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Abstract

Humans and animals solve a difficult problem much more easily when they are
presented with a sequence of problems that starts simple and slowly increases in
difficulty. We explore this idea in the context of reinforcement learning. Rather than
providing the agent with an externally provided curriculum of progressively more
difficult tasks, the agent solves a single task utilizing a decreasingly constrained
policy space. The algorithm we propose first learns to categorize features into
positive and negative before gradually learning a more refined policy. Experimental
results in Tetris demonstrate superior learning rate of our approach when compared
to existing algorithms.

1 Introduction

In 1772, Benjamin Franklin received a plea for advice on a difficult career decision from his friend
and fellow scientist Joseph Priestley [1]. In his reply, he described what later became known as
Franklin’s rule [2]:

“My way is to divide half a sheet of paper by a line into two columns, writing over
the one Pro, and over the other Con. [. . . ] I put down under the different heads
short hints of the different motives that at different times occur to me for or against
the measure. When I have thus got them all together in one view, I endeavor to
estimate their respective weights [. . . ] If I judge some two reasons con equal to
some three reasons pro, I strike out the five; and thus proceeding I find at length
where the balance lies [and] come to a determination accordingly.” (p. 878 in [1])

Almost 250 years later, pros-and-cons lists are still used extensively. What makes such a simple tool
so effective? One aspect could be that the main problem of estimating the relative importance of
arguments is facilitated by first solving the much simpler subproblem of deciding—for each feature
individually—whether it is positively or negatively associated with the response.

We present a reinforcement learning algorithm that is similar to Franklin’s rule in that the algorithm
first learns, for each feature individually, whether it is positively or negatively associated with good
decision outcomes. Building on these so-called feature directions, the algorithm then gradually learns
a more refined policy.

The idea that a sequence of progressively more difficult tasks could accelerate learning has been
exploited in animal training where it is called shaping [3–6]. Previous research has raised the
question of whether learning machines could benefit from similar ideas. In robotics, learned dynamics
from regions of easy solvability are reused in more difficult regions of the task environment [7].
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In curriculum learning [6, 8], neural networks are trained with progressively more noisy and less
relevant training data. However, finding a good curriculum is a difficult problem and solutions are
often task-specific (but see [9]).

The proposed algorithm does not require an external teacher who guides the learning agent with a
carefully tailored curriculum of tasks with increasing difficulty. The task difficulty is instead regulated
intrinsically along the following two dimensions. First, the agent initially learns weights naïvely (as
in naïve Bayes), that is, without considering interdependencies among features. Eventually, weights
are estimated jointly. Second, the agent learns in a decreasingly constrained policy space, which is
consistent with the view of the cognitive mechanism of humans and great apes that initially has very
low capacity but grows during development [5, 10, 11].

2 Background: Classification-based reinforcement learning with rollouts.

Preliminaries and Notation. We consider a discounted Markov decision process (MDP), defined by
(S,A,G, r, γ), where S is a finite set of states,A is a finite set of actions, G(s, a) : S×A(s)→ S×R
is a generative model of the environment used to sample a new state s′ and reward r for a given
state-action pair (s, a), r : S → R is the reward function, and γ ∈ (0, 1) is the discount factor. A(s)
denotes the set of actions available in state s. The goal of reinforcement learning is to find a policy
π : S → A that maximizes the expected cumulative reward of the agent. This article is concerned
with learning linear policies of the form π(s) = argmax

a∈A(s)

βTφ(s, a), where φ(s, a) ∈ Rp denote

feature values that correspond to selecting action a in state s and β ∈ Rp denotes the vector of
feature weights to be estimated. Note that only relative differences between weights matter because
the policy remains unchanged when all policy weights are multiplied with the same positive scalar.

Policy iteration [12, 13] is a classic dynamic programming method that generates a sequence of
monotonically improving policies π0, . . . , πk, by alternating between two steps: estimating the value
function of the current policy (policy evaluation) and computing a new improved policy based on the
current value function (policy improvement). Large MDPs require the use of function approximation
of policy and value function. The resulting algorithm is called approximate policy iteration (API).

Classification-based reinforcement learning with rollouts. Our work builds on a range of ap-
proximate policy iteration algorithms that cast the policy-improvement step as a classification
problem [14–19]. A training instance of the classification data set is generated as follows, using
rollouts. For a given state s, the value of an available action a is approximated by the cumulative
sum of rewards obtained in a finite-length forward simulation of the environment, choosing action a
in state s and following the current policy thereafter. The action that yields the highest cumulative
reward (averaged across multiple rollouts for each action) becomes the class label for state s. A
policy is trained to assign the correct class label to each state in the training set. The new policy is
then used in the subsequent rollout. In each iteration, the rollout starting states are sampled from a
large, pre-computed rollout set, which sometimes is generated by an existing expert policy [18].

Initial versions of classification-based API algorithms worked well in problems such as learning to
balance a bicycle [14] or in planning domains [15]. Classification-based modified policy iteration
(CBMPI, [18, 20]) was the first RL algorithm to achieve good results in the challenging domain
of Tetris. CBMPI approximates both a policy and a state-value function. The state-value function
improves the accuracy of rollout estimates but its estimation requires large training sets.

M-learning [19] does not use a pre-computed rollout set. Instead, rollouts are computed exclusively
for the current state of the environment, meaning that only one training instance is added to the
classification data set in every iteration. In earlier work [19], M-learning was given prior knowledge
about feature directions, which helped to compensate for the smaller training data available to the
classifier. The direction of a feature is the sign of the corresponding weight. This prior knowledge was
used in two ways. First, feature directions were used to identify and filter out dominated [21] actions
during rollouts. Second, multinomial logistic regression, which plays a central role in M-learning, was
regularized using shrinkage toward equal weights (STEW) [19] regularization. The STEW penalty
shrinks weights toward each other, resulting in an equal-weighting model [2, 22–24] in the limit of
infinite regularization. Previous research has shown the surprising effectiveness of equal-weighting
models when feature directions were known in advance [2, 24–26]. Using prior knowledge of feature
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directions, M-learning was shown to learn strong Tetris policies, while using considerably fewer
training samples than CBMPI [19].

When knowledge about feature directions is not available, the signs of feature weights are usually
estimated implicitly as part of the general estimation procedure. We report results in Section 5 that
show that the absence of this prior knowledge leads to considerably slower learning performance in
M-learning. The magnitude of this effect surprised us, given that the isolated estimation of feature
directions in supervised learning is a relatively easy task, as supported by experimental [27, 28] and
theoretical [29] evidence. Motivated by this discrepancy, we decouple the estimation of directions
from the remaining estimation procedure and explore a hierarchical approach that learns feature
directions first, and then builds on these directions to learn weight magnitudes. This requires an
algorithm to learn feature directions.

3 Learning feature directions (LFD) in reinforcement learning

We present a reinforcement learning algorithm, named LFD, that learns feature directions. The
feature directions di ∈ {−1, 0, 1}, i = 1, . . . p are initialized to zero; they are said to be undecided.
The agent navigates the environment using a rollout mechanism to select actions and keeps track
of how often each feature is associated positively and negatively with selected actions. A feature is
assigned a direction when the difference between positive and negative associations is deemed to be
significant. The algorithm terminates when all feature directions have been decided. Pseudo-code
for LFD is provided in Algorithm 1 in the Appendix. A more detailed description of the algorithm
follows next.

Let ã denote the action chosen by the rollout procedure and let φ(s, a1), ...,φ(s, a|A(s)|) denote the
feature values of all actions available in state s. Furthermore, let sgn denote the mathematical sign
function: sgn(x) is 1 if x > 0, 0 if x = 0, and −1 if x < 0. A training instance ∆i for feature φi
compares the feature values of the selected action ã to the feature values of all other actions. A training
instance can be positive or negative and is defined as ∆i = sgn

(∑
a6=ã sgn

(
φi(s, ã)− φi(s, a)

))
.

For example, a positive training instance means that feature φi was larger for the chosen action ã
than for other actions more often than it was smaller.

Let n+i denote the number of positive training instances and let n−i denote the number of negative
training instances. A feature is assigned a direction only after the difference between n+i and n−i
is found to be statistically significant. We use a two-sided exact binomial test (for example, [30])
with null hypothesis that feature φi has no direction, that is, H0 : n+i /(n

+
i + n−i ) = 0.5. If the

resulting p-value is smaller than some pre-defined threshold α, the feature is assigned the direction
di = sgn(n+i − n

−
i ).

The rollout policy utilizes features for which a direction has already been determined, while ignoring
features with undecided directions. It is defined as πr(s) = argmax

a∈A(s)

dTφ(s, a), where d =

(d1, . . . , dp) is the vector of current directions. Ties are broken at random.

4 Iterative policy-space expansion (IPSE)

By combining LFD and M-learning with STEW regularization, we create a reinforcement learning
algorithm that decouples the estimation of weight signs from the estimation of weight magnitudes.
LFD is employed first, until all feature directions are learned. The algorithm then switches to
M-learning, treating the learned directions as useful prior knowledge.

Under conditions defined further below, the combined algorithm learns in a monotonically expanding
policy space. We call this algorithm iterative policy-space expansion, or IPSE. Note that building
blocks other than LFD or M-learning could be used to create algorithms that learn in monotonically
expanding policy-spaces (discussed in Section 6). To simplify notation, we will use the acronym
IPSE to refer to the version that uses LFD and M-learning with STEW penalty in the remainder of
this article.

The policy space of IPSE. We derive necessary conditions on the regularization strength of the STEW
penalty (controlled by the parameter λ) that ensure that IPSE learns in monotonically expanding
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Figure 1: Policy weight trajectories of the IPSE algorithm in Tetris. The dashed vertical line signifies
the transition from the LFD algorithm to M-learning with STEW penalty. Weights were rescaled
such that the weight rows with holes always has an absolute value of 1.

policy spaces. The policy space at any given iteration is characterized by the values that the policy
weight vector β can attain. Initially, IPSE learns directions using the LFD algorithm; the policy
space is therefore constrained to be ΠLFD = {−1, 1}p. During the M-learning phase, the policy
space is a function of the regularization strength λ > 0. STEW-regularized multinomial logistic
regression can be reformulated as a constrained optimization problem (similar to, for example, [31])
to see that the policy space is given by Πλ = {β ∈ Rp|

∑p
i=1(βi − di)2 ≤ c(λ)}, where di are the

directions estimated by LFD in the first phase of the algorithm, and c(λ) : R+
0 → R+

0 is a decreasing
function of λ, for which the following holds true: c(λ)→ 0 for λ→∞; and c(λ)→ 0 for λ→∞.
The policy space therefore is a hypersphere around the equal-weights solution that was found by
the LFD algorithm. The size of that hypersphere is a decreasing function of the regularization
strength λ. Let {λk}∞k=1 denote a sequence of decreasing regularization strengths. It then follows
that ΠLFD ⊂ Πλk

⊂ Πλk+1
⊂ Rp, or in other words, the policy space is monotonically expanding.

Choice of λ. In practice (for example, in earlier work on M-learning [19]), the regularization
strength is often chosen using cross validation. Here, we use a pre-defined schedule of decreasing
regularization strengths in order to ensure a monotonically expanding policy space. We aim to find a
schedule that satisfies the following two properties. First, the regularization strength should initially
be high enough to ensure a smooth transition from LFD to M-learning. Second, the regularization
strength should decrease rapidly enough so that the policy space is not overly constrained for too
long. Both these properties are satisfied in the following example.

Example weight trajectories. Figure 1 shows policy weight trajectories of the IPSE algorithm
obtained while learning to play Tetris (see Section 5 for a detailed description of the experimental
setup). IPSE used λk = 5/k in the k-th iteration of M-learning. In the iterations directly following
the transition to M-learning (iteration 36 in this particular example), the estimated weights remained
relatively close to the equal-weighting solution. Policy weight estimates then increasingly deviated
from the equal-weights solution as the policy space expanded.

5 Experiments

We next present results from our experiments in Tetris. We used an experimental setup similar to
the one that was used to demonstrate the fast learning rate of M-learning [19], with the important
difference that in our experiments, feature directions (that is, weight signs) were not given in advance.
Our primary objective is to examine whether IPSE benefits from learning weight signs and magnitudes
sequentially rather than jointly, as is done by competing algorithms.

Tetris. Tetris can be formulated as a MDP, where the state consists of the board configuration and the
identity of the falling tetrimino. Available actions are the possible placements of the tetrimino on the
board. A reward of 1 is received for each cleared line. The game ends when a state allows no legal
placement. We used a board size of 10× 10 in all experiments. Eight features were used to describe
a state-action pair: landing height, number of eroded piece cells, row transitions, column transitions,
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Figure 2: Quality of the policy learned as a function of the iterations of the algorithm. Each learning
curve shows means across 100 replications of the algorithm. Quality of the policy is measured by the
mean score obtained by the policy in 30 Tetris games.

number of holes, number of board wells, hole depth, and number of rows with holes. These features
are from earlier work by Thiery and Scherrer [32], who describe them in detail.

Algorithms. We compared IPSE to the LFD algorithm, CBMPI, and four versions of M-learning.
The M-learning versions differed in regularization behavior and prior knowledge available. One
version did not make use of regularization at all. The other three versions used STEW regularization.
Among the three regularizing versions, one used cross-validation to estimate λ (as in [19]), while the
other two used a schedule as described in the previous section. Among the latter two versions, one
was given knowledge about feature directions obtained from the weights of the BCTS policy [32].

All M-learning versions, IPSE, and LFD used the same rollout parameters. These algorithms
computed M = 10 rollouts of length T = 10 for each action (compare to Algorithm 2 in the
Appendix). Given that the number of actions is always smaller than 34, the maximum number of
calls to the generative model of Tetris for one iteration of the algorithm was at most 34TM =
3400. We used a per-iteration budget of 170,000 calls for CBMPI. The Appendix contains further
implementation details.

Results. Learning curves are shown in Figure 2. M-learning with given feature directions represents
an upper baseline. This is the dotted line in the figure. Among algorithms that were not given prior
knowledge about feature directions, IPSE showed the highest learning rate and learned the best
policies overall. Furthermore, it rapidly approached the ceiling performance obtained with known
feature directions. All other algorithms learned more slowly. At 400 iterations, there was a large
performance gap between IPSE and all other algorithms.

The hypothesis that IPSE benefits from learning directions independently was supported by the strong
performance of the standalone LFD algorithm at the beginning of the learning curve. This indicates
that IPSE could fruitfully use the naïve direction estimates as a stable basis for later learning.

6 Discussion and future work

Our experimental results show that reinforcement learning algorithms can benefit from learning in a
policy space that initially is strongly constrained but expands during the learning process. Similar to
how people structure their thoughts by categorizing arguments into pro and contra, learning feature
directions has proven to be a useful building block for learning more complex policies.

An interesting direction for future work is to extend the approach presented in this paper to reinforce-
ment learning with non-linear function approximators such as neural networks. These algorithms
estimate a much larger number of feature weights, which requires more data, and thus makes a
hierarchical approach potentially even more promising. However, it is unclear whether the notion of
feature directions is useful for certain network architectures such as convolutional neural networks.
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Appendix

A Additional implementation details

An overview of machine learning solutions to Tetris can be found in Algorta and Şimşek [33]. We used
implementations of Tetris and the M-learning algorithm from Lichtenberg and Şimşek [19].

M-learning. Multinomial logistic regression in iteration k used the most recent n(k) training samples, where
n(k) = min(100, b k

2
c+ 2).

LFD. We used alternative rollout policy that uses the rollout policy πr(s) (described in Section 3) unless an
immediate reward greater than zero for at least one action is possible, in which case the action that promises the
highest reward is selected. We found this alternative rollout policy to have a positive effect on the learning rate
in all of our experiments.

CBMPI. The CBMPI results reported by Scherrer et al. [18] used a per-iteration budget of 8,000,000 calls to the
generative model of Tetris. In comparison, the total budget (after 400 iterations) we used for the other algorithms
was 1,360,000. In order to compare the algorithms meaningfully, we experimented with CBMPI using budgets
in the same range as M-learning. We present results with CBMPI using a per-iteration budget of 170,000.
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B Pseudo-code

Algorithm 1 Learning feature directions (LFD)
Output:
d ∈ {−1, 0, 1}p // feature directions, initialized to 0
Input:
α ∈ (0, 1) // significance threshold
πr(s,d) : S × {−1, 0, 1}p → A // rollout policy using

current feature directions

s← state sampled from initial state distribution
while not all directions are learned do

for all a ∈ A(s) do
Û(s, a)← ROLLOUT(s, a, πr(s,d))

end for
ã← argmax

a∈A(s)

Û(s, a)

Take action ã and observe new state s′

if s′ is not terminal then
for all i = 1, . . . , p do

∆i = sgn
(∑

a6=ã sgn
(
φi(s, ã)− φi(s, a)

))
n+
i ← n+

i + max(∆i, 0)
n−i ← n−i −min(∆i, 0)
p-val← test H0 : n+

i /(n
+
i + n−i ) = 0.5

if p-val < α then

di ←
{

1 if n+
i > n−i

−1 otherwise
end if

end for
s← s′

else
// reset episode
s← state sampled from initial state distribution

end if
end while

Algorithm 2 ROLLOUT(s, a, πr)
Output:
Û ∈ R, estimated value of taking action a in s
Input:
s ∈ S // rollout starting state
a ∈ A(s) // action to be evaluated
πr(s) : S → A // rollout policy
M ∈ N // number of rollouts
T ∈ N // rollout length
γ ∈ [0, 1] // discount factor
G(s, a) : S ×A(s)→ S × R // generative

model

for all j = 1, . . . ,M do
(s′, r)← G(s, a)

Ûj ← r
s← s′

for all t = 1, . . . , T − 1 do
(s′, r)← G(s, πr(s))

Ûj ← Ûj + γtr
s← s′

end for
end for
return Û ← 1

M

∑M
j=1 Ûj

8



Algorithm 3 Online reinforcement learning with rollouts (general form)
Input:
Π // policy space
Ω // space of data sets produced by a rollout procedure
LEARN: Ω→ Π, where // learning procedure
D = ∅ // data structure to store choice data
Output:
π ∈ Π // policy, initialized to uniform random policy

s← state sampled from initial state distribution
while not all directions are learned do

for all a ∈ A(s) do
Û(s, a)← ROLLOUT(s, a, π)

end for
ã← argmax

a∈A(s)

Û(s, a)

Take action ã and observe new state s′

if s′ is not terminal then
D ← D ∪ {{ã,φ(s, a1),φ(s, a2), ...,φ(s, a|A(s)|)}} // append choice set to D
π ← LEARN(D)
s← s′

else
s← state sampled from initial state distribution // reset episode

end if
end while
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