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Abstract. The internal leakage in two stage servovalves causes unwanted power consumption; it is the sum of two 

contributions: the internal leakage in the main stage and the internal leakage in the pilot stage. While the latter can be 

assumed almost constant regardless of the spool position, the former is maximum at null and decreases with increasing 

opening degree of a given valve. Because of this, the power consumption is significant when a valve is at rest, namely, 

when it is not modulating flow. Despite being a very important feature of these valves, the internal leakage occurring in 

the main stage around null and its associated issues are not properly addressed in the scientific literature. Because of this, 

this paper aims at providing a deep investigation into this phenomenon. In particular, it will be discussed how it can be 

studied using analytical equations. In addition, a CFD analysis is carried out in this paper in order to obtain a simple CFD 

model that has general validity and that can be used to predict the internal leakage around null in the main stage. The 

developed model can be easily reproduced by manufacturers, and it can be used to understand the effects of geometrical 

imperfections and tolerances as well as fluid properties upon the internal leakage around null. The present paper has been 

realized in collaboration with Moog controls ltd, a world leading manufacturer of servovalves. 

INTRODUCTION 

In this introductory section, at first the internal leakage occurring in the main stage of servovalves will be explained 

thoroughly. Simple analytical models will be used to give an insight into this phenomenon, in order to comprehend 

how the internal leakage is generated through a common spool valve. These analytical equations can also be useful to 

have an initial estimation of the leakage flow in the main stage of servovalves. However, these models are not capable 

of taking into account real phenomena, such as imperfections and tolerances. To address these issues, advanced 

analytical models and CFD models have been developed in the scientific literature; these will be discussed in the 

second part of the introductory section.  

 

Internal leakage in servovalves studied by simple analytical models 
 

Two-stage servovalves are widely used components in high-dynamic closed-loop hydraulic circuits because of 

their high-speed frequency response and reliability. They are composed of a main stage (also called second stage) 

employing a sliding spool inside a bushing sleeve, and a pilot stage (also called first stage) which acts as hydraulic 

amplifier for the main stage. The pilot stage is always actuated by a torque motor, while the hydraulic amplification 



is obtained through a double-flapper nozzle, a deflector jet or a jet pipe. There can be either a mechanical feedback or 

an electrical one depending on the application (mechanical feedbacks are more used in aircraft) [1-4].  

 The main stage of a servovalve, because of the clearance existing between the spool and its bushing sleeve, has 

leakage flow passing from the supply line to the return line. This leakage flow is usually referred to as the leakage of 

the second stage (or main stage), here denoted by 𝑄𝑙𝑒𝑎𝑘,𝐼𝐼. In addition to this, part of the flow coming from the supply 

line is used by the first stage (or pilot stage), which requires a certain amount of flow to operate. This additional 

leakage flow is usually referred to as the leakage of the first stage or tare leakage, here denoted by 𝑄𝑙𝑒𝑎𝑘,𝐼. Therefore, 

the overall leakage through a servovalve is the sum of the two contributions: 𝑄𝑙𝑒𝑎𝑘 = 𝑄𝑙𝑒𝑎𝑘,𝐼 + 𝑄𝑙𝑒𝑎𝑘,𝐼𝐼.  

To better explain the leakage in the main stage of a servovalve, Fig. 1 (a) shows a drawing of a spool moving 

inside a bushing sleeve of a generic four way-three position (4/3) valve. Simplified schematizations similar to that 

shown in Fig.1 have been used by some authors to study the internal leakage in spool valves [5-10]. In Fig. 1(a), the 

spool is in a generic position x (measured from the null position) which determines flow from the high-pressure port 

P to the actuator port A and from the actuator port B to the tank (P→A and B→T). The supply line delivers a flow 

rate 𝑄𝑝 at the high pressure 𝑃𝑝. A great part of 𝑄𝑝 enters the valve through the metering section 1 on the left-hand side 

of Fig.1 (a) (this flow rate is denoted by 𝑄1 in Fig.1). However, because of the clearance existing between the spool 

and the bushing sleeve, a small part of the flow 𝑄𝑝 (here denoted by 𝑄2) enters the valve through clearance 2, shown 

on the right-hand side of Fig.1 (a). In addition, another small part of 𝑄𝑝 is used by the first stage (𝑄𝑙𝑒𝑎𝑘,𝐼). Thus, the 

overall flow coming from the supply line is the sum of the three contributions 𝑄1, 𝑄2, and 𝑄𝑙𝑒𝑎𝑘,𝐼: 

  𝑄𝑃 = 𝑄1 + 𝑄2 + 𝑄𝑙𝑒𝑎𝑘,𝐼    (1) 

 

(a)                                                (b)                                             (c) 

FIGURE 1. Schematization of a spool inside a bushing sleeve: generic valve with a spool displacement x (a), symmetrical valve 

with a spool displacement x (b), symmetrical valve with the spool at null and zero pressure load across the actuator (c) 

With regard to the flow sent to the actuator, namely 𝑄𝐴, its value is slightly lower than 𝑄1, because a small part of 

𝑄1 (denoted by 𝑄4) escapes the valve through clearance 4, present between the spool and the bushing sleeve at the left 

center of Fig.1. Similarly, the flow across metering section 3 (here denoted by 𝑄3) is the sum of the flow returning 

from the actuator (𝑄𝐵) and the leakage flow coming from the high-pressure line and passing through clearance 2 

shown at the right hand side of Fig.1(a) (namely, 𝑄2). Summarizing, we can write: 

 𝑄𝐴 = 𝑄1 − 𝑄4    (2) 

 𝑄𝐵 = 𝑄3 − 𝑄2    (3) 

The overall flow conveyed to the reservoir, 𝑄𝑇, is the sum of 𝑄3, 𝑄4 and 𝑄𝑙𝑒𝑎𝑘,𝐼: 

 𝑄𝑇 = 𝑄3 + 𝑄4+𝑄𝑙𝑒𝑎𝑘,𝐼    (4) 

Combining equations 1-4 yields: 

 𝑄𝑃 = 𝑄𝑇 + 𝑄𝐴 − 𝑄𝐵    (5) 



The overall leakage of the second stage, namely the flow passing directly from the high pressure port P to the reservoir 

T, is given by the sum of 𝑄2 and 𝑄4: 

 𝑄𝑙𝑒𝑎𝑘,𝐼𝐼 = 𝑄2 + 𝑄4 

 

   (6) 

The flow rates can be calculated by using the orifice equation, as follows: 

 

𝑄1 = 𝐶𝐷,1𝐴𝑟,1√
2(𝑝𝑃 − 𝑝𝐴)

𝜌
 

   (7) 

 

𝑄2 = 𝐶𝐷,2𝐴𝑟,2√
2(𝑝𝑃 − 𝑝𝐵)

𝜌
 

(8) 

 

𝑄3 = 𝐶𝐷,3𝐴𝑟,3√
2(𝑝𝐵 − 𝑝𝑇)

𝜌
 

(9) 

 

𝑄4 = 𝐶𝐷,4𝐴𝑟,4√
2(𝑝𝐴 − 𝑝𝑇)

𝜌
 

(10) 

Where CD denotes the discharge coefficient, Ar the restricted area, and subscripts 1,2,3,4 denote the corresponding 

restricted sections shown in Fig.1 (a). 

The above equations (1-10) can be applied to study the internal leakage trough a generic servovalve. In addition, an 

assumption that can be made to simplify this study is to consider the valve characteristics to be symmetrical, namely 

with the symmetrical and matched orifices. Another assumption which can be made is to consider the discharge 

coefficients symmetrical, thus giving: 𝐶𝐷,1𝐴𝑟,1=𝐶𝐷,3𝐴𝑟,3;  𝐶𝐷,4𝐴𝑟,4=𝐶𝐷,2𝐴𝑟,2. Moreover, the flow rates to and from the 

actuator are equal in most cases (e.g., due to equal areas of the piston, or when the actuator is a hydraulic motor), thus 

giving 𝑄𝐴 = 𝑄𝐵 = 𝑄𝐿. This situation is represented in Fig. 1 (b). In this case (symmetric valve with opening degree 

x≠0), the following relations are obtained: 

 𝑄1 = 𝑄3    (11) 

 𝑄2 = 𝑄4    (12) 

 𝑄𝑃 = 𝑄𝑇 (13) 

Substituting equations 7 and 9 into equation 11 yields: 

 𝑝𝑃 − 𝑝𝐴 = 𝑝𝐵 − 𝑝𝑇    (14) 

   

Equation 14 states that the pressure drops across the two metering sections are equal. The pressure drop across the 

load is 𝛥𝑝𝐿=𝑝𝐴 − 𝑝𝐵; combining the definition of 𝛥𝑝𝐿 with equation (14) yields: 

 
𝑝𝐴 =

𝑝𝑃 + 𝑝𝑇 + 𝛥𝑝𝐿

2
 

    (15) 

 
𝑝𝐵 =

𝑝𝑃 + 𝑝𝑇 − 𝛥𝑝𝐿

2
 

    (16) 

If the pressure drop across the load 𝛥𝑝𝐿 is zero, and assuming 𝑝𝑇=0 bar, the pressures across the actuator are: 𝑝𝐴 =

𝑝𝐵 =
𝑝𝑃

2
 . Therefore, it has been demonstrated that, when the spool is moved from its neutral position, in the case of a 

matched and symmetrical valve connected to a synchronous cylinder (𝑄𝐴 = 𝑄𝐵 = 𝑄𝐿), the pressure in one line 

increases as the pressure in the other line decreases by the same amount, corresponding to one half of the pressure 

drop across the load [5]. If the pressure drop across the load is zero, the pressure in each port is one half of the supply 

pressure.  

A particular case is when the spool is at null. Fig. 1(c) schematizes this case, with the assumption that there is no load 

across the actuator: 𝛥𝑝𝐿 = 𝑝𝐴 − 𝑝𝐵 = 0, namely 𝑝𝐴 = 𝑝𝐵. Assuming that the valve is symmetrical results in the 

discharge coefficients being equal, thus giving: 𝐶𝐷,1𝐴𝑟,1=𝐶𝐷,3𝐴𝑟,3 = 𝐶𝐷,4𝐴𝑟,4=𝐶𝐷,2𝐴𝑟,2.Using equations 11-16 leads 

to 𝑝𝐴 = 𝑝𝐵 = 𝑝𝑃/2, 𝑄𝐴 = 𝑄𝐵 = 𝑄𝐿=0  and 𝑄1 = 𝑄2 = 𝑄3 = 𝑄4 = 𝑄𝑙𝑒𝑎𝑘,𝐼𝐼/2. So, in this case, there is no flow 

through the actuator and the flow through the main stage is only due to the leakage, which is split into two equal parts. 

So, in this case, the flow rate delivered by the pump (equal to the flow discharged to the tank) corresponds to the 

overall leakage through the valve: 𝑄𝑃 = 𝑄𝑇 = 𝑄𝑙𝑒𝑎𝑘,𝐼 + 𝑄𝑙𝑒𝑎𝑘,𝐼𝐼.  



A typical test carried out to evaluate the effects of leakage upon the valve performance is performed by blocking the 

control ports with two pressure transducers and moving the spool from the null position to the left and to the right. 

This test allows measuring the flow rate delivered by the pump or returning to the tank (in this test these flow rates 

are equal). Therefore, the leakage flow as a function of the input current is retrieved; Fig.2 shows a typical diagram 

obtained. As mentioned earlier, the leakage flow 𝑄𝑙𝑒𝑎𝑘 is given by the sum of the leakage in the first stage (𝑄𝑙𝑒𝑎𝑘,𝐼) 

and the leakage in the second stage (𝑄𝑙𝑒𝑎𝑘,𝐼𝐼). As shown in Fig. 2, it is noteworthy that the first stage leakage is almost 

constant regardless of the spool position, while the second stage leakage is maximum around null and decreases with 

the increasing spool displacement. The maximum value of 𝑄𝑙𝑒𝑎𝑘,𝐼𝐼, registered at null, is usually denoted by the term 

center flow, 𝑄𝑐. The center flow can be analytically predicted by using the schematization of Fig. 1 (c) along with the 

equations presented above. The main problem arising from this analytical procedure is that the discharge coefficients 

(equations 7-10) are not known in advance; therefore, an overestimation or underestimation of these coefficients could 

lead to large errors in the evaluation of the leakage flow. 

 

FIGURE 2. Typical leakage flow curve obtained from a test with control ports blocked: leakage flow vs input current  

Literature review: advanced analytical models and CFD modelling 

 
Merritt proposed an analytical expression to evaluate the discharge coefficients in equations 7-10 and hence the 

center flow; this equation, which assumes that the flow is laminar and that the edges of both the spool and the bushing 

sleeve are sharp [5], is:  

 
𝑄𝑖 =

𝜋𝑐2𝑤

32µ
𝛥𝑝 (17) 

where 𝑄𝑖 is the flow rate through a restriction (i=1,2,3,4) and 𝛥𝑝 is the corresponding pressure drop, c is the clearance 

between spool and bushing, w is the slot width, and μ is the dynamic viscosity. Using equation (17) for a symmetrical 

4/3 valve, the center flow becomes: 𝑄𝑐 =
𝜋𝑐2𝑤

32µ
(𝑝𝑝 − 𝑝𝑇). Equation (17) was improved in [6] to take into account the 

micro-radius on the spool and bushing sleeve edges as a result of manufacturing processes and wear, as follows: 

 
𝑄𝑖 =

𝜋𝑙2𝑤

32µ
𝛥𝑝 

   (18) 

The parameter l in equation 18 can be calculated through a simple geometric relation as a function of the edge radius 

r and clearance c [6]: 

 
𝑟 =

(𝑙 − 𝑐) + √2𝑙(𝑙 − 𝑐)

2
 

   (19) 

However, equations 17-19 assume that the flow is laminar and neglect the overlap between spool and bushing sleeve. 

In addition, geometrical imperfections, in addition to increasing the flow area, can also make the flow turbulent. For 

these reasons, the expressions proposed in [5, 6] might be inaccurate for real valves. In this regard, numerical models 

have been developed in the scientific literature to evaluate the values of Qc as a function of geometrical imperfections 

(radii on the spool and bushing sleeve edges), clearances and overlaps between the spool and its bushing sleeve [7-

11]. These are mainly semi-empirical models which require experimental data to be applied to existing valves. An 

extensive review of these numerical models and their comparison is provided in [7]. The results of these analytical 

models are also compared with available experimental results. This comparison shows that, on the whole, non-



negligible errors are obtained using those analytical models. This is due to the fact that it is very difficult to evaluate, 

through analytical models, the effects of the edge conditions upon the internal leakage. Instead, the use of CFD 

analyses can be instrumental in obtaining accurate predictions of the internal leakage, assessing the effects of real edge 

conditions, such as the presence of round radii on the edges and the presence of clearance and overlap between the 

spool and the bushing sleeve. Some papers present in the scientific literature prove that the use of CFD to study the 

internal leakage is highly viable.  

In [12], a partial 3D model was used to predict the discharge coefficients in the metering sections of a 4/3 spool 

valve. The model also took into account the leakage flow due to the clearance existing between spool and bushing 

sleeve.  However, geometrical imperfections were not considered in that analysis. In [13], the effects of different radii 

on the spool edge of an existing servovalve were analyzed in detail using a partial 3D model. The results of the 

numerical predictions show that the presence of a radius on the spool edge has a great effect on the internal leakage. 

However, the edge of the bushing sleeve was considered sharp and the clearance which normally exists between the 

spool and the bushing sleeve was not taken into account. Some other papers present in the scientific literature have 

tried to predict the erosion rate on the spool edges because of contamination particles in order to predict the change in 

the discharge coefficients of spool valves [6, 14].  

All the above-mentioned CFD models have proved to be effective in the evaluation of the flow rate through the 

metering sections of spool valves. The reliability of CFD in the evaluation of the flow rate through spool valves is 

also proved by recent CFD models of the flow field in single-stage proportional valves [15-18]. 

In this scenario, the present paper aims at developing CFD models which can be instrumental in predicting the 

effects of geometrical imperfections and tolerances upon the internal leakage in the second stages of servovalves. In 

the following section, the CFD models developed in the present analysis will be described in detail, and the results 

achieved with these models will be discussed in the final section. 

CFD MODELS 

Two computational domains are used in the present analysis to provide a deep investigation into the internal leakage 

at null in the second stages of servovalves. The first domain is shown in Fig. 3 (a). This 2D domain reproduces a part 

of the second stage of an existing 4/3 Moog servovalve; specifically, the fluid domain in the left-hand side of Fig. 1 

(c) is reproduced. The spool is in the central position (i.e., at null) and, because of the clearance existing between the 

spool and bushing sleeve (c), leakage flow is generated from port P to port A and from port A to port T. A radius is 

also present on both the spool edge (rs) and the bushing sleeve edge (rb), and an overlap between the spool edge and 

bushing sleeve edge (Δx) exists both in the metering chamber P-A and in the metering chamber A-T. 

 
FIGURE 3. 2D computational grids for an existing valve showing the case with radius rb= rs=4 μm, clearance c= 3 μm and 

overlap ΔxP-A = 7 μm and ΔxA-T = 5 μm (a), and simplified domain showing the case with radius rb= rs=4 μm, clearance c= 3 μm 

and overlap Δx= 6 μm (b)  

 Fig. 3 (b) shows the second domain considered in this analysis: it is a simplified 2D domain with a dimension of 

10 mm for each edge. It reproduces only one metering chamber. Both domains were meshed in Ansys Workbench 

using unstructured grids; the minimum size of the elements (across the metering section) is 10-7 m, with a growth rate 

of 1.05 and a maximum face size (far from the restrictions) of 10-4 m. The corresponding number of cells is 15500 for 

the grid shown in Fig. 3 (a), and 27000 for the grid shown in Fig. 3 (b). The stationary Reynolds Averaged Navier-



Stokes (RANS) equations were solved in Ansys Fluent using two different settings. The first one is an incompressible 

single-phase model by which the fluid is treated as incompressible with constant density and viscosity. The second 

CFD setting employs an incompressible two-phase (mixture) model which is able to predict cavitation when the local 

pressure decreases down to the vaporization pressure. Among the available cavitation models, the Schnerr and Sauer 

model was selected, as it is very robust and reliable, as shown by previous studies [15]. In both models, the RNG k-𝜀 

model with enhanced wall treatment was implemented to predict turbulence; this choice results from the fact that, 

using these settings, the flow can be predicted with high accuracy for a wide range of Reynolds number, even in 

transitional zones [15]. As far as the discretization of the equations is concerned, the second order upwind method 

was selected for momentum, turbulent kinetic energy and turbulent dissipation rate equations. The selected pressure 

interpolation scheme is second order accurate for the single-phase model, while the PREssure STaggering Option 

(PRESTO) was selected for the mixture (cavitation) model. Two-thousand iterations were sufficient to achieve a 

converged solution, with all the scaled residuals being below 10-4. 

RESULTS 

In this section, the numerical results obtained with the domain reproducing a part of an existing valve (see Fig. 3 (a)) 

are shown at first. Two different geometrical conditions are initially considered, as shown in Fig. 4.  In the first one, 

the overlap in the metering section P-A is taken equal to ΔxP-A = 7 μm and the overlap in the metering section A-T is 

taken equal to ΔxA-T = 5 μm (these overlaps are often used in Moog servovalves). The clearance is considered equal to 

c = 3 μm and the radius on the edges is assumed equal to rb = rs = 4 μm. The second geometrical condition has the 

same parameters as far as the clearance and radii are concerned (namely, c = 3 μm and rb = rs = 4 μm), but the overlap 

in the metering section P-A is the same as the overlap in the metering section A-T; specifically, the overlap is taken 

equal to the average of the two overlaps considered in the other geometrical condition, namely ΔxP-A = ΔxA-T = 6 μm. 

In both cases, the inlet pressure was set to pA=210 bar and the discharge pressure was set to pT = 1 bar (these are values 

commonly used to describe a performance of a valve, such as the Bode plot). The property of Hyjet at 40 °C were 

used for the density (ρ) and viscosity (μ) of the liquid, namely ρ=985 kg/m3 and μ=0.01 kg/(ms). 

 

 
(a)                                                                                               (b) 

FIGURE 4. Contours of pressure for a valve with 210 bar inlet pressure and 1 bar outlet pressure (ρ=985 kg/m3 and μ=0.01 

kg/(ms)); (a): ΔxP-A = 7 μm,  ΔxA-T = 5  μm, c = 3 μm, rb = rs = 4 μm; (b): ΔxP-A = ΔxA-T = 6 μm , c = 3 μm, rb = rs = 4 μm.  

 

The comparison between the two cases of Fig.4 reveals that the pressure distributions are different. Specifically, the 

pressure at port A is lower for the case of Fig. 4 (a); this can be attributed to fact that the overlaps in Fig. 4 (a) are not 

symmetrical, thus causing different pressure drops between chamber P-A and chamber A-T. Instead, in the case of 

Fig. 4 (b), the pressure drop is equally split between chamber P-A and chamber A-T, because of the geometrical 

symmetry. Thus, the numerical predictions have confirmed what was previously explained from an analytical point 

of view; namely, for a symmetrical valve at null and without load across the actuator, the pressure drop is equally split 

between the metering chambers, and the pressure at port A becomes a half of the overall pressure drop. However, in 

spite of the different pressure distributions, the numerical prediction of the flow rate (i.e., leakage flow) is the same in 

the two cases of Fig. 4, namely 0.01944 L/(min mm). This is a significant result, because it suggests that, as far as the 

105.5 bar 88 bar 210 bar 210 bar 1 bar 1 bar 
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leakage flow is concerned, a non-symmetrical valve can be treated as a symmetrical valve having equal overlaps at 

chambers P-A and B-T, provided that these overlaps are equal to the average of the two different overlaps of the non-

symmetrical valve.  

The two cases of Fig. 4 were obtained by considering an equal radius for the spool edge and the bushing sleeve edge. 

In order to understand the effects of different radii on the spool and bushing sleeve edges, Fig. 5 (a) shows the contours 

of pressure obtained for ΔxP-A = 7 μm,  ΔxA-T = 5  μm, c = 3 μm, rb =5 μm and rs = 3 μm; instead, Fig. 5 (b) shows 

the contours of pressure obtained for ΔxP-A = 7 μm,  ΔxA-T = 5 μm , c = 3 μm, , rb =6 μm and rs = 2 μm. Again, in both 

cases, the inlet pressure was set to pA=210 bar and the discharge pressure was set to pT = 1 bar, with ρ=985 kg/m3 and 

μ=0.01 kg/(ms). These two further cases have the same geometrical conditions as those of the case of Fig. 4 (a), apart 

from the radii on the edges, with the radii on the bushing sleeve being higher than the radii on the spool. The average 

of the two radii is, in both cases of Fig. 5 (a) and Fig. 5 (b), equal to the radius considered in the cases of Fig. 4 (a) 

and Fig. 4 (b), namely 4 μm. The contours of pressure in Fig. 5 (a) and Fig. 5 (b) reveal that the different radii cause 

different pressure drops between chamber P-A and chamber A-T; however, in terms of flow rate, the difference 

between the cases of Fig. 5 and Fig.4 is less than 1%. 

 
(a)                                                                               (b) 

FIGURE 5. Contours of pressure for a valve with 210 bar inlet pressure and 1 bar outlet pressure (ρ=985 kg/m3 and μ=0.01 

kg/(ms)); (a): ΔxP-A = 7 μm,  ΔxA-T = 5  μm, c = 3 μm, rb =5 μm and rs = 3 μm; (b): ΔxP-A = 7 μm,  ΔxA-T = 5 μm , c = 3 μm,  

rb =6 μm and rs = 2 μm.  

 

Summarizing, the numerical results analyzed so far have shown that, in order to evaluate the internal leakage, a non-

symmetrical valve with different overlaps and different radii on the edges can be treated as a symmetrical valve having 

an equal radius on the edges of both the spool and bushing sleeve, provided that the overlap and the radius are taken 

equal, respectively,  to the average of the overlaps and to the average of the radii of the non-symmetrical valve. 

A further consideration can be deduced from the contours of pressure shown in Fig. 4 and Fig.5. Specifically, it is 

evident that large pressure variations are located across the narrow zones of the metering sections, whilst all the other 

zones of the domain do not experience appreciable pressure variations. It can be concluded that there is no need to 

simulate a valve with specific dimensions, but only the characteristics of the narrow flow passages are needed, namely, 

the values of the clearance (c), radii on the spool and bushing sleeve edges (rb , rs), and overlap (Δx). Therefore, instead 

of using a full domain, a simplified domain as that proposed in Fig. 3 (b) can be used to predict the leakage. 

As a confirmation of the feasibility of using the simplified 2D domain, Fig. 6 (a) shows the contours of pressure 

predicted by the single-phase model on the simplified domain for an inlet pressure of 105.5 bar, namely, for an inlet 

pressure which is equal to a half of the overall pressure drop P-T previously considered, and for an outlet pressure of 

1 bar. To allow the comparison, the same geometrical conditions as those of Fig. 4 (a) are considered, namely the 

same average overlap Δx = 6 μm, the same clearance  c = 3 μm, and the same edge radius r =4 μm, with  ρ=985 kg/m3 

and μ=0.01 kg/ms. As shown by the pressure contours, the numerical predictions are very similar in the two cases of 

Fig. 4 (a) and Fig. 6(a), which results in a very similar flow leakage (0.01944 L/(min mm) vs 0.01943 L/(min mm)), 

with the percentage difference being below 1‰. Therefore, it has been demonstrated that the leakage flow of both a 

non-symmetrical valve and a symmetrical valve can be predicted by the simplified domain shown in Fig. 3b, provided 

that the pressure drop is taken equal to a half of the overall pressure drop of the entire valve. 
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In all the simulations performed with the single-phase model, negative pressures have been predicted, as shown by 

the contours of pressure of Figures 4 to 6(a). This is due to the fact that the single-phase model is not capable of 

simulating the phase change (cavitation) when the pressure decreases down to the vaporization pressure. In order to 

properly predict this phenomenon, the mixture model was used; the presence of non-condensable gases in the liquid, 

which can increase the volumes of the vapor cavities, was taken into account by assuming the properties of the vapor 

phase equal to those of air, namely ρ=1.225 kg/m3 and μ=1.7894e-05 kg/(ms). In this regard, Fig. 6 (b) shows the 

contours of pressure predicted by the mixture model on the simplified domain for an inlet pressure of 105.5 bar and 

an outlet pressure of 1 bar, with ρ=985 kg/m3 and μ=0.01 kg/ms. Also in this case, the radii on the spool and bushing 

sleeve edges are taken equal to 4 μm, the clearance is assumed equal to 3 μm, and the overlap is set to 6 μm. The 

contours of pressure in Fig. 6 (b) show that the negative pressures have disappeared. Similarly, Fig. 7 shows the 

comparison, in terms of contours of velocity, between the single-phase model (Fig. 7 (a)) and the mixture model (Fig. 

7 (b)), both of them applied to the simplified domain with the same geometrical and boundary conditions as those of 

Fig.6. The comparison between the velocity contours of Fig. 7 (a) and Fig. 7 (b) show that these are very similar in 

the two cases, which results in a very similar flow rate (leakage flow) predicted in the two cases. In fact, the flow rate 

predicted with the single-phase model is 0.01943 L/(min mm), whereas the flow rate predicted with the mixture model 

is 0.01922 L/(min mm), with a percentage difference of about 1%. Therefore, it can be concluded that, although 

cavitation is present in the fluid domain, the effects in terms of flow rate are negligible, therefore the simplified domain 

with the single-phase model can be used to obtain accurate predictions of the leakage flow. 

 
(a)                                                                      (b) 

FIGURE 6. Contours of pressure for the simplified domain with 105.5 bar inlet pressure and 1 bar outlet pressure, Δx = 6 μm,  

c = 3 μm, rb = rs = 4 μm (ρ=985 kg/m3 and μ=0.01 kg/(ms)); single-phase model (a) and mixture model (b) 

  

This model can be used to assess the effects of the geometrical tolerances (clearance c and overlap Δx) and geometrical 

imperfections upon the internal leakage. As an example, Fig. 8 (a) and Fig. 8 (b) show the contours of velocity 

predicted with the same boundary conditions and the same geometrical conditions as those of Fig. 7, apart from the 

edge radius, which is taken equal to 6 μm (Fig. 8 (a)) and 10 μm (Fig. 8 (b)). The comparison among Fig. 7 (a), Fig. 

8 (a) and Fig. 8 (b) reveals that the increase in the radius causes an increase in the maximum velocity across the narrow 

section (from 141 m/s in Fig. 7 (a) to 161 m/s in Fig. 9 (b)). Correspondingly, the increase in the velocity plus the 

increase in the flow area determine a large increase in the leakage flow, which results to be 0.01943 L/(min mm) for a 

radius of 4  μm, 0.025974 L/(min mm) for a radius of 6  μm, and 0.05186 L/(min mm) for a radius of 10  μm.  

As a conclusion, Table (1) shows the difference between the numerical predictions obtained with the single-phase 

model and the analytical predictions obtained both through equation (17), and through equations (18) and (19). To 

allow the comparison, the overlap was considered equal to zero; the clearance was taken equal to 3 μm, the inlet and 

outlet pressures were taken equal to 70 bar and 1 bar. Different radii were considered for this comparison, i.e., 2 μm, 

4 μm, and 6 μm (note that the radius is not taken into account by equation 17). As shown by the comparison, large 

errors are obtained through the analytical models, ascribable to the fact that they are valid only for laminar flows and 

are not able to take into account real phenomena, such as the formation of the vena contracta in the flow path. 
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The 2 D model developed in this paper will be used in the second part of this paper [19] to provide more results of 

leakage flow as a function of the overlap, radius and clearance. A comparison with experimental data will also be 

given to validate the numerical model developed in this paper. 

 
(a)                                                                     (b) 

FIGURE 7. Contours of velocity for the simplified domain with 105.5 bar inlet pressure and 1 bar outlet pressure, Δx = 6 μm,  

c = 3 μm, rb = rs = 4 μm (ρ=985 kg/m3 and μ=0.01 kg/(ms)); single-phase model (a) and mixture model (b)  

  
(a)                                                                     (b) 

FIGURE 8. Contours of velocity for the simplified domain with 105.5 bar inlet pressure and 1 bar outlet pressure, Δx = 6 μm, 

c = 3 μm, (ρ=985 kg/m3 and μ=0.01 kg/(ms)); rb = rs = 6 μm (a) and rb = rs = 10 μm (b)  

TABLE 1. Comparison in terms of flow rate between CFD (single-phase, simplified domain) and analytical predictions  

70 bar inlet pressure, 1 bar outlet 

pressure (c=3 μm, overlap=0) 

CFD prediction  

l/(min mm) 

Analytical prediction eq.17 

 l/(min mm) 

Analytical prediction eq.18 and 

eq. 19   l/(min mm) 

rb = rs = 2 μm 0.02311 0.03658 0.0670 

rb = rs = 4 μm 0.03355 0.03658 0.1275 

rb = rs = 6 μm 0.04416 0.03658 0.2112 

CONCLUSIONS 

This paper provided a thorough explanation of the internal leakage occurring around null in the main stages of 

servovalves. The internal leakage is a major feature of these valves: in some applications it is needed for cooling, but 

it also causes unwanted power consumptions. At first, the paper discussed simple analytical models which can be used 
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to study the internal leakage around null; it was also discussed in the paper how these equations have been improved 

in the scientific literature in order to account for geometrical imperfections and tolerances which exist in real valves. 

However, it seems that the only way to have reliable predictions is to use CFD; so far, in the scientific literature there 

are not CFD models having general validity and capable of taking into account all the geometrical tolerances (overlaps 

and clearances) and imperfections (radii on the edges). For these reasons, this paper has been focused on the 

development of a simple CFD model which can be applied to different servovalves. Two computational domains were 

used in the present analysis. The first domain reproduces a part of the second stage of an existing 4/3 Moog servovalve. 

Using this domain, it was shown that a non-symmetrical valve can be treated as a symmetrical valve having average 

values for the overlaps and for the radii on the edges. In addition, it was shown that, since the pressure variations are 

located across the narrow zones of the metering sections, there is no need to simulate a valve with specific dimensions, 

but only the characteristics of the narrow flow passages are needed. For these reasons, a simplified domain was 

proposed to be used, and it was demonstrated that the leakage flow around null of both a non-symmetrical valve and 

a symmetrical valve can be predicted using this simplified domain, provided that the pressure drop is taken equal to a 

half of the overall pressure drop of the entire valve. To obtain the leakage flow through a real valve, the flow rate 

predicted in the plane must be multiplied by the slot width and the number of slots of the given valve.  
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