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Abstract—Traditionally regularly spaced antenna arrays follow
the spatial Nyquist criterion to guarantee an unambiguous anal-
ysis. We present a novel technique that makes use of two sparse
non-Nyquist regularly spaced antenna arrays, where one of the
arrays is just a shifted version of the other. The method offers
several advantages over the use of traditional dense Nyquist-
spaced arrays, while maintaining a comparable algorithmic
complexity for the analysis. Among the advantages we mention:
an improved resolution for the same number of receivers and
reduced mutual coupling effects between the receivers, both due
to the increased separation between the antennas. Because of
a shared structured linear system of equations between the
two arrays, as a consequence of the shift between the two,
the analysis of both is automatically paired, thereby avoiding
a computationally expensive matching step as is required in the
use of so-called co-prime arrays.

In addition, an easy validation step allows to automatically
detect the precise number of incoming signals, which is usually
considered a difficult issue. At the same time, the validation step
improves the accuracy of the retrieved results and eliminates
unreliable results in the case of noisy data. The performance of
the proposed method is illustrated with respect to the influence
of noise as well to the effect of mutual coupling.

Index Terms—Array Antennas, Direction of Arrival Estima-
tion, Sparse Arrays.

I. INTRODUCTION

D IRECTION of arrival (DOA) estimation, using array
antenna systems, is a topic of increasing interest in

a variety of applications including radar, remote sensing,
radio frequency interference mitigation, and smart wireless
networks [1]–[3]. One of the most well-known limitations
in regularly spaced antenna array systems is, arguably, the
requirement that the elements should have spacing closer than
a half-wavelength (the spatial Nyquist criterion) in order to
avoid aliasing resulting in ambiguous arrival angle estimates.
Unique results can be obtained for larger spacings if a limited
range of near-broadside receiving angles are considered, or
if the antenna element patterns exhibit zeros in the end-fire
directions, but in general this still limits the allowable spacing
to distances close to the Nyquist limit.
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A wealth of research is available in the antenna array
and signal processing literature on algorithms which reliably
estimate the DOA of incoming signals in real world noisy
environments. The most popular ones are the MUltiple SIgnal
Classification (MUSIC) [4], the EStimation Parameter via
Rotational Invariance Technique (ESPRIT) [5] and the Matrix
Pencil method [6].

The requirement of close antenna element spacing limits
the achievable resolution of an array system with a fixed
number of receivers (or sensors) according to the well-known
diffraction (or Rayleigh) limit

∆φ ≈
λ

D
, (1)

where ∆φ is the resolution in radians, λ is the operating
wavelength, and D is the length of the array (in the linear
array case). A system with M elements spaced at λ/2 will
thus have a resolution limited to ∆φ ≈ 2/(M − 1), explicitly
stating the inverse relationship between resolution and the
number of elements. Several sparse array configurations, with
elements spaced at distances larger than the Nyquist limit, have
been proposed including minimum redundancy arrays (MRAs)
[7], nested arrays [8], and co-prime arrays [9]. All these
configurations have the advantage of increased resolution, for
a given number of sensors, over that of an ULA. The main
disadvantage, however, is the increased computational burden
associated with estimating the correct angles of arrival in
noisy systems, which follows from a combinatorial matching
problem that arises when resolving the introduced aliasing.

A disadvantage of densely spaced antenna elements is the
effect of mutual coupling, which causes uncertainty in the
so-called array manifold, that is the collection of received
steering vectors from all possible directions. This in turn leads
to errors in the estimated arrival angles, which is normally
reduced through extensive calibration of the system. Since
accurate estimation of the installed mutual coupling matrix
is difficult, in addition to often being time variant, many
popular calibration techniques exist [10]–[13]. Typically, the
computational cost of the mutual coupling estimation can be
high, especially for iterative techniques. To overcome this,
some methods that use auxiliary sensors have been proposed,
but these come at a cost of reduced effective aperture [14],
[15]. A comparison of the performance of several sparse-array
methods in the presence of mutual coupling is given in [16].

In this paper we present a DOA estimation method that
exploits some recent progress in exponential analysis and
completely removes the dense Nyquist spacing requirement
in ULAs [17]. Removing the Nyquist requirement allows for
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larger spacing between individual antenna elements, leading
naturally to improved angular resolution as well as generally
reduced mutual coupling. The larger antenna element spacing
implies an increase of the size of the antenna array, which
depending on the application, may not pose a problem [9],
[18], [19]. The method makes use of two interleaved sparse
ULAs, where one of them is just a shifted version of the other.
The set of angles and their aliases obtained from the first sparse
ULA via exponential analysis, is subsequently intersected with
information received from the second ULA via the solution of
a structured linear system, to retrieve the correct directions.
Due to introducing a second ULA that is a shifted version
of the first one, a combinatorial search step that other co-
prime array methods require, is avoided. Instead the results
of the two ULAs are directly linked by their computation. In
addition to handling the aliasing problem of sparse arrays in
an efficient manner, the proposed technique can automatically
determine the number of received signals with no prior user
input, and allows detection of fully correlated signals from
different directions without any special treatment.

Note that any one-dimensional exponential analysis solver
could be used on the first ULA. Examples are MUSIC [4],
ESPRIT [5], the matrix pencil method [6], simultaneous QR
factorization [20], a generalized overdetermined eigenvalue
solver [21] and the approximate Prony method [22]–[24].

The paper is structured as follows. First in Section II the
notation is introduced and the problem statement of DOA
estimation is described. Subsequently, in Section III standard
Nyquist-based exponential analysis is discussed and we intro-
duce an approach to determine the number of received signals,
called the sparsity in exponential analysis, via density based
cluster analysis. Section IV considers sparse ULAs, for which
a sub-Nyquist sampling technique is formulated. Finally, we
conclude with some examples in Section V.

II. PROBLEM FORMULATION

Consider a ULA with M antenna elements receiving n
(2n ≤ M ) narrow-band signals at frequency ω, as illustrated
for the ith signal in Fig. 1. The antenna elements are omni-
directional and arranged equidistantly along the x-axis with
a spacing d < λ/2 to prevent aliasing. The objective is to
determine the directions of the received narrow-band signals,
in other words the angles φi, as seen in Fig. 1. The narrowband

Fig. 1. Uniform linear array set-up for one incoming signal.

signal Si(t) at time t can be expressed as

Si(t) = si(t) exp(jωt), si(t) = ai(t) exp(jpi(t)),

where ai(t) and pi(t) denote the slowly varying amplitude and
phase respectively. Assuming a plane wave incidence of Si(t)
on the ULA, the time delay between consecutive antennas is
given by τi = d cos(φi)/c, where c is the propagation velocity
of the signal (speed of light in this case). We denote the output
of the ULA at the mth antenna element at time t by fm(t),
where

fm(t) =

n∑
i=1

Si(t−mτi), τi =
d cos(φi)

c
(2)

because of the time delay with respect to the reference antenna
f0(t). The element f0 receives the sum of the signals Si(t) at
time t. The narrow-band assumption (the signal response does
not change appreciably during the transit of the array) allows
us to write

si(t−mτi) ≈ si(t),

or equivalently,

Si(t−mτi) = si(t−mτi) exp(jω(t−mτi)) (3)
≈ Si(t) exp(−jωmτi),

hence, the output fm(t) of the ULA, given by (2), can be
rewritten as

fm(t) =

n∑
i=1

Si(t−mτi) ≈
n∑
i=1

Si(t) exp(−jωmτi). (4)

Consequently, for every signal the time delay is expressed
as a phase shift, depending on the direction φi. From these
time delays, which are identified by exponential analysis, it is
possible to infer the directions φi of the received signals.

III. STANDARD EXPONENTIAL ANALYSIS

At a fixed time t the output of the ULA is called a snapshot.
This snapshot consists of the samples

fm(t) =

n∑
i=1

Si(t) exp

(
−jωmd cosφi

c

)
, (5)

for m = 0, . . . ,M − 1, M ≥ 2n, and is used to formulate a
one-dimensional exponential analysis problem. We introduce
the notations

fm = fm(t), αi = Si(t),

ψi = −jω cosφi
c

, Ψi = exp(ψid).
(6)

We refer to the fm as the samples, the αi as the coefficients,
the ψi as the exponents and the Ψi as the base terms of the
exponential analysis problem. Note that none of the notations
depend on t since, for the moment, we consider a single
snapshot (hence t is fixed). Now it is possible to rewrite (5)
as

fm =

n∑
i=1

αiΨ
m
i , m = 0, . . . ,M − 1, (7)
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which can be solved for the αi and ψi under the assumption
that the Ψi are mutually distinct. It was shown in 1795
already by de Prony, that it is possible to solve the exponential
analysis problem (7) from 2n samples if the sparsity n is
given [25]. In its modern version, the method first recovers the
values of the Ψi as generalized eigenvalues, and subsequently
solves a Vandermonde structured linear system to retrieve the
coefficients αi, as recalled in Section III-A. The ψi are then
unambiguously computed as log(Ψi)/d, since the distance d
between the antennas is smaller than half the wavelength of
the signal, or equivalently |I(ψid)| < π, where I(·) and |·|
denote respectively the imaginary part and the absolute value
of a complex number. Finally, the direction φi is found from
the computed ψi as φi = arccos (−jψic/ω). In general, the
sparsity n, being the number of received signals, is also an
unknown. The retrieval of n is based on the singular value
decomposition of some Hankel matrices, or density based
cluster analysis, as discussed in Section III-B.

A. Generalized eigenvalue approach
With the samples fm we fill the Hankel matrices

H(r)
n :=


fr fr+1 . . . fr+n−1

fr+1 fr+2 . . . fr+n
...

...
. . .

...
fr+n−1 fr+n . . . fr+2n−2

 , (8)

where r is an integer in the interval [0,M − 2n + 1]. From
the definition of these Hankel matrices and the samples fm
we immediately find the factorization [6]

H(r)
n = VnDαD

r
ΨV

T
n , (9)

where Vn =
(
Ψk−1
`

)n
k,`=1

is the Vandermonde matrix built
with the distinct values Ψi, i = 1, . . . , n, and both matrices
Dα = diag(α1, . . . , αn), DΨ = diag(Ψ1, . . . ,Ψn) are diago-
nal. Using the factorization (9) we find

H(1)
n − λH(0)

n = VnDα (DΨ − λIn)V Tn .

Hence, the Ψi are the generalized eigenvalues of the general-
ized eigenvalue problem

H(1)
n vi = λiH

(0)
n vi. (10)

The coefficients αi = Si(t) are subsequently computed from
the Vandermonde structured linear system

1 . . . 1
Ψ1 . . . Ψn

...
...

ΨM−1
1 . . . ΨM−1

n



α1

α2

...
αn

 =


f0

f1

...
fM−1

 . (11)

Note that in the noise-free case only n of these M equations
are linearly independent. In the presence of noise, the linear
system (11) is solved in the least squares sense for the αi.
We can also solve the generalized eigenvalue problem (10) in
a least squares sense [21], where the Hankel matrices defined
by (8) are enlarged to dimension (M−n)×n to utilize all the
available samples f0, . . . , fM−1. In the sequel, we denote these
rectangular Hankel matrices by H

(r)
n,M . Note that the Hankel

matrices H(r)
n,2n are equal to the square Hankel matrices H(r)

n .

B. Determining the Sparsity n

Until now we have assumed that the sparsity, or equivalently
the number of received signals, n is known. However, in
practice this is not always the case. One possibility is to com-
pute the numerical rank of Hankel matrices with increasing
dimensions, since it is known that [26], [27, p. 603]
• detH

(0)
N = 0 only accidentally for N < n,

• detH
(0)
n 6= 0,

• detH
(0)
N = 0 for N > n.

However, this method is not always reliable. In particular in
the presence of noise, the method requires large values for N ,
meaning a large number of samples or antenna elements to
estimate the sparsity n correctly [28].

Another more reliable approach is based on the connection
with Padé approximation theory [29]–[31]. Let us use the
samples fm to construct a formal power series

R(z) =

∞∑
m=0

fmz
m. (12)

Using the definition of the samples fm we find

R(z) =

∞∑
m=0

(
n∑
i=1

αiΨ
m
i

)
zm

=

n∑
i=1

αi

( ∞∑
m=0

Ψm
i z

m

)
=

n∑
i=1

αi
1−Ψiz

.

Hence, the formal power series R(z) is that of a rational
function of degree n−1 in the numerator and degree n in the
denominator. The consistency property of Padé approximation
theory guarantees that in the noise-free case this rational func-
tion is recovered exactly by its [n− 1, n]R Padé approximant
of degree n − 1 in the numerator and n in the denominator
for the formal power series R(z) given by (12). But how to
proceed in the noisy case?

Since R(z) represents a rational function, the theorem of
Nuttall-Pommerenke [32], [33] and the theory of Froissart
doublets [34]–[38] may help us to determine the sparsity n
[28]. When adding a white Gaussian noise term εm to the
output fm of the ULA, the power series R(z) becomes

R(z) + ε(z) =

∞∑
m=0

(fm + εm) zm. (13)

The theorem of Nuttall-Pommerenke states that if the noisy
power series R(z) + ε(z) is analytic throughout the complex
plane except for a countable number of poles [32] and essential
singularities [33], then the paradiagonal sequence of Padé
approximants {[N−1, N ]R+ε : N ∈ N} converges to R(z)+
ε(z) in measure on compact sets. This means that the measure
of the set in the complex plane where the Padé approximants
[N − 1, N ]R+ε do not converge, goes to zero as N tends to
infinity. Note that this theorem does not say anything about
pointwise or uniform convergence of the sequence, since the
pointwise convergence is disrupted by N − n unwanted pole-
zero combinations of the Padé approximant [N − 1, N ]R+ε:
for every additional pole introduced by increasing N beyond
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the sparsity n, there is a corresponding zero introduced in the
numerator, almost canceling the pole locally. These pole-zero
combinations are called Froissart doublets. Thanks to [37],
[38], we know that the n true poles are identified as the stable
ones in successive Padé approximants [N−1, N ]R+ε, while the
N−n spurious poles are randomly scattered for different Padé
approximants or different realizations of the noise, hence they
are distinguished by their instability [34], [35]. This means that
these Froissart doublets offer a way to separate the received
signals from the noise.

We therefore consider multiple snapshots to solve the prob-
lem [39]. Combining the results from multiple snapshots, the
true poles (corresponding to the directions φi) are identified as
the stable poles, while the noise is represented by the randomly
scattered ones. Hence, cluster analysis can be used to identify
the stable poles as clusters and discard the remaining poles as
noise. A density based method such as DBSCAN is a possible
choice to correctly find the clusters [40]. DBSCAN requires
two parameters µ and δ. The first one is the minimal number
of points µ required in the neighborhood of a point to be a
core point and form a cluster. The second one is a distance
parameter δ which defines the size of a neighborhood. The
noise level influences the optimal choice for the parameters µ
and δ. Small values for the distance parameter δ allow us
to detect dense clusters and thus very stable estimates for
the correct Ψi, which is useful for low noise levels. In the
case of high noise levels, a larger distance parameter δ is
recommended, since this allows to detect wider clusters. When
we choose µ equal to the number of snapshots, every pole
has to be confirmed by all snapshots, resulting in an increased
certainty that no incorrect angles φi are detected. On the other
hand, when µ is smaller than the number of snapshots, it
allows to discard erroneous results or noisy outliers. Also, in
case of a low SNR, the number of snapshots can be increased
while the value of µ can be relaxed. We even found that weak
signals buried in noise, so with very low SNR compared to the
other terms, can be detected [31] because of their structured
character as opposed to the unstructured noise. In such a
situation, multiple runs with different µ, δ combinations can
be considered.

So, to retrieve n and the Ψi, i = 1, . . . , n we solve the
generalized eigenvalue problems

H
(1)
N,Mvi = λiH

(0)
N,Mvi,

where N is an integer in the interval [n,M/2], for every
snapshot. Note that we have overestimated the sparsity n.
Subsequently cluster analysis is used to retrieve the stable
generalized eigenvalues and discard the remaining generalized
eigenvalues since they represent the noise. Finally, the Ψi are
computed as the centers of mass of the retrieved clusters. It
is recommended to take N , and in addition the number of
antenna elements M , as large as possible. The new method
is compared to standard ESPRIT on multiple snapshots in
Section V.

In the next section we indicate how to break the Nyquist
restriction d < λ/2.

IV. SPATIAL SUB-NYQUIST SAMPLING

Let us now consider sparse antenna arrays where the dis-
tance d between the antenna elements does not satisfy the
spatial Nyquist condition d < λ/2, where λ is the wavelength
of the received signal. Using a sparse array in contrast to a
dense array does offer some advantages. Most importantly,
for sparse arrays the mutual coupling effect is reduced, but
also the angular resolution increases for the same number of
antenna elements. Similar to the theory of co-prime arrays,
we combine the results of two ULAs separately to retrieve
the true angles from the aliased ones. However, our proposed
method avoids the search step of matching and pairing the
results obtained by the two separate sparse ULAs. Instead they
are automatically linked by the new algorithm. Additionally,
the proposed method also allows to validate the results and
automatically retrieve the sparsity n, or the number of re-
ceived signals [41]. This is similar to the clustering approach
discussed in Section III-B.

A. Sub-sampled Exponential Analysis

When the spatial Nyquist bound is no longer satisfied,
aliasing is introduced, which means that it is no longer possible
to uniquely retrieve the ψi from the Ψi, defined in Section III
by (6), since it is no longer guaranteed that |I(ψid)| < π. This
aliasing problem is solved by using the output generated by a
second ULA [17], as explained below.

We view both sparse ULAs as a sub-ULA of a virtual
dense ULA, which does satisfy the spatial Nyquist bound.
Note that we do not require the full dense ULA, only the
antenna elements of the two sparse ULAs. A first ULA uses
the output of the antennas fmσ , where the spacing between
the antenna elements is σd. A second similar ULA uses the
antenna elements shifted over a distance of ρd resulting in the
output of the antenna elements fmσ+ρ. The scale and shift
parameters σ ∈ N0 and ρ ∈ Z0 are required to be co-prime,
meaning gcd(σ, ρ) = 1, in order to fix the aliasing. In the
following we denote the number of antennas in the first array
by Mσ and the number of antennas in the second array by Mρ.
Similar to the standard exponential analysis case, discussed in
Section III, the number of antennas Mσ and Mρ are restricted
by the sparsity n. We require that Mσ ≥ 2n and Mρ ≥ n.
Note that the second sparse ULA need only consist of half
the number of elements of the first sparse ULA. However,
additional antenna elements can be used to solve the problem
in a least squares sense. The set-up is illustrated in Fig. 2.

t

t

t

Fig. 2. Original dense array versus two sparse arrays.
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From the samples f0, fσ, . . . , f(Mσ−1)σ we first compute
the generalized eigenvalues of the model

fmσ =

n∑
i=1

αiΨ
mσ
i =

n∑
i=1

αi (Ψσ
i )
m
,

m = 0, . . . ,Mσ − 1, (14)

as described in Section III. Note that any one-dimensional
implementation can be used, each with its own advantages
and disadvantages, to retrieve the base terms Ψσ

i associated
with the samples taken at 0, σd, . . . , (Mσ − 1)σd. From only
the generalized eigenvalues Ψσ

i it is not possible to retrieve
the Ψi, since several possibilities exist, namely all the values
in the set{

exp

(
ψid+

2πj

σ
`

)
: ` = 0, . . . , σ − 1

}
. (15)

The second ULA is required to pinpoint the one correct value
from this set. The samples collected by the second ULA satisfy

fmσ+ρ =

n∑
i=1

αiΨ
mσ+ρ
i =

n∑
i=1

(αiΨ
ρ
i ) (Ψσ

i )
m
,

m = 0, . . . ,Mρ − 1. (16)

We find the same generalized eigenvalues Ψσ
i but different

coefficients compared to the model of the sparse ULA 1.
Hence, both times a Vandermonde structured linear system
with the same generators, but a different number of rows, is
solved for the left-hand sides in (14) and in (16), to obtain both
the values for the coefficients αi in (14) and αiΨ

ρ
i in (16).

Dividing the latter by the coefficients αi results in the values
for Ψρ

i . Given the Ψρ
i , again a set of possible values remains

for each Ψi, namely{
exp

(
ψid+

2πj

ρ
`

)
: ` = 0, . . . , ρ− 1

}
. (17)

Since we choose σ and ρ co-prime, the intersection of
the sets (15) and (17) only contains the desired Ψi [17].
This is illustrated in Fig. 3. Hence, the aliasing problem is

-1.5 -1 -0.5 0 0.5 1 1.5
Real part

-1.5

-1

-0.5

0

0.5

1

1.5

Im
a
g

in
a
ry

 p
a
rt

Fig. 3. Intersection of the sets (15) and (17) for σ = 7, ρ = 5, ω =1.5 GHz,
d = 0.48λ and the angle φi of the incoming signal being 105 degrees. No
noise was added.

solved. Note that we already know which sets (15) and (17)
correspond to each other due to the shared Vandermonde
system, in contrary to the theory of co-prime arrays, where
a search step is required to match the results of both ULAs.
When noise is present, both sets do not intersect exactly. In

this case we search for the two closest points in both sets.
Note that while in theory σ and ρ may be chosen arbitrarily
large, this is not the case in practice since noise can make it
hard to point at the one correct value when a large number
of points lie closer together in (15) and (17). Practically
one would always design a system with as many sensors as
possible. Both ρ and σ should be selected to be as small as
possible for the desired angular resolution (since the resolution
is ultimately proportional to σ), while the practical constraint
on the total length must also be considered. Considering the
noise effects, numerical experiments indicate that a smaller
ρ is more important than a smaller σ. Also the Ψi values
from (10) are usually less affected by noise than the Ψρ

i which
are obtained as solution of a Vandermonde structured linear
system.

The fact that the method solves (14) and (16) per snapshot
and passes the individual results to a cluster detection
algorithm, makes it computationally more efficient than
traditional methods performing the analysis on much larger
matrices containing the measurements of all snapshots
simultaneously. In addition, the independence of all the
smaller systems involved allows to parallelize the computation.

B. Determining the Sparsity n

In the sub-sampled case, we also use the connection with
Padé approximation theory to determine the sparsity n. We
first solve the generalized eigenvalue problem

H
(1)
N,Mσ

vi = λiH
(0)
N,Mσ

vi, n ≤ N ≤ bMσ/2c ,

where the Hankel matrices are filled with the output of the first
sparse (not shifted) ULA, so the samples fmσ . This yields N
generalized eigenvalues Ψσ

i , of which n values correspond to
the true angles and N − n values correspond to the noise.
Subsequently an Mσ × N and an Mρ × N Vandermonde
structured linear system is solved to retrieve N estimates for
the coefficients αi and the Ψρ

i . Once again, n of these values
correspond to the true angles, while the remaining N−n model
the noise. This process is repeated for all the snapshots. We
collect all the results for multiple snapshots in two large sets:
the set Aσ for the first ULA and the set Aρ for the shifted
ULA. Now cluster analysis identifies the n true Ψσ

i and Ψρ
i

in the two sets Aσ and Aρ, as discussed in Section III-B.
Because of the shared Vandermonde structured linear

system in both (14) and (16), the Ψσ
i and Ψρ

i are matched
automatically. Hence every element in the set Aσ is directly
connected with an element in the set Aρ. By combining the
DBSCAN results for Aσ and Aρ, ultimately three scenarios
may occur [41]:

1) A cluster Cσ is detected in the set Aσ and its center of
mass is used to estimate the generalized eigenvalue Ψσ

i .
The points in the set Aρ connected to the elements in
the cluster Cσ also form a cluster Cρ in Aρ and their
center of mass is used as estimate for the corresponding
Ψρ
i . From both centers of mass we recover the value

for Ψi, as discussed in Section IV-A, and subsequently
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retrieve the angle φi. This scenario is the standard one.

2) A cluster Cσ is detected in the set Aσ . However, the
points in the set Aρ connected to the cluster Cσ do not
form a cluster, hence the cluster Cσ is discarded and not
used in the computation for the values Ψi. Note that this
effectively lowers the estimate for the sparsity n since a
cluster is removed.

3) A cluster Cσ is detected in the set Aσ and its center
of mass is used to estimate the generalized eigenvalue
Ψσ
i . The points in the set Aρ connected to the cluster

Cσ not all belong to a cluster Cρ, since some of them
are outliers. In this case the center of mass of only the
clustered points is used as estimate for the corresponding
Ψρ
i . From both centers of mass we recover the value

for Ψi, as discussed in Section IV-A, and subsequently
retrieve the angle φi.

Usually multiple DBSCAN runs are performed, starting
with a high validation rate and relaxing it gradually (by
decreasing µ and increasing δ), until the clusters detected in
Aσ are not validated anymore by a cluster in Aρ.

The computational effort required is thus solution of K
(number of snapshots) Hankel matrices of size (Mσ−N)×N ,
and 2K Vandermonde structured linear systems of size Mρ×
N . This process can be easily parallelized since all snapshots
are uncoupled. In a last step, DBSCAN is performed on KN
different points to retrieve n ≤ N distinct clusters.

V. EXAMPLES

We illustrate the performance of our proposed method
under the influence of noise and mutual coupling. In the first
examples we only look at the effect of noise, hence no mutual
coupling effects are considered. Subsequently, we consider
some simulation examples which include full coupling under
low noise levels, to isolate the effects of coupling only.

A. Effects of noise

First we demonstrate the behavior under influence of noise,
mainly to illustrate the effect of the validation step. Therefore,
we consider n = 10 received signals, given in Table I.
We use both standard ESPRIT and the new method with
ESPRIT underlying to retrieve the 10 corresponding angles
for increasing levels of noise. The additive noise is expressed
in terms of SNR, which is defined by 20 log10(||f ||2/||ε||2),
where ||f ||2 and ||ε||2 denote the 2-norm of respectively the
sample and additive noise vector.

TABLE I
TABLE OF 10 RECEIVED SIGNALS.

1 2 3 4 5

Angle 10 34 63 80 90

Amplitude 0.3 0.2 0.4 0.5 0.3

Phase 0.9π 1.2π 0.8π 0.7π 1.1π

6 7 8 9 10

Angle 96 124 141 154 166

Amplitude 0.4 0.7 0.2 0.5 0.4

Phase 0.7π 1.3π 1.2π 1.0π 1.1π

For the standard ESPRIT approach, a ULA of 60 antennas
with a distance of 0.48λ between the elements is considered.
We also tell ESPRIT the correct number of signals, i.e. n = 10.
We solve the DOA problem using ESPRIT on 256 snapshots.
In Fig. 4 at the top, the results of all 256 snapshots are shown
together. We observe that ESPRIT works well for a high SNR,
however for higher noise levels (around 10 dB) the standard
ESPRIT approach delivers unreliable results.

At the same time, our new approach (with ESPRIT as
underlying method) also uses 60 antennas in total: a first
sparse ULA of 30 antennas and a shifted ULA of 30 antennas,
with a scale and shift parameter of respectively σ = 25
and ρ = 14. The distance between the virtual dense array
elements is also chosen as 0.48λ resulting in a total array
size of more than 350λ. This might be an unrealistically
large system for many applications, but the example serves
to illustrate the efficacy of the proposed method even under
such demanding conditions where both σ and ρ are large.
As stated before, increasing σ results in a more difficult root
intersection (validation) problem. Since the method detects the
number of signals n automatically, n need not be passed to
the algorithm. For the clusters Cσ we choose the DBSCAN
parameters µ = 0.8 × 256 = 205 with increasing equidistant
δ values, namely δ = 0.01, 0.0825, 0.155, 0.2275, 0.3. For the
Cρ clusters we take µ = 0.6 × 256 = 154 with δ = 0.5,
because they are usually less accurate, as already pointed out.
At the bottom of Fig. 4 we find the results from 256 snapshots.
For the lower noise levels, we clearly see that our method
performs comparably. When the signals are perturbed with a
lot of noise, we observe that the new method does not return all
the angles, however, it also does not return unreliable results
such as the stand-alone ESPRIT method. It detects that the
signal is heavily perturbed, since the results are not validated
by the cluster analysis and hence not all angles are recovered.

In a second experiment we compare our method to the co-
prime array method discussed in [42]. Although the array ge-
ometry for both methods is not the same, they are comparable
in the sense that they consider two interleaved sparse arrays. In
our case we have one array sub-sampled by a factor σ and then
shifted over ρ, while their method just combines the results
of two sparse arrays, which are respectively sub-sampled by
factors σ1 and σ2. Then a matching step is performed to be
able to link the results of both sparse arrays. This matching
is based on a projection of a two-dimensional point on a one-
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Fig. 4. The solution of the DOA problem given by Table I for increasing
noise levels of both standard ESPRIT (top) and the new method (bottom).

dimensional line segment that corresponds to the entire angular
domain due to the co-primeness of σ1 and σ2.

Similar to the first experiment, we use both methods to
retrieve the n = 6 angles given in Table II, for increasing
noise levels. For this experiment we only consider 6 instead
of 10 signals, since the matching in [42] becomes considerably
worse for larger n-values.

TABLE II
TABLE OF 10 RECEIVED SIGNALS.

1 2 3 4 5 6

Angle 35.0 62.5 90 96.5 123.5 151

Amplitude 0.3 0.2 0.4 0.5 0.3 0.4

Phase 0.9π 1.2π 0.8π 0.7π 1.1π 0.7π

For both methods 256 snapshots are collected by two sparse
ULAs of 20 elements each, where the distance between the
elements of the virtual dense array is 0.48λ, σ = σ1 = 10
and ρ = σ2 = 3. We also pass the number of signals n = 6
on to the co-prime array method, while our method is able
to detect this number of impending signals automatically. For
the cluster analysis we use DBSCAN on ULA1 with µ = 218
for 85% validation and δ = 0.01, 0.02, 0.04, 0.08, 0.16, 0.32,
while for ULA2 we require 70% validation with µ = 179 and
δ = 0.6. The results are shown in Fig. 5, where for every noise
level we plot the output of 100 different noise realizations to
observe the effect of noise on both methods.

We see that for low noise levels, both methods perform
comparably, however for higher noise levels the difference
becomes clear. The co-prime arrays have trouble matching the
results of both ULAs, hence, especially for high noise levels,
we observe that mismatches are not uncommon and thus result
in erroneously retrieved angles. On the other hand, our method
may not validate all 6 angles in case of high noise levels,
however it also does not yield any erroneous results. Note

that it is possible to obtain all 6 angles for a low SNR with
the proposed method when we are less strict on the validation
part. However, this can lead to angles which are slightly less
accurate than the ones returned in this experiment.
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Fig. 5. The solution of the DOA problem given by Table II for increasing
noise levels of both co-prime arrays (top) and the new proposed method
(bottom).

Both ESPRIT and the sparse array method in [42] require
solutions of matrices of the order M × Kn, which can be
significantly slower than the series of smaller systems required
for the new method.

B. Effects of Mutual Coupling

To illustrate the improved resolution of the algorithm over
standard dense ULAs, as well as the effects of mutual coupling
on the performance thereof, a 12 element dipole array is
considered. The antennas have length λ/2 and radius of
λ/1000 (thin wires), are oriented along the z-axis of a standard
Cartesian coordinate system, and are arranged linearly along
the x-axis. Spacing is defined as in Fig. 2, with σ = 11, ρ = 5,
and Mσ = Mρ = 6, with the central feed points as reference
positions. All elements are loaded with 50 Ω sources, and full-
wave method of moment (MoM) simulations using FEKO [43]
are used to characterize the array system. For this experiment
we fix SNR = 30 dB, use 256 snapshots and investigate a
range of values for d ∈ [0.09λ, 0.48λ]. Smaller values of d
correspond to denser arrays, while larger values result in sparse
arrays with finer resolution and less mutual coupling.

The resolution of the system is evaluated by exciting the
array with two monochromatic plane waves. The incoming
directions of the z-polarized sources are both fixed at θ = 90◦,
while the first is also fixed at φ1 = 90◦ and the second varied
in φ2 ∈ [75◦, 90◦]. Standard spherical coordinate system
azimuth and polar angles are used for φ and θ.

Three different spacing cases are investigated with d =
0.09λ, 0.3λ, 0.48λ. For all cases 100 Monte-Carlo trial runs
are performed, and the accuracy of the estimated angles is
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presented as the RMS value, over these trials, of the absolute
difference between the estimated and the actual direction of
arrival (for each of the signals). Since n = 2 here, both the
success rate as well as RMS accuracy of the DOA estimation
algorithm is computed. The success rate is just the number
of successful trials divided by the total number of trials as
a percentage. If fewer than 2 angles are returned, the trial is
counted as unsuccessful.

For comparison, results obtained by MUSIC on the same
geometry are also included. To this end, the second signal is
excited in quadrature with the first to remove all correlation
between the signals. Results for the method presented here are
identical to the uncorrelated case when correlated signals are
used, while MUSIC fails in this case. To avoid any ambiguity
issues for the sparse cases, the array manifold search space in
the algorithm is restricted to the region [min(φ2)−∆φ, φ1 +
∆φ], where the resolution ∆φ is calculated using (1). Note
that, for a standard λ/2-spaced ULA with 12 elements, the
resolution is expected to be around 10.5◦, and resolutions for
the other examples are indicated as vertical dotted lines on the
result plots in Figs. 6 to 8.

The results for the d = 0.09λ case are shown in Fig. 6.
For this configuration (ρ = 5) the spacing results in a
0.45λ separation between the closest elements. The worst
case mutual coupling is around −15.3 dB, very similar to
the value obtained from a classical λ/2-spaced ULA. Since
the maximum separation here is only 0.54λ, standard dense
array techniques can be used near broadside without the
risk of ambiguity. Clearly, the new method suggested in this
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Fig. 6. Performance of the presented method (solid line) and MUSIC (dashed
line) for a d = 0.09λ spaced array system. The top panel shows the accuracy
of the extracted angles of arrival, and the bottom panel the success rates
of the methods. The vertical line indicates the expected minimum Rayleigh
resolution limit.

work, performs significantly better than MUSIC in terms of
resolution. Both incoming signals can be resolved reliably
from about half the Rayleigh limit.

Results for d = 0.3λ and d = 0.48λ are shown in Figs. 7
and 8 respectively. Similar results as before are obtained,
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Fig. 7. Performance of the presented method (solid line) and MUSIC (dashed
line) for a d = 0.3λ spaced array system. Top and bottom panel as in 6. The
vertical line indicates the expected minimum Rayleigh resolution limit.
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Fig. 8. Performance of the presented method (solid line) and MUSIC (dashed
line) for a d = 0.48λ spaced array system. Top and bottom panel as in 6.

where the present method not only displays better resolution
than MUSIC, but also lower error values. It must be stressed
here that MUSIC cannot really be used in these cases, since
ambiguous results are found when searching over the full array
manifold (as is normally done). The ambiguity is artificially
removed through prior knowledge of the incoming signal
directions for MUSIC, while the present method returns unique
results. Compared to the narrower spaced results, increasing d
results in reduced mutual coupling and thus improved accuracy
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in angle estimation for both methods. Note again that the
resolution for the d = 0.48λ case is about a factor 5 better than
that achievable with a standard ULA, and this value can be
further increased by increasing the scale and shift parameters
σ and ρ in the array.

VI. CONCLUSION

A new method is presented for DOA estimation in sparse
regularly spaced array systems. The method can be used
on top of any exponential analysis method and completely
removes the dense Nyquist spacing requirement. Instead, it
only requires that the elements are arranged in two uniform
arrays with the one an end-fire translated version of the
other. By enforcing a co-prime relation between the element
spacing and the translation distance, aliasing due to the spacial
sparsity of the elements is removed. The larger spacing allows
improved resolution for a fixed number of sensors and reduced
mutual coupling between the antenna elements. Furthermore,
the method provides an accurate estimate of the number of
signals impinging on the system without any prior knowledge,
while there is no requirement that the respective signals be
uncorrelated. Distinct, fully correlated signals, such as those
that occur in a multi-path environment, can thus accurately
be distinguished using this new method. Several examples
are presented investigating both the performance in increasing
noise, as well as increasing mutual coupling scenarios. In
all of these, the new method performs better than standard
techniques on a variety of metrics. Work is currently ongoing
towards expansion of the method to the planar case, which will
be reported in a subsequent paper. A prototype implementation
is also under development.
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geometric series,” J. Comput. Appl. Math., vol. 87, pp. 199–214, 1997.
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