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Abstract. The kisspeptin system, a known regulator of reproduction in fish, was 16 

investigated during two key phases within the gilthead seabream (Sparus aurata) life 17 

cycle: protandrous sex change and larval ontogeny. Seabream specific partial cDNA 18 

sequences were identified for two key targets, kissr4 and kiss2, which were 19 

subsequently cloned and qPCR assays developed. Thereafter, to examine association in 20 

expression with sex change, a group of adult seabream (2+ years old) undergoing sex 21 

change were sampled for gene expression at two different periods of the annual cycle. 22 

To study the kisspeptin system ontogeny during early life stages, transcript levels were 23 

monitored in larvae (till 30 days-post-hatch, DPH) and post-larvae (from 30 till 140 24 

DPH). During sex change, higher expression of kissr4 and kiss2 was observed in males 25 

when compared to females or individual undergoing sex change, this is suggestive of 26 

differential actions of the kisspeptin system during protandrous sex change. Equally, 27 

variable expression of the kisspeptin system during early ontogenic development was 28 

observed. The higher expression of kissr4 and kiss2 observed from 5 DPH, with 29 

elevations at 5-20 and 90 DPH for kissr4 and at 5, 10, 20, and 60 DPH for kiss2, is 30 

coincident with the early ontogeny of gnrh genes previously reported for seabream, and 31 

possibly related with early development of the reproductive axis in this species. 32 

 33 

Additional keywords: sex change, kissr4, kiss2, protandric hermaphroditism, ontogeny  34 
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Introduction 35 

The discovery of kisspeptin as a key regulator system of puberty and 36 

reproduction in mammals has been a major breakthrough in the field (Terasawa et al., 37 

2013). This system has been reported as part of the seasonal control of reproduction, 38 

apparently being the missing link between the major photo transducer structure 39 

(pineal/melatonin system) and the Brain-Pituitary-Gonad (BPG) axis (Li et al., 2015; 40 

Revel et al., 2007). It is known that kisspeptin, acting centrally via the kisspeptin 41 

receptor, stimulates GnRH neurons in the hypothalamus to release GnRH, causing the 42 

release of gonadotropins from the pituitary (Clarke et al., 2015; Zohar et al., 2010). 43 

Research in this field is far more advanced in mammals, nevertheless, several studies 44 

have recently emerged in fish, suggesting a major role of the kisspeptin system in the 45 

regulation of the gonadotropic axis, especially in timing of puberty and control of 46 

gonadotropin secretion (Cowan et al., 2017a; Cowan et al., 2012; Filby et al., 2008; 47 

Zmora et al., 2015), with two paralogous genes (kiss1 and kiss2) identified  (Mechaly et 48 

al., 2013; Migaud et al., 2012). Kisspeptins are ligands for the receptor Kissr 49 

(previously called GPR54), with four paralogous genes identified in vertebrates, but 50 

only two encountered in teleosts: kissr2 and kissr4 (Migaud et al., 2012; Zohar et al., 51 

2010). Among these two, kissr4 is apparently the most predominant and functionally 52 

active form, being present in many fish species (Akazome et al., 2010).  53 

The gene kiss2 appears to have a predominant role in the control of fish 54 

reproduction (Akazome et al., 2010; Felip et al., 2009). Nevertheless, due to the variety 55 

in reproductive strategies seen in teleosts, the reported reproductive roles and 56 

distributions of the two kisspeptin forms and their receptors can vary (Kitahashi et al., 57 

2009; Li et al., 2009; Selvaraj et al., 2013; Yang et al., 2010; Zmora et al., 2015). 58 

However, a clear relationship between the kisspeptin system and the annual 59 

reproductive cycle has been reported both in Senegalese sole (Solea senegalensis) and 60 

in European seabass (Dicentrarchus labrax) (Cowan et al., 2017b; Mechaly et al., 2012; 61 

Migaud et al., 2012), suggesting conservation of its role in the seasonal control of 62 

reproduction, as reported in mammals. Indeed, this system has been suggested to 63 

integrate both environmental cues and metabolic signals in fish, as well as in mammals, 64 

transducing this information onto the reproductive axis (Zohar et al., 2010). With 65 

respect to the integration of environmental signals, there is evidence in both seasonal 66 

species like European sea bass (Alvarado et al., 2015; Cowan et al., 2017b; Espigares et 67 
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al., 2017), and Atlantic salmon (Salmo salar) (Chi et al., 2017) as well as tropical 68 

species like Nile Tilapia (Oreochromis niloticus), (Martinez-Chavez et al., 2008)  69 

Recent studies have also proposed a role of the kisspeptin system in early 70 

development and gonadal sex differentiation in some fish species (e.g. cobia, 71 

Rachycentron canadum, Mohamed et al. (2007); Nile Tilapia, Park et al. (2012); 72 

pejerrey, Odontesthes bonariensis, Bohórquez et al. (2017); Chub mackerel, Selvaraj et 73 

al. (2015)). During cobia ontogeny, kissr4 was highly expressed very early in larvae, in 74 

parallel with gnrh expression (Mohamed et al., 2007). In the other three species, 75 

expression of the kisspeptin system was observed to be elevated in periods coinciding 76 

with sex differentiation, indicating a potential role of these genes in such process, 77 

though similar information regarding species with sequential hermaphroditism is very 78 

limited and requires further research (Todd et al., 2016). Interestingly, in the pejerrey, a 79 

pleiotropic effect has even been proposed, related with mediation of olfactory and visual 80 

signals (Bohórquez et al., 2017). All of these results eludes to a significant central role 81 

of the kisspeptin system in early fish development, however the functional mechanisms 82 

are still unclear. 83 

The gilthead seabream, Sparus aurata, is one of the most important species for 84 

Mediterranean aquaculture. It is a protandric hermaphrodite species, maturing first as 85 

male (during the first or second reproductive cycles) before undergoing sex change so 86 

that after the second or third reproductive cycles, almost all individuals will be 87 

functional mature females (Liarte et al., 2007; Zohar et al., 1978). It has been proposed 88 

that the kiss system is likely to be involved in fish sex change processes, based on the 89 

example of the orange-spotted grouper (Epinephelus coioides) (Shi et al., 2010; Todd et 90 

al., 2016), but it remains to be investigated in seabream. Equally, while the early 91 

ontogeny of the GnRH system and reproductive axis has been described, with 92 

expression of related genes being detected very early in development (Wong et al., 93 

2004), no information is available about the kisspeptin system during early ontogeny. 94 

With all this in mind, this study intends to identify in gilthead seabream kissr4 and 95 

kiss2, the two forms which have been suggested to be functionally important in fish, and 96 

further investigate a possible involvement in sex change and early life stages of 97 

development: larvae and post-larvae. 98 

 99 

Materials and methods 100 
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To fulfil the objectives of this study, two experiments were performed. In order 101 

to investigate a possible role of the kiss system in the sex change process in gilthead 102 

seabream, kissr4 and kiss2 expression were measured in brain and gonad tissues from 103 

broodstock individuals undergoing sex change (experiment 1). Experiment 2 studied the 104 

ontogeny of this system in the same species. A first trial described a detailed profile of 105 

kissr4 and kiss2 transcript levels until 30 DPH (days post-hatch) while in a second, gene 106 

expression was monitored from 30 until 140 DPH to expand the previous results.  107 

 108 

Ethical statement 109 

Experimental procedures were conducted in accordance with ARRIVE 110 

guidelines (Kilkenny et al., 2010), with directives 86/609/EU and 2010/63/EU of the 111 

European Parliament and Council, and Portuguese legislation for the use of laboratory 112 

animals (PORT 1005/92) of the Portuguese direction for veterinary and food services 113 

(Direção-geral de alimentação e veterinária, DGAV). All persons involved in the animal 114 

trials have a FELASA class C permit for animal experimentation and CCMAR facilities 115 

are authorized by DGAV for animal experimentation (permit number 116 

0421/000/000/2013).  117 

 118 

Animals and housing 119 

 For the first experiment, forty farmed adult gilthead seabream (2+ years old and 120 

mean body mass of 920 ± 136 g) were reared outdoors at CCMAR, in four 1000 L tanks 121 

under ambient photoperiod and temperature conditions. Over the study duration (August 122 

till January) water temperature averaged 19.2 ± 4.7ºC, mean dissolved oxygen 123 

saturation was 86.6 ± 6.5% and salinity averaged 35.4 ± 1.5‰. Individuals were fed 124 

daily at the rate of 1% of tank biomass using a commercial feed (Sparos Lda.).  125 

 In the first trial of experiment 2, gilthead seabream larvae were reared at 126 

CCMAR experimental facilities until the age of 30 DPH. Standard rearing protocols for 127 

this species were used in accordance with Moretti (1999). Eggs were incubated in a 100 128 

L fibreglass cylindroconical tank for 48 hours. Newly hatched larvae were transferred to 129 

3 similar tanks (100 L) at a density of approximately 100 larvae L-1. Larvae were fed 130 

with enriched rotifers (Brachionus plicatilis enriched with Easy DHA Selco, INVE, 131 

Belgium) from the onset of exogenous feeding (3 DPH) until 11 DPH. From 12 until 21 132 

DPH they were co-fed with rotifers and Artemia nauplii and from 22 to 30 DPH, with 133 

solely Artemia nauplii. Fish were kept at 19 ± 1ºC, 35‰ salinity, dissolved oxygen 134 
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above 90% saturation and under a 14 h light, 10 h dark photoperiod (lights on at 08:00 135 

h).  136 

 The second trial took place in CULMAREX aquaculture facilities from 30 till 137 

140 DPH and under standard commercial rearing conditions. Larvae were weaned at the 138 

age of 80 DPH using a commercial diet (Gemma Micro, Skretting, Norway). Larvae 139 

were reared at 20ºC and exposed to a photoperiod of 13 h light and 11 h of darkness. 140 

 141 

Experimental design 142 

Experiment 1: Investigating the kiss system during sex change in gilthead seabream 143 

 The study group consisted of males, females, and males during sex change. 144 

Samples of brain and gonads were collected at two different stages of the reproductive 145 

season (n=20 total animals at each sampling); in October, during full spawning and 146 

January, at the beginning of the resting period. Seabream were individually sacrificed 147 

with an overdose of 2-phenoxyethanol (1000 ppm) and immediately dissected. Sex was 148 

firstly determined by striping the fish and identifying the presence of sperm or oocytes. 149 

When this was not possible, namely during the resting period, the functional gonad was 150 

determined by macroscopic or microscopic observation, depending on developmental 151 

stage during dissection. After this evaluation, gonads were excised and a small piece 152 

was cut in half, one part for total RNA extraction and the other for histological 153 

confirmation of gonadal development in accordance with Brusléa-Sicard and Fourcault 154 

(1997) and Somarakis et al. (2013). Haematoxylin and eosin staining technique was 155 

used in 5-mm sections to determine the maturation status of testis and ovaries, 156 

according to Pacchiarini et al. (2013). Individuals were subsequently classified as males 157 

or females. When both testis and ovary were present in the same fish and at equal stage 158 

of development (no predominant functional gonad could be recognised) individuals 159 

were identified as sex changing (Zohar et al., 1978). The whole brain and 300 mg gonad 160 

were collected from male and female individuals. For individuals undergoing sex 161 

change, a combination of both testis and ovary was collected at a proportion of 1:1 (150 162 

mg for each). Dissection was performed under RNase-free conditions to avoid 163 

contamination of the samples. Tissue samples were immediately frozen in liquid 164 

nitrogen and stored in -80ºC to avoid RNA degradation. 165 

 166 

Experiment 2: Kiss system ontogeny during larvae and post-larvae stages in gilthead 167 

seabream 168 
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In the first ontogeny trial developed at CCMAR facilities, samples were 169 

periodically taken to further assess kissr4 and kiss2 transcript levels. Egg samples (circa 170 

100 per aliquot) were collected in the morning after the spawning event (gastrula stage), 171 

and also prior to hatching (embryo stage). Larvae samples were collected at 0, 5, 10, 20 172 

and 30 DPH at 11:00 am, to avoid temporal differences in gene expression. Samples 173 

were rinsed with Milli-Q water and immediately frozen in liquid nitrogen. All steps 174 

were carried out in RNase-free conditions. For 0 and 5 DPH ca. 20 larvae were pooled 175 

per Eppendorf, while from 10 to 30 DPH, this number was reduced to 10/15 larvae per 176 

aliquot. 177 

 To assess ontogeny of the kiss system including post-larval stages a second 178 

batch of larvae was monitored from 30 till 140 DPH in the facilities of  CULMAREX 179 

company. Larvae samples were collected from 30 to 140 DPH (30, 45, 60, 75, 90, 105, 180 

120 and 140 DPH), always in the morning. From 30 to 60 DPH full larvae were pooled 181 

in the same sample (10 per aliquot), while from 75 until 140 DPH, only heads were 182 

collected and pooled in cryovials containing RNA-later® (5 heads per aliquot). Post-183 

larvae previously anesthetised with MS-222 (100 mg/L) and sacrificed by decapitation. 184 

Once more, all steps were carried out in RNase-free conditions and samples were 185 

immediately frozen.  186 

 187 

Molecular biology analyses 188 

RNA extraction, DNase treatment and cDNA synthesis 189 

All RNA extractions were carried out at a ratio of 100 mg tissue per ml TRI 190 

reagent (Sigma-Aldrich, St Louis, MO USA) according to manufacturer’s instructions. 191 

Larger tissue samples were homogenised using Yellow line D125 Basic homogeniser 192 

(SLS – Scientific Laboratory Supplies Ltd) while smaller samples under 150 mg were 193 

disrupted using a mini bead beater-24 (Biospec, Bartlesville, OK, USA). The total RNA 194 

pellet was dissolved in appropriate volume of DNA and RNA free nanopure H20 to a 195 

concentration of 1000 - 1500 ng total RNA/µl. For all samples, concentration and 196 

quality of total RNA was checked by spectrophotometery (ND-1000 Nanodrop, Labtech 197 

Int., East Sussex, UK) and gel electrophoresis. For each sample, 5 µg of total RNA was 198 

treated with a DNase enzyme (DNA-free™: Applied biosystems, UK) according to 199 

manufacturer’s instructions. cDNA was then reverse transcribed from 1 µg DNase 200 

treated RNA in a 20µl total reaction volume, using a high capacity reverse transcription 201 
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kit without RNase inhibiter (Applied biosystems, UK) according to manufactures 202 

instructions. All reactions were subsequently diluted 1/5 prior to qPCR. 203 

 204 

Primer design and molecular cloning of gilthead seabream kissr4 and kiss2 205 

For both genes qPCR primer pairs were designed using Primer Select 206 

(Lasergene® DNASTAR) (Table 1) and tested by PCR Using Klear Taq polymerase 207 

with supplied buffer (Kbiosciences, UK), and 50 mM MgCl2 as detailed in 208 

manufactures protocol. Cycling conditions were as follows: 15 min 95°C followed by 209 

30 cycles of 95°C 20 s, X°C 20 s, 72°C 1 min, where X equates to the primer pair 210 

specific melting temperature, Tm (Table 1). All primer pairs generated a single PCR 211 

product. In order to generate qPCR standards for absolute quantification PCR products 212 

were cloned into a pGEM-T Easy vector (Promega, UK) and sequenced using a 213 

Beckman 8800 autosequencer (CEQ-8800 Beckman Coulter Inc., Fullerton, USA). 214 

Lasergene SEQman software (DNASTAR, www.dnastar.com) was used to edit and 215 

assemble DNA sequences. Products identities were verified using BLASTn 216 

http://www.ncbi.nlm.nih.gov/BLAST/) and showed 100% nucleotide identity. 217 

 218 

Table 1 219 

Primer name Sequence (5’  3’) Product 

size (bp) 

Tm 

(°c) 

Genebank 

ID 

Teleost kissr4 F TATGAGTGGAGACCGCTGTTACG 

556 59 JQ839286 
Teleost kissr4 R CTATGGGGTTGACAGAGGAGTTG 
     

SBream kissr4 3out TAATCGTCCTCCTCTTCGCCATCT 
N/A 56  

SBream kissr4 3in GCCCAACTACGCCACATACAAGA 
     

SBream kiss2 F CTCTGGTCGTGGTGTGCGGG 
310 58 

 

SBream kiss2 R TCCTGGCTGTTTTAACTGCYCTYCT  
     

SBream kiss2 qPCR1F TCAGGAGGAGCAGCGCAGGAGAGTT 
91 66 

 

SBream kiss2 qPCR1R CACAGGAGCTGCCGCTGGTCTTCAT  
     

SBream kissr4 qPCR1F ATTGCTGCGTACCTGCTGCCTGTCC 
95 66 

 

SBream kissr4 qPCR1R TTGTCTACGGGCTCTACGGTG GGCT  
     

SBream βActin qPCR F GACCCAACTGGGATGACATGG 
171 60 X89920 

SBream βActin qPCR R GCATACAGGGACAGCACAGC 
     

SBream Gapdh qPCR F TGCCCAGTACGTTGTTGACTCCAC 
250 60 DQ641630 

SBream Gapdh qPCR R CAGACCCTCAATGATGCCGAAGTT 

 220 

 221 

Sequence identification and extension with RACE protocol 222 
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A 720bp Sparus aurata kissr4 was cloned from brain tissue as follows: A 556 223 

base pair sequence was obtained by PCR on seabream cDNA using generic Teleost 224 

kissr4 primers (JQ839286, table 1) previously used in a variety of  teleost species 225 

including Cod (Cowan et al., 2012) and seabass (Migaud et al., 2012) and MyTaq™ 226 

Mix (Bioline reagents ltd, London, UK) according to manufactures instructions. 3′ ends 227 

from the sequence generated were amplified using Rapid Amplification of cDNA Ends 228 

(RACE)-PCR as described by Betancor et al. (2014). RACE cDNAs were generated 229 

from 1 µg of seabream total RNA (mixed tissue origin) using the SMART RACE kit as 230 

described in the user manual (Clontech, Mountain View, CA). The 3′ RACE amplicons 231 

were generated by two rounds of PCR using SBream kissr4 3out and 3in primer sets 232 

(table 1). The final 720bp sequence was confirmed by Blast (NCBI blastN). 233 

RACE protocol for seabream kissr4 5’ and kiss2 was attempted, however no 234 

product was obtained. A 308 bp fragment for kiss2 was generated from primers 235 

designed (SBream kiss2 F and R - table1) on Sparus aurata est (AM962676). All PCRs 236 

were run at annealing temperatures as listed in table 1 with an extension time of 1 237 

min/Kb of predicted PCR product, with 3 min applied for unpredictable RACE PCR 238 

products. All primers were designed using Primer Select Ver. 6.1 program (DNASTAR, 239 

www.dnastar.com). Sequencing was performed using a Beckman 8800 autosequencer 240 

and Lasergene SEQman software (DNASTAR) used to edit and assemble DNA 241 

sequences. 242 

 243 

Phylogenetic trees and protein alignment 244 

Phylogenetic trees were generated from a Clustal W alignment of deduced 245 

amino acid alignments of similar species and appropriate outliers using the neighbour 246 

joining method on in MEGA (Ver. 6) (Saitou and Nei, 1987). The evolutionary 247 

distances were computed using the Maximum Composite Likelihood method (Kumar et 248 

al., 2004) and are in the units of the number of base substitutions per site. Protein 249 

alignments were generated using Kissr4 and Kiss2 translated protein sequences from a 250 

number of teleost species aligned by Clustal W in Bioedit sequence alignment editor 251 

(Ver.7.2.5). 252 

 253 

kissr4 and kiss2 Quantitative PCR (QPCR) assays  254 

Expression of the target genes was measured by absolute quantification. In 255 

experiment 1 and in the first trial of experiment 2 (larvae ontogeny) ß-actin was used as 256 
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a reference gene while Gapdh was proven to be the most stable in the post-larvae 257 

samples. Both these genes have previously been verified as reliable and stable reference 258 

genes in seabream (Minghetti et al., 2010; Minghetti et al., 2011). The decision to use 259 

different reference genes was justified by the absence of significant differences between 260 

any points in each group of samples during the stability tests performed prior to qPCR 261 

analysis. All cDNAs for qPCR were synthesised as described previously and qPCR 262 

primers (Table 1) were used at a concentration of 0.7 pM,  with 5µl  cDNA synthesis 263 

reaction (at a concentration of 10 ng Total RNA / µl) and 10 µl ABsolute™ QPCR Mix, 264 

SYBR green (Thermo scientific, Leon-Rot, Germany). Additionally, 3 µl DNA/RNA 265 

free H2O was added to each reaction to a total reaction volume of 20 µl. All qPCR 266 

assays were carried out in a Techne Quantica Realtime qPCR thermocycler (Bibby 267 

Scientific Ltd, Cambridge, UK) in a thermo cycling programme consisting of a 15 268 

minute hot start at 95°C, followed by 45 cycles of 3 temperature steps: melt at 95ºC for 269 

15 s, anneal at X°C (see Table 1 for target specific melting temperatures, Tm) for 15 s 270 

and extensions at 72ºC for 30 s. This was followed by a temperature ramp from 70 – 271 

90°C for melt-curve analysis. Quantification was achieved by translating cycle 272 

threshold (CT) values of unknown samples from a parallel set of reactions containing a 273 

serial dilution of spectrophotometrically determined linearized plasmid containing 274 

partial cDNA sequences generated as described above. All samples were run in 275 

duplicate and each qPCR plate included non-template controls. 276 

 277 

Data analysis  278 

Statistical analysis and data plotting were performed using Microsoft Excel®, 279 

SPSS® and GraphPad®. Transcript levels of each target gene were normalised against 280 

the appropriate reference gene and absolute quantification results were expressed as 281 

means ± standard error of the means (SEM). All data sets were tested for normal 282 

distribution using the Shapiro-Wilk test (Zar, 1999). Normalised gene expression was 283 

then tested for significant differences among sampling points or groups using a one-way 284 

ANOVA, or a Kruskal-Wallis test when data did not follow a normal distribution. 285 

Analysis of variance were followed by Tuckey HSD or Dunn post-hoc tests, 286 

respectively. In the sex change trial, also a Student’s t test was applied for comparisons 287 

between sexes in January sampling and between samplings within each sex. In all cases 288 

statistical significance was taken at p<0.05. 289 

 290 
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Results 291 

Gene identification and sequencing of gilthead seabream kissr4 and kiss2 292 

A 720bp fragment was generated showing a high degree of identity with kissr4 293 

in other teleost species, having 97% identity with blackhead seabream (Acanthopagrus 294 

schlegelii) and 93% with Atlantic striped bass (Morone saxatilis) and European seabass 295 

(Dicentrarchus labrax) and 70% nucleotide identity to zebrafish (Danio rerio) (Fig. 1). 296 

The translated partial protein fragment contains 242 amino acids and importantly 41 297 

amino acids of the predicted transmembrane protein domains 3-7 of 7 (Fig. 1). With 298 

regard to kiss2 a 308 bp fragment was identified and as with kissr4 it displayed the 299 

highest percentage of nucleotide identity with the blackhead seabream (97%) and only 300 

62% with zebrafish and is distinct from the teleost kiss1 clade (Fig. 2). The predicted 301 

translated protein sequence shows notable identity with red seabream, striped bass and 302 

European seabass and importantly also contains the decapeptide core kiss-10 sequence 303 

that defines the gene kiss2 (Fig. 2). 304 

 305 

Experiment 1: Investigating the Kiss system during sex change in gilthead seabream 306 

From the 20 animals used for the first sampling (October), 7 were identified as 307 

being males (with clear mature and functional testis), 5 as females (with clear mature 308 

and functional ovary) and 8 individuals possessed both female and male gonads, at 309 

similar proportion. In January only 3 males were identified, while the other 15 (out of 310 

18 in total) were females, with there being no sex changing individuals present in the 311 

sample. Transcript levels for both targets was an order of magnitude higher in brain in 312 

contrast to gonad tissues (Fig. 3 and 4). The receptor kissr4 (Fig. 3) showed comparable 313 

transcript levels in the brain irrespective of gender state in October (Fig. 3A), while in 314 

gonad, values were significantly higher in males when compared to females with 315 

individuals undergoing sex change being  intermediate and statistically comparable to 316 

both (Fig. 3B, Kruskall-Wallis test, Dunn’s post-hoc test p<0.05). Expression of this 317 

same gene was generally lower in January (reducing in the region of 13.96 – 93.81 %), 318 

with this decrease being significant only in between the female brain samples (59.58 %, 319 

Student’s t test, p<0.01). In this second sampling, coincident with the beginning of the 320 

resting period, no statistical differences between males and females in either the brain or 321 

the gonad samples were found (Fig. 3C, D). With respect to kiss2 expression, in 322 

October, male expression level was significantly higher when compared to females in 323 

both tissues studied with individuals undergoing sex change being intermediate and 324 
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statistically comparable to both males and females (brain, Fig. 4A, and gonad, Fig. 4B). 325 

While in January, transcript levels in brain were greater for females when compared to 326 

males (Fig. 4C), and comparable between sexes when measured in the gonad (Fig. 4D). 327 

When expression levels between the spawning season (October) and the beginning of 328 

the resting period (January) were compared, transcript number decreased in the region 329 

of 31.02 to 89.98 %. This reduction was significant in brains of both males and females 330 

as well as in male gonads (Student’s t test, p<0.05). 331 

 332 

Experiment 2: Kiss system ontogeny during larvae and post-larvae stages in gilthead 333 

seabream 334 

The results of the first trial (larvae ontogeny, until 30 DPH) revealed that during 335 

larval development there was a similar profile of expression for both kissr4 and kiss2 336 

genes: very low expression in eggs, embryos and post hatch larvae (0 DPH), and 337 

increasing significantly from 5 DPH onwards (Fig. 5). For kissr4 the surge at 5 DPH 338 

was almost a twenty-fold increase, which was maintained during 10 and 20 DPH and 339 

then expression levels significantly decreased by circa 50% at 30 DPH (Fig. 5A). In the 340 

case of kiss2, the expression not only increased from 0 to 5 DPH (64-fold), it further 341 

doubled between 5 and 10 DPH. Thereafter, at 20 and 30 DPH, transcript level reduced 342 

to levels comparable to those observed at 5 DPH (One-way ANOVA, Tuckey HSD 343 

post-hoc test, p<0.05, Fig. 5B). 344 

There was a differential response of both genes observed in the second ontogeny 345 

trial where samples extending to the post-larval stage (30 – 140 DPH). For kissr4 and 346 

kiss2 a significantly elevated peak in transcript level was observed at 90 and 60 DPH 347 

respectively (Fig. 6). For the receptor, transcript levels were similar during all sampling 348 

points from 30 to 75 DPH, significantly increasing at 90 DPH in relation to the first 349 

point (3-fold increase compared) before returning to levels comparable to the earlier 350 

stages. For kiss2, all sampling points showed similar levels of transcripts, with only the 351 

peak at 60 DPH (26-fold increase compared to the average abundance from all other 352 

points) being significantly higher (One-way ANOVA, Tuckey HSD post-hoc test, 353 

p<0.05, Fig. 6B). 354 

 355 

Discussion 356 

This research provides the first insight on the kisspeptin system in gilthead 357 

seabream, providing partial cDNA sequences which code for the isoforms of signal 358 
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peptide (kiss2) and its receptor (kissr4) that are widely considered to be the forms 359 

responsible for regulation of reproduction in teleosts (Akazome et al., 2010). Thereafter, 360 

the expression studies allude to an association in expression of this system with both 361 

early ontogenetic development as well as sex change in the species. As a whole, this 362 

work broadens our understanding of the role that the kisspeptin system plays in 363 

reproductive physiology in fish with the interaction in sex change in particular being 364 

largely un-investigated (Todd et al., 2016). Seabream are an important aquaculture 365 

species, with there being a considerable interest in controlling sex ratios therefore a 366 

better understanding of sex change and the neurochemical regulation has both scientific 367 

and significant commercial value.  368 

Prior to this study the lack of seabream gene sequences represented a barrier to 369 

investigating the kisspeptin system in the species. For kissr4 a 720bp product was 370 

detected showing high structural similarity with other teleost species including 371 

blackhead seabream, striped bass and European seabass and in silico analysis of the 372 

predicted translated protein sequence revealed the presence of highly conserved 373 

transmembrane domains (5 of 7 total), which are characteristic of Kissr4 (Cowan et al., 374 

2012; Parhar et al., 2004). Similarly, the 308bp kiss2 fragment identified for seabream 375 

displays a high level of nucleotide identity to red seabream, striped bass and European 376 

seabass. The translated protein sequence contains the highly conserved kisspeptin core 377 

sequence which had a 100% aa identity with that reported in striped bass and European 378 

seabass (Felip et al., 2009; Zmora et al., 2012). Out with the kisspeptin core sequence a 379 

lesser degree of conservation was observed with goldfish and zebrafish sequences, such 380 

a pattern is not uncommon with this gene as was previously reported in Atlantic cod 381 

(Cowan et al., 2012). While there is a lack of genome sequence information available in 382 

the public domain for the gilthead seabream, which negates our ability to identify 383 

additional kisspeptin transcripts or preform synteny analysis, the levels of sequence 384 

identity and structural conservation observed with other teleost species provides 385 

compelling evidence that these are the key transcripts for the species and as such 386 

represent a valuable resource to support subsequent research. In teleosts, various 387 

kisspeptin (kiss1 and kiss2) and kisspeptin receptors (kissr1, kissr2, kissr3, kissr4) gene 388 

forms have been encountered, with variations among species (Ohga et al., 2018), but 389 

always with kiss2 and kissr4 having a functional significance in the control of 390 

reproduction (Akazome et al., 2010). This is in agreement with the results of the present 391 

study, however, the presence of other forms in seabream should not be ruled out.   392 
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Gilthead seabream are sequential protandrous hermaphrodites and during the sex 393 

change process, expression of both kissr4 and kiss2 was generally higher in October 394 

(spawning period), coinciding with a high number of changing individuals and thus at 395 

the climax of sex change. The low number of males and the absence of reverting fish 396 

observed in January (beginning of resting period), indicated that the sex change process 397 

had already finished for that breeding season, in agreement with the 80% of males 398 

Zohar et al. (1978) described as changing to females during the second year of life.  399 

Transcript levels of both kissr4 and kiss2 in the brain were always higher in 400 

comparison to the gonads, as seen in other teleost species (Bohórquez et al., 2017; Felip 401 

et al., 2009; Shi et al., 2010), stressing an important signalling role of kisspeptin in this 402 

region, where the BPG axis activation begins (Zohar et al., 2010). This is in line with 403 

the presence of kisspeptin receptors in GnRH neurons in fish (Parhar et al., 2004; 404 

Servili et al., 2011). Also, the stability in kissr4 expression between sexes in the brain, 405 

suggested the kisspeptin receptor to be equally active in all genders during sex change. 406 

In the gonad, in contrast, kissr4 expression was higher in males in relation to females in 407 

October. In the same sampling, kiss2 transcript levels were also higher in males in 408 

comparison to females in both tissues. Such elevated expression of kissr4 and kiss2 in 409 

males at the beginning of sex change might suggest that the kiss system has a 410 

participation in the induction of sex change in seabream. A similar role has already been 411 

proposed in another sequential hermaphrodite, the protogynous orange-spotted grouper 412 

(Shi et al., 2010), bringing about the idea that due to its control over GnRH, the 413 

kisspeptin signalling could have a regulatory role during sex change in fish, both for 414 

protandrous and protogynous species. The cues inducing sex changes are likely to be 415 

species-specific, however the underlying physiology has received little attention 416 

(Guiguen et al., 2010). Recent findings have associated estrogens (estradiol) and 417 

aromatase with the activation of natural sex change, as their decrease or increase 418 

triggers protogynous or protandrous sex change, respectively, the opposite being true 419 

for 11keto-testosterone (Guiguen et al., 2010; Liu et al., 2017). In relation to this, a 420 

regulatory effect of sex steroids over the kisspeptin system has also been proposed, as a 421 

gonadal steroid positive feedback control of reproduction (Alvarado et al., 2016). 422 

Considering that in our results, higher number of transcripts observed in October in 423 

males, corresponded mostly to spermiating specimens, could also indicate a steroid 424 

sensitivity of kisspeptin expression. All the above highlights the complexity of the 425 

mechanisms driving sex change in this hermaphroditic species, particularly considering 426 
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the overlap with the reproductive season, that makes it difficult to disentangle both 427 

effects. We believe that the kisspeptin system is very likely to play a role in the 428 

signalling of this process, along with other key players. However, to confirm such 429 

hypotheses, more research would be needed, focusing on the influence of blocking 430 

kisspeptin receptors using appropriate antagonists in relation to different developmental 431 

stages.  432 

 Mechaly et al. (2013) and more recently Ohga et al. (2018) reviewed the role of 433 

the kisspeptin system on pubertal development in fish, reporting high interspecies 434 

variation. However both reviews suggest that typically in teleosts kissr2 expression was 435 

more elevated at early stages than in advanced stages of pubertal development. This 436 

process presents similarity with sex change if we consider that in both cases a new 437 

gonad is differentiating and maturing for the first time. Both processes are often 438 

accompanied by drastic morphological, physiological and even behavioural changes, 439 

leading to species-specific secondary sexual characters (Rousseau and Dufour, 2012; 440 

Todd et al., 2016), very likely using similar physiological pathways. In fact, as seen for 441 

puberty, GnRH signalling was suggested to be involved in sex change in gilthead 442 

seabream, as gnrh-3 mRNA expression was increased around the time the gonad began 443 

to differentiate (Reyes-Tomassini, 2013), which aligns with the elevated kissr4 and 444 

kiss2 expression in the gonad samples of males in the current study, at the beginning of 445 

gonad differentiation. In view of the known role of the kisspeptin system in controlling 446 

puberty, it is also reasonable to suggest a similar role over sex change. In January, the 447 

results of kiss2 expression slightly differed and expression was now higher in female’s 448 

brain when compared to males, which could be related with species and gender specific 449 

differences in kisspeptin reproduction patterns, as seen in other species such as 450 

Senegalese sole or Atlantic cod (Cowan et al., 2012; Mechaly et al., 2012).  451 

During larvae and post-larvae stages of the ontogeny study, both kissr4 and kiss2 452 

presented clear temporal patterns in expression, which helped pinpoint potentially 453 

significant developmental periods in gilthead seabream. The elevated peak of 454 

expression observed between 5 and 20 DPH for kissr4 and at 10 DPH for kiss2, could 455 

be related with specific events of the early development of the reproductive axis in 456 

agreement with the conclusions of Ohga et al. (2018). Wong and co-authors (2004) 457 

proposed that the ontogeny and organisation of gilthead seabream reproductive axis, 458 

measured through the mRNA expression of gnrhs (cgnrh-II, sgnrh and sbgnrh) and 459 

other reproduction-related genes (gnrhr, fshβ, lhr, fshr and vasa), may start as early as 5 460 
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days post fertilization (DPF) (equivalent to 3 DPH), although transcripts of these genes 461 

were detected as early as 1 or 1.5 DPF, likely from maternal origin. According to these 462 

same authors (Wong et al., 2004), at least four concomitant increases in the level of 463 

some of the transcripts above mentioned (gnrhs and gnrhr, fshβ, lhr, fshr and vasa) 464 

were observed at 5, 8, 14, and 28 DPF (3, 6, 12 and 26 DPH), which is compelling 465 

evidence of synchronised events in the early ontogeny and organization of the 466 

reproductive axis. After 28 DPF gene expression remained elevated, showing a more 467 

stable development. These authors observed paired developing gonads (with few 468 

primordial germ cells) at 14 DPF, which grow but remained undifferentiated until 59 469 

DPF (57 DPH). Comparisons should be made carefully between these data and our 470 

results since rearing conditions among trials are not exactly the same, yet, the 471 

temperature range used by Wong and colleagues (18-20ºC) is similar to the present 472 

study. The transcript level increases in reproduction related genes (Wong et al., 2004) 473 

appear to be coincident with the time range at which both kissr4 and kiss2 were highly 474 

expressed in the present work, which could indicate a parallel ontogeny of the 475 

kisspeptin system and the early development of the reproductive axis in gilthead 476 

seabream. Furthermore, the evident elevations in expression in post larval stages at 60 477 

and 90 DPH, for kissr4 and kiss2 respectively are coincident with gonadal 478 

differentiation and/or germ cell proliferation in the species suggesting that there are 479 

multiple possible roles for the kisspeptin system within early ontogeny as suggested by 480 

Ohga et al. (2018). There is scarce information available on the timing of specific 481 

developmental events in early ontogeny of seabream to corroborate such hypothesis but 482 

this work provides a new aspect to such research that should be further explored. For 483 

example, an association between gonadal development and the kisspeptin system has 484 

been reported in fathead minnow, Pimephales promelas (Filby et al. 2008).  In this 485 

species, a peak in kissr4 (referred to as kiss1r by the authors) expression in the brain at 486 

60 DPF was associated to the onset of meiosis and the formation of the lobules in the 487 

testis (Filby et al., 2008). In other teleosts (e.g. cobia, chub mackerel or tilapia), the 488 

early expression of kissr and kiss transcripts was seen to be parallel with rises in 489 

expression of GnRH genes, at earlier or later stages of ontogeny, pointing to a close 490 

association between kisspeptin genes and multiple GnRHs during reproductive 491 

development (Martinez-Chavez et al., 2008; Mohamed et al., 2007; Ohga et al., 2015; 492 

Park et al., 2012; Selvaraj et al., 2015). On the other hand, in model species like medaka 493 

or zebrafish, gene knockout and knockdown trials during early development have 494 
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suggested alternative functional roles. Hodne et al. (2013) suggested a critical role of 495 

kisspeptin and the respective receptors in neurulation, morphogenesis and embryonic 496 

survival in medaka, while Tang et al. (2015) described the kiss/kissr signaling as not 497 

absolutely required for zebrafish reproduction. Though, Zhao et al. (2014) described 498 

that Kiss1(but not Kiss2) stimulated proliferation of terminal nerve and hypothalamic 499 

populations of GnRH3 neurons in the central nervous system. These opposing results in 500 

relation to the roles of the kisspeptin system in teleosts ontogeny suggests this research 501 

to be still its infancy, and reflects the complexity of the neuroendocrine interactions 502 

occurring during early development of organs and structures in larvae. Based on all the 503 

above, we may state that the seabream kisspeptin system could be a useful biomarker to 504 

explore the regulation of larval stages ontogeny, namely of the reproductive axis, given 505 

its very prompt signalling response. Future localization studies utilising the sequence 506 

data generated by the current work could help to define other roles of the kisspeptin 507 

system and confirm such hypotheses.  508 

 509 

Conclusions 510 

The present work represents the first investigation aiming to identify and explore 511 

the functional role of the kisspeptin system in physiological pathways in gilthead 512 

seabream, during two distinct periods of its life cycle in captivity. The results could be 513 

indicative of a participation of the kisspeptin system, along with other key players, in 514 

the complex mechanisms driving the protandrous sex change, in a similar but opposing 515 

manner to that reported in protogynous teleosts. Although more research is required e.g. 516 

localisation of neurons & pharmacological studies of the receptor, the current sequence 517 

information and expression data provides a new perspective that could improve our 518 

understanding of sex change in gilthead seabream. The kisspeptin system is also thought 519 

to be involved in early ontogeny of the reproductive axis in teleosts. The current results 520 

allude to a similar role in seabream, pointing to the potential to use the kisspeptin 521 

system as a biomarker for larval development in future studies. 522 
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Figure Captions 708 

Table 1. List of primers used for cDNA cloning and quantitative real-time PCR 709 

standards with sequence and melting temperature (Tm) of studied genes. 710 

Figure 1a. 720bp nucleotide and deduced amino acid sequence of gilthead seabream 711 

kissr4 3’ RACE product containing predicted transmembrane domains, 3-7 of 7, as 712 

described by Cowan et al. (2012) and  Parhar et al. (2004) and shown in bold and 713 

underlined.  714 

Figure 1b. ClustalW alignment of teleost KissR4 protein sequences including the 715 

following Kissr4 protein sequences: 716 

Common Name Scientific Name Accession number 

blackhead seabream Acanthopagrus schlegelii ALQ81855.1 

striped bass Morone saxatilis ADU54205.1 

European seabass Dicentrarchus labrax AFK84356.1 

goldfish Carassius auratus ACK77792.1 

zebrafish Danio rerio NP_001099149.2 

Xenopus Xenopus tropicalis NP_001165296.1 

 717 

Transmembrane domains numbers 3-7 are shown in boxed regions and conserved amino 718 

acid regions are shaded.  719 

Figure 1c. Phylogenetic Tree of teleost Kissr 4 proteins  720 

The evolutionary history was inferred using the Neighbour-Joining method (Saitou and 721 

Nei, 1987). The tree is drawn to scale, with branch lengths in the same units as those of 722 

the evolutionary distances used to infer the phylogenetic tree. The evolutionary 723 

distances were computed using the Poisson correction method (Zuckerkandl and 724 

Pauling, 1965) and are in the units of the number of amino acid substitutions per site. 725 

The analysis involved 14 amino acid sequences from Kissr4 proteins in a number of 726 

teleost’s and relevant outliers. In addition to species described in fig.1b analysis also 727 

included the following Kissr4 / Kissr1 proteins: 728 

Common Name Scientific Name Accession number 

Atlantic croaker Micropogonias undulatus ABC75101.1 

long tooth grouper Epinephelus bruneus AEN14599.1 

Korean rockfish Sebastes schlegelii AIZ68244.1 

yellowtail amberjack Seriola lalandi ACT78955.2 
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human Homo sapiens NP_115940.2 

mouse Mus musculus NP_444474.1 

 729 

All positions containing gaps and missing data were eliminated. There were a total of 730 

231 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 731 

(Tamura et al., 2013). 732 

Figure 2a. 308bp nucleotide and deduced amino acid sequence of gilthead seabream 733 

kiss2.  The DNA sequence displayed 100% nucleotide identity to gilthead seabream 734 

EST (AM962676). Kisspeptin – core sequence is underlined and in bold in figure. 735 

Figure 2b. Kiss2 protein sequences aligned by ClustalW for gilthead seabream along 736 

with the following species: 737 

Common Name Accession number 

striped bass ADU54201.1 

European seabass ACM07423.1 

goldfish ACS34769.1 

zebrafish Kiss1 ABV03802.1 

zebrafish Kiss2 NP_001136057.1 

 738 

Conserved amino acid regions are shaded and Kisspeptin-10 epitope boxed within the in 739 

figure. 740 

Figure 2c. Phylogenetic Tree of teleost Kiss 1 and 2 proteins. 741 

The evolutionary history of Kiss2 was inferred using the Neighbour-Joining method 742 

(Saitou and Nei, 1987). The tree is drawn to scale, with branch lengths in the same units 743 

as those of the evolutionary distances used to infer the phylogenetic tree. The 744 

evolutionary distances were computed using the Poisson correction method 745 

(Zuckerkandl and Pauling, 1965) and are in the units of the number of amino acid 746 

substitutions per site. The analysis involved 17 amino acid sequences from Kiss1 and 747 

Kiss2 proteins in a number of teleost’s and relevant outliers. In addition to species 748 

described in fig. 2b analysis also included the following sequences for Kiss2 and Kiss1: 749 

Common Name Scientific Name Accession number 

Red seabream Kiss2 Pagrus major BAL44206.1 

medaka Kiss1  NP_001116393.1 

medaka Kiss2  BAG86623.1 
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western clawed frog Kiss1A Xenopus tropicalis  ACJ50538.1 

western clawed frog Kiss1B  NP_001163986.1 

western clawed frog Kiss2  NP_001156332.2 

European seabass Kiss1  ACM07422.1 

European seabass Kiss2  ACM07423.1 

striped bass Kiss1  ADU54200.1 

striped bass Kiss2  ADU54201.1 

zebrafish Kiss1  NP_001106961 

zebrafish Kiss2  NP_001136057 

goldfish Kiss1a  ACK77790.1 

goldfish Kiss1b  ACK77791.1 

mouse Kiss1  NP_839991.2 

human Kiss1  NP_002247.3 

 750 

 All positions containing gaps and missing data were eliminated. There were a total of 751 

73 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 752 

(Kumar et al., 2004). 753 

Figure 3. kissr4 transcript levels in brain (A and C) and gonad (B and D) in a group of 754 

gilthead seabream with males, females and individuals undergoing sex change at two 755 

different moments of the reproduction season: (A and B) in October, full spawning, and 756 

(C and D) in January, beginning of the resting period (values expressed as mean ± 757 

S.E.M.). Different letters indicate groups with statistical significant differences 758 

(Kruskal-Wallis test, p<0.05). 759 

Figure 4. kiss2 transcript levels in brain (A and C) and gonad (B and D) in a groups of 760 

gilthead seabream with males, females and individuals undergoing sex change at two 761 

different moments of the reproduction season: (A and B) in October, full spawning, and 762 

(C and D) in January, beginning of the resting period (values expressed as mean ± 763 

S.E.M.). Different letters indicate groups with statistical significant differences 764 

(ANOVA, Tuckey HSD, October sampling and Student’s t test, January sampling, 765 

p<0.05). 766 

Figure 5. Ontogeny of kissr4 (A) and kiss2 (B) expression in gilthead seabream eggs at 767 

gastrula and embryo stage (pre-hatch), and larvae during early development until 30 768 
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DPH (values expressed as mean ± S.E.M.). Letters a, b, c indicate groups with statistical 769 

significant differences between development stages (ANOVA, Tuckey HSD, p< 0.05). 770 

Figure 6. Ontogeny of kissr4 (A) and kiss2 (B) expression in gilthead seabream post-771 

larvae during development from 30 till 140 DPH (values expressed as mean ± S.E.M.). 772 

Letters a, b indicate groups with statistical significant differences between development 773 

stages (ANOVA, Tuckey HSD, p< 0.05). 774 
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Figure 1b 778 
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Figure 1c 783 
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Figure 2b 795 
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