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Abstract 

Nafion membranes are considered as the industry standard electrolyte material for proton 

exchange membrane fuel cells.  These membranes require adequate hydration in order to reach 

a high proton conductivity.  The relatively high sensitivity of terahertz radiation to liquid water 

enables contrast to be observed for inspecting water presence in Nafion electrolyte membranes.  

Utilising a commercially available terahertz source and camera, this paper investigates the 

feasibility of a compact terahertz imaging system for visualising and quantifying liquid water 

during an ambient air desorption process for  Nafion membranes of a wide range of thicknesses 

–  NRE-212 (50 µm), N-115 (127 µm), N-117 (180 µm) and N-1110 (254 µm). We demonstrate 

that the terahertz imaging system is able to quantify liquid water in the 25-500 µm thickness 

range, estimate membrane weight change related to liquid water desorption, which correlated 

well against simultaneous gravimetric analysis and visualise the room temperature liquid water 

desorption process of a partially hydrated Nafion N-117 membrane. 
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1.  Introduction 

Polymer electrolyte membrane fuel cells (PEMFC) are electrochemical devices at the forefront 

of clean energy production for portable, transportation and, to a lesser extent, stationary 

applications [1]. During the fuel cell operation, protons emerging from the anodic hydrogen 

oxidation flow across the polymer electrolyte membrane (PEM) to the cathode, and combine 

with electrons and oxygen to form water.  The most common material for PEM is a 

perfluorinated ionomer copolymer known as Nafion, consisting in perfluorovinyl ether groups 

terminated with sulfonate groups incorporated onto a tetrafluoroethylene (PTFE) backbone [2]. 

Liquid water uptake is known to enhance proton conduction in Nafion [3–5]. In addition, 

homogeneous hydration aids in maintaining uniform membrane impedance, where protonic 

current is similar across all the PEM area.  Failure to achieve this will result in protonic current 

gradients, localised hotspots (as internal resistance increases) and pinhole formation, possibly 

resulting in PEMFC failure [6]. Achieving uniform PEM hydration during operation is a 

challenge, as regions across the membrane near the inlets tend to be drier due to an increased 

reactant gas pressure, but become increasingly humid near the outlets as a result of downstream 

water transport with the reactant gas.  Water thus plays an interesting role in PEMFC operation: 

Nafion PEM requires hydration to operate and hence reactant inlet streams are humidified [7] , 



but at the same time, water is a by-product of the electrochemical half-reaction at the cathode 

and therefore must be swiftly removed to prevent cell flooding and reactant starvation at active 

electrocatalyst sites [8].  For water fault diagnosis, various methods exist such as the 

assessment of pressure drop [9], electrochemical impedance spectroscopy (EIS) [10], residence 

time distribution [11, 12]. However, one of the main drawbacks of these techniques is that they 

provide an indirect assessment of the entire operating fuel cell and do not allow one to localise 

the faults directly.  Critical insights into the complex physical phenomena involving liquid 

water condensation and transport within the PEMFC can also be provided by imaging 

techniques, such as magnetic resonance imaging (MRI) [13–17], neutron [18–23], x-ray [24–

29], infrared [30, 31], direct visualisation [32–37] and fluorescence microscopy [38, 39]. 

Extensive overview on the subject matter has been published elsewhere [40–43] but generally, 

MRI, neutron and x-ray imaging/tomography techniques can image through visually opaque 

components, such as the gas diffusion layers (GDL) and gas flow channels (GFC)  [44], thus 

providing in-situ information on liquid water transport. However, main restrictions to these 

techniques are underpinned by equipment availability and temporal resolution, with the 

example of MRI requiring 50 s to acquire an image. Direct optical visualisation and infrared 

imaging can visualise liquid water through specially designed transparent PEMFCs and 

provide information on two-phase flow regimes in the GFC [35] at a relatively high temporal 

and spatial resolutions (30 Hz and 5 µm, respectively). Furthermore, when coupled with 

fluorescence microscopy, direct visualisation can illustrate ex-situ liquid water preferential 

transport patterns in the GDL [38, 39]. However, a key drawback is the opacity of common 

PEMFC components in the visible and infrared portion of the spectrum. Particularly in the 

context of off-line water uptake and retention studies in Nafion membranes, techniques such 

as dynamic vapour sorption, differential scanning calorimetry, EIS and confocal micro-Raman 

spectroscopy [45–51] have been used. Although these are sensitive measurements for water 

content in Nafion membranes, with µm resolution in the case of Raman spectroscopy, generally 

they cannot spatially resolve liquid water distribution over large areas at video-rate and may 

additionally require detailed sample preparation, calibration models, or specialised equipment 

with temperature and humidity control.  

Terahertz (THz) radiation is situated on the electromagnetic spectrum between 100 GHz to 30 

THz and can penetrate through dielectric materials, such as polymers, but is strongly absorbed 

by polar materials, such as liquid water.  This in turn motivates the use of terahertz sensing for 

many non-destructive industrial applications such as in pharmaceutical film coatings 

monitoring [52–55], food contaminants detection [56] and defects identification [57]. Terahertz 



sensing have also been actively applied in fuel cells, for example, Thamboon and Buaphad et 

al [58,59] employed narrowband terahertz reflection imaging to visualise liquid water in flow 

cell channels. Ray et al examined water retention on  UV-treated sulfonated polyether ether 

ketone functionalised carbon nanotubes PEMs using terahertz time domain spectroscopy (THz-

TDS) [60]. Devi et al, also using THz-TDS, monitored water retention in a hydrated Nafion 

membrane [61]. Measurements so far have demonstrated the sensitivity of terahertz radiation 

to monitor hydration in membranes.  However, given that raster scanning is necessary to image 

water spatial distribution, which can take up to several minutes pending on integration time 

and scanned area, it will not be able to portray an accurate real-time water spatial distribution 

during a desorption process. Here we investigate the feasibility of a compact, portable, and 

video-rate 100 GHz imaging system for direct water visualisation and quantification in 

hydrated Nafion PEMs, as an initial route towards liquid water inspection in fully operating 

PEMFC.  In particular, we validate the terahertz system’s sensitivity for water quantification 

against known water thickness, and then estimate water weight in a wide range of Nafion 

membranes (50-254 µm thickness) across time, benchmarked against gravimetric analysis.  

Finally, to assess the system’s ability to spatially resolve water distribution across a Nafion 

membrane, we imaged the desorption profile of a partially hydrated Nafion membrane at room 

temperature under ambient conditions. 

2. Materials and Methods 

2.1. Terahertz imaging system 

The transmission terahertz imaging system uses an IMPATT diode source, operating at 100 

GHz and at 100 mW output power, and a 16x16 terahertz camera with 1.5 mm pixel size and 

sensitivity in the 50-700 GHz frequency range (Terasense Inc., CA, USA). A 

polymethylpentene (TPX) plano-convex lens (Thorlabs, Inc.) is used to collimate the diverging 

terahertz beam, shown in Fig. 1.  A custom-made liquid cell, which can confine water to a 

predefined thickness, is used to assess the system’s ability to quantify liquid water. The cell is 

made out of stainless steel compressor plates with rectangular apertures fitted with terahertz 

transparent acrylic [62] windows and spacers, of thicknesses between 6 to 500 µm (Specac Ltd., 

Kent, UK; Davis Industrial Plastics, West Sussex, UK). 

2.2. Gravimetric analysis 

In order to validate the terahertz measurements, Nafion samples’ weight loss was monitored 

during the water desorption process (Figure 1a).  The weight balance used (Kern PCB 350-3) 



had mg resolution at a 4 Hz data acquisition rate. Table 1 lists the Nafion membranes of varying 

complexity and thickness used in these studies:  

Table 1 – Summary of the Nafion membranes used in the study. 

Commercial name Manufacturing 

process 

Thickness (µm) Supplier 

NRE-212 Dispersion cast 50 Alfa Aesar (Lancashire, UK) 

N-115 Extruded film 127 Fuel Cell Store (TX, USA) 

N-117 Extruded film 180 Alfa Aesar (Lancashire, UK) 

N-1110 Extruded film 254 Fuel Cell Store (TX, USA) 

The membranes were measured as received, without further treatment.  The dry membranes 

were cut into square patches (~70x70 mm2) and their weight and terahertz intensity images 

were acquired after drying for 1 hour in a laboratory oven (Carbolite ELF 11/14) at 105°C. The 

dry membranes were then equilibrated with deionised water at 80 °C in order to enhance water 

uptake [63], where excess surface water was removed with paper wipes [64]. The hydrated 

sample, was then held in place to a sample holder with binder clips (Figure 1b) in order to 

dehydrate at room temperature. For each of the studied membranes, 4 repeats were performed.  

The water weight (WH2O) is calculated using Eq. (1): 

𝑊𝑊𝐻𝐻2𝑂𝑂 =  𝑊𝑊(𝑡𝑡) −𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑     (1) 

where W(t) is the sample weight at a given time t and Wdry is the dry sample weight. 



 
Figure 1 – (a) Schematic of the terahertz imaging system for simultaneous gravimetric analysis (b) Front view of the sample 
holder featuring Nafion sample, binder clips, and area used for terahertz measurements. 

2.3. Data processing 

The acquired terahertz intensity images were analysed using Matlab (Mathworks, Inc., MA, 

USA), and the code used for conversion is available in the supplementary information. The 

extracted frames are represented in false colours, with individual pixels representing light 

intensities between values of 0 (total absence of light, black) and 1 (total presence of light, 

white). Beer-Lambert Law relates light attenuation to material properties according to Eq. (2):  
𝐼𝐼
𝐼𝐼𝑜𝑜� =  𝑒𝑒𝑒𝑒𝑒𝑒−𝛼𝛼𝛼𝛼     (2) 

(a) 

(b) 



where Io and I are the reference and sample light intensities, respectively, d is sample thickness 

and α is the material absorption coefficient (mm-1)  – taking on a value of  11 mm-1 as the 

average between 9-13 mm-1 at 25°C at 100 GHz [65–69] for liquid water, and used for 

calculation purposes in this paper. Using Beer-Lambert law, water thickness in the area 

corresponding to a single pixel (dpixel) can be estimated. The measured intensity from the dried 

membrane is used as the reference measurement in order to remove the effect of the Nafion 

membrane, thus isolating the response of absorbed liquid water. The estimated water thickness 

in each pixel (dpixel), can be used to estimate water weight in each pixel, EWpixel: 

𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜌𝜌     (3) 

where Apixel and ρ correspond to pixel area and water density of at 1 g/cm3 at 25°C, respectively. 

Equation (4) gives the estimated water weight (EW) in the entire membrane area:  

𝐸𝐸𝐸𝐸 = 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∑ 𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
196
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=1      (4) 

In order to avoid edge effects of the membrane and beam interference from the binder clips 

used to clamp the sample, we measured a small (24x24 mm2) central portion of the sample 

(Acamera), shown in Figure 1b, whose edges are 18 mm away from the binder clips. The 

outermost rows and columns of pixels were discarded for liquid water weight estimation across 

the Nafion membranes due to random fluctuations observed in free space measurements. 

Therefore only the 14x14 remaining pixel matrix (196 pixels) was used. However, these 

discarded pixels are shown in Figures 2 and 5 to provide visual evidence of the camera’s 

fluctuating edge effects but were not used in the respective analysis. In addition, the first term 

on Equation (4) extrapolates these results to the entire membrane area (Amembrane), assuming 

uniform water content distribution across a vertically mounted sample. 

3. Results and discussion 

3.1. Terahertz liquid water quantification 

In order to assess the ability of the proposed terahertz imaging system to estimate liquid water 

thickness in the membrane, terahertz intensity images of the ‘dry’ and ‘hydrated’ liquid cell for 

a range of spacer thicknesses were acquired and compared.  Figure 2 shows the intensity images 

for the 50 µm spacer where there is a clear difference between the two images in the highlighted 

region of interest, approximately corresponding to the liquid cell’s aperture.  As expected in 

the presence of liquid water, intensity of terahertz transmission is notably reduced due to water 

absorption thus leading to lower detected values resulting in visibly ‘dimmer’ values on the 



image in Fig. 2b.  For quantification purposes, pixel values in the 3x4 pixels region of interest 

at the centre of the high transmission zone in dry (Fig. 2a) and hydrated states (Fig. 2b) are 

selected and compared. 

 
Figure 2 –Terahertz false colour images of the (a)’dry’ and (b) ‘hydrated’ liquid cell of spacer thickness 50 µm. Highlighted 
region corresponds to the aperture in the liquid cell and is used for quantification purposes.  

The relative transmitted intensity in each pixel (I) in the region of interest is given by Equation 

(6): 

𝐼𝐼 = 𝐼𝐼ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑�      (6) 

for different water thicknesses of 6, 12, 25, 50, 100, 200, 250 and 500 µm, as shown in Figure 

3. This is plotted against the expected values from the Beer-Lambert law with variations in 

absorption coefficient. For the sake of clarity, the experimental relative transmitted intensity is 

calculated on a pixel-by-pixel basis, rather than pixel value averaging across the region of 

interest. The mean and standard deviation of the relative intensity of the region of interest pixels  

 are then displayed as error bars in Figure 3. In addition, for each of the measured thicknesses, 

5 repeats were taken. 

(b) (a) 



 

Figure 3 – Water quantitative analysis showing the measured relative transmitted terahertz intensities at a 25-500 µm range 
of liquid water thicknesses, against the expected values using Beer Lambert Law with absorption coefficients of 9-13 mm-

1 at 100 GHz at 25°C, with maximum (13 mm-1) and minimum (9 mm-1) values displayed at the boundaries of shaded area. 
The vertical error bars refer to standard deviation between 5 experiments. The horizontal error bars refer to thickness 
tolerances of the spacer material. 

It should be noted that, there were no discernible differences in pixel values between ‘dry’ and 

‘hydrated’ terahertz intensity images for 6 and 12 µm spacer thicknesses due to the limited 

terahertz camera detection sensitivity, and thus these values are not shown in Figure 3.  

However, for increasing water thicknesses, there is an agreement against the expected values 

where terahertz transmission decays exponentially with increasing water.  It is important to 

highlight that for 25 and 50 µm water thicknesses, there is a higher standard deviation between 

measurements when compared against 200 and 250 µm.  This can be possibly due to decreasing 

systems detection sensitivity with decreasing water content. In addition, although 500 µm water 

thickness presents relatively low standard deviation (< 0.01 relative THz intensity), a water 

layer 500 µm-thick should theoretically attenuate over 99.5% of the incident terahertz beam 

and thus measurements in this region will have considerable uncertainty. Nevertheless, the data 

shows the system is able to quantify liquid water content, in the 25-500 µm detection range of 

water thicknesses, with a 25 µm limit of detection and 25 µm minimum sensitivity, given by 



the smallest difference between calibration points (25 and 50 µm). Considering Schmidt-Rohr 

and Chen [70], we can assume that overall water thickness in the Nafion structure is comparable 

to the thickness of the membrane itself, and thus suggesting we can also quantify liquid water 

in Nafion membranes. 

3.2. Liquid water weight estimation in Nafion membranes 

Following on water thickness estimation in a liquid cell, we apply the thickness range estimated 

from relative intensity measurements from 3.1 to estimate the mass change, during a water 

desorption test in ambient air, for four different types of Nafion membranes benchmarked 

against simultaneous gravimetric analysis (Figure 4). This in turn allows us, to show the ability 

of a simple terahertz imaging system to quantify water across Nafion membranes. It should be 

noted that four repeats were performed for each of the membranes.  Measured and estimated 

weights correspond to the weight change of water determined by simultaneous gravimetric 

analysis and terahertz intensity images, respectively.  



 

Figure 4 – Water desorption from saturated Nafion (a) NRE-212, (b) N-115, (c) N-117 and (d) N-1110.  Blue and red line 
and shade represent the mean and standard deviation of estimated liquid water weight from terahertz intensities and actual 
measured liquid water weight from gravimetric analysis, respectively, from 4 repeated experiments. For clarity, a reduced 
scale inset is present on (a). 

Fig. 4 shows a good agreement between the measurement and estimation curves, which shows 

an exponential decay consistent with prior water desorption studies in Nafion membranes 

[47,48,71,72]. However, there are notable differences between the curves, which can be 

consistently observed across the membranes. Firstly, the terahertz estimated weight overshoots 

the measured weight values.  This can be attributed to the presence of residual liquid surface 

water that may be present in thicknesses outside the thickness range (25 – 500 µm) and the 

non-uniform water distribution across the membrane especially for a vertical sample mounting 

arrangement thus leading to higher estimated weight values. Secondly, differences are observed 

(d) (c) 

(a) (b) 



between the time constants.  It can be noted that after the initial minutes, the curves overlap 

with discrepancies appearing close to the end of measurement.  This effect is predominantly 

shown in Figure 4a, from around 15-20 minutes until the 40 minute mark. The divergence in 

time constants between the curves is due to significant surface water accumulation under the 

binder clips, outside of the measurement area of the terahertz camera. Water loss in Nafion is 

usually attributed to diffusion from the interior of the membrane to the membrane/gas interface 

and subsequent transport into the gas phase, the latter being considered the key mechanism to 

this desorption process [71]. The region under the binder clips used as part of the experimental 

setup also has limited membrane/gas interface, so water loss happens at a slower rate because 

it is governed by an internal diffusion process only. Furthermore, as shown in section 2.2., our 

terahertz imaging system measures liquid water in the Nafion structure across a small area 

corresponding to the terahertz camera aperture while the gravimetric setup is measuring the 

weight of the entire sample holder structure, and therefore it is likely that this accumulated 

water is responsible for the increase in time constant of the measured weight curve. 

The NRE-212 membrane presents clearly a higher level of standard deviation across repeats 

when compared to other membranes.  This can be due to the presence of significant surface 

water in this membrane, which was challenging to remove thoroughly and consistently, as 

illustrated by the relatively large standard deviation in the terahertz measurement at the 

beginning of the experiment.  The smaller thickness of Nafion NRE-212 at 50 µm also 

coincides with the system’s reduced sensitivity at lower water thickness ranges as opposed to 

100, 200 or 250 µm thus explaining why estimated weight values in Figure 4a present the 

highest variation. 

By examining the water uptake of the individual membranes, shown by the initial water 

measured weight values, it also increases as the membrane thickness increases, consistent with 

Schmidt-Rohr and Chen [70].  However, the increase is not proportional to thickness, for 

example there is a large difference in water uptake between 50 µm thick NRE-212 and 127 µm 

thick N-115 (125 and 275 mg, respectively) while the difference in water uptake between the 

N-115, 180 µm thick N-117 and 254 µm thick N-1110 is smaller (275, 295 and 395 mg). 

Although dispersion cast (NRE-212) and extruded membranes (N-115, N-117, N-1110) can 

display small differences in water uptake [73], these results nevertheless suggest that water 

desorption is not dependent on membrane thickness but rather on the water absorbed to sulfonic 

acid groups as asserted by Majsztrik et al [71]. This is also evident in water desorption time 

where NRE-212 and N-115 desorbed within 30 minutes, while N-117 and N-1110 took 

approximately 50 minutes.  



3.3. Liquid water imaging in Nafion membranes 

To demonstrate the ability to image hydration distribution across the membranes, here the 

liquid water content of a partially-hydrated Nafion N-117 membrane was imaged using the 

proposed terahertz imaging system throughout the 120 min room temperature desorption 

process at 30 Hz framerate. Prior to measuring, the N-117 membrane was clamped to the 

sample holder and deionised water was administered directly to the lower portion of the 

standing membrane using a plastic squeeze bottle with a nozzle (~1 mm inner diameter). Excess 

water on the surface of the hydrated area, binder clips and sample holder was carefully removed 

using paper wipes. Figure 5 shows snapshots of the acquired terahertz images of the Nafion 

membrane at different timestamps of water desorption process. In order to reduce image noise 

and improve smoothness for qualitative water visualisation [74], median filter and contrast 

enhancement, via image thresholding, were applied to the terahertz images.  

 

Figure 5 – Terahertz false colour images of a partially hydrated Nafion N-117 membrane during desorption process, 
timestamped at (a) 1min, (b) 15 min, (c) 30 min, (d) 60 min, (e) 120 min. Highlighted regions correspond to the selected 
pixels for further analysis in Fig. 7. Black arrows in (e) indicate ‘dimmer’ pixels related to the noise of the imaging setup. 

Figure 5a displays two separate regions, ‘dry’ and ‘hydrated’ where the latter is represented by 

lower terahertz transmitted intensity due to beam attenuation by liquid water. Over time, as the 

(a) (b) 

(d) (e) 

(c) 
1 min 15 min 30 min 

60 min 120 min 



membrane dries, the ‘hydrated’ region shrinks considerably, as expected. Desorption is not 

uniform across the membrane area, as observed in Figure 5c, the left side of the ‘hydrated’ 

region (x = 1 to 8) has considerably lower terahertz transmission compared to the right side (x 

= 10 to 16) after 30 minutes of operation. In addition, two areas on the lower side of the image 

(y = 12 to 16, x = 1 to 6 and x = 13 to 16) retains some liquid water even after 120 minutes of 

operation, as seen in Fig. 5e. These zones are caused by water accumulated around the binder 

clips used to clamp the membrane for imaging, during hydration of the lower half of the 

membrane. By closely examining the acquired images, various effects of noise can be observed. 

For example the camera provides unreliable readings at corner pixels (Figures  S.1 and S.2 in 

Supplementary Information). Additionally, there are ‘dimmer’ pixels appearing randomly 

across the ‘dry’ region in Figures 5c-e. This is consistent with an independent measurement on 

a dry membrane where pixel intensities are also reduced around the camera edges in addition 

to terahertz attenuation by the Nafion membrane [75] (Figures S.3 and S.4 in Supplementary 

Information). A further inspection of the ‘dimmer’ pixels’ shows that intensities tend to 

fluctuate around 10-30% of their maximum value during the water desorption process. This is 

likely to be caused by the through-plane structural change that the membrane experienced: 

from a swollen, hydrated state (Figure 6b) to a flat and dry state (Figure 6a) due to water uptake 

[76]. At the same time, it should also be noted that this simple setup is also prone to vibrations 

from various environmental sources (Figures S.5 and S.6 in Supplementary Information) and 

the effect of which, can also propagate into the measurements.  



 
Figure 6 - Photographs of a (a) dry and (b) partially-hydrated Nafion N-117 membrane. 

To further illustrate spatial differences in water content across the Nafion membrane, Figure 7 

shows the pixel intensity evolution across time in the highlighted sections in Figure 5. At the 

beginning of the experiment, the ‘dry’ region in the upper half of the image (y = 1 to 8) has 

intensity values close to 1 (full transmission), while the ‘hydrated’ region (y = 11 to 16) has  

lower intensity values. A transition zone between the aforementioned regions (y = 9 to 10) 

bears an intermediate intensity value. Terahertz transmission on the ‘hydrated’ pixels increases 

gradually as the membrane approaches a dry state. Most of the ‘dry’ pixels values progressively 

plateau near full transmission, indicating that any small amount of water present in this region 

dries out relatively quickly. An exception to this trend is shown in a few pixels in the ‘dry’ 

region (y = 1 to 4) decreasing in intensity values from 1 to 15 minutes of operation. This is 

caused by presence of the aforementioned ‘dimmer’ pixels, observable in Figure 5b.  

(a) (b) 



 

Figure 7 – Evolution of terahertz transmission in a specified pixel region along the y axis, highlighted in Figure 5. 

4. Conclusion 
In this study, we have investigated the feasibility of a portable, relatively inexpensive terahertz 

imaging system to quantify and image liquid water content across Nafion PEMs. We have 

demonstrated the system’s sensitivity to quantify liquid water in the 25-500 µm thickness 

range, where the system is insensitive to thicknesses less than 25 µm. Under the assumption 

that membrane thickness can be taken as water thickness, we have estimated water weight loss 

using terahertz measurements for a desorption process while simultaneously monitoring the 

weight change. The outcomes are in agreement with gravimetric analysis and consistent with 

previously studies despite discrepancies due to residual surface water and liquid water outside 

the measurement window. Lastly, we demonstrated imaging liquid water spatial distribution 

and movement across a partially hydrated Nafion N-117 membrane during a room temperature 

desorption process, which is otherwise not possible with gravimetric techniques. Although the 

Nafion manufacturing industry for commercial high-performance PEMFC applications is 

trending towards thinner membranes (< 25~15 µm) [77,78]  due to reduced proton resistance 

and better fuel cell performance [79], the proposed system has been demonstrated to be suitable 

for thicker membranes (50-254 µm), which is still relevant for PEMFC-related scientific 



studies [80,81], and electrochemical applications such as PEM-electrolysis [76,82] or 

vanadium redox-flow batteries [83]. For thinner, state-of-the-art Nafion membranes for 

PEMFC, owing to the higher water sensitivity, THz-TDS is a more suitable alternative. 

Another advantage is the low cost nature of the terahertz imaging system, especially compared 

to a commercial THz-TDS system. However, better spatial resolution and water sensitivity 

could be achieved with more expensive micro-bolometer arrays [84]. In sum, the proposed 

system offers an interesting modality, and can potentially be used with vibration isolation as a 

non-destructive, cost-effective complementary alternative for liquid water inspection of Nafion 

PEM as part of future Nafion manufacturing quality control strategy.  
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Figure captions 

Figure 1 – (a) Schematic of the terahertz imaging system for simultaneous gravimetric analysis 
(b) Front view of the sample holder featuring Nafion sample, binder clips, and area used for 
terahertz measurements. 

Figure 2 – Terahertz false colour images of the (a) ‘dry’ and (b) ‘hydrated’ liquid cell of spacer 
thickness 50 µm. Highlighted region corresponds to the aperture in the liquid cell and is used 
for quantification purposes. 

Figure 3 – Water quantitative analysis showing the measured relative transmitted terahertz 
intensities at a 25-500 µm range of liquid water thicknesses, against the expected values using 
Beer Lambert Law with absorption coefficients of 9-13 mm-1 at 100 GHz at 25°C, with 
maximum (13 mm-1) and minimum (9 mm-1) values displayed at the boundaries of shaded area. 
The vertical error bars refer to standard deviation between 5 experiments. The horizontal error 
bars refer to thickness tolerances of the spacer material. 

Figure 4 – Water desorption from saturated Nafion (a) NRE-212, (b) N-115, (c) N-117 and (d) 
N-1110.  Blue and red line and shade represent the mean and standard deviation of estimated 
liquid water weight from terahertz intensities and actual measured liquid water weight from 
gravimetric analysis, respectively, from 4 repeated experiments. For clarity, a reduced scale 
inset is present on (a). 

Figure 5 – Terahertz false colour images of a partially hydrated Nafion N-117 membrane 
during desorption process, timestamped at (a) 1min, (b) 15 min, (c) 30 min, (d) 60 min, (e) 120 
min. Highlighted regions correspond to the selected pixels for further analysis in Fig. 7. Black 
arrows in (e) indicate ‘dimmer’ pixels related to the noise of the imaging setup. 
Figure 6 - Photographs of a (a) dry and (b) partially-hydrated Nafion N-117 membrane. 

Figure 7 – Evolution of terahertz transmission in a specified pixel region along the y axis, 
highlighted in Figure 5. 
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