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Abstract

After some background about what | have learned from a career in hydrological modelling, |
present some opinions about how we might make progress in improving hydrological models
in future including how to decide whether a model is fit for purpose; how to improve process
representations in hydrological models; how to take advantage of Models of Everywhere.
Underlying all those issues, however, is the fundamental problem of improving the
hydrological data available for both forcing and evaluating hydrological models. It would be
a major advance if the hydrological community could come together to prioritise and
commission the new observational methods that are required to make real progress.

1. Some Background

My first attempt at a hydrological model was produced as an undergraduate student at the
University of Bristol in about 1970. It was an attempt to model the famous Lynmouth Flood
in 1952. It was programmed in Algol and physically existed as a pack of punched cards that
needed to be fed into a card reader every time a run was made (compilation errors, run-time
errors and, eventually, production runs included). The primary data available were rainfall
records, so the only “calibration” data were indirect post-flood estimates of a peak discharge.
This was a highly sediment laden flow that transported some huge boulders, so any such
estimate would have been highly uncertain. Even so, that simple study taught me a lot about
the importance of antecedent conditions in trying to predict flood discharges; the wetting of
the catchment prior to the flood was extremely important (as has also been the case in many
more recent cases of flash flooding in the UK).

In starting my PhD at the University of East Anglia in Norwich in 1971, | made a survey of
hydrological models in the literature. Even at that time there was a plethora of different
models. With the more widespread availability of digital computers in the late 1960s, many
PhD projects and consultants were producing their own models. Most of these were
conceptual models of the Stanford Watershed Model type, which itself was the PhD project
of Norman Crawford at Standford University under the direction of Ray K. Linsley (Crawford
and Linsley, 1966). This model was the foundation of the Hydrocomp consultancy and | met
both of them when | was able to participate, while still a PhD student myself, at the first UK
Hydrocomp workshop. The Hydrocomp Simulation Programme in Fortran (HSPF) was later
adopted by the US EPA and remains in use as a freely available tool. When | gave up my
count of models at over 100 in 1971, | was already asking the question of how can we do
better?
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My response was to try and be objective. To base a model on best physical principles, and
to measure rather than calibrate the model parameters. Al Freeze was already advocating
this in the Freeze and Harlan paperin Journal of Hydrology in 1969, and implementing it using
finite difference methods at the Thomas J. Watson research centre of IBM at Yorktown
Heights. | took a slightly different strategy, using finite element methods to solve the
Richards equation so that my hillslopes and soil horizons on those hillslopes could look more
natural in the discretisation grid (I had a physical geography rather than engineering degree
after all!). 1did not have quite the same resources as Al Freeze. The model was implemented
as two full boxes of computer cards (with all the same issues of compilation and run-time
errors, but now with many more cards to get through the card reader successfully) and ran
on an ICL1904 mainframe computer. | also carried out the laboratory work necessary to
determine all the soil moisture characteristics on soil cores and the field work necessary for
channel cross-sections and roughness. The model was applied to the East Twin catchment in
the Mendips that had been studied by Darrell Weyman (1970, 1973) for his PhD and the
results were really rather bad, a fact noted by my PhD examiner, Terrence O’Donnell. They
were finally published as part of my Dalton Lecture paper (Beven, 2001) which tells the story
of how that experience shaped my research career.

| was fortunate to then work with Mike Kirkby as a post-doc at the University of Leeds on the
development of Topmodel (see Beven and Kirkby, 1979) based on Mike’s concept of the
topographicindex. Given my experience of physically-based modelling | was more than happy
to take another approach, but still one that allowed the results of the modelling to be mapped
back into space (I was again in a Geography department). The only problem of that was that
both the topographic analysis that went into Topmodel, and the analysis of the spatial nature
of the results had to be done manually. There were no Digital Terrain Models, and computer
outputs were still on lineprinter paper. We were also running a nested catchment
experiment, with both rainfall and stream level data recorded on paper charts so a lot of time
was spent just getting the data into computer compatible form (e.g. Beven and Callen, 1979).
One of the nice outcomes of that project was that we demonstrated a model structure that
could be applied successfully based on field measured parameters (Beven et al., 1984). |
also learned that parameter optimisation would not necessarily use the model concepts in
the correct way (see, for example, Fig. 14 of Beven and Kirkby, 1979).

My experience with these different types of models proved valuable in being appointed
(actually as a “mathematic modeller” despite my geography degree) at the Institute of
Hydrology (IH) in Wallingford in 1977. Part of my time was devoted to the SHE (Systéme
Hydrologique Européen) project, a joint initiative with the Danish Hydraulics Institute (DHI)
and SOGREAH in France, funded by a European Community loan. This was another attempt
at producing a complete “physically-based” hydrological model and was led by Mike Abbott
who had successfully dealt with the numerical issues of solving the shallow water equations
in hydraulics which were the basis of the DHI MIKE series of simulation packages. Before |
joined IH | had participated in the first SHE meeting at Wallingford, and the minutes record
that, as a result of my PhD modelling experience, | raised many of the problems that would
be met in the SHE project particularly in the decoupling of the saturated and unsaturated
zone solutions. This was a pragmatic decision to reduce dimensionality, based on the
available computer resource, but was the main reason why it was 1986 before the first SHE



applications appeared (Abbott et al., 1986a,b; Bathurst et al. 1986). It was later relaxed as
computer power increased and much later both the MIKE-SHE and SHETRAN versions of SHE
were implemented with fully 3D partially saturated Darcy-Richards subsurface solutions (see
Ewen et al., 2000; Graham and Butts, 2005). Speed could still be an issue, however, and
MIKE-SHE has also been used with conceptual groundwater storage components in some
applications (see the history of SHE in Refsgaard et al., 2010).

After three years in Wallingford, in 1979 | moved to the University of Virginia and was able to
return to working with Topmodel. | took advantage of its computational speed and the
availability of a CDC6600 mainframe computer to start making Monte Carlo runs of the model
in around 1980. This soon showed that there were many runs of the model with different
parameter sets that gave more or less equivalent results, something that was later developed
into the equifinality concept (Beven, 1993, 2006) though equifinality had already been
mentioned in my PhD thesis (Beven, 1975). It was also the origin of the Generalised Likelihood
Uncertainty Estimation (GLUE) methodology, although | did not have the confidence to
publish this until much later (Beven and Binley, 1992). Returning to Wallingford in 1982, |
told the Director, Jim McCulloch, that | would not work on SHE but there was also funding for
another physically-based model the Institute of Hydrology Distributed Model or IHDM that
had been started by Liz Morris. We rewrote the IHDM, producing Version 4, that was based
on finite element rather than finite difference methods. It was therefore rather similar to
my PhD model but with better numerics and finer discretisations because of more computer
resource. The numerics of the IHDM were later improved still further by Ann Calver and
Winifred Wood (Calver and Wood, 1989) but remained subject to the problems of using the
Richards equation as a representation of flows in real soils (see, for example, Beven, 1989, a
paper that started out as a commentary on the first 1986 SHE applications).

In 1985 | moved to Lancaster and continued work on 3D finite element modelling with Andy
Binley (e.g. Binley et al., 1989a,b; Binley and Beven, 1992); Topmodel and the development
of Dynamic Topmodel with Jim Freer (Beven and Freer, 2001); modelling flow and transport
for water quality (e.g. Page et al., 2007; Dean et al. 2009; Hollaway et al., 2018a); pollutant
dispersion and flood forecasting using the Data-Based Mechanistic (DBM) methods of Peter
Young (e.g. Wallis et al., 1989; Young and Beven, 1994); and a wide range of applications of
the GLUE methodology (e.g. Beven, 2009, 2016, and the references therein). Some of that
work proved controversial, in particular about whether informal likelihood measures and
rejection criteria could replace formal statistical methods in model evaluation (see, for
example, Beven, 2006b, 2008; Andréassian et al., 2007; Todini and Mantovan, 2007; Hall et
al., 2007). However, controversy encourages harder thinking about what is important and
what is required to go beyond the norms of the current paradigm and make real advances.

This background frames the comments about how to make advances in hydrological
modelling that are set out in the following sections. This essentially updates the final chapter
of Beven (2012a). | concentrate on what | see as the three most important issues. These are:
how to decide whether a model is fit for purpose; how to improve process representations in
hydrological models; how to take advantage of Models of Everywhere. Underlying all those
issues, however, is the fundamental problem of improving the hydrological data available for
both forcing and evaluating hydrological models.



2. The need to improve hydrological data for model applications

Hydrological data are highly uncertain (see, most recently, Beven, 2019). This is true for the
most basic of quantities, such as rainfall at a point, discharge at a point (particularly at the
highest and lowest flows), and actual evapotranspiration fluxes (sort of at a point). Itis even
more problematic if we are interested in the water balance over a catchment area because
there are uncertainties in catchment area rainfall, snowfall, evapotranspiration fluxes and
storages. The issue is greater because in general the uncertainties involved are the result of
a lack of knowledge (i.e. epistemic uncertainties) rather than random variability (the aleatory
uncertainties) (see, for example, Kauffeldt et al., 2009; Beven, 2016a; Westerberg et al., 2016;
Wilby et al., 2017). In some cases, we choose to treat data uncertainties as if they are
aleatory because the convenience of the statistical techniques available (e.g. kriging for the
interpolation of areal rainfalls; repeat measurements for ADCP estimates of flows; the choice
and fitting of flood frequency distributions). A good example is the use of statistical
regression for fitting rating curves for the conversion of observed water levels to discharges.
It is often assumed that some simple power law will hold over the range of the data (with or
without an offset, with or without multiple segments). This might be satisfactory within the
range of the actual gaugings, at least if they are not too variable and if effects such as weed
growth and a mobile bed are negligible, but in some cases such extrapolations can be
potentially misleading (see for example Beven et al., 2012; McMillan and Westerberg, 2015;
Hollaway et al., 2018; and the comparison of Kiang et al., 2018).

There is some movement towards the use of extrapolations based on hydraulic modelling of
a gauging site, particularly for overbank flows. The review of the Sheepmount rating curve at
Carlisle after the 2005 flood is a good example. Consulting engineers were commissioned by
the Environment Agency to revisit the rating curve at this site using hydraulic modelling, since
the recorded water level was over a metre higher than the highest measured discharge. This
led to a significant increase in the estimated discharge relative to that produced by
extrapolation of the rating curve fitted to the discharge measurements. The revised rating
was then used to estimate the even higher flood peak from Storm Desmond in 2015.
However, such estimates are very dependent on the estimation of effective roughness
coefficients for the out-of-bank conditions, which is necessarily uncertain. Extrapolated
discharge estimates are still often cited without any associated uncertainty range even
though there is evidence that effective roughness might be model structure dependent and
vary with peak magnitude (e.g. Romanowicz and Beven, 2003; Pappenberger et al., 2006).

These experiences led to Beven et al. (2011) and Beven and Smith (2015) suggesting that
some catchment data might be disinformative in deciding whether a model is acceptable or
not. They identified events that gave exceedingly high or exceedingly low runoff coefficients
in a rapid response catchment in the north of England. Clearly if a model is constrained by
mass balance, but the data for an event suggest a runoff coefficient greater than 1, then the
model is going to produce residuals that reflect the deficiencies in the original data, not only
from any failure of the model (see also the examples in global data sets included in Kauffeldt
et al., 2013). In this case the problem is quite evident, and if such data are included in model
evaluation will lead to bias in inference about parameter values and in predicted outcomes,
especially if simple evaluation measures based on the sum of squared errors are used. There



will, however, be many other periods of data when the effects on model evaluation will be
subtle and difficult to allow for.

The conclusion of this is that we need to be much more careful about considering the value
of the available data in model evaluation, and that we need better observational techniques,
not only for the inputs and outputs in the water balance equation but also for internal state
variables. In the latter case, there is still a great deal of epistemic uncertainty about
subsurface flow pathways on hillslopes (and in valley bottoms). Where internal state data
are used there can also be incommensurability between observed variables and simulated
variables (e.g. soil moisture at a point relative to the soil moisture output at the discrete
element scale of a distributed model). There have been some advances, such as the COSMOS
measurement of soil moisture over an area, but that has both variable effective depths and
areal extent depending on the levels of near-surface moisture (Zreda et al., 2012; Evans et al.,
2016; Baroni et al., 2018).

We also know enough from tracing experiments and the nature of the physics to conclude
that the Richards equation should not be used in modelling flow through soils (in fact, we
argued this in Beven, 1989, and Binley et al., 1989a,b, nearly 30 years ago). It is based on the
wrong experiment that excluded the possibility of preferential flows in focussing on capillary
equilibrium conditions. This might be more applicable under relatively dry conditions but
even then, the physics itself suggests that the usual form should not be used if there is any
heterogeneity of soil properties within the scale of the application, which is, of course, always
the case (see also Beven, 2012a, 2018b; Beven and Germann, 1992; 2013). However, we have
no good (non-destructive) measurement techniques at scales of interest with which to study
vertical and downslope preferential flows and recharge. Those detailed observations that
have been done have suggested that the flows can be highly localised, highly variable, and
subject to complex connectivity issues in space and time (e.g. Freer et al., 1997; Jensco et al.,
2009; McGuire et al., 2010; Klaus and Jackson, 2018).

In fact, we are not interested in such detail (except in terms of scientific understanding) and
it might be better to develop new measurement techniques at larger scales that would
integrate over the detail. If, for example, we had an effective and affordable gravity anomaly
technique for total water storage over an area; coupled with a method for measuring stream
discharges that was sufficiently accurate to determine incremental discharges downstream
in a river network, then we might be able to infer much more useful process relationships
than those we have currently. However, as a community we have not been at all pro-active
about deciding on priorities for measurement requirements and commissioning new
techniques.

The satellite community have done so much more effectively (including the SWOT launch
planned for 2021 which will be of some hydrological interest), but from a hydrological point
of view satellite imaging has always had potential but not actually been that useful, apart
from generating digital terrain data, particularly LIDAR that has led to significant
improvements in, for example, flood inundation mapping. Even then, however, there are
both aleatory and epistemic uncertainties associated with the treatment of the digital
numbers (how to deal with vegetation and buildings; small scale features such as walls and
hedges on flood plains; later infilling of sinks or burn-in of channels in the terrain to get



consistent flow lines; determination of catchment boundaries etc) that will have an effect on
any model outputs when compared with observations. Most other remote sensing is also
associated with epistemic uncertainties, including rainfall and soil moisture estimation, with
the result that it provides only some qualitative and uncertain indication of patterns in the
landscape relevant to hydrology.

Improving the quantity and quality of hydrological data is essential to what follows, in
particular in deciding on whether particular models might be fit-for-purpose. Note that this
paper is about how to make improvements in hydrological simulation models. Itis not about
models used for forecasting, i.e. modelling using data assimilation for getting the best real
time n step ahead predictions with minimal uncertainty (see Beven and Young, 2013, for a
discussion of different types of model prediction). Forecasting does not necessarily require
process representations, nor physical constraints such as mass balance that may not be a
feature of the available data. This is particularly true in forecasting flood events when there
may be poor sampling of the most intense rainfalls and the discharge rating curve may be
subject to epistemic uncertainties. Data assimilation is then a valuable tool in improving
forecasts.! Far better to forecast levels and use data assimilation to compensate for the
limitations in the input data (see for example Romanowicz et al., 2006; Leedal et al., 2010).

Here | shall be interested in the representation and simulation of hydrological processes in
the context of not only reproducing historical behaviours but also future behaviours under
change. Even a cursory survey of the literature will reveal that this is a challenge and difficult
to achieve. Hydrological systems are complex and nonlinear, and we have little in the way of
techniques for studying patterns of processes at the catchment scale. We rely on the way in
which catchments act as integrators over small scale complexity and heterogeneity in
resorting to calibration of simple model representations against the very discharge data that
we want to predict. That clearly helps in getting better reproduction of discharges without
change but not necessarily for the right reasons. Getting good results for the wrong reasons
could then be misleading when we want to simulate the impacts of change (rarely is any
consideration given to change during a calibration period, but see Merz et al., 2011; Peel and
Bloschl, 2011; Harrigan et al., 2014). In the past | have had some success in making
predictions using only measured parameters (e.g. Beven et al. 1984), but also some notable
failures (e.g. Beven, 2001).

3. Evaluating hydrological models as fit-for-purpose

We know very well that the process representations used in hydrological models are only
approximations to the real-world complexity of surface and subsurface flows. It is also
obvious that the epistemicissues with hydrological data mean that we would not expect even
a perfect model to provide perfect predictions. We see this in the comparisons of observed

! Note that while | consider data assimilation to be essential in forecasting, | do not consider it to be good
practice to use data assimilation to compensate for model deficiencies in simulation modelling, especially if
there is no attempt to learn from the data assimilation about how a model might be in error. There have
been a number of such studies in the literature. Clearly it is not possible to use data assimilation to
compensate for model deficiencies in simulating the impacts of future changes. It is better then to attempt to
produce a realistic estimate of the associated uncertainties, both aleatory and epistemic.



and predicted variables in a multitude of academic papers and reports to clients. Sometimes,
indeed, it seems that the predictions are rather poor, especially if models are applied without
calibration as if to an ungauged catchment. Calibration is generally helpful in finding
parameter sets that give predictions that are closer to the observations, at least in the
calibration period. When a split record evaluation is also done, it is common to find that the
model performance is not so good in the validation period or under different seasonal or
climate conditions (Refsgaard and Knudsen, 1996; Freer et al., 2003; Choi and Beven, 2007;
Coron et al., 2014; Dakhlaoui et al., 2017; Pool et al., 2017; Fowler et al, 2016, 2018). This
might be the result of over-fitting an overparameterised model; it might be because the
model is producing good results in calibration for the wrong reasons; it might be only because
the forcing data errors are quite different in the validation period. For more severe testing
(see Klemes, 1986; Refsgaard and Knudsen, 1996; Ewen and Parkin, 1997; Seibert, 2003) it is
often difficult to declare any form of success.

We can think about models as hypotheses about how a hydrological system functions (e.g.
Beven, 2012b, 2018a). Thus, testing whether a model should be considered as fit-for-
purpose can be considered a form of hypothesis testing, with the possibility of rejecting
models that do not fit the evaluation data to some defined level of acceptability. Model
rejection in this sense is a good thing; it means that we need to make some improvements,
either to the model structure or to the data that we are using with the model (Beven, 2018a).
Clearly, methods for hypothesis testing are well developed in statistics, under assumptions
that variables can be considered to have aleatory variability. However, when we know that
we are dealing with epistemic uncertainties it might be incoherent to use simple statistical
assumptions (e.g. Beven et al. 2008). This is evident, for example, in the use of formal
likelihood functions in model evaluation that, particularly for long time series, can give quite
a misleading impression of the relative merits of different models and parameter sets (e.g.
Beven and Smith, 2015; Beven, 2016a).

In assessing fitness-for-purpose, of course, we do need to consider what is the purpose. We
can differentiate between two major types of purpose (though each could have a variety of
subdivisions). The first is in the use of models to test the science, i.e. the understanding of
how a hydrological system might function. This might involve the more detailed
consideration of the internal states and other detail in experimental plots and catchments,
and how they differ from responses reported from elsewhere. The second is in the use of
models for decision making. The important factor then is that the model should make
predictions of the future behaviour of a hydrological system that will not deviate too far from
what would happen under the assumed boundary conditions. This might allow a greater
degree of approximation to be considered to be acceptable, especially if decisions are being
taken at larger scales (such as in the methods used for the UK National Flood Risk Assessment
that is currently under revision). A particular feature of this second purpose is that the results
cannot really be tested, even if a model has survived a validation test, since the future
boundary conditions are necessarily unknown or epistemically uncertain (see for example the
post-audit analyses of groundwater models in Konikow and Bredehoeft, 1992, where some
models failed only because of poor assumptions about the future boundary conditions). We
might hope, of course, that as the science evolves, the purpose of improving understanding
will feed into the purpose of decision making, with a better theoretical basis for moving from



local scales to national scales and for assessing changes in parameter values but we are not
there yet (see below).

The question remains of how should we test models as hypotheses in the face of epistemic
uncertainties? Beven and Lane (2019) suggest that one way of looking at this problem is in
the form of testing for model invalidation (see also Beven, 2018a). There is, of course, a long
history of applying such tests, at least implicitly in the form of not invalidating a model based
on its simulated outputs. Every time a referee accepts a paper with model results for
publication, s/he is essentially applying such a test. Every time a report is presented to a
client, then the authors of that report have applied such a test. Every time a report is
accepted by the client (perhaps after an independent assessment by another consultant) then
such a test has been applied. Most of these judgments are qualitative and subjective, albeit
that they may be supported by some quantitative measures (such as quoting the Nash-
Sutcliffe efficiency despite all of its faults as a measure of calibration or validation
performance).

It is therefore interesting to speculate about what information such a group of experts would
require in order to make such an invalidation more rigorous, both in the use of models for
predicting an ungauged catchment and in the case where some output observations are
available to evaluate model runs. One interesting feature of this strategy is that there is a
possibility for the users of the model outputs, such as decision or policy makers or
stakeholders affected by a decision, to be involved in such a process in considering not only
the acceptability of the model outputs but also the assumptions that contribute to the
outputs (see Beven, 2018a, and the condition tree approach of Beven et al., 2014).

There is actually a precedent for this type of approach in the “blind validation” approach of
Ewen and Parkin (1996). This requires the modeller (in their case) to define some criteria for
acceptability prior to making any model runs. Model parameters were estimated from past
experience and no prior model calibration was allowed. The range of simulated outcomes
was then compared with available observations of flows and internal state data (assumed at
that time to be known accurately). Blind validation was applied to the SHE model by Parkin
et al. (1996) and Bathurst et al. (2004). In both cases, the model simulations failed to meet
all the defined validation criteria. In the application of Parkin et al. (1997) the model failed 1
out of 4 tests; in the case of Bathurst et al. (2004) 2 out of 10 tests were failed. This was
despite the criteria for success being rather relaxed and some model simulations being
excluded on the basis of expert evaluations. These failures do not seem to have had much
effect on the use of the SHE model elsewhere. In fact, the failures are not mentioned at all
in the SHE review paper of Refsgaard et al. (2010), which includes just a brief passing mention
of the development of model testing methods based on the Klemes (1986) concepts. There
have been no other applications of this blind validation methodology, to my knowledge,
though it has much in common with the setting of limits of acceptability within the
Generalised Likelihood Uncertainty Estimation (GLUE) methodology (see Beven, 2006a, 2009,
2016a) that has led to some other model invalidations (e.g. Page et al., 2007; Dean et al.,
2009; Liu et al., 2009; Hollaway et al. 2016a).

One of the issues in this type of evaluation is, again, the data being used to both drive and
test a model as hypothesis. Since we do not expect a model to be better than the data it is



used with, any invalidation test should first make some assessment and allowance for the
uncertainties, both epistemic and aleatory, associated with those data, although in some
(wet) cases any model that gets the water balance separation approximately correct might
provide quite good measures of performance (e.g. Seibert et al., 2018). How uncertain do
we expect the inputs used to force the model to be? If we have observations of the system
response, how uncertain are those observations relative to the variables predicted by the
model? We do not expect this assessment of uncertainty to be a simple statistical variability
(though lacking better knowledge we might choose to treat it as such). We are not used to
framing model testing in this way (and indeed perhaps we have avoided it because these are
very difficult questions to resolve when we expect the nature of errors in the inputs to vary
from event to event, and parameter interactions to be complex). Data uncertainty also raises
the issue of how to avoid Type | hypothesis testing errors (accepting a model hypothesis that
is not fit-for-purpose because of the data uncertainties) and Type Il errors (rejecting a model
hypothesis that would be fit-for-purpose because of the data uncertainties). The former is
more problematic but should hopefully be reduced as new data or different types of data are
added to the assessment. Such difficulties should not, however, stop us from thinking more
deeply about how to make an invalidation test more rigorous.

A further feature that might be considered is whether a model contradicts some secure
evidence on the nature of the system response. Ifthatisthe case, it should not be considered
as fit-for-purpose. We want to base decisions on predictions from a model that, as far as
possible, is producing the right results for the right reasons. A nice example of this appears
in the very first Topmodel paper (Beven and Kirkby, 1979) where it was shown that optimising
the model parameters resulted in using the model structure in a way that contradicts the
theory on which it was based by using the subsurface store with a very low time constant to
control the timing of fast runoff. There are also examples from other domains, such as
climate models (e.g. Liepert and Lo, 2013). Thus, how to show that a model is giving the right
results for the right reasons should be a subject for some deeper thought (see for example,
Kirchner, 2006).

An interesting possibility that arises from applying more rigorous testing to model
applications in hydrology is that all the models tried might be rejected as fit-for-purpose. This
invalidation might be for different parameter sets in a single model structure; it might extend
to multiple model structures. There are published examples of where all the models tried
have been rejected (see most recently the case of the SWAT model in Hollaway et al., 2018,
in an application to a small UK catchment). As noted earlier such model rejection is really a
good outcome, in that it requires either that we do better modelling or find better data, or
that we find some other way of making decisions within an adaptive management framework.
We should, note, however, that even where more rigorous invalidation testing is carried out,
the results will always be conditional on the information that is to hand now. The future
remains epistemically uncertain, and the possibility of future surprise remains. That should
not, however, be a reason for relaxing the testing. It should still be considered as poor
practice to relax rejection criteria just because a decision needs to be made. That may not
result in a good decision if the model is not fit-for-purpose or if the decision is sensitive to the
uncertainty in model predictions.



Improving process representations in hydrological models

The concept of being able to reject models as hypotheses has an important implication; that
we might be able to learn from the nature of the rejection to refine the representation of
hydrological processes and systems where this is shown to be necessary. In this context
model rejection is a good outcome. It is the starting point for where creativity of analysis
and thought is required for doing better in the future.

It is already possible however to make some suggestions as to what such innovations might
look like, particularly if we want process representations that will satisfy the needs to predict
both flow and transport within a consistent framework. This assumes a greater importance
when we start to accept the limitations of gradient based continuum approaches such as the
Buckingham-Richards equation (which | have argued need to be reconsidered since Beven,
1989). Such a framework is required to consider both velocities (in predicting conservative
transport) and celerities (in predicting flows). Since celerities are generally different and
faster than velocities, it follows that any process representation should be length scale
dependent, i.e. different scales of spatial discretisation might require different parameter
values. The difference between velocities and celerities will also be state dependent,
suggesting that at any scale the hysteresis on the storage-flux response will change with
system state. This has been shown numerically using the Multiple Interacting Pathways
(MIPs) model by Davies and Beven (2015).

The MIPs model allows velocity distributions to be specified as part of a random particle
representation of all the water in the flow domain. Celerities follow from the filling and
emptying of storage in the system. It is a computationally expensive modelling strategy and
therefore has to date been restricted to small scale applications. While there is still much to
explore in the interaction between scale of discretisation, time step, velocity distributions and
transition probabilities it does have the type of consistent framework that might be valuable
in future. Zehe and Jackisch (2016, Jackisch and Zehe, 2018) have taken a somewhat similar
approach including a more explicit consideration of the effects of capillarity. Such approaches
might be one way of approaching a theory of scale dependent process representations for
both flow and transport.

| have argued before (e.g. Beven, 2006b, 2012a) that there is already a useful framework
within which new process representations might be embedded. This is the Representative
Elementary Watershed (REW) framework (see, for example, Reggiani et al. 2000; Reggiani and
Schellekens, 2003). This sets out a framework of mass, energy and momentum equations
that is common for any spatial discretisation. However, those balance equations need
closure, l.e. a way of defining the flux terms of mass, energy and momentum at the
boundaries of each discrete element, together with how those fluxes depend on the internal
states of the system. | believe that this will lead to closure schemes based on hysteretic
relationships between element storages and boundary fluxes. A move in this direction would,
of course, be greatly enhanced by the availability of the relevant storages or fluxes at the
element scale and it may be (again) that real progress will await the availability of new
measurement techniques. What we should not do, however, is to continue to ignore the
implications of the difference between velocities and celerities and the scale dependent and
hysteretic nature of hydrological responses at the element scale.



It is perhaps worth pointing out that the asymmetry of the unit hydrograph or linear transfer
functions derived at catchment scales, is a representation of hysteresis in the storage-flow
relationship. But as a linear model, it relies on a way of processing the inputs to represent
the effects of nonlinearity and antecedent conditions in predicting the catchment response
at a wider range of conditions. | could speculate that if input, storage and output data were
available for discrete elements of the landscape (or arbitrary REWs) then a transfer function
modelling framework such as the Data-Based Mechanistic approach developed by Peter
Young (e.g. 1998; Young and Beven, 1994) would be a suitable way of deriving closure
schemes at the required scale. The parameters of such a model would then be quite different
to those we use today: the time constants for the linear transfer function and some
coefficients for nonlinear processing the input sequence. Given additional tracer data, it
might also be possible to derive a consistent set of concepts relating parameters for both flow
and transport within such a framework (e.g. Harman, 2019). The emphasis is, again, on
making the right type of data available, initially at research locations so that we can learn
about how to produce closure schemes that might be applicable more widely.

But | could also speculate that rather than accepting a limitation to the linear transfer function
or unit hydrograph, with its constant time distribution of contributions of effective rainfall to
the hydrograph, perhaps there will be other ways of analysing such data that might more
explicitly reflect antecedent states and input intensities at the required scale of discretisation.
There are methods of developing hysteretic functions that have been applied to hydrological
systems (e.g. O’Kane and Flynn, 2007; Appelbe et al., 2009) but these also have some rather
strong assumptions. Given recent developments in data mining techniques, might this be a
way of deriving the forms of functions that would be applicable more widely, that would
suggest quite different process representations than those being used today?

Hydrological Models of Everywhere

The other advance that is certainly going to have a major impact on modelling practice is the
much more widespread availability of spatial predictions of hydrological models on the
internet. | first suggested a Models of Everywhere concept more than a decade ago (Beven,
2007; Beven and Alcock, 2012) but it is only relatively recently that this has become
computationally easier to implement and computer scientists have become more interested
in the problem of producing facilitating software (e.g. Blair et al. 2018).

What is critical to this Models of Everywhere concept is that the predictions are sufficiently
fine resolution that local stakeholders can relate to them directly. The concept is therefore
quite different to providing the global "hyperresolution" simulations presented, for example,
by Wood et al. (2011). Hyperresolution in their sense is of the order of 1km (see Bierkens et
al., 2015) and while there may be some variables that local stakeholders can relate to at that
scale, there will also be a great deal of hyperresolution ignorance about what parameters and
variables at that scale might mean (see, for example, the discussion in Beven et al.
2015). There is a movement to finer resolution, continental scale simulations, such as the
HydroBlocks of Chaney et al. (2016) which is based on Dynamic Topmodel. At much finer
scales, such as the 2m scale used in producing the UK pluvial flooding maps, the ability of
people with local knowledge to provide feedback on the model outputs is much more



direct. In this case modelling becomes much more of a learning process, driven by the
feedback about where the model predictions are demonstrably wrong. Itis a learning process
about places that starts to reflect the uniqueness of places in terms of both learning about
appropriate effective parameter values and learning about appropriate process
representations (see Beven, 2000). The possibility of local feedback on the acceptability of
model simulations will change the nature of the modelling process in fundamental ways.
While we might start with general model structures that are applied to places as in the past,
what we need are methods of learning about places from the availability of local data,
effective ways of obtaining new data for different purposes, and making use of local (perhaps
qualitative) knowledge and expertise (see, for example the study of Landstrom et al., 2011).

There is an interesting issue in the question of data assimilation in applications of Models of
Everywhere. Clearly, we would wish to use all the useful information available to test models
locally and to ensure that we get the right results for the right reasons. This might include
whatever quantitative data might be available but might also be a matter of learning how to
use “soft” data in model evaluations (see, for example, Seibert and McDonnell, 2002; Fenicia
et al., 2008; Winsemius et al., 2009). We would also like to re-evaluate models as more data
are made available. But, as noted earlier, there have been cases where data assimilation is
used simply to compensate for model deficiencies by updating model states so as to get a
better predicted outcome. If the purpose of modelling is real time forecasting into the near
future, then that might be acceptable or even advisable. Where the purpose is for simulation
and assessing the impacts of future change then we should be very wary of compensating for
important model deficiencies. For Models of Everywhere we might want to do both
forecasting and simulation, in which case it will be important to learn from the process of data
assimilation for forecasting in improving the model formulation for simulation. There have
been few studies (to my knowledge) that have done so (but see the learning from
nonstationarity of Westra et al, 2014, as an example of the type of analysis that might lead to
model modifications). More generally, forecasters have been satisfied with using data
assimilation to get better forecasts, simulation modellers have been satisfied with using
calibration to either find an optimal model or constrain the associated uncertainty. Perhaps
we can do better, or at least be a little more thoughtful in applying models. The feedback
from users once Models of Everywhere visualisations are more widely available may force us
to do so.

Conclusions

| have written about these issues in many past papers (including Beven, 2016b) but this has
been a useful opportunity to bring the strands of thought about the future of hydrological
modelling in one place. |do think that hydrology remains a field of inexact science that is still
greatly constrained by observational limitations and it would be really good to see the
community make a real effort to decide on what its priorities should be and then move to
commission what is needed (as has happened for example with the SWOT satellite). The
process might be long but the benefits to the science would be great, including for testing
models as hypotheses, developing new process representations and constraining predictive
uncertainties.

The role of Models of Everywhere in improving modelling capability will also make for an



interesting future. What new techniques for learning about places and for learning from clear
errors in representing the response of places will need to be developed? And how can new
types of knowledge be used to constrain uncertainties? What should the learning framework
for both quantitative and qualitative information look like, including the issue of
distinguishing information from disinformation. This are issues that are relevant to a wider
range of research areas than hydrology which is just one of many inexact environmental
sciences (Beven, 2002, 2019).

There is a particularly interesting aspect of uncertainty for the modeller in this context. A
realistic assessment of uncertainty in predicting how places respond will mean that the
modeller is much less likely to be obviously wrong in those predictions. This is clearly a good
thing (at least from a modeller's point of view) but should not preclude an effort being made
to carry out model testing and find ways of reducing that predictive uncertainty.

As | said in the talk on which this paper is based, | am ending my career with much more
uncertainty than when | started as a young PhD student in 1971. But that is a good thing - it
means that there is still so much good research to do in the closely linked areas of novel
observational methods, closure schemes and model testing, theoretical development and
learning about places. In particular, learning about the assessment of epistemic uncertainties
will also lead to the development of methods for reducing those uncertainties. The near
future could be an exciting time for hydrological research and practice.
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