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Evolution of multicellularity in Dictyostelia
YOSHINORI KAWABE, QINGYOU DU, CHRISTINA SCHILDE and PAULINE SCHAAP*

School of Life Sciences, University of Dundee, Dundee, UK

ABSTRACT  The well-orchestrated multicellular life cycle of Dictyostelium discoideum has fascinated 
biologists for over a century. Self-organisation of its amoebas into aggregates, migrating slugs and 
fruiting structures by pulsatile cAMP signalling and their ability to follow separate differentiation 
pathways in well-regulated proportions continue to be topics under investigation. A striking aspect 
of D. discoideum development is the recurrent use of cAMP as chemoattractant, differentiation in-
ducing signal and second messenger for other signals that control the developmental programme. 
D. discoideum is one of >150 species of Dictyostelia and aggregative life styles similar to those of 
Dictyostelia evolved many times in eukaryotes. Here we review experimental studies investigat-
ing how phenotypic complexity and cAMP signalling co-evolved in Dictyostelia. In addition, we 
summarize comparative genomic studies of multicellular Dictyostelia and unicellular Amoebozoa 
aimed to identify evolutionary conservation and change in all genes known to be essential for D. 
discoideum development. 

KEY WORDS: sorocarpic multicellularity, evolution of  phenotype, evolution of  cAMP signalling, encystation

Aggregative multicellularity evolved many times 
independently

While the naked eye perceives only three types of multicellular 
organisms – plants, animals and fungi –, at the microscopic level or 
just at up-close inspection there are many more. In fact, multicellular-
ity evolved at many times independently in prokaryotes (Lyons and 
Kolter 2015), and in seven of the eight major divisions of eukaryotes 
(Fig. 1). The most common route to multicellularity is the one taken by 
sorocarpic organisms, which alternate between a unicellular feeding 
stage and a multicellular stage where starving cells aggregate to 
build a fruiting structure (sorocarp) with spores. This type of multi-
cellularity evolved independently in the Discicristata (Brown, et al., 
2012b), Rhizaria (Brown, et al., 2012a), Stramenopiles (Tice, et al., 
2016), Alveolata (Sugimoto and Endoh 2006) and Holozoa (Brown, 
et al., 2009) and twice within the Amoebozoa (Brown, et al., 2011). 
Sorocarpic multicellularity or aggregative multicellularity differs from 
all other forms of multicellularity, where cells stick together after 
division and feed in the multicellular stage. This type of cohesive 
multicellularity is common to green plants, red and brown algae and 
fungi, and encompasses all animals, which altogether have a more 
limited phylogenetic distribution (Fig. 1). 

Multicellular development of most sorocarpic organisms has 
remained relatively simple. We think that this is due to the fact that 
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their proliferation takes place in the unicellular stage, where they 
go through many generations, while competing for food. This stage 
is likely to be under much more stringent natural selection than a 
single generation of cells going through sorocarp formation. Acrasis 
amoebae aggregate and some encyst to form a stalk. Others move 
to the top of stalk, arrange themselves into chains or form a globular 
mass, and then differentiate into round spores (Brown, et al., 2012b). 
Guttulinopsis amoebae construct a stalk consisting of encysted and 
decaying cells surrounded by an elastic sheath. Other amoebae 
move to the top of this mass and differentiate into spores (Brown, 
et al., 2012a). The ciliate Sorogena aggregates under water and 
while the aggregate compacts by cell adhesion and cells start to 
secrete matrix to form a sheath, it rises to the surface. Continued 
matrix production and contraction of the sheath causes a stalk to 
form which pushes up the cells, which then encyst (Blanton and 
Olive 1983). Sorodiplophrys amoebae construct a stalk consisting 
of gelatinous matrix with embedded decaying amoebas with most 
cells moving to the top to differentiate into sorocysts (Tice, et al., 
2016). Copromyxa amoebae move towards an encysted founder 
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cell, then crawl on top and also encapsulate to form sorocysts. 
This process continues until a tall branched fruiting structure has 
formed (Brown, et al., 2011). Fonticula amoebae aggregate to form 
a mound surrounded by a slime sheath, and continue to secrete 
matrix between the cell mass and sheath. The amoebae then dif-
ferentiate into spores that are similar to their unicellular cysts, which 
are expulsed through the top of the structure (Brown, et al., 2009). 

Among aggregating eukaryotes, the Dictyostelia display the most 
sophisticated form of multicellularity. In addition to spores, they can 
differentiate in up to four somatic cell types and aggregates can 
transform into an intermediate motile “slug” stage that brings the cell 
mass to an optimal site for spore dispersal. As it also by far the most 
thoroughly studied sorocarpic organism, its road to multicellularity 
is the topic of this review.

Evolution of phenotype in Dictyostelia

The evolutionary history of any biological process can only 
be meaningfully investigated if the genetic relationships between 
the organisms under study are known. The original subdivision 
of Dictyostelia in three genera – Dictyostelids, Acytostelids and 
Polysphondylids – was based on differences in fruiting body mor-
phology. The first use of the popular molecular marker gene small 

subunit ribosomal DNA (SSU-rDNA) for phylogenetic inference 
subdivided Dictyostelia into four major and some minor groups, 
with the former three genera being distributed over more than one 
group each (Schaap, et al., 2006). This indicated that similarities 
in fruiting body morphology are not a reliable marker for genetic 
similarity in Dictyostelia. 

The availability of group-representative genome sequences made 
it possible to infer phylogenies from many concatenated protein 
sequences. Three different studies robustly placed the root of the 
phylogeny between two major branches that contained groups 1+2 
and groups 3+4, respectively (Heidel, et al., 2011; Romeralo, et al., 
2013; Sheikh, et al., 2015), instead of a weakly resolved position 
between groups 1 and 2 in the SSU-rDNA phylogeny. Sequencing 
of 5 genomes of early branching species resolved the position of the 
minor groups and highlighted a set of genes that either individually 
or concatenated as a pair fully reproduced a phylogeny based on 47 
concatenated genes (Singh, et al., 2016). Six of these genes were 
amplified by PCR across 34 species, of which 22 resided in group 4, 
with the main goal to infer species relationships in group 4 (Schilde, 
et al., 2019), which were poorly resolved in the SSU-rDNA phylogeny. 
Compared to the SSU-rDNA tree, nodes in the 6-protein tree were 
better or equally well resolved and branch lengths between groups 
were more homogeneous (Fig. 2). This highlights a subdivision of 

Fig. 1. Evolution of multicellularity in 
eukaryotes. Multicellular organisms can be 
subdivided into two types. Type I – cohesive 
multicellularity -starts off from a spore or fer-
tilized egg that undergoes repeated divisions 
and morphogenesis, with cells remaining 
together and feeding in the multicellular 
stage. In Type II – aggregative multicellular-
ity – cells feed and proliferate as single cells 
and only come together when stressed, 
usually by starvation. The aggregates next 
transform into a fruiting body where the 
cells enter dormancy and encapsulate into 
either cysts or spores. Aggregative multicel-
lularity evolved independently in most major 
eukaryotic divisions. Phylogeny (grey lines) 
after He, et al. (2014).
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group 4 into two divisions, which each contain two or three clades. 
Only some of these clades can be recognized in the SSU-rDNA 
tree. In contrast to the slow rate of evolution of SSU-rDNA in group 
4 (as evident from the very short branches), SSU-rDNA in group 
1 underwent very rapid evolution, which likely distorted the deep 
topology of the tree. 

To study the evolution of phenotype, 25 morphological and 
behavioural characters were scored over 99 species, such as the 
size and shape of sorogens, fruiting bodies and spores, the ability 
of sorogens to migrate and of amoebas to encyst individually, the 
likely identity of the chemoattractant and the proportion of prespore, 
prestalk and rear-guard cells in sorogens (Romeralo, et al., 2013; 
Schilde, et al., 2014). Phylogeny-based statistical methods were 
applied to infer trait evolution, i.e. the probability of the state of the 
character at the interior nodes of the tree. These studies show that 
the last common ancestor (LCA) of all Dictyostelia, formed small 
clustered fruiting bodies with cellular stalks and spores with polar 
granules (Fig. 3). Amoebas likely used glorin to aggregate, but could 
also encyst individually. Its sorogens did not migrate and consisted 

almost entirely of prespore cells. This phenotype was retained in 
the LCA to branches I and II and the LCAs to groups 1, 2 and 3. 
The LCA to clade 2A lost its cellular stalk, while the LCA to clade 
2B gained whorls of side branches on its fruiting structures. The 
largest change occurred in the LCA to group 4, which gained use of 
cAMP as attractant, sorogen migration, differentiation of regulated 
proportions of prestalk, prespore and rear-guard/basal disc cells, and 
construction of large solitary fruiting bodies, but lost spore granules 
and encystation. In short, many of the phenotypic characters that 
make D. discoideum such a popular developmental model system 
only evolved in group 4.  

Prevalence of cAMP signalling in D. discoideum 
development

Among Dictyostelia, D. discoideum owes its original popularity 
to its well-regulated morphogenesis (Raper 1940), combined with 
the identification of its chemo-attractant as cAMP (Konijn, et al., 
1967), then just becoming more widely known as a second mes-

Fig. 2. Multi-protein based phylogenies improve poor node resolution and branch length anomalies of single gene trees. Comparison of phy-
logenetic trees of based on six concatenated protein sequences (A) (Schilde, et al., 2019) or small subunit ribosomal DNA (B). Fast evolution of SSU 
rDNA in the group 1 Cavenderia distorts the position of the root, while slow SSU rDNA evolution in group 4 Dictyostelia prevents resolution of species 
positions. Taxon names in (B) follow the recent re-classification of Dictyostelids (Sheikh, et al., 2018).

BA
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senger for hormone action. Development of genetic transformation 
(Nellen, et al., 1984) and tagged mutagenesis (Kuspa and Loomis 
1992) consolidated its usage as the model of choice. Develop-
mental studies identified several secreted signals that regulate 
cell differentiation morphogenesis as well as the enzymes that 
synthesize and degrade these signals and components of their 
signal transduction pathways (see (Du, et al., 2015; Loomis 2014; 
Williams 2006) for reviews and (Chen, et al., 2017; Narita, et al., 
2014; Sato, et al., 2016) for recent research). A striking aspect 
of pathways downstream of most developmental signals is that 
they all converge on regulation of intracellular cAMP levels by 
controlling the activity of the cAMP phosphodiesterase RegA or 
the adenylate cyclases AcrA, AcgA and AcaA, and thereby regu-
late the activation of cAMP dependent protein kinase (PKA) (Fig. 
4). PKA triggers the transition from growth to development and is 
required for the differentiation of prespore cells, the maturation of 
spores and stalk cells and the maintenance of spore dormancy in 
the spore head.  

In addition to their role in coordinating the aggregation process, 
secreted pulses of cAMP also organize cell movement in slugs 
and fruiting bodies (Singer, et al., 2019) and induce the expres-
sion of aggregation genes. Together with intracellular cAMP 
acting on PKA, secreted cAMP also induces the differentiation of 

prespore cells. The extracellular roles of cAMP are mediated by 
G-protein coupled cAMP receptors (Cars) and regulated by the 
cAMP phosphodiesterase PdsA and the adenylate cyclases AcaA, 
AcgA and AcrA. This dominant role for both intra- and extracellular 
cAMP signalling suggests that it is derived from deeper origins in 
Dictyostelia or Amoeboza.

Conservation of cAMP signalling genes and their 
function

Sequencing of genomes of taxon-group representative Dictyo-
stelia (Eichinger, et al., 2005; Gloeckner, et al., 2016; Heidel, et al., 
2011; Urushihara, et al., 2015) and unicellular Amoebozoa (Clarke, 
et al., 2013; Loftus, et al., 2005; Schaap, et al., 2015) provides op-
portunities to investigate the evolutionary history of cAMP signalling. 
PKA is well conserved in most eukaryotes and also in Amoebozoa 
(Fig. 5). RegA, the other enzyme with a strictly intracellular role 
is present in Amoebozoa and in Excavates. Homologs of CarA 
and PdsA, diagnostic for extracellular roles of cAMP, are present 
throughout Dictyostelia and in Physarum, while PdsA-like enzymes 
are also present outside of Amoebozoa. The adenylate cyclase 
AcgA is in eukaryotes only found in Dictyostelia, while AcaA and 
AcrA are more broadly conserved in Amoebozoa. Because Dic-

Fig. 3. Evolution of phenotype in Dictyostelia. Phylogenetic comparative methods were applied to reconstruct ancestral states for a set of 25 phe-
notypic characters measured over 99 Dictyostelium species (Romeralo, et al., 2013; Schilde, et al., 2014). Ancestral states for characters that showed a 
clear evolutionary progression are shown at the root and interior nodes of the Dictyostelium phylogeny. Quantitative traits such as spore-, slug-, stalk- 
and sorus size and contributions of prestalk, prespore and rear-guard regions to slug pattern are shown at correct relative values.
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tyostelia secrete most of the cAMP that these adenylate cyclases 
synthesize (Alvarez-Curto, et al., 2007), they cannot be attributed 
with a strictly intra- or extracellular role. 

Since conserved genes may have acquired novel or different 
roles, more in depth analysis is required to unravel ancestral 
roles and identify more recent innovations. Gene knock-out and 
tagged mutagenesis were developed for Polysphondylium pallidum 
(Heterostelium album in the recent re-classification (Sheikh, et al., 
2018)) in group 2 (Kawabe, et al., 1999), a species that uses glorin 
for aggregation (Asghar, et al., 2011) and can also encyst when 
conditions are unfavourable for aggregation. Inhibition of PKA 
function either by expression of a dominant-negative PKA inhibitor 
or deletion of the pkaC gene blocked P. pallidum development into 
fruiting bodies as is also the case in D. discoideum (Funamoto, 
et al., 2003; Kawabe, et al., 2015; Ritchie, et al., 2008), but also 
blocked their ability to encyst (Fig. 6). Deletion of both the acrA and 
acgA genes also prevented encystation, but did not affect fruiting 
body formation (Kawabe, et al., 2015), possibly because P. pallidum 
has three acaA genes (Fig. 5). As in D. discoideum (Shaulsky, 
et al., 1998), deletion of P. pallidum regA causes acceleration of 
development into fruiting bodies, but also strongly inhibits axenic 
growth, because the cells precociously encyst in growth medium 
(Fig. 6C,D) (Du, et al., 2014). Heterologously expressed RegA of 
the solitary Amoebozoan Acanthamoeba castellani is effectively 
inhibited by the PDE inhibitor dipyridamole. Addition of dipyridamole 
to its growth medium also causes precocious encystation of A. 

castellani amoebas (Fig. 6E). Combined, these data show that the 
roles of PKA and RegA in multicellular development of Dictyostelia 
are derived from an ancestral role in controlling encystation. While 
AcrA is also conserved in Acanthamoeba and Physarum, these 
Amoebozoa have many other adenylate cyclases (Clarke, et al., 
2013; Schaap, et al., 2015), which likely also provide cAMP for 
PKA activation. 

Deletion of car and pdsA genes in P. pallidum highlight that here 
extracellular cAMP signalling is only used in the multicellular stage. 
Based on synteny (Alvarez-Curto, et al., 2005) and phylogenetic 
evidence (Fig. 4), all car genes in non-group 4 species are ortho-
logs and homologs of D. discoideum carA, which implies that the 
duplications that gave rise to carB, carC and carD only occurred in 
group 4. P. pallidum has duplicate carA genes, named tasA (carA1) 
and tasB (carA2). Loss of carA1 causes P. pallidum to form fruiting 
bodies with thick irregular stalks (Kawabe, et al., 2002), while loss 
of both carA1 and carA2 reduces the regularly whorled fruiting 
bodies of P.pallidum to irregularly club-shaped structures (Fig. 7). 
These structures contain disorganized stalk cells and “spores” that 
are morphologically identical to cysts (Fig. 7E-G). Unlike wild-type 
P. pallidum and D. discoideum, the carA1-carA2- mutant does not 
express prespore genes in response to cAMP stimulation (Kawabe, 
et al., 2009). Cell aggregation still proceeds normally, as expected 
from P. pallidum’s use of glorin as attractant (Asghar, et al., 2011). 
Deletion of pdsA yields similar disorganized fruiting bodies, with 
cells that were round like cysts, but otherwise ultrastructurally 

Fig. 4. Developmental signalling in Dictyostelium discoideum. Extracellular signals and the enzymes that synthesize them are in red and green 
text, respectively. Proteins and small molecules involved in signal processing are in blue text. 
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identical to the elliptical spores (Kawabe, et al., 2012). 
The loss of post-aggregative morphogenesis in carA or pdsA 

defective P. pallidum suggests that P. pallidum uses extracellular 
cAMP signalling to organize sorogen and fruiting body formation. 
Spore differentiation in D. discoideum requires both extracellular 
cAMP acting on CarA and intracellular cAMP acting on PKA, while 
P. pallidum encystation only requires PKA activity. P. pallidum 
therefore returns to the ancestral process of encystation in its 
fruiting bodies, when deprived of carA genes. In D. discoideum 
CarC-mediated activation of glycogen synthase kinase (GSK3) 
by cAMP favors spore differentiation by inhibiting basal disc dif-
ferentiation (Harwood 2008). P. pallidum has no basal disc cells 
and here deletion of gsk3 has no effect on spore formation, once 
cells have aggregated. However, P. pallidum gsk3- cells encyst 
readily under conditions where wild-type cells aggregate and are 
hypersensitive to osmolytes, which promote encystation, and to 
cyst-inducing factors that are secreted during starvation (Kawabe, 
et al., 2018). GSK3 may therefore ancestrally have triggered ag-
gregation in favour of encystation and gained a novel role in basal 
disc formation, a group 4 novelty, later in dictyostelid evolution. 

Evolution of cAMP signalling in Dictyostelia

When combined the studies described above suggest the fol-
lowing scenario for the evolution of cAMP signalling (Fig. 8). 

1. In unicellular Amoebozoa, environmental stress increases 
intracellular cAMP by increasing the activity of AcrA and/or other 

adenylate cyclases and inhibiting the activity of RegA. Like Dictyo-
stelia, free-living Amoebozoa have many sensor histidine kinases/
phosphatases (SHKPs) in their genomes (Table 2). In D. discoideum 
RegA activity is controlled by several SHKPs that act as sensors 
for developmental signals that regulate the differentiation and 
dormancy of spores (Fig. 4), such as SDF2 (Wang, et al., 1999), 
NH3 (Singleton, et al., 1998), discadenine (Zinda and Singleton 
1998) and osmolytes (Ott, et al., 2000). In solitary Amoebozoa 
they likely detect environmental stress signals, such as drought 
(which increases osmolyte levels) or food availability, which control 
encystation and excystation, respectively.

2. The first role of extracellular cAMP probably emerged once 
the dictyostelid ancestor evolved aggregation and spore forma-
tion. Dictyostelids secrete most of the cAMP that they synthesize 
(Alvarez-Curto, et al., 2007). While this would not raise extracellular 
levels much when the cells are dispersed, once they are aggregated 
it might yield the micromolar levels required for prespore differ-
entiation (Schaap and Van Driel 1985). In this scenario, secreted 
cAMP acting on CarA could be a signal for the aggregated state, 
instructing cells to form spores and not cysts.

3. While all extant Dictyostelids form a well-structured stalk 
starting from the organizing tip of the sorogen, this process was 
unlikely to have been in place when their sorocarpic habit first 
emerged. The proto-dictyostelid ancestor is more likely to have 
formed the simple structures with decaying cells and/or extensive 
matrix production that characterize most other sorocarpic organ-
isms (Fig. 1). The current well-organized mode of stalk formation 

Fig. 5. Conservation of genes involved in cAMP synthesis, detection and degration. The closest homologs of D. discoideum cAMP signalling pro-
teins in each of eight amoebozoan genomes were aligned with each other and with the closest homolog outside Amoebozoa. Phylogenetic trees were 
inferred and annotated with the functional domain architecture of the proteins. Bayesian posterior probabilities (BIPP) of the nodes are represented 
by coloured dots.
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in D. discoideum is the result of interaction between the function 
of the tip as the organizer that secretes cAMP pulses to organize 
cell movement (Singer, et al., 2019), and the stalk-inducing signal 
c-di-GMP, which hyper-activates the adenylate cyclase, AcaA, 
that produces the cAMP pulses, thereby activating PKA, which 
turns the tip cells into stalk cells (Chen and Schaap 2012; Chen, 
et al., 2017). We propose that the interaction of CarA with AcaA 
was a third step in the evolution of cAMP signalling that set up 
the conditions for oscillatory cAMP signalling and well-organized 
morphogenesis (Fig. 8).

of a D. discoideum carA-carC- mutant can be restored by a group 
3 carA (Alvarez-Curto, et al., 2005), indicating the CarA function 
did not change in group 4. However, PdsA, which in group 3 binds 
cAMP and cGMP equally well with low affinity, increased its affinity 
for cAMP 200-fold in group 4 (Kawabe, et al., 2012), likely to be 
able to hydrolyse the lower cAMP concentrations present in a dis-
persed field of amoeba, than the higher concentration in the group 
3 aggregates. The secreted PdsA inhibitor, PdiA, which favours 
generation of spiral cAMP waves that organize large territories 
over concentric waves that control smaller territories (Palsson and 

Fig. 6. Roles of PKA and RegA 
in encystation and develop-
ment. A/B. Deletion of pkaC in P. 
pallidum prevents amoebas from 
forming fruiting bodies on solid 
substratum (A) and from encyst-
ing when starved in suspension 
(B). (C,D) Deletion of regA in P. 
pallidum causes precocious ag-
gregation when cells develop as 
clones on bacterial lawns (C), and 
precocious encystation, prevent-
ing proliferation, when growing 
in axenic suspension (D).(E) 
The RegA inhibitor dipyridamole 
induces precocious encystation 
in Acanthamoeba castellanii. 
Cellulose walls of cysts fluoresce 
when stained with Calcofluor in 
(E,B), lower panels. Simplified 
images from (Kawabe, et al., 2015) 
and (Du, et al., 2014). Bar, (A,C) 1 
mm; (B,E) 10 m.

Fig. 7. Roles of cAMP receptors in P. pallidum. A 
knock-out of the duplicate carA-like receptors of P. pal-
lidum shows normal aggregation (A,B), but defective 
fruiting body formation (C,D). Cells encapsulate in the 
carA1-carA2- spore heads, which closely resemble 
cysts and not spores (E-G). Simplified image from 
(Kawabe, et al., 2009). Bars A-D: 0.5 mm; E-G, 3 m.

4. Finally, extension of the usage of pulsatile 
cAMP signalling to the aggregative stage of 
development in the last common ancestor to 
group 4, caused use of cAMP as chemoattrac-
tant in this group. The structure of the regulatory 
regions of the carA (Louis, et al., 1993), pdsA 
(Faure, et al., 1990) and acaA (Galardi-Castilla, 
et al., 2010) genes, where the promoters for 
post-aggregative expression are proximal to 
the coding sequence and the promoters for 
pre-aggregative expression more distal (Fig. 
8), suggest that this novel usage was, if not 
caused, at least correlated with the addition of 
distal promoters to existing cAMP signalling 
genes. Aggregation and oscillatory signalling 
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Cox 1996), only emerged in group 4 (Kawabe, et al., 2012). This 
may explain the ability of group 4 species to form larger slugs and 
fruiting bodies than species in the other groups (Fig. 3). 

While speculative, this evolutionary scenario explains how and 
why D. discoideum came to use cAMP in so many different roles. It 
also shows the power of the comparative approach to distinguish 
between core regulatory mechanisms and recent innovations 
that only occurred in a small group of species. It is a strategy that 
should be applied to infer the broader relevance of any new gene 
function or mechanism uncovered in a single organism approach. 
Additionally, changes in gene function or regulation may reveal 
how genotypic change caused phenotypic innovations, one of the 
most fundamental problems in biology. 

Are there specific multicellularity genes?

While the above paragraphs focus on cAMP signalling, broader 
comparative analysis of the genomes of multicellular Dictyostelia 
and unicellular Amoebozoa allows discovery of more features 
that are unique to the multicellular forms. Since the regulation of 
multicellular development requires intensive intercellular commu-
nication, such a feature might be the number of genes involved in 
signal detection and processing. However, here a comparison of 
uni- and multcellular amoebozoan genomes showed that the mul-

ticellular Dictyostelia actually have overall less members in major 
families of signal transduction proteins than unicellular Amoebozoa 
(Table 1), indicating that simply more signal transducers are not a 
prerequisite for multicellularity. 

In D. discoideum knock-outs in ~385 genes cause a defect in 
multicellular development (Basu, et al., 2015). About 84% of these 
developmentally essential genes (DEG) are conserved across all 
Dictyostelium taxon groups, while 76% are present in at least one 
of the genomes of solitary Amoebozoa (Fig. 9A). Strikingly, the 80 
genes that were unique to Dictyostelia were strongly enriched in 
proteins with transmembrane domains and/or signal peptides (Fig. 
9B). Gene ontology enrichment analysis showed that DEG unique 
to Dictyostelia were enriched in G-protein coupled receptors, sensor 
histidine kinases and cell-cell recognition proteins, while the DEG 
that were also present in solitary Amoebozoa were enriched in pro-
tein kinases, transferase activity and nucleotide binding (Gloeckner, 
et al., 2016). This suggests that the proteins shared with solitary 
amoebas tend to be involved in intracellular signal processing, while 
those unique to Dictyostelia are involved in signal sensing, signal 
exposure or secretion and cell-cell recognition. In other words, the 
multicellular forms needed new signals and sensors, but the signal 
processing components were mostly already there. Four of the 
genes unique to Dictyostelia entered their genomes by horizontal 
gene transfer. One, dokA, encodes an osmosensor, while the other 
three chlA, dgcA and iptA are enzymes that synthesize three out 
of the five known small molecules that regulate cell differentiation 
(Table 2), highlighting the need of emerging multicellular organisms 
for novel signals and their sensors. 

Fig. 8. Evolution of cAMP signalling in Dictyostelia. Possile scenario for 
the evolution of intra- and extracellular cAMP signalling in D. discoideum 
from an amoebozoan stress response. See main text for explanation.

Category
Dictyostelium 
discoideum

Protostelium 
aurantium

Physarum 
polycephalum

Acanthamoeba 
castellanii

G-protein coupled receptors 55 17 146 35
Heterotrimeric G-proteins

Alpha 12 9 26 6
Beta 1 1 1 n.d.
Gamma 1 1 1 n.d.

Histidine kinases/phosphatases 16 71 51 48
Cyclic nucleotide signaling

Adenylate/guanylate cyclases 5 52 64 67
cNMP binding domains 5 27 28 7
cNMP phosphodiesterases 7 16 11 10

Protein kinases
All (S/T, S/T/Y, Y) 295 827 447 377
Sensor tyrosine kinases (Y) 0 167 4 21

SH2 domain proteins 15 85 18 48

TABLE 1

SIGNAL TRANSDUCTION PROTEINS 
IN UNI- AND MULTICELLULAR AMOEBOZOA

Retrieved from (Hillmann, et al., 2018).

Gene Function Biological role
chlA DIF-1 chlorination induces basal disc
dgcA c-di-GMP synthesis induces stalk formation
dokA osmolyte sensing osmotic stress resistance, spore viability
iptA discadenine synthesis induces spore maturation and dormancy

TABLE 2

VALIDATED CASES OF LATERAL GENE TRANSFER 
IN DICTYOSTELIA

Reproduced from (Gloeckner, et al., 2016).
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Across Dictyostelia, both the developmental regulation of DEG 
and the functional domain architecture of the encoded proteins is 
conserved for 59% and 67% of genes, respectively. When functional 
domains were not conserved for 2 or 3 genes, their occurrence was 
mostly scattered across the phylogeny. However, differences in 
developmental expression mostly occurred between group 4 and 
groups 1-3, followed by differences between the genetically more 
distant branches I and II of the phylogeny (Fig. 8C). The group 4 
specific changes in developmental regulation correlate with the 
major phenotypic change that occurs in group 4 (Fig. 3), indicating 
that changes in gene expression are more likely to cause pheno-
typic change than dramatic changes in gene function, caused by 
loss or gain of functional domains. In the case of the novel role of 
cAMP as chemoattractant in group 4, as outlined in the previous 
paragraph, it appeared that changes in both gene regulation and 
gene function were important, as exemplified by the addition of early 
promoters to the carA, acaA and pdsA genes and the increased 
affinity of the PdsA protein for cAMP. The increase in PdsA affinity 
may however be due to changes in just a few amino-acids. The use 
of loss of protein functional domains, the only practicable metric 
available for large scale genome comparison may be too crude 
to assess such subtle change. This illustrates the importance of 
experimentation to consolidate the broad but shallow evidence 
base of bioinformatic approaches. 

Conclusions

1. Aggregative or sorocarpic multicellularity, as displayed by Dic-
tyostelium, is the most common form of multicellularity in eukaryotes

2. Within Dictyostelia the most extensive phenotypic innovation 
occurred in the last common ancestor to group 4.

3. The multiple roles of extracellular and intracellular cAMP 

signalling in the group 4 species D. discoideum likely evolved from 
an ancestral role of cAMP as second messenger for environmental 
stress in solitary amoebas.

4. Multicellularity requires new signals and receptors, but most 
signal transduction pathways are already present in the unicel-
lular ancestors
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