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Abstract
Motivation: PheGWAS was developed to enhance exploration of phenome-wide pleiotropy at the genome-wide 
level through the efficient generation of a dynamic visualization combining Manhattan plots from GWAS with 
PheWAS to create a three-dimensional “landscape”. Pleiotropy in sub-surface GWAS significance strata can be 
explored in a sectional view plotted within user defined levels. Further complexity reduction is achieved by 
confining to a single chromosomal section. Comprehensive genomic and phenomic coordinates can be displayed.

Results: PheGWAS is demonstrated using summary data from Global Lipids Genetics Consortium (GLGC) 
GWAS across multiple lipid traits. For single and multiple traits PheGWAS highlighted all eight-eight and sixty-
nine loci respectively. Further, the genes and SNPs reported in GLGC were identified using additional functions 
implemented within PheGWAS. Not only is PheGWAS capable of identifying independent signals but also 
provide insights to local genetic correlation (verified using HESS) and in identifying the potential regions that 
share causal variants across phenotypes (verified using colocalization tests).

Availability and Implementation: The PheGWAS software and code are freely available at 
(https://github.com/georgeg0/PheGWAS).

Contact: a.doney@dundee.ac.uk, g.z.george@dundee.ac.uk 

Supplementary information: Supplementary paper is attached.

1 INTRODUCTION
The potential of personalized medicine has evolved extensively in the last 
decade with the development of genome-wide association studies 
(GWAS), which is a powerful method for exploring the genetic 
architecture underlying diseases and traits affecting humans. Large 
Bioresources like UK Biobank (https://www.ukbiobank.ac.uk) and 
eMERGE (https://emerge.mc.vanderbilt.edu ) that combine genomic data 

with electronic medical records of study participants provide opportunities 
to perform GWAS across many different diseases and traits. Systemically 
analyzing the enormous volume of data produced in these studies is one 
of the most significant issues at present. The ability to visualize complex 
data can significantly enhance its exploration and understanding (Li et al., 
2012). Applying this to the exploration of many genetic variants over 
many diseases demands data visualization tools which present the data in 
an intuitive way that is also capable of efficiently handling very large 
volumes of data.

© The Author(s) 2019. Published by Oxford University Press. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the 
original work is properly cited. 
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The Manhattan plot is the most readily available and established way to 
visualize GWAS and provides instant appreciation of the underlying 
genetic structure of the disease or trait being studied. It comprises a scatter 
plot of the positions of the SNPs along each autosomal chromosome on 
the x-axis and the y-axis corresponding to the significance of the 
association (expressed as -log10(p)) with the particular phenotype in 
question. In spite of its ubiquitous use in GWAS only the very significant 
loci can be visualized by this static representation although in this context 
this is not a limitation as the aim is to identify only the top-most significant 
SNPs. In order to appreciate underlying deeper structure with weaker 
associations tools like qqman (D. Turner, 2018) are required. Regional 
GWAS are also offered by LocusTrack (Cuellar-Partida et al., 2015) 
which is another tool which combines the features of LocusZoom (Pruim 
et al., 2010) and SNAP plot (Johnson et al., 2008) and allows to choose 
between plotting the p values or linkage disequilibrium (LD) on the y-axis. 

All such GWAS data visualizations are for “many variant - one 
phenotype” studies. However, when a researcher is interested in 
pleiotropy (Gratten and Visscher, 2016) and therefore requires to assess if 
particular variants are associated across a group of phenotypes PheWAS 
is undertaken which is the reverse of GWAS and considers the “one 
variant-many phenotypes”, providing a mechanism to detect pleiotropy 
(Roden et al., 2010). Software like PheWAS-view (Pendergrass et al., 
2012) and R-PheWAS (Carroll et al., 2014) have been developed to 
visualize and summarize PheWAS results at both individual and larger 
population level, enabling the exploration of pleiotropy for  single SNPs 
(Pendergrass et al., 2012). 

We describe a combination of these approaches in a “many variants-many 
phenotypes” scenario (Fig 1) to enable visualization of genome-wide data 
plots across a number of phenotypes as a three-dimensional landscape (Fig 
2). This approach which we refer to as PheGWAS might assist in 
understanding or exploring pleiotropy at  a genome wide scale (Heinrich 
et al., 2012). 

2 METHODS

2.1 PheGWAS analysis 

PheGWAS allows dynamic interactive three-dimensional visualization 
and exploration of a genome-wide by phenome-wide landscape broadly at 
two levels – the entire genome level and by single chromosome level. Both 
of these levels can be explored at any user configurable significance level 
in a “sectional view”.  This is achieved by selecting a significance interval 
on the y-axis and displaying the peaks in a substratum of the landscape 
within the selected threshold (Fig 4). 

PheGWAS implements orbital rotation and turntable-rotation. 
Furthermore, it also provides a pan feature to enable an aligned display. 
Turntable rotation of the x-axis brings us to the heatmap (Fig 3) which is 
the projection of the surface into the coordinate planes perpendicular to 
the z-axis in the three-dimensional space. The heatmap is highlighted 
according to the corresponding y-axis value (i.e., -log10(p)) and provides 
a flyover view of the landscape across all chromosomal strips. 

2.1.1 Entire genome level

At the entire genome level, PheGWAS provides an overview of the entire 
landscape (Fig 2). Here, as in a conventional Manhattan plot the x-axis 
represents the autosomal chromosomes (i.e., chromosomes 1-22) and the 
y-axis represents the -log10(p) of the GWAS summary statistics the 
additional z-axis represents the range of phenotypes. To de-clutter the 
view, considering that there may be multiple peaks in each chromosome, 
only the maximum -log10(p) is selected as is the case for each user 
selectable substrata (see below). 

Each of the phenotypes are overlaid simultaneously on the same graph 
giving rise to the “see-through” landscape topology. Axis grid lines appear 
spontaneously as a cursor is moved over the landscape to show a precise 
position of the SNPs. At exact SNP positions, a dialog box appears 
showing the phenotype, chromosome, SNP ID, -log10(p), effect size, 

                    

Fig 1: Visualization of the foundational backbone of the 
PheGWAS concept

Fig 2: A PheGWAS graph for the phenotypes, SBP, DBP, HDL, 
Triglycerides and Cholesterol illustrating the interactive landscape. 
Rotating the x-axis of the graph will allow a clear picture of the 
heatmap.
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standard error, allele 1, allele 2, locus and the gene symbol.  This provides 
a quick orientation point on the PheGWAS landscape.

2.1.2 Single chromosomal plot 

From this entire genome overview the user can select a single chromosome 
for more granular exploration (Fig 5). Here the x-axis corresponds to base 
pair interval segments (see below) along the selected chromosome.  As for 
the entire genome level, the y and z axis correspond to the -log10(p) of the 
GWAS summary statistics and the phenotypes respectively. Several 
background processes are required to produce the single chromosome plot. 

The length of the chromosome can be divided into equal base pair interval 
segments predefined by the user (default 1M base pairs), giving rise to a 
systematic order of groups of SNPs. Alternatively it can be divided based 
on LD blocks (Berisa and Pickrell, 2016) defined by the population (e.g. 
Asian, European, or African), where the input is the conventional ‘bed’ 
file that has chromosome name and the start and end position of the block. 
This provides the opportunity of discriminating peaks that represent 
pleiotropy across phenotypes or simply constitute discrete separate 
signals.

A base pair interval segment in a single chromosome is selected for 
display only if there are one or more peaks in that segment along the z-
axis that have a -log10(p) greater than 6 (minimum significant threshold). 
Similar to the sectional view for the whole genome, a sectional view with 
a minimum significant threshold can be chosen for the single 
chromosomal plot. Within a selected base pair interval segment, only the 
highest peak for each phenotype (z-axis) is plotted, any base pair interval 
segment which has no peak greater than the selected minimum significant 
threshold is omitted from the plot making. Here again, the axis grid lines 
help to spot a more precise location of the SNP.

2.1.2.1 Modules implemented in single chromosomal 
view

To facilitate in depth exploration of the PheGWAS landscape several 
example modules have been implemented within the single chromosome 
view. It is anticipated that these will be further developed and added to by 
users.

Gene View Heat Map

Researchers might find the visualization of SNPs challenging if there is a 
large variation in the -log10(p). This is because a particular SNP with the 
highest -log10(p) and its corresponding phenotype will be highlighted in 

Fig 3: An illustration of the heatmap produced by PheGWAS (single chromosomal view for 19th chromosome). The highlighted regions represent the SNPs 
with significant -log10(p). This helps the user to decide which all chromosomes will be selected for the individual level chromosomal view.

a) rs2075650 found to be significantly associated (p value: 9.7e-26) with HDL (SNPS in LD: NA)

b) rs7254892 found to be significantly associated (p value: 1.6e-320) with LDL (SNPS in LD: rs3208856, rs283813, rs61679753, rs7412, rs75627662, 
rs445925)

c) rs7412 found to be significantly associated (p value: 1.6e-283) with TOTAL CHOLESTROL (SNPS in LD: rs6859, rs7254892, rs61679753, rs405509, 
rs445925)

d) rs439401 found to be significantly associated (p value: 1.4e-66) with TRIGS (SNPS in LD: rs75627662, rs445925)
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the heatmap at the top of the heatmap scale. As a consequence of the 
available scale range an adjacent -log10(p) may still be significant but may 
not be highlighted in the heatmap potentially concealing the association 
from the researcher. To counter this, PheGWAS provides a different 
heatmap view by identifying identical genes across phenotypes within a 
user customized base pair group. This heatmap highlights phenotypes that 
share variants within the same gene locus and highlights all the SNPs 
above the pre-selected threshold -log10(p) with uniform brightness.

Effect Size Plot
PheGWAS allows the user to view the relative size of the biological effect 
by providing effect size (Beta or OR) on the y-axis in this plot rather than 
-log10(p). The heatmap continues to be highlighted according to the -
log10(p) allowing the user to view both statistics simultaneously (Fig 6).

Linkage disequilibrium (LD) block-based chromosome segmentation 
In a base pair interval segment PheGWAS can identify SNPs in LD with 
the most significant SNP being plotted. Here the LD threshold and 
population used to derive the LD are user customizable. An option to find 
the mutual LD SNPs between the phenotypes has been featured, to assist 
identifying SNPs that are in LD shared between phenotypes. This is 
displayed in the pop-up window.

In addition, PheGWAS identifies the number of SNPs which are in LD 
with the SNP with highest -log10(p) and the total number of SNPs above 
the set threshold. Finally, the ratio of these two gives the proportion of 
linked SNPs with genome-wide significance which is displayed in the 
pop-up along with the other information.

While selecting the highest peak declutters the image for viewing, the LD 
module is helpful to further verify information such as whether a signal is 
independent or in identifying false signals.

SNP thinning based on LD functionality 

This function allows the user to capture the independent signals or the 
signals which are buried inside a base pair interval segment. By default, 

PheGWAS displays the SNP with the highest significance. Following this, 
all the SNPs which are in LD with this SNP are removed. This is similar 
to clumping ( http://zzz.bwh.harvard.edu/plink/clump.shtml ) but without 
the requirement of having individual level data. The user can perform this 
process recursively and specify the depth of moving downwards for 
independent signals within a base pair interval segment.

Export regional data for further analysis.

If a region is found to be of interest, then the summary statistics of this 
region can be exclusively exported to undertake further analysis such as 
identifying colocalized signals with external tools (see section 3.3). 

3 IMPLEMENTATION 

The PheGWAS code has been scripted in R. The code is wrapped as a 
package executed in two phases. The first phase (executed once) accepts 

Fig 4: A PheGWAS plot for the phenotypes, SBP, DBP, HDL, 
Triglycerides and Cholesterol with a sectional view of -log10(p) 
greater than 100 (entire genome level)

Fig 6: A PheGWAS effect size plot for the sectional view of a single 
chromosome (19th chromosome), produced by plotting the SNPs above a 
certain threshold of significant values of phenotypes, SBP, DBP, HDL, 
Triglycerides and Cholesterol

Fig 5: A PheGWAS plot for the sectional view of a single 
chromosome (19th chromosome), produced by plotting the SNPs 
above a certain threshold of significant values of phenotypes, 
SBP, DBP, HDL, Triglycerides and Cholesterol
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the GWAS summary files as R data-frames to format it into a single data-
frame that can be accepted in the second phase. By default, in the second 
phase, PheGWAS generates an interactive 3D plot for all chromosomes. 
To plot an individual chromosome, the chromosome number must first be 
provided. Similarly, for the sectional view, a -log10(p) interval is required. 
PheGWAS plots are rendered using a package called ‘plotly’ 
(https://plotly-r.com ). There is an option to save the plots as an interactive 
HTML webpage or a static diagram. It is recommended to save this as 
interactive HTML as this gives the full power to the user to explore and 
demonstrate the data within the visualization.

SNP ID and genome location data within the GWAS file is mapped to the 
respective GENE region that it falls into. This mapping is implemented 
using the BioMart R package, which gives the associated gene for each 
SNP ID in the GWAS summary file. 

PheGWAS connects to ensemble (https://www.ensembl.org) to get the LD 
values between the top significant SNP and all other variants within the 
same base pair interval segment. SNPs reaching a certain threshold 
(default r2 = 0.75 and d’ = 0.75) are shown in the pop-up.

For the demonstration provided in this paper (each summary statistics files 
having ~ 2.5 million SNPs), the first phase of PheGWAS takes 
approximately 284,000 milliseconds and second phase takes 
approximately 400 milliseconds to complete (tested against running 
function in a server with 8 GB RAM). 

3.1 PheGWAS applied example: Using Global Lipids 

Genetics Consortium (GLGC) summary statistics 

file

To demonstrate and validate PheGWAS, we used summary data from 
GLGC (Grallert et al., 2013). GLGC examined 188,577 individuals to 
identify new loci and refine estimates for previously known loci 
influencing plasma levels of low-density lipoprotein (LDL), high-density 
lipoprotein (HDL) cholesterol, triglycerides and total cholesterol. This 
revealed eighty-eight SNPs associated with single traits and the sixty-nine 
SNPs associated with multiple traits.  For the current PheGWAS analysis, 
a cut-off -log10(p) of 6.5 and base pair division value of 1M base pair was 
used.

The 19th chromosome was selected to showcase a detailed PheGWAS 
analysis and the possible inferences from it. By viewing the heatmap of 
the z/x plane, the pattern of genomic significant region across the whole 
chromosome for multiple traits is demonstrated. 

3.1.1 Preparing the summary statistics file

In order to visualize the GLGC data on a PheGWAS plot it was necessary 
to first map SNPs to respective genes using the BioMart package 
(http://bioconductor.org/packages/release/bioc/html/biomaRt.html). 
Because this process does not allow for customized mapping windows of 
SNPs to genes, to keep it in line with GLGC, a 100K base pair interval 
window was used to manually map genes.  Files from two sources were 
used for mapping. One from UCSC genome-mysql.soe.ucsc.edu ftp server 
for SNP rsid’s with respective chromosomes start and end position and the 

other from the Genome Reference Consortium Human Build 37 
(GRCh37), for the genes to map to the chromosome position. These were 
used to map the gene names to SNPs, using bedmap 
(https://bedops.readthedocs.io/ ) to look for SNPs whose positions overlap 
with the genes in the 100K base pair window.  

3.2 PheGWAS validation
Validation was carried out at the chromosomal level for each of the 
twenty-two chromosomes. For single and multiple traits, there were three 
stages: -

i. Overall significant SNP Display – Whether the same significant 
SNPs region as reported by GLGC were displayed in the 
PheGWAS heatmap. 

ii. Corresponding Gene Symbol display  – This determined whether 
the gene mapping process for the GLGC summary data in 
PheGWAS had been successful so that the gene symbol associated 
with a particular SNP in GLGC data is the same as gene indicated 
by PheGWAS 

iii. Identifying SNPs by base pair interval – In this process it was 
determined whether PheGWAS successfully indicated the same 
SNP within the same 100kb base pair interval segment as GLGC 
(chromosomal locus).

SNPs highlighted by PheGWAS in a particular base pair interval 
segment with the lowest p value (the default) that were identical to 
those reported by GLGC were categorized as A

SNPs reported by GLGC are in LD (using LD functionality; if 
r2>0.75 and D’>0.75) with the SNPs highlighted by PheGWAS in 
a particular base pair interval segment were categorized as B.

If the SNP reported by GLGC are neither in category A nor in 
category B, then it is categorized as C and we apply the SNP 
thinning functionality to see if we can find the buried SNP in the 
base pair interval segment. The level mentioned in bracket will 
indicate the depth at which the SNP is found.

3.3 Further analyses on data exported from PheGWAS
For the purpose of verifying the local genetic correlation we used a 
quantitative method -ρ-HESS (Shi et al., 2017) across phenotypes. ρ-
HESS analysis was carried out only on TC and LDL as ρ-HESS is only 
capable considering 2 traits at a time.

If a genomic region is identified as having a shared genetic component 
across two or more phenotypes, it’s important to know if a potentially 
causal variant is involved. Usually a colocalization test is done on this 
region to see if there are colocalized traits and identify any causal variant 
involved. Available statistical software’s like MOLOC (Giambartolomei 
et al., 2018) and HyPrColoc (Foley et al., 2019)were used for performing 
colocalization tests for multiple phenotypes. The base pair region 45 in the 
19th chromosome was selected as an example.

4 RESULTS

4.1 Demonstration of PheGWAS – A Walkthrough
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4.1.1 Entire genome level

From the initial entire genome view, for chromosome 19, four genomic 
peak regions in the interactive visualization were demonstrated 
corresponding to HDL, LDL and Triglycerides and Total Cholesterol (Fig 
2.  NB only the largest two peaks are visible in this static rendition).

4.1.2 Single 19th chromosomal level

To locate the exact position of the SNPs in these four peaks the 19th 
chromosome is selected for the single chromosomal view. Here a view of 
the significant peaks for each of the base pair regions is available (Fig 3). 
The cursor is hovered over the heatmap to carry out an inspection of base 
pair positions. 

Further, by viewing the heatmap (Fig 3) of the PheGWAS plot for GLGC 
traits, several GWAS significant genomic regions were observed. This 
suggests further scrutiny of the shared genetic architecture in this region.  

Using the data export function local genetic correlation across phenotypes 
LDL and TC was verified using ρ-HESS plot. The peaks that were found 
in PheGWAS plot (Supplementary Fig 1) were also found in the ρ-HESS 
plot (Supplementary Fig 2). 

The PheGWAS plot indicates that base pair region 45 in the 19th 
chromosome contains a genetic architecture shared between the 
phenotypes. The popup window shows the number of SNPs that reached 
significant threshold in this region and are shared between different traits. 
(Fig3). This suggests performing a multiple trait colocalization analysis. 
The export function was used to get the summary statistics of this base 
pair region which was used to perform multiple traits colocalization 
analysis. The results are shown (Supplementary Section 1). 

4.2 Summarizing PheGWAS results using GLGC 
summary statistics file

For displaying overall significant SNPs from GLGC, the heatmap was 
able to provide a visual display of all the significant regions identified 
within GLGC data (Supplementary tables 1a and 2a – column 6). 
However, this was verified with tables provided by PheGWAS 
(Supplementary tables 3 - 23).

The corresponding gene symbols identified by PheGWAS were also 
compared to the ones identified by GLGC. In single traits, seventy-seven 
genes reported by GLGC within that base pair interval segment were also 
identified by PheGWAS (Supplementary tables 1a - column 7). In 
multiple traits, fifty-nine genes reported by GLGC within that base pair 
interval segment were also identified by PheGWAS (Supplementary 
tables 2a - column 7). Any minor discrepancies were attributed to different 
resources used for gene annotation. 

For SNP identification by base pair interval, in single traits, sixty-three 
SNPs reported by GLGC with the lowest (p value) within that base pair 
interval segment were also identified by PheGWAS (Category A, 
Supplementary tables 1a – column 8).  Twenty-two SNPs detected by 
PheGWAS were in LD (Supplementary tables 1c) with the SNP reported 
by GLGC (Category B, Supplementary tables 1a– column 8).  Three SNPs 
were found by SNP thinning functionality (Category C, Supplementary 
tables 1a- column 8). For multiple traits, twenty one SNPs reported by 

GLGC with  the lowest (p value) within that base pair interval segment  
were identified by PheGWAS and were marked as A (Supplementary table 
2a – column 8), forty four SNPs detected by PheGWAS were  in LD 
(Supplementary tables 2c ) with the SNP reported by GLGC and marked 
as B (Supplementary table 2a – column 8)   and four SNPs were found by 
SNP thinning functionality and marked as C (Supplementary tables 2a- 
column 8).

The summary table for single and multiple traits have been provided 
separately. (Supplementary tables 1b and 2b)

A complete list of the PheGWAS findings of genes and SNPs of all the 
twenty-two chromosomes is provided (Supplementary Tables 3-23).

5 DISCUSSION AND CONCLUSION
PheGWAS creates a new three-dimensional visualization approach for 
many SNPs against many phenotypes to aid scientific research. Endeavors 
to visualize results of multiple GWASs on a single plot have been made 
in the past. Researchers like Wang et al.(Wang et al., 2016) and Hoffman 
et al.(Hoffmann et al., 2018) have demonstrated visualizing results of 
more than one GWAS simultaneously to view multiple regions associated 
with a particular phenotype, by overlapping two Manhattan plots. There 
are shortcomings of static, non-interactive data visualization. Interactive 
data visualization permits more comprehensible representation supporting 
the user to find solutions to distinct scientific problems(Khramtsova and 
Stranger, 2017). Further developments have been made to make these 
static plots more interactive for the user by R/qtlcharts(Broman, 2015) and 
Zbrowse(Ziegler et al., 2015).  Visualization of the Manhattan plot 
becomes an insurmountable challenge when hundreds of thousands of 
SNPs are plotted. To deal with this existing interactive browsers for 
visualization of multiple GWAS experiments such as Zbrowse (Ziegler et 
al., 2015) and Assocplots (Khramtsova and Stranger, 2017) have put a 
restriction on the sample size by selecting top 5000 and 1000 SNPs 
respectively. 

Unlike the static and non-interactive Manhattan plot, PheGWAS does not 
plot all existing points but only focuses on SNPs over a certain pre-decided 
level of significance. The advantages of the PheGWAS plot are many; 
genetic variants can be browsed over multiple phenotypes in a single user 
definable plot which can be dynamically manipulated. Also, compared to 
a PheWAS plot, PheGWAS plots provide the chance to view different 
regions and traits at the same time allowing immediate identification of 
pleiotropic effects for multiple loci and multiple phenotypes. This 
enhances the researcher’s opportunity for subsequent data analysis such 
as appropriate covariate selection in identifying genetic modifiers or for 
the construction of various predictive models that estimates the effect of a 
predictor on the response, in the presence of pleiotropy, like Genetic 
Instrumental Variable regression.

Using the example of the GLGC summary data it was seen that PheGWAS 
is highly efficient in identifying SNPs and associated genes with an 
additional visual landscape representation by providing the researcher a 
walk- through of the SNP hit exploration.  Although the current state of 
PheGWAS cannot perform any statistical analysis for colocalization it can 
provide export data of regions of interest within the chromosome view that 
can be taken further for a colocalization study as demonstrated. This 
identification process of the region from the PheGWAS plot makes 
comparison of the association signals visually seamless rather than the 
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traditional method of manually overlaying plots on top of each other 
(Kanduri et al., 2019). 

While our demonstration considered a number of phenotypes PheGWAS 
can also be used to identify the different genetic architecture for the same 
trait between cohorts, such as population stratifications based on 
ethnicities and gender, provided the GWAS summary statistics data is 
available for each sub-group (in the package the gender data of BMI from 
giant consortium is provided ). It does not, however, put any restriction on 
the number of sub-groups to be plotted.  

Some of the limitations of PheGWAS were identified – it does not 
consider sample size variation, does not integrate by weighing the p-
values, and insights towards the local genetic correlations can’t explain 
the negative correlation between the traits and the region. PheGWAS is an 
ongoing project in which efforts are being made to implement these 
techniques for making it more appropriate for comprehensive gene-
disease association analysis.

6 FUTURE IMPLEMENTATIONS
 
In PheGWAS, at each level, the plots allow investigation of each 
chromosome in greater detail than the previous level. In this report we 
have demonstrated the highest level of visualization of all chromosomes, 
sectional visualization of significance strata and the single chromosomal 
view. We envisage a progression to furthermore detailed views being 
developed by the user community on the basis of the shared open source 
software in GitHub. Such as creating a three-dimensional scatter plot for 
a specific base pair group and significance interval that expand the two-
dimensional locus- specific plots for single phenotype SNP stack provided 
by LocusZoom (Pruim et al., 2010) into multi-phenotype three 
dimensions. We also envisage future incorporation of additional 
information in SNP annotations by connecting to external databases such 
as DisGeNET (http://www.disgenet.org) for gathering published research 
about associations of gene with any other diseases. Functionality for 
adding expression quantitative trait loci (eQTL) and methylation 
quantitative trait loci (mQTL) to the plot will help to understand the 
molecular alterations within a selected region in PheGWAS.  The  
provision of information about the SNPs in LD as well as a measure of 
pleiotropic effects, if present, similar to the one provided by ShinyGPA 
(Kortemeier et al., 2018) we believe would also be useful. 

We are considering a future implementation of RShiny (an R package to 
build interactive web applications) to provide greater flexibility for 
interacting when passing parameters to PheGWAS. The Shiny program 
could be hosted in any local server and be used as an interactive way to 
pass the parameters for a PheGWAS. Interactive nature gives the user the 
ability to upload the GWAS summary files to the web interface and then 
perform the PheGWAS on the entire chromosome or any chromosomes 
from the dropdown menu. The threshold to use for the sectional view can 
also be set according to the user preference.
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