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Abstract 

Bicuculline, a valued chemical tool in neurosciences research, is a competitive antagonist of specific 

GABAA receptors and affects other pentameric ligand gated ion channels including the glycine, nicotinic 

acetylcholine and 5-hydroxytryptamine type 3 receptors. We used a fluorescence quenching assay and 

isothermal titration calorimetry to record low micromolar dissociation constants for N-methylbicuculline 

interacting with acetylcholine binding protein and an engineered version called glycine-binding protein 

(GBP), which provides a surrogate for the heteromeric interface of the extracellular domain of the glycine 

receptor (GlyR). The 2.4 Å resolution crystal structure of the GBP:N-methylbicuculline complex, sequence 

and structural alignments reveal similarities and differences between GlyR and the GABAA receptor 

bicuculline interactions. N-methylbicuculline displays a similar conformation in different structures but 

adopts distinct orientations enforced by interactions and steric blocks with key residues and plasticity in the 

binding sites. These features explain the promiscuous activity of bicuculline against the principal inhibitory 

pentameric ligand gated ion channels in the CNS. 

 

Introduction 

The alkaloid bicuculline competitively antagonises activation of the inhibitory GABAA receptor 

(GABAAR) by the native agonist g-aminobutyric acid.[1-3] This natural product has played a seminal role in 

early studies of synaptic transmission in particular helping to characterise the role of g-aminobutyric acid 

as a neurotransmitter.[3,4] Subsequently, concerns linked to compound instability, poor solubility and 

activities on other receptors were raised.[5,6] Bicuculline has poor aqueous solubility, and is highly 
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susceptible to hydrolysis of the lactone moiety, with a half-life of 45 minutes at physiological pH, to 

produce inactive bicucine.[7] These complicating factors can be overcome by using the N-methylbicuculline 

salts (Figure 1A), which are more stable and soluble.[2,8,9] However, an issue previously described is the 

haphazard reporting of which variant has been used in experiments.[2] A point we will mention again. The 

alkaloid is also active against related pentameric ligand gated ion channels (pLGICs) including the other 

inhibitory system, the glycine receptor (GlyR),[10] the excitatory serotonin and nicotinic acetylcholine 

receptors (nAChR). This complication is compounded by activity against the unrelated calcium-activated 

potassium channels.[11,12] A range of IC50 values for activity against different receptors is presented in 

Supplementary material Table S1. 

Bicuculline is GABA competitive and interacts with the orthosteric site of pLGICs.[3] The 

compound also acts as an inverse agonist, inhibiting GABAA-receptor subtype activity that is independent 

of agonist binding to the orthosteric site.[13,14] Since receptor specific residues, at key positions influence 

pLGIC ligand specificity and affinity [15-17] we sought to understand how this semi-rigid compound was 

able to antagonise the transmission of inhibitory potentials in the distinctive GlyR and GABAAR systems. 

These receptors consist of intracellular, transmembrane and extracellular domains.[15,16] The acetylcholine-

binding protein from Aplysia californica (AcAChBP) shares sequence identity and structural homology 

with the extracellular domain (ECD) of pLGICs, and has been exploited as a surrogate system.[18-20] We 

engineered an AChBP derivative called glycine binding protein (GBP) as a surrogate for the physiologically 

relevant β[+]/α[-] heteromeric interface of GlyR.[21] The orthosteric binding site is formed at the interface 

of two subunits with three loops (termed A-C) contributed from the principal [+]-subunit, and the [-]-

complementary subunit donates another four loops, D-G (Figure 1B-D). We have characterised the 

interactions between N-methylbicuculline, also termed (-)-bicuculline methiodide with AcAChBP and 

GBP. Affinity and thermodynamic data are derived from a tryptophan fluorescence quenching assay and 

isothermal titration calorimetry (ITC). We attempted to co-crystallize N-methylbicuculline with wild type 

AcAChBP and variants generated by site-directed mutagenesis to investigate aspects of GlyR and GABAAR 

activity to no avail. We did however obtain a crystal structure of the N-methyl derivative with GBP at 2.4 

Å resolution that provides a description of interactions in the neurotransmitter or orthosteric binding site 

and infers how the ligand modulates GlyR activity. Comparisons with GABAAR amino acid sequences and 

a structure derived by cryogenic-electron microscopy (cryo-EM)[22] inform a discussion about the 

promiscuous activity of the alkaloid against this sub-group of the pLGIC family. 

 

Results and Discussion 
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Bicuculline, and the more stable N-methyl derivative are primarily hydrophobic, and semi-rigid with a 

single C-C bond about which rotation defines the alignment of the dioxolophthalide and 

dioxoloisoquinolium moieties with respect to each other (Figure 1A). The solvent accessible surface area 

of N-methylbicuculline is around 520 Å2 with a polar surface area of only about 70 Å2. There are six oxygen 

atoms capable of accepting hydrogen bonds and with an estimated pKa of 14.7, under physiological 

conditions bicuculline is protonated and a hydrogen bond can be donated by the quaternary ammonium. 

The N-methyl derivative lacks this hydrogen bond donating capacity. 

 There is a requirement to use DMSO to dissolve the ligand at a concentration required to investigate 

binding. Given the potential complications of using this solvent[23] we first ascertained how it might affect 

GBP. We characterized the thermal stability of GBP by recording the inflection point of a melting curve in 

different levels, 0 to 10%, of DMSO. This indicated that 2% DMSO could be appropriate. Next, a time 

course experiment indicated that for binding assays the 2% DMSO level was not deleterious to the sample. 

Control experiments were carried for ITC and fluorescence measurements allowing us to take into account 

the presence of DMSO in the binding assays. 

The binding of N-methylbicuculline to GBP and AcAChBP was investigated using a fluorescence 

quenching assay exploiting the presence of Trp164 in the binding site and gave dissociation constant (Kd ) 

values of 8.7 ± 0.5 µM and 1.2 ± 0.1 µM respectively (Supplementary material Figure S1). An orthogonal 

ITC assay resulted in thermodynamic dissociation constant (KD) values of 29.6 ± 10.0 µM and 4.7 ± 1.6 

µM (Supplementary material Figure S2). We note however, that the molar ratios for N-methylbicuculline 

binding (mol ligand/mol pentamer) derived from the ITC data are not 5:1 as would be expected for a single 

site binding event but rather 4:1 for the association with AcAChBP and nearly 12:1 with GBP. In 

comparison, use of a 3H-strychnine competition binding assay gave IC50 values of 5-6 µM for bicuculline 

acting on the GlyR[24,25] whilst electrophysiology experiments recorded values in the range 169 to 300 µM 

for N-methylbicuculline.[26,27] When tested against mammalian nAChRs, again using an electrophysiology 

assay, bicuculline retained antagonist properties with IC50 values in the range 12 to 34 µM, moreover with 

Hill coefficients demonstrated to be close to unity.[28]  It has been noted, using ITC,[29] that certain ligands 

for example carbamylcholine bind the pentameric AcAChBP with a molar ratio of 2.5:1 yet with no 

evidence for cooperativity or allosteric transitions in this protein. Carbamylcholine displays a similar 

affinity for AcAChBP, 7.6 ± 0.4 µM[29] as N-methylbicuculline and the reason for the low molar ratio is 

unclear. Other ligands (e.g. acetylcholine) fit the 5:1 ratio. Our ITC data were derived from curves with low 

c values of between 3 and 7. Whilst not optimal such values are considered acceptable[30] with the proviso 

that some caution should be exercised when drawing conclusions. In our case, we note a consistency in the 

data derived using two distinct biophysical assays. We note also that the binding of N-methylbicuculline 
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and bicuculline occurs with comparable affinity to AcAChBP, GBP and to members of the pLGIC 

superfamily. Contrary to observations with AcAChBP, the molar ratio with GBP may indicate the presence 

of multiple binding sites.  

The crystal structure of the GBP: N-methylbicuculline complex has a pentamer in the asymmetric 

unit with each orthosteric site occupied by a single molecule of ligand (Figure 1B, Supplementary material 

Table S1, Figure S3) and no evidence for any other binding site. Of course, the conditions under which 

crystals are obtained are different from those employed for binding studies. The subunits are labelled A-E, 

and ligands are assigned to the subunit that forms the principal side of the binding site. We imposed non-

crystallographic symmetry (NCS) in the initial refinement of the complex but on observing deviations 

released these restraints in the binding site. This in particular applies to key residues, Tyr205 and Tyr212, 

in different orthosteric sites and will be discussed below. The electron density is well defined for most of 

the polypeptide chains, indeed in places sufficiently so that dual rotamers were modelled. However, at the 

periphery of the binding sites involving subunits B-E, the electron density is diffuse for part of loop C and 

several residues could not be modelled reliably. Gly207 and Thr208 were omitted in subunits B-E, Lys206 

also from B, C and E. Our observation is consistent with conformational flexibility previously noted for 

this part of the binding site and which is relevant to function.[15, 20] The crystallographic order of the ligands 

differs as indicated by variability in definition of the electron density and the average B-factors. Our 

interpretation of the crystallographic data is a model with two similar poses of the ligand in a ratio 3:2, 

which identify the orientation of the ligand bound to a site that possesses a degree of conformational 

flexibility. Pose I is observed for ligands B, D, E and pose II for A and C. The B-factors, or displacement 

parameters, indicate that the most ordered subunits are A and B with average B-factors of 43.5 and 40.3Å2 

respectively. The most ordered ligand displaying pose I is at the interface formed between subunits B[+]/C[-

] with an average B-factor of 65.2 Å2 and real-space correlation coefficient (RSCC) value of 0.90. The most 

ordered pose II is at the A[+]/B[-] interface with an average B-factor of 95.7 Å2 and RSCC 0.88. The solvent 

accessible surface area (SASA) values are similar for each pose varying between 519 and 532 Å2 and when 

bound to GBP approximately 60% of the SASA is lost. We describe the details of the most ordered pose I 

since this correlates with the highest level of crystallographic order (Figure 2) and comment briefly on pose 

II (Supplementary material Figure S4). 

A feature, deep in the orthosteric binding site, is the well-ordered arrangement of aromatic residues 

Trp164, Tyr212, and Tyr72 which create a π-electron rich environment to interact with the positively 

charged methylated amine. Such an interaction is an important feature of pLGIC ligand complexes.[17,18,31] 

In addition there are van der Waals interactions between ligand and protein involving these residues. The 

side chain of Glu162, juxtaposed between Trp164 and Tyr212, is directed to the quaternary amine making 
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an electrostatic contribution to ligand binding. On the complementary side, the phthalide part of the ligand 

makes van der Waals contacts to Phe53, Arg74, Met133 and Ser135. The latter two residues act like a 

wedge between the phthalide and isoquinolium components and, together with Tyr212 from the other 

subunit, help to orient the ligand. The dioxoloisoquinolium occupies a depression between loops B and C 

of the principal subunit. Here, there are van der Waals interactions with main chain atoms of the tripeptide 

segment Val165, Tyr166, and Ser167 and side chains atoms of Tyr205, Glu210, and Tyr212. The side chain 

of Val125 also makes van der Waals interactions to this end of the ligand and here the position of Arg96 is 

noted. 

The dioxolo group associated with the phthalide can accept two hydrogen bonds donated by Arg96 

on the complementary side and a protonated Glu210 on the principal side. Although the geometry is not 

ideal the distance of 3.3 Å suggests that the dioxolo group attached to the isoquinolium may accept a 

hydrogen bond donated by Arg74 NE.  The other oxygen is solvent accessible, 4.1 Å from the hydroxyl 

group of Tyr205 on the flexible loop C. The remaining two hydrogen bond acceptor groups are from the 

lactone. These oxygen atoms are 3.1 and 3.2 Å from a well-ordered water molecule (B-factor 31 Å2) with 

an environment and geometry suggestive of a bifurcated hydrogen bond. The water in turn donates a 

hydrogen bond to the carbonyl of Trp164 then accepts a hydrogen bond from another highly ordered water, 

(B-factor 31 Å2). An overlay of the AcAChBP nicotine complex (PDB code 5O87)[18] with the structure 

reported here indicates that the first water maps to the position of the pyridine N of nicotine. The second 

water represents a highly conserved hydration point, which forms hydrogen bonds with main chain groups 

of residues Ile123 and Ile135 in AcAChBP, Ser135 in GBP, and to another water that continues a solvent 

network through to the surface of the protein (data not shown). This ordered solvent structure is consistently 

noted in high-resolution structures of AChBP ligand complexes.[15,20] 

Considering pose II; the conformation of the ligand is preserved with a similar orientation of the 

dioxolophthalide and dioxoloisoquinolium entities with respect to each other, and the quaternary amine 

occupies the same relative position in the orthosteric site (Supplementary material Figures S4 and S5A). 

Pose II participates in similar interactions as described for pose I, e.g. the key cation-π interaction of the 

quaternary amine with the protein. However, the orientation differs slightly in that for pose II the ligand 

pivots, as a rigid body, about the amine and the dioxoloisoquinolinium is placed closer to Phe53 and Tyr72, 

further from Met133. Although an ordered water molecule occupies the same position as that discussed 

above, the lactone is now too far for a hydrogen bond to form. The dioxolophthalide is positioned further 

from the tripeptide segment Val165, Tyr166, and Ser167 on the principal side. The side chains of Tyr205 

and Tyr212 adopt different rotamer conformations compared to those involved in binding pose I, and 

accommodate this slight rigid body adjustment whilst maintaining van der Waals interactions with the 

ligand. The hydrogen bonds with Arg96 and Glu210 however, are lost. 
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We considered first if the GBP:N-methylbicuculline complex was representative of how a GlyR 

b[+]/a1[-] orthosteric site might interact with the ligand. The alignment of sequences and the crystal 

structure of the human GlyR-a3 homomer in complex with strychnine (PDB code: 5CFB),[32] were used to 

inform on similarity between the orthosteric sites of GBP and the GlyR b[+]/a1[-] combination (Figure 3). 

Arg96, a contribution from the complementary side of the orthosteric site, is not usually considered as part 

of the binding site and is not included in Figure 3. This residue corresponds to Asp112 in GlyR-a1. The 

contributions of fifteen residues in GBP that interact with N-methylbicuculline have been described earlier. 

Seven of the residues are strictly conserved in the relevant human GlyR subunits (Phe53, Arg74, Ser135, 

Glu162, Tyr166 and Tyr205, Tyr212). A further four involve conservative substitutions (Met133Leu, 

Trp164Phe, Tyr72Phe, Ser167Thr). The differences involve Arg96Asp, Val125Arg and Val165Gly 

substitutions, and Glu210. The Val165Gly substitution is unlikely to be significant since the residue forms 

van der Waals interactions with the ligand using the main chain. Glu210 and Tyr212 are on the flexible 

loop C with some uncertainty about which residues on the GlyR b-subunit they would align with. If GBP 

Tyr212 aligns with GlyR-b Tyr253 as we think most likely (Figure 3), then the interactions with the ligand 

and loop C would be conserved. Tyr252 could also provide stabilizing associations including a hydrogen 

bond donor group to interact with the ligand. That leaves Val125 to consider together with Arg96. These 

residues are close together on adjacent b-strands. In human GlyR-a1 they correspond to Arg147 and 

Asp112 respectively and both are conserved in GlyR-a3. A superposition with the GlyR-a3 crystal 

structure indicates that the Arg96Asp difference places the acidic group directed away from the binding 

site, but critically, the Val125Arg substitution places the guanidinium groups at the same position to interact 

with the ligand (Supplementary material Figure S6).  

Alkaloids carrying a tetrahydroisoquinoline core can induce convulsions.[10] We were particularly 

interested in features relevant to recognition of that part of N-methylbicuculline. There are nine residues 

that interact with the dioxoloisoquinolinium entity (Phe53, Tyr72, Arg74, Met133, Ser135, Glu162, 

Trp164, Tyr205 and Try212). Six of these are strictly conserved, and three represent conservative 

substitutions in GlyR (Tyr72Phe, Met133Leu, and Trp164Phe). This suggests that the N-methylbicuculline 

complex is indeed representative of how isoquinolium antagonists bind a heteromeric GlyR orthosteric site 

to effect competitive antagonism. 

Figure 3 also presents alignments of GBP with three GABAAR subunits, this being the other 

inhibitory pLGIC. Again, Arg96, which corresponds to Arg112 in human GABAA-a1, is not shown. The 

recent cryo-EM structure of the complex between bicuculline and human GABAA–[α1]2[β3]2[γ] receptor[22] 

offered the opportunity for comparison and further analysis. First a comment; there is an inconsistency in 

the description of what was used to derive the structure in PDB entry 6HUK.[19] The publication and PDB 
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entry describe bicuculline methochloride being used but the coordinates and chemical diagram indicate 

bicuculline in both β3[+]/α1[-] sites and that is used in our comparisons. We calculate RSCC values of 0.84 

and 0.81 for the ligands, comparable to values in our crystal structure. 

The conformation of the semi-rigid molecule is essentially identical between the two complex 

structures (Supplementary material Figure S5B). An overlay of two subunits that create an orthosteric site, 

in each protein, positions the quaternary ammonium groups within 0.8 Å. The environment of the cationic 

group is similar in the two structures. The acidic Glu162 of GBP is strictly conserved as Glu180, and the 

cluster of aromatic residues also maintained. These are Phe53, Tyr72, Trp164, Tyr205 and Tyr212 in GBP, 

which correspond to Phe73, Phe92, Tyr182, Phe225, and Tyr230 respectively in GABAAR (Figure 4). A 

significant difference involves Thr108 in GBP, which is Tyr122 in the GABAAR-b3 sequence. The increase 

in size of the side chain places the tyrosine hydroxyl into the cation binding pocket helping to orient the 

ligand. 

However, although the interactions between the receptors and the cationic group are conserved the 

orientation of the ligands in the orthosteric sites is different (Figure 4). The isoquinolium entities occupy a 

similar position in the binding site but are orthogonal to each other and their distinct orientations are 

accompanied by concerted adjustments of side chain rotamers for several of the aromatic residues deep in 

the binding site. This alteration of the isoquinolium, together with a tilt about the ammonium places the 

dioxolophthalide components of the ligands in completely different positions. In the case of GBP, this part 

of the ligand is placed over towards the principal loop C on one side and the complementary side loop E on 

the other. In the GABAAR structure the dioxolophthalide component is directed towards the other end of 

the orthosteric site, near loop G (Figure 4B). The nature of the amino acid at two positions on the 

complementary side and one on loop C of the principal side appear to contribute to the observation of two 

distinct orientations. In GBP, the positions of Arg96 and Val125, discussed above, align to Arg112 and 

Arg147 in the GABAAR orthosteric site. The juxtaposition of the two arginine residues in the GABAAR 

orthosteric site places the side chain of Arg147 to hydrogen bond with Tyr230 from loop C on the principal 

side to, in effect, provide a steric block preventing the dioxolophthalide from adopting the orientation 

observed when in complex with GBP. The crystal structure of bicuculline itself has been determined.[33] 

Superposition of this structure on that of the models derived from the protein complex structures indicates 

that in isolation a different conformation is observed with the two ring systems rotated about 90° relative 

to each other (Supplementary material Figure S5C). Our comparisons therefore suggest that although the 

semi-rigid alkaloid can adopt different conformations, only one is observed when the ligand binds to 

inhibitory pLGICs. However, this conformation can be present in two distinct orientations in distinct 
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neurotransmitter binding sites so explaining the promiscuous activity of bicuculline on these inhibitory ion 

channels.  

 The r-class GABAAR, also known as the GABAC receptor is insensitive to bicuculline[34] 

and we sought to test our understanding by exploring this aspect of ion channel pharmacology. The 

alignment of the human GABAAR-r1 sequence with the sequences and structures described is presented in 

Figure 3. A previous attempt to promote a gain of function in GABAAR-r1with respect to bicuculline 

antagonism was based on molecular modelling, site directed mutagenesis, and electrophysiology.[34] The 

combination of Tyr127Ser (loop D) and Phe159Tyr (loop A) substitutions, and the tripeptide Phe261-

Tyr262-Ser263 (loop C) changed to a dipeptide Val-Phe gave the largest increase in bicuculline sensitivity 

though still at least an order of magnitude reduced from the GABAA-b3[+]/a1[-] system. The introduction 

of the serine would be predicted to open up space behind a conserved arginine (Arg125 in GABAAR-r1, 

Arg74 in GBP) and allow it to act to interact with bicuculline. The Phe159Tyr change would place the 

hydroxyl group to form stabilising interactions with the quaternary ammonium and create an environment 

to interact with the cationic group similar to position of Tyr122 on the b3 subunit of the GABAA b3[+]/a1[-

] structure. The changes to a tripeptide on loop C may simply provide space to accommodate the ligand or 

to place the phenylalanine to mimic Phe226 of the b3 structure. That these changes only produce a limited 

gain of function indicates that other features must be important.  

Our comparisons drew attention to the role of loop C and Phe53 in GBP, conserved as Phe73 in the 

GABAAR-a1 subunit. In the GABAA-b3[+]/a1[-] orthosteric binding site Phe73 aligns to Gln104 in the r1 

sequence.  The presence of a polar glutamine would remove van der Waals interactions between the phenyl 

group and both dioxolo groups of the ligand and is likely to prevent bicuculline binding in the orientation 

noted in the cryo-EM structure. Whilst loop C is more highly conserved with the a1 sequence, which is on 

the principal side not the complementary one. It is difficult without structural data on the r1 receptor to be 

certain about what happens with loop C, but the presence of a bulky Trp267 on the r1 subunit could 

potentially block access to the ligand. Further data would however be required to more completely address 

the selectivity issues of the GABAA-r1 receptor. 

 

Conclusions 

In summary, N-methylbicuculline binds to GBP with low micromolar affinity, comparable to that displayed 

against members of the pLGIC family (Supplementary material Table S1). The crystal structure of the 

complex with GBP has been elucidated with the ligand modelled in two similar poses that represent an 

orientation of the compound in the binding site. Comparisons of sequences and structures identify 
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significant similarities between GBP and GlyR orthosteric sites and we conclude that the orientation of N-

methylbicuculline is representative of how the alkaloid acts as a competitive antagonist against GlyR. When 

bicuculline binds the human GABAAR, the natural product displays the same molecular conformation as 

when bound to GBP, with conservation of interactions involving the quaternary ammonium group. 

However, the molecule adopts a different orientation in the binding site. This observation is likely a 

consequence of only a few specific amino acid differences between the two proteins. The binding of this 

promiscuous competitive antagonist appears to be driven by the charge-π interaction of the quaternary 

ammonium with the protein and van der Waals interactions that can be accommodated by flexibility 

inherent in the pLGIC orthosteric sites. 

 

Experimental Section 

Protein Production: A recombinant source of AcAChBP (Uniprot ID Q8WSF8) and GBP with a C-

terminus tobacco etch virus cleavage site and His6 tag were produced in baculovirus infected Sf9 insect 

cells using the Bac-to-Bac expression system (Thermo-Fisher). Suspension High Five insect cells, cultured 

in Express Five medium plus 100 U/ml penicillin/streptomycin and 2 mM L-glutamine (Thermo-Fisher), 

were used for protein production. Typically, 15x105 cells/ml were infected with 5% of baculovirus carrying 

the appropriate gene and incubated at 27 °C in shaking flasks for 48 hours before being harvested by 

centrifugation (1500g, 10 minutes, 12°C followed by 4000g, 10 minutes, 12°C). The proteins are secreted 

out to the media and using the Sartojet system with a 10 kDa cut-off Sartocon Slice filter (Sartorius), the 

media was exchanged for buffer A (50 mM Tris-HCl, 250 mM NaCl pH 7.5) and the sample concentrated. 

The protein solution was applied to a 5 ml Ni2+ HisTrap column (GE Life Sciences) equilibrated in buffer 

A for immobilised metal anion chromatography. The column was washed with 15 column volumes of buffer 

A + 7.5% buffer B (50 mM Tris-HCl, 250 mM NaCl, 800 mM imidazole pH 7.5) then the product eluted 

over 30 column volumes using a combination of a stepped and linear gradient of buffer B. A native-page 

gel (Supplemental material Figure S7A) identified the presence of monomer, the desired pentamer, and a 

higher order multimer, possibly a dimer of pentamers. For size exclusion chromatography, a Superdex 200 

10/300 GL column was equilibrated overnight in buffer A then samples loaded and run over 1.5 column 

volumes (Supplemental material Figure S7B). The retention time of each peak was recorded, and the 

molecular weight deduced from a previously determined calibration curve. Use of stain free SDS-PAGE 

gels (Bio-Rad, Supplemental material Figure S7C)) allowed us to confirm the presence of the protein and 

fractions corresponding to the desired pentameric assembly were pooled and samples concentrated using 

10 kDa centrifugal concentrators (Pall).  
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Crystallographic Analysis: GBP at a concentration of 4 mg/mL in buffer A (50 mM Tris-HCl pH 7.5, 150 

mM NaCl) was incubated with 2 mM bicuculline methiodide (Sigma-Aldrich; 20 mM stock in buffer A, 

20% DMSO), diluted in buffer A, for 1 hr before crystallisation trials using commercially available PEGS 

(Qiagen) and JCSG (Molecular Dimensions) screens. Sitting-drops (final volume 0.2 µL) comprised a 1:1 

mix of protein and reservoir (a volume of 50 µL was used in the plates) were prepared with a Rigaku 

Phoenix automated dispenser and incubated at 18 ¹C for one month. A suitable crystal (rectangular prism, 

0.7 x 0.25 x 0.25 mm) appeared from a condition with a reservoir of 0.2 M ammonium formate and 20% 

(w/v) PEG 3350. The crystal was immersed in liquid nitrogen, then placed under a stream of nitrogen gas 

at around -170 ¹C and diffraction data collected with a Rigaku M007HF copper-anode generator, Varimax 

Cu-VHF optics, Saturn 944HG+ CCD detector and AFC-11 4-axis partial χ goniometer. The data were 

integrated with XDS,[35] scaled with AIMLESS[36] and the structure was solved via molecular replacement 

with PHASER,[37] exploiting the already refined structure of GBP with glycine (PDB code: 5OAN).[19] 

Multiple rounds of automated restrained refinement were completed using REFMAC5,[38] interspersed with 

model adjustment based on inspection of electron and difference density maps in COOT.[39] NCS restraints 

were employed at the onset of the refinement but when real differences became apparent these were 

released. Ligand models and restraints were generated with the GRADE server [Global Phasing - 

http://grade.globalphasing.org/cgi-bin/grade/server.cgi]. Ligands, water molecules and chloride ions, 

together with several dual rotamers were incorporated into the model. Asn91 is glycosylated and N-acetyl-

D-glucosamine was modeled onto several subunits at this position. Several residues that were not well 

defined by the electron density were omitted from the model. All the above software was available through 

the CCP4 suite.[40] All structural figures were prepared using Pymol (pymol.org) and annotated in Microsoft 

PowerPoint. Crystallographic statistics are in Supplementary material Table S2.  

 

Assessing the effect of DMSO on thermal stability of GBP: Solutions of GBP (0.5 mg/mL) were prepared 

with varying concentrations of DMSO (0-10%) and incubated at room temperature for 5 mins. The 

inflection point (Ti) of the unfolding transition as the samples are heated was determined based on the ratio 

of fluorescence at 350:330 nm on a Nanotemper Tycho NT.6 instrument. Experiments were carried out in 

triplicate, then the mean and standard deviation of each measurement determined and plotted 

(Supplementary material Figure S8). A further assessment was carried out in which GPB was incubated 

with 2% DMSO at room temperature and the Ti determined at 15 min intervals over 45 mins. Experiments 

were conducted in triplicate, then the mean and standard deviation of each was calculated. These values 

were then compared to the 0% DMSO control. The data indicated that over 45 mins, the time period required 

for the biophysical assays, there is no determinantal effect from a 2% level of DMSO on protein stability. 
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Fluorescence Quenching Assay: Stock solutions of 10 µg/mL GBP and AcAChBP were prepared, along 

with a 4 mM stock of bicuculline methiodide (100 mM stock in DMSO), in buffer A. Data were collected 

on a LS-55 PerkinElmer spectrometer with the detector sensitivity set to 750 V. Protein samples (volume 2 

mL) were excited at a wavelength of 280 nm, and emissions between 300-400 nm were monitored. 

Additions of 1-2 µl of the N-methylbicuculline stock were dispensed, each followed by mixing, for a total 

of 20 µl. Experiments were carried out in triplicate and the percentage change in fluorescence was 

calculated. Control measurements adding buffer to the protein solutions whilst matching the concentration 

of DMSO were conducted. These were then subtracted from the percentage change in fluorescence to 

provide a correction for the presence of DMSO (Supplementary material Figure S9). 

 

Isothermal Titration Calorimetry: Experiments were carried out using a PEAQ-ITC (MicroCal, Malvern 

Panalytical) at 25 ¹C. GBP and AcAChBP solutions, at a concentration of 40 µM were prepared by dialysis 

against buffer A at 4 ¹C overnight, then DMSO was added to match that in the titrant. Bicuculline 

methiodide (concentration 2 mM, 2% DMSO) was prepared in the same buffer. The injection needle acted 

as a paddle stirring the cell contents at 750 rpm. An initial injection of 0.4 µL was followed by twelve 3 µL 

injections at 3 minute intervals. Data were analysed using the software supplied by the manufacturer 

assuming a one binding site model with mean composite controls: buffer-buffer, buffer-protein, ligand-

buffer considered. Titrations were conducted in triplicate. The controls, original traces plus derived titration 

curves and parameters with average values are in Supplementary material Figure S10 and Table S3. 

Representative data are presented in Figure S2E. 

 

Sequence and Structure Alignments: Sequences for GlyR (Uniprot codes: a1 P23415 and b P48167) and 

GABAA (Uniprot codes: a1 P14867, b3 P28472, r1 P24046) receptors, were extracted from Uniprot and 

aligned using Clustal Omega on the Jalview platform.[41] GBP (PDB code: 5OBH) and the GABAA receptor 

(PDB code: 6HUK) files were retrieved from the Protein Data Bank and superimposed in COOT, by SSM 

superimpose. Images were then produced in Pymol, after using the align function to obtain an optimal 

overlay of the two structures, with ten cycles of refinement.  
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Figure 1. (A) The structure of (-)-N-methylbicuculline. N and O atoms are numbered. (B) Ribbon diagram 
of GBP showing the five subunits (labelled A to E and in different colours) and the principal [+] and 
complementary [-] sides at the orthosteric binding sites. N-methylbicuculline (grey van der Waals spheres) 
occupies each site. Chloride (green spheres) bound in each subunit are shown. (C) Molecular image of an 
orthosteric binding pocket of GBP showing, the principal subunit donating loops A (red), B (orange), C 
(yellow) and the complementary subunit contributing loops D (blue), E (blue), F (purple), G (cyan). The 
aromatic cage side chains (Tyr72, Trp164, Tyr205 and Tyr212) are shown as sticks with C positions colored 
according to which loop they belong with. (D) Schematic representation of the GBP binding site, starred 
residues are responsible for the aromatic cage. Arg96 is not associated with any of the loops. 
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Figure 2. N-methylbicuculline binding to GBP. The ligand, pose I, is shown as sticks with C positions 
silver. The protein surface is presented as a semi-transparent van der Waals surface (grey) Residues from 
the [+]-principal (C positions cyan) and [-]-complementary (C positions magenta) subunits are shown. N, 
O, S positions are blue, red and yellow respectively. Two water molecules are depicted as blue spheres. 
Putative hydrogen bonds are represented as black dashed lines.  

 

Figure 3. Sequence alignment of segments involved in creating the orthosteric binding sites of GBP, two 
human GlyR forms (a1 and b) and three GABAA-R forms (a1, b3, r1). The loops are identified and split 
into principal and complementary sides. Residues in red were engineered into AChBP to create GBP, a 
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surrogate for a heteromeric GlyR orthosteric site and are key to ligand interactions. Residues that contribute 
to heteromeric binding sites are shown in bold.  

 

 

 

Figure 4. Comparison of key residues of GBP and GABAA-R. The alignment of the structures is based on 
a least-squares overlay with the cryo-EM structure (PDB code 6HUK). (A) The principal subunits with 
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GBP residue side chains shown as sticks with C positions colored cyan and O red, the corresponding 
GABAA-R residues shown with C positions green. (B) The complementary subunits with GBP C positions 
colored magenta. (C) A schematic diagram of pose I in the GBP N-methylbicuculline complex. The 
corresponding residues in GABAA-R are labelled in green. (D) An overlay to show the distinct orientations 
of N-methylbicuculline bound to GBP (silver C) and bicuculline bound to GABAA-R (yellow C) in the 
GABAA-R orthosteric site. GABAA-R is shown as a semi-transparent van der Waals surface (grey) with 
key residues in the binding pocket shown as in parts (A) and (B). The numbering of the GABAA-R residues 
is taken from the Uniprot entries (α1 P14867 and β3 P28472). 
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