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Abstract

Perhaps the most powerful method for deriving the Newtonian gravitational interaction
between two masses is the multipole expansion. Once inner multipoles are calculated for
a particular shape this shape can be rotated, translated, and even converted to an outer
multipole with well established methods. The most difficult stage of the multipole expansion
is generating the initial inner multipole moments without resorting to three dimensional
numerical integration of complex functions. Previous work has produced expressions for
the low degree inner multipoles for certain elementary solids. This work goes further by
presenting closed form expressions for all degrees and orders. A combination of these solids,
combined with the aforementioned multipole transformations, can be used to model the
complex structures often used in precision gravitation experiments.

1 Introduction

In the field of precision gravitational measurements, the measurements and its associated analysis
are often only half of the battle in producing a result. The other half comes from computing
the theoretical Newtonian gravitational interaction for comparison. Computation of gravitational
fields, forces, and torques can be accomplished by calculating sextuple integrals over the volumes
of mass pairs, and summing for all pairs of source and test masses. Even with advanced methods
to reduce these sextuple integrals to quadruple integrals [1, 2], for certain elementary solids, this
is extremely computationally intensive, especially considering that for many measurements this
needs to be entirely recalculated for multiple source mass positions. More efficient methods are
available for systems with favourable symmetries [3, 4].

An elegant method to compute gravitational interactions is to expand the problem in terms
of regular solid harmonics ri

lYlm(θi, φi), or more precisely its complex conjugate ri
lY ∗lm(θi, φi), of

the masses closest to the origin of the chosen coordinate system and the irregular solid harmonics
ro
−(l+1)Ylm(θo, φo), of the masses furthest from this origin. Where ri := (ri, θi, φi), and ro :=

(ro, θo, φo) are vectors to positions inside the inner and outer masses respectively. Triple integrals
of ρ(ri)ri

lY ∗lm(θi, φi) over the volumes of the inner masses are referred to as the inner multipoles qlm,
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where ρ(r) is the mass density. Whereas triple integrals of ρ(ro)ro
−(l+1)Ylm(θo, φo) over the volumes

of the outer masses are referred to as the outer multipoles Qlm. The convergence condition for this
expansion is that ri < ro for all positions integrated over. The gravitational potential energy of
the system can be calculated as

V = −4πG
∞∑
l=0

l∑
m=−l

1

2l + 1
qlmQlm . (1)

At first glance, an infinite sum over pairs of triple integrals is not necessarily a significant
advance over a brute force calculation of the sextuple integrals. The power of the multipole
expansion becomes apparent when considering complex experiments with multiple source and test
masses. The multipole moments can be calculated for each individual mass just once and then used
with all masses it interacts with, as other masses change no recalculation is needed. Also multipole
moments can easily undergo translations [5] and rotations [6, 7]. As such, when calculating the
effect of a mass moving, very few new calculations are needed. Furthermore, outer multipoles can
be computed from inner multipoles of the same shape [8]. Utilising the multipole transformations,
the only other calculations needed are the inner multipole moment of each mass at an arbitrary
location, which is easy to calculate. Forces[9] and torques[10] can also be directly calculated from
these multipoles.

Efficient calculation of inner multipole moments is, as such, of great value. Low-degree (l ≤ 5)
inner multipole moments have been calculated individually for each order (m) for a number of
elementary solids [11]. For higher degrees, however, either numerical methods must be employed
or each order must be calculated explicitly. In this work we develop closed form solutions for the
inner multipole moments a number of solids. These, combined with the multipole transformations,
can be used to calculate gravitational interactions between complex apparatus to any required
accuracy with relative ease.

2 Closed forms expressions for inner multipoles of homo-

geneous solids

For calculating inner multipoles is is helpful to write the regular solid harmonics in the cylindri-
cal coordinate system. From Eqn. 4.28 in Ref [12], the solid harmonics are given in Cartesian
coordinates. It is trivial to convert this form into cylindrical coordinates

rlYlm(θ, φ) = (−1)m
√

(2l + 1)(l +m)!(l −m)!

4π
eimφ

∑
k

(−1)krc
2k+mzl−2k−m

22k+m(m+ k)!k!(l −m− 2k)!
, (2)

where k is summed over all values where each factorial is non-negative. Here we are careful with
our notation such that r and rc are the radial distances in the spherical and cylindrical coordinate
systems respectively, φ is the azimuthal angle for both coordinate systems, θ is the spherical polar
angle, and z is vertical position.

For simplicity, we will calculate all closed forms for m ≥ 0. The inner multipole moments for
negative m can easily be calculated with the following identity

ql(−m) = (−1)mq∗lm . (3)
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2.1 Inner multipoles of a cylinder

From symmetry we can see that the inner multipoles qlm of a homogeneous cylinder of density ρ
requires m = 0 due to rotational azimuthal symmetry and for l to be even from vertical symmetry.
Using Eqn. 2 and integrating over the volume of the cylinder with radius R and height H centred
on the origin (See Figure 1(a) and (f))

ql0 = ρ

∫
Vc

rlY ∗l0(θ, φ) dVc = ρ

√
2l + 1

4π
l!

l/2∑
k=0

(−1)k

22kk!k!(l − 2k)!

H/2∫
−H/2

R∫
0

2π∫
0

rc
2kzl−2krc dφ drc dz

= M

√
2l + 1

4π

l!

2l

l/2∑
k=0

(−1)kR2kH l−2k

k!(k + 1)!(l − 2k + 1)!
, (4)

for l even,

where M is the mass of the cylinder. This result is consistent with that derived by Lockerbie,
Veryaskin, and Xu [13] and has the useful form of being the mass of the object multiplied by
a geometrical factor. For efficient programming this equation can easily be written as a simple
recursion relation:

ql0 = M

√
2l + 1

4π

l/2∑
k=0

S(l, k) , (5)

where

S(0, 0) = 1 , (6)

S(l + 2, 0) =
(l + 1)H2

4(l + 3)
S(l, 0) , (7)

S(l, k + 1) = −(l − 2k + 1)(l − 2k)

(k + 1)(k + 2)

R2

H2
S(l, k) . (8)

2.2 Inner multipoles of an annular section

A more generalised case for the cylinder is an annular section with inner radius Ri and outer radius
Ro which extends over the azimuthal angular range from φc − φh to φc + φh (See Figure 1(b) and
(f)). The z integral can be solved separately (A.1). The integral to solve is then

Ro∫
Ri

φc+φh∫
φc−φh

e−imφrc
2k+mrc dφ drc =

2
(
Ro

2k+m+2 −Ri
2k+m+2

)
2k +m+ 2

{
e−imφc sin(mφh)

m
for m 6= 0

φh for m = 0
. (9)

From A.1 we know that from vertical symmetry that (l − m) must be even. We then combine
the above result with Eqn. 26, and the other terms for qlm in front of the integral. To write
the multipole as the mass multiplied by a geometric factor we need to factor out the volume
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Figure 1: (a)–(e) Cross sections of cylinder, annular section, isosceles triangular prism, cuboid,
and N -sided regular polygonal prism respectively. (f) Side view for all aforementioned prisms.

φh(Ro
2 −Ri

2)H,

qlm = M

√
(2l + 1)(l +m)!(l −m)!

4π
e−imφc sinc(mφh)×

(l−m)/2∑
k=0

(−1)k+mH l−2k−m

2l−1k!(m+ k)!(l −m− 2k + 1)!(2k +m+ 2)
×(

Ro
2k+m+2 −Ri

2k+m+2

Ro
2 −Ri

2

)
, for (l −m) even, and m ≥ 0 , (10)

where we note that using the sinc function removes the need for separate cases for m = 0 and
m 6= 0. This equation can be shown to be consistent with the results given in Adelberger et al.
[11].

2.3 Inner multipoles of an isosceles triangular prism

Here we define an isosceles triangle using the same geometry as the annular section except with
only one radius R, with φh <

π
2

(See Figure 1(c) and (f)). Using the solution for the z-integral for
a prism (A.1), the remaining integrals to solve are

R cosφh
cos(φ−φc)∫

0

φc+φh∫
φc−φh

e−imφrc
2k+mrc dφ drc =

(R cosφh)2k+m+2

2k +m+ 2

φc+φh∫
φc−φh

e−imφ

cos2k+m+2(φ− φc)
dφ, (11)
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which is solved in A.2. Factoring out the mass M = ρHR2 cos2 φh tanφh,

qlm = M

√
(2l + 1)(l +m)!(l −m)!

4π

e−imφc

2l−1

(l−m)/2∑
k=0

(−1)k+mH l−2k−m(R cosφh)2k+m

(m+ k)!k!(l −m− 2k + 1)!(2k +m+ 2)
×

bm/2c∑
p=0

(−1)p
(
m

2p

) k∑
j=0

(
k

j

)
tan2j+2p φh

2j + 2p+ 1
, for (l −m) even, and m ≥ 0 , (12)

where
⌊
m
2

⌋
denotes rounding m

2
down to the nearest integer. Calling the base of the triangle

a = 2R sinφh and the shortest line to the base d = R cosφh, a more simple form is:

qlm = M

√
(2l + 1)(l +m)!(l −m)!

4π

e−imφc

2l−1

(l−m)/2∑
k=0

(−1)k+mH l−2k−md2k+m

(m+ k)!k!(l −m− 2k + 1)!(2k +m+ 2)
×

bm/2c∑
p=0

(−1)p
(
m

2p

) k∑
j=0

(
k

j

)
1

2j + 2p+ 1

( a
2d

)2j+2p

, for (l −m) even, and m ≥ 0 .

(13)

2.4 Inner multipoles of a cuboid

A cuboid can be described as a sum of two pairs of isosceles triangular prisms. Defining a cuboid
of height (z-axis) H to be consistent with the above prisms, the other other two sides a and b
are defined such that when φc = 0, a is parallel to the y-axis and b is parallel to the x-axis (See
Figure 1(d) and (f)). By symmetry we can see that the each pair of isosceles triangles are offset by
an angle π therefore m must always be even for a nonzero multipole. As with all prisms centred in
z, (l −m) must be even, and therefore l is also even. The inner multipoles for a cuboid are thus:

qlm = M

√
(2l + 1)(l +m)!(l −m)!

4π
(−1)m/2e−imφc×

(l−m)/2∑
k=0

(−1)kH l−2k−m

(m+ k)!k!2l+2k+m(l −m− 2k + 1)!(2k +m+ 2)
×

m/2∑
p=0

(−1)p
(
m

2p

) k∑
j=0

(
k

j

)
a2k+m−2j−2pb2j+2p + b2k+m−2j−2pa2j+2p

2j + 2p+ 1
,

for both m and l even, and m ≥ 0 . (14)

2.5 Inner multipoles of an N-sided regular polygonal prism

Consider an N -sided regular polygonal prism, with height H with its centre of figure at the origin.
The angle between the right-most side (in the xy-plane) and the y-axis is φc. The side length of
the polygon is a (See Figure 1(e) and (f)). The inner multipole moments can easily be calculated
by combining the results for N identical isosceles triangular prisms each rotated by an angle 2π

N

with respect to the last. By symmetry, the angular term for the N prisms add to N if m is a

5
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Figure 2: (a) Base of azimuthal section of a cone. (b) Side view of cone.

multiple of N , or else it vanishes, hence the moment is simply (again non-zero for (l−m) is even):

qlm = M

√
(2l + 1)(l +m)!(l −m)!

4π
e−imφc×

(l−m)/2∑
k=0

(−1)k+mH l−2k−ma2k+m

(m+ k)!k!2l+2k+m−1(l −m− 2k + 1)!(2k +m+ 2)

bm/2c∑
p=0

(−1)p
(
m

2p

)
×

k∑
j=0

(
k

j

)
tan2j+2p−2k−m ( π

N

)
2j + 2p+ 1

for (l −m) even, and m = 0, N, 2N, . . . . (15)

2.6 Inner multipoles of an azimuthal section of a cone

Consider a cone with a base centred at the origin with a radius R, the apex of the cone is on the
z-axis with z = P . The cone is defined in the azimuthal angular range from φc − φh to φc + φh

(See Figure 2). The azimuthal integral for the inner multipoles was already solved in Section 2.2.
The radial and z integrals are:

P∫
0

R− zR
P∫

0

rc
2k+m+1zl−2k−m drc dz =

(R/P )2k+m+2

2k +m+ 2

P∫
0

(P − z)2k+m+2zl−2k−m dz (16)

=
(2k +m+ 1)!(l − 2k −m)!

(l + 3)!
R2k+l+2P l−2k−m+1 . (17)

We can therefore write the inner multipole moments as

qlm = 3M

√
(2l + 1)(l +m)!(l −m)!

4π
(l + 3)!e−imφc sinc(mφh)×

b(l−m)/2c∑
k=0

(−1)k+m(2k +m+ 1)!R2k+mP l−2k−m

22k+m−1(m+ k)!k!
, for m ≥ 0 . (18)
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3 Inner multipoles of an inhomogeneous cylinder

A number of precision measurements of the universal constant of gravitation use cylindrical masses
as the primary source and test masses. Density gradients in these masses have been measured and
approximations have been used to calculate the effect on measurements[14, 15]. Here we present
a closed form expression for a cylindircal mass with a linear density gradient. The density can be
written as

ρ(r) = ρ0 + ρrrc sin(φ+ φI) + ρzz (19)

where φI is the direction of the radial gradient. Multipole from this cylinder can be divided into
three calculations, the first being the homogeneous cylinder, the remaining two being the effect of
the radial and vertical gradients described below.

3.1 Radial gradient

For a cylinder of height H and radius R centred on the origin the radial inner multipole moment
from inhomogeneous densities is calculated as:

qlm = (−1)mρr

√
(2l + 1)(l +m)!(l −m)!

4π

∑
k

(−1)k

22k+m(m+ k)!k!(l −m− 2k)!
×

H/2∫
−H/2

R∫
0

2π∫
0

e−imφ sin(φ+ φI)rc
2k+m+2zl−2k−m dφ drc dz (20)

The radial portion of this integrates to zero for m 6= ±1. For for m = 1 the integral is trivial:

ql1 = iπρre
iφI

√
(2l + 1)(l + 1)!(l − 1)!

4π

(l−1)/2∑
k=0

(−1)kR2k+4H l−2k

2l(k + 1)!k!(l − 2k)!(2k + 4)
(21)

For l odd, otherwise 0

3.2 Vertical gradient

In the case of the vertical gradient the integral is also trivial, and by symmetry only m = 0 terms
are nonzero

ql0 = ρz

√
(2l + 1)

4π
l!

l/2∑
k=0

(−1)kR2k+2H l−2k+2

2l+1(k!)2(l − 2k)!(2k + 2)(l − 2k + 2)
(22)

For l odd, otherwise 0

4 Discussion

Care must be taken, however, when performing numerical calculations. First many programming
languages define sinc(x) as sin(πx)

πx
rather than sin(x)

x
. Also, for large degree multipole moments,

numerical rounding errors become significant as the sum over k has terms with alternating sign
which individually can be many orders of magnitude larger than the final result. As a rule of
thumb we find that for l & 50 quadruple-precision floats should be used for calculations requiring

7



1 2 3 4

Figure 3: Top view of two overlapping holes which can be modelled as two cylindrical sections in
the angular range without overlap, plus two isosceles triangular prisms.

precision better than 1 part in 106. Using quadruple-precision floating point operations we have
found results are still accurate beyond double-precision for l > 100. This can be checked on an
individual basis by comparing the ratio of the magnitude of largest term in the sum over k and the
sum itself to the numerical precision of the data type used. For example, we can write an inner
multipole moment of an object as

qlm = A(· · · )
∑
k

(−1)kBk(· · · ) , (23)

where A and B are functions of the variables needed to describe the object. We can then estimate
the relative error in our numerical calculations as

∆qlm
qlm

∼ max(Bk(· · · ))∑
k(−1)kBk(· · · )

PBk , (24)

where PBk is the numerical precision of the floating point data type used to store Bk and its
sum (PBk ∼ 10−16 for double-precision and PBk ∼ 10−34 for quadruple-precision). This estimate
assumes all other sources of numerical error are negligible.

5 Conclusion

We have derived close form expressions for the gravitational inner multipole moments for a number
of homogeneous elementary solids in terms of their mass multiplied by a geometrical factor. We
have also derived expressions for the gravitational inner multipole moments of a cylinder with a
linear density gradient. Using the translation and rotation equations for multipoles, a number
of more complex but commonly occurring shapes can be modelled. For example, overlapping
cylindrical holes can be modelled as two cylindrical sections in the angular range without overlap,
plus two isosceles triangular prisms, all with negative mass (see Figure 3); any irregular polygon
prism can be modelled as a combination of isosceles triangular prisms; or a truncated cone can
be modelled as one cone subtracted from another. The equations provided are relatively simple
to code to allow multipole calculations of Newtonian gravitational interactions between complex
structures to any desired degree.
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A Integrals

A.1 z-Integral for prisms

For prismatic solids, the z-integral can be solved separately from the other two coordinates:

flmk(H) :=
1

22k+m(l −m− 2k)!

H/2∫
−H/2

zl−2k−m dz =

[(
H
2

)l−2k−m+1 −
(−H

2

)l−2k−m+1
]

22k+m(l −m− 2k)!(l − 2k −m+ 1)
. (25)
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The integral vanishes if (l −m) is odd, therefore:

flmk(H) =
H l−2k−m+1

2l(l −m− 2k + 1)!
, (26)

for (l +m) even, and zero otherwise.

A.2 Integral used for flat sides

To integrate the radial coordinate over a flat edge the following integral must be solved:

gkm(φc, φh) :=

φc+φh∫
φc−φh

e−imφ

cos2k+m+2(φ− φc)
dφ . (27)

Substituting φi = φ− φc for symmetry, then

e−imφc

φh∫
−φh

e−imφi

cos2k+m+2 φi
dφi = e−imφc

φh∫
−φh

cos(mφi)

cos2k+m+2 φi
dφi, (28)

where the imaginary part of the integral is odd and therefore evaluates to zero.
But for m ≥ 0

cos(mφi) =

bm/2c∑
p=0

(−1)p
(
m

2p

)
cosm−2p φi sin

2p φi . (29)

Substituting this into Eqn. 28 gives

gkm(φc, φh) = e−imφc
bm/2c∑
p=0

(−1)p
(
m

2p

) φh∫
−φh

tan2p φi
(cos2 φi)k+1

dφi . (30)

The integral in the sum can be rewritten as

φh∫
−φh

(1 + tan2 φi)
k tan2p φi

cos2 φi
dφi, (31)

using the identity 1 + tan2 φi = 1
cos2 φi

. If we substitute x = tanφi, then

tanφh∫
− tanφh

(1 + x2)kx2p dx = 2
k∑
j=0

(
k

j

)
tan2j+2p+1 φh

2j + 2p+ 1
, (32)

and therefore by substituting Eqn. 32 into Eqn. 30, we conclude that

φc+φh∫
φc−φh

e−imφ

cos2k+m+2(φ− φc)
dφ = 2e−imφc

bm/2c∑
p=0

(−1)p
(
m

2p

) k∑
j=0

(
k

j

)
tan2j+2p+1 φh

2j + 2p+ 1
,

for m ≥ 0 . (33)
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