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Abstract

We use the Level II Irrotational Green-Naghdi (IGN-2) equations to study a number of wave

diffraction problems. The IGN-2 equations can model strongly nonlinear waves. The three-

dimensional solution of the IGN-2 equations is developed in this work and applied to some

three-dimensional wave transformation and diffraction problems. Three test cases are con-

sidered. First one is on wave evolution in a closed basin. It is shown that the IGN-2 results

agree well with the linear analytical results for small wave amplitudes. The following two

cases involve wave diffraction problems caused by an uneven seabed. In both of these cases,

excellent agreement is obtained between the IGN-2 model and the experimental measure-

ments and numerical predictions of others. It is concluded that IGN-2 model can be used to

accurately model diffraction and transformation of nonlinear waves in three dimensions.

Key words: Irrotational Green-Naghdi theory, IGN-2 equations, wave evolution, wave

transformation, wave diffraction

1. Introduction1

The Green-Naghdi (hereafter, GN) theory was first introduced about forty years ago2

(Green et al., 1974; Green and Naghdi, 1976). To derive the GN equations, a shape-function3

that approximates the vertical distribution of the velocity field along the water column is4
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used. This is not the only way the GN equations can be derived, see, for example, the5

introduction sections of Kim et al. (2001) and Ertekin et al. (2014) for a discussion on the6

subject. In derivation of the GN equations, no other assumptions and approximations are7

introduced and no restriction is enforced on the rotationality of the flow field.8

The GN theory is categorized into different levels, based on the approximation functions9

used to describe the distribution of the vertical velocity component along the water col-10

umn. For example, Ertekin et al. (1986) utilized the Level I equations to simulate waves11

generated by ships in restricted waters. Demirbilek and Webster (1992) applied the Level12

II model to some two-dimensional wave propagation problems. The higher level GN wave13

equations have been developed and it is shown that they provide accurate results for strongly14

nonlinear and strongly dispersive waves (Zhao et al., 2014). The GN-1 equations were also15

used in three-dimensional problems, see Neill and Ertekin (1997), Ertekin and Sundararagha-16

van (2003), Hayatdavoodi et al. (2018), Neill et al. (2018). Zhao et al. (2015a) developed17

the three-dimensional solution method for the high-level GN equations. We note here that18

three-dimensionality refers to the physical problem, and not to the theory or the equations19

themselves, as the vertical structure of the flow field in the theory is known a priori.20

Although irrotationality of the flow field is not a requirement in general in deriving the21

GN equation, it is possible to obtain the equations for an irrotational flow. Kim et al. (2001)22

derived the Irrotational Green-Naghdi (IGN) equations from Hamilton’s principle. The IGN23

equations for finite water depth were numerically tested to show their self-convergence and24

accuracy in two dimensions (Kim et al., 2003, 2010). Polynomial expansions are used to25

prescribe the velocity field in vertical distribution. In the IGN models, only the odd terms of26

the polynomial are used. Zhao et al. (2015b) showed that the two-dimensional IGN equations27

are more efficient to solve than the GN equations where the rotationality of the flow is weak.28

However, the three-dimensional IGN equations have not been studied so far. Zhao et al.29

(2016) studied the IGN-2 equations and showed that IGN-2 equations are strongly nonlinear30

equations. The IGN-2 equations give errors of less than 2% in calculation of the phase31

velocity from shallow-water depths up to kd = 4.87, where k is the wave number and d is32
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the water depth. Higher level GN and IGN equations are strongly nonlinear and strongly33

dispersive wave equations.34

The main motivation for this research is, therefore, to introduce the numerical model for35

three-dimensional IGN-2 equations and apply it to some water-wave diffraction problems.36

The intent of this paper is not to include very large waves and all the ranges of kd. In Section37

2, the IGN equations are introduced. Section 3 presents the algorithm used in solving the38

IGN-2 equations. The solution of the linearised IGN-2 equations is given in Section 4. Some39

test cases simulated by the three-dimensional IGN-2 equations are presented in Section 5.40

These are followed by our conclusions in Section 6.41

2. IGN equations42

In this work, three-dimensional wave problems are considered. x and y are the horizontal43

coordinates, with x pointing to the right and y is into the paper, and z is the vertical44

coordinate, positive up. The origin of the right-handed coordinate system is located at45

the still-water level. The bottom boundary varies spatially, z = −h(x, y). The free surface is46

specified by z = η(x, y, t). The pressure on the free surface is taken as zero, i.e., p̂(x, y, t) = 0,47

without loss in generality. The IGN equations used in this work are similar to those given48

by Ertekin et al. (2014) who presented the two-dimensional IGN equations.49

In three dimensions, the velocity field (u, v, w) that satisfies the kinematic constraints

are given by the stream function Ψ(x, y, z, t) = (ψu, ψv), where (u, v) are the horizontal

components of velocity in the x and y direction, respectively, and w is the vertical component

in the z direction. Therefore

(u, v) = Ψ,z, (1a)

w = −∇ ·Ψ, (1b)

Where ∇ is the gradient operator. Here, we make Ψ(x, y, z, t) equal to zero on the seabed,50
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i.e., Ψ(x, y,−h, t) = 0. In the IGN theory, we assume that Ψ is given by51

Ψ(x, y, z, t) =
K∑

m=1

Ψm(x, y, t)fm(γ), (2)

where fm(γ) = γ2m−1, γ = (z + h)/(η + h) and Ψm are the unknown stream function52

coefficients which are calculated as part of the solution.53

The IGN equations are given by two canonical equations for the free-surface elevation

η(x, y, t) and the surface velocity potential φ̂(x, y, t):

η,t +
K∑

m=1

fm(1)∇ ·Ψm = 0, (3a)

φ̂,t = −∇ · ∂T

∂(∇η)
+
∂T

∂η
− gη , (3b)

where T is the kinetic energy given by54

T =
1

2

K∑
m=1

K∑
n=1

{θAmn(∇ ·Ψm)(∇ ·Ψn)

+ 2Bmn(∇ ·Ψm)(Ψn · ∇h)− 2B1
mn(∇ ·Ψm)(Ψn · ∇θ)

+
1

θ
Cmn [Ψm ·Ψn + (∇h ·Ψm)(∇h ·Ψn)]− 2

θ
C1

mn(∇h ·Ψm)(∇θ ·Ψn)

+
1

θ
C2

mn(∇θ ·Ψm)(∇θ ·Ψn)} ,

(4)

where θ = η + h and

Amn =

∫ 1

0

fm(γ)fn(γ)dγ , (5a)

Bmn =

∫ 1

0

fm(γ)f ′n(γ)dγ, B1
mn =

∫ 1

0

γfm(γ)f ′n(γ)dγ , (5b)

Cmn =

∫ 1

0

f ′m(γ)f ′n(γ)dγ, C1
mn =

∫ 1

0

γf ′m(γ)f ′n(γ)dγ , (5c)

C2
mn =

∫ 1

0

γ2f ′m(γ)f ′n(γ)dγ . (5d)

Details of the derivation of the IGN equations can be found in Kim et al. (2001, 2003).55

The IGN equations are completed by stating the relation between the surface velocity56

potential φ̂(x, y, t) and the stream function coefficients Ψm (m = 1, 2, . . . , K):57

fm(1)∇φ̂ = −∇ ∂T

∂(∇ ·Ψm)
+

∂T

∂Ψm

(m = 1, 2, . . . , K) . (6)
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Equations (3) and (6) constitute the three-dimensional IGN equations, and they are used58

to solve for η, φ̂ and Ψm (m = 1, 2, . . . , K). In addition, K stands for the level of IGN59

equations. For example, K = 1, K = 2, K = 3 represent IGN-1 equations, IGN-2 equations,60

IGN-3 equations, respectively. Here, we focus on the IGN-2 equations.61

3. Solution Algorithm62

For the IGN-2 equations, Eq. (6) in the x and y directions can be expressed by

Ãuξu
,xx + B̃uξu

,x + C̃uξu = f̃u , (7a)

Ãvξv
,yy + B̃vξv

,y + C̃vξv = f̃v , (7b)

where the superscript u and v are used to differentiate the x and y directions in Eq. (6),63

ξu = [ψu
1 , ψ

u
2 ]T and ξv = [ψv

1 , ψ
v
2 ]T . The subscript after comma stands for differentiation with64

respect to the indicated variable. ξu
,x and ξu

,xx, for example, indicate the first and second65

derivatives of ξu, respectively.66

In Eq. (7), Ãu, B̃u, C̃u, Ãv, B̃v and C̃v are 2 × 2 matrices. They are functions of h, η67

and their spatial derivatives. f̃u and f̃v are 2-dimensional vectors. f̃u are functions of h, η,68

ξv and their spatial derivatives. f̃v are functions of h, η, ξu and their spatial derivatives.69

The finite central-difference method is used here for spatial derivatives. The (x, y) domain70

is uniformly discretized in the calculations by (∆x,∆y) intervals. The discretized point on71

the grid is denoted by xi = i∆x for i = 1, 2, · · · , nx and yj = j∆y for j = 1, 2, · · · , ny. Time72

is discretized with intervals of ∆t such that tk = k∆t for k = 1, 2, · · · .73

For a given j, ξu(i, j)(i = 1, 2, . . . , nx) can be obtained by solving Eq. (7a). Similarly,74

for a given i, we can obtain ξv(i, j)(j = 1, 2, . . . , ny) from Eq. (7b). Further details of the75

numerical solution of Eq. (7a) can be found in Zhao et al. (2014).76

We use the fourth-order Adams predictor-corrector scheme to march in time. They are

ηk=ηk−1+(55η,t
k−1−59η,t

k−2+37η,t
k−3−9η,t

k−4)∆t/24 , (8a)

ηk=ηk−1+(9η,t
k+19η,t

k−1−5η,t
k−2+η,t

k−3)∆t/24 , (8b)
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where k indicates the time step in tk = k∆t for k = 1, 2, · · · . Similarly, φ̂ can also be predicted77

and corrected.78

The wave maker is based on the solution of the linearised IGN-2 equations and this will79

be discussed in the next Section. For the cases studied here, two wave-absorbing regions80

are used: one near the wave-maker to prevent the reflected waves from interfering with the81

wave-maker, and the other one to absorb waves at the opposite end of the domain, see Zhao82

et al. (2014, 2015a) for more details.83

4. Solution of the linearised IGN-2 equations84

To obtain the solution of the linearised IGN-2 equations, we use the one-dimensional85

(horizontal component) IGN equations and set the water depth to a constant h(x) = d.86

First, we linearize Eq. (3b) to obtain87

φ̂,t = −gη(x, t) . (9)

We assume that the change of the wave surface elevation can be described by a cosine88

function:89

η = Acos(k(x− ct)) , (10)

where k is the wave number and c the wave speed. Then, from Eq. (9)90

φ̂ =
Ag

ck
sin(k(x− ct)) . (11)

We can also obtain the linearized form of Eq. (6). They are given as

− φ̂,x(x, t) +
ψ1(x, t)

d
+
ψ2(x, t)

d
− 1

3
dψ1

(2,0)(x, t)− 1

5
dψ2

(2,0)(x, t) = 0 , (12a)

− φ̂,x(x, t) +
ψ1(x, t)

d
+

9ψ2(x, t)

5d
− 1

5
dψ1

(2,0)(x, t)− 1

7
dψ2

(2,0)(x, t) = 0 . (12b)

We assume that the coefficient ψ1 and ψ2 change as

ψ1 = Q1cos(k(x− ct)) , (13a)

ψ2 = Q2cos(k(x− ct)) . (13b)

6
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Substituting Eqs. (13) and (11) into Eq. (12) gives

− Ag

c
+
Q1

d
+

1

3
dk2Q1 +

Q2

d
+

1

5
dk2Q2 = 0 , (14a)

− Ag

c
+
Q1

d
+

1

5
dk2Q1 +

9Q2

5d
+

1

7
dk2Q2 = 0 . (14b)

Equations (14) can be written as

Q1 = − 15Adg(−14 + d2k2)

2c(105 + 45d2k2 + d4k4)
, (15a)

Q2 =
35Ad3gk2

2c(105 + 45d2k2 + d4k4)
. (15b)

On the other hand, Eq. (3a) can be written as91

η(0,1)(x, t) + ψ1
(1,0)(x, t) + ψ2

(1,0)(x, t) = 0 . (16)

Substituting Eqs. (15) and (13) into Eq. (16) gives92

c2 =
5(21dg + 2d3gk2)

105 + 45d2k2 + d4k4
. (17)

The nondimensional form of c2 is93

c̄2 =
5(21 + 2k̄2)

105 + 45k̄2 + k̄4
, (18)

where the constant water depth d and gravitational acceleration g are used to obtain the94

nondimensional Eq. (18).95

The Airy wave theory (or linear water wave theory) gives the linear dispersion relation96

(see for example Wiegel (1964))97

c̄2Airy = tanh(k̄)/k̄ . (19)

In Fig. 1, it is shown that the relation between c/cAiry and kh is predicted by the linearised98

IGN-2 equations. We observe that the IGN-2 equations give errors of less than 2% in the99

phase velocity from shallow-water depths up to kd = 4.87. We also note that the IGN-2100

equations have no restriction on the wave amplitude. They can be used to simulate waves101

up to the breaking point.102
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Figure 1: Linear dispersion relation of the IGN-2 model.

5. Test cases103

In this section, we will present results of the IGN-2 equations in three dimensions for three104

different cases. The results are compared with some existing laboratory experiments, and105

with the available theoretical and numerical solutions of the problems.106

5.1. Wave evolution in a closed basin107

To study the accuracy of the three-dimensional IGN-2 equations and the numerical model108

used here, we first consider the problem of wave evolution in a closed basin with Lx = Ly =109

7.5m, where Lx and Ly are the length and width of the basin, respectively.110

The domain is extended between −Lx/2 ≤ x ≤ Lx/2 and −Ly/2 ≤ y ≤ Ly/2 with111

reflective vertical walls. The initial condition is a surface elevation of Gaussian shape η0(x, y)112

above an otherwise constant water depth h0 = 0.45m. η0(x, y) is defined by113

η0(x, y) = H0exp[−2(x2 + y2)] , (20)

where H0 = 0.1h0 = 0.045m in this case. Grid size of ∆x = ∆y = 0.15m and time step size114

of ∆t = 0.05s are used. The IGN-2 results are compared with the linear analytical solution115

of this problem (Wei and Kirby, 1995). The comparison on wave elevation at two points is116

shown in Fig. 2. These two points are: point (a) at x = 0m and y = 0m, i.e., the center of117

the computational domain, and point (b) at x = −Lx/2 and y = −Ly/2, i.e., the corner.118

Due to the small initial wave amplitude, H0 = 0.1h0, the agreement between IGN-2 results119

and the linear solution of the problem is very good. The initial elevation is symmetric about120

8
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Figure 2: Time histories of wave elevation at two points ((a) center and (b) corner of the basin).
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Figure 3: Surface contour of the IGN-2 model, illustrating rotational symmetry of evolving waves.

the center of the basin (x = 0m, y = 0m.) As a result, the surface elevation at anytime should121

be symmetric about the center. The contours of the free surface at t = 50s are calculated122

by the IGN-2 equations; they are shown in Fig. 3. We observe that the contours of wave123

evolution is symmetric about the center of the basin.124

We also checked the mass conservation. Since no water can escape the numerical basin,125

the water volume should remain constant in our calculations, and it is indeed determined to126

be constant. In addition, the computational time of this case is within 1 minutes on Inter(R)127

Core(TM) i7-7700 CPU @ 3.60GHz processor.128

5.2. Wave transformation over a circular shoal (Chawla and Kirby, 1996)129

Chawla and Kirby (1996) conducted a series of physical experiments for wave transfor-130

mation over a circular shoal. Their experiments consist of test cases of regular waves and131

directional random waves, including breaking and nonbreaking waves. To study the com-132

10
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Figure 4: Experimental setup of wave transformation over a circular shoal of Chawla and Kirby (1996).

bined wave refraction/diffraction in two horizontal dimensions, we present comparisons with133

the nonbreaking monochromatic wave cases.134

The dimensions of the physical wave tank used by Chawla and Kirby (1996) is 0 ≤ x ≤135

20m and 0 ≤ y ≤ 18.2m; a circular shoal is placed on an otherwise flat bottom in the basin,136

as shown in Fig. 4. The center of the shoal is located at x = 5m and y = 8.98m. The137

perimeter of the shoal is defined by138

(x− 5)2 + (y − 8.98)2 = (2.57)2. (21)

The water depth on the submerged shoal is given by139

h = h0 + 8.73−
√

82.81− (x− 5)2 − (y − 8.98)2 , (22)

where h0 = 0.45m is the constant water depth of the basin.140

In our numerical calculations, we extend the domain to −2 ≤ x ≤ 33m to avoid reflections141

contaminate the interior results. We confine our attention to waves in the range of 0 ≤ x ≤142

20m. Whereas −2 ≤ x ≤ 2m region is used to absorb the reflected waves by the shoal back143

to the wave-maker, and 29 ≤ x ≤ 33m region is used to absorb the waves on the right end144

11



Author Accepted Manuscript 

Not Copyedited by the Journal. 

of the domain. At x = −2m, monochromatic waves are generated, and they propagate in145

the positive x direction over the circular shoal. The wave height of the incoming waves is146

H0 = 1.18cm, and the wave period is T = 1.0s. At the wave maker, kh = 1.89, which is147

within the limits of the IGN-2 equations.148

On the top of the circular shoal, the water depth is h = 8cm. We choose a uniform149

grid spacing of ∆x = ∆y = 0.1m in both the x and y directions. A time step of ∆t =150

0.0333s is used. The comparison of the relative wave height (H/H0) between the IGN-151

2 equations and the fully nonlinear Boussinesq equations of Chen et al. (2000), and the152

laboratory measurements of Chawla and Kirby (1996) at different locations in the tank is153

shown in Fig. 5.154

From Fig. 5, a close agreement between the IGN-2 results and the experimental data155

of Chawla and Kirby (1996) is observed. In this case, the H/H0 ratio reaches the value of156

H/H0 = 2.7, as seen in Fig. 5(a). The results for H/H0 from the Boussinesq equations157

(Chen et al., 2000) go to zero at the end of tank, while IGN-2 results do not approach158

zero. Note that the numerical wave tank in Chen et al. (2000) is 20m long and waves are159

absorbed before x = 20m. In our calculations, however, the numerical tank is much longer160

and the waves are not absorbed at x = 20m. The close agreement between the IGN-2 and161

the Boussinesq equations (Chen et al., 2000) observed along the transects at x = 3.8m,162

x = 5.0m, x = 6.2m, x = 8.0m, x = 9.7m and x = 11.2m (see Figs. 5(b)-5(g)) implies163

that the combined refraction/diffraction effects are captured successfully by these equations.164

The shoal center is located at the y = 8.98m (the width of the tank is 18.2m), which is165

slightly closer to one of the side walls (y = 0m). Therefore, the distribution of wave height166

in the y direction is not symmetric; this can be observed in Figs. 5(b)-5(g). In addition, the167

computational time is less than 10 minutes.168

5.3. Wave transformation over a semi-circular shoal (Whalin, 1971)169

Whalin (1971) conducted a series of laboratory experiments on wave convergence over a

bottom topography. The size of the tank is 0m ≤ x ≤ 25.603m and 0m ≤ y ≤ 6.096m. The

12
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Figure 5: Comparison of relative wave height calculated by the IGN-2 model with laboratory measurements

of Chawla and Kirby (1996) and numerical results of Chen et al. (2000).
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Figure 6: Setup of the wave tank of Whalin (1971).

bathymetry is shown in Fig. 6. The equations approximating the bathymetry are given as

follows (Whalin, 1971):

h(x, y) =


0.4572 (x ≤ 10.67−G)

0.4572 + 1
25

(10.67−G− x) (10.67−G ≤ x ≤ 18.28−G)

0.1524 (x ≥ 18.28−G)

(23a)

G(y) =
√
y(6.096− y) (0 ≤ y ≤ 6.096) , (23b)

where x and y are measured in meter. A semi-circular shoal is used to connect the deep part170

of the basin with the shallow part.171

Whalin (1971) conducted three sets of experiments by generating waves in the deeper part172

of the model with periods of 1s, 2s and 3s. This case is considered by many as a benchmark173

experiment for their numerical models. For example, Rygg (1988), Kennedy and Fenton174

(1996), Li and Fleming (1997), Eskilsson and Sherwin (2006), Engsig-Karup et al. (2008),175

Bingham et al. (2009), Young et al. (2009), and others, compared their numerical results176

with these experimental data.177

Here, we use the results of Rygg (1988), Li and Fleming (1997) and Bingham et al.178

(2009) to perform a comparative study. Rygg (1988) tested the classical Boussinesq equa-179

tions against the experimental data for nonlinear waves of periods 2s and 3s. Li and Fleming180

(1997) developed a three-dimensional multigrid model for fully nonlinear water waves. Bing-181

ham et al. (2009) tested the highly accurate Boussinesq-type model against some of the182

experimental data. The incoming wave parameters studied here are shown in Table 1.183
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Case T(s) A(cm)
Boussinesq model

(Rygg, 1988)

Fully nonlinear

multigrid model

(Li and Fleming,

1997)

Highly accurate

Boussinesq models

(Bingham et al.,

2009)

1 1 0.97 — Fig. 10 —

2 1 1.95 — Fig. 11 Fig. 6

3 2 0.75 Fig. 5 Fig. 12 Fig. 7

4 2 1.06 Fig. 6 Fig. 13 —

5 2 1.49 Fig. 7 Fig. 14 —

6 3 0.68 Fig. 8 Fig. 15 Fig. 8

7 3 0.98 Fig. 9 Fig. 16 —

8 3 1.46 Fig. 10 Fig. 17 —

Table 1: Wave conditions of Whalin (1971) and numerical models of others

Due to the symmetry along y = 3.048m, only half of the y region is considered in our184

calculations. In all the numerical calculations, the spatial step is ∆x = ∆y = 0.1016m and185

the time step is ∆t = 0.025s. An FFT analysis of the time series was made for each grid at186

the central line of the wave tank (y = 3.048m). The numerical results are compared with the187

experimental data and presented in Figs. 7-14.188

In Case 1 (T = 1.0s and a = 0.0097m), shown in Table 1, the IGN-2 results are close to189

the experimental data, see Fig. 7. As waves refract over the topography and focus along the190

centerline of the tank, a significant amount of energy is transferred into the higher-harmonic191

components. We also observe that the agreement of the IGN-2 results with the experimental192

data is better than the results of Li and Fleming (1997).193

For Case 2 (T = 1.0s and a = 0.0195m), the IGN-2 results are also in good agreement194

with the experimental data, see Fig. 8. The highly accurate Boussinesq results (Bingham195

et al., 2009) agree very well with the IGN-2 results. The small differences between the IGN-2196

results and the highly accurate Boussinesq results are mainly caused by the reflections from197

15



Author Accepted Manuscript 

Not Copyedited by the Journal. 

the right side of the Boussinesq calculations. In the IGN-2 calculations, the length of the tank198

is set long enough to avoid reflections. We also observe that both the IGN-2 results and the199

highly accurate Boussinesq results are in better agreement with the laboratory measurements200

than the fully nonlinear multigrid model results of Li and Fleming (1997).201

For the case of T = 2s, the IGN-2 results are shown in Figs. 9-11. We observe that202

the IGN-2 results agree well with the experimental data. The solutions of the Boussinesq203

equations (Rygg, 1988) and the fully nonlinear multigrid model (Li and Fleming, 1997) are204

used for comparisons. For Cases 3-5, the fully nonlinear multigrid results (Li and Fleming,205

1997) do not agree well with the experimental data. The results from Boussinesq equations206

(Rygg, 1988) are better than the fully nonlinear multigrid model results (Li and Fleming,207

1997). The results of the higher-harmonic amplitudes predicted by the Boussinesq equations208

(Rygg, 1988) are lower than those of the IGN-2.209

For Case 3, we compare the IGN-2 results with the highly accurate Boussinesq results210

(Bingham et al., 2009). Very good agreement is observed, and this indicates that the IGN-2211

results here are more accurate than the Boussinesq equations of Rygg (1988) in this case.212

We also observe that when the wave amplitude increases, the second harmonic amplitudes213

increase significantly, see Figs. 9(b), 10(b), 11(b). Similarly, the third harmonic amplitudes214

increase. Keeping more harmonic components in the analysis seems to be more reasonable,215

and in our calculations we considered up to the fifth harmonics.216

For the case of T = 3s, the IGN-2 results are shown in Figs. 12-14, and they agree217

well with the experimental data. It is also observed that there are some differences between218

the numerical results of all models and the experimental data. In the paper by Bingham219

et al. (2009), they reproduced Case 6 and they also observed that there are some differences220

between their highly accurate Boussinesq results and the experimental data. For the cases of221

T = 3s, there is significant reflection from the right side during the experiments. The reflected222

energy propagates back to the wave maker and possibly interfere with the wave generation in223

the physical experiments. In our numerical calculation, we use two wave-absorbing regions224

as mentioned at the end of Section 3. This may explain the larger differences seen for this225
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case.226

For Case 6, the results of highly accurate Boussinesq (Bingham et al., 2009) and the present227

IGN-2 results are in good agreement. For Cases 6-8, the results from Boussinesq equations228

of Rygg (1988) and the present IGN-2 results are in good agreement. The fully nonlinear229

multigrid model results of Li and Fleming (1997) do not show good accuracy compared with230

the other numerical results.In addition, the computational time of each case is less than 6231

minutes.
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Figure 7: Wave amplitudes along the centerline of the wave tank for Case 1.
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Figure 8: Wave amplitudes along the centerline of the wave tank for Case 2.
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Figure 9: Wave amplitudes along the centerline of the wave tank for Case 3.
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Figure 10: Wave amplitudes along the centerline of the wave tank for Case 4.
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Figure 11: Wave amplitudes along the centerline of the wave tank for Case 5.
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Figure 12: Wave amplitudes along the centerline of the wave tank for Case 6.
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Figure 13: Wave amplitudes along the centerline of the wave tank for Case 7.
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Figure 14: Wave amplitudes along the centerline of the wave tank for Case 8.
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6. Conclusions233

A numerical model to solve the three-dimensional IGN-2 equations are introduced and234

applied to some wave diffraction and refraction problems. The solution of the IGN-2 equations235

are also provided. Here, we present three test cases to study the accuracy of the IGN-2236

equations. The first case is on wave evolution in a closed basin. The IGN-2 results show237

good agreement with the linear analytical solution for small wave heights. In the second238

test case, we numerically recreated the experiments of Chawla and Kirby (1996) on wave239

diffraction due to a three-dimensional circular shoal. A close agreement between the IGN-240

2 equations, the laboratory data (Chawla and Kirby, 1996) and the Boussinesq equations241

(Chen et al., 2000) is observed.242

In the last test case, we reproduce the experiments of Whalin (1971) numerically. Whalin243

(1971) conducted three sets of experiments by generating waves with periods of 1s, 2s and244

3s, and also with different amplitudes, see Table 1. In all these cases, the fully nonlinear245

multigrid model (Li and Fleming, 1997) does not produce accurate results but the IGN-2246

results agree well with the highly accurate Boussinesq results (Bingham et al., 2009) and the247

experimental data. It is shown that the IGN-2 results are very accurate for different wave248

lengths and wave amplitudes. For cases when T = 2s, the Boussinesq equations (Rygg, 1988)249

underpredict the results compared with the IGN-2 results and the highly accurate Boussinesq250

results (Bingham et al., 2009). Only for cases with T = 3s, the Boussinesq equations (Rygg,251

1988) provide close results with the IGN-2. This is not surprising because the Boussinesq252

equations of Rygg (1988) assume weak dispersion. The strongly nonlinear IGN-2 equations253

give errors of less than 2% in phase velocity from shallow-water depths up to kd = 4.87. The254

IGN-2 equations do not have a restriction on the wave amplitude; they can simulate waves255

up to breaking.256

It is concluded that for many coastal engineering problems, the IGN-2 equations are more257

suitable than a number of other perturbation-based methods because of the higher accuracy258

and simplicity of the theory.259
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