Variants were excluded if imputation quality (INFO) was <0.3 or the minor allele frequency (MAF) was $<0.1 \%$.

The genetic variants for the exposure traits were selected based on published GWAS studies. Genetic variants were selected and extracted for the 11 metabolic markers including lipid levels (triglycerides, HDL-C and LDL-C), BMI, favourable adiposity (genetic variants associated with
higher body fat percentage but lower risk of metabolic disease (e.g. type 2 diabetes, coronary heart disease)), WHR (adjusted for BMI), systolic and diastolic blood pressure, type 2 diabetes, fasting glucose and fasting insulin (Supplementary table 2). Four variants were identified that were previously identified to associate with ACR at genome wide significance: rs1047891 (HDL variant), rs4865796 (fasting insulin variant), rs109953111 (DBP variant) and rs2068888 (triglyceride variant) (21).

The extracted genetic variants were utilised to create genetic risk scores (GRS) for each metabolic trait of interest. The variants were weighted by their effect size (β-coefficient) obtained from the primary GWAS, where possible using GWAS that did not include data from the UK Biobank (equation 1). The weighted score was then rescaled to reflect the number of trait raising alleles (equation 2).

$$
\text { Weighted score }=\beta_{1} \times S N P_{1}+\beta_{2} \times S N P_{2}+\ldots \beta_{n} \times S N P_{n}(\text { Equation 1) }
$$

Weighted genetic risk score $=\frac{\text { weighted score x number of SNPs }}{\text { sum of the } \beta \text { coefficients }}($ Equation 2)

Mendelian randomization

We used MR to test for causal relationships between our 11 metabolic risk factors as exposures and ACR as an outcome. MR relies on several assumptions as outlined in Figure 1:

- the exposure GRS are robustly associated with the relevant measured exposure

(Supplementary table 1);

- the exposure GRS are not associated, independently of their effects on the exposure, with confounding factors that bias conventional epidemiological associations.
- the exposure GRS is only associated with the outcome via its effect on the modifiable exposure.

In this study, we employed several methods of MR: one and two-sample MR. The primary analyses utilised data from 438,075 UK Biobank participants with measured ACR. We extracted the genetic variants for the 11 known metabolic traits (Supplementary table 2) from the BOLTLMM (22) GWAS of ACR, which was adjusted for baseline age, sex, study centre, and genotyping array ($0=$ BiLEVE, $1=$ Axiom UK Biobank interim release, $2=$ Axiom UK Biobank final release). We also extracted association statistics for the same SNPs from the largest GWAS of ACR (54,451 participants from CDKGen consortium meta-analysis, Teumer et al. 2016) which did not include the UK Biobank.

Two-sample MR

Our primary MR approach was to use the inverse variance weighted (IVW) estimator. The IVW method involves a weighted regression of the effect sizes of variant-outcome associations against the effect sizes of the variant-risk factor associations constraining the intercept to zero. The beta coefficient from the weighted regression represents the standard deviation change in the ACR per SD change in the outcome variable (with the exception of type 2 diabetes, where we present our findings as an SD change in ACR per two-fold higher genetic liability for type 2 diabetes). Several sensitivity analyses were performed to test whether the MR IVW estimates are biased by genetic variants that affect the outcome independently of the exposure of interest (i.e. horizontal pleiotropy). These methods were MR-Egger regression (23) and the weighted median (WM) estimator (24). MR-Egger is similar to IVW, except that the intercept is unconstrained. The intercept in MR-Egger reflects the average pleiotropic effect across genetic variants. Hence this method is less susceptible to potentially pleiotropic variants having a stronger effect on the outcome compared with their effect on the primary traits. The weighted median method is also more resistant to pleiotropy and gives consistent estimates even when 50% of the variants are invalid. Given these different assumptions, if all methods are broadly consistent it strengthens our causal inference. The R code for the various 2-sample methods is available in (23; 24).

We performed sensitivity analyses for the four traits where one variant was known to be associated with ACR at genome-wide significance. Here, the 2-sample MR was repeated excluding that one variant.

The results from the 2-sample MR in the UK Biobank and the GWAS studies were metaanalysed using the metan command in Stata.

There is some overlap between the genetic variants for LDL-C, HDL-C and TG. Therefore, as well as individually exploring the role of the LDL-C, HDL-C and TG SNPs on the outcomes we also ran multivariate models adjusting for the other lipid associations (25). For example, when testing the causal role of LDL-C we included the LDL-C-SNP-TG association and the LDL-C-SNP-HDL association as covariates in our model.

One sample MR

In an unrelated subset of the data we also performed one-sample MR using the GRS and the ivreg2 command in STATA. In these models age, sex, ancestral principal components, assessment centre and genotyping platform were included as covariates. In cases where the predictor was not measured in the UK Biobank we explored the association of the GRS directly with the outcome. As with the two sample MR we performed multivariate analyses for the lipids by adjusting models for the other lipid GRS. For example, we performed MR to explore the causal role of LDL-C on ACR adjusting our models for all the standard covariates and the HDLC and TG GRS.

Data and resource availability

The UK Biobank resource can be utilised by any bonafide researcher and access to all the genetic and phenotypic data utilised in this study are available upon application to the UK Biobank (https://www.ukbiobank.ac.uk/). The summary statistics from the CDKGEN are
available: (https://ckdgen.imbi.uni-freiburg.de). SUMMIT data utilised in this study are available on request to the Diabetes and Vascular Research Centre, University of Exeter Medical School.

Results

Characteristics for the 438,075 UK Biobank and 743 SUMMIT participants are presented in table 1.

SUMMIT provided evidence that supports the use of ACR as a marker of microvascular function

Results from the SUMMIT study support the use of ACR as a proxy for microvascular function with lower microvascular function associated with raised ACR levels. There was a negative association between ACR and skin microvascular function for both endothelium dependent (ACH) and independent (sodium nitroprusside) function. One SD lower response in endothelium dependent microvascular function as measured by skin reactivity to iontophoresis of ACH was associated with a 0.155 SD higher ACR ($95 \% \mathrm{Cl}: 0.078,0.230, \mathrm{p}=5.8 \mathrm{E}-05$). One SD lower response in endothelium independent microvascular function as measured by reactivity to sodium nitroprusside was associated with a 0.206 SD higher ACR (95% CI: $0.131,0.281, \mathrm{p}=$ 1.1E-07). Taken together these measures demonstrate that lower systemic microvascular response measured by skin reactivity to iontophoresis is associated with elevation in urinary ACR.

Observational associations for the 11 metabolic traits with ACR

Data for observational analyses in UK Biobank were available for 9 of the 11 of exposure traits. Observational analyses provided evidence that higher HDL cholesterol, systolic and diastolic blood pressure, higher WHR adjusted for BMI and type 2 diabetes were associated with elevated ACR (Table 2). Higher LDL cholesterol, triglycerides, BMI and higher body fat percentage were associated with lower levels of ACR (Table 2). The inverse association between higher LDL cholesterol, triglycerides, BMI and higher body fat with lower ACR was unexpected, but maybe due to treatment effects, confounding or survival bias, thus highlighting the importance of more robust approaches, like MR.

Mendelian randomization finds a stronger causal role of triglycerides in elevating ACR compared to LDL-cholesterol

MR inferred a causal role of higher TG and LDL-C in elevating ACR, with the effect of TG more than twice that of LDL-C. A one-SD higher TG (approximately $86 \mathrm{mg} / \mathrm{dl}$) was associated with a 0.062 SD [$95 \% \mathrm{CI}: 0.040,0.083$] higher ACR (approximately $9.3 \mathrm{mg} / \mathrm{mmol}$, Table 3, Figure 2), whilst a one-SD higher LDL-C (approximately $37 \mathrm{mg} / \mathrm{dl}$) was associated with a $0.026[95 \% \mathrm{Cl}$: $0.008,0.044]$ SD higher ACR. There was no evidence to infer that higher HDL-C altered ACR. The evidence for a causal role of higher TG in elevating ACR was strengthened using multivariate MR which adjusted for the association of the TG SNPs with HDL-C and LDL-C. A one SD higher TG (adjusted for LDL-C and HDL-C) associated with a 0.094 SD [95\%CI: 0.073 , 0.115] higher ACR (Figure 2, Supplementary table 3). In contrast, multivariate analyses attenuated the association between LDL-C and ACR, with a one SD higher LDL-C (adjusted for TG and HDL-C) associated with a 0.018 SD [$95 \% \mathrm{CI}$: 0.001, 0.035] higher ACR (Figure 2, Supplementary table 3). There was no evidence that higher HDL-C adjusted for LDL-C and TG altered ACR.

Results were generally consistent when the more pleiotropy robust methods were utilised (Table 3). The estimates from the two studies (UK Biobank and CKDGen) and the one sample

MR in UK Biobank were consistent, strengthening the causal inference between triglycerides and ACR (Supplementary table 4, Supplementary figure 1). Findings for HDL and triglycerides were the same when variants known to be associated with ACR were excluded.

Mendelian randomization finds causal role of body composition measures in elevating ACR

We next tested three measurements of body size and composition - BMI, waist hip ratio (adjusted for BMI) and metabolically "favourable adiposity".

The MR analyses suggested that higher WHR caused elevated ACR levels, independently of BMI. A one-SD higher WHR adjusted for BMI was associated with a 0.040 SD higher ACR ([95\%CI: 0.020, 0.059]; Table 3, Figure 3).

MR using the "favourable adiposity" genetic variants (associated with higher body fat percentage but lower risk of metabolic diseases (26) showed that metabolically favourable higher adiposity was associated with lower ACR $(-0.157[95 \% \mathrm{Cl}:-0.256,-0.057], P=0.002$; Figure 3).

The MR results for higher BMI were not conclusive, although they were directionally consistent with the WHR results.

Results from alternative MR methods (Table 3) and the study specific results from the UK Biobank, CKDGen and the one-sample MR results were generally consistent (Figure 3, Supplementary table 4). However, there was weak evidence of heterogeneity for BMI ($\mathrm{P}=$ 0.013 , I-squared 83.9%) and favourable adiposity ($\mathrm{P}=0.027$, I-squared 79.5%).

Meta-analysis of two sample Mendelian randomization infers a causal role of type 2 diabetes in elevating ACR

MR inferred that genetic liability to type 2 diabetes caused elevated ACR levels, with a two-fold higher genetic liability to type 2 diabetes associated with 0.013 SD [95\%CI: $0.007,0.018$] higher ACR levels (Table 3, Figure 4). There was no evidence of a causal relationship between either fasting insulin or fasting glucose and ACR.

Results were consistent when alternative MR methods were used (Table 3, Supplementary table 4) and when excluding the fasting insulin SNP that is also associated with ACR. The study specific results from the UK Biobank and CKDGen are presented in Supplementary table 4, Figure 4.

Mendelian randomization confirms causal role of blood pressure in elevating ACR

MR confirmed previous evidence (13) for the causal relationship between higher blood pressure and elevated ACR levels. A 1 mmHg higher systolic and diastolic blood pressure was causally associated with a 0.006 [$95 \% \mathrm{Cl}: 0.004,0.008$] and 0.009 [$95 \% \mathrm{Cl}: 0.006,0.012$] SD higher ACR respectively (Table 3, Figure 5).

Results were consistent when alternative MR methods were used, although not all reached $\mathrm{p}<0.05$ (Table 3). Excluding the one diastolic blood pressure variant that was associated with ACR in an independent study did not alter our findings. Study specific results from the UK Biobank, CKDGen and the one sample MR methods in the UK Biobank were generally consistent (Figure 5, Supplementary table 4), although there was evidence of heterogeneity for systolic blood pressure ($P=0.002$, l-squared 89.6%).

Discussion

This study used genetic approaches to infer the causal role of 11 metabolic risk factors on ACR, which was considered as a proxy for microvascular dysfunction. Firstly, we confirmed that ACR is a valid proxy for microvascular function, using two gold standard physiological measures of microvascular function in the SUMMIT study - skin endothelial dependent and independent
microvascular function. We then used genetic variants as unconfounded proxies for the 11 metabolic risk factors to infer that 7 of the 11 metabolic risk factors cause elevated levels of ACR and thus cause microvascular dysfunction.

Skin microcirculation is an established model to investigate systemic microvascular function prior to the clinical manifestation of disease (27). Skin microvascular responses have been demonstrated to be reduced in people with type 2 diabetes (18) and associated with coronary microvascular function (28). Results presented here support the use of ACR as a proxy for the systemic microcirculation and not just for renal microcirculation.

In keeping with the clinical data, we inferred a causal role of LDL cholesterol and triglycerides in raising ACR levels, with multivariate lipid analyses strengthening the triglyceride association and attenuating the LDL association. Indeed, the effect of triglycerides on ACR is twice as large as the effect of LDL. This contrasts with available evidence for coronary artery disease (CAD) where LDL levels have a larger effect on CAD risk than triglycerides.

Whilst the effect sizes in our results can be seen as small, they represent clinically meaningful results. For example, previous studies have demonstrated that small changes in LDL cholesterol (e.g. 0.2 magnitude lower LDL in $\mathrm{mmol} / \mathrm{L}$) results in a 5 to 10% reduction in the risk of CHD (29). The majority of our analyses look at SD changes in ACR per genetically instrumented SD change in the predictor. For LDL, this equates to approximately a $0.9 \mathrm{mmol} / \mathrm{L}$ higher LDL, which in previous studies would equate to a 15 to 40% higher risk of CHD.

These results are consistent with those from clinical trials of cholesterol lowering medication. HMG Co-A reductase inhibitors (statins), predominantly lower LDL cholesterol, and have been demonstrated to reduce CAD risk. These drugs, however, only have a small effect on ACR (30), and a similarly small impact on other manifestations of microvascular dysfunction such as diabetic retinopathy (31). In contrast, PPAR α antagonists such as fenofibrate, which act predominantly on triglyceride levels, have been shown to have beneficial effect on diabetic nephropathy and retinopathy (32). Combined statin-fenofibrate therapies can provide additional
endothelial vascular benefits than statin and fenofibrate alone (33) and, according to the recent results of the ACCORD study, it appears to be safe with regards to the risk of myositis or rhabdomyolysis when used in combination with a statin (34). Our results suggest that combined therapies lowering triglyceride as well as LDL levels could provide compound benefits by reducing the atherosclerotic burden, and thus CAD, whilst simultaneously reducing microvascular dysfunction which has a greater impact on the quality of life on patients (35). We used three complementary measures of body composition to test the role of adiposity and body fat distribution on the ACR. These three measures were BMI, waist hip ratio (adjusted for BMI) as a measure of central adiposity and "favourable adiposity" as a measure of higher fat mass "uncoupled" from its adverse metabolic effects (26). Our MR analyses infer that higher WHR (adjusted for BMI) elevates ACR. In contrast, having more favourable adiposity alleles lowers ACR. The favourable adiposity variants are known to associate with higher subcutaneous fat, but lower liver fat and lower visceral-to-subcutaneous adipose tissue ratio (26). This provides further evidence that body fat distribution may be important in albuminuria and microvascular problems. Previous studies have suggested a role for body fat distribution and visceral fat in albuminuria, although to date, these studies have had low numbers of participants and have only used observational data so are subject to more biases than the genetic approach employed in this study $(10 ; 36 ; 37)$. A consistent trend was also noted for BMI, with higher BMI trending towards elevated ACR. These results suggest that adiposity and distribution of fat are important in elevating ACR and suggests a causal role for adiposity and fat distribution in microvascular dysfunction.

Our analyses strengthen previous work demonstrating that higher systolic and diastolic blood pressure cause albuminuria (13). Our results confirmed the direction and magnitude of the MR inferred causal role of systolic and diastolic blood pressure on ACR recently reported (13) and support evidence from clinical trials showing that anti-hypertensive treatments acting on the Renin-angiotensin system reduce ACR (38).

As expected, our MR results confirm that diabetes plays a major role in raising ACR levels. These results add genetic evidence to the large body of data from observational studies and clinical trials clearly showing the role of T2D in causing renal damage. There was no genetic evidence for fasting insulin or fasting glucose levels causing elevated ACR levels. This is in contrast with observational studies showing an association between fasting insulin or fasting glucose and ACR levels $(39 ; 40)$. This may indicate that these observational associations are driven by confounding factors.

The major strength of this study is the availability of data in the UK Biobank and a large independent GWAS sample for testing the causal relationships using 2-sample MR approaches. Another strength is the use of multiple rigorous MR methods to establish causality in this analysis. MR provides the next best evidence of causality after randomized control trials and allow causal inferences on large scale databases such as those used in study.

We acknowledge, however, some limitations. Firstly, Mendelian randomization studies are not immune from some of the issues that affect observational studies. For example, it is possible that biases such as survival bias could have affected the MR as well as observational studies. If, for example, a high ACR and high LDL-cholesterol level results in a high mortality rate due to microvascular disease (e.g. stroke), then genetic factors that raise LDL-Cholesterol level could be depleted from the study and associations between LDL-cholesterol raising alleles and ACR could be weakened. This type of bias has been pointed out before (41). Secondly, our analyses were restricted to individuals of Caucasian descent and the UK Biobank is restricted to participants born between 1938 and 1971, therefore the generalisability of our findings may be limited. Thirdly, although multivariate MR was utilised to explore the role of the three lipids on ACR, there remains the potential for some residual bias due to the pleiotropic associations of the lipid variants, although more pleiotropy resistant methods generally provided consistent results. Finally, some of our instrumental variables explain only a small percentage of the variability of the outcome variable and therefore we might be underpowered to detect causal association in some of the analysis.

In conclusion, we have utilised a genetic approach to show the causal role of 7 metabolic risk factors on ACR and provided evidence that dyslipidemia, adiposity and distribution of adipose tissue cause elevations in ACR and thus cause microvascular dysfunction.

ACKNOWLEDGMENTS

This research has been conducted using the UK Biobank Resource under application numbers 9072. The authors would like to acknowledge the use of the University of Exeter HighPerformance Computing (HPC) facility in carrying out this work. SUMMIT was supported by the Innovative Medicines Initiative (the SUMMIT consortium, IMI-2008/115006). SUMMIT presents independent research supported by the NIHR Exeter Clinical Research Facility. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR Exeter Clinical Research Facility, the NHS, the NIHR or the Department of Health in England.

Authors' contributions

F.C., T.M.F., J.T. designed the study. F.C., T.M.F., J.T. wrote the manuscript. A.C.S., W.D.S., A.T.H., edited the manuscript and helped interpret the data. F.C., J.T., A.R.W., S.E.J., R.B., H.Y., K.H.G., K. A., F.K. performed data processing, statistical analyses and interpretation. A.C.S., W.D.S, K.M.G, obtained funding for, designed and supervised the SUMMIT study.

Funding

F.C. and J.T were supported by the Diabetes Research and Wellness Foundation. R.B. is funded by the Wellcome Trust and Royal Society grant 104150/Z/14/Z. S.E.J. is funded by the Medical Research

Council (grant MR/M005070/1). M.N.W. is supported by the Wellcome Trust Institutional Strategic Support Award (WT097835MF). H.Y. is funded by a Diabetes UK RD Lawrence fellowship (17/0005594). A.R.W. and T.M.F. are supported by the European Research Council grant: SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC. H.Y. ACS, KMG, KA and FC are supported by the NIHR Exeter Clinical Research Facility. The funders had no role in the study design, analysis or interpretation. All authors confirm their independence from the funders and confirm they had full access to all the data and can take responsibility for the integrity of the
data and accuracy of the data analysis. The SUMMIT study was supported by the Innovative Medicines Initiative (the SUMMIT consortium, IMI-2008/115006).

Transparency statement

J.T as the manuscript's guarantor confirms that the manuscript is an honest, accurate, and transparent account of the study being reported and no important aspects of the study have been omitted.

Conflict of Interest

The authors report no conflicts of interest.

Table 1. Participants' characteristics. Data are presented as mean (\pm standard deviation) and median [25th -75th percentile] where not otherwise stated.

	UK Biobank	SUMMIT
N	438,075	743
Age (yrs)	$57.27(\pm 8.02)$	$66.16(\pm 8.82)$
Sex [N males (\%)]	$237,181(54.14 \%)$	$480(64.60 \%)$
Height (cm)	$168.7(\pm 9.2)$	$169.6(\pm 0.09)$
BMI	$27.38(\pm 4.75)$	$29.55(\pm 5.22)$
ACR (mg/mml)	$1.10[0.69-1.85]$	$0.70[0.45-1.4]$
CAD [N (\%)]	$36,434(10.53 \%)$	$223(30.01 \%)$
T2D [N $(\%)]$	$13,799(3.21 \%)$	$400(53.84 \%)$
Systolic BP (mmHg)	$144.2(\pm 24.0)$	$136.7(16.5)$
Diastolic BP (mmHg)	$86.3(\pm 13.5)$	$76.9(8.71)$

$\mathrm{BMI}=$ body mass index, $\mathrm{ACR}=$ albumin creatinine ratio, CAD = coronary arterial disease, available in 346,080 participants, T2D = type 2 diabetes, $\mathrm{BP}=$ blood pressure.

Table 2. UK Biobank observational association results between investigated traits and ACR for observational data.

Trait	UK Biobank Beta*	UK Biobank SE	UK Biobank P
Diastolic BP	0.113	0.001	$<1.0 \mathrm{E}-15$
Systolic BP	0.155	0.002	$<1.0 \mathrm{E}-15$
HDL cholesterol	0.068	0.002	$<1.0 \mathrm{E}-15$
LDL cholesterol	-0.018	0.002	$<1.0 \mathrm{E}-15$
Triglycerides	-0.047	0.002	$<1.0 \mathrm{E}-15$
BMI	-0.106	0.001	$<1.0 \mathrm{E}-15$
\% Body fat	-0.116	0.002	$<1.0 \mathrm{E}-15$
Waist hip ratio (adjusted by BMI)	0.008	0.002	4.30E-07
Fasting glucose	Not available	Not available	Not available
Fasting insulin	Not available	Not available	Not available
T2D	0.353	0.008	$<1.0 \mathrm{E}-15$

*Beta represents the standard deviation change in ACR per unit standard deviation change in continuous traits or change based on case-control status for binary traits. SE = standard error. $\mathrm{BP}=$ blood pressure, $\mathrm{BMI}=$ body mass index, $\mathrm{T} 2 \mathrm{D}=$ type 2 diabetes, $\mathrm{BP}=$ blood pressure.

Table 3. ACR results of meta analysis of Mendelian randomization results in UK Biobank and CKDGen. Betas represent standard deviation change in ACR for standard deviation change in metabolic trait, 95\% confidence interval in brackets.

Trait	Main MR analysis		Beta Egger	Pleiotropy robust methods				
	Beta IVW	P IVW		P Egger	Beta WM	P WM	Beta PWM	P PWM
Diastolic BP	0.009 (0.006, 0.012)	2.0E-09	$-0.001(-0.009,0.008)$	8.3E-01	$0.009(0.006,0.012)$	$6.8 \mathrm{E}-10$	$0.008(0.004,0.011)$	$1.0 \mathrm{E}-05$
Systolic BP	0.006 (0.004, 0.008)	$3.8 \mathrm{E}-08$	$0.001(-0.005,0.007)$	7.6E-01	0.006 (0.004, 0.007)	2.9E-09	0.005 (0.003, 0.008)	1.8E-06
HDL cholesterol	-0.012 (-0.029, 0.006)	$1.9 \mathrm{E}-01$	0.012 (-0.013, 0.036)	$3.5 \mathrm{E}-01$	0.014 (-0.002, 0.030)	7.7E-01	0.014 (-0.009, 0.037)	$2.5 \mathrm{E}-01$
LDL cholesterol	0.026 (0.008, 0.044)	5.0E-03	0.022 (-0.006, 0.049)	$1.2 \mathrm{E}-01$	0.030 (0.014, 0.047)	2.6E-04	0.027 (0.009, 0.045)	$3.8 \mathrm{E}-03$
Triglycerides	0.062 (0.040, 0.083)	1.3E-08	0.064 (0.033, 0.096)	5.6E-05	0.050 (0.030, 0.070)	7.8E-07	0.054 (0.026, 0.082)	1.3E-04
BMI	0.024 (-0.002, 0.050)	7.3E-02	0.088 (0.031, 0.144)	2.3E-03	0.015 (-0.015, 0.045)	$3.2 \mathrm{E}-01$	0.033 (-0.002, 0.068)	6.1E-02
Favourable adiposity*	-0.157 (-0.256, -0.057)	$1.9 \mathrm{E}-03$	$0.082(-0.017,0.334)$	5.2E-01	-0.143 (-0.230, -0.560)	1.3E-03	-0.143 (-0.266, -0.021)	2.1E-02
Waist hip ratio (adjusted by BMI)	0.040 (0.020, 0.059)	6.3E-05	0.099 (0.051, 0.146)	$4.9 \mathrm{E}-05$	0.050 (0.027, 0.073)	2.0E-05	0.032 (0.008, 0.056)	8.0E-03
Fasting glucose	-0.014 (-0.073, 0.044)	6.3E-01	$-0.039(-0.152,0.074)$	5.0E-01	-0.017 (-0.062, 0.028)	4.5E-01	-0.016 (-0.064, 0.032)	5.0E-01
Fasting insulin	-0.018 (-0.215, 0.179)	8.6E-01	$-1.318(-2.409,-0.227)$	$1.8 \mathrm{E}-02$	-0.035 (-0.159, 0.089)	$5.8 \mathrm{E}-01$	-0.032 (-0.170, 0.106)	6.5E-01
T2D liability	0.013 (0.006, 0.021)	5.2E-04	0.021 (0.006, 0.036)	7.6E-03	0.021 (0.012, 0.031)	$1.4 \mathrm{E}-05$	0.023 (0.011, 0.034)	1.1E-04

$\overline{\text { IVW }}$ = inverse variance weighted instrumental variable analysis, $\mathrm{WM}=$ weighted median analysis, $\mathrm{PWM}=$ penalised weighted median analysis.
$\mathrm{BP}=$ blood pressure, $\mathrm{BMI}=$ body mass index, T2D = type 2 diabetes.
*Favourable adiposity - represents higher adiposity but lower metabolic disease risk using genetic variants identified in Ji et al (26).

When removing SNPs associated with ACR at genome wide significance the results were consistent with the previous results [Diastolic BP: Beta IVW = 0.069 ($-0.050,0.188$), p = 7.5E10; HDL cholesterol: Beta IVW $=0.069(-0.050,0.188), p=4.1 \mathrm{E}-02$; Triglycerides: Beta IVW = 0.057 (0.037, 0.077). p = 1.5E-08; Fasting Insulin: Beta IVW = 0.014 (-0.153, 0.181), p = 8.7E01]

REFERENCES

1. Strain WD, Adingupu DD, Shore AC: Microcirculation on a large scale: techniques, tactics and relevance of studying the microcirculation in larger population samples. Microcirculation 2012;19:37-46
2. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, Halle JP, Young J, Rashkow A, Joyce C, Nawaz S, Yusuf S, Investigators HS: Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 2001;286:421-426
3. Strain WD, Shore AC, Melzer D: Albumin:creatinine ratio predicts mortality after stroke: analysis of the Third National Health and Nutrition Examination Survey. J Am Geriatr Soc 2010;58:2434-2435
4. Mattock MB, Barnes DJ, Viberti G, Keen H, Burt D, Hughes JM, Fitzgerald AP, Sandhu B, Jackson PG: Microalbuminuria and coronary heart disease in NIDDM: an incidence study. Diabetes 1998;47:1786-1792
5. Sandhu S, Wiebe N, Fried LF, Tonelli M: Statins for improving renal outcomes: a metaanalysis. J Am Soc Nephrol 2006;17:2006-2016
6. Thomas G, Sehgal AR, Kashyap SR, Srinivas TR, Kirwan JP, Navaneethan SD: Metabolic syndrome and kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol 2011;6:2364-2373
7. Matthews DR, Stratton IM, Aldington SJ, Holman RR, Kohner EM, Group UKPDS: Risks of progression of retinopathy and vision loss related to tight blood pressure control in type 2 diabetes mellitus: UKPDS 69. Arch Ophthalmol 2004;122:1631-1640
8. Buehler AM, Cavalcanti AB, Berwanger O, Figueiro M, Laranjeira LN, Zazula AD, Kioshi B, Bugano DG, Santucci E, Sbruzzi G, Guimaraes HP, Carvalho VO, Bordin SA: Effect of tight blood glucose control versus conventional control in patients with type 2 diabetes mellitus: a systematic review with meta-analysis of randomized controlled trials. Cardiovasc Ther 2013;31:147-160
9. Liese AD, Hense HW, Doring A, Stieber J, Keil U: Microalbuminuria, central adiposity and hypertension in the non-diabetic urban population of the MONICA Augsburg survey 1994/95. J Hum Hypertens 2001;15:799-804
10. Foster MC, Hwang SJ, Massaro JM, Hoffmann U, DeBoer IH, Robins SJ, Vasan RS, Fox CS: Association of subcutaneous and visceral adiposity with albuminuria: the Framingham Heart Study. Obesity (Silver Spring) 2011;19:1284-1289
11. Emdin CA, Khera AV, Natarajan P, Klarin D, Zekavat SM, Hsiao AJ, Kathiresan S: Genetic Association of Waist-to-Hip Ratio With Cardiometabolic Traits, Type 2 Diabetes, and Coronary Heart Disease. JAMA 2017;317:626-634
12. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G: Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 2008;27:1133-1163
13. Haas ME, Aragam KG, Emdin CA, Bick AG, International Consortium for Blood P, Hemani G, Davey Smith G, Kathiresan S: Genetic Association of Albuminuria with Cardiometabolic Disease and Blood Pressure. Am J Hum Genet 2018;103:461-473
14. Sobrin L, Chong YH, Fan Q, Gan A, Stanwyck LK, Kaidonis G, Craig JE, Kim J, Liao WL, Huang YC, Lee WJ, Hung YJ, Guo X, Hai Y, Ipp E, Pollack S, Hancock H, Price A, Penman A, Mitchell P, Liew G, Smith AV, Gudnason V, Tan G, Klein BEK, Kuo J, Li X, Christiansen MW, Psaty BM, Sandow K, Asian Genetic Epidemiology Network C, Jensen RA, Klein R, Cotch MF, Wang JJ, Jia Y, Chen CJ, Chen YI, Rotter JI, Tsai FJ, Hanis CL, Burdon KP, Wong TY, Cheng CY: Genetically Determined Plasma Lipid Levels and Risk of Diabetic Retinopathy: A Mendelian Randomization Study. Diabetes 2017;66:3130-3141
15. Shore AC, Colhoun HM, Natali A, Palombo C, Khan F, Ostling G, Aizawa K, Kennback C, Casanova F, Persson M, Gooding K, Gates PE, Looker H, Dove F, Belch J, Pinnola S, Venturi E, Kozakova M, Goncalves I, Kravic J, Bjorkbacka H, Nilsson J, Consortium S: Use of Vascular Assessments and Novel Biomarkers to Predict Cardiovascular Events in Type 2 Diabetes: The SUMMIT VIP Study. Diabetes Care 2018;41:2212-2219
16. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O'Connell J, Cortes A, Welsh S, Young A, Effingham M, McVean G, Leslie S, Allen

N, Donnelly P, Marchini J: The UK Biobank resource with deep phenotyping and genomic data.
Nature 2018;562:203-209
17. Tyrrell J, Mulugeta A, Wood AR, Zhou A, Beaumont RN, Tuke MA, Jones SE, Ruth KS, Yaghootkar H, Sharp S, Thompson WD, Ji Y, Harrison J, Freathy RM, Murray A, Weedon MN,

Lewis C, Frayling TM, Hypponen E: Using genetics to understand the causal influence of higher BMI on depression. Int J Epidemiol 2018;
18. Casanova F, Adingupu DD, Adams F, Gooding KM, Looker HC, Aizawa K, Dove F, Elyas S, Belch JJF, Gates PE, Littleford RC, Gilchrist M, Colhoun HM, Shore AC, Khan F, Strain WD: The impact of cardiovascular co-morbidities and duration of diabetes on the association between microvascular function and glycaemic control. Cardiovasc Diabetol 2017;16:114 19. Teumer A, Tin A, Sorice R, Gorski M, Yeo NC, Chu AY, Li M, Li Y, Mijatovic V, Ko YA, Taliun D, Luciani A, Chen MH, Yang Q, Foster MC, Olden M, Hiraki LT, Tayo BO, Fuchsberger C, Dieffenbach AK, Shuldiner AR, Smith AV, Zappa AM, Lupo A, Kollerits B, Ponte B, Stengel B, Kramer BK, Paulweber B, Mitchell BD, Hayward C, Helmer C, Meisinger C, Gieger C, Shaffer CM, Muller C, Langenberg C, Ackermann D, Siscovick D, Dcct/Edic, Boerwinkle E, Kronenberg F, Ehret GB, Homuth G, Waeber G, Navis G, Gambaro G, Malerba G, Eiriksdottir G, Li G, Wichmann HE, Grallert H, Wallaschofski H, Volzke H, Brenner H, Kramer H, Mateo Leach I, Rudan I, Hillege HL, Beckmann JS, Lambert JC, Luan J, Zhao JH, Chalmers J, Coresh J, Denny JC, Butterbach K, Launer LJ, Ferrucci L, Kedenko L, Haun M, Metzger M, Woodward M, Hoffman MJ, Nauck M, Waldenberger M, Pruijm M, Bochud M, Rheinberger M, Verweij N, Wareham NJ, Endlich N, Soranzo N, Polasek O, van der Harst P, Pramstaller PP, Vollenweider P, Wild PS, Gansevoort RT, Rettig R, Biffar R, Carroll RJ, Katz R, Loos RJ, Hwang SJ, Coassin S, Bergmann S, Rosas SE, Stracke S, Harris TB, Corre T, Zeller T, Illig T, Aspelund T, Tanaka T, Lendeckel U, Volker U, Gudnason V, Chouraki V, Koenig W, Kutalik Z, O'Connell JR, Parsa A, Heid IM, Paterson AD, de Boer IH, Devuyst O, Lazar J, Endlich K, Susztak K, Tremblay J, Hamet P, Jacob HJ, Boger CA, Fox CS, Pattaro C, Kottgen A: Genome-wide Association Studies Identify Genetic Loci Associated With Albuminuria in Diabetes. Diabetes 2016;65:803817
20. Tyrrell JS, Yaghootkar H, Freathy RM, Hattersley AT, Frayling TM: Parental diabetes and birthweight in 236030 individuals in the UK biobank study. Int J Epidemiol 2013;42:1714-1723 21. Casanova F, Tyrrell J, Beaumont RN, Ji Y, Jones SE, Hattersley AT, Weedon MN, Murray A, Shore AC, Frayling TM, Wood AR: A genome-wide association study implicates multiple mechanisms influencing raised urinary albumin-creatinine ratio. Hum Mol Genet 2019;
22. Loh PR, Tucker G, Bulik-Sullivan BK, Vilhjalmsson BJ, Finucane HK, Salem RM, Chasman DI, Ridker PM, Neale BM, Berger B, Patterson N, Price AL: Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet 2015;47:284-290
23. Bowden J, Davey Smith G, Burgess S: Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 2015;44:512-525
24. Bowden J, Davey Smith G, Haycock PC, Burgess S: Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol 2016;40:304-314
25. Burgess S, Thompson SG: Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol 2015;181:251-260
26. Ji Y, Yiorkas AM, Frau F, Mook-Kanamori D, Staiger H, Thomas EL, Atabaki-Pasdar N, Campbell A, Tyrrell J, Jones SE, Beaumont RN, Wood AR, Tuke MA, Ruth KS, Mahajan A, Murray A, Freathy RM, Weedon MN, Hattersley AT, Hayward C, Machann J, Haring HU, Franks P, de Mutsert R, Pearson E, Stefan N, Frayling TM, Allebrandt KV, Bell JD, Blakemore AI, Yaghootkar H: Genome-Wide and Abdominal MRI Data Provide Evidence That a Genetically Determined Favorable Adiposity Phenotype Is Characterized by Lower Ectopic Liver Fat and Lower Risk of Type 2 Diabetes, Heart Disease, and Hypertension. Diabetes 2019;68:207-219 27. Holowatz LA, Thompson-Torgerson CS, Kenney WL: The human cutaneous circulation as a model of generalized microvascular function. J Appl Physiol (1985) 2008;105:370-372
28. Khan F, Patterson D, Belch JJ, Hirata K, Lang CC: Relationship between peripheral and coronary function using laser Doppler imaging and transthoracic echocardiography. Clin Sci (Lond) 2008;115:295-300
29. Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, Hegele RA, Krauss RM, Raal FJ, Schunkert H, Watts GF, Boren J, Fazio S, Horton JD, Masana L, Nicholls SJ,

Nordestgaard BG, van de Sluis B, Taskinen MR, Tokgozoglu L, Landmesser U, Laufs U, Wiklund O, Stock JK, Chapman MJ, Catapano AL: Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2017;38:2459-2472
30. Verges B: Role for fibrate therapy in diabetes: evidence before FIELD. Curr Opin Lipidol 2005;16:648-651
31. Mansi I, Frei CR, Wang CP, Mortensen EM: Statins and New-Onset Diabetes Mellitus and Diabetic Complications: A Retrospective Cohort Study of US Healthy Adults. J Gen Intern Med 2015;30:1599-1610
32. Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glasziou P, Drury P, Kesaniemi YA, Sullivan D, Hunt D, Colman P, d'Emden M, Whiting M, Ehnholm C, Laakso M, investigators Fs: Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 2005;366:1849-1861
33. Koh KK, Quon MJ, Han SH, Chung WJ, Ahn JY, Seo YH, Choi IS, Shin EK: Additive beneficial effects of fenofibrate combined with atorvastatin in the treatment of combined hyperlipidemia. J Am Coll Cardiol 2005;45:1649-1653
34. Group AS, Ginsberg HN, Elam MB, Lovato LC, Crouse JR, 3rd, Leiter LA, Linz P, Friedewald WT, Buse JB, Gerstein HC, Probstfield J, Grimm RH, Ismail-Beigi F, Bigger JT, Goff DC, Jr., Cushman WC, Simons-Morton DG, Byington RP: Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010;362:1563-1574
35. Strain WD, Cos X, Hirst M, Vencio S, Mohan V, Voko Z, Yabe D, Bluher M, Paldanius PM: Time to do more: addressing clinical inertia in the management of type 2 diabetes mellitus.

Diabetes Res Clin Pract 2014;105:302-312
36. de Boer IH, Sibley SD, Kestenbaum B, Sampson JN, Young B, Cleary PA, Steffes MW, Weiss NS, Brunzell JD, Diabetes C, Complications Trial/Epidemiology of Diabetes I, Complications Study Research G: Central obesity, incident microalbuminuria, and change in
creatinine clearance in the epidemiology of diabetes interventions and complications study. J Am Soc Nephrol 2007;18:235-243
37. Pinto-Sietsma SJ, Navis G, Janssen WM, de Zeeuw D, Gans RO, de Jong PE, Group PS: A central body fat distribution is related to renal function impairment, even in lean subjects. Am J Kidney Dis 2003;41:733-741
38. Persson F, Lindhardt M, Rossing P, Parving HH: Prevention of microalbuminuria using early intervention with renin-angiotensin system inhibitors in patients with type 2 diabetes: A systematic review. J Renin Angiotensin Aldosterone Syst 2016;17
39. Mykkanen L, Zaccaro DJ, Wagenknecht LE, Robbins DC, Gabriel M, Haffner SM:

Microalbuminuria is associated with insulin resistance in nondiabetic subjects: the insulin resistance atherosclerosis study. Diabetes 1998;47:793-800
40. Palaniappan L, Carnethon M, Fortmann SP: Association between microalbuminuria and the metabolic syndrome: NHANES III. Am J Hypertens 2003;16:952-958
41. Cohen JC, Stender S, Hobbs HH: APOC3, coronary disease, and complexities of Mendelian randomization. Cell Metab 2014;20:387-389

Assumption 2

Genetic variants are not associated with confounders

Assumption 3

Genetic variants influence risk of the outcome through the exposure, not through other pathways

Page 33 of 58
Diabetes

Standard deviation differences in ACR per standard deviation differences in genetically instrumented lipids measures

Body Mass Index		
UKB	-	0.01 (-0.02, 0.04)
CDKGEN_GWAS	\square	0.09 (0.03, 0.15)
Subtotal	N	0.02 (-0.00, 0.05)
Favourable Adiposity		
UKB	-	-0.07 (-0.19, 0.06)
CDKGEN_GWAS		-0.29 (-0.45, -0.14)
Subtotal		-0.16 (-0.26, -0.06)
WHR adjusted by BMI		
UKB	\rightarrow	0.04 (0.01, 0.06)
CKDGEN_GWAS	\square	0.07 (0.01, 0.12)
Subtotal	\bigcirc	0.04 (0.02, 0.06)
1 1 1 1 1 -.5 -.4 -.3 -.2 -.1	$\begin{array}{ll} 1 & 1 \\ 0 & .1 \end{array}$	

Standard deviation differences in ACR per standard deviation differences in genetically instrumented adiposity measures.

For BMI and favourable adiposity there was evidence of heterogeneity ($\mathrm{p}=0.013$, I-squared 83.9% and $p=0.027$, l-squared 79.5%, respectively). No evidence of heterogeneity were found for WHR adjusted by $\mathrm{BMI}(\mathrm{p}=0.313$, l-square $1.8 \%)$.

Page 35 of 58
Fasting Glucose UKB CKDGEN_GWAS
Subtotal

Fasting Insulin UKB CKDGEN_GWAS

Subtotal

Type 2 Diabetes
UKB
CKDGEN_GWAS
Subtotal

Standard deviation differences in ACR per standard deviation differences in genetically instrumented glycemic measures.
There was evidence of heterogeneity for type 2 diabetes ($p=0.004, \mathrm{l}$-squared 87.9%). There was no evidence of heterogeneity for for fasting glucose ($p=0.631$, 1 -squared 0.0%) and fasting insulin ($p=$ 0.496 , l-squared 0.0%).

Standard deviation differences in ACR per standard deviation differences in genetically instrumented blood pressure.
There was no evidence of heterogeneity for diastolic blood pressure ($p=0.074$, I-square 68.7%). Some evidence of heterogeneity were found for systolic blood pressure ($p=0.002$, I-square 89.6%).

Supplementary table 1. Strength of association of genetic instruments with measured exposure exposures.

Trait	\% variance	F-statistic	P
Diastolic BP	2.17	9962	$<1.0 \mathrm{E}-15$
Systolic BP	1.74	7966	$<1.0 \mathrm{E}-15$
HDL cholesterol	6.4	26895	$<1.0 \mathrm{E}-15$
LDL cholesterol	4.36	19550	$<1.0 \mathrm{E}-15$
Triglycerides	4.91	22189	$<1.0 \mathrm{E}-15$
BMI	1.6	7295	$<1.0 \mathrm{E}-15$
Favourable adiposity	0.1	468	$<1.0 \mathrm{E}-15$
Waist hip ratio (adjusted by BMI)	1.5	6837	$<1.0 \mathrm{E}-15$
Fasting glucose	Not available	Not available	
Fasting insulin	Not available	Not available	
T2D	0.6	2504	$<1.0 \mathrm{E}-15$

Supplementary table2. Genetic variants utilised in Mendelian randomization analyses. Gene location as reported by the original study (where available).

Trait	Genetic variant	Trait raising allele	Trait lowering allele	Beta from the primary GWAS*	Primary GWAS* reference	Gene Location
BODY MASS INDEX	rs1000940	G	A	0.019	Locke et al., 2014	RABEP1
BODY MASS INDEX	rs10132280	C	A	0.023	Locke et al., 2014	STXBP6
BODY MASS INDEX	rs1016287	T	C	0.023	Locke et al., 2014	FLJ30838
BODY MASS INDEX	rs10182181	G	A	0.031	Locke et al., 2014	ADCY3
BODY MASS INDEX	rs10733682	A	G	0.017	Locke et al., 2014	LMX1B
BODY MASS INDEX	rs10938397	G	A	0.04	Locke et al., 2014	GNPDA2
BODY MASS INDEX	rs10968576	G	A	0.025	Locke et al., 2014	LINGO2
BODY MASS INDEX	rs11057405	G	A	0.031	Locke et al., 2014	CLIP1
BODY MASS INDEX	rs11126666	A	G	0.021	Locke et al., 2014	KCNK3
BODY MASS INDEX	rs11165643	T	C	0.022	Locke et al., 2014	PTBP2
BODY MASS INDEX	rs11191560	C	T	0.031	Locke et al., 2014	NT5C2
BODY MASS INDEX	rs11583200	C	T	0.018	Locke et al., 2014	ELAVL4
BODY MASS INDEX	rs1167827	G	A	0.02	Locke et al., 2014	HIP1
BODY MASS INDEX	rs11688816	G	A	0.017	Locke et al., 2014	EHBP1
BODY MASS INDEX	rs11727676	T	C	0.036	Locke et al., 2014	HHIP
BODY MASS INDEX	rs11847697	T	C	0.049	Locke et al., 2014	PRKD1
BODY MASS INDEX	rs12286929	G	A	0.022	Locke et al., 2014	CADM1
BODY MASS INDEX	rs12401738	A	G	0.021	Locke et al., 2014	FUBP1
BODY MASS INDEX	rs12429545	A	G	0.033	Locke et al., 2014	OLFM4
BODY MASS INDEX	rs12446632	G	A	0.04	Locke et al., 2014	GPRC5B
BODY MASS INDEX	rs12566985	G	A	0.024	Locke et al., 2014	FPGT-TNNI3K
BODY MASS INDEX	rs12885454	C	A	0.021	Locke et al., 2014	PRKD1
BODY MASS INDEX	rs12940622	G	A	0.018	Locke et al., 2014	RPTOR
BODY MASS INDEX	rs13021737	G	A	0.06	Locke et al., 2014	TMEM18
BODY MASS INDEX	rs13078960	G	T	0.03	Locke et al., 2014	CADM2
BODY MASS INDEX	rs13191362	A	G	0.028	Locke et al., 2014	PARK2
BODY MASS INDEX	rs1516725	C	T	0.045	Locke et al., 2014	ETV5
BODY MASS INDEX	rs1528435	T	C	0.018	Locke et al., 2014	UBE2E3
BODY MASS INDEX	rs1558902	A	T	0.082	Locke et al., 2014	FTO
BODY MASS INDEX	rs16851483	T	G	0.048	Locke et al., 2014	RASA2
BODY MASS INDEX	rs16951275	T	C	0.031	Locke et al., 2014	MAP2K5
BODY MASS INDEX	rs17001654	G	C	0.031	Locke et al., 2014	SCARB2
BODY MASS INDEX	rs17024393	C	T	0.066	Locke et al., 2014	GNAT2
BODY MASS INDEX	rs17094222	C	T	0.025	Locke et al., 2014	HIF1AN
BODY MASS INDEX	rs17405819	T	C	0.022	Locke et al., 2014	HNF4G
BODY MASS INDEX	rs17724992	A	G	0.019	Locke et al., 2014	PGPEP1
BODY MASS INDEX	rs1808579	C	T	0.017	Locke et al., 2014	C18orf8
BODY MASS INDEX	rs1928295	T	C	0.019	Locke et al., 2014	TLR4

BODY MASS INDEX DIASTOLIC BLOOD PRESSURE DIASTOLIC BLOOD PRESSURE

rs2033529	G	A	0.019
rs2033732	C	T	0.019
rs205262	G	A	0.022
rs2075650	A	G	0.026
rs2112347	T	G	0.026
rs2121279	T	C	0.025
rs2176598	T	C	0.02
rs2207139	G	A	0.045
rs2245368	C	T	0.032
rs2287019	C	T	0.036
rs2365389	C	T	0.02
rs2650492	A	G	0.021
rs2820292	C	A	0.02
rs29941	G	A	0.018
rs3101336	C	T	0.033
rs3736485	A	G	0.018
rs3810291	A	G	0.028
rs3817334	T	C	0.026
rs3849570	A	C	0.019
rs4256980	G	C	0.021
rs4740619	T	C	0.018
rs543874	G	A	0.048
rs6477694	C	T	0.017
rs6567160	C	T	0.056
rs657452	A	G	0.023
rs6804842	G	A	0.019
rs7138803	A	G	0.032
rs7141420	T	C	0.024
rs7243357	T	G	0.022
rs758747	T	C	0.023
rs7599312	G	A	0.022
rs7899106	G	A	0.04
rs9400239	C	T	0.019
rs9581854	T	C	0.03
rs9925964	A	G	0.019
rs10850411	T	C	0.253
rs1173771	G	A	0.261
rs13082711	C	T	0.238
rs13139571	C	A	0.26
rs1813353	T	C	0.415
rs381815	T	C	0.348
rs419076	T	C	0.241
rs4373814	C	G	0.218
rs4590817	G	C	0.419
rs6015450	G	A	0.557
rs10077885	C	A	0.17
rs11128722	G	A	0.173
rs11556924	C	T	0.21
rs11953630	C	T	0.281
rs12627651	A	G	0.204
rs12940887	T	C	0.27
rs12958173	A	C	0.179
rs13107325	C	T	0.68
rs1327235	G	A	0.308
rs1361831	C	T	0.271
rs1371182	C	T	0.252
rs1450271	T	C	0.199
rs1458038	T	C	0.457
rs1620668	G	A	0.285
rs17080093	C	T	0.411
rs17638167	C	T	0.348
rs1799945	G	C	0.457
rs1975487	G	A	0.16

Locke et al., 2014 Ehret et al. 2011 Ehret et al. 2016 Ehret et al. 2016

TDRG1
RALYL
C6orf106
TOMM40
POC5
LRP1B
HSD17B12
TFAP2B
PMS2L11
QPCTL
FHIT
SBK1
NAV1
KCTD15
NEGR1
DMXL2
ZC3H4
MTCH2
GBE1
TRIM66
C9orf93
SEC16B
EPB41L4B
MC4R
AGBL4
RARB
BCDIN3D
NRXN3
GRP
NLRC3
ERBB4
GRID1
FOXO3
MTIF3
KAT8
TBX3
C5orf23, NPR3
SLC4A7
GUCY1A3, GUCY1B3
CACNB2
PLEKHA7
MECOM
CACNB2
C10orf107
EDN3, GNAS
TRIM36
FGD5
ZC3HC1
EBF1
CRYAA, SIK1
ZNF652
SETBP1
SLC39A8
JAG1
RSPO3
FIGN, GRB14
ADM
FGF5
ST7L, CAPZA1, MOV10
PLEKHG1
ELAVL3
HFE
PNPT1

DIASTOLIC BLOOD PRESSURE DIASTOLIC BLOOD PRESSURE

DIASTOLIC BLOOD PRESSURE DIASTOLIC BLOOD PRESSURE

rs2187668	C	T	0.372
rs2291435	C	T	0.156
rs2493134	C	T	0.275
rs2521501	T	A	0.359
rs2586886	C	T	0.254
rs2891546	G	A	0.38
rs2969070	G	A	0.182
rs3184504	T	C	0.448
rs3735533	C	T	0.445
rs3752728	A	G	0.319
rs4245739	A	C	0.243
rs4247374	C	T	0.385
rs592373	A	G	0.282
rs6271	C	T	0.465
rs633185	C	G	0.328
rs6442101	T	C	0.303
rs6891344	A	G	0.231
rs7103648	G	A	0.241
rs740746	A	G	0.32
rs751984	T	C	0.376
rs772178	G	A	0.208
rs880315	C	T	0.257
rs918466	G	A	0.182
rs932764	G	A	0.224
rs943037	C	T	0.482
rs1060105	C	T	0.182
rs10995311	C	G	0.21
rs110419	A	G	0.159
rs1126464	C	G	0.275
rs12521868	G	T	0.191
rs1378942	C	A	0.416
rs16851397	G	A	0.375
rs17249754	G	A	0.522
rs17367504	A	G	0.547
rs2304130	G	A	0.292
rs2972146	T	G	0.172
rs3774372	C	T	0.367
rs6095241	G	A	0.168
rs687621	A	G	0.188
rs7302981	A	G	0.249
rs805303	G	A	0.228
rs8068318	T	C	0.262
rs867186	A	G	0.265
rs10078021	G	T	0.164
rs1063281	C	T	0.2
rs11030119	G	A	0.163
rs12374077	C	G	0.163
rs12405515	G	T	0.165
rs12408022	T	C	0.198
rs12906962	C	T	0.221
rs12921187	G	T	0.174
rs13205180	T	C	0.168
rs143112823	G	A	0.403
rs1438896	T	C	0.234
rs2306374	C	T	0.184
rs2760061	A	T	0.23
rs2978098	A	C	0.165
rs36022378	C	T	0.202
rs4308	A	G	0.213
rs4364717	G	A	0.175
rs4952611	C	T	0.157
rs55701159	T	G	0.285

Ehret et al. 2016 Ehret et al. 2016

Ehret et al. 2016 Ehret et al. 2016 Ehret et al. 2016 Ehret et al. 2016 Ehret et al. 2016 Ehret et al. 2016 Ehret et al. 2016 Ehret et al. 2016 Surendram et al. Surendram et al Surendram et al. Surendram et al. Surendram et al. Surendram et al. Surendram et al Surendram et al. Surendram et al Surendram et al. Surendram et al Surendram et al. Surendram et al. Surendram et al. Warren et al. 2017 Warren et al. 2017

BAT2, BAT5
TBC1D1, FLJ13197
AGT
FURIN, FES
KCNK3
TBX5, TBX3
CHST12, LFNG
SH2B3
HOTTIP, EVX
PDE3A
MDM4
INSR
LSP1, TNNT3
DBH
FLJ32810, TMEM133
MAP4
CSNK1G3
RAPSN, PSMC3,
SLC39A13
ADRB1
LRRC10B
NCAPH
CASZ1
ADAMTS9
PLCE1
CYP17A1, NT5C2
SBNO1
ADO
LMO1
DPEP1
C5orf56
CYP1A1-ULK3
ZBTB38
ATP2B1
MTHFR, NPPB
ZNF101
Intergenic
ULK4
PREX1
ABO
CERS5
BAT2, BAT5
TBX2
PROCR
POC5
TNS1
BDNF
SENP2
DNM3
GPATCH2
chr15mb95
PPL
PKHD1
RP11-439C8.2
TEX41
SCAF4
WNT3A
SNX31
CAMKV, ACTBP13
ACE
MTAP
SLC8A1
ADCY3

DIASTOLIC BLOOD PRESSURE DIASTOLIC BLOOD PRESSURE
FASTING GLUCOSE
FASTING GLUCOSE
FASTING GLUCOSE
FASTING GLUCOSE FASTING INSULIN FASTING INSULIN

rs6108168	C	A	0.211
rs62012628	C	T	0.238
rs62104477	T	G	0.177
rs62524579	G	A	0.175
rs6686889	T	C	0.185
rs66887589	C	T	0.215
rs67330701	C	T	0.367
rs7178615	G	A	0.179
rs72799341	A	G	0.185
rs72812846	T	A	0.209
rs743757	C	G	0.245
rs745821	T	G	0.189
rs7592578	G	T	0.24
rs76326501	A	C	0.419
rs79146658	C	NA	0.311
rs8059962	C	T	0.17
rs9372498	A	T	0.334
rs953492	A	G	0.22
rs9827472	C	T	0.177
rs11715915	C	T	0.012
rs7651090	G	A	0.013
rs10747083	A	G	0.013
rs340874	C	T	0.013
rs9368222	A	C	0.014
rs2302593	C	G	0.014
rs6943153	T	C	0.015
rs10814916	C	A	0.016
rs6072275	A	G	0.016
rs576674	G	A	0.017
rs3783347	G	T	0.017
rs3829109	G	A	0.017
rs4869272	T	C	0.018
rs11603334	G	A	0.019
rs11619319	G	A	0.02
rs174576	C	A	0.02
rs11607883	G	A	0.021
rs7903146	T	C	0.022
rs4502156	T	C	0.022
rs11708067	A	G	0.023
rs11039182	T	C	0.023
rs10811661	T	C	0.024
rs983309	T	G	0.026
rs1280	T	C	0.026
rs780094	C	T	0.027
rs11558471	A	G	0.029
rs2191349	T	G	0.029
rs11195502	C	T	0.032
rs6113722	G	A	0.035
rs16913693	T	G	0.043
rs2908289	A	G	0.057
rs560887	C	T	0.071
rs10830963	G	C	0.078
rs2972143	G	A	0.014
rs2745353	T	C	0.014
rs1530559	A	G	0.015
rs731839	G	A	0.015
rs4865796	A	G	0.015
rs2820436	C	A	0.015
rs1167800	A	G	0.016
rs10195252	T	C	0.016
rs9884482	C	T	0.017
rs860598	A	G	0.018
rs7903146	C	T	0.018

Warren et al. 2017
Scott et al. 2012

PLCB1
ADAMTS7
CCNE1
RP11-273G15.2
chr1mb25
PDE5A
MYEOV
RP11-321F6.1
FBXL19
CPEB4
CACNA2D2
MAPK4
TMEM194B
AC016735.1
CCDC141
CMIP
SLC35F1
SDCCAG8
FAM208A
AMT
IGF2BP2
P2RX2
PROX1
CDKAL1
GIPR
GRB10

TOP1
KL
WARS
DNLZ
PCSK1
ARAP1
PDX1

CRY2
TCF7L2
VPS13C/C2CD4A/B
ADCY5
MADD
CDKN2B
PPP1R3B
SLC2A2
GCKR

DGKB/TMEM195
ADRA2A
FOXA2
IKBKAP

G6PC2
MTNR1B
IRS1
RSPO3
YSK4
PEPD
ARL15
LYPLAL1
HIP1
GRB14
TET2
TCF7L2

FASTING INSULIN	rs780094	C	T	0.019	Scott et al. 2012	GCKR
FASTING INSULIN	rs1421085	C	T	0.02	Scott et al. 2012	FTO
FASTING INSULIN	rs983309	T	G	0.029	Scott et al. 2012	PPP1R3B
Favourable Adiposity	rs11045172	C	A	0.012	Ji et al. 2019	EBP2-PDE3A
Favourable Adiposity	rs11118306	A	G	0.023	Ji et al. 2019	LYPLAL1-SLC30A10
Favourable Adiposity	rs13389219	T	C	0.023	Ji et al. 2019	GRB14-COBLL1
Favourable Adiposity	rs1801282	G	C	0.031	Ji et al. 2019	PPARG
Favourable Adiposity	rs2267373	C	T	0.025	Ji et al. 2019	MAFF
Favourable Adiposity	rs2276936	A	C	0.016	Ji et al. 2019	FAM13A
Favourable Adiposity	rs2943653	C	T	0.032	Ji et al. 2019	NYAP2-IRS1
Favourable Adiposity	rs2980888	C	T	0.006	Ji et al. 2019	TRIB1--[
Favourable Adiposity	rs40271	C	T	0.021	Ji et al. 2019	ANKRD55-MAP3K1
Favourable Adiposity	rs632057	G	T	0.009	Ji et al. 2019	CITED2
Favourable Adiposity	rs7133378	A	G	0.026	Ji et al. 2019	DNAH10
Favourable Adiposity	rs7258937	T	C	0.015	Ji et al. 2019	PEPD
Favourable Adiposity	rs972283	A	G	0.017	Ji et al. 2019	KLF14-MKLN1
Favourable Adiposity	rs998584	C	A	0.016	Ji et al. 2019	VEGFA-C6orf223
HDL CHOLESTEROL	rs1011731	A	G	0.015	Liu et al.	DNM3:Intron
HDL CHOLESTEROL	rs1037378	G	A	0.015	Liu et al.	PDE3B:Intron
HDL CHOLESTEROL	rs10483776	A	G	0.02	Liu et al.	FUT8:Intron
HDL CHOLESTEROL	rs10861661	A	C	0.017	Liu et al.	RIC8B:Intron
HDL CHOLESTEROL	rs10968576	A	G	0.017	Liu et al.	LINGO2:Intron
HDL CHOLESTEROL	rs11553746	T	C	0.015	Liu et al.	ACP1:Thr951le
HDL CHOLESTEROL	rs12055786	C	T	0.021	Liu et al.	RGS17:Intron
HDL CHOLESTEROL	rs13379043	C	T	0.017	Liu et al.	C14orf43:Intron
HDL CHOLESTEROL	rs146179438	C	A	0.063	Liu et al.	CDC25A:Gln25His
HDL CHOLESTEROL	rs16928809	G	A	0.029	Liu et al.	SLC22A18:Intron
HDL CHOLESTEROL	rs17189743	A	G	0.04	Liu et al.	TSPYL6:Arg246Cys
HDL CHOLESTEROL	rs2074158	T	C	0.02	Liu et al.	DHX58:GIn425Arg
HDL CHOLESTEROL	rs2303108	T	C	0.015	Liu et al.	ZC3H4:Intron
HDL CHOLESTEROL	rs2785990	C	T	0.015	Liu et al.	LYPLAL1:Intergenic
HDL CHOLESTEROL	rs28932178	C	T	0.02	Liu et al.	NSD1:Ser457Pro
HDL CHOLESTEROL	rs35169799	C	T	0.039	Liu et al.	PLCB3:Ser778Leu
HDL CHOLESTEROL	rs4871137	G	T	0.022	Liu et al.	KCND3:Intergenic
HDL CHOLESTEROL	rs4976033	A	G	0.015	Liu et al.	IGFN1:Intergenic
HDL CHOLESTEROL	rs622082	A	G	0.017	Liu et al.	IGHMBP2:Thr671Ala
HDL CHOLESTEROL	rs7076938	T	C	0.019	Liu et al.	PLOD1:Intergenic
HDL CHOLESTEROL	rs7136716	G	A	0.021	Liu et al.	AVPR1B:Intergenic
HDL CHOLESTEROL	rs746463	C	T	0.017	Liu et al.	ZC3H12C:Intron
HDL CHOLESTEROL	rs76116020	A	G	0.041	Liu et al.	TMED6:Phe6Leu
HDL CHOLESTEROL	rs78074706	G	A	0.053	Liu et al.	ANKS3:Arg286Trp
HDL CHOLESTEROL	rs8099014	A	C	0.015	Liu et al.	VPS13D:Intergenic
HDL CHOLESTEROL	rs900399	G	A	0.019	Liu et al.	SEMA4A:Intergenic
HDL CHOLESTEROL	rs9816226	T	A	0.028	Liu et al.	B4GALT3:Intergenic
HDL CHOLESTEROL	rs10019888	A	G	0.027	Willer et al. 2013	C4orf52
HDL CHOLESTEROL	rs1047891	C	C	0.027	Willer et al. 2013	CPS1
HDL CHOLESTEROL	rs1121980	G	A	0.02	Willer et al. 2013	FTO
HDL CHOLESTEROL	rs11246602	C	T	0.034	Willer et al. 2013	OR4C46
HDL CHOLESTEROL	rs11613352	T	C	0.028	Willer et al. 2013	LRP1
HDL CHOLESTEROL	rs11869286	C	G	0.032	Willer et al. 2013	STARD3
HDL CHOLESTEROL	rs12145743	G	T	0.02	Willer et al. 2013	HDGF, PMVK
HDL CHOLESTEROL	rs12328675	C	T	0.045	Willer et al. 2013	COBLL1
HDL CHOLESTEROL	rs12678919	G	A	0.155	Willer et al. 2013	LPL
HDL CHOLESTEROL	rs12748152	C	T	0.051	Willer et al. 2013	PIGV, NROB2
HDL CHOLESTEROL	rs12801636	A	G	0.024	Willer et al. 2013	KAT5
HDL CHOLESTEROL	rs12967135	G	A	0.026	Willer et al. 2013	MC4R
HDL CHOLESTEROL	rs13076253	A	C	0.028	Willer et al. 2013	CPNE4
HDL CHOLESTEROL	rs13107325	C	T	0.071	Willer et al. 2013	SLC39A8
HDL CHOLESTEROL	rs13326165	A	G	0.029	Willer et al. 2013	STAB1
HDL CHOLESTEROL	rs1532085	A	G	0.107	Willer et al. 2013	LIPC
HDL CHOLESTEROL	rs1689800	A	G	0.034	Willer et al. 2013	ZNF648
HDL CHOLESTEROL	rs16942887	A	G	0.083	Willer et al. 2013	LCAT
HDL CHOLESTEROL	rs17145738	T	C	0.041	Willer et al. 2013	MLXIPL

HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
HDL CHOLESTEROL
LDL CHOLESTEROL

rs17173637	T	C	0.036
rs174546	C	T	0.039
rs17695224	G	A	0.029
rs1800961	C	T	0.127
rs181362	C	T	0.038
rs1883025	C	T	0.07
rs1936800	C	T	0.02
rs2013208	T	C	0.025
rs2290547	G	A	0.03
rs2293889	G	T	0.031
rs2602836	A	G	0.019
rs2606736	C	T	0.025
rs2652834	G	A	0.029
rs2923084	A	G	0.026
rs2925979	C	T	0.035
rs2954029	T	A	0.04
rs2972146	G	T	0.032
rs3136441	C	T	0.055
rs3764261	A	C	0.241
rs3822072	G	A	0.025
rs386000	C	G	0.048
rs4129767	A	G	0.024
rs4142995	G	T	0.026
rs4148008	C	G	0.028
rs4420638	A	G	0.067
rs4650994	G	A	0.021
rs4660293	A	G	0.035
rs4731702	T	C	0.029
rs4759375	T	C	0.056
rs4765127	T	G	0.032
rs4846914	A	G	0.048
rs4917014	G	T	0.022
rs4983559	G	A	0.02
rs499974	C	A	0.026
rs581080	C	G	0.042
rs605066	T	C	0.028
rs6065906	T	C	0.059
rs6450176	G	A	0.025
rs6805251	T	C	0.02
rs702485	G	A	0.024
rs7134375	A	C	0.021
rs7134594	T	C	0.035
rs7241918	T	G	0.09
rs7255436	A	C	0.032
rs731839	A	G	0.022
rs737337	T	C	0.057
rs7941030	C	T	0.028
rs838880	C	T	0.048
rs964184	C	G	0.107
rs970548	C	A	0.026
rs998584	C	A	0.026
rs9987289	G	A	0.082
rs1016988	T	C	0.02
rs10885997	G	A	0.015
rs11080150	A	G	0.019
rs13146272	C	A	0.015
rs13379043	T	C	0.018
rs147032017	C	T	0.091
rs1891110	A	G	0.021
rs201148465	C	A	0.21
rs201596848	C	T	0.255
rs2076674	C	T	0.018
rs2125345	T	C	0.024

Willer et al. 2013 Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Willer et al. 2013
Liu et al.
Liu et al
Liu et al.
Liu et al
Liu et al.
Liu et al
Liu et al.

TMEM176A
FADS1, FADS2, FADS3
HAS1
HNF4A
UBE2L3
ABCA1
RSPO3
RBM5
SETD2
TRPS1
ADH5
ATG7
LACTB
AMPD3
CMIP
TRIB1
IRS1
LRP4
CETP
FAM13A
LILRA3
PGS1
SNX13
ABCA8
APOE
ANGPTL1
PABPC4
KLF14
SBNO1
ZNF664
GALNT2
IKZF1
ZBTB42, AKT1
MOGAT2, DGAT2
TTC39B
CITED2
PLTP
ARL15
GSK3B
DAGLB
PDE3A
MVK
LIPG
ANGPTL4
PEPD
ANGPTL8
UBASH3B
SCARB1
APOA1
MARCH8, ALOX5
VEGFA
PPP1R3B
CD101:Intergenic
PNLIPRP2:Gln387Arg
NF1:Intron
CYP4V2:Gln259Lys
C14orf43:Intron
ZFPM1:Asp91Asp
FAM24B:Pro2Leu
HIST1H1B:Ala6Ala
ZNF574:Arg734Cys
SLC25A17:Intron
UNK:Intron

LDL CHOLESTEROL LDL CHOLESTEROL

rs2239619	A	C	0.018	Liu et al.	HSPG2:Intergenic
rs28929474	T	C	0.081	Liu et al.	SERPINA1:Glu366Lys
rs351855	G	A	0.018	Liu et al.	FGFR4:Gly388Arg
rs3812594	G	A	0.018	Liu et al.	SEC16A:Arg1039Cys
rs4745	A	T	0.015	Liu et al.	EFNA1:Asp137Val
rs4809330	A	G	0.015	Liu et al.	ZGPAT:Intron
rs6062343	G	A	0.014	Liu et al.	TCEA2:Intron
rs61754230	T	C	0.057	Liu et al.	RAB21:Ser224Phe
rs635634	T	C	0.069	Liu et al.	IL6R:Intergenic
rs67710536	C	A	0.028	Liu et al.	RPS6:Utr3
rs6818397	T	G	0.022	Liu et al.	RGS12:Intron
rs704	A	G	0.021	Liu et al.	VTN:Thr400Met
rs77375493	G	T	0.3	Liu et al.	JAK2
rs9646133	G	T	0.019	Liu et al.	FLAD1:Intergenic
rs976002	G	A	0.023	Liu et al.	TMPRSS11E:Tyr303Cys
rs10102164	A	G	0.032	Willer et al. 2013	SOX17
rs10401969	T	C	0.118	Willer et al. 2013	CILP2
rs10490626	G	A	0.051	Willer et al. 2013	INSIG2
rs11065987	A	G	0.027	Willer et al. 2013	BRAP
rs11136341	G	A	0.045	Willer et al. 2013	PLEC1
rs11220462	A	G	0.059	Willer et al. 2013	ST3GAL4
rs11563251	T	C	0.035	Willer et al. 2013	UGT1A1
rs1169288	C	A	0.038	Willer et al. 2013	HNF1A
rs12027135	T	A	0.03	Willer et al. 2013	LDLRAP1
rs1250229	C	T	0.024	Willer et al. 2013	FN1
rs12670798	C	T	0.034	Willer et al. 2013	DNAH11
rs12748152	T	C	0.05	Willer et al. 2013	PIGV, NROB2
rs12916	C	T	0.073	Willer et al. 2013	HMGCR
rs1367117	A	G	0.119	Willer et al. 2013	APOB
rs1564348	C	T	0.048	Willer et al. 2013	LPA
rs17404153	G	T	0.034	Willer et al. 2013	ACAD11
rs174546	C	T	0.051	Willer et al. 2013	FADS1, FADS2, FADS3
rs1800562	G	A	0.062	Willer et al. 2013	HFE
rs1801689	C	A	0.103	Willer et al. 2013	APOH, PRXCA
rs2000999	A	G	0.065	Willer et al. 2013	HPR
rs2030746	T	C	0.021	Willer et al. 2013	LOC84931
rs2072183	C	G	0.039	Willer et al. 2013	NPC1L1
rs2081687	T	C	0.031	Willer et al. 2013	CYP7A1
rs2131925	T	G	0.049	Willer et al. 2013	ANGPTL3
rs2255141	A	G	0.03	Willer et al. 2013	GPAM
rs2328223	C	A	0.03	Willer et al. 2013	SNX5
rs2479409	G	A	0.064	Willer et al. 2013	PCSK9
rs2642442	T	C	0.036	Willer et al. 2013	MOSC1
rs267733	A	G	0.033	Willer et al. 2013	ANXA9, CERS2
rs2710642	A	G	0.024	Willer et al. 2013	EHBP1
rs2902940	A	G	0.027	Willer et al. 2013	MAFB
rs2954029	A	T	0.056	Willer et al. 2013	TRIB1
rs314253	T	C	0.024	Willer et al. 2013	DLG4
rs3177928	A	G	0.045	Willer et al. 2013	HLA
rs364585	G	A	0.025	Willer et al. 2013	SPTLC3
rs3757354	C	T	0.038	Willer et al. 2013	MYLIP
rs3764261	C	A	0.053	Willer et al. 2013	CETP
rs3780181	A	G	0.045	Willer et al. 2013	VLDLR
rs4253776	G	A	0.031	Willer et al. 2013	PPARA
rs4299376	G	T	0.081	Willer et al. 2013	ABCG5, ABCG58
rs4420638	G	A	0.225	Willer et al. 2013	APOE
rs4530754	A	G	0.028	Willer et al. 2013	CSNK1G3
rs4722551	C	T	0.039	Willer et al. 2013	MIR148A
rs4942486	T	C	0.024	Willer et al. 2013	BRCA2
rs514230	T	A	0.036	Willer et al. 2013	IRF2BP2
rs5763662	T	C	0.077	Willer et al. 2013	MTMR3
rs6029526	A	T	0.044	Willer et al. 2013	TOP1
rs629301	T	G	0.167	Willer et al. 2013	SORT1

HSPG2:Intergenic
PINA1:Glu366Lys

SEC16A:Arg1039Cys
EFNA1:Asp137Val
ZGPAT:Intron
TCEA2:Intron
RAB21:Ser224Phe
6R:Intergenic

RGS12:Intron
VTN:Thr400Met
JAK2
FLAD1:Intergenic
3Cys

CILP2
INSIG2

PLEC1
ST3GAL4
UGT1A1

LDLRAP1
FN1
DNAH11
PIGV, NROB2
HMGCR

LPA
ACAD11
FADS1, FADS2, FADS3

APOH, PRXCA
HPR

NPC1L1
CYP7A1
ANGPTL3
GPAM
SNX5

MOSC1
ANXA9, CERS2
EHBP1
MAFB

DLG4
HLA

MYLIP
CETP
PDARA
ABCG5, ABCG58
APOE
SNK1G3

BRCA2
IRF2BP2

TOP1
SORT1

LDL CHOLESTEROL
SYSTOLIC BLOOD PRESSURE SYSTOLIC BLOOD PRESSURE

rs6511720	G	T	0.221
rs6882076	C	T	0.046
rs7206971	A	G	0.029
rs7640978	C	T	0.039
rs8017377	A	G	0.03
rs9488822	A	T	0.031
rs964184	G	C	0.086
rs9987289	G	A	0.071
rs1813353	T	C	0.569
rs2932538	G	A	0.388
rs381815	T	C	0.575
rs4373814	C	G	0.373
rs4590817	G	C	0.646
rs6015450	G	A	0.896
rs7129220	A	G	0.619
rs10077885	C	A	0.284
rs10760117	T	G	0.283
rs11128722	G	A	0.31
rs11556924	C	T	0.271
rs1156725	C	T	0.447
rs11953630	C	T	0.412
rs12247028	G	A	0.364
rs12627651	A	G	0.391
rs12656497	C	T	0.487
rs12705390	A	G	0.619
rs12940887	T	C	0.362
rs12958173	A	C	0.361
rs13107325	C	T	0.837
rs1327235	G	A	0.395
rs1361831	C	T	0.482
rs1371182	C	T	0.444
rs1458038	T	C	0.659
rs1620668	G	A	0.535
rs17010957	C	T	0.498
rs17037390	G	A	0.908
rs17608766	C	T	0.658
rs1799945	G	C	0.627
rs2291435	C	T	0.344
rs2493134	C	T	0.413
rs2521501	T	A	0.65
rs2586886	C	T	0.404
rs2594992	C	A	0.334
rs2898290	T	C	0.377
rs2969070	G	A	0.298
rs3184504	T	C	0.598
rs3735533	C	T	0.798
rs3741378	C	T	0.486
rs4247374	C	T	0.593
rs4691707	G	A	0.349
rs592373	A	G	0.484
rs6271	C	T	0.591
rs633185	C	G	0.565
rs6442101	T	C	0.396
rs6779380	C	T	0.439
rs6919440	G	A	0.337
rs7103648	G	A	0.335
rs711737	A	C	0.334
rs7213273	G	A	0.413
rs740746	A	G	0.486
rs7515635	T	C	0.307
rs751984	T	C	0.407
rs880315	C	T	0.475
rs932764	G	A	0.495

Willer et al. 2013 Ehret et al. 2011 Ehret et al. 2016 Ehret et al. 2016

LDLR TIMD4 OSBPL7
CMTM6
NYNRIN
FRK
APOA1
PPP1R3B
CACNB2
MOV10
PLEKHA7
CACNB2
C10orf107
EDN3, GNAS
ADM
TRIM36
PSMD5
FGD5
ZC3HC1
PLEKHA7
EBF1
SYNPO2L
CRYAA, SIK1
NPR3, C5orf23
PIK3C
ZNF652
SETBP1
SLC39A8
JAG1
RSPO3
FIGN, GRB14
FGF5
ST7L, CAPZA1, MOV10
ARHGAP24
MTHFR, NPPB
GOSR2
HFE
TBC1D1, FLJ13197
AGT
FURIN, FES
KCNK3
HRH1, ATG7
BLK, GATA4
CHST12, LFNG
SH2B3
HOTTIP, EVX
SIPA1
INSR
GUCY1A3, GUCY1B3
LSP1, TNNT3
DBH
FLJ32810, TMEM133
MAP4
MECOM
ZNF318, ABCC10
RAPSN, PSMC3, SLC39A13
SLC4A7
PLCD3
ADRB1
HIVEP3
LRRC10B
CASZ1
PLCE1

SYSTOLIC BLOOD PRESSURE TRIGLYCERIDES TRIGLYCERIDES

rs943037	C	T	1.133
rs1008058	A	G	0.554
rs11229457	C	T	0.312
rs1378942	C	A	0.613
rs17249754	G	A	0.928
rs34591516	T	C	0.636
rs35529250	C	T	1.537
rs4387287	A	C	0.338
rs4728142	G	A	0.224
rs61760904	T	C	1.499
rs7406910	C	T	0.456
rs805303	G	A	0.376
rs9349379	A	G	0.289
rs10059921	G	T	0.526
rs10922502	G	A	0.382
rs112184198	G	A	0.659
rs11643209	G	T	0.339
rs12941318	C	T	0.269
rs13112725	C	G	0.435
rs13238550	A	G	0.331
rs13420463	A	G	0.356
rs2467099	C	T	0.307
rs35199222	A	G	0.322
rs3820068	A	G	0.425
rs55780018	C	T	0.391
rs6487543	A	G	0.3
rs6595838	A	G	0.344
rs6911827	T	C	0.296
rs7562	T	C	0.263
rs78648104	C	T	0.481
rs8016306	A	G	0.335
rs894344	G	A	0.258
rs9549328	T	C	0.318
rs9888615	C	T	0.318
rs1011731	G	A	0.015
rs10861661	C	A	0.019
rs138358301	G	A	0.15
rs26008	T	C	0.028
rs2785990	T	C	0.016
rs35169799	T	C	0.038
rs35665085	A	G	0.032
rs3769823	G	A	0.017
rs3803357	C	A	0.017
rs3927680	T	A	0.018
rs3947	A	G	0.024
rs41274050	T	C	0.1
rs41302559	G	A	0.154
rs4976033	G	A	0.018
rs6062343	G	A	0.018
rs7157785	T	G	0.023
rs7901016	C	T	0.042
rs7946	C	T	0.016
rs797486	A	C	0.02
rs900399	A	G	0.014
rs10401969	T	C	0.121
rs10761731	A	T	0.031
rs11613352	C	T	0.028
rs11649653	C	G	0.027
rs11776767	C	G	0.022
rs1260326	T	C	0.115
rs12678919	A	G	0.17
rs12748152	T	C	0.037
rs13238203	C	T	0.059

Ehret et al. 2016 Surendram et al. Warren et al. 2017 Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Warren et al. 2017
Liu et al.
Liu et al. Liu et al.
Liu et al.
Liu et al.
Liu et al.
Liu et al.
Liu et al.
Liu et al.
Liu et al.
Liu et al.
Liu et al.
Liu et al.
Liu et al.
Liu et al.
Liu et al.
Liu et al.
Liu et al.
Liu et al.
Liu et al.
Willer et al. 2013

CYP17A1, NT5C2
PRDM6
OR5B12
CYP1A1-ULK3
ATP2B1
GPR20
RBM47
OBFC1
Intergenic
RRAS
HOXB7
BAT2, BAT5
PHACTR1
TMEM161B
GTF2B
PAX2
CFDP1
CRK
NPNT
MKLN1
PRKD3
ACOX1
ABHD17C
CELA2A
METTL21A, SSPN/ITPR2
FBN2
CASC15
FOSL2
TFAP2D
PPP2R5E
ZFAT
MCF2L
FERMT2
DNM3:Intron
RIC8B:Intron
SLC25A30:Phe280Leu
FNIP1:GIn620Arg
LYPLAL1:Intergenic
PLCB3:Ser778Leu
CECR5:Thr149Met
CASP8:Lys14Arg
BAHD1:GIn298Lys
OR6P1:Intergenic
CTSB:Utr3
A1CF:Gly398Ser
PCK1:Arg483Gln
IGFN1:Intergenic
TCEA2:Intron
NPR1:Intergenic
CCDC109A:Intron
PEMT:Val212Met
ADAR:Intergenic
SEMA4A:Intergenic
CILP2
JMJD1C
LRP1
CTF1
PINX1
GCKR
LPL
PIGV, NROB2
TYW1B

TRIGLYCERIDES TYPE 2 DIABETES TYPE 2 DIABETES
rs1495741 G rs1532085 A rs17145738 rs174546 T rs1832007 A rs1936800 T rs2068888 G rs2131925 T rs2247056 C rs2412710 A rs2929282 T rs2954029 rs2972146 rs3198697 rs3764261 C rs38855 rs442177 T $\begin{array}{ll}\text { rs4719841 } & G \\ \text { rs4765127 } & G\end{array}$
rs4846914 G
rs5756931 T
rs6065906 C
rs645040 T
rs6831256 G
rs6882076 C
rs7248104 G
rs731839 G
rs964184 G
rs9686661 T
rs9930333 G
rs998584 A
rs6054
rs17867832 T
rs3734621 C
rs3786897 A
rs831571 C
rs9470794 T
rs2233580 T
rs6813195
rs10278336 A
rs12242953 G
rs16861329 C
rs2007084 G
rs4812829 A
rs10401969
rs10758593
rs10811661 T
rs10830963 G
rs10842994 C
rs10923931 T
rs1111875 C
rs11257655 T
rs11634397 G
rs11651052 A
rs11717195 T
rs12427353 G
rs12571751 A
rs12899811 G
rs12970134 A G 0.076961041
rs13389219 C T 0.067658648
rs1359790 G A 0.076961041
rs1496653 A G 0.086177696

Willer et al. 2013
Liu et al.
Cho et al. 2011
Fuchsberger et al. 2016
Harder et al. 2015
Kong et al. 2009
Kooner et al. 2011
Kooner et al. 2011
Kooner et al. 2011
Kooner et al. 2011
Morris et al. 2012

NAT2
LIPC
MLXIPL
FADS1, FADS2, FADS3
AKR1C4
RSPO3
CYP26A1
ANGPTL3
HLA-B
CAPN3
FRMD5
TRIB1
IRS1
PDXDC1
CETP
MET
KLHL8
MIR148A
ZNF664
GALNT2
PLA2G6
PLTP
MSL2L1
LRPAP1
TIMD4
INSR
PEPD
MPP3
APOA1
MAP3K1
FTO
VEGFA
FGB:Pro206Leu
GRM8
KIF6
PEPD
PSMD6
ZFND3
PAX4
TMEM154
MOB2
SRGN
ST6GAL1
ANPEP
HNF4A
CILP2
GLIS3
CDKN2A/B
MTNR1B
KLHDC5
NOTCH2
HHEX, IDE
CDC123/CAMK1D
ZFAND6
HNF1B
ADCY5
HNF1A
ZMIZ1
PRC1
MC4R
GRB14
SPRY2
UBE2E2

TYPE 2 DIABETES TYPE 2 DIABETES
TYPE 2 DIABETES
WAIST HIP RATIO (ADJUSTED BY BMI) WAIST HIP RATIO (ADJUSTED BY BMI)

rs1552224	A	C	0.104360015	Morris et al. 2012
rs163184	G	T	0.086177696	Morris et al. 2012
rs17168486	T	C	0.104360015	Morris et al. 2012
rs17791513	A	G	0.113328685	Morris et al. 2012
rs1801282	C	G	0.122217633	Morris et al. 2012
rs2075423	G	T	0.067658648	Morris et al. 2012
rs2261181	T	C	0.122217633	Morris et al. 2012
rs243088	T	A	0.067658648	Morris et al. 2012
rs2796441	G	A	0.067658648	Morris et al. 2012
rs2943640	C	A	0.09531018	Morris et al. 2012
rs3802177	G	A	0.131028262	Morris et al. 2012
rs4402960	T	G	0.122217633	Morris et al. 2012
rs4458523	G	T	0.09531018	Morris et al. 2012
rs4502156	T	C	0.058268908	Morris et al. 2012
rs459193	G	A	0.076961041	Morris et al. 2012
rs516946	C	T	0.086177696	Morris et al. 2012
rs5215	C	T	0.067658648	Morris et al. 2012
rs6795735	C	T	0.076961041	Morris et al. 2012
rs6878122	G	A	0.09531018	Morris et al. 2012
rs7177055	A	G	0.076961041	Morris et al. 2012
rs7202877	T	G	0.113328685	Morris et al. 2012
rs7756992	G	A	0.157003749	Morris et al. 2012
rs7845219	T	C	0.058268908	Morris et al. 2012
rs7903146	T	C	0.329303747	Morris et al. 2012
rs7955901	C	T	0.067658648	Morris et al. 2012
rs8108269	G	T	0.067658648	Morris et al. 2012
rs849135	G	A	0.104360015	Morris et al. 2012
rs9936385	C	T	0.122217633	Morris et al. 2012
rs2334499	T	C	0.039220713	PMID: 20016592
rs7593730	C	T	0.104360015	Qi et al. 2010
rs76895963	T	G	0.634878032	Steinthorsdottir et al. 2014
rs16927668	T	C	0.039220713	Tsai et al. 2010
rs2447090	A	G	0.039220713	Tsai et al. 2010
rs13233731	G	A	0.048790164	Voight et al. 2010
rs10049088	C	miss	0.029	Pulit et al. 2019
rs10054063	T	miss	0.027	Pulit et al. 2019
rs10055995	C	miss	0.011	Pulit et al. 2019
rs10100423	T	miss	0.042	Pulit et al. 2019
rs10100533	A	miss	0.014	Pulit et al. 2019
rs10249651	C	miss	0.015	Pulit et al. 2019
rs1029472	G	miss	0.025	Pulit et al. 2019
rs1029645	G	miss	0.013	Pulit et al. 2019
rs1035942	A	miss	0.014	Pulit et al. 2019
rs1045241	C	miss	0.019	Pulit et al. 2019
rs10462028	A	miss	0.019	Pulit et al. 2019
rs10463416	A	miss	0.014	Pulit et al. 2019
rs10502148	C	miss	0.023	Pulit et al. 2019
rs10507524	C	miss	0.018	Pulit et al. 2019
rs1051684	A	miss	0.013	Pulit et al. 2019
rs1057119	C	miss	0.013	Pulit et al. 2019
rs10745659	G	miss	0.013	Pulit et al. 2019
rs10778504	T	miss	0.016	Pulit et al. 2019
rs10799424	T	miss	0.013	Pulit et al. 2019
rs10808546	C	miss	0.016	Pulit et al. 2019
rs10817896	T	miss	0.013	Pulit et al. 2019
rs10820747	A	miss	0.027	Pulit et al. 2019
rs10827226	T	miss	0.02	Pulit et al. 2019
rs10842707	T	miss	0.034	Pulit et al. 2019
rs10843804	T	miss	0.015	Pulit et al. 2019
rs10878367	A	miss	0.019	Pulit et al. 2019
rs10880823	C	miss	0.013	Pulit et al. 2019
rs10887759	A	miss	0.017	Pulit et al. 2019
rs10913257	G	miss	0.011	Pulit et al. 2019

ARAP1
KCNQ1
DGKB
TLE4
PPARG
PROX1
HMGA2
BCL11A
TLE1
IRS1
SLC30A8
IGF2BP2
WFS1
C2CD4A
ANKRD55
ANK1
KCNJ11
ADAMTS9
ZBED3
HMG2OA
BCAR1
CDKAL1
TP53INP1
TCF7L2
TSPAN8, LGR5
GIPR
JAZF1
FTO
RBMS1/ITGB6
CCND2
PTPRD
MNT
KLF14
Not available
Not available Not available Not available Not available Not available Not available Not available Not available Not available Not available Not available Not available Not available Not available Not available Not available Not available Not available

WAIST HIP RATIO (ADJUSTED BY BMI) WAIST HIP RATIO (ADJUSTED BY BMI)

rs10919388	C	miss	0.033
rs10923724	T	miss	0.035
rs10963067	C	miss	0.021
rs10980797	G	miss	0.018
rs11042077	A	miss	0.012
rs1105881	G	miss	0.016
rs11074934	T	miss	0.012
rs11078594	G	miss	0.015
rs11082430	C	miss	0.013
rs11085744	T	miss	0.011
rs11088991	T	miss	0.013
rs1111875	C	miss	0.011
rs11129657	C	miss	0.015
rs11134029	T	miss	0.014
rs11187537	C	miss	0.016
rs11204762	A	miss	0.014
rs11205773	T	miss	0.019
rs11235	C	miss	0.022
rs112907088	G	miss	0.041
rs1139653	A	miss	0.018
rs1144	C	miss	0.015
rs114760566	A	miss	0.093
rs11574514	C	miss	0.029
rs11592754	C	miss	0.022
rs11670056	C	miss	0.024
rs11722554	G	miss	0.033
rs11724804	G	miss	0.017
rs11746028	C	miss	0.014
rs11747001	A	miss	0.017
rs11757455	G	miss	0.022
rs11770285	C	miss	0.031
rs11786566	G	miss	0.011
rs11897119	C	miss	0.014
rs1190982	T	miss	0.016
rs12138803	T	miss	0.025
rs1223581	T	miss	0.011
rs12325187	C	miss	0.013
rs12419064	G	miss	0.014
rs12435790	A	miss	0.021
rs12441543	G	miss	0.019
rs12442323	C	miss	0.015
rs12454712	T	miss	0.017
rs12459350	A	miss	0.014
rs12494105	G	miss	0.012
rs1250259	T	miss	0.016
rs12527712	T	miss	0.034
rs12543555	G	miss	0.014
rs12608426	A	miss	0.025
rs12608504	A	miss	0.026
rs12684047	T	miss	0.015
rs12686771	T	miss	0.022
rs12692387	C	miss	0.013
rs12694042	T	miss	0.012
rs12774134	C	miss	0.019
rs12823266	A	miss	0.013
rs12828318	A	miss	0.017
rs1294432	T	miss	0.025
rs13010546	T	miss	0.014
rs13107325	C	miss	0.031
rs13137905	T	miss	0.013
rs13198178	C	miss	0.031
rs13223034	C	miss	0.013
rs13234914	G	miss	0.013

Pulit et al. 2019

Not available Not available

WAIST HIP RATIO (ADJUSTED BY BMI) WAIST HIP RATIO (ADJUSTED BY BMI)

rs13256367	A	miss	0.018
rs1328757	T	miss	0.014
rs1334576	G	miss	0.017
rs13379794	A	miss	0.011
rs1345203	T	miss	0.026
rs1364422	T	miss	0.016
rs1385167	G	miss	0.027
rs139271800	A	miss	0.239
rs140201358	G	miss	0.085
rs1406948	G	miss	0.016
rs144033177	C	miss	0.053
rs1440372	C	miss	0.016
rs144926207	T	miss	0.032
rs145878042	A	miss	0.081
rs146182298	T	miss	0.031
rs1481801	A	miss	0.012
rs1485745	T	miss	0.012
rs1494204	C	miss	0.015
rs149921263	A	miss	0.04
rs150841499	C	miss	0.02
rs1511022	T	miss	0.017
rs1522811	C	miss	0.013
rs1541681	G	miss	0.012
rs1561	T	miss	0.022
rs1569135	A	miss	0.021
rs1635853	T	miss	0.016
rs16907277	G	miss	0.023
rs16976826	T	miss	0.02
rs16978854	G	miss	0.033
rs17067999	C	miss	0.016
rs17101456	G	miss	0.025
rs17154889	C	miss	0.016
rs17289035	A	miss	0.014
rs17311057	T	miss	0.015
rs17326656	T	miss	0.015
rs17369710	C	miss	0.012
rs17417407	T	miss	0.014
rs174829	G	miss	0.014
rs17509001	C	miss	0.016
rs17511102	T	miss	0.02
rs1757471	T	miss	0.015
rs17703354	C	miss	0.02
rs17703883	C	miss	0.015
rs17764730	C	miss	0.016
rs1800978	C	miss	0.026
rs1805740	G	miss	0.018
rs180958337	T	miss	0.088
rs1893781	A	miss	0.018
rs1979527	A	miss	0.013
rs1997833	C	miss	0.014
rs2012485	C	miss	0.029
rs2027982	C	miss	0.012
rs2028386	G	miss	0.013
rs2047937	C	miss	0.015
rs2061708	C	miss	0.016
rs2075665	A	miss	0.011
rs2124307	C	miss	0.013
rs2145272	G	miss	0.025
rs2158828	G	miss	0.014
rs2167750	T	miss	0.027
rs2200155	G	miss	0.014
rs2222543	G	miss	0.015
rs2236519	A	miss	0.03

Pulit et al. 2019

Not available Not available

WAIST HIP RATIO (ADJUSTED BY BMI) WAIST HIP RATIO (ADJUSTED BY BMI)

rs2272790	G	miss	0.013
rs2277339	G	miss	0.022
rs227733	A	miss	0.013
rs2279469	C	miss	0.013
rs2294239	A	miss	0.024
rs2294823	T	miss	0.012
rs2299253	T	miss	0.012
rs2373078	T	miss	0.022
rs2376585	C	miss	0.018
rs2387280	A	miss	0.018
rs2398893	A	miss	0.015
rs2503100	G	miss	0.025
rs2524163	T	miss	0.024
rs2526886	T	miss	0.014
rs2529411	G	miss	0.011
rs2595004	C	miss	0.016
rs2602680	T	miss	0.012
rs2603229	T	miss	0.012
rs2701523	A	miss	0.013
rs270960	A	miss	0.011
rs2786198	A	miss	0.013
rs2791550	G	miss	0.037
rs2836141	T	miss	0.015
rs28408682	G	miss	0.012
rs28451064	A	miss	0.018
rs2898237	A	miss	0.012
rs2925979	T	miss	0.027
rs2970332	A	miss	0.016
rs299615	G	miss	0.015
rs2997447	G	miss	0.014
rs3110697	A	miss	0.012
rs3218121	A	miss	0.022
rs322396	A	miss	0.012
rs332105	G	miss	0.014
rs34000	T	miss	0.014
rs34312154	A	miss	0.019
rs34905952	A	miss	0.021
rs352300	C	miss	0.011
rs35344256	A	miss	0.014
rs35419826	G	miss	0.016
rs35710478	C	miss	0.012
rs357438	G	miss	0.011
rs3731861	C	miss	0.011
rs3741378	C	miss	0.022
rs3757298	C	miss	0.021
rs3761706	A	miss	0.032
rs3786897	G	miss	0.028
rs3792751	T	miss	0.014
rs3803042	A	miss	0.027
rs3807947	T	miss	0.014
rs3851294	G	miss	0.026
rs3936510	T	miss	0.03
rs402294	A	miss	0.014
rs41277978	A	miss	0.073
rs4293945	A	miss	0.012
rs4371408	A	miss	0.016
rs4372913	G	miss	0.016
rs4420638	A	miss	0.023
rs4474021	T	miss	0.012
rs4489410	C	miss	0.012
rs4558863	C	miss	0.021
rs4646342	G	miss	0.017
rs4684857	C	miss	0.021

Pulit et al. 2019

Not available Not available

WAIST HIP RATIO (ADJUSTED BY BMI) WAIST HIP RATIO (ADJUSTED BY BMI)

rs4686696	A	miss	0.015
rs4773173	A	miss	0.015
rs4789261	C	miss	0.029
rs4794033	G	miss	0.019
rs4902630	A	miss	0.012
rs4951588	C	miss	0.012
rs4964058	A	miss	0.011
rs4964656	G	miss	0.016
rs541091	G	miss	0.02
rs55747707	G	miss	0.024
rs55920843	T	miss	0.086
rs56185013	G	miss	0.017
rs56196860	C	miss	0.036
rs56271783	C	miss	0.059
rs598104	T	miss	0.014
rs59888683	T	miss	0.014
rs6018291	G	miss	0.014
rs6040229	G	miss	0.011
rs6047259	T	miss	0.01
rs6054471	T	miss	0.012
rs62012773	G	miss	0.017
rs62070804	T	miss	0.047
rs62271373	A	miss	0.041
rs62621197	C	miss	0.036
rs634869	T	miss	0.023
rs6426912	T	miss	0.019
rs6432188	T	miss	0.014
rs6480914	A	miss	0.013
rs6556301	T	miss	0.021
rs664532	T	miss	0.013
rs6658424	T	miss	0.014
rs6688233	T	miss	0.021
rs6705646	A	miss	0.025
rs6721459	G	miss	0.018
rs6752964	C	miss	0.019
rs6795831	A	miss	0.035
rs6853254	T	miss	0.017
rs6859752	T	miss	0.012
rs6867518	C	miss	0.018
rs6872807	T	miss	0.011
rs6905288	A	miss	0.044
rs6932767	T	miss	0.015
rs6940715	A	miss	0.022
rs6985478	A	miss	0.015
rs699370	C	miss	0.013
rs7003062	C	miss	0.012
rs7020604	A	miss	0.013
rs7070749	A	miss	0.014
rs7086377	T	miss	0.012
rs7102	C	miss	0.012
rs711076	C	miss	0.012
rs711869	G	miss	0.019
rs7119797	C	miss	0.013
rs71439172	G	miss	0.023
rs71511786	A	miss	0.023
rs715300	T	miss	0.014
rs717795	C	miss	0.02
rs7198287	C	miss	0.014
rs7213608	C	miss	0.012
rs7225453	C	miss	0.015
rs7235010	A	miss	0.019
rs7252102	G	miss	0.014
rs727428	T	miss	0.016

Pulit et al. 2019

Not available Not available

WAIST HIP RATIO (ADJUSTED BY BMI) WAIST HIP RATIO (ADJUSTED BY BMI)

rs7279347	G	miss	0.012
rs72823057	C	miss	0.029
rs72877579	C	miss	0.035
rs72959041	A	miss	0.162
rs73001065	C	miss	0.022
rs73094710	T	miss	0.02
rs7350438	C	miss	0.012
rs73858966	A	miss	0.024
rs73942938	C	miss	0.015
rs7395513	G	miss	0.021
rs740838	C	miss	0.043
rs747249	A	miss	0.011
rs7492628	G	miss	0.023
rs7521902	C	miss	0.013
rs7530102	A	miss	0.012
rs7554947	C	miss	0.015
rs755643	G	miss	0.012
rs757081	G	miss	0.011
rs757608	A	miss	0.019
rs7585974	C	miss	0.019
rs7680787	T	miss	0.014
rs7708285	G	miss	0.013
rs7721054	T	miss	0.017
rs7744833	A	miss	0.012
rs7795371	A	miss	0.017
rs7798002	T	miss	0.032
rs780159	G	miss	0.016
rs7827182	G	miss	0.017
rs7854560	T	miss	0.012
rs7903146	T	miss	0.018
rs7932891	A	miss	0.014
rs7945962	A	miss	0.011
rs79664277	A	miss	0.021
rs797486	A	miss	0.037
rs7993238	C	miss	0.012
rs801593	G	miss	0.012
rs8024294	A	miss	0.018
rs8054299	C	miss	0.015
rs805768	T	miss	0.018
rs8066985	A	miss	0.023
rs8074638	A	miss	0.016
rs8080903	C	miss	0.015
rs8103017	G	miss	0.02
rs8126001	C	miss	0.016
rs8142329	G	miss	0.017
rs821100	G	miss	0.016
rs848286	T	miss	0.012
rs863750	T	miss	0.037
rs889129	T	miss	0.02
rs905938	T	miss	0.024
rs910071	C	miss	0.017
rs910382	G	miss	0.019
rs917191	C	miss	0.014
rs917681	T	miss	0.012
rs930653	A	miss	0.011
rs9341990	A	miss	0.015
rs9388766	C	miss	0.017
rs9415106	A	miss	0.014
rs9435732	C	miss	0.013
rs951252	G	miss	0.019
rs9644033	A	miss	0.022
rs9647379	G	miss	0.015
rs9678859	A	miss	0.019

Pulit et al. 2019

Not available Not available

| WAIST HIP RATIO (ADJUSTED BY BMI) | rs975385 | C | miss | 0.011 | Pulit et al. 2019 | Not available |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| WAIST HIP RATIO (ADJUSTED BY BMI) | rs9909443 | C | miss | 0.014 | Pulit et al. 2019 | Not available |

Supplementary table 3. ACR results of meta analysis of multivariate Mendelian randomization results for lipids adjusted by other lipids' betas in UK Biobank and CKDGen and in the two studies individually. 95\% confidence intervals in brackets.

Meta analysis

Trait	Beta IVW	P IVW	Beta Egger	P Egger	Beta WM	P WM	Beta PWM	P PWM
TRIGLYCERIDES adjusted by LDL CHOLESTEROL and HDL CHOLESTEROL	0.094 (0.073, 0.115)	$<1 \times \mathrm{E}-15$	0.112 (0.081, 0.144)	1.3E-02	0.052 (0.033, 0.071)	1.1E-07	0.048 (0.029, 0.068)	1.1E-06
HDL CHOLESTEROL adjusted by TRIGLYCERIDES and LDL CHOLESTEROL	0.011 (-0.005, 0.028)	1.7E-01	0.029 (0.006, 0.052)	1.3E-02	$0.008(-0.007,0.024)$	3.0E-01	-0.008 (-0.028, 0.012)	4.3E-01
LDL CHOLESTEROL adjusted by HDL CHOLESTEROL and TRIGLYCERIDES	0.018 (0.001, 0.035)	3.4E-02	$0.014(-0.012,0.040)$	3.0E-01	0.029 (0.014, 0.045)	$1.8 \mathrm{E}-04$	0.032 (0.016, 0.048)	9.6E-05

UK Biobank

Trait	Beta IVW	PIVW	Beta Egger	P Egger	Beta WM	P WM	Beta PWM	P PWM
TRIGLYCERIDES adjusted by LDL CHOLESTEROL and HDL CHOLESTEROL	0.069 (0.040, 0.098)	2.1E-05	0.092 (0.049, 0.134)	1.1E-04	0.048 (0.027, 0.070)	1.0E-05	0.044 (0.022, 0.066)	8.5E-05
HDL CHOLESTEROL adjusted by TRIGLYCERIDES and LDL CHOLESTEROL	0.003 (-0.018, 0.024)	7.6E-01	0.017 (-0.014, 0.048)	$2.8 \mathrm{E}-01$	$0.002(-0.016,0.019)$	8.6E-01	-0.035 (-0.060, -0.009)	8.6E-03
LDL CHOLESTEROL adjusted by HDL CHOLESTEROL and TRIGLYCERIDES	0.015 (-0.004, 0.034)	1.2E-01	0.026 (-0.004, 0.055)	9.1E-02	0.032 (0.016, 0.048)	1.1E-04	0.033 (0.016, 0.050)	1.5E-04

CKDGen

Trait	Beta IVW	P IVW	Beta Egger	P Egger	Beta WM	P WM	Beta PWM
TRIGLYCERIDES adjusted by	$0.123(0.092,0.154)$	$4.6 \mathrm{E}-10$	$0.136(0.091,0.181)$	$3.6 \mathrm{E}-07$	$0.064(0.023,0.106)$	$2.5 \mathrm{E}-03$	$0.064(0.022,0.106)$
LDL CHOLESTEROL and HDL CHOLESTEROL	$2.8 \mathrm{E}-03$						

HDL CHOLESTEROL adjusted by TRIGLYCERIDES and LDL CHOLESTEROL	$0.024(-0.002,0.049)$	$7.8 \mathrm{E}-02$	$0.044(0.010,0.079)$	$1.4 \mathrm{E}-02$	$0.031(-0.002,0.063)$	$6.4 \mathrm{E}-02$	$0.031(0.000,0.062)$	$5.4 \mathrm{E}-02$
LDL CHOLESTEROL adjusted by HDL CHOLESTEROL and TRIGLYCERIDES $0.028(-0.007,0.064)$ $1.2 \mathrm{E}-01$ $-0.031(-0.012,0.040)$ $3.0 \mathrm{E}-01$ $0.029(-0.047,0.056)$	$8.6 \mathrm{E}-01$	$0.026(-0.027,0.080)$	$3.4 \mathrm{E}-01$					

IVW = inverse variance weighted instrumental variable analysis, $W M=$ weighted median analysis, $P W M=$ penalised weighted median analysis.

Supplementary Table 4. UK Biobank and CKDGen grs and two sample Mendelian randomization results between investigated traits and ACR.

Trait	Beta grs	SE grs	P grs	Beta IVW	SE IVW	P IVW	Beta Egger	$\begin{gathered} \text { SE } \\ \text { Egger } \end{gathered}$	P Egger	$\begin{aligned} & \text { Egger int } \\ & p \end{aligned}$	Beta WM	SE WM	P WM	Beta PWM	SE PWM	P PWM
Diastolic BP	0.0839	0.0105	$1.4 \mathrm{E}-15$	0.0075	0.0018	7.6E-05	0.0011	0.0051	8.3E-01	1.83E-01	0.0080	0.0016	1.0E-06	0.0057	0.0021	5.9E-03
Systolic BP	0.0835	0.0115	4.7E-13	0.0035	0.0012	5.1E-03	0.0035	0.0038	$3.6 \mathrm{E}-01$	$9.98 \mathrm{E}-01$	0.0046	0.0010	$6.2 \mathrm{E}-06$	0.0037	0.0014	$6.5 \mathrm{E}-03$
HDL cholesterol	-0.0198	0.0065	$2.4 \mathrm{E}-03$	-0.0133	0.0122	$2.8 \mathrm{E}-01$	-0.0041	0.0179	8.2E-01	4.84E-01	0.0087	0.0091	$3.4 \mathrm{E}-01$	-0.0058	0.0171	7.4E-01
LDL cholesterol	0.0204	0.0059	4.9E-04	0.0271	0.0157	$1.3 \mathrm{E}-02$	0.0361	0.0160	$2.8 \mathrm{E}-02$	4.53E-01	0.0334	0.0088	$1.4 \mathrm{E}-04$	0.0270	0.0099	$6.5 \mathrm{E}-03$
Triglycerides	0.0568	0.0070	$3.6 \mathrm{E}-16$	0.0548	0.0149	6.1E-04	0.0581	0.0220	1.1E-02	8.37E-01	0.0460	0.0116	7.0E-05	0.0460	0.0188	1.5E-02
BMI	0.0260	0.0126	$3.9 \mathrm{E}-02$	0.0068	0.0149	6.5E-01	0.0916	0.0313	4.2E-03	$2.76 \mathrm{E}-03$	0.0093	0.0161	$7.8 \mathrm{E}-01$	0.0286	0.0194	$1.4 \mathrm{E}-01$
\% Body fat	-0.0758	0.0440	8.5E-02	-0.0661	0.0652	7.2E-01	0.2180	0.1532	9.0E-01	7.31E-02	-0.1170	0.0477	5.7E-01	-0.0753	0.0744	7.7E-01
Waist hip ratio (adjusted by BMI)	0.0391	0.0077	3.7E-07	0.0357	0.0106	8.8E-04	0.0936	0.0255	2.7E-04	$1.28 \mathrm{E}-02$	0.0503	0.0122	3.6E-05	0.0321	0.0127	1.1E-02
Fasting glucose	-0.0005	0.0004	$1.7 \mathrm{E}-01$	-0.0038	0.0370	9.2E-01	-0.0074	0.0727	9.2E-01	9.54E-01	-0.0143	0.0253	5.7E-01	-0.0125	0.0274	$6.5 \mathrm{E}-01$
Fasting insulin	0.0000	0.0006	9.9E-01	-0.0810	0.1364	5.7E-01	-0.8563	0.7542	$2.9 \mathrm{E}-01$	3.21E-01	-0.0415	0.0725	5.7E-01	-0.0394	0.0844	6.4E-01
T2D	0.0010	0.0003	$6.4 \mathrm{E}-04$	0.0176	0.0041	$\begin{gathered} 5.53 \mathrm{f}- \\ 05 \end{gathered}$	0.0232	0.0082	$6.5 \mathrm{E}-03$	4.4E-01	0.0233	0.0051	5.2E-06	0.0260	0.0063	$\begin{gathered} 3.28 \mathrm{E}- \\ 05 \end{gathered}$

CKDGen

Trait	Beta grs	SE grs	P grs	Beta IVW	SE IVW	P IVW	$\begin{aligned} & \text { Beta } \\ & \text { Egger } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { Egger } \end{aligned}$	P Egger	Egger int p	Beta WM	SE WM	P WM	Beta PWM	SE PWM	P PWM
Diastolic BP	Not available	Not available	Not available	0.0136	0.0029	1.3E-05	-0.0062	0.0082	4.5E-01	$1.1 \mathrm{E}-02$	0.0143	0.0035	4.0E-05	0.0143	0.0035	5.6E-05
Systolic BP	Not available	Not available	Not available	0.0104	0.0019	3.7E-07	-0.0043	0.0055	4.3E-01	$5.5 \mathrm{E}-03$	0.0097	0.0022	1.1E-05	0.0098	0.0021	4.4E-06

HDL cholesterol	Not available	Not available	Not available	-0.0098	0.0131	4.6E-01	0.0269	0.0175	1.3E-01	3.0E-03	0.0307	0.0161	5.7E-02	0.0307	0.0161	5.7E-02
LDL cholesterol	Not available	Not available	Beta grs	SE grs	P grs	2.4E-01	-0.0262	0.0292	3.7E-01	4.3E-02	0.0029	0.0265	9.11-01	0.0253	0.0259	3.3E-01
Triglycerides	Not available	Not available	Not available	0.0697	0.0159	6.0E-05	0.0713	0.0231	3.4E-03	9.3E-01	0.0641	0.0212	2.5E-03	0.0641	0.0214	2.7E-03
BMI	Not available	Not available	Not available	0.0885	0.0292	3.4E-03	0.0662	0.0717	3.6E-01	3.9E-03	0.0559	0.0434	2.0E-01	0.0562	0.0434	2.0E-01
\% Body fat	Not available	Not available	Not available	-0.2947	0.0804	2.9E-03	-0.2399	0.2355	3.3E-01	8.0E-01	-0.3053	0.1197	1.11-02	-0.3053	0.1147	7.8E-03
Waist hip ratio (adjusted by BMI)	Not available	Not available	Not available	0.0651	0.0271	1.7E-02	0.1478	0.0805	6.8E-02	2.8E-01	0.0435	0.0398	2.7E-01	0.0305	0.0407	4.5E-01
Fasting glucose	Not available	Not available	Not available	-0.0337	0.0499	5.1E-01	-0.0921	0.0940	3.4E-01	4.7E-01	-0.0321	0.0560	5.7E-01	-0.0321	0.0551	5.6E-01
Fasting insulin	Not available	Not available	Not available	0.0561	0.1483	7.1E-01	-1.8712	0.8257	4.3E-02	2.9E-02	-0.0150	0.1282	9.11-01	-0.0150	0.1287	9.1E-01
T2D	Not available	Not available	Not available	-0.0133	0.0100	1.9E-01	0.0022	0.0216	9.2E-01	4.2E-01	-0.0009	0.0164	9.5-01	-0.0009	0.0164	9.5E-01

Standard deviation differences in ACR per standard deviation differences in genetically instrumented lipids measures.
No evidence of heterogeneity was noted between the MR estimates for the two different studies for HDL ($p=0.844, \mathrm{l}$-square 0.0%), LDL ($p=0.788, \mathrm{l}$-square 0.0%) and triglycerides ($\mathrm{p}=0.494$, l-squared 0.0%).

[^0]: General rights
 Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights

 - Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain.
 - You may freely distribute the URL identifying the publication in the public portal.

 ## Take down policy

 If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

