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Abstract. We prove that the upper box dimension of an inhomogeneous self-affine set is
bounded above by the maximum of the affinity dimension and the dimension of the condensation
set. In addition, we determine sufficient conditions for this upper bound to be attained, which, in
part, constitutes an exploration of the capacity for the condensation set to mitigate dimension drop
between the affinity dimension and the corresponding homogeneous attractor. Our work improves
and unifies previous results on general inhomogeneous attractors, low-dimensional affine systems,
and inhomogeneous self-affine carpets, while providing inhomogeneous analogues of Falconer’s sem-
inal results on homogeneous self-affine sets.

1. Introduction

A map S : Rn → Rn is affine if it can be written

S(x) = Ax+ b

for A ∈ GL(R, n) and translation vector b ∈ Rn, and is contracting if there exists
c ∈ (0, 1) such that

|S(x)− S(y)| ≤ c|x− y|

for all x, y ∈ Rn. An affine iterated function system (IFS) is a finite collection {Si}Ni=1

of contracting affine maps. A classic application of Banach’s contraction mapping
theorem (for details, see [6]) proves the existence of a unique non-empty compact set
F , called a homogeneous attractor, or self-affine set, such that

F =
N⋃
i=1

Si(F ).

There is a natural generalisation of this construction. If we fix a compact set C ⊆ Rn,
then there exists a unique non-empty compact set FC such that

FC =
N⋃
i=1

Si(FC) ∪ C,

called the inhomogeneous attractor, or inhomogeneous self-affine set, with condensa-
tion set C. To express FC in an amenable way, we require some notation. Henceforth,
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let I = {Si}Ni=1 denote an affine IFS and I = {1, . . . , N}. We write Si = Si1 ◦ · · · ◦Sik
for i = (i1, i2, . . . , ik) ∈ Ik. Furthermore, let

I∗ =
∞⋃
k=1

Ik

denote the set of finite words over I. An elegant description of FC , from [10] and
[18], is

FC = F∅ ∪ O,
where F∅ is the homogeneous attractor (corresponding to C = ∅), and O is the orbital
set defined by

O = C ∪
⋃
i∈I∗

Si(C).

Since their introduction by Barnsley (1985) [3] and Hata (1985) [13], inhomogeneous
attractors have received further attention in, for example, [1, 4, 10, 11, 16, 17, 18].
A natural question explored in recent work concerns the relationship between the
dimensions of FC , C and F∅. In particular, one may wonder in what situations

(1.1) dimFC = max {dimF∅, dimC} ,
where dim denotes some notion of dimension. For dimensions satisfying countable
stability, such as the Hausdorff or packing dimension, this is immediate. Conse-
quently, the recent focus has been on box dimension, a popular example of a count-
ably unstable dimension. Recall that for a non-empty bounded set F ⊆ Rn, the
upper and lower box dimensions are defined as

dimBF = lim sup
δ→0

logNδ(F )

− log δ
,

and
dimBF = lim inf

δ→0

logNδ(F )

− log δ
,

respectively, where Nδ(F ) denotes the minimum number of hypercubes of sidelength
δ required to cover F . If these values coincide, we say the set has box dimension
equal to the common value and denote this by dimB F .

In [1, 10, 17, 18], various solutions to (1.1) are given for upper box dimension in
the case where I consists of similarity mappings. For systems containing arbitrary
bi-Lipschitz maps, bounds on dimBFC are given by Burrell based on upper Lipschitz
dimension [4]. Corollaries of this result establish (1.1) for some low-dimensional
affine systems and those satisfying bounded distortion, such as conformal systems
(see [8] for definitions). For upper box dimension, (1.1) may fail for self-similar
sets with overlaps [1] and specific self-affine settings [11]. In the case of lower box
dimension, (1.1) fails to hold generally even for self-similar systems satisfying the
strong separation condition [10].

The typical strategy used to approach (1.1), introduced in [10], is to establish
bounds of the form

(1.2) max
{
dimBF∅, dimBC

}
≤ dimBFC ≤ max

{
s, dimBC

}
,

where s ∈ R is a natural estimate for dimBF∅, such as similarity dimension in the self-
similar case [10] or upper Lipschitz dimension [4] in the general case. This exploits
the abundance of literature on the equality of s and dimBF∅ in different settings,
which may then determine precise conditions for equality. In the affine setting, the
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natural candidate for s is the affinity dimension, and we prove (1.2) holds in this
case.

The affinity dimension is derived from the notion of Falconer’s singular value
function, introduced in [5]. The singular values of A ∈ GL(R, n) are written αj(A)
(or simply αj) and correspond to the lengths of the mutually perpendicular principal
axes of A(B), where B denotes a ball of unit diameter in Rn [5]. Alternatively, they
are the positive square roots of the eigenvalues of AAT . We adopt the convention
1 > α1 ≥ α2 ≥ · · · ≥ αn > 0. For 0 ≤ s ≤ n, the singular value function of
A ∈ GL(R, n) is given by

φs(A) = α1(A)α2(A) · · ·αm(A)s−m+1,

where m ∈ Z satisfies m−1 < s ≤ m. Finally, as in [5], we define φs(A) = (detT )s/n

for s > n. Moreover, for convenience we set φs(S) = φs(A) where A is the linear
component of a general affine map S. Then, for each k ∈ N, define sk to be the
solution of ∑

i∈Ik
φsk(Si) = 1.

The corresponding limit, denoted throughout by s,

s := lim
k→∞

sk,

exists and is known as the affinity dimension associated with I. It is proven in [4]
that if the affinity dimension s is less than or equal to 1 and coincides with dimBF∅,
then

(1.3) dimBFC = max
{
dimBF∅, dimBC

}
.

This is an immediate corollary of [4, Theorem 2.1], arising from the fact that when
the affinity dimension is less than one it coincides with the upper Lipschitz dimension.
Otherwise, it is elementary to see that the affinity dimension is generally strictly less
than the upper Lipschitz dimension. Thus, establishing (1.2) for affinity dimension
constitutes a natural and strictly improved bound for affine systems in comparison
to the universal bound from [4].

2. Results

Our main result may be considered an inhomogeneous analogue of Falconer’s
seminal result on homogeneous self-affine sets [5], which establishes dimBF∅ ≤ s.

Theorem 2.1. Let FC ⊂ Rn be an inhomogeneous self-affine set with compact
condensation set C ⊂ Rn. We have

max
{
dimBF∅, dimBC

}
≤ dimBFC ≤ max

{
s, dimBC

}
,

where s is the affinity dimension associated with the underlying IFS.

The following corollary is immediate.

Corollary 2.2. Let FC ⊂ Rn be an inhomogeneous self-affine set with compact
condensation set C ⊂ Rn and let s be the associated affinity dimension. Then

(1) if dimBF∅ = s, then dimBFC = max
{
dimBF∅, dimBC

}
,

(2) if dimBC ≥ s, then dimBFC = dimBC.
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Establishing precise conditions for the affinity dimension to coincide with dimBF∅
is a major open problem in fractal geometry and has been the focus of considerable
amounts of work, for example [2, 5, 7, 9, 11, 12, 14, 15]. Therefore there are numerous
explicit and non-explicit situations where Corollary 2.2 provides a precise result,
and an affirmative solution to (1.1) in the self-affine setting. For example, a well-
known result by Falconer [5] states that s = dimBF∅ = dimH F∅ almost surely if
one randomises the translation vectors associated with the affine maps, provided
the linear parts all have norm strictly bounded above by 1/2, see also [15]. Falconer
proved in a subsequent paper that if F∅ ⊂ R2 satisfies some separation conditions and
contains a connected component not contained in a straight line, then s = dimBF∅
holds, see [7, Corollary 5]. A recent breakthrough result of Bárány, Hochman and
Rapaport [2] proves s = dimBF∅ = dimH F∅ in the planar case assuming only strong
separation, together with mild non-compactness and irreducibility assumptions on
the linear components of the maps Si.

The next result explores the case where dimBFC > max{dimBF∅, dimBC}, that
is when (1.1) fails. This is an exploration of conditions under which C compensates
for dimension drop between s and dimBF∅. To state this result, we require the
definition of the condensation open set condition (COSC), appearing in [16, 17, 18]
and m-δ-stoppings. Firstly, an IFS satisfies the COSC if there exists an open set U
with

C ⊂ U \
N⋃
i=1

Si(U),

such that Si(U) ⊂ U for i = 1, . . . , N , and i 6= j =⇒ Si(U) ∩ Sj(U) = ∅. Secondly,
for each 1 ≤ m ≤ n and δ ∈ (0, 1], define the m-δ-stopping to be

Im(δ) = {i ∈ I∗ : αm(Si) < δ ≤ αm(Si−)},
where i− = (i1, . . . , ik−1) for i = (i1, . . . , ik). For the next theorem we will only use
In(δ), but later in the proofs section we will use it more generally and so introduced
it here in full generality for brevity. Throughout, we fix a compact ball X ⊂ Rn such
that Si(X) ⊂ X for i = 1, . . . , N and C ⊆ X. Such a ball always exists and without
loss of generality, we may assume that X has unit diameter.

Theorem 2.3. Let I = {Si}Ni=1 denote an affine IFS with condensation set C ⊆
Rn satisfying the COSC. If dimBC ≥ n − 1 and there exists κ > 0 such that for all
δ ∈ (0, 1] and i ∈ In(δ) we have

Nδ(Si(C)) ≥ κNδ(Si(X)),

then
dimBFC = max

{
s, dimBC

}
and

max {s, dimBC} ≤ dimBFC ≤ max
{
s, dimBC

}
.

Note that the condition of the theorem is independent of the choice of ball X,
although the constant κ may change. The fact that we only get bounds for the lower
box dimension of FC should not come as a surprise and one should not expect to
be able to improve these bounds in general, see [10]. Note that if, in the setting of
Theorem 2.3, the box dimension of C exists, then so does the box dimension of FC .

The assumption in Theorem 2.3 arises in quite natural circumstances, for exam-
ple, the setting of the following proposition, an inhomogeneous analogue of Falconer’s
[7, Proposition 4], requires only that C be in some sense robust under projection onto
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subspaces. Let Lk denote k-dimensional Lebesgue measure and Pk denote the set of
orthogonal projections onto k-dimensional subspaces of Rn.

Proposition 2.4. Let FC ⊂ Rn be an inhomogeneous self-affine set with com-
pact condensation set C ⊂ Rn satisfying the COSC and let s be the associated
affinity dimension. If

inf
π∈Pn−1

Ln−1(πC) > 0,

then
dimBFC = max

{
s, dimBC

}
and

max {s, dimBC} ≤ dimBFC ≤ max
{
s, dimBC

}
.

The robustness assumption on C in Proposition 2.4 forces dimBC ≥ n−1 and so
this result only yields new information when s > n− 1. It is interesting to compare
this result with [4, Corollary 2.3] and the discussion thereafter, which applies to
self-affine systems where s ≤ 1.

The projection of a connected set inR2 which is not contained in a line onto a line
contains an interval with length uniformly bounded away from 0. This observation
yields the following corollary of Proposition 2.4.

Corollary 2.5. Let FC ⊂ R2 be an inhomogeneous self-affine set with compact
condensation set C ⊂ R2 satisfying the COSC and let s be the associated affinity
dimension. If C has a connected component not contained in a line, then

dimBFC = max
{
s, dimBC

}
and

max {s, dimBC} ≤ dimBFC ≤ max
{
s, dimBC

}
.

The reader may find it interesting to notice the parallels between this result and
Falconer’s [7, Corollary 5], which concerns the equality of dimBF∅ and s under similar
conditions concerning the robustness of connected components under projection. In
some sense our inhomogeneous analogue is easier to use than the homogeneous result
of Falconer. Our result requires a connectedness condition on C, which is given,
whereas the homogeneous result requires one to check a connectedness condition on
F∅, which depends delicately on the IFS. Moreover, the separation assumption makes
it difficult for F∅ to be connected at all. For example, the strong separation condition
forces F∅ to be totally disconnected, but our result can still apply in this setting.

The above results provide new families of inhomogeneous attractors where (1.1)
fails for the upper (and lower) box dimension. We illustrate this by example. Let
n = 2 and I = {S1, S2}, where S1, S2 are the linear maps associated with the matrices[

1/2 0
1/2 1/2

]
,

[
1/2 1/2
0 1/2

]
respectively. It is clear that the affinity dimension of this system is strictly greater
than one and that F∅ is just a single point at the origin. Let C be the boundary
of a circle centred at (3/4, 3/4) with radius 1/5. It is also clear that the COSC is
satisfied by taking U = (0, 1)2 and that C is connected but not contained in a line,
see Figure 1. It follows from Corollary 2.5 that

dimBFC = dimBFC = s > 1 = max {dimB F∅, dimBC} .
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Figure 1. A bouquet of ovals: the condensation set together with the two images of the open
rectangle U = (0, 1)2 (left) and the corresponding inhomogeneous self-affine set (right).

This is the first counter example to (1.1) where F∅ is a single point and the OSC is
satisfied. Moreover, it was shown in [1, Corollary 4.9] that for planar inhomogeneous
self-similar sets one always has

dimBFC ≤ max

{
dimBC, dimBF∅ + dimBC −

dimBF∅dimBC

s

}
,

where s is the similarity dimension. In particular this shows that when dimBF∅ = 0
the formula (1.1) cannot fail. The example presented above shows that this phenom-
enon does not extend to the self-affine case. It was also shown in [1, Corollary 4.8]
that, in the self-similar setting, if max{dimBF∅, dimBC} < s, then dimBFC < s. The
above example also demonstrates that this does not extend to the self-affine setting.

The assumption in Proposition 2.4 is by no means necessary, and advancements
in the homogeneous setting may illuminate further the capacity for C to mitigate di-
mension drop. Excitingly, we suggest the natural interplay between these questions
may allow further study of inhomogeneous attractors to translate into novel condi-
tions relating to dimension drop in the homogeneous case. Specifically, this may arise
from solutions to the following.

Question 1. Consider an affine IFS I = {Si}Ni=1 with condensation set C ⊆ Rn.
If s > dimBF∅, then what conditions guarantee

dimBFC = max
{
s, dimBC

}
?

3. Proof of Theorem 2.1

Let I = {Si}Ni=1 be an affine IFS and C ⊆ X be compact. Denote the affinity
dimension of I by s and assume s ≤ n, since if s > n the result is trivial.

It follows immediately from the definition of box dimension that for t > dimBC
there exists a constant At satisfying

(3.1) Nδ(C) ≤ Atδ
−t

for all δ ∈ (0, 1]. In addition, if t > s, then

(3.2) Bt :=
∑
i∈I∗

φt(Si) <∞
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by [5, Proposition 4.1 (c)], where Bt depends only on t. We fix a constant b ∈ R
satisfying

0 < b < min
i=1,...,N

αn(Si) < 1,

and note for any δ ∈ (0, 1], 1 ≤ m ≤ n and i ∈ Im(δ), we have

(3.3) δ ≥ αm(Si) ≥ αm(Si−)b ≥ δb.

Prior to reading the subsequent arguments, the following simple geometric obser-
vation, employed frequently in our proofs, may aid the reader less familiar with the
classical arguments on self-affine sets found in [5] or [6]. Consider an ellipsoid E with
principal axes of lengths l1, . . . , ln. For dimension calculations, we are interested in
obtaining an estimate of the number of hypercubes of a given sidelength required to
cover such ellipsoids. Constants are typically inconsequential, and so often a coarse
estimate suffices. The minimum number of hypercubes of sidelength lm required to
cover E is at most

(3.4)
(
l1
lm

+ 1

)(
l2
lm

+ 1

)
· · ·
(
lm−1
lm

+ 1

)
≤ 2n

l1
lm

l2
lm
· · · lm−1

lm
= 2nl1l2 · · · lm−1l−m+1

m .

This can be seen by first covering E by a minimal hypercuboid of sidelengths equal
to the principal axes of E and then covering this optimally. Figure 2 illustrates this
fact for a cuboid of sidelengths a > b > c in R3. Specifically, we see that 2a/b cubes
of sidelength b would suffice, whereas we would require a single cube of sidelength a
or at most 22(a/c)(b/c) cubes of sidelength c.

Figure 2. Covering a cuboid of sidelengths a > b > c in R3 with cubes of sidelength b.

2.1. Preliminary lemmas.

Lemma 3.1. For δ ∈ (0, 1] and 1 ≤ m ≤ n, we have⋃
i∈I∗

δ>αm(Si)

Si(C) ⊆
⋃

i∈Im(δ)

Si(X).

Proof. For
x ∈

⋃
i∈I∗

δ>αm(Si)

Si(C),

there exists some i = (i1, . . . , ik) ∈ I∗ such that x ∈ Si(C) and δ > αm(Si). Since
δ > αm(Si), there also exists some prefix ip of i with ip ∈ Im(δ), and so let us consider
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the concatenation i = ipj. If j = ∅, then i ∈ Im(δ). Else, there exists some c such
that x = Si(c) = Sip(Sj(c)) ∈ Sip(X) as required. �

Lemma 3.2. Fix 1 ≤ m ≤ n and let i ∈ I∗ be such that αm(Si) < δ. We have

Nδ(Si(X)) ≤ 2n
α1(Si)

αm(Si)

α2(Si)

αm(Si)
· · · αm−1(Si)

αm(Si)
.

Proof. First note that Si(X) is an ellipsoid with principal axes having lengths
equal to the singular values of Si. The result then follows follows immediately from
the geometric observation described by equation (3.4). �

Lemma 3.3. Fix t ∈ (0, n] and let m ∈ Z be such that m− 1 < t ≤ m. If i ∈ I∗
is such that αm(Si) ≥ δ, we have

Nδ(Si(C)) ≤ 2nAtδ
−tφt(Si).

Proof. The image under Si of a cover of C by balls of diameter δ/αm(Si) is a
cover of Si(C) by ellipsoids with the m largest principal axes of lengths

αi(Si)

(
δ

αm(Si)

)
= δ

αi(Si)

αm(Si)

for i = 1, . . . ,m, the smallest of which has length δ. Each such ellipsoid can be
covered by at most

2δ α1(Si)
αm(Si)

δ

2δ α2(Si)
αm(Si)

δ
· · ·

2δ αm−1(Si)
αm(Si)

δ
≤ 2n

α1(Si)

αm(Si)

α2(Si)

αm(Si)
· · · αm−1(Si)

αm(Si)

hypercubes of sidelength δ. Hence

Nδ(Si(C)) ≤ Nδ/αm(Si)(C)

(
2n
α1(Si)

αm(Si)

α2(Si)

αm(Si)
· · · αm−1(Si)

αm(Si)

)
≤ At

(
δ

αm(Si)

)−t(
2n
α1(Si)

αm(Si)

α2(Si)

αm(Si)
· · · αm−1(Si)

αm(Si)

)
= 2nAtδ

−tφt(Si)

as required. �

3.2. Proof of Theorem 2.1. Monotonicity and finite stability of upper box
dimension imply

max
{
dimBF∅, dimBC

}
≤ dimBFC ≤ max

{
dimBF∅, dimBO

}
and so it suffices to show that

dimBO ≤ max
{
s, dimBC

}
since it is well known (see [6, Theorem 9.12]) that s ≥ dimBF∅. Fix δ ∈ (0, 1] and
t > max{s, dimBC}. If max{s, dimBC} ≥ n then the result is trivial, so we may
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assume t ≤ n. For m ∈ Z satisfying m− 1 < t ≤ m, we have

δtNδ(O) = δtNδ

(
C ∪

⋃
i∈I∗

Si(C)

)

≤ At + δtNδ

 ⋃
i∈I∗

αm(Si)≥δ

Si(C)

+ δtNδ

 ⋃
i∈I∗

αm(Si)<δ

Si(C)

 (using (3.1))

≤ At + δt
∑
i∈I∗

αm(Si)≥δ

Nδ(Si(C)) + δt
∑

i∈Im(δ)

Nδ (Si(X)) (by Lemma 3.1)

≤ At + δt
∑
i∈I∗

αm(Si)≥δ

2nAtδ
−tφt(Si)

+ δt
∑

i∈Im(δ)

2n
α1(Si)

αm(Si)

α2(Si)

αm(Si)
· · · αm−1(Si)

αm(Si)
(by Lemmas 3.2 and 3.3)

≤ At + 2nAt
∑
i∈I∗

αm(Si)≥δ

φt(Si)

+ 2n
∑

i∈Im(δ)

α1(Si)

αm(Si)

α2(Si)

αm(Si)
· · · αm−1(Si)

αm(Si)

αm(Si)
t

bt
(using (3.3))

≤ At + 2nAt
∑
i∈I∗

αm(Si)≥δ

φt(Si) +
2n

bt

∑
i∈Im(δ)

φt(Si)

≤ At + 2nBt

(
At + b−t

)
(using (3.2))

Thus,
logNδ(O)
− log δ

≤ t+
log (At + 2nBt (At + b−t))

− log δ
,

from which the result follows as δ → 0. �

4. Proof of Theorem 2.3

Fix δ ∈ (0, 1) and recall that s denotes the affinity dimension of I. It is stated in
[7] that for t < s there exists ct > 0 with

(4.1)
∑
In(δ)

φt(Si) ≥ ct

for some constant ct that does not depend on δ. This follows immediately from [5,
Proposition 4.1 (a)]. Since we assume dimBC ≥ n−1, if s ≤ n−1, then Theorem 2.1
implies that dimBFC = dimBC = max{s, dimBC}, and also dimBFC ≥ dimBC =
max{s, dimBC}. If s > n, then the result is trivial. Thus, henceforth we assume that
n− 1 < t < s ≤ n.

Let U denote the open set satisfying the COSC. Compactness of C implies that
there exists some constant η > 0 with

inf

{
|x− y| : x ∈ C, y ∈

N⋃
i=1

Si(U) ∪ (Rn \ U)

}
= 2η.



322 Stuart A. Burrell and Jonathan M. Fraser

Let B(C, η) denote a closed η-neighborhood of C and E be a hypercube of sidelength
δ in a minimal δ-cover of O. For i ∈ In(δ), we have Si(B(C, η)) is a neighborhood of
Si(C) satisfying

Si(B(C, η)) ∩ FC = Si(C)

and

inf{|x− y| : x ∈ Si(C), y /∈ Si(B(C, η))} ≥ αn(Si)η > bδη,

implying

inf{|x− y| : x ∈ Si(C), y ∈ Sj(C) such that i, j ∈ In(δ), i 6= j} > 2bδη.

Let Vn denote the constant such that the area of an n-sphere of radius 2bηδ is Vnδn.
For the sets in {Si(C) : i ∈ In(δ)} that intersect E we can associate pairwise disjoint
open sets in E of volume at least Vnδn/2n (with this lower bound obtained at the
vertices) and it therefore follows by a simple volume argument that E can cover at
most

δn

1
2n
Vnδn

= (2−nVn)
−1

of the sets {Si(C) : i ∈ In(δ)}. Hence

(4.2) Nδ(O) ≥ 2−nVn
∑

i∈In(δ)

Nδ(Si(C)).

Our assumption on C implies that for i ∈ In(δ) we have

Nδ(Si(C)) ≥ κNδ(Si(X))

≥ κbnNbδ(Si(X))

≥ κbnNαn(Si)(Si(X))

≥ κbnc
α1(Si)

αn(Si)

α2(Si)

αn(Si)
· · · αn−1(Si)

αn(Si)
(4.3)

for some constant c > 0 only depending on n. This yields

Nδ(O) ≥ 2−nVn
∑

i∈In(δ)

Nδ(Si(C)) (using (4.2))

≥ 2−nVn
∑

i∈In(δ)

κbnc
α1(Si)

αn(Si)

α2(Si)

αn(Si)
· · · αn−1(Si)

αn(Si)
(using (4.3))

= κbnc2−nVn
∑

i∈In(δ)

φt(Si)αn(Si)
−t

≥ κbnc2−nVnδ
−t
∑

i∈In(δ)

φt(Si)

≥ κbnc2−nVnctδ
−t (by (4.1)).

Hence dimBO ≥ t, from which it follows that dimBFC ≥ dimBFC ≥ dimBO ≥ s,
proving the theorem. �
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5. Proof of Proposition 2.4

Let I = {Si}Ni=1 denote an affine IFS with compact condensation set C ⊆ Rn

satisfying the COSC. Moreover, suppose

inf
π∈Pn−1

Ln−1(πC) > 0.

By Theorem 2.3 it suffices to show that there exists κ > 0 such that for all δ > 0
and i ∈ In(δ) we have

Nδ(Si(C)) ≥ κNδ(Si(X)).

Therefore, in order to reach a contradiction, assume that for arbitrarily small κ > 0
we can find δ > 0 and i ∈ In(δ) such that

Nδ(Si(C)) < κNδ(Si(X)) ≤ κ2n
α1(Si)

αn(Si)

α2(Si)

αn(Si)
· · · αn−1(Si)

αn(Si)
,

where the final inequality comes from Lemma 3.2. Let {Ej}j be an optimal cover of
Si(C) by hypercubes of sidelength δ and place each Ej inside a ball Bj of diameter√
nδ and consider {S−1i Bj}j which is a cover of C by ellipsoids with axes of length√
nδ/α1(Si), . . . ,

√
nδ/αn(Si). Note that the longest axes of each of these ellipsoids

are all parallel (by the singular value decomposition theorem, for example) and let π
denote projection onto the (n−1)-dimensional hyperplane orthogonal to the common
direction of the longest axes of the ellipsoids {S−1i Bj}j. It follows that {πS−1i Bj}j is
a cover of π(C) by sets, each of which is easily seen to have (n− 1)-volume at most

n(n−1)/2 δ

α1(Si)

δ

α2(Si)
· · · δ

αn−1(Si)

and therefore we can bound the (n− 1)-volume of π(C) above by

κ2n
α1(Si)

αn(Si)

α2(Si)

αn(Si)
· · · αn−1(Si)

αn(Si)
× n(n−1)/2 δ

α1(Si)

δ

α2(Si)
· · · δ

αn−1(Si)

≤ κ2nn(n−1)/2b−(n−1)

using (3.3). This contradicts the assumption that infπ∈Pn−1 Ln−1(πC) > 0 since we
can choose κ arbitrarily small. �
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