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Abstract

Footpoint motions at the photosphere can inject energy into the magnetic field in the solar
corona. This energy is then released in the corona as heat. There are many mathematical
approaches to model the evolution of these magnetic fields. Magnetohydrodynamics (MHD)
provides the most convenient and practical approach. However, there are many alternative
approximate methods. It is difficult to know when an approximate method is valid and
how well the assumptions need to be satisfied for the solutions to be accurate enough.
To illustrate this, a simple experiment is performed. Four approximate methods, including
Reduced MHD (RMHD), are used to model the evolution of a footpoint driven coronal loop
through sequences of equilibria. The predicted evolution from each method is compared
to the solution from full MHD simulations to test the accuracy of each method when
the relevant assumptions are adjusted. After this initial test, the validity of RMHD is
investigated for the particular case of the magnetic field evolution involving the development
of the tearing instability. Full MHD simulations are used to argue the applicability of the
assumptions and conditions of RMHD for this evolution. The potential of this setup to
heat the corona is considered by performing full MHD simulations including thermodynamic
processes of optically thin radiation and thermal conduction. These additional processes
are not included in RMHD.

II



II1



Candidate’s declaration

|, Erin Elizabeth Goldstraw, do hereby certify that this thesis, submitted for the degree of
PhD, which is approximately 60,000 words in length, has been written by me, and that it is
the record of work carried out by me, or principally by myself in collaboration with others as
acknowledged, and that it has not been submitted in any previous application for any degree.

| was admitted as a research student at the University of St Andrews in September 2015.
| received funding from an organisation or institution and have acknowledged the fun-

ders in the full text of my thesis.

Date: .o, Signature of candidate: ..........ocoooiiiiiiii

Supervisor’s declaration

| hereby certify that the candidate has fulfilled the conditions of the Resolution and Reg-
ulations appropriate for the degree of PhD in the University of St Andrews and that the
candidate is qualified to submit this thesis in application for that degree.

Date: ..o, Signature of SUPEIVISOr: ........coooiiiiiiiiiiiie e

v






Permission for publication

In submitting this thesis to the University of St Andrews we understand that we are giving
permission for it to be made available for use in accordance with the regulations of the
University Library for the time being in force, subject to any copyright vested in the work
not being affected thereby. We also understand, unless exempt by an award of an embargo
as requested below, that the title and the abstract will be published, and that a copy of
the work may be made and supplied to any bona fide library or research worker, that this
thesis will be electronically accessible for personal or research use and that the library has
the right to migrate this thesis into new electronic forms as required to ensure continued
access to the thesis.

[, Erin Elizabeth Goldstraw, confirm that my thesis does not contain any third-party material
that requires copyright clearance.

The following is an agreed request by candidate and supervisor regarding the publication of
this thesis:

Printed copy
Embargo on all of print copy for a period of 1 year on the following ground(s):

e Publication would be commercially damaging to the researcher, or to the supervisor,
or the University.

Supporting statement for printed embargo request

Part of this thesis contains unpublished material, which could be used by fellow researchers
before publication, which would be damaging for the researcher, supervisor and University.

Electronic copy
Embargo on all of electronic copy for a period of 1 year on the following ground(s):

e Publication would be commercially damaging to the researcher, or to the supervisor,
or the University.

Supporting statement for electronic embargo request

Part of this thesis contains unpublished material, which could be used by fellow researchers
before publication, which would be damaging for the researcher, supervisor and University.

Title and Abstract

e | agree to the title and abstract being published.

Date: .o Signature of candidate: ..........cccccciiiiiii

(D - Signature of SUPErVISOr: ..........oooviiiiiiiiii e

VI



VII



Underpinning Research Data or Digital Outputs

Candidate’s declaration

[, Erin Elizabeth Goldstraw, understand that by declaring that | have original research data or
digital outputs, | should make every effort in meeting the University's and research funders'’
requirements on the deposit and sharing of research data or research digital outputs.

Date: oo, Signature of candidate: ..........occociiiiii
Permission for publication of underpinning research data or digital outputs

We understand that for any original research data or digital outputs which are deposited,
we are giving permission for them to be made available for use in accordance with the
requirements of the University and research funders, for the time being in force.

We also understand that the title and the description will be published, and that the
underpinning research data or digital outputs will be electronically accessible for use in
accordance with the license specified at the point of deposit, unless exempt by award of an
embargo as requested below.

The following is an agreed request by candidate and supervisor regarding the publication of
underpinning research data or digital outputs:

No embargo on underpinning research data or digital outputs.

Date: .o, Signature of candidate: ..........cccoccoiiiiiii

(D | - Signature of SUPErVISOr: ..........oooiiiiiiiiii e

Financial Support

The research leading to the results presented within this thesis has received PhD funding
from the UK Science and Technology Facilities Council (STFC) studentship, ST/1505999/1.

This work used the DIRAC 1, UKMHD Consortium machine at the University of St Andrews.

This work used the DIRAC@Durham facility managed by the Institute for Computational
Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). The equipment
was funded by BEIS capital funding via STFC capital grants ST /P002293/1, ST /R002371/1
and ST/S002502/1, Durham University and STFC operations grant ST /R000832/1. DiRAC
is part of the National e-Infrastructure.

VIII



IX



Publications

This thesis contains work which has been adapted from the following publications:

1. E. E. Goldstraw, A. W. Hood and P. K. Browning and P. J. Cargill. Comparison
of methods for modelling coronal magnetic fields A& A 610:A48, February 2018.

doi:10.1051,/0004-6361/201731069,

Collaboration Statement

The numerical simulations presented in this thesis were carried out by myself under the
supervision of Prof. Alan Hood. | thank Klaus Galsgaard for useful discussions. | thank
Sean Oughton for many useful and interesting discussions and feedback.



XI



Acknowledgements

When | received my offer of a PhD in the solar group in St Andrews, | was most of the
way through my MSc in Edinburgh. This wonderful opportunity gave me something to look
forward to and work towards as | prepared for a marathon of nine exams in one exam diet
and a dissertation in MHD turbulence during the summer.

| would like to thank the solar group and the school for the last 3.5 years.

| would like to thank my supervisor, Alan, for his help, explanations and guidance during
the course of my PhD.

| thank Zoe, Craig, Tom, James, Jack and Daniel for their help during these years.

| would like to thank Antonia for the support, occasional meetings for lunch and being
someone | could always speak to even though | know you are very busy. Thank you.

| thank Sheila Kinnison, who has generously ensured | have some money for books.

| acknowledge our late family friend, Peter C. Macdougall, who was always interested in
my studies and achievements.

Although | have not had the chance to get to know anyone very well in St Andrews, | would
like to thank the town for being such a welcoming and friendly place. This is the first area
| have felt comfortable enough to explore on my own, and have recently started swimming
at East Sands leisure centre. | also regularly visit The Crystal Shop. It has been a tranquil
and peaceful place to visit for a break from my studies.

| want to say a special big thank you to Sasha (Cawa). Our Russian-English conversations
have been a very welcome, interesting, fun and stimulating activity during the second half
of my PhD. Bonbuwoe cnacubo! [Jasali obuwatecs ganblue.

| thank my mum for transport to and from the Mathematical Institute every day. | wish |
could find an easier way for you.

| thank my parents for encouraging me to enjoy learning from the beginning.

A special acknowledgement and thank you to my late grandad, who passed away in 2000,
and gran, who passed away recently in November 2018. | know you are very proud of your
granddaughter.

XII



XIII



For my parents.
In loving memory of my gran and grandad.

XIV



XV



Moexanu! - FO.A. Tarapun
Let's go! - Y.A. Gargarin
1961

XVI



XVII



Contents

1 Introduction
1.1 Coronal Loops and Heating
1.2 Brief Description of Magnetic Confinement
1.3 OQutline

2 MHD Model
2.1 Overview
2.2  Maxwell's Equations
2.3 MHD Assumptions
2.4 MHD Equations
2.5 MHD: Conservation laws
2.6 MHD Equilibria: Grad-Shafranov Equation
2.7 MHD: Waves and Polarisation
2.8 Tearing Instability Analysis
2.9 Summary

3 RMHD Model
3.1 Overview of RMHD
3.2 Brief History of RMHD in Fusion Devices
3.3  Original RMHD Derivations
3.3.1 Strauss’ Derivation
3.3.2 Zank and Matthaeus’ RMHD Equations
3.3.3 Montgomery's RMHD Equations
3.3.4 Discussion
3.4 RMHD Model
3.4.1 RMHD: Derivation
3.4.2 RMHD: Conservation Laws
3.4.3 RMHD: Properties
3.4.4 Validity
3.5 Validity Checks of RMHD
3.6 Coronal Loop Studies
3.6.1 MHD Studies
3.6.2 RMHD Studies
3.7 Similar Methods

XVIII

Ot W N =

oo ~1 ~

10
10
14
15
17
21
25

27
27
29
30
30
34
35
36
37
38
42
42
46
48
50
51
53
57



Contents

Modelling Solar Coronal
Magnetic Field Evolution

3.8 Other Formulations of “Reduced” Models in MHD
3.9 Summary

4 Shearing: Comparison of Methods

4.1 Introduction

4.2 Experiment and Model Descriptions
42.1 MHD Equations
4.2.2 Experiment Description
4.2.3 Magnetofrictional Relaxation
4.2.4  One-Dimensional Equilibrium Equation
4.2.5 Linear and Weakly Nonlinear Expansion
42.6 Reduced MHD

4.3 Results
4.3.1 Comparison With Full MHD Results
4.3.2 Full MHD Dynamics
4.3.3 Full MHD Dynamics: Field Expansion

4.4 Summary

5 Tearing Instability: Validity of RMHD

5.1 Introduction

5.2 Experiment Overview
5.2.1 MHD Equations
5.2.2 Experiment Description

5.3 Results
5.3.1 Overview of Full MHD Simulations
5.3.2 Validity Tests of the RMHD Conditions
5.3.3 Qualitative Comparisons
5.3.4 MHD Dynamics

5.4 Summary

6 Tearing Experiment: Thermodynamics

6.1 Introduction

6.2 Experiment Overview
6.2.1 MHD Equations
6.2.2 Normalisation and Initial Conditions
6.2.3 Experiment Setup

6.3 Results

6.4 Discussion

7 Summary and Further Work
Appendices

Appendix A Alternative RMHD Derivations
A.1 Zank and Matthaeus' Derivation

57
60

61
61
62
62
64
66
68
70
7
78
80
87
101
105

107
107
109
109
110
112
113
119
122
124
142

144
144
145
146
146
147
147
165

171

174

175
175

Erin E. Goldstraw XIX



Modelling Solar Coronal

Magnetic Field Evolution Contents
A.2 Montgomery's Derivation 181
A.3 Van Ballegooijen’s Equlibrium Derivation of RMHD 184

Appendix B Similar Methods 187
B.1 Kruger et al: Generalised RMHD 187
B.2 Gazol et al: RMHD including Alfvén dynamics 189
B.3 Zhukov: RMHD including slow waves 191
B.4 Zank and Matthaeus: Nearly Incompressible MHD 192
B.5 Bhattacharjee et al: Four Field MHD 194
B.6 Van Ballegooijen et al: RMHD for Alfvén wave turbulence 197

Appendix C Second order Solution 200

Bibliography 215

XX

Erin E. Goldstraw



Chapter 1

Introduction

Plasma is made up of ions and electrons, which can move freely in space and are not
confined together in an atom. The process of ionisation, where the electrons and protons
in an atom are separated, requires a very high temperature. The plasma state is somewhat
rare on Earth, but nevertheless, it is common throughout the universe and accounts for
>90% of matter. The individual charged particles are acted on by electromagnetic forces,
either external forces or internal forces produced by other particles in the plasma. In most
cases the dynamics of a plasma can be suitably modelled as a fluid. This can be done when
considering scales where forces from individual particles are negligible compared to the net
force produced by all particles and external forces.

The mathematical framework that describes the fluid-like dynamics of a plasma
is provided by the model of magnetohydrodynamics (MHD) (Priest 2014). This model
makes a few key assumptions relating to charge neutrality and lengthscales. Despite these
assumptions MHD is applicable in a vast range of plasmas from nuclear fusion to the solar
corona. The MHD model involves solving a set of coupled, complex, nonlinear partial
differential equations for eight unknown quantities. Analytical solutions to these equations
are few and far between, usually only possible in very specific simple cases. In the majority of
cases, a numerical solution is needed. However, numerical approaches require a significant
amount of computational resources.

Due to the high demand on these resources, it is common to look for possible
ways to reduce the complexity in the equations and make them computationally easier to
solve. One way to simplify the equations is by applying additional assumptions. These could
be related to the existence of a strong external magnetic field, invariance in a coordinate
direction and/or vector field direction or compressibility. The important thing to consider
when implementing such assumptions is whether they are valid for the current system under
investigation. This is particularly crucial when applying a model designed for one application
to another topic.

In this project we aim to illustrate the importance of this concept. To do this we
consider the method of reduced MHD (RMHD), which was originally proposed for magnetic
confinement plasmas and has been subsequently applied to plasma in coronal structures,
called coronal loops. These two types of plasma and areas of research are very different as
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Figure 1.1: Image of coronal loops taken from https://scied.ucar.edu/sun-coronal-loops from
TRACE/NASA.

will be briefly demonstrated in this chapter. In Section 1.1 the solar corona (Priest 1984)
is introduced and a brief overview of magnetic confinement (Boyd and Sanderson 2003) is
given in Section 1.2. Finally, in Section 1.3 an outline of this thesis is given.

1.1 Coronal Loops and Heating

The visible part of the sun, which consists of dense optically thick plasma, is known as the
photosphere or surface of the sun. The photosphere is observed to have a temperature of
~ 6000K. This plasma is turbulent due to convective motions. These motions are typically
of 1-2 km s=1. The upper atmosphere of the sun, which is the halo visible during an eclipse,
is called the corona. The typical number density of particles in the corona is 10'* m=3
typical magnetic field strength is 100G (1072T).

From the photosphere, strong magnetic fields emerge, extending into the corona
before returning to the surface. These magnetic structures are visible in a broad spectrum
of wavelengths due to the emission of the hot plasma that is confined on them and are
called coronal loops and have a broad range of lengths of ~ 10 — 100Mm. An image of
coronal loops taken in ultraviolet is shown in Figure 1.1.

Contrary to intuition, the temperature increases from the photosphere to the
corona. The coronal temperature is around 1 — 2MK. This unexpectedly high temper-
ature requires a heat source. It is generally accepted that the source of heating is the
convective motions of the photosphere. This energy can then be transferred to and stored
in the coronal magnetic field. However, the mechanism to convert this reservoir of energy
into internal energy, to heat the plasma, is still to be determined. The mystery of this
process is one of the most challenging questions in solar physics, known as the coronal
heating problem.

These motions move the footpoints of coronal loops which are rooted into the
higher density photosphere. The resulting evolution of the loops depends on the timescale
of the footpoint motions. For motions on a fast timescale, waves are generated and dissi-
pated to heat the plasma. This is known as alternating current (AC) heating. For slower

and
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timescales, the loops are moved as a whole through a series of approximate equilibrium
states. These equilibria are non-potential and energy can be stored in the magnetic field
until conditions for non-equilibrium or an instability are met, after which the stored energy
is released. The release of the stored energy is by a process called reconnection where the
magnetic field breaks and reconnects into a new lower energy state. This process is known
as direct current (DC). Here we focus on DC heating.

The solar corona is full of loops with varying temperatures. These loops are likely
to interact with each other. Thermodynamic processes, also, play an important part in the
evolution of coronal loops and is essential for investigation of coronal heating.

Next, properties necessary for fusion are briefly discussed.

1.2 Brief Description of Magnetic Confinement

Fusion is a possible source of energy on Earth since a lot of energy can be released as a result
of the nuclear reactions. A very high temperature of the order of 108K with a number density
of ~ 10?° particles m~3 is required for fusion to occur. Naturally, no physical material can
contain a substance at such a high temperature. Fortunately, magnetic fields can be used
to contain the plasma, which is possible due to the nature of charged particles, which are
confined by electromagnetic forces to follow magnetic field lines. This process is called
magnetic confinement.

The common magnetic field configuration contains the plasma in a ring with a
circular cross section, or doughnut shape, called a torus. Such a toroidal shape can be
achieved with a helical magnetic field threading the torus. This magnetic configuration
requires a magnetic field in two directions. One is provided externally and the second is
produced by the plasma itself. The former is obtained by using external magnetic coils to
produce a strong field of about 10T along the axis of the plasma column called the toroidal
direction. The second is produced by the resulting current induced in the plasma, which
creates a smaller magnetic field acting in a circle perpendicular to the axis of the cylinder,
known as the poloidal direction.

Fusion plasmas can only be maintained for a very short time of one or two minutes.
The radius of the plasma, called the minor radius, is generally much less than a metre and
the major radius from the centre of the plasma column to the centre of the torus is about
a metre.

There are many pieces of equipment that are necessary for the successful and safe
operation of a magnetically confined plasma. The entire system including the plasma and
equipment is called a tokamak. This is an abbreviation of the Russian phrase meaning a:
“toroidal chamber with magnetic coils” (Russian: ToponganbHasi kKamepa C MarHUTHbIMN
KaTyLuKamm).

The main goal in magnetic confinement is to maintain the stability of the plasma
for as long as possible to allow hydrogen ions to collide and fuse to form helium. This
requires a high level of understanding of magnetic equilibria and nonlinear dynamics such
as instabilites.

The necessary existence of an externally generated toroidal magnetic field, By,

Erin E. Goldstraw 3
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Table 1.1: Summary of typical coronal and tokomak plasma quantities: magnetic field B, temperature,

T, length, L and number density, n. The Alfvén speed, V4 = ugm , and Alfvén time, 74 = VLA, are
P

calculated, where m,, is the mass of a proton. The lengthscale of a tokomak is taken to be the major
radius of JET.

System B(T) | T (MK) L(m) n(m™3) | Vams ) | 74 (s)
Corona | 1 x 1072 1-2 100 x 10° 10T 7 x 10° 145
Tokomak 10 100 3 1020 2 x 107 3x 1077

motivates the assumption of a dominant guide field in the full MHD equations. It follows
that other quantities are smaller than and perpendicular to this field component. Further
simplification results from variations being mainly perpendicular to the magnetic field direc-
tion. These assumptions lead to the equations of RMHD (Kadomtsev and Pogutse 1974;
Strauss 1976). RMHD is a nonlinear, incompressible approximation of full 3D compressible
MHD. The velocity and magnetic fields involve two components which are perpendicular to
By and depend fully on two coordinates and weakly on the third. Thus RMHD is neither
fully 3D or 2D. A special feature of RMHD is that if the weak dependence on the third
coordinate is dropped the equations simplify to those of 2D incompressible MHD.

There are two main reasons why the model of RMHD has become popular for
investigations into magnetic confinement compared to full MHD and other approximate
methods. First, the RMHD equations are much simpler than the full MHD equations,
resulting in less demand on limited computational resources. Second, the equations still
retain some nonlinear dynamics which linear methods do not.

We do not consider validity of RMHD in the context of fusion. This brief descrip-
tion of magnetic confinement is included for background context and motivation of this
study. This approximate model has recently been applied in the context of solar physics.
This is a very different type of plasma as was discussed in the previous section, Section 1.1.

In summary, fusion and coronal plasmas are fundamentally very different. These
systems require very different timescales, lengthscales, temperatures and number densities,
as summarised in Table 1.1. Fusion requires a number density 10° greater, a temperature
100 times hotter and a magentic field 1000 times stronger than in the corona. Another
intrinsic difference between these systems is that in the corona there are many coronal loops
which can interact with each other whereas a fusion plasma is an isolated system. It may
be arguable that the guide field threading a coronal loop dominates other quantities when a
loop is in equilibrium. However, this seems unlikely during highly dynamic processes such as
instabilities and reconnection. This argument also follows for quantities and variations being
mainly restricted to perpendicular directions. It seems unlikely that the same assumptions
which are generally applicable in tokamaks are also valid in the corona. This maybe is the
case for a small subset of situations or special cases but seems unlikely in general. This
raises the question of validity.

4 Erin E. Goldstraw
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1.3 Outline

Validity is a very important question to ask when considering which method to use. If the
assumptions are not valid at some point, the results are likely to be inaccurate, and may
lead to false conclusions. These incorrect conclusions will only slow down the progress of
new research as they need to be checked and corrected, as necessary.

The best proceedure to verify the accuracy of an approximate solution is to compare
it with results which are known to be accurate. For our purposes we take full compressible
MHD to provide such accurate results. The assumptions of full MHD are also present in ap-
proximate models. There are countless systems to test the accuracy of a given approximate
method. Each needs to be analysed on an individual basis. In this project we investigate
one particular system with a focus on validity of RMHD.

We begin with a general illustration of validity. To do this, we choose four common
approximate methods: linearisation, magnetofrictional relaxation, 1D approach and RMHD.
Each is used to model the evolution of a coronal loop undergoing smooth footpoint motions.
These results are then compared and contrasted with each other and with results from full
2.5D compressible MHD simulations. Full details and results are presented in Chapter 4
and were published in Goldstraw et al. 2018.

After this straightforward initial experiment, we focus our attention on checking
validity of RMHD. This investigation was motivated by potential disagreement between
studies in the literature using RMHD and full MHD and the lack of studies directly com-
paring these two models.

An example of this conflict is Rappazzo, Velli, and Einaudi (2010), who used
RMHD to model the tearing instability in the context of coronal heating. Rappazzo et al
(2010) applied footpoint motions, consisting of a smooth shearing and spatially random
perturbation, to an initially uniform background field. These motions allow energy to
be stored in the magnetic field before the development of the tearing instability and the
subsequent release of the stored energy through reconnection. Their key result is that the
energy storage and release only occurs once. Magnetic energy is not stored again, even
though the motions are continued throughout the simulation. This is in contrast to the
common picture in MHD, that this process would be cyclic: energy build up and release
followed by subsequent energy build up and release.

It may be the case that, in general, both ideas are true since the dynamics depend
crucially on the properties of footpoint motions. Nevertheless, the major area of doubt over
Rappazzo et al's study is that it uses the approximate method of RMHD. This raises the
question of whether their conclusion would still hold true if the same system was modelled
using full MHD, which has not been tested. It is one of the aims of this study to check
their conclusion using full 3D compressible MHD.

This is done by extending our simple 2.5D system in Chapter 4 to 3D and applying
an additional symmetry-breaking perturbation. The application of a shear and perturbation
results in the development of the tearing instability. Arguments concerning the validity of
RMHD are made using our full 3D compressible MHD simulation results and qualitative
comparisons to Rappazzo, Velli, and Einaudi (2010) are discussed in Chapter 5.

Erin E. Goldstraw 5
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Despite the fact that RMHD has been used in the context of coronal heating,
it cannot predict the thermodynamics of the system since there is no energy equation.
Without the inclusion of radiation and conduction, little conclusion can be made about the
coronal heating potential of this system. Such processes need to be investigated using full
MHD. In Chapter 6 our system is extended to include the effects of radiation and conduction
to enable new results which are not possible when restricted to using RMHD.

There are many further systems to test the validity of RMHD and several potentially
useful conclusions to verify in the literature. There are also numerous similar models to
RMHD that have been developed over the last few decades and could be investigated
further. A summary of results and future work is given in Chapter 7.

The following chapters, Chapter 2 and Chapter 3, introduce the mathematical
models of MHD and RMHD and the relevant properties and literature for this study.

6 Erin E. Goldstraw



Chapter 2

MHD Model

2.1 Overview

When studying the dynamics of a plasma, there are two main approaches: microscopic,
where each particle is considered individually, and macroscopic, where the plasma is treated
as a magnetised fluid, i.e MHD. The main focus will be on the macroscopic dynamics and
evolution of the plasma in time. In the following sections, the mathematical model of MHD
describing the fluid-like dynamics of plasma will be introduced.

A general fluid is described by the hydrodynamic fluid equations. A hydrodynamic
fluid consists of neutral atoms which can undergo physical collisions described by classical
physics. A plasma is distinct from a neutral hydrodynamic fluid due to the presence of
charged ions. The electromagnetic forces produced by an individual particle can act on
many others at a large distance, resulting in altering their trajectory and speed. Due to the
importance of these electromagnetic forces the interactions of the particles’ electric and
magnetic fields must be included in the fluid equations. This is done by combining the
equations describing electromagnetism, given by Maxwell's equations, and the equations of
fluid mechanics. This results in a mathematical model describing an electrically conducting
fluid.

In Section 2.2, Maxwell's equations of electromagnetism are described. In order
to use the fluid approximation, a few assumptions are used to simplify Maxwell's equations,
which determine when MHD is valid. These necessary assumptions are listed in Section 2.3
and when applied give the MHD equations in Section 2.4. It is important for a mathematical
model to be physically meaningful and correctly capture all of the relevant physics. Full
MHD conserves mass, momentum, magnetic flux and total energy. These conservation laws
are presented in Section 2.5. An interesting and important topic is the class of equilibrium
states, in which a system does not change in time unless perturbed. The Grad-Shafranov
equation, which describes MHD equilibrium states with translational symmetry, is derived in
Section 2.6. When an equilibrium is disturbed by a small perturbation, it evolves dynamically
and is no longer stationary. An important feature of a medium is the propagation of these
small perturbations, or waves, through the fluid. In a plasma, there are several types of
waves, each with their own properties, which will be discussed in Section 2.7. On the other

7
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hand, if an initial equilibrium is unstable, when a small perturbation is present, it can destroy
the original equilibrium state through the development of an instability. In this work, we
will model the evolution of the tearing instability. The linear analysis of the tearing mode is
presented in Section 2.8. In Section 2.9, a common additional assumption is introduced.

2.2 Maxwell’s Equations

In this section, we introduce the ideas of electromagnetism described by Maxwell's equa-
tions. Plasma consists of free electrons and protons. These charged particles produce an
electric field, E, measured in Newtons per Coulomb (N C™!) or volts per metre (V m~!). A
flow of electrons is an electric current, which produces a magnetic field, H, and magnetic
induction, B, in units of tesla, T. B is commonly called the magnetic field, instead of H.
As the particles move, they interact with the magnetic and electric fields of other particles.
The properties of electric and magnetic fields are described mathematically by Maxwell's
four equations of electromagnetism, namely Gauss' laws for the electric and magnetic fields,
Faraday's law of induction and Ampére's law.

Gauss’ Law for the Electric Field

The net electric flux through a closed surface, S, with unit normal, 1, is proportional to
the net amount of electric charge contained within the surface. This idea is described
mathematically by Gauss' law, which in integral form is

]fE-ﬁdA:i,
s €o

where ¢ is the total charge in coulombs, C, inside the closed surface, S, and the constant
g0 = 8.85 x 10712C(V m)~!, is known as the vacuum permittivity. Physically this equation
means that protons with a positive charge are sources of an electric field and electrons with
a negative charge are sinks of the field.

Gauss' law can be written in differential form as

v.E=" (2.1)

€0

where p, is the charge density measured in C m™3. ¢ and p, are related by

q= / pedV,

where the volume V' contains the surface, S. Similarly to the integral form, this shows that
the electric field diverges away from a positive charge and converges towards a negative
charge.

8 Erin E. Goldstraw
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Gauss’ Law for the Magnetic Field

There are no sources or sinks for a magnetic field. This means a magnetic field does not
diverge from or converge to a single point in space. Gauss' law can be written for the
magnetic field as

V-B=0. (2.2)

Faraday’s Law of Induction

If the magnetic flux contained in an open surface, S, bounded by a closed curve, C', changes
in time then an electric field is induced along a closed path, C'. Faraday's law describes
this phenomenon mathematically, which can be written in integral form as

jfE-dlz _9 [ B.4da (2.3)
c ot Js

Faraday's law describes the phenomenon that a changing magnetic field induces an electric
field that acts against the change in B. An induced electric field is fundamentally different
from the intrinsic field of a charged particle. An induced electric field does not have sources
or sinks, its fieldlines form closed loops. Faraday's law can be written in differential form as

0B

Physically this means that the rate of change in time of the magnetic flux is equal and
opposite to the induced rotation of the electric field.

Ampére’s Law

There are two types of current: a physical current produced by the flow of electrons and
a displacement current produced by a changing electric flux. A physical current density is
given by the flow of charged particles with number density, n (m~3), charge, ¢ (C), and
average velocity, v (m s™!) as

j = ngv. (2.5)

with units of C(m?s)™! =A m~2. Note that the current density has units of current per unit
area. The displacement current, also in units of current density, is produced by a variation
in time of the electric flux through S. This is analagous to Faraday's law and is described
mathematically by Ampére’s law, which can be written as

VxB:u<j+5oaa—]?), (2.6)

where the constant iy = 47 x 10~"N A2 is the permeability of free space.
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2.3 MHD Assumptions

In this section we will emphasise the assumptions of full MHD. These assumptions are
present throughout all models considered in this study. Full MHD as the limit of a mag-
netised fluid is itself an approximation to the microscopic dynamics of individual particles.
In the fluid limit only the average properties of many particles are considered rather than
the dynamics of each individual one. Over large distances and times, such as are present
in astrophysical and coronal systems, these assumptions provide an excellent description of
the evolution and so the fluid equations of full MHD are taken to provide the “exact” and
most accurate solutions throughout this work.
The assumptions of full MHD are:

1. The fluid approximation assumes the fluid is a continuum of particles compared to
discrete particles. This is valid providing lengthscales are much greater than the mean
free path - the average distance that collisions occur between particles.

2. Charge neutrality is assumed. This assumes that there are equal numbers of positive
and negative charged particles evenly distributed throughout the plasma, resulting in
no net charge locally anywhere. The individual particle properties, such as charge and
mass, are neglected and assumed to be one species. This is possible since the mass
of a proton is much greater than the mass of an electron m, > m..

3. The viscous stress tensor is assumed isotropic. Although anisotropy is an important
aspect in the current study, approximate methods considered in this study use an even
simpler form of viscous dissipation. The main function of the viscosity is to dissipate
waves and kinetic energy. Thus, this approximate form of viscosity is sufficient for the
current investigation.

4. Nonrelativistic: Typical speeds are assumed to be much less than the speed of light,
v

5. Neglect displacement current. Removes electromagnetic waves at speed of light.

2.4 MHD Equations

A plasma is described by its density, p, in units of kg m™3, pressure, p, in units of N m~2,
v, in units of m s~! and magnetic field, B, in tesla, T. Additional properties of the electric
field and temperature can be calculated once these eight quantities are known. The MHD
equations are found by combining the hydrodynamic equations with Maxwell’'s equations.
First, the above assumptions are applied to Maxwell's equations to give fluid approximations
of the electromagnetic equations

Assumption two of full MHD requires that the charge density is zero and hence
Gauss' law, Equation (2.1), is simply V-E = 0. Therefore, the electric field from individual
particles are neglected and only the electric field induced by the changing magnetic field is
considered.
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The typical magnitude of the electric field, F, can be written in terms of the typical
magnitude of the magnetic induction, B, by considering Faraday's law, Equation (2.4).
Taking a typical length, ¢, and typical time, t, the electric field strength is

E=-—"=uB, (2.7)

where v is a typical speed. Now considering Ampére's law, Equation (2.6), the LHS is
simply

B
VxB~Z
. 0’

and the displacement current, substituting Equation (2.7) and using ¢* = (ue)™!, can be
written as

10E 1E *B

2ot 2t 2l

Since ¢ > v? the displacement current is small compared to the magnetic field, hence it
can be neglected and Ampére's law is written as

nj =V xB. (2.8)
The velocity and magnetic fields are related by Ohm's law, which is
j=o0.(E4+vxB),

where o, is the conductivity in units of siemens per metre.

Summary of MHD Equations

The full 3D compressible MHD equations, including gravity, thermal conduction and radi-
ation, can be written as:

Equation of Motion p% +p(v-V)v=—pg—Vp+jxB+V-.S, (2.9a)
Continuity Equation % +V-(pv) =0, (2.9b)
B
Induction Equation aa—t =Vx (vxB)-Vx(nVxB), (2.9¢)
. 9 ( p P \Y__
Energy Equation En (ﬁ) +v-V <m> =1 v—L, (2.9d)

-2
L= £conduction + £radiation —ny — eijSija
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Table 2.1: Values of o and x for different temperature ranges used in the equation for optically thin
radiation, Equation (2.11) taken from Klimchuk, Patsourakos, and Cargill (2008).

x(10713) a | Temperature range (MK)
1.09 x 10731 | 2 10T <T <10%%7
8.87 x 10°17 | —1 10497 < T < 10557
1.90 x 10722 | 0 10°57 < T < 10618
3.53x 10713 [ -2 10518 < T <1055°
346 x 1075 [ —2 10555 < T <1059
549 x 10°16 | —1 10599 < T <1073
1.96 x 10727 | 2 10793 <T

where Leonduction = V - q is the effect of thermal conduction and q is the associated heat
flux, given by

K

q= —E(B-VT)B. (2.10)
where k = kT3 and ko = 107"W(mK)~! is a typical value for the parallel thermal
conductivity in the corona. In reality there is also thermal conduction perpendicular to
the magnetic field but it is much smaller than the conduction along the field and so is
neglected.

L adiation 1S the losses due to optically thin radiation in the solar corona. Optically thin

radiation is given by
Eradiation = PQXTQ- (211)

The constants, x and «, depend on temperature, given in Klimchuk, Patsourakos, and
Cargill 2008, as listed in Table 2.1. These values and formula are chosen to fit observations
of solar emission. The current and solenoidal condition are given by

. VxB
J:

,and V-B=0. (2.12)

In these equations v is the plasma velocity, p the mass density, p the gas pressure, B the
magnetic induction and j the current density. 7 is the magnetic diffusivity, equal to ULM with
units of m? s~!

The equation of motion includes contributions from gravity, g, mechanical pressure
forces, Vp, Lorentz force, j x B, and divergence of viscous stresses, V - S. The energy
equation includes effects of thermal conduction, optically thin radiation, ohmic and viscous
dissipation. The viscous stress tensor is given by

1
Sij = 2pV (Eij - g(ng : V) N (213)
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1

where v is the kinematic viscosity with units I? t=! and the strain rate is

. 1 81)1' 6vj
€ij = B} <8Ij + a%) . (2.14)

This is the hydrodynamic viscous stress tensor as any effects of the magnetic field are
neglected. Both shock and “real” viscosity are used in the computational code, Lare, that
is used in this study. Shocks are perturbations that travel faster than the local wave speed.
This causes sharp changes in pressure. A large value of viscosity is needed to quickly
dissipate these. Real viscosity damps any other perturbations. Once the pressure is known,
the temperature of the plasma can be calculated from the ideal gas law in a fully ionised
plasma as

__P
fiRkp’

where R = 8.3 x 10®J(K kg)~' is the gas constant and /i is the molar mass in units of
kg mol~!. An important quantity in plasma physics is the plasma beta, given by the ratio
of the gas pressure and magnetic pressure as

2
8= %. (2.15)

There are many different limits which can be applied to these MHD equations,
some of the resulting sets of equations are stated below.

Dissipative MHD Equations

In this study, the dissipative compressible MHD equations will be frequently used. In this
case, thermal conduction and radiation are neglected. Gravity is neglected for simplicity.

pa—Zqu(v-V)V:—Vp—i—ij—I—V-S, (2.16a)
0
a—i-l—v-(pv) =0, (2.16b)
0B
Esz(va)—Vx(anB), (2.16¢)
o( p po\_ P B 9
5 <7_1)+v V(fy—l)_ o Vv +e,;S;+nj°, (2.16d)
V- B =0. (2.16¢)

where the rest of the notation is the same as in Equation (2.9).

Ideal MHD Equations

A second important form of the MHD equations is the ideal limit. This is found by setting
n = v = 0 in Equations (2.16). For simplicity gravity, thermal conduction and radiation
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are also neglected. The set of ideal MHD equations is

pg—‘thrp(v-V)v:—Vanij, (2.17a)
% + V- (pv) =0, (2.17b)
0B
e =V x (v x B), (2.17¢)
O ( p P \_
V- B =0. (2.17¢)

Ideal Incompressible MHD Equations

In this study, the form of the incompressible MHD equations will be important for compar-
ison to approximate methods. In the ideal limit these are

posr == Vp+ (i xB), (2.18a)
dp
L4 v.vp=0. 2.18b
at+V Vp =0 (2.18b)
%—?zvx(va), (2.18¢)
o( p p
9 vt ) o 2.18d
0t<7—1)+v v(’y—l) ! (2.184)
V-v=0, V-B=0. (2.18¢)

In the next section the conservation laws of MHD are presented.

2.5 MHD: Conservation laws

It is a fundamental law that energy cannot be created or destroyed and so must be conserved.
Here we state the conservation laws for full MHD. Some of the global conserved properties
are different for compressible MHD and incompressible MHD and change depending on the
dimension of the model considered. Nonetheless conservation of mass, momentum and
total energy are always true in full MHD. This is not always strictly true when considering
approximate methods.

The ability of a system to properly conserve a quantity is important. For a mathe-
matical model this is determined by writing the equations in a conserved form. For example
a quantity, (), is conserved if

0Q _

o -V
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where @ is a rank n tensor and S is a rank n + 1 tensor.

The continuity equation, Equation (2.9b), is already in this form. This equation
states the conservation of mass since the rate of change of p must be equal to the net flux
of mass flowing out of or into the volume.

Conservation of total energy, E;,; = %pv2 + ﬁBQ + p% is found by finding
equations for the kinetic, magnetic and internal energy. This is done by multiplying the
equation of motion, Equation (2.9a), by v, continuity equation, Equation (2.9b) by 3v?
and multiplying the induction equation, Equation (2.9¢), by %. Finally adding both of the
resulting equations to the energy equation, Equation (2.9d), gives

0E,, 1 1
b —_V. L pv+ =p*’v+pv—S-v+q+ —E xB) — Logiation,  (2.19)

where the Poynting flux is given by Hlo (E x B). In the following section, we derive the
Grad-shafranov equation describing 2D MHD equilibria.

2.6 MHD Equilibria: Grad-Shafranov Equation

Another important topic of full MHD is the existence and properties of equilibria. These
are states where quantities do not change in time. In certain situations, symmetry can be
assumed, and an equation can be derived to describe the equilibrium magnetic field in a
plasma. Here we derive the equation of equilibrium called the Grad-Shafranov equation
for the case of translational symmetry, where invariance in z is assumed. We begin by
considering the ideal MHD equations, Equations (2.17), in a static, ideal equilibrium with
no variation in time and v = 0. The static MHD equations are given by

jxB= Vp, (2.20a)
V xB= puj, (2.20b)
V.B= 0. (2.20¢)

These are the force balance equation, current and the divergence-free condition respectively.
Since the z direction is assumed invariant, the magnetic field, B, can be written in terms
of a vector potential, A, as

B-—VxA,
= VA(z,y) X &, + B.(x,y)é,. (2.21)

where A is the z component of A, known as the flux function.
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Now calculating B - VA using Equation (2.21) gives

B VA= (VA(z,y) x &, + B.(z,y)e.) - VA,
= (VA X éz) . VA"‘ \Bzéz : V4 )

-~
=0

_ H o _
=0 since E =0

— 0. (2.22)

Thus A is constant along fieldlines of B.
Taking the dot product of the force balance condition, Equation (2.20a), with B
and using Equation (2.21) gives

B-(jxB)=B-Vp,
0=(VAxé,)- Vp,
_oadp_oady
Oy dr Oz dy’
= plz,y) = p(A(z,y)).

Hence p is a function of A and is also constant along fieldlines. It follows that

Vp(A) = %m. (2.23)

An expression for the current, j, is found from Equation (2.20b) and substituting
Equation (2.21) for B gives

V xB=-V?48, + VB, x &, = ij. (2.24)

Substituting this equation for j and Equation (2.21) for B into the force balance condition,
Equation (2.20a), gives

1
jxB= m (-V?AVA - [(VB. x &,) - VA]é, — B.VB.) = Vp. (2.25)

The z component of Equation (2.25) is
0AOB. 0AOB,

dy dxr  Ox Oy

Hence B, is a function of A and is also constant along fieldlines. It follows that

A 2.2
Y (2.26)

Using Equation (2.23) and Equation (2.26) for p(A) and B.(A) in the x and y components
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of Equation (2.25) allows them to be written as

dp  1dB?
2A el - z
VAt T3

0. (2.27)

This equation is known as the Grad—Shafranov equation. It is a key equation in MHD
and is a standard non-linear elliptic PDE. In general, a solution of this equation is a two
dimensional equilibrium state. Here, the pressure is a function of A, which is determined
by the ideal energy equation, Equation (2.17d), and B.(A) is a known function of A. In
general, a 2D analytic equilibrium can only be found for certain functions of p(A) and
B.(A). In other cases, it is necessary to further simplify the Grad-Shafranov equation. One
method of doing this, called the 1D approach, is presented in Chapter 4 in Section 4.2.4.

In the following section, we consider a small perturbation to an equilibrium state
and describe the properties of the resulting waves.

2.7 MHD: Waves and Polarisation

The many forces that are present in a plasma perform a restoring force when the plasma
is perturbed. In the present investigation MHD waves are not directly studied but can be
important to the nonlinear dynamical evolution. Information about the complex nonlinear
nature of these waves is contained in the full MHD equations, described in Section 2.4.
The evolution of these waves results in a substantial requirement of computational time
and resources to solve the full MHD equations. As will be shown, in Chapter 3, a significant
simplification can be made by neglecting all high frequency waves and only following long
wavelength, low frequency Alfvén waves, as is the case for RMHD. In this section, the ideal
MHD equations, Equation (2.17), will be used to illustrate the three types of MHD waves.
An ideal system is considered since dissipation effects only damp the wave amplitudes.

Consider an initial equilibrium with a constant, uniform background field, By =
Byé., constant density, pg, and pressure, py. The ideal MHD quantities are expanded about
this equilibrium as

B=By+B, v=v, p=py+p, p=po+p. (2.28)

Linearising the continuity equation, Equation (2.17b), and energy equation, Equation (2.17d),
gives two coupled equations given by

dp

5tV (V) =0, (2.29)
0
a—fj + PV - (v) =0, (2.30)

which can be combined to give the equation for sound waves as

dp o 2 Op

ot~ “or
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where ¢, = /% is the sound speed.
Linearising the equation of motion, Equation (2.17a), gives

ov

1 1
migy =V (p+ 1 Bo-B) + - (Bo- V) B. (231)

Ho

Linearising the induction equation, Equation (2.17c¢), gives

0B ov .
T By (— -V vez> , (2.32)

where By = Bjé, was substituted. Differentiating Equation (2.31), in time and substituting

Equation (2.30) and Equation (2.32), gives

2
%—tZ:c}V(v-vHVj(

’v OV -v._ _vﬁvz) 7

022 0z e 0z (2.33)

where V; = ,/MB—;, is the Alfvén speed and ¢} = ¢ + V3, is the sum of the Alfvén and

sound speeds, called the fast speed. Differentiating the z component of Equation (2.33)
with respect to z gives

02 0v. PV -v

- = 2.34
or 0z~ ¢ 92 (2.34)
The divergence of Equation (2.33) gives

0*V - v v,

5 = GVV v —ViV? 5 (2.35)

Taking g—; of Equation (2.35) and substituting Equation (2.34) gives a fourth order wave
equation

0°V - v 0’V - v

0V - v o 9o
gz TGVaV 53

otn €

% = 0. (2.36)
Taking the curl of velocity gives the vorticity as, w = V x v. The z component of vorticity,
w, = (V x v),, is found by taking the z component of the curl of Equation (2.33). This
gives a wave equation with the Alfvén speed, as

J%w, o, 0w,

Assuming perturbations have the form
exp (i (k- x — wt)), (2.38)

where k is the wavevector which is the direction the wave propagates in, and w is the wave
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frequency. Substituting Equation (2.38) into Equation (2.37) gives
[w? — k2Vi] w. = 0. (2.39)
and substituting Equation (2.38) into Equation (2.36) gives

[w' = K Gw? + BPR2GVE| Vv = 0. (2.40)
There are two possible solutions to Equation (2.39) and Equation (2.40): w, = 0 and
w, # 0. Taking w, # 0 gives, from Equation (2.39), a dispersion relation for Alfvén waves
of the form

w? = k2Vi = k*V} cos® 6. (2.41)

The phase speed of a wave is given by v, = <. The phase speed given by Equation (2.41)
is

v2 = V3 cos® . (2.42)
This shows that an Alfvén wave can travel with an angle # to the magnetic field. The
direction in which energy is transported is given by the group velocity which is given by
g = g—“ﬁ = +V,€é.. The sign indicates that Alfvén waves can travel parallel or anti-parallel
to By. In this case Equation (2.40) can only be satisfied by assuming incompressibility,
Vv = 0. Thus an Alfvén wave is an incompressible perturbation and travels at the Alfvén
speed along By and cannot travel across the field. It follows that there are no pressure or
density perturbations. The components parallel to By, namely: v, and B., are also zero.

(Y

The pressure force V | (p + %) = 0. The perpendicular components of the equation of
motion, Equation (2.31), and the induction equation, Equation (2.32), are

aVJ__ 8BJ_
o = VATgs
8BJ__ aVJ_
TR

These can be combined to give the Alfvén wave equation.
For the second case, w, = 0, Equation (2.39) is automatically satisfied. If V-v # 0
Equation (2.40) gives the dispersion relation

wt — k:QC?CaJQ + k* cos? Qcicf =0, (2.43)

2 Vi

where ¢; = R

is called the slow wave speed. The phase speed can be written as

ct— c?cc2 + cos® Qc?ccf = 0.
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This has roots of

02 02
A=2L1l1+ 1—4-Lcos?6
2 3

Perpendicular to By, § = 7/2, and the two solutions are ¢} = ¢} and ¢ = 0. Parallel to
the magnetic field, 6 = 0, the solutions are ¢? and V3. One wave has a speed greater than
or equal to the maximum of these two speeds and the second wave has a speed less than
or equal to the minimum. Hence the first is the fast magnetoacoustic wave and the second
is the slow magnetoacoustic wave.

In summary the fast wave propagates almost isotropically in all directions. The slow
wave cannot travel across the magnetic field. Both magneacoustic waves are compressible
while the Alfvén wave is incompressible and only travels along the field.

Polarisation

Here we consider the frame of reference of a wave. This is separate from a spatial coordinate
system. In this frame there are two known directions: the direction of propagation, k, and
the magnetic field, By. The direction of propagation is an intrinsic property of the wave
and so is a basis vector. As a wave propagates there are fluctuations of the magnetic and
velocity fields. These fluctuations can be restricted to be in a certain direction relative
to these two vectors. This is called polarisation. Here we define the three possible wave
polarisations. Since it has been shown that Alfvén waves involve fluctuations normal to
both the direction of propagation and the magnetic field we can now simply write that
these perturbations are in the direction

étoroidal - (k X BO) . (244)

This is called the toroidal direction. This property of Alfvén wave fluctuations to be perpen-
dicular to k and By can now be concisely written as: Alfvén waves are toroidally polarised.

Fluctuations along the direction of propagation are called longitudinal. Only ve-
locity fluctuations can be longitudinal since the magnetic field must be incompressible:
k-B=0.

In the wave frame we have found two fundamental directions for a given wavenum-
ber to describe the direction of the perturbation: direction of propagation, k; and the
toroidal direction, @;or0idal- 10 complete the set of basis vectors in three dimensional space
we need a third linearly independent vector. This can simply be found by taking the cross
product of k and €y0igal- T he unit vector in this direction can be written as

époloidal = (k X E()) x k. (245)

This is called the poloidal direction.
These three directions: toroidal, poloidal and longitudinal complete a set of linearly
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independent basis vectors in the wave frame. Poloidal and toroidal refer to the basis
directions which complete the triad with the wavevector. Since these directions are normal
to k the perturbations polarised along these directions are incompressible. The waves that
are toroidally polarised are called shear Alfvén and those that are poloidally polarised are
pseudo Alfvén waves, which is the slow magnetoacoustic wave in the incompressible limit.

In Chapter 3 we introduce RMHD, an approximate model of MHD, which only
considers low frequency Alfvén waves. In the following section the development of the
tearing instability from a small perturbation is considered.

2.8 Tearing Instability Analysis

A small perturbation to a stable equilibrium can produce waves as described in the previous
section, however if the equilibrium is unstable, under the appropriate conditions, a small
perturbation can grow in magnitude. This is the development of an instability. Similar
to waves, properties of instabilities can be found from linear analysis. Here we sketch the
linear analysis for the tearing instability for a general equilibrium, following the procedure
taken in Chapter 5.3.1 of Boyd and Sanderson 2003.

In this section we use the resistive form of the momentum and induction equations,
given by neglecting viscosity in Equation (2.16a) and Equation (2.16c). Nonzero resistivity
is needed to allow the instability to develop. Assuming incompressibility, V - v = 0, for
simplicity, the momentum and induction equations are

poa—‘t] =—Vp+(jxB), (2.46a)

B
%—t =V x (v x B) + nV?B, (2.46b)
V-v=0, V-B=0. (2.46c¢)

The magnetic field is comprised of an equilibrium field, Beguii, and a perturbation, B4, as
B = Bequil + Bl-

Here the equilibrium magnetic field includes an initial constant background magnetic field,
By, and a spatially varying part, which is chosen to be a function of x only as

BequiI = Bequil y(x)éy + (BO + Bequil z(x)) éz- (247>

This equilibrium magnetic field, Equation (2.47), creates an equilibrium current of the form

. dBe uil z A dBe uil y
Jequil = — dqx €, + d(;] yez.

This equilibrium magnetic field, Bequii, satisfies a force balance equilibrium condition. Tak-
ing an equilibrium with v.= 0, p = py and p = po, Equation (2.46a), gives the force
balance equation, jequil X Bequii = 0. Only the  component is nonzero when considering a
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nontrivial equilibrium field, which is

dBe uil z\T dBe ui
(BO + Bequil z(x)) #() + Bequil y#w =0.
Integrating gives
(Bo + Bequil =(2))” + Bz , = constant,

where By has been taken inside the derivative since it is constant.
Perturbations of the velocity, v, and magnetic field, By, are assumed to be of the
form

Bi(z,y,2,t) = Bi(z) exp (i (kyy + k.2) + ot) , (2.48)

where k, and k, are wavenumbers and o is the growth rate. This form of the magnetic and
velocity perturbations is substituted in the incompressible equations, Equation (2.46a) and
Equation (2.46b). The = dependence of variables is assumed hencewith for conciseness.

The = component of the incompressible induction equation, Equation (2.46b),
using Equation (2.48), is

2
oB; = Bequ” yikyvlz + (BO + Bequn z) 1k, U1 + 1 (% - /{ZZ - /Cz) Bi.. (249)
This shows that if the perturbation is nonzero and k - Bequii = 0 at a point in z, say at
x = &, then this equation gives a diffusion equation. The magnetic field diffuses when z
derivatives are large. The dissipation term becomes large when the x derivative of By, is
large. It follows that if o is positive the initially small perturbation grows exponentially in
time.

Since there is a nonzero By, there will be a corresponding nonzero vy,. An equation
for vy, as a function of By,, can be found in the following way. Expanding Equation (2.46a)
using Equation (2.48), gives the three components of the momentum equation as

TPV = — % (Bequil yB1y + (Bo + Bequil =) Bi2:) (2.50a)
+ i (k - Bequit) Bia,

opovyy, :le% — iky By, (Bo + Bequi -) (2.50b)
+ ik, By (Bo + Bequil =) »

ooV :Bm% + iky By Bequi y — ik-B1y Bequil y- (2.50¢)

The incompressibility condition for velocity, V - vi = 0, can be rearranged to give
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% as a function of vy, and vy, as
dv
d“” = ikyvry + ko1 (2.51)
i

Multiplying by opo and substituting Equation (2.50b) and Equation (2.50c) and using the
solenoidal constraint on the perturbed magnetic field, V - B = 0, Equation (2.51) gives

dvyy
_ pO% =0 pPo (Zk' U1y + 1k Ulz) y
=i (k- Bequi)) Bio + (ky + k2) (B1z (Bo + Bequit ) + By Bequil y)
dBla:

k- Be ui
( q I) df,U

(2.52)
Differentiating Equation (2.52) wrt = and combining with (k; + kg) times Equation (2.50a)
gives

d?vy, , d? By,
apo ( dx; — (k2 + k) le) =i (k - Bequil) [W‘j — (k2 +k2) le} (2.53)

2

d
- @@ [(k ' Bequil)] Bla:-

Equation (2.53) and Equation (2.49) give two coupled equations for vy, and By,.
In summary the system of equations to solve is

dQULr . dzle
opo ( e (24 82) le) i (k- Bugi) [W C R4 R) le}
d2
- Z@ [(k : Bequil)] le-
dQ
0By, =i (k : Bequil) Uiz + 1 (ﬁ — kz k’z) Bi..
Assuming % > ky, k., these equations become
d2le d B]_;c . d2 k
0 dQTQ (k Beqml) dr 2 dQTQ [( Beqwl)] Bla: (255&)
d? By,

JBI;U =1 (k : Bequil) Vig + n (255b)

dz?

The equilibrium field rapidly changes over a small region near x = &, with width
¢. Since k - Bequil(§) = 0 but k- dB%;‘C”(O = 0 we have

dBequiI

k':Beui ~ (k-
aul ¢ dx

(2.56)

Considering variations on small scales, (, in z near x = £ and neglecting terms varying on
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the equilibrium lengthscale Equation (2.55b) gives

By, 1
dx; = 5zk-Bequi.vu. (2.57)

Substituting Equation (2.57) into Equation (2.55a) gives

d2vlz . dzBlm
d$2 ~1 (k . Bequil) Wa

1
~ — E (k . Bequil)2 Vig, (258)

g0

Taking L ~ % and using Equation (2.56) and Equation (2.58) gives

2 Be ui ?
opovtz G (k- dBeq l) . (2.59)

<] dz
Thus, rearranging Equation (2.59) for { gives
1/4

~ 0 poT)
CN k dBequiI 2
O

Since Bequil(§) = 0, % varies rapidly near x = £ on lengthscale (. The perturbation,

(2.60)

B, grows rapidly near25. Thus % varies rapidly and appears discontinuous on large
scales. It follows that dd% is very large. The magnitude of the second derivative of the

perturbation can be measured by the dimensionless parameter, A/, as

| BL(HC/2) — Bi(—¢/2)
A=l B, (¢) ’

where L is an equilibrium lengthscale. Using Equation (2.61) and Equation (2.55a), near
x = ( can be written as

(2.61)

dzle dzle
dIZ ~ (k : Bequil) Wa
dB1s(+¢/2)  dBi1z(—¢/2)
~ (k - Bequil i e
(k- Bequi) ;
Alle(f)
¢L

9po

~ (k - Beguil) (2.62)

In the outer region, away from = = &, resistivity is negligible and the system can

be treated as ideal. Setting 7 = 0 in Equation (2.55b) gives

(k . Bequil) Vig
—0 .

Bip = (2.63)
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Substituting Equation (2.63) into Equation (2.62) and using Equation (2.56) gives

O PoV1x 5 Avy,
~ (k : Bequil) )
¢? (Lo
dBe uil ? A/CUI:E
~ k- d 2.64
( dx ) Lo’ (2:64)

Rearranging for the growth rate, o, gives

1 ABequi > A'¢?
o2 = - (k- - ') LC (2.65)

Substituting for ¢, Equation (2.60), and rearranging gives an expression for o of

— ¢ dBe ui 2/
o~ py 1/5L‘4/5773/5A 4/5 (k . d; ') ' (2.66)

Expanding the dot product gives

2/5

Begui cos?/® . (2.67)

o ~ p51/5L—4/5773/5A‘4/5’k‘2/5

where 6 is the angle between k and Beq,i. This shows that the growth rate depends on
the angle between k and Beqyi.-

In the special case of 2D incompresible MHD, when there is no variation in z and
a strong uniform magnetic field in z, this analysis can be carried out in the same way, by
setting k, = 0 and Bequii = BoZ + Bequil y(2)¥, hence the growth rate can be expressed in
the 2D form
Wap ~ pal/5k§/5773/5A‘4/5B2/5 (2.68)

equil y-

2.9 Summary

In this chapter, the model of MHD has been introduced. The equations of full MHD are
complex nonlinear PDEs involving eight unknown quantities. In many areas of research
where it is wished to solve these equations, such as fusion devices or astrophysics, there is
a strong background magnetic field present throughout the region of interest. Assuming
such a guide field to be constant in time and space results in much simpler equations.
Montgomery and Turner 1981 show that in the limit of such a strong field the
full incompressible MHD equations become essentially 2D. The only contribution parallel
to the guide field being through a linear Alfvén wave equation. This form of the equations
results in dynamics similar to incompressible 2D MHD with small contributions from three
dimensional Alfvén waves. This implies that if there is an infinitely strong background
field throughout the plasma, then a 3D sytem would be 2D in nature. This motivates the
possibility for a significant simplification to the full MHD equations in the presence of a
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strong guide field. This simple picture is described by the approximate model of reduced
MHD (RMHD), which is introduced in the next chapter.
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Chapter 3

RMHD Model

3.1 Overview of RMHD

MHD is a widely used model for the evolution of a plasma. However, as shown in Section 2.4,
the full 3D compresssible MHD equations are a set of nonlinear PDEs, which require a
substantial amount of computational time and resources to solve and gain meaningful
results. In some cases, it is possible that additional assumptions can reduce the full set
of equations, Equation (2.9), to a more computationally manageable set and can provide
useful insights into the dynamics of a system while requiring less resources. There are
several possible assumptions that can be used to achieve this. Here we focus on the case of
a strong unidirectional background magnetic field that is present throughout the plasma.
Such a dominant field component is a common feature in many natural plasma systems,
such as fusion and astrophysical plasmas.

It is well known in MHD turbulence theory that a strong background magnetic field,
By, creates anisotropy. One of the first analytic studies proposing this was Moffatt 1967 for
small Reynolds numbers and later Montgomery and Turner 1981 for high Reynolds numbers.
This global anisotropy is a clear large scale example that MHD turbulence is unlikely to
be isotropic as is commonly assumed in hydrodynamic turbulence theory. Anisotropy is an
intrinsic property of MHD turbulelnce.

The development of anisotropy has been modelled numerically in detail in many
MHD turbulence investigations using the full MHD equations (Shebalin, Matthaeus, and
Montgomery 1983; Oughton, Priest, and Matthaeus 1994; Oughton 1996; Oughton et
al. 2016). Many aspects that characterise such anisotropic systems were found, such as
the tendancy of a three dimensional turbulent system to act like a 2D system in planes
perpendicular to By. This indicates that, providing By is large enough, the system can be
approximated as almost 2D in nature. The 2D MHD equations are much simpler than the
3D case. There is less agreement on the general manifestation of other characteristic, such
as the importance of fluctuations parallel to By, when a strong guide field is present.

Since a strong background field imposes such significant restrictions on the 3D
dynamics, it is natural to assume anisotropy in the equations from the outset, when consid-
ering a system permeat