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. Introduction 

Phylogenies help to answer a multitude of questions regard-

ng the origin of species, the tempo of evolution, the origin of

articular traits and the processes (either neutral or selective) of

olecular evolution (e.g. see Pagel, 1999 ). Phylogenies are there-

ore central to the study of patterns and processes by which evolu-

ion happens. However, phylogenies can only serve these purposes

f they are correctly estimated. Fortunately, mathematical phyloge-

etics provides criteria that help us to assess whether a given phy-

ogeny estimator is statistically sound. Statistical consistency and

dentifiability are two examples of such criteria. 

In phylogenetic theory, a phylogenetic reconstruction method ˆ τ
s statistically consistent under a model if it converges in probabil-

ty to the true tree τ as the number of sites S of the sequence

lignment increases indefinitely ( Wald, 1949; Felsenstein, 1973 ),

.e. 

lim 

→∞ 

p(| ̂  τS → τ | ) = 1 . (1)

Identifiability is met if the model of evolution is uniquely char-

cterized by the probability distribution it defines ( Chang and Har-

igan, 1991 ). An identifiable model is a necessary condition for

onsistency. More formal conditions for identifiability and consis-

ency are described in Steel (1994) , Chang (1996) and Steel (2013) ;

hese are revisited later in this article. Lack of statistical consis-

ency has long been an aspect that phylogeneticists cared for. For

xample, some maximum parsimony methods were criticized for

acking statistical consistency early on ( Felsenstein, 1978 ). 

Simple phylogeny estimation methods using standard substitu-

ion model (e.g. Bayesian or maximum likelihood inference un-

er the Jukes and Cantor, 1969; Kimura, 1980; Tajima and Nei,

984 substitution models) can be shown to enjoy statistical con-

istency ( Chang, 1996 ). However, the same principle cannot be

irectly extended to more complex and general methods of tree

nference that include rate variation across sites ( �) and invari-

nt sites (I). For such models of evolution, the model distribu-

ion is not fully understood, which complicates proving identifi-

bility. Identifiability has been proven for the pure general time-

eversible model (GTR, Tavaré, 1986 ). The GTR with rate variation

i.e. GTR+ �) ( Wu and Susko, 2010 ) also enjoys identifiability; how-

ver, a rigorous proof for the commonly utilized GTR+ �+I is still

acking ( Rogers, 2001; Allman et al., 2008; Chai and Housworth,

011 ). 

During the last years, alternative approaches to the clas-

ic nucleotide substitution models have been proposed. The

olymorphism-aware phylogenetic models (PoMo) are such an ex-
ttps://doi.org/10.1016/j.jtbi.2019.110074 
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mple of an alternative approach for tree estimation that also ac-

ounts for incomplete lineage sorting ( De Maio et al., 2013 ). While

oMo can be more broadly classified as a nucleotide substitution

odel; it adds a new layer of complexity by accounting for the

opulation-level evolutionary processes (such as mutations, genetic

rift, and selection) to describe the evolutionary process ( De Maio

t al., 2015; Schrempf et al., 2016; Borges et al., 2019 ). To do so,

oMo builds on a GTR-like mutation scheme and expands the { A,

, G, T } state-space to include polymorphic states, thereby account-

ng for current and ancestral intra-population variation. The lat-

er aspect sets PoMo apart from the classic models of evolution,

hich traditionally only use a single representative DNA sequence

er species. 

PoMo has received substantial attention from the evolutionary

ommunity (see Mirarab et al., 2014; Szöllsi et al., 2015; Leaché

nd Oaks, 2017 ). Several publications have employed it to solve a

ide range of evolutionary questions, e.g., disentangling phyloge-

etic relationships among baboon species ( Rogers et al., 2019 ), de-

cribing the phylogeographic history of great apes ( Schrempf et al.,

016 ), estimating patterns of GC-bias and mutational biases ( De

aio et al., 2013; Borges et al., 2019 ) and inferring the site-

requency spectrum ( Schrempf and Hobolth, 2017; Borges et al.,

019 ) from population data. 

All this raised the question of whether PoMo is a statistically

onsistent phylogeny estimator for phylogenetic data sets. Building

pon the formal results provided by Steel (2013) and identifiabil-

ty of the PoMo rate matrix and stationary distribution, we present

 proof that the MAP topology (i.e. the tree topology that has the

reatest posterior probability) is a statistically consistent estimate

f the true tree. This result shows that PoMo is a statistically sound

ethod of phylogenetic inference, and it provides validity for fur-

her investigations and uses of PoMo methods on real data sets. 

. Polymorphism-aware phylogenetic models in a nutshell 

PoMo assumes a Moran model ( Moran, 1958 ) with N haploid

ndividuals and defines the allele trajectory of a single locus with

our possible alleles a i , where i ∈ A = { A, C, G, T } ( Table 1 includes

 glossary of the symbols used in the present proof). The evolution

f this population in the course of time is described by a contin-

ous time Markov chain with a discrete state-space defined by N

nd the four alleles. States are monomorphic (or boundary) if all

he N individuals have the allele i { Na i }; or polymorphic, if two

lleles are present in the population { na i , (N − n ) a j } ( Fig. 1 ). 

A rate matrix Q describing the dynamic between the bound-

ry and polymorphic states can be defined by considering several

opulation-level processes. So far, PoMo includes mutation, genetic

rift and allelic selection ( Fig. 1 ) ( De Maio et al., 2015; Schrempf

t al., 2016; Borges et al., 2019 ). 
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Glossary. The order of the symbols follows their first occurrence in the text. 

Symbol Description 

τ tree topology 

ˆ τ tree topology estimator 

S number of sites 

a i allele i 

A nucleotide base { A, C, G, T } 

N population size 

n absolute frequency of an allele; relative frequency would be n / N 

Q PoMo instantaneous rate matrix with elements q 

π component of the mutation rate; stationary frequencies in the GTR model of evolution 

ρ component of the mutation rate; base exchangeabilities in the GTR model of evolution 

σ allelic selection coefficients 

k normalization constant of the stationary vector 

α PoMo state 

K number of alleles; K = 4 for PoMo 

L number of taxa/sequences 

P transition matrix 

χ site pattern or, better, PoMo frequency patterns 

η root vertex 

ε = (ν1 , ν2 ) directed edge 

ω branch lengths 

θ set of PoMo parameters and branch lengths 

Fig. 1. PoMo state-space and transition rates. The two alleles represent any of the four nucleotide bases A, C, G, and T. Orange and grey distinguish the role of mutation 

and genetic drift plus selection, respectively. The PoMo state-space includes monomorphic (or boundary states) { Na i } and polymorphic states { na i , (N − n ) a j } . Monomorphic 

states interact with polymorphic states via mutation and polymorphic states reach monomorphic states via drift or selection. Between polymorphic states only drift and 

selection occur. PoMo is thus a particular case of the multivariate Moran model with boundary mutations and selection when four alleles (i.e. the four nucleotide bases) are 

considered. 
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• Mutations are assumed to occur only in the boundary states

{ Na i } with mutation rates μa i a j = ρa i a j πa j = ρa j a i πa j . Mutation

rates are thus modeled according to a GTR model of evolu-

tion ( Tavaré, 1986 ), where π represents the stationary frequen-

cies and ρ the six exchangeability terms. Similar interpreta-

tions of these parameters are still valid for the neutral PoMo,

as π immediately informs the stationary frequencies of the

monomorphic states. However, the stationary frequencies of the

monomorphic states are no longer only defined by π in the

more general PoMo with allelic selection ( Borges et al., 2019 )

( Eq. (3) ). All in all, the GTR-like mutation scheme is a conve-

nient strategy to obtain quantities of interest for PoMo. 

• Genetic drift rules the allele frequency changes in a popula-

tion. Genetic drift is modeled according to the Moran model,

in which one individual is chosen to reproduce (i.e. to copy it-

self) and one to die in each time step ( Moran, 1958 ). Therefore,

the rates by which an allele with a starting frequency n / N is

born or dies (i.e. the allele increases or decreases by one) are

the same and equal to n (N−n ) 
N . The allele frequency changes are

thus neutral. 

• Allelic selection may favor one allele over the other by dif-

ferentiated reproductive success. The Moran machinery de-

scribed previously can be adapted to model relative fitnesses

by permitting that a given allele a i has a fitness advan-

tage/disadvantage (1 + σa i ) over the others ( Durrett, 2008;

 

Borges et al., 2019 ). σ refers to the vector of relative selection

coefficients: i.e. a reference allele is chosen to have fitness 1, or

selection coefficient 0. 

Taking into account the population processes described so far,

he PoMo instantaneous rate matrix Q is 

q ( { n 1 a i , ( N − n 1 ) a j } , { n 2 a i , (N − n 2 ) a j } ) 

= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

μa i a j = ρa i a j πa j n 1 = N, n 2 = N − 1 

μa j a i = ρa i a j πa i n 1 = 0 , n 2 = 1 

n 1 
N 

(N − n 1 )(1 + σa i ) n 2 = n 1 + 1 , 0 < n 1 < N 

n 1 
N 

(N − n 1 )(1 + σa j ) n 2 = n 1 − 1 , 0 < n 1 < N 

0 | n 1 − n 2 | > 1 

, (2)

here n 1 and n 2 represent a shift in the allele frequencies. Fre-

uency shifts larger than 1 are disallowed (last condition in Eq. (2) )

aking PoMo rate matrices typically sparse. The diagonal elements

re defined such that the respective row sum is 0. The station-

ry distribution of PoMo is obtained by satisfying the condition

 Q = 0 . ψ is the normalized stationary vector and has the solu-

ion 

(α) = 

{ 

πa i (1 + σa i ) 
N−1 k −1 if α = { Na i } 

πa i πa j ρa i a j (1 + σa i ) 
n −1 if α = { na i , (N − n ) a j } 

(1 + σa j ) 
N−n −1 N 

n (N−n ) 
k −1 

,

(3)
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here k is the normalization constant and α a PoMo state

 Borges et al., 2019 ). 

When using PoMo to infer phylogenies, we make use of two

mportant assumptions that are convenient for the proof of con-

istency presented here. Our first assumption is that sites evolve

ndependently. Thus the probability that sequence A evolves to

equence B equals the product of the probability of evolutionary

aths across all sites S . As a result, the site patterns created by the

 species are independently and identically distributed (i.i.d.). The

econd assumption is that the evolutionary process is stationary

nd reversible with equilibrium measure ψ. Proof of reversibility

nd stationarity have been provided by Schrempf et al. (2016) for

he neutral PoMo model and by Borges et al. (2019) for the model

ith allelic selection. 

. Identifiability of PoMo 

Identifiability is the inverse problem of finding the tree τ and

he transition matrix P given just the probability of the various site

atterns χ (or frequency patterns, in the case of PoMo) ( Steel et al.,

998 ). Identifiability comes from the restrictions that must be

laced on P for τ to be uniquely described by the probability of

enerating a pattern χ . These restrictions have been extensively

tudied ( Chang and Hartigan, 1991; Steel, 1994; Chang, 1996; Steel

t al., 1998 ). 

Let us assume a tree τ with η representing the most recent

ommon ancestor of L species (i.e. the root of the tree). The edges

= (ν1 , ν2 ) of τ are directed away from the root η in such a way

hat ν1 lies between η and ν2 . If we attribute states to each ver-

ex in the tree τ , beginning from the root η to all the descending

ertices, we can represent the probability of generating pattern χ
s 

f χ = 

∑ 

χ′ 
p(χη) 

∏ 

ε=(ν1 ,ν2 ) 

P (χν1 
, χν2 

) , (4)

here χ′ extends χ and represents the total assignment of states,

nd p ( χη) is the probability of state χη at the root. The alphabet

f PoMo has 4 + 6(N − 1) states and thus there are [4 + 6(N − 1)] L 

ossible frequency patterns χ in a tree with L leaves. 

As PoMo makes some assumptions regarding the evolutionary

rocess ( Schrempf et al., 2016 ), we can further simplify Eq. (4) : (i)

requency changes on edges are described by a continuous-time

arkov process; (ii) the PoMo rate matrix Q is the same for all

dges of the tree; and (iii) the distribution of frequency states at

he root p ( χη) is simply the equilibrium distribution ψ. 

f χ = 

∑ 

χ ′ 
ψ(χη) 

∏ 

ε=(ν1 ,ν2 ) 

exp { t εQ } (χν1 
, χν2 

) , (5)

here t ε is the length of edge ε. Conditions represented by (4) and

5) are also known as the Markov property, which is a necessary

hough not sufficient condition for identifiability. 

Following ( Steel, 1994; Steel et al., 1998 ), another condition for

dentifiability additional to (5) needs to hold: det ( P ) � = 0 , 1 , −1 for

ll edges ε in the tree and ψ( α) � = 0 for each PoMo state α. Then

he tree τ can be uniquely recovered from the frequency patterns

( Steel, 1994; Steel et al., 1998 ). By Jacobi’s formula (theorem 2.12

n Hall, 2015 ), we can write that det ( P ) = exp { tr Q } and there-

ore 

et ( P ) = exp {− ∑ 

a i a j ∈A 
a i � = a j 

ρa i a j (πa i + πa j ) −
1 

2 

(N − 1)(N + 1) 

(4 + 

∑ 

a i ∈A 
σa i ) } (6) 
w  
The selective pressures and the mutation rates, as modeled in

oMo, can only be real positive numbers. These rates cannot be 0

ecause they would represent very unlikely and biologically un-

easonable scenarios: If 1 + σa i = 0 the individual carrying allele

 i would immediately die (i.e. an extremely deleterious allele); if

a i = 0 or ρa i a j = 0 (both imply μa i = 0 ) the allele a i does not arise

y mutation. In both situations, such allele should not be observed

t all in the population, and one could simply use PoMo with K − 1

lleles, where K is the number of alleles in the population. There-

ore, we can easily conclude that 0 < det ( P ε ) < 1 for all edges ε of

. 

Because we assume the equilibrium distribution of allele fre-

uencies in the root, we need to check whether any elements of

 can be equal to 0. The PoMo stationary distribution is defined

or two different types of states α, the monomorphic (or fixed)

nd the polymorphic ones. As shown in Eq. (3) , these states can

nly have 0 probability if any of the population parameters are

. Therefore, we conclude that ψ( α) > 0 for all PoMo states α.

ummarizing, PoMo models respect the conditions for identifiabil-

ty and we conclude that PoMo trees are uniquely identifiable by

he frequency patterns they induce. Identifiability can be extended

o the multivariate case by defining an alphabet A over K alle-

es and a state-space of K + K 

K−1 
2 (N − 1) states. For simplicity we

ave considered the four-variate case, but the proofs shown here

emain valid for the multivariate Moran model with allelic selec-

ion ( Borges et al., 2019 ). 

. Consistency of the Bayesian PoMo 

To evaluate the consistency property under PoMo, we have to

rove that a given tree estimator converges in probability to the

rue tree as the number of sites S increases indefinitely. It has al-

eady been formally shown that the MAP tree (i.e. the tree topol-

gy that has the greatest posterior probability), estimated in a

ayesian framework, provides a statistically consistent estimator of

he true tree ( Steel, 2013 ). Consistency was proven under a wide

ariety of conditions ( Steel, 2013 ), including tree inference from

ligned sequences across the entire parameter range, and with the

sage of general priors in models where the identifiability condi-

ion holds. Here, we show that these conditions are also met under

oMo. 

Suppose we are given i.i.d. site patterns χ = (χ1 , . . . , χS ) gener-

ted by some unknown parameters ( τ , θ) and we wish to identify

he topology τ from χ given prior densities on the set of fully re-

olved trees T and the continuous parameters θ. These parameters

nclude the branch lengths ω, the mutations rates (defined by π
nd ρ) and the selection coefficients σ . Suppose we have a dis-

rete prior probability distribution p ( τ ) on T , and, for each τ ∈ T , a

ontinuous prior probability distribution on 	( τ ) with a probabil-

ty density function p τ ( θ). 

In particular, if the following four conditions hold: 

• C1: p ( τ ) > 0; 

• C2: the density p τ ( θ) is continuous, bounded and nonzero on

	( τ ); 

• C3: the function θ → p ( τ , θ) ( χ) is continuous and nonzero on

	( τ ); 

• C4: identifiability, guaranteeing that τ is uniquely identifiable

by χ. 

Steel (2013) has shown that 

lim 

→∞ 

p(τ ∗, θ, S| χ) = 1 , (7)

here p ( τ ∗, θ, S | χ) is probability that the MAP correctly selects
∗ for a i.i.d. sequence ( χ1 , χ S ) generated by ( τ ∗, θ). In other

ords, the MAP maximizes the posterior probability p ( τ ) E [ p ( χ| τ ,
θ
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Fig. 2. Consistency of the Bayesian PoMo. (A) Topology (and relative branch lengths) used for simulations and the two top-visited wrong topologies sampled from the 

posterior. These alternative topologies follow the expected tree discordance due to incomplete lineage sorting between populations 2 and 3. (B) Posterior probabilities of the 

MAP and true topologies for the two simulated scenarios I and II. The expected heterozygosity H e and divergence D used to simulate each scenario were taken from natural 

populations of D. simulans (scenario I ( Begun et al., 2007 )) and great apes (scenario II ( Prado-Martinez et al., 2013 )). The asterisk indicates that the MAP tree corresponds to 

the true tree. Numbers in grey indicate the number of sampled posterior topologies. 
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θ)] where E θ is the expectation of the likelihood with respect to

the prior probability of 	( τ ). 

Consistency can then be inherently gained by Bayesian infer-

ence. PoMo can be easily placed in a Bayesian framework. Indeed,

we can easily meet conditions 1 and 2 in standard Bayesian phylo-

genetic inference software (e.g. BEAST ( Bouckaert et al., 2019 ) and

RevBayes ( Höhna et al., 2016 )). C1 requires that a nonzero prior is

set on the tree topology, which can be easily implemented by set-

ting a uniform prior. If θ takes the usual exponential/gamma pri-

ors on the branch lengths and rate parameters ( ρ, σ and ω) or

the Dirichlet distribution on π (which can actually be generated

from a set of K -independent gamma random variables), condition

C2 is met. Conditions C3 and C4 hold for all Markov processes on

any tree with pendant edges of positive lengths (i.e. on any bi-

nary metric-tree) for which identifiability was proven. Therefore,

as shown in the previous section, C3 and C4 hold for PoMo. Con-

sequently, the MAP tree under PoMo is a consistent estimator of

the species tree. 

5. A simulation-based example of consistency with PoMo 

Consistency guarantees the identification of the correct param-

eter values with infinite sequence lengths. In real data situations,

the sequence length is finite as is the running time. We have

nevertheless tested the consistency of the tree topology for the

Bayesian PoMo estimator using simulated population data sets. 

We simulated alignments of 10 0 0 0 sites under PoMo using a

phylogeny of five populations as shown in Fig. 2 A with relative

branch lengths defined in such a way that we have two closely

and two distantly (i.e. twice the expected divergence) related pop-

ulations. We simulated two scenarios I and II by mimicking fast

and slowly evolving populations (expected divergence D equal to

0.3 and 0.02 substitutions per site, respectively) with expected het-

erozygosity H e as observed in Drosophila simulans populations and

among great apes (0.0015 and 0.018, respectively) ( Begun et al.,

2007; Prado-Martinez et al., 2013 ). 

To test for consistency, we created four alignments including

the first 10, 100, 10 0 0, 10 0 0 0 sites. We fed these alignments to
evBayes ( Höhna et al., 2016 ) and performed standard Bayesian

hylogeny estimation on them. We ran PoMo for two chains and

0 0 0 0 generations, keeping every 10th iteration. A burning period

f 10% was defined by checking mixing, convergence, and auto-

orrelation of the MCMC chains. 

We observed that MAP already recovers the true tree for the

verage gene length of 10 0 0 sites ( Fig. 2 B). These simulated scenar-

os complement our proofs that the MAP is a consistent estimator

f the true tree. We observed further that populations with more

eterozygous alignments (i.e. scenario I) converge to the true tree

aster. The effect of incomplete lineage sorting is evident in these

xamples, as the top-sampled wrong topologies ( Fig. 2 A) cluster

he closely related populations 3 and 2 with the clade including

opulation 4 and 5. These topologies are, for a fewer number of

ites, the MAP trees of scenarios I and II. 

. Conclusions 

Here we prove that PoMo is identifiable and further that the

AP is a statistically consistent estimator of the species tree when

oMo is placed in a Bayesian framework. This is the first time

dentifiability and consistency were shown for the polymorphism-

ware phylogenetic models. 

Identifiability of PoMo can be easily extended to important,

ore general models. Identifiability should be kept for general-

zations that work on the standard PoMo instantaneous rate ma-

rix: This is, for example, the case with balancing selection act-

ng along with genetic drift. More complicated extensions of the

oMo models would include the joint inference of gene trees with

he species trees; currently, PoMo directly estimates the species

ree. Steel (2013) suggested that identifiability and consistency

hould still apply, as the gene trees can be viewed as nuisance

arameters. A formal proof for this statement, especially for the

ase of gene trees undergoing gene gain, loss, and transfer, is

issing. 

The consistency property, as already mentioned, says nothing

bout the performance of the method in real contexts, where data

s finite. However, consistency is a desirable property, especially for
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he type of data PoMo is applied to: population-scale and genome-

ide. This data is costly and technically difficult to obtain and in-

eed the data sets available in the literature are few (e.g. humans

 Altshuler et al., 2010 ), great apes ( Prado-Martinez et al., 2013 ),

ruit flies ( Lack et al., 2015 ) and Arabidopsis ( Long et al., 2013 )).

t is only natural to expect that higher samples sizes are repaid

ith less erroneous estimates of model parameters, including the

pecies tree. 

Our simulated examples, though simple, show that the MAP re-

overs the true tree even when the expected heterozygosity is very

ow and with incomplete lineage sorting is present. ILS is a very

ell-known cause of discordance between gene and species trees

 Maddison and Knowles, 2006 ), by affecting the probability of vis-

ted wrong topologies. Statistical consistency is thus a desirable

roperty for phylogeny estimation on closely related populations.

s we have seen, the MAP tree corresponds already to the true

opology for 10 0 0 sites, even for less diverse species. 

As future work, we would want to explore the sequence length

equirement under PoMo. This is essentially the sequence length

hat a phylogeny reconstruction method needs to recover the true

ree with a considerably small error ( Atteson, 1999 ). A low se-

uence length requirement is a condition for a computationally ef-

cient method. In particular, it would be important to determine

hether PoMo is a fast converging method (i.e. a method that re-

uires a sequence length of only O(poly (n )) ). 
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