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Abstract The 2016–2017 Central Apennines earthquake sequence is a recent example of how damages
from subsequent aftershocks can exceed those caused by the initial mainshock. Recent studies reveal that
physics‐based aftershock forecasts present comparable skills to their statistical counterparts, but their
performance remains a controversial subject. Here we employ physics‐based models that combine the
elasto‐static stress transfer with rate‐and‐state friction laws, and short‐term statistical Epidemic Type
Aftershock Sequence (ETAS) models to describe the spatiotemporal evolution of the earthquake cascade.
We then track the absolute and relative model performance using log‐likelihood statistics for a 1‐year
horizon after the 24 August 2016Mw = 6.0 Amatrice earthquake. We perform a series of pseudoprospective
experiments by producing seven classes of Coulomb rate‐state (CRS) forecasts with gradual increase in
data input quality and model complexity. Our goal is to investigate the influence of data quality on the
predictive power of physics‐based models and to assess the comparative performance of the forecasts in
critical time windows, such as the period following the 26 October Visso earthquakes leading to the 30
October Mw = 6.5 Norcia mainshock. We find that (1) the spatiotemporal performance of the basic CRS
models is poor and progressively improves as more refined data are used, (2) CRS forecasts are about as
informative as ETAS when secondary triggering effects from M3+ earthquakes are included together with
spatially variable slip models, spatially heterogeneous receiver faults, and optimized rate‐and‐state
parameters. After the Visso earthquakes, the more elaborate CRS model outperforms ETAS highlighting
the importance of the static stress transfer for operational earthquake forecasting.

1. Introduction

Earthquake cascades with multiple moderate to large magnitude events over weeks, months, or years
expand the damage zone extensively causing disruption to livelihoods. Operational earthquake forecasts
seek to provide reliable real‐time information about the time dependence of earthquake hazard to the pub-
lic and to decision makers (Jordan et al., 2011, 2014), but still little is known about earthquake nucleation
processes and short‐term fault interaction. For the last 30 years, statistical Epidemic Type Aftershock
Sequence (ETAS) forecasts (Ogata, 1988, 1998) have shown considerable skills in capturing the clustering
characteristics of triggered seismicity. However, these models offer limited insight into the physics of earth-
quake nucleation and fault interaction in terms of continuum mechanics. A commonly accepted physical
mechanism to explain earthquake triggering is the static stress transfer hypothesis (Harris & Simpson,
1992). Nowadays, the implementation of laboratory‐derived friction laws describing the seismicity
response to an earthquake perturbation (Dieterich, 1994) is the basis of many physics‐based forecasts
known as Coulomb rate‐state (CRS) models (Cattania et al., 2018; Cocco et al., 2010; Parsons et al.,
2012, 2014; Segou, 2016; Toda & Enescu, 2011; Toda et al., 2005, among others). Recent advances in
CRS modeling demonstrated that addressing the uncertainties behind physics‐based models leads to a pre-
dictive power comparable to empirical models (Cattania et al., 2018; Segou & Parsons, 2016). However, the
limitation for an operational use of CRS models is that their parametrization goes beyond a mere earth-
quake catalog and requires representations of earthquake sources and nearby receiver faults that are unli-
kely to be available immediately after a major event.

The Collaboratory for the Study of Earthquake Predictability (CSEP) provides a platform to evaluate the
performance of forecast models in retrospective and prospective mode (Jordan, 2006; Michael & Werner,
2018). Here we assess how data quality and individual model choices driven by real‐time conditions affect
the performance of physics‐based forecasts benchmarked against a statistical ETAS model. The 2016–2017
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central Apennines (Italy) seismic sequence is an ideal testing ground with nine M5+ earthquakes between
August 2016 and January 2017 that devastated many villages and historical heritage buildings.

We present seven classes of physics‐based models with gradual complexity increase in a pseudoprospective
experimental framework for the first year after theMw = 6.0 Amatrice event. The simplest forecasts include
preliminary data available a few minutes after eachMw ≥ 5.4 event, featuring synthetic source models with
empirically derived fault length and previously determined fault constitutive parameters. More complex
models incorporate (1) optimized rate‐state parameters, (2) spatially heterogeneous receiver fault planes,
(3) best‐available slip models, and (4) secondary triggering effects. We evaluate the absolute and relative
model performance using CSEP's metrics over different time horizons.

Our results show that the preliminary assumptionsmade to fill the early postdisaster knowledge gap severely
hamper the absolute performance of CRS forecasts. When we incorporate revised data, optimize the rate‐
and‐state parametrization on previous regional seismicity, and account for the multilevel heterogeneities
as (1) 3D spatial distribution of receivers, (2) spatially variable fault slip models, and (3) smaller magnitude
aftershocks that reshape the local stress field, we obtain a dramatic performance improvement of physics‐
based models. Results suggest that CRS performance is comparable to ETAS only when secondary triggering
is taken into account.

1.1. The Central Apennines Earthquake Sequence

The Central Apennines are among the highest seismic hazard zones in Europe (Woessner et al., 2015).
Present day deformation is taken up by NW‐SE trending normal fault systems, expressing the postorogenic
extension at a rate of ~3 mm/year (Serpelloni et al., 2005). Historical and modern seismicity indicate moder-
ate (M5+) to large (M6+) magnitude earthquake cascades associated with heavy damage patterns in the
broader area (Rovida et al., 2016) such as the 1703 Norcia cascade where threeM6.2+ earthquakes occurred
within less than 20 days (Boschi et al., 2000), the sixM5.2+ events that struck Colfiorito between September
andOctober 1997 (Amato et al., 1998; Chiaraluce et al., 2003, 2004), and the 2009Mw= 6.3 L'Aquila sequence
with an accelerating seismicity pattern observed few days before the mainshock (Chiarabba et al., 2009;
Chiaraluce et al., 2011).

The 24 August 2016 Amatrice earthquake activated a 60‐km long normal fault system (Figure 1a) and was
followed by an Mw = 5.4 aftershock within less than 1 hr at the northern updip part of the mainshock rup-
ture (Chiaraluce et al., 2017, and references therein). Two months later, on 26 October, two Mw = 5.4 and
Mw = 5.9 earthquakes occurred further north near the village of Visso, closer to the southernmost after-
shock zone of the 1997 Colfiorito sequence. The 30 October Mw = 6.5 Norcia event remains the largest
event of the sequence to date and the strongest in Italy since the 1980 Mw = 6.9 Irpinia earthquake.
Few months later, on 18 January 2017, four M5+ earthquakes occurred within a 4‐hr window to the south
of the Norcia mainshock rupture, coinciding with the northern aftershock zone of the 2009 L'Aquila
sequence. The January 2017 seismicity raised immediate concerns about the Campotosto artificial dam
lake, the second largest man‐made lake in Europe.

In Table 1 we summarize the preliminary and revised source parameters of the major earthquakes of the
Amatrice‐Visso‐Norcia (hereinafter, AVN) sequence.

2. Data

We implement our models within a 3D grid (0–12 km of depth) with 2‐km spacing in a ~150 × 150 km
testing region (Figures S1 and S2 in the supporting information). We use (1) the seismicity catalog of
the Italian Seismological Instrumental and Parametric Database for the period between 1 January 1990
and 23 August 2016 (learning phase, 1533 M3+ events), (2) the near‐real‐time catalog for the 1 year after
the Mw = 6.0 Amatrice earthquake (testing phase, 1160 M3+ events), and (3) centroid‐moment‐tensor
(CMT) catalogs for the learning phase (Figure S1) and the Database of Individual Seismogenic Sources
(DISS, Basili et al., 2008; DISS Working Group, 2018) for constraining the active seismogenic sources
and regional rupture styles of the central Apennines.

For the primary events (Mw≥ 5.4), we estimate the coseismic stress changes using the finite‐fault slip models
of Tinti et al. (2016) and Scognamiglio et al. (2016) for the Amatrice I–II events, respectively, and Chiaraluce
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et al. (2017) for the Visso II and Norcia events. For the 18 January 2017Mw = 5.5 andMw = 5.4 Campotosto
earthquakes, we use the only preliminary slip models available, as no refined versions have been issued. For
the sources that lack a rupture model, we construct a synthetic slip distribution from their moment tensor
solution, with empirically derived fault dimensions (Wells & Coppersmith, 1994) and uniform slip (from
the moment relation of Hanks & Kanamori, 1979) tapered at the edges.

Figure 1. The 2016–2017 AVN sequence (M3+). (a) Map view. Colors indicate different seismicity phases: red, 24 August
2016 to 25 October 2016; green, 26 October to 29 October 2016; blue, 30 October 2016 to 17 January 2017; yellow, 18
January to 24 August 2017. The focal mechanisms of the three largest events are also displayed. Gray symbols indicate the
1997 Colfiorito and 2009 L'Aquila seismic sequences (M3+). We report the mapped active faults of the region (EMERGEO
Working Group, 2016), (b) cumulative seismicity (M3+) with time, and (c) depth distribution ofM3+ events in the first 24
hr following the Mw = 6.0 Amatrice (red bars) and Mw = 6.5 Norcia (blue bars) mainshocks. AVN = Amatrice‐Visso‐
Norcia.
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3. Methods
3.1. CRS Modeling

We estimate the coseismic Coulomb stress change (ΔCFF) by using the formulation of Rice (1992):

ΔCFF ¼ Δτ þ μ
0
Δσnð Þ; (1)

where Δτ is the shear stress change on a given receiver fault plane (positive in direction of fault slip), Δσn is
the normal stress change, μ′ = μ(1 − Bk) is the effective coefficient of friction, and Bk is Skempton's coeffi-
cient that accounts for pore fluid pressure effects. We set μ′ = 0.4 for all models, although we also tested
the effect of implementing a lower μ′ (see Text S1.3). We assume an elastic half‐space with a shear modulus
of 30 GPa and Poisson's ratio ν = 0.25.

The receiver planes formulation follows two approaches: the optimally oriented planes (King et al., 1994) that
assumes that earthquakes nucleate on hypothetical faults in favorable orientation with respect to the regio-
nal stress field and the geological receiver plane (GRP) approach. Both approaches received extensive criti-
cism in recent years: the optimally oriented planes for relying on the knowledge of the largely unknown
regional stress tensor to resolve stress changes on hypothetical planes that might not even exist (Segou &
Parsons, 2016), whereas GRP may miss unmapped faults, when even in well‐studied regions such as
California ~30% of seismicity occurs on previously unidentified structures (Field et al., 2014). Here we adopt
the Segou et al. (2013) approach where GRP is informed by presequence focal mechanisms and active fault
maps to achieve a representation of the spatial structural heterogeneity.

We use the coseismic stress change estimates within a rate‐and‐state friction framework (Dieterich, 1994) to
derive the time‐dependent evolution of seismicity, expressed in expected number of events within 1‐day time
intervals for a 1‐year time horizon. The seismicity rate R is related to the background rate r0:

R ¼ r0
γ _τ

; (2)

where _τ represents the secular shear stressing rate and γ is a state variable. Under a constant secular shear
stressing rate, γ reaches the steady state with a value given by

γ0 ¼
1
_τ
: (3)

In the absence of stress perturbations, the seismicity rate R equals the background rate r0. At the time of a
stress step the state variable value is given by

Table 1
Source Parameters for the M5+ Events of the AVN Sequence

Preliminary data Revised data

Event Date Time (UTC) ML Z (km) Mw Z (km) Slip model

Amatrice I 24/08/2016 01:36:32 6.0 4.0 6.0 8.0 Yes
Amatrice II 24/08/2016 02:46:36 5.4 9.0 5.4 8.0 Yes
Visso I 26/10/2016 17:20:02 5.4 9.0 5.4 9.0 No
Visso II 26/10/2016 19:27:30 5.9 8.0 5.9 8.0 Yes
Norcia 30/10/2016 06:58:20 6.1 10.0 6.5 9.0 Yes
Campotosto I 18/01/2017 09:25:40 5.3 9.0 5.1 9.0 No
Campotosto II 18/01/2017 10:14:09 5.4 9.0 5.5 11.0 Yes
Campotosto III 18/01/2017 10:25:23 5.3 9.0 5.4 11.0 Yes
Campotosto IV 18/01/2017 13:33:36 5.1 10.0 5.0 10.0 No

Note. Time stamps and magnitudes are available at http://cnt.rm.ingv.it, while the revised hypocentral depths are taken from the corresponding slip models
where available. The period between the moment an event is recorded and the time when its rupture model is estimated varies from few days to several weeks.
For the AVN sequence, finite‐length slip models were computed for six out of the nineM5+ events, and for most of them a period of 2–3 weeks from their occur-
rence passed before the release of a first robust version. Dates are formatted as day/month/year. AVN = Amatrice‐Visso‐Norcia.
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γn ¼ γn−1 exp
−ΔCFF

Aσ

� �
; (4)

where ΔCFF is the coseismic stress change, and Aσ is a constitutive parameter accounting for the effec-
tive normal stress acting on the fault. A stress increase causes a drop in γ, resulting in a higher seismi-
city rate through equation (2). Due to the transient nature of the seismicity rate change, the evolving
values of γ produce an Omori decay and R recovers to the background value in a time equal to ta
(Dieterich, 1994):

ta ¼ Aσ
_τ
: (5)

Given this inverse correlation between the stressing rate and the aftershock duration, it is evident that the
seismicity rate on the most slowly stressed faults takes more time to decay toward background values
(Stein & Liu, 2009).

To address the influence of the rate‐and‐state parameters Aσ and _τ in the CRS forecasts, we test (1) predeter-
mined values based on the study by Catalli et al. (2008) of the 1997 Colfiorito sequence and (2) parameters
derived from a log‐likelihood optimization on pre‐AVN seismicity (see Text S1.1) using a common learning
phase catalog for all CRS models.

The implementation of CRS models is based on a parallel computer code for calculating seismicity induced
by time‐dependent stress changes (Cattania & Khalid, 2016).

3.2. The ETAS Model

Statistical ETAS models are often used to describe short‐term earthquake clustering (Ogata, 1988; Ogata,
1998). As a benchmark for the CRS forecasts, we use one standard version of ETAS (Seif et al., 2016).
Although the focus of our study is on the improvements of CRS models, we acknowledge that other ETAS
parametrizations may perform differently. Previous experiments show a good performance of ETAS both
in retrospective (Cattania et al., 2018; Helmstetter et al., 2006; Marzocchi, Murru, et al., 2012; Werner
et al., 2011; Woessner et al., 2011) and during unfolding sequences (e.g., Marzocchi et al., 2017; Marzocchi
& Lombardi, 2009), but some weaknesses related with early catalog incompleteness (Omi et al., 2016;
Segou & Parsons, 2016) and the absence of fault interaction effects (e.g., Marzocchi & Lombardi, 2009) have
been reported.

The ETAS seismicity corresponds to a point process with a stochastic spatiotemporal branching evolu-
tion, where each earthquake triggers its own offspring events, whose number depends on the parent's
magnitude and follow an Omori law decay. In the ETAS model, triggered earthquakes can have a larger
magnitude than their parent event. The total space‐time seismicity rate λ (or conditional intensity) is
defined as

λ x; y; t ∣ Htð Þ ¼ μ x; yð Þ þ ∑
i:ti<t

g t−ti; x−xi; y−yi;Mið Þ ; (6)

where μ(x,y) is the background rate, a time‐independent, and spatially heterogeneous Poisson process, while
the summation term represents the triggering history (Ht) from all preceding earthquakes occurring at ti < t.
The triggering function is expressed by empirical relations, according to the form of Ogata (1998):

g t; x; y;Mð Þ ¼ K0e
α M−Mcutð Þ·cp−1 t þ cð Þ−p p−1ð Þ·f x; yjMð Þ; (7)

with normalized temporal and spatial distributions as second and third terms on the right‐hand side,
respectively. The parameter K0 regulates the short‐term aftershock productivity by a parent event with
magnitude M equal or above a minimum triggering magnitude (Mcut), here set to 3.0; α establishes
the efficiency of earthquakes in triggering aftershocks as a function of magnitude. The second term
on the right‐hand side of equation (7) is the modified Omori law (Utsu, 1961) describing the temporal
distribution of triggered earthquakes. The term f(x,y|M) represents the probability distribution function
of the spatial decay of triggered seismicity near the parent event given the parent's magnitude. Here
we adopt a spatially isotropic power law distribution (e.g., Ogata & Zhuang, 2006; Werner et al., 2011):
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f x; yjMð Þ ¼ d eγ M−Mcutð Þ
� �q−1

=π· x2 þ y2 þ d·eγ Mi−Mcutð Þ
� �−q

q−1ð Þ; (8)

where q describes how triggered events decay in space, and the term d·eγ Mi−Mcutð Þ scales the size of the Mcut

aftershock zone with the magnitude of the parent earthquake.

To estimate the ETAS parameters, we use the Maximum Likelihood Estimation method (see Text S2.1) dur-
ing the ETAS learning phase corresponding to the latter part of the Italian Seismological Instrumental and
Parametric Database catalog (2005–2016) after the Italian permanent seismic network was considerably
improved (Schorlemmer et al., 2010).

3.3. Development of Forecast Models

In this section, we describe forecast characteristics and model parameters. All models share a 1‐year forecast
horizon, with 24‐hr time windows (dt) and target seismicity magnitude M3+.

The reference model CRS‐1 is based on (1) real‐time preliminary catalog data, including hypocenters
and focal mechanisms available within few minutes to 1 hr, (2) stress perturbations from Mw ≥ 5.4
events estimated using a uniform slip model with kinematic parameters from focal mechanisms with
nodal planes selection constrained by the predominant rupture geometries reported in the DISS
database (DISS Working Group, 2018), (3) a spatially homogeneous background rate obtained by
stochastic declustering (Zhuang et al., 2002) of the CRS learning phase catalog and averaged over the
testing region (r0 = 0.034 M3+ events/day), and (4) spatially uniform receiver planes for ΔCFF estima-
tion expressing the NW‐SE striking, SW dipping main trend of the central Apennines normal fault sys-
tems (Basili et al., 2008). This latter assumption is valid when we do not know enough about the
complex structures of the neighboring faults (McCloskey et al., 2003). This preliminary forecast realiza-
tion features rate‐and‐state parameters Aσ = 0.04 MPa and _τ = 10−3 MPa/year (ta=40 years), previously
used to characterize the active faults of the 1997 Colfiorito sequence (Catalli et al., 2008). The only
difference between models CRS‐1 and CRS‐2 is that the latter implements a heterogeneous background
rate, smoothed in space according to the adaptive kernel method proposed by Helmstetter et al. (2007).

From CRS‐3 onward we use (1) revised hypocentral locations and moment tensor solutions available within
1–3 hr after a large earthquake (Table 1), and (2) fault constitutive parameters optimized on the learning
phase catalog (see Text S1.1). During the optimization procedure, the grid search for Aσ ranges between
[0.01–0.1] MPa enveloping all previous estimates (e.g., Catalli et al., 2008; Console et al., 2006; Toda et al.,
1998) with aftershock durations (ta) of [1–1000] years. The best fit Aσ‐_τ couples for each model are shown in
Table 2. Otherwise, CRS‐3 features the same implementation parameters as model CRS‐2.

In model CRS‐4, we introduce spatially variable receiver planes (SVP) to achieve a better representation
of the structural heterogeneity of the fault system. We start by randomly selecting a nodal plane for each
of the focal mechanisms included in the learning phase catalog (Figure S1), and then we assign a rup-
ture plane to each grid point through a 3D nearest neighbor spatial association. In regions where no
previous focal mechanism exists, the assignment of a receiver fault is aided by the DISS database of
active seismogenic structures (DISS Working Group, 2018). The resulting discrete fault grid is shown in
Figure S2.

In CRS‐5, we include the finite‐length rupture models for events withMw ≥ 5.4 to implement a representa-
tion of spatial slip variability together with the structural heterogeneity expressed by the SVP receiver matrix
in CRS‐4.

The CRS‐6 and CRS‐7 models incorporate secondary triggering effects of smaller magnitudes with different
thresholds (CRS‐6, 41 M4+ events; CRS‐7, 1167 M3+ events). In CRS‐6, we represent 35 M4+ events using
uniform slip distributions (similar to CRS‐1 to CRS‐4) with random selection of rupture planes from Time
Domain Moment Tensor solutions of the Italian CMT database and peer‐reviewed slip models for six events
with Mw ≥ 5.4. In CRS‐7, we have rupture characterizations for only 4% of the M < 4.0 earthquakes.
Therefore, for those events we assume for an isotropic distribution of coseismic stress changes
(Helmstetter et al., 2005; Marsan, 2005), following the formulation of Chen et al. (2013):
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ΔCFF ¼ M0

6πr3
; (9)

with M0 the seismic moment and r the hypocentral distance.

We also produce two additional models, CRS‐6s and CRS‐7s, that isolate the sole contribution of secondary
triggering (M4+ and M3+ stress sources, respectively) on model performance, where we omit the rate‐and‐
state optimization by implementing the same fault constitutive parameters previously derived for CRS‐5. We
take these two auxiliary models into consideration during the model validation stage.

In the ETAS model, we set α = β = b · log (10) with Gutenberg‐Richter b value = 1, requiring larger magni-
tude earthquakes to have a higher triggering potential than the small ones. For the estimation of the ETAS
parameters, shown in Table S1, we use the M3+ ETAS learning phase seismicity within a polygon covering
the entire Italian mainland (see Figure S3a and Text S2.1). To account for earthquake interactions outside
the spatiotemporal boundaries of the inversion, we also use events in auxiliary spatial and temporal win-
dows (Figure S3). The inverted parameters are in close agreement with those of Seif et al. (2016) for the same
areal extent, time window, andMcut. We fix the ETAS parameters for the whole forecast horizon, and we use
them to simulate 1,000 synthetic catalogs within each forecast window (dt). Details on the simulation pro-
cedure are provided in the supporting information (see Text S2.2).

4. Results

In this section, we present the forecast results in the form of (a) temporal evolution of expected seismicity, (b)
maps of predicted earthquake occurrence for period‐specific (between mainshocks), and long‐term (1 year)
time windows. We then focus on the performance evaluation using the N, S, T–test metrics (Rhoades et al.,
2011; Zechar et al., 2010) and comment on the absolute and relative predictive power of the models.

4.1. Forecast Time Series

Figure 2a compares the expected and observed daily rates forM3+ events. The preliminary CRS‐1 and CRS‐2
models systematically underestimate the daily seismicity rates by an order of magnitude over the entire per-
iod, whereas the first updated model CRS‐3 presents a tenfold increase of expected rates arising from the
optimized values of the fault constitutive variables.

Refined source parameters together with the optimized rate‐and‐state variables (CRS‐3), the systematic
introduction of SVP receiver faults (CRS‐4), and heterogeneity in slip models (CRS‐5) bring stress‐based
models closer to the observed rates, especially during the first day following each mainshock.

CRS‐5 and CRS‐6 share very similar expected rates in the 24 hr following each large magnitude event,
standing out among all physics‐based models for fitting more closely the short‐term (1 day) seismicity

Table 2
Main Features of CRS Models

Model
number

Seismic
parameters

Stress calculations Rate‐and‐state parameters

Mmin

Secondary
Triggering Slip distribution μ′ Receivers r0

Aσ
(MPa)

_τ (MPa/
year)

LL
optimization

CRS‐1 Preliminary 5.4 No USD 0.4 SUP Ho 0.04 0.001 No
CRS‐2 Preliminary 5.4 No USD 0.4 SUP He 0.04 0.001 No
CRS‐3 Revised 5.4 No USD 0.4 SUP He 0.03 0.00016 Yes
CRS‐4 Revised 5.4 No USD 0.4 SVP He 0.02 0.00018 Yes
CRS‐5 Revised 5.4 No FLM 0.4 SVP He 0.02 0.00018 Yes
CRS‐6 Revised 4.0 Yes FLM (M ≥ 5.4) USD (M ≥ 4.0) 0.4 SVP He 0.03 0.00014 Yes
CRS‐6s Revised 4.0 Yes FLM (M ≥ 5.4) USD (M ≥ 4.0) 0.4 SVP He 0.02 0.00018 No
CRS‐7 Revised 3.0 Yes FLM (M ≥ 5.4) USD (M ≥ 4.0) I (M ≥

3.0)
0.4 SVP He 0.015 0.00019 Yes

CRS‐7s Revised 3.0 Yes FLM (M ≥ 5.4) USD (M ≥ 4.0) I (M ≥
3.0)

0.4 SVP He 0.02 0.00018 No

Note.Mmin =minimummagnitude for stress sources; USD = uniform slip distribution; FLM = finite‐length rupture model; I = isotropic stress field; SUP = spa-
tially uniform receiver planes; SVP = spatially variable planes; Ho = homogeneous; He = heterogeneous.
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after the Mw = 6.0 Amatrice, Mw = 5.4 Visso, and Campotosto earthquakes. These two model
implementations share the same behavior as ETAS after the Amatrice and Norcia mainshocks. CRS‐7,
with M3+ secondary triggering effects, overestimates the short‐term (≤ 1 day) seismicity rates after the
larger magnitude events (e.g., 376 M3+ expected events against 237 observations in the 24 hr following
the Mw = 6.5 mainshock); however, this result is biased by early incompleteness of the real‐time
catalog, as the Mc is larger than 3.0 for at least 6 hr after the Norcia event (Figure S5). For t > 10 days,
CRS‐6/7 and ETAS closely match the observed rates whereas CRS‐3/4/5 generally underestimates.

In Figure 2b we show the cumulative number of expected events versus the cumulative real‐time observa-
tions. We see that (1) ETAS captures the seismicity decay of the AVN sequence, while CRS models show a
faster decay within the first fewmonths, (2) CRS‐7 is the only model that adequately forecasts the total num-
ber of observations within Poissonian error, and (3) ETAS and the stress‐based models from CRS‐3 onward
satisfactorily estimate the seismicity after the Campotosto earthquakes.

4.2. Seismicity Rate Maps

Figure 3 presents the forecastmaps illustrating the difference in spatial distribution of expected rates between
the preliminary (CRS‐1) and the more elaborate physics‐based models (CRS‐7) against the statistical ETAS

Figure 2. CRS and ETAS forecast time series. (a) Observed (triangles) and forecasted (squares) incremental number ofM3+ events for 200 days following theMw=
6.0 Amatrice mainshock. For illustration purposes we plot values at 1‐day intervals for each week after the primary events (vertical dashed lines), otherwise at 2‐day
intervals. (b) Cumulative expected and observed (black solid line) seismicity with shaded areas representing Poissonian uncertainties. CRS = Coulomb rate‐state;
ETAS = Epidemic Type Aftershock Sequence.
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Figure 3. Maps of expected seismicity rates (M3+) for CRS‐1/7 and ETAS at period‐specific windows. We adopt a grid size of 2 × 2 km in all models. Black
circles indicate observed events (M3+) within each specified time period, while stars indicate the primary earthquakes (not included among the target events
of the respective time window). S = sources; Prel = preliminary; Rev = revised; Opt RS = optimized rate‐state parameters, USD = uniform slip distribution;
SUP = spatially uniform receiver planes; SVP = spatially variable planes; FLM = finite‐length rupture model; I = isotropic stress field; HoBR = spatially
homogeneous background rate; HeBR = spatially heterogeneous background rate; MtBV = Mount Bove‐Mount Vettore. Aσ values are in MPa, _τ values are in
MPa/year. CRS = Coulomb rate‐state; ETAS = Epidemic Type Aftershock Sequence.
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forecast. A full set of forecast maps, including first‐day forecasts, is provided in the supporting
information (Figures S8–S15).
4.2.1. Amatrice to Visso
The preliminary CRS‐1 forecast presents low rates in the near‐source region at the northern section of the
Mount Gorzano fault, as well as in the epicentral area of the Mw = 5.4 aftershock occurred 1 hr after the
Mw=6.0mainshock (Figure 3a). Themost advanced CRS‐7model includes SVP receivers, a spatially variable
slip model for the Amatrice I/II events, and secondary triggering effects fromM3+ earthquakes; we observe
good visual correlation between the observed and the expected seismicity rates over the entire region with
notable increased rates near the two epicenters and close to Amatrice and Mount Vettore (Figure 3b). The
ETAS model (Figure 3c) presents a smoother, more isotropic distribution of the higher expected rates over
the entire epicentral area in comparison with CRS‐7, including locations where no aftershock occurred in
the first 2 months.

Comparing between CRS‐1 and CRS‐3 (Figures S8a–S8c and S9a–S9c), we find that optimized rate‐and‐state
parameters introduce 1–2 orders of magnitude rate increase around theMw= 6.0 event. Comparing CRS‐4 to
CRS‐5 (Figures S8d and S8e and S9d and S9e) shows that heterogeneous slip representations for the Amatrice
I/II mainshocks lead to high expected rates in epicentral regions and toward Mount Vettore. In CRS‐6
(Figures S8e and S8f and S9e and S9f), we observe that secondary triggering effects from the 17 M4+ after-
shocks do not exert an obvious difference in the spatial forecast from model CRS‐5.
4.2.2. Visso to Norcia
Similar to the previous time window, CRS‐1 predicts particularly low rates immediately after and in the
region of the Mw = 5.4 (Visso I) and Mw = 5.9 (Visso II) October events and fails to capture the aftershock
activity north of Ussita (Figure 3d). In CRS‐7 we observe a noteworthy increase of expected rates in near‐
source up to 5 orders ofmagnitudes with respect to CRS‐1, and aftershock production is favored on the north-
ern tip of the Mount Bove‐Mount Vettore (MtBV) fault system thanks to the spatially variable rupture model
for the Visso II event and the inclusion ofM3+ secondary triggering effects (Figure 3e). The ETASmodel pre-
sents a good fit with the observed seismicity; the area of higher expected rates extends eastward to Mount
Bove, while the area of Norcia presents at least 10 times lower predicted rates compared to the Visso I/II epi-
central region (Figure 3f).
4.2.3. Norcia to Campotosto
The preliminary CRS‐1, in which stress perturbations are based on simplified uniform rupture distribu-
tions, fails to forecast the dramatic seismicity increase following the Mw = 6.5 Norcia mainshock, present-
ing low rates in the near‐source region and seismicity suppression on the Mount Bove fault (Figure 3g).
The incorporation of the complex Norcia mainshock rupture process, which involved a ~30 km long fault
plane, produces (1) near‐source coseismic stress heterogeneities and (2) a halving of the stress shadows SW
of Mount Vettore and between Ussita and Mount Bove (see Figure S6); this results in a systematic increase
of the expected seismicity in the respective areas from CRS‐5 onward. The strength of the complex physics‐
based model CRS‐7 is that it better captures the triggered seismicity south of Amatrice due to the incor-
poration of M3+ secondary triggering effects (Figure 3h), while M4+ effects in CRS‐6 (Figure S12f) present
an expected seismicity pattern similar to CRS‐5 (Figure S12e). From visual comparison, we find the main
differences between ETAS and CRS‐7 in the high clustering region around Mount Bove, where the former
expects more than 1 order of magnitude higher rates than its stress‐based counterpart, and in the near epi-
central area, where the aftershock rates predicted by the ETAS model are approximately 2–3 times lower
than CRS‐7 (Figure 3i). This latter observation is possibly due to the early catalog incompleteness following
the Norcia mainshock (Figure S5).
4.2.4. One‐Year Forecast
The preliminary CRS‐1 (Figure 3j) widely underestimates the observed aftershock production; we see an
acceptable spatial distribution of the expected seismicity, but the estimated rates are systematically <1
event/cell over the entire testing region.Model CRS‐7 (Figure 3k) addresses this underestimation and is char-
acterized by higher rates, particularly at intermediate off‐fault distances (5–10 km from themainshock faults)
where a significant amount of smaller magnitude aftershocks occurred (~45%), contrary to the M4+ events
that were mostly located at shorter ranges from the main ruptures (Figure S7). The 1‐year ETAS forecast
(Figure 3l) captures the spatial distribution of the aftershock zone accurately, but due to its branching nature
and the lack of a seismicity suppression mechanism, it projects a larger aftershock zone.
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4.3. Model Performance in the Testing Region

We evaluate the absolute and relative predictive skills of the forecasts for a 1‐year time period.We seek to test
(1) the forecasted versus observed number of M3+ events using the modified N–test scores (Zechar et al.,
2010) and rejection ratios (RN), (2) the spatial consistency of the models through their S–test joint log‐
likelihood scores (jLLs) at short and long term (Schorlemmer et al., 2007; Zechar et al., 2010), and (3) the
information gain per earthquake (G, T–test; Rhoades et al., 2011) with respect to the preliminary CRS‐1
model. A thorough description of the statistical metrics used in this paper is available in the supporting infor-
mation (see Text S3). In Table 3 we summarize model performance.

Figure 4 presents the 1‐day incrementalN–test scores for the most preliminary (CRS‐1) and updated (CRS‐7)
physics‐based models and for the ETAS forecast, where quantiles δ1 or δ2 lower than the 0.025 significance
level indicate model rejection due to rate underestimation or overestimation, respectively. The incremental
N–test results for the full set of models are provided as supporting information (Figure S16). We observe that
(1) CRS‐1 is rejected due to underestimation of the observed number of events (δ1 = 0) at short term (1 day)
and at t > 1 week after each mainshock (Figure 4a); (2) CRS‐7 and ETAS present ~50% overestimation of the
number of events immediately after the Amatrice, Visso, Norcia, and Campotosto events (Figures 4b and 4c);
(3) the ETAS model features the lowest RN (6%) and while it shows a good performance in the time period
following the Norcia mainshock, it suffers rejection for 3 days following the Campotosto events. On the other
hand, CRS‐7 presents amixed performance after the Amatrice, Visso, andNorcia events, with overestimation
within the first 24 hr and underestimation for t ≤ 1 week, but it passes the test for t > 24 hr after the
Campotosto seismicity.

CRS‐2 performance is similar to CRS‐1, as these two preliminary models feature the highest N–test rejection
ratios (RN≈ 30%) during the 1‐year testing period (Figures S16a and S16b).Models CRS‐3/4 show better over-
all RN values (15% and 14%, respectively) but underpredict (δ1 < 0.025) during the two weeks following the
two largest events of the sequence (Figures S16c and S16d). We find that this is most probably due to the
implementation of simple uniform slip models that project negative coseismic stress changes on the
Mount Vettore‐Mount Bove fault system after the Amatrice earthquake (see Figures S8c and S8d) and sup-
press the near‐source expected rates after the Norcia mainshock with a heavy stress shadow (Figures S11s
and S12d).

Although overforecasting in the first 24 hr following the Amatrice and Norcia earthquakes, CRS‐5 and CRS‐
6 are the only two models that pass the test after theMw = 5.4 Visso event and further reduce the overall RN
to 12% and 8.5%, respectively (Figures S16e and S16f).

We use the S–test joint log‐likelihood scores (jLLS) to evaluate the predictive power of the forecasts in space.
We present the earthquake forecasts expressed by the joint log‐likelihood over the entire testing region,

Table 3
Short‐Term (24 hr After the Primary Events) and Long‐Term (1 year) Model Performance

Model

Short term (24 hr)

Long term (1 year)After Amatrice I After Visso I After Norcia After Campotosto

jLLS NF/O GCRS‐1 jLLS NF/O GCRS‐1 jLLS NF/O GCRS‐1 jLLS NF/O GCRS‐1 jLLS NF/O GCRS‐1

CRS‐1 −670 0.03 / −396 0.04 / −989 0.01 / −386 0.01 / −7104 0.03 /
CRS‐2 −665 0.07 0.90 −401 0.05 0.15 −1035 0.02 0.56 −378 0.06 1.65 −7170 0.05 0.58
CRS‐3 −760 0.46 1.49 −382 0.26 1.98 −1865 0.64 −0.12 −381 0.34 3.09 −8721 0.41 1.11
CRS‐4 −619 0.64 2.89 −303 0.32 3.80 −1614 0.79 1.00 −305 0.62 4.60 −7171 0.49 2.55
CRS‐5 −557 1.40 3.62 −130 1.05 7.86 −770 1.34 4.43 −481 0.79 1.88 −6149 0.75 3.47
CRS‐6 −673 1.31 2.46 −188 1.08 6.65 −970 1.37 3.69 −422 0.67 2.76 −6771 0.82 3.01
CRS‐7 −418 1.69 4.60 −110 1.53 8.17 −681 1.59 4.84 −249 1.73 5.40 −4911 0.97 4.57
ETAS −222 1.22 6.51 −118 1.65 7.96 −408 1.39 6.06 −112 1.31 7.72 −4326 1.10 5.13

Note. jLLS = S–test joint log‐likelihood; NF/O = ratio between forecasted (F) and observed (O) number of events;GCRS‐1 = information gain from the preliminary
CRS‐1 model. Log‐likelihood values are negative by definition, and smaller absolute values indicate a better model performance. We note how CRS‐3 perfor-
mance is severely penalized in the 24‐hr period after the Norcia mainshock by its poor spatial consistency, leading to a deterioration of the information gain
on CRS‐1 to a negative value.
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where the expected rate at each spatial cell is multiplied by Nobs/Nfore, the ratio of forecasted to observed
events in the entire region, so that the normalized forecast matches the observed number of events. Higher
jLLS values indicate a better model performance (Zechar et al., 2010). Results from the short‐term
performance test (Table 3) show that (1) the ETAS model outperforms all the stress‐based counterparts in
the first 24 hr after the Amatrice, Norcia, and Campotosto events; (2) the elaborate physics‐based model
CRS‐7 presents the best jLLs score following the Visso earthquakes and it constantly achieves a better

Figure 5. Cumulative spatial joint log‐likelihood (jLLS) versus time and T–test. (a) The scores are obtained by summing the S–test log‐likelihoods (LLS) of each
spatial cell and 1‐day time step. Vertical lines mark the occurrence of the largest magnitude events. (b–e) Average daily information gain per earthquake from
the preliminary CRS‐1 model for period‐specific windows and for a 1‐year forecast horizon. A forecast is significantly better than CRS‐1 at 95% confidence if the
error bars do not intersect the no gain level (red horizontal lines). CRS = Coulomb rate‐state.

Figure 4. Incremental modified N–test scores. We show the δ1 (top) and δ2 (bottom) quantiles for CRS‐1/7 and ETAS in the whole testing region, within 1‐day
intervals and for 1 year following the Mw = 6.0 Amatrice mainshock. The shaded areas under the red horizontal lines indicate the values for model rejection
(δ1,2 < 0.025); we apply a vertical exaggeration to these areas to better highlight the rejection values. Vertical lines mark mainshock occurrence (A = Amatrice, V =
Visso, N = Norcia, C = Campotosto events). RN = modified N–test rejection ratio. CRS = Coulomb rate‐state; ETAS = Epidemic Type Aftershock Sequence.
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Figure 6. Spatially resolved cumulative log‐likelihood differences (ΔLL) between pairs of models for a 1‐year evaluation period. Maps show a subset of the testing
region that includes the observed seismicity and the mainshock faults. As we do not need to isolate the spatial component of the forecasts, here we calculate the LL
from unnormalized rates. LL values at each spatial bin are obtained summing over all time steps. Positive (green) values indicate improved performance with
respect to the reference model specified to the left. Black dots represent theM3+ observations, while the stars indicate theM5+ events. Values are saturated at ±30
for visualization purposes. S = sources; Prel = preliminary; Rev = revised; USD = uniform slip distribution; FLM= finite‐length rupture model; I = isotropic stress
field; SUP = spatially uniform receiver planes; SVP = spatially variable planes; HoBR = spatially homogeneous background rate; HeBR = spatially heterogeneous
background rate; Opt RS =optimized rate‐state parameters; MtBV = Mount Bove‐Vettore.

10.1029/2019JB017874Journal of Geophysical Research: Solid Earth

MANCINI ET AL. 8638



short‐term performance than all the other CRSmodels; (3) CRS‐5 is the second best CRSmodel in short‐term
windows, highlighting the importance of including spatially variable slip sources for physics‐basedmodeling;
the only exception is represented by the first 24 hr following the Campotosto seismicity where two out of the
fourM5+ earthquakes (namely theMw= 5.1 andMw= 5.0) lack a spatially variable rupture model, while for
the Mw = 5.4 and Mw = 5.5 events only a preliminary slip model release is available.

In Figure 5a we compare the evolving spatial performance of the forecasts for the 1‐year testing period after
theMw = 6.0 Amatrice occurrence, including the auxiliary models CRS‐6s and CRS‐7s that isolate the effect
of secondary triggering fromM4+ andM3+ sources, respectively. Results show that (1) CRS‐7/7s, including
secondary triggering effects from M3+ aftershocks, are the best physics‐based models, particularly when
rate‐and‐state parameters are optimized on the learning phase seismicity (CRS‐7); (2) the ETAS model has
the highest spatial joint log‐likelihood values over the entire testing period (jLLS = −4326), with a striking
similar performance with CRS‐7 in the 4 days between the Visso‐Norcia earthquakes. While models CRS‐
1/2/4 perform similarly through the evaluation period, CRS‐3 is characterized by the lowest scores because
of the oversimplification of coseismic slip for the Mw = 6.5 Norcia mainshock. When we compare CRS‐6 to
CRS‐6s, we note that the parameter optimization degrades CRS‐6 performance after the Norcia mainshock.
The long‐term likelihood scores of CRS‐6s are only slightly better than CRS‐5, but a lower magnitude thresh-
old for stress sources (CRS‐7/7s) remarkably increases the short‐ and long‐term spatial consistency of
the models.

We estimate the information gains per earthquake using the preliminary CRS‐1 as benchmark model
(GCRS‐1). A positive G score indicates that a model is more informative than the selected benchmark. In
Figures 5b–5e, we present the results in the form of average daily information gains per earthquake and
their 95% confidence bounds from a paired Student's t‐test (Rhoades et al., 2011) for CRS and ETAS fore-
casts. From the analysis of the G ranks, we note that CRS‐7 is systematically the best performing among all
CRS classes at all time periods (Figures 5b–5d and Table 3). The majority of CRS forecasts show positive
information gains (GCRS‐1 ≥ 2), indicating a significant improvement on the preliminary CRS‐1 model.
For the critical ~4‐day time window before the Norcia earthquake, CRS‐7 and ETAS models present a com-
parable information gain (ΔGCRS‐1 < 0.3) with respect to the reference CRS‐1, and CRS classes 5/6/7 show
a considerably good performance (GCRS‐1 ≈6–7, Figure 5c). Especially in the first day after the Visso events,
we find that CRS‐7 outperforms the ETAS forecast (Table 3); the observed poorer performance of the

Figure 7. Maps of cumulative log‐likelihood difference for the 4‐day period between the Visso events and the Norcia mainshock between (a) CRS‐7 and CRS‐1, (b)
CRS‐7 and ETAS. Positive values indicate a better performance of CRS‐7. Values are saturated at ±2 for clarity. CRS = Coulomb rate‐state; ETAS = Epidemic Type
Aftershock Sequence.
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statistical model is most likely caused by the lack of M3+ precursory seismicity in the near‐epicentral
region of the firstMw = 5.4 Visso event (Chiaraluce et al., 2017). The 1‐year performance evaluation reveals
that the most advanced physics‐based implementation, CRS‐7, compares closely with the ETAS model
(ΔGCRS‐1 ≈0.5, Figure 5e). The trend of improving information gain from CRS‐5 to CRS‐6s/7s shows the
importance behind considering stress changes from lower magnitude aftershocks. These results suggest
that including SVP receivers, finite‐length rupture models, and secondary triggering from M3+ sources
in CRS models leads to a gradual information gain increase.

We assess the spatial component behind themodels' performance by information gainmaps for a 1‐year time
horizon (Figure 6), while period‐specificmaps are provided as supporting information (Figures S17–S19).We
calculate the cumulative log‐likelihood differences (ΔLL) at each grid point using CRS‐1 (Figures 6a–6f) and
ETAS (Figures 6g–6i) as reference models. In Figure 6, positive ΔLL values (green) highlight improved per-
formance with respect to the reference model. Results show that (1) variable slip source representations lead
to a sensible information gain increase in the Norcia‐Visso near epicentral region (ΔLL up to 100) and on the
Mount Bove‐Vettore fault system (ΔLL> 60; Figure 6d); (2) CRS‐7 better captures the unfolding sequence, as
considering the contribution ofM3+ sources into the evolving stress field entails a net performance improve-
ment especially at the extreme edges of the fault system (ΔLL > 250 north of Visso and ΔLL > 50 in the
Montereale‐Pizzoli region; Figure 6f); (3) updated source parameter description of mainshock faults through
optimized rate‐and‐state parameters improves the forecast in many locations but reduces the likelihood in a
broader aftershock region (Figure 6b), particularly at Mount Bove location (ΔLL < −100); (4) model perfor-
mance at the northwestern MtBV fault termination greatly benefits from the combined inclusion of SVP
receiver planes (Figure 6c) and, to a greater extent, from finite‐length slip models describing the Visso and
Norcia coseismic slip (Figure 6d).

Whenwe compare physics‐based forecasts to ETAS, we observe that, although CRSmodels generally present
a slightly positive information gain in the off‐fault areas of the testing region (ΔLL ≈0.3), the log‐likelihood
differences between pairs of models aremoremarkedwhere aftershocks were actually recorded.We find that
ETAS widely outperforms its physics‐based counterparts in the near‐source regions (Figures 6g–6i), where
slipmodels present large variability (Chiaraluce et al., 2017; Scognamiglio et al., 2016). However, we find that
secondary triggering effects significantly increase the predictive power of CRSmodels that outperformsETAS
in the high clustering zone north of Visso‐Ussita and in the Montereale‐Pizzoli region (Figure 6i).

The model parameters that exert most influence on the predictive power of physics‐based models are the
spatially variable slip distributions and the inclusion of the secondary triggering effects from small magni-
tude earthquake (M3+). The most evolved CRS model captures the triggered seismicity at the fault edges,
therefore improving the forecast in the case of the Campotosto cluster further south than Amatrice.

In Figure 7 we isolate the ΔLL in the critical period between the Visso and Norcia events, and we compare
CRS‐7 performance to CRS‐1 and ETAS. We notice that CRS‐7 is a significantly more informative model
than CRS‐1 in the time window that precedes the Mw = 6.5 mainshock (Figure 7a). Results also confirm
the comparable performance between ETAS and CRS‐7; the former better captures the near epicentral seis-
micity in the area of the Visso events, while the latter is better performing in locations of high aftershock
production at fault extremities.

5. Conclusions

The complex 2016–2017 Amatrice‐Visso‐Norcia (AVN) earthquake sequence in the Central Apennines
represents a unique opportunity to test earthquake triggering hypotheses that are the basis for physics‐based
forecast models. Here we focus on how input data quality and model parameters influence the predictive
power of physics‐based forecast models. We design a pseudoprospective experiment for the first year of the
AVN sequence. We implement a benchmark statistical ETAS model and seven classes of physics‐based fore-
casts with gradually increasing level of input data quality and complexity. We then evaluate the absolute and
relative model performance by means of the N (number), S (space) and T–test metrics that are currently
implemented within the CSEP initiative.

We find that the representation of the crustal and stress‐field heterogeneity increases the information gains
of physics‐based models. The CRS model that predicts closely and in cases outperforms the statistical ETAS
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model combines best‐available source models, spatially varying receivers informed by preexisting focal
mechanisms and geological maps, and most importantly includes secondary triggering effects from M3+
events that enable us to describe the evolving coseismic stress field in greater detail. After the Mw = 5.4
Visso event, the elaborate CRS‐7 model outperforms ETAS, while in the critical 4‐day time window before
theMw = 6.5 Norcia mainshock and within the first year of the sequence, CRS‐7 is as informative as ETAS.

The results support previous findings that in the near‐source area, defined by the surface fault projection,
ETAS models present higher predictive power (e.g., Segou et al., 2013), although the lack of precursory seis-
micity (e.g., before the Visso events) locally hampers their short‐term performance. On the other hand, trig-
gered seismicity at intermediate off‐fault distances due to static stresses within an evolving sequence is better
described by physics‐based approaches. The preliminary unrevised source parameters and empirical source
models released within a few minutes to hours following large events result in poor performance of stress‐
based models that by definition require a more demanding physical parametrization than their empirical
counterparts. The comparative evaluation of the spatial consistency of CRS models suggests that the over-
simplified uniform slip models implemented immediately after a large earthquake cannot adequately repro-
duce the early aftershock spatial distribution (< 1 day).

The Italian experiment reveals that in order for stress‐based forecasts to reach and outperform ETASmodels
we need to use best‐available data within heterogeneous fault and source representations. Although high‐
quality relocated catalogs are not yet readily available during the early stages of a seismic crisis, both CRS
and ETAS models in our study will improve their predictive skills with enhanced detection and event
characterization techniques.
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