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Abstract Text   

The effect of temperature on the kinetics of electrochemical insertion/removal of lithium in 

graphite is analyzed by kinetic Monte Carlo methods. Different electrochemical techniques 

are simulated at different temperatures and responses are compared with experimental 

results.  Simulated voltammograms show, similarly to experiment, how the behavior of the 

system becomes closer to equilibrium as temperature increases. Calculated 

chronoamperometric profiles show a different qualitative behavior in the current at 

different temperatures, especially in the Cottrell representation peaks, explained in terms of 

the relative importance of diffusive versus charge transfer processes at different 

temperatures. Results at room temperature are in good agreement with experiment, and we 

further evaluate trends at elevated temperature that have not yet been described in 

experimental or theoretical works. Exchange current densities for different degrees of 

lithium intercalation at different temperatures are predicted using potentiostatic simulations, 

showing an Arrhenius-type relationship. The dependence of the exchange current on 

electrolyte composition is simulated by investigating the effect of different activation 

energy barriers at different temperatures. The influence of temperature on diffusion 

coefficients as a function of lithiation fraction in graphite is simulated and related to 

Arrhenius plots, explaining the experimentally observed changes in diffusion phenomena 

with lithium composition and temperature. 

 

 

Introduction Text 

Li-ion batteries designed with graphite anodes are still the most used in small electronic 

devices and electric vehicle applications. The intercalation process of Li-ion in graphite 

involves the appearance of different lithium-graphite intercalation compounds (LGIC), 
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commonly referred to as “stage n” in the literature, where n denotes an integer number that 

describes the number of graphene layers between two lithium-ion occupied sheets. 

Understanding the impact of external variables, such as pressure or temperature in batteries 

is crucial to improve their functionality, i.e. their cyclability, lifetime, charging time, to 

name just a few of these variables. In particular, the critical importance of temperature for 

the performance of the anode has been recently appreciated, concerning the formation and 

stability of the solid electrolyte interphase (SEI), the onset of lithium plating, and interfacial 

resistances. A full understanding of the kinetic processes governing the staging transitions 

has remained elusive so far. Investigating and modelling the dependence of these processes 

on temperature provides additional validation to grasp the relative importance of the 

different physical mechanisms on different length and time scales, potentially allowing a 

predictive capability in cell level models. 

The consequences of temperature changes for graphite anodes in Li-ion batteries have been 

the topic of different investigations. A significant work was done by Dahn [1], who 

obtained the phase diagram for the lithium/graphite electrochemical cell after analyzing X-

Ray diffraction patterns. Levi et al [2] studied temperature effects on kinetics and 

thermodynamics for the electrochemical insertion of lithium ions in graphite. The cited 

works showed how lithium (de)intercalation is affected by applying different potentiostatic 

steps and cyclic voltammetric transients to obtain the transitions between different stages, 

transferring between potentials with and without phase coexistence.  

They monitored in particular in chronoamperometric experiments, the changes in the 

product of the current by the square root of  time, say 
1/2It , as a function of the logarithm of 

time , say log( )t . Since the product 
1/2It  stems from normalization of the current by the 

Cottrell diffusion current [3], we will denote the
1/2It  vs log( )t  plots as the “Cottrell 

representation” of the potentiostatic transients. This type of plot showed a maximum that 

raised as temperature was increased [2].  Ecker et al. [4] and Smart and Ratnakumar [5], 

reported that the logarithm of the exchange current density is proportional to the inverse of 

temperature, but no details were given about exchange current density changes for different 

states of charge. However, the exchange current density at room temperature for different 

lithium compositions was reported [4,6,7]. The charge transfer resistance is by definition 

inversely proportional to the exchange current density, thus experimentally reported charge 

transfer resistances [8–10] can be used to compare with exchange current densities from 

simulation results. The influence of solvent composition on charge transfer resistance 

and/or exchange current density is analyzed in reference [9].  

Lithium-ion diffusion within graphite has been studied in several articles  [2,4,11–29], for 

example, in the work of Levi and Aurbach [24], where diffusion coefficients were 

estimated at different Li-ion loadings. The influence of temperature on diffusion 

coefficients was also studied [2,4,20,22]. The relationship between rate parameters and 

temperature for Li-ion graphite systems has been described by the Arrhenius law, as has 

been observed experimentally [4,5,8–10,20]. 

Generally speaking, kinetic Monte Carlo simulations [30] have been demonstrated as an 

efficient tool to research on the (de)intercalation of lithium in graphite [16,17,31,32]. 

Experimentally, (de)intercalation is very slow process, where completion of a voltammetric 

cycle may take more than a day [33]. The simulations provide the additional advantage that 

atomic level details as a function of time can be directly visualized, thereby providing 

information on the atomistic underpinnings of the different trends and features that are 



observed. Alternative modelling techniques, such as phase field models [34–36], can allow 

longer length and time scales to become accessible. As discussed in the literature, this 

methodology has proved to have a great potential for the simulation of electrochemical 

reactions at active material/electrolyte interfaces [37,38]. Furthermore, as shown by Roder 

et al. [39,40], the coupling of kMC with continuum models is challenging but has great 

potential to approach simulations to the experimental scale. 

In a previous work [41] we tackled the simulation of the kinetics of the Li-ion/graphite 

system, in an electrochemical scheme, by using kinetic Monte Carlo simulations (kMC). 

Our previous study also highlighted the potential of kMC as a tool to understand and 

predict, with atomistic detail, the results arising from the application of different 

electrochemical techniques commonly used in the laboratory. There, we explained the 

differences found between the intercalation and deintercalation responses, arising from the 

application of potentiostatic steps and linear potential sweeps. The results were explained in 

terms of lithium accumulation inside graphite, next to the interface where the Li-ions are 

inserted. The behavior of the exchange current density as a function of Li-ion composition 

was also predicted. Kinetic effects were found to play a fundamental role, requiring a 

proper description of diffusive phenomena, taking into account the interactions between 

inserted particles.  Another important outcome of that work was to make a link between the 

theoretical predictions of Montella [42] for the response of potentiostatic steps and the 

experimental results from ref [43,44]. After a validation of the kMC procedure by 

comparison with the results of ref. [42],   the 
1/2 logit vs t  response was calculated and 

compared with the results of Levi et al. [43,44]. The simulations presented the same 

behavior as the experiments:  two peaks in potentiostatic steps into potentials involving 

stage coexistence and only one peak at potentials where only one stage is formed. These 

features were explained in terms of an atomistic analysis.  

Some of the features of this previous modelling are briefly revisited in the Supplementary 

Material Sections: cyclic voltammetry, the calculation of diffusion coefficients, model 

validation and exchange current density results are presented there. In another contribution 

[45], kMC and equilibrium Monte Carlo (MC) methods also allowed us to predict the role 

of kinetics in the formation of the Daumas-Hérold structures in Li-ion graphite intercalation 

compounds [46]. The occurrence of these types of structures has also been confirmed 

theoretically by Guo et. al in previous work [36] and very recently by phase-field 

formulations [34]. In this respect, it is also worth mentioning the use of Maxwell-Cattaneo-

Vernotte theory by Maiza et al. [47] to solve the causality issues related to Fickean 

approaches and capturing structuration of lithium in graphite.  

In the present work we tackle the effect of temperature on the electrochemical response of 

the Li-ion/graphite system using different techniques and analyze the corresponding 

changes in the exchange current density by kMC simulations. Simulation results are 

compared with experimental ones and predictions are made for measurements not yet 

performed. Monte Carlo equilibrium simulations are employed to compare kinetic results 

with the equilibrium situation. 

 

Model and computational details 

In order to mimic the graphite substrate, we used a simulation cell consisting of a stack of 

two-dimensional lattice-gas nets with triangular geometry. The total number of sites is 

x y zM N N N    ,  where xN , yN and zN are the number of lateral lattice sites along the x, 



y and z directions respectively. The two-dimensional lattices are parallel to the x-y plane, 

while the z direction is perpendicular to this plane, so that the number of planes is given by 

zN . The lattice geometry was built using the parameters of the graphite crystalline 

structure. Hence, each lattice site is located in the center of the carbon hexagons and at half 

the distance between two adjacent graphene layers. 

In order to emulate real events in a graphite anode, we defined certain events and placed 

limitations to the kMC system in the grand canonical scheme, as shown in (Figure 1): (i) 

ions can be intercalated or deintercalated only on the left side of the simulation box (event 

a); (ii) Li-ion diffusion is confined to the right side of the simulation box by a hard wall 

(event b); (iii) diffusion is allowed only into empty first neighbors (event c); (iv) no 

interlayer particles jumps are allowed (event d), due to the high energy barrier involved, as 

reported in [48]; (v) periodic boundary conditions are set up along the x axis, where the 

ions are free to move.  The system is also periodic in the z direction. The restricted 

diffusion conditions on the right hand side of the simulation box, due to the imposition of a 

hard boundary, mimics finite size effects in the material and determines a thickness 
yL in 

the y direction. As discussed in reference [42], the situation is equivalent to analyzing 

linear diffusion in a material foil of thickness 2
yL , symmetrically submitted to insertion on 

both sides. 

In the case of grand canonical Monte Carlo (GCMC) simulations, these only involve 

attempts to change the occupation state of a given site at the Monte Carlo steps, as these 

simulations are used to achieve the equilibrium state. 

The Hamiltonian that rules particle-particle interactions contains different energy terms. It 

is inspired in the ansatz by Derosa et al. [49], has been previously applied in other 

contributions [45,50,51] and involves a sum over all M lattice sites, as stated in equation 

(1). The first summation corresponds to the interaction energy between ions in the same 

layer, the second is the interaction between ions in different layers and the last one is an 

occupational term. 
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where M  is the total number of lattice sites, ipN  and opN  are the number of neighbors in 

the same and in different layers, respectively.  denotes the potential energy depth at 

distance mr ,   and br  rule the repulsive interaction and   determines the range of this 

repulsion.   denotes an energy parameter used to fit isotherm position,  is the chemical 

potential (proportional to electrode potential E vs Li / Li+, as  μ=−eE), ijr  is the distance 

between sites i and j and c  is an occupational variable for each site ( 0 empty ,1 full ). 

The cutoff distances used were 10.0 Å in the x-y plane and 6.0 Å along the z-axis. This 

yields 60ipN   and 182opN  . The present cut-off distances are essentially the same as 

those used in a previous work [52] and were chosen so as to fit the experimental insertion 

isotherm.  The order of magnitude of the values used is similar to that found in the literature 

for the screening response of graphite to a single intercalant atom [53]. The sum in the last 



term of equation (1) fulfills the condition 
M

i occ

i

c N , where 
occN is the number of  graphite 

lattice sites occupied by Li+ ions.  It is also useful to define a Li-ion concentration as 

3 /occx N M , where number 3 was added because the maximum state of charge for 

lithium inside graphite is one third of the total intercalation sites. The importance of 

considering coulombic repulsive interaction between lithium ions from different interlayers 

to determine the staging phenomena has been discussed by Márquez et al. [26]. 

The values of the parameters used in the Hamiltonian from equation (1) are summarized in 

Table 1.  

The rate equation for the events allowed in the present simulations is given by: 
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where 0v  is a pre-exponential factor, IH  and FH are the Hamiltonians for the initial and 

final state respectively, Bk  denotes the Boltzmann constant, and T  is the absolute 

temperature. 

  is the energy barrier for event   ( diff   for diffusion and /i d   for 

insertion/deletion) and 1/ 2BV   is the symmetry factor for charge transfer. This proposal 

involves merging the Arrhenius rate equation with the electrochemical Butler-Volmer 

equation, and it has been described and applied in references [54,55].  The constants in the 

rate equation (2) were fitted to experimental results from literature, and where the same 

values as those used in previous work [41,45]. A value 
13 -1

0 1 10 sv    was taken from 

references [13,17]. The diffusion barrier 0.370 eVdiff

  , was fitted using the random 

walk theory and kMC simulations in the canonical ensemble for a single particle, e.g. 

emulation of the experimental results in the limit of low Li occupation [24]. For 1 M LiPF6- 

ethylene carbonate (EC)/ diethylene carbonate (DEC) (1:1) as a solvent, a value of 

/ 0.655 eVi d

   was obtained to fit the experimental exchange current density at stage II 

[6], and it is close to the energy barriers measured in several other works [8–10]. Other 

/i d

  values will be used to emulate different solvents, which will be detailed later. The 

assumption of a temperature-independent value for 
/i d


 
(or a constant preexponential 

factor) corresponds with the usual assumption of neglecting entropic factors for the 

calculation of rates in kinetic Monte Carlo simulations [16]. 

According to equation (2), the activation barrier for the event  is  

 

 ,a BV F IE H H           (3) 

 

To perform kMC simulations the rejection-free KMC algorithm was applied [56]. GCMC 

simulations proceeded, employing the Metropolis algorithm [57], 1×107 Monte Carlo steps 

(MCS) were used in the equilibration step and in the averaging step respectively. 

 



Linear potential sweep profiles were obtained introducing the following steps into the kMC 

code: 

i. A potential sweep rate, v , and a potential window 0T fE E E     were chosen, where  

0E  and fE  are the initial and the final potential respectively.  

ii. After each kMC event, the potential was increased in  
1 .i iE v t  

 
, where  

it  is the 

time increment calculated within the usual kMC scheme at time  
it . 

iii. The potential was modified as 
1 1i i iE E E   .  

iv.  When the potential reached the final value ( fE ), the scan direction was reversed 

1 1i f iE E E   .   

v. The algorithm finished when the potential reached the initial value 0E . 

Since the simulations are very demanding computationally, cyclic voltammograms were 

simulated using relatively small system sizes, such as 24 24 4M    . A potential 

window from 0 130 mVE   to 55mVfE  was selected.  Voltammetric profiles at T=296 

K for different potential sweep rates are shown in Figure S1 of the Supplementary Material. 

Voltammograms at -15.0 mV.sv   were performed at different temperatures.  

To perform potentiostatic step simulations, a sample configuration was chosen after the 

system had reached the steady state at the initial potential. Then, the potential was switched 

to the final value and the simulation proceeded. The system size used was 24 108 4M   

. 

The exchange current 0i  was obtained from potentiostatic simulations, after the system 

reached a steady state at a given electrode potential. Under such conditions, the net current 

became zero, since the oxidative current oxi  was equal to the reductive current 
redi , 

0ox redi i i  . That is, the number of inserted and deinserted ions per unit time became the 

same, as shown in Figure 2. The steady state condition was evaluated by the analysis of a 

Flyvbjerg-Petersen Plot [58]. From 0i , the exchange current density 0j  was calculated as 

the exchange 0i  current per unit of area xz x zA L L  . 

Chemical diffusion coefficients were calculated using equations (4) and (5) given below, as 

was explained in more detail in Section S2 of the Supplementary Material,  
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where jD  is the jump diffusion coefficient and   is the thermodynamic factor. Since the 

latter is difficult to obtain for x  close to phase transitions [18,59], we have calculated it 

from the voltammetric isotherms at the lowest sweep rate. It offers the advantage that it is 



the same choice as that made in references [24] to calculate the chD  from experimental 

data, so that the present results may be compared with theirs. 
jD  was calculated in 

canonical kMC simulations runs starting from steady-state configurations as follows: 

 
2 / (2 )j diffD d        (6) 

 

where diff  is the value of the jump rate, 2d   is the system dimension and 2.46 Å   is 

the characteristic (first neighbors) jump distance. 

We neglect the effects of quantum tunneling in the transport of Li through graphite, since 

these effects are expected to be negligible under the present conditions. 

To perform statistics, 40 simulations were carried out for potentiostatic step transients and 

the figures were smoothed with Chebyshev polynomials for a better representation. In the 

case of cyclic voltammetry simulations, a series of 40 different runs were used and 

Chebyshev polynomials were also employed to smooth the curves. In the case of diffusion 

coefficients and exchange current densities, the averages were taken over 50 and 40 

simulation runs respectively.  

 

Results and discussions 

Cyclic voltammetry. - Voltammograms for different temperatures are shown in Figure 3a. 

In all cases, the presence of two oxidation current peaks 1poi   and 2poi , and of two reduction 

current peaks 1pri  and 2pri  can be observed. We label the corresponding peak potentials 

1poE , 2poE , 1prE  and 2prE . The snapshots of the simulations for the different processes 

reveal that the transition II I  occurs at peak 1, while the transition Id II  is found at 

peak 2. The potential peak differences 
1 1po prE E  and 2 2po prE E  reveal hysteresis in all 

cases.  

The increase in the temperature of the system causes a shift of the simulated oxidation 

peaks towards more negative potentials, while the opposite occurs with the reduction peaks, 

which are shifted towards more positive potential values. The result shows that the peak 

separation on the forward and reverse scans 
1 1po prE E  and 2 2po prE E  decreases as 

temperature increases, indicating hysteresis is reduced by an increase in temperature. On 

the other hand, the half width of the peaks increases as temperature does so. 

The hysteresis phenomenon at different temperatures can be observed in the isotherms 

constructed from Figure 3 and shown in Figure 4. 

All isotherms show a hysteresis loop between the intercalation and deintercalation sweeps. 

The direction of the shift is illustrated in Figure 4a, which corresponds to T=296 K.  

Analysis of these three figures shows that as temperature increases, from Figure 4 a to c, 

the hysteresis loop is progressively reduced, as emphasized by the black arrows.  This 

behavior is expected if we note that, when the temperature rises, the activation barrier for 

Li-ion exchange can be surmounted more easily so that the ions can exchange faster across 

the interphase and the hysteresis becomes reduced. We will return to this point later. The 

same features have been found in experiments by Levi et al. (Figure 1 from ref. [2]).  



It is important to emphasize that the sweeps rates used to simulate the voltammograms are 

much faster than those employed in experiments. This is so because the graphite sheets 

used in the simulations are several orders of magnitude smaller than the experimental ones.  

Note that we expect the simulated temperature trends to apply regardless of particle size. 

Tao et al. [60] have recently characterized individual LiMn2O4 (LMO) particles by 

scanning electrochemical cell microscopy (SECCM). They showed that very high potential 

sweep rates (0.1-10 mV.s-1) during lithium (de)intercalation still yield well resolved 

features in the voltammograms. As highlighted there, these sweep rates are 2-4 orders of 

magnitude greater than the ones used to characterize LMO or graphite in a form used in 

commercial electrodes, in which there is a wider particle size distribution, and in which one 

must account for porosity of the electrode structure. Although to the best of our knowledge, 

comparable experiments have not yet been performed with smaller graphite crystallites, we 

would expect something similar to occur in that case. We therefore emphasize the need for 

further systematically controlled particle size experiments on graphite to bridge the gap in 

length and time scales.  

Figure 3b and 3c show a comparison between the simulated peak potentials of the anodic 

and cathodic process related to the I II  transition and the experimental results. As 

marked above, the experimental results show a larger peak shift at all temperatures than the 

simulations, probably due to the inherently larger average particle size in the experiments. 

While the latter are typically 6 μm thick [61], the thickness of the simulated slabs is about 

0.0051 μm. However, the simulated results resemble the relative shifts with temperature 

found experimentally.  

 

Potentiostatic steps. - The kinetics of the intercalation/deintercalation phenomenon can be 

analyzed in further detail from chronoamperometric profiles. We have validated the present 

model by comparing its predictions with theoretical results from Montella [42], who 

assumed linear diffusion and Langmuirian insertion reaction kinetics to calculate 

potentiostatic transients. The equivalence between the present model in the limit of non-

interacting inserted ions and that of Montella is briefly discussed in Section S3 from 

Supplementary Material.  Hence, it is here relevant to begin with the simulation of the 

potentiostatic steps under Langmuirian conditions at different temperatures, and then go 

more deeply into the more complex model that emulates the Li-ion/graphite system, as 

described by the Hamiltonian in equation (1).  

Within the framework of Montella’s modeling, it is relevant to calculate the Cottrell current  

( CottI ), equation (7), and the diffusion time constant ( 0, ,y T ), equation (8). To do that, the 

total charge inserted in the potentiostatic step, Q , the box length at the y-axis, yL  and the 

diffusion coefficient for diluted concentrations, 0,TD  are introduced in the following 

equations: 
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The diffusion coefficients at diluted Li-ion compositions
0, 0T xD D  can be calculated 

using the random walk theory. So, using an y-axis size for the system 153.36ÅyL   , we 

obtain the diffusion time constants and diffusion coefficients detailed in Table 2.  

In Montella’s work, the results are assessed for different values of a kinetic dimensionless 

parameter called  .  According to the derivation presented in Section S3 of Supplementary 

Material for our system is given by: 
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 is the rate equation for ion insertion. 

82.1 0 c3 1 ms xd   is a distance parameter deduced for the graphite substrate unit cell. The 

values for   are detailed in Table 2, assuming an energy barrier for insertion of

0.425 eVr

  . 

The results of the kMC simulations are presented in Figure 5 for three temperatures T = 296 

K, 313 K and 333 K. The normalized current (Figure 5a) versus the normalized time shows 

a large current decrease at the beginning of the potentiostatic steps, which is steeper for 

higher temperatures, then all currents drop to zero. The current normalized by the Cottrell 

current versus the logarithm of the normalized time (Figure 5b) presents a single peak in all 

cases, which becomes higher as temperature increases.  

To proceed further with the model given by the Hamiltonian, equation (1), we need to 

choose suitable electrode potentials for potentiostatic step simulations. With this purpose, 

we simulated GCMC equilibrium isotherms at different temperatures (T=296 K, 313 K and 

333 K) (Figure 6). These isotherms provide a picture of the potential windows where we 

can find the occurrence of stages and stage transitions. Stages Id, I and II are evident as 

plateaus in x ,  as indicated in Figure 6. The potentials selected for potentiostatic steps are 

indicated there with vertical black dotted lines. 

Let us first consider the effect of temperature on a potentiostatic step where no stage 

coexistence is evident in the present model, say 120mV 150mV . At the potentials 

involved in this step, only stage Id is formed at all the temperatures analyzed. The kMC 

results for these transients are shown in Figure 7 in the /i t  and 1/2 / logi t t

representations. 

Figure 7a shows a faster drop of the current to zero for higher temperatures. The current 

jump when the potentiostatic step is imposed (immediately after t = 0 s) is also larger for 

higher temperatures. This behavior denotes that, as temperature is increased, more charge is 

extracted from the system in a short time. Figure 7b shows a single peak in the 1/2 / logi t t

representation for Li-ion deinsertion in all cases. As in the Langmuirian case analyzed in 

Figure 6b, the peak maximum is larger and appears at shorter times when temperature 



increases, but this effect is strongly emphasized. It is remarkable that the results close to 

room temperature (T=296 K) (blue curves in Figure 7a and b) are very similar to the 

experimental results observed for the Id-Id potentiostatic steps from ref. [43].  

Next, we analyze two cases of potentiostatic steps where stage coexistence is evident, one 

for the oxidation process (deintercalation) and the other for reduction (intercalation).  In 

order to study how temperature affects the current responses, particularly in the 
1/2 logi t vs t  representation, we focus here on two types of potentiostatic steps where the 

events are clearly identifiable. 

Figure 8 shows results for the 50mV 95mV  potentiostatic steps, where the system goes 

from stage I to II (see Figure 6). The lithium composition responses, x vs t , Figure 8a, 

reveal that the deintercalation process leading from stage I to II is faster when temperature 

increases. The times when the system reaches stage II at each temperature are marked with 

vertical dotted lines, using the same color as in the x vs t  curves. The same feature is 

reflected in the current profiles, Figure 8b, i.e., where the system reaches zero current faster 

for higher temperature conditions. As in the previous case, this is a consequence of the fact 

that the activation energy can be overcome more easily. However, in the present simulation, 

two peaks are evident in the  
1/2 logi t vs t  representation, Figure 8c, for all temperatures. 

The peak at shorter times, 
1p , increases faster with temperature, as compared with the 

second one, 
2p . This feature is highlighted with a dashed black arrow. For 296KT   

(blue curve), 
1p  is smaller than 

2p  , for 313KT   (black curve) both peaks are of 

comparable height and for 333KT   (red curve) 
1p  becomes higher than

2p .  

During the 50mV 95mV  potentiostatic step, the system runs through different 

situations, denoted with i, ii, etc, and indicated by arrows in Figure 8b. These correlate with 

snapshots from the simulations (Figure 9). The next analysis is valid for all temperatures, 

although we only concentrate on the description for T = 333 K. Figure 9a shows the system 

before the application of the potentiostatic step, at t = 0 s, where stage I is evident. This 

point is marked with (i) in Figures 8b and c. When the potentiostatic step is applied there is 

a fast Li-ion deinsertion from the graphite, between 0 s < t < 0.5 marked with (ii) in Figures 

8b and c. After that, a portion of stage II is formed at t ≈ 0.5 s (marked with red circle in 

Figure 9b), this event is marked with (iii) in Figures 8b and c. Thus, the origin of the 

minimum between peaks 
1p  and 

2p  is the generation of a portion of stage II next to the 

interphase, due to fast Li-ion deintercalation. Then, after the minimum, between 0.5 s < t < 

1 s the portion of stage II expands to the inner part of the electrode (this zone is indicated 

with (iv) and an arrow in Figures 8b and c). The stage growth direction is indicated with a 

red arrow in Figure 9c. At t ≈ 1 s the system reaches the stage II complete formation 

(Figure 9d), marked with (v) in Figure 8b and c.  

Thus, according to the previous analysis, 
1p  can be related with the exchange of Li-ion at 

the interphase when the potentiostatic step is applied. Then, when T increases, the rate of 

Li-ion deinsertion is larger, since the energy barrier can be surmounted more easily, and 
1p  

is bigger. Although 
2p  seems to rise with temperature, the effect is not as strong as that 

observed for 
1p . This suggests that 

2p  does not depend on the rate of Li-ion exchange as 

1p  does, or rather, that it does not depend so strongly on temperature. A video of the 



complete process for 296 K (Li-ion-graphite-Deintercalation.mp4) is available as part of the 

Supplementary Material. 

A similar analysis can be done for the potentiostatic step 95mV 78mV , where the 

system goes from stage II to a mixed stage II-stage I Li-ion arrangement. The events can be 

clearly observed by looking at the Cotrell 1/2 logi t vs t  representation, Figure 10, where 

two peaks, separated by a minimum, are evident at all temperatures. Since the current 

responses are similar to those in the previous cases, they are not shown in Figure 10. They 

are named like in the previous case: 
1p  is the peak that appears at shorter times and 

2p  is 

the peak at longer times for each temperature. As we did before, different regions are 

labeled in Figure 10 for 313 K. 
1p  increases rapidly with temperature, but opposite to the 

case of the deintercalation potentiostatic step, 
1p  is larger than 

2p  at room temperature 

(blue curve, 296KT  ).  Another important difference is the behavior of 
2p :  while 

1p  

increases with temperature , 
2p  decreases. We will return to this point below.  However, a 

feature common to all processes is that they occur at shorter times as temperature increases, 

something that is expected based on activated processes.  

From the snapshots of the simulations for 95mV 78mV  (Figure 11), we can establish a 

correlation between Figure 10 and the main events occurring at T=313 K. Before the 

potentiostatic step (t = 0 s), graphite is occupied by a DH stage II structure (Figure 11 a), 

situation (i) in Figure 10. When the potentiostatic step is applied, a significant intercalation 

of Li-ions occurs at the interval 0 s < t < 1.8 s, (ii) in Figure 10, until t ≈ 1.8 s. This time 

corresponds to a minimum between 
1p  and

2p . At this time, a portion of stage I is formed 

next to the interphase (indicated with a red circle from Figure 11 b). This step corresponds 

to feature (iii) in Figure 10. Thus, the minimum in 1/2 logi t vs t  appears due to a Li-ion 

nucleation step. A similar behavior has been described for intercalation by Levi et al [44]. 

Then, at 1.8 s < t < 15.3 s, the portion of stage I disappears and the process continues in a 

monotonous way incorporating particles, as indicated by the red arrow from Figure 11 c. 

This step corresponds to feature (iv) in Figure 10. At steady state, a mixed stage I-stage II 

remains in a metastable state after the second peak (Figure 11d, feature (v) from Figure 10). 

A video of the complete process (Li-ion-graphite-Intercalation.mp4) is available at 

Supplementary Material. At 333 K the previously described process is slightly different. 

After the minimum between 
1p  and 

2p , stage I is eliminated from the system and cannot 

be found inside graphite. That is, Li-ion is incorporated, but without stage I formation, until 

the system reaches a configuration like that from Figure 11e.  

In summary, the process that is evident in 
1p  seems to be controlled by the rate of charge 

transfer at the interphase, which is given by the activation energy for Li-ion insertion 

/deinsertion.  Thus, as temperature increases, this energy barrier can be surmounted more 

easily, and a large change in the current is observed at the beginning of the potentiostatic 

step. On the other hand, 
2p is related to a lower (diffusive) activation barrier and is not 

affected as strongly as 
1p  by temperature changes. This is an indication that the height of 

2p  is controlled not only by the charge transfer rate, as 
1p  is. In fact, frame analysis 

revealed that 
2p  occurs after the formation of stage coexistence inside graphite, and that 

the current response is related to the growth of stage I inside graphite. The latter 



phenomenon is controlled by the diffusion rate. A more detailed explanation on 
1p  and 

2p  

origin can be found in a previous work [41], and the modification peaks 
1p  and

2p , which 

take place with temperature, confirm the previous statements. Let us now analyze why 
2p  

decreases, whereas 
1p   increases in Figure 10. Looking at the equilibrium isotherms for 

different temperatures at 78 mV  (Figure 6), it can be noted  that at a given potential, x  is 

different at all temperatures, being larger for 296 K, smaller for 313 K and the smallest for 

333 K. Thus, the values of x  that the system can reach at steady state for a potentiostatic 

step 95 mV 78 mV , are different for each temperature. In this respect, the 333 K 
1/2 logi t vs t  occurrence can be understood as follows: the largest Li-ion insertion takes 

place at the beginning, at 333 K, generating the biggest 
1p  peak, until stage coexistence is 

established (minimum in 1/2 logi t vs t ). Then, the x   value that is achieved at steady state 

for this temperature is smaller than that obtained at 313 K or 296 K, so that a small amount 

of charge is inserted after the minimum. The lower x  value reached and facile diffusion at 

low x concentration are probably the reasons why stage I is not formed inside graphite after 

2p  at T = 333 K.  

 

Exchange current density. - To get insight into the effect of temperature on the interphasial 

Li-ion flux, the exchange current density will be considered.  

An Arrhenius-type plot, 1

0ln j vs T  , is shown in Figure 12 for stages II (95 mV), I (50 

mV), and Id (150 mV). In all cases, 0ln j  decreases linearly with 
1T 
, as observed in 

experimental data for the exchange current density [4,5] and the inverse of the charge 

transfer resistance [8–10], with 
1T 
. 0j  becomes larger when temperature increases for all 

stages and thus particle flux across the interphase is faster, supporting the previous results 

obtained in CVs (Figure 3) and chronoamperometric transients (Figures 5,  8 and 10). For 

all temperatures, 0j  is bigger for stage II than for stages I and Id, as can be observed for 

room temperature in Figure S2 (Section S4) from the Supplementary Material. 

Analysis of the slopes in the 1

0ln j vs T   plots in Figure 12 shows that the formal activation 

energies for insertion / deinsertion, defined in equation (3), are different for the various Li-

ion occupations. These formal activation energy values are shown in Table 3. 

The largest activation energy corresponds to stage Id, the values for stages I and II being 

similar. This behavior can be understood as follows: observing the equilibrium isotherm for 

all temperatures it becomes clear that Li-ion composition x  at 150 mV differs slightly 

under different temperature conditions (Figure 13a), being the highest for 333 K, and the 

lowest for 296 K. Thus, the x  value reached in a potentiostatic simulation when the system 

achieves the steady state, will be different for different temperatures. Under steady state 

conditions, the x  value increases with temperature. Further, the interactions between 

inserted ions can be neglected at dilute Li composition. At the dilute Li-ion occupation 

achieved at 150 mV, the particle flux will therefore be higher for larger x  values, and so 

will be the exchange current density. Consequently, a larger slope can be observed in the 

Arrhenius plot, as compared with stage II at 95 mV or stage I at 50 mV, where x  is 

practically the same for all temperatures. The result is a higher sensitivity in the rate of 



charge transfer across the interphase to temperature at potentials where stage Id is formed, 

compared with the corresponding potentials of stage I and stage II. 

From the literature we know that the slope of the 1

0ln j vs T   changes with electrolyte 

composition. Several articles have demonstrated that Li-ion desolvation from the 

electrolyte is the rate determining step for Li-ion insertion in graphite [10,62]. This means 

that changing *

/i d  in simulations would emulate changes in electrolyte composition. kMC 

simulations with 
*

/ 0.655 mVi d   and 
*

/ 0.400 mVi d   representing changes in 

electrolyte composition are shown in  Figure 13b  where  stage II is formed (95 mV). It is 

remarkable that the slopes found in the 0ln j vs 
1T 
 plots resemble the input values used for 

*

/i d . In fact, 
0j  stems from the insertion/deletion of ions in a multiplicity of microscopic 

environments, which exhibit different activation energies as given by equation (3).  This 

encourages us to assume that the activation energy barriers found in experiments [5] are 

strongly representative of the microscopic situation. On the other hand, this means that it 

may be possible to emulate a change in the electrolyte composition by varying the energy 

barrier  *

/i d . 

 

Diffusion coefficients. - Having analyzed interfacial phenomena, it is pertinent now to 

focus on the Li-ion diffusion phenomenon inside graphite.
 
log chD vs x  plots are shown for 

different temperatures (Figure 14a). There, it is found that the log chD vs x  plots have the 

same behavior as that described by Levi et al. [24]: the diffusion coefficients have 

maximum values for compositions corresponding to pure stages and to 0x  . Furthermore, 

the chD  values increase monotonically with temperature for all x . This behavior has been 

observed in the literature for similar temperature windows [2,20,29].  

Besides qualitative characterization, we can calculate the activation energies with the aid of 

Arrhenius plots (Figure 14b), as performed above with the exchange current density. The 

activation energy values for different lithium compositions, as obtained with the linear fits 

of Figure 14b, are shown in Table 4. 

As an overall result, we can state that at low and high occupations the activation energy for 

diffusion evaluated from Figure 14b remains relatively constant, with a drop at intermediate 

occupations. This behavior can be ascribed to the easy transport of lithium in the mostly 

unoccupied planes at 0.5x  , where stage II is formed (c.f. Figure 9d). This trend agrees 

with the model of Persson et al., using effective cluster interactions obtained from DFT 

calculations [17]. A more quantitative statement requires performing simulations within a 

wider temperature range and will be addressed in future work. 

Concerning experiments, the activation energy for diffusion obtained by Ecker et al. [4] for 

15 % graphite state of charge ( 0.15x  ) was 0.49 eV using galvanostatic the intermittent 

titration technique (GITT) and 0.42 eV using electrochemical impedance spectroscopy 

(EIS). This value compares favorably with the theoretical value of 0.21x  in Table 4. 

Kulova et al. [63] have calculated an activation energy of 0.36 eV for 0.63x  . This value 

is the same as that obtained with the present kMC simulations for 0.57x  (Table 4). First-

principles calculations for the full state of charge [13] report an activation energy barrier 

around 0.51 eV, a value close to that reported in Table 4 for 0.91x  . 

 



Conclusions 

Within the present model and with the aid of kinetic Monte Carlo simulations we have 

analyzed the effect of temperature on cyclic voltammograms, potentiostatic steps and 

exchange current density for lithium-ion insertion in graphite. The features of cyclic 

voltammograms compared qualitatively well with experimental data from the literature, 

yielding an overview of temperature dependent lithium-ion insertion/deinsertion 

phenomena. Potentiostatic steps were also simulated at different temperatures, yielding two 

main components when the transients traversed potentials involving the coexistence of two 

phases. The peak p1 occurring at shorter times, related to charge transfer processes across 

the interphase, was more strongly affected by temperature changes than the second peak 

than the second peak, p2, by temperature changes, corresponding to slower diffusive 

processes. The two-component behavior agrees well with experiments conducted a room 

temperature and the present model allows predictions of behavior above room temperature. 

The exchange current density was studied at different temperatures and different lithium-

ion loadings of graphite. Our model suggests a linear behavior in Arrhenius-type plots of 

the logarithm of exchange current density with the reciprocal of temperature, as found in 

experiment. Changes in solvent composition were emulated by changing the 

insertion/deinsertion energy barrier. Our results suggest a relationship between the slope of 

the Arrhenius plot and the input variable of the barrier height, both of which yielded the 

same value of energy. This was a surprising finding given the multiplicity of possible 

microscopic environments for Li-ion ion exchange, since our model accounts for local 

interactions between Li ions.       

Diffusion coefficients were calculated dependent on temperature and lithiation amount, x. 

We explained the experimentally observed trends in diffusion coefficients in terms of 

activation energies for different lithium compositions. These activation energies were 

determined from the trends in diffusion coefficients as a function of temperature dependent 

at these lithium-ion compositions. 

Within our simulation methodology, two tasks remain: the first is the improvement of our 

computer code to perform simulations for larger systems, closer to the microscale. This 

may provide a more direct comparison with experimental studies of commercial graphite 

particles. However, as highlighted earlier, the present simulations could allow a direct 

comparison with more ideal electrode geometries which have recently become 

experimentally accessible [60].  

The second issue to address is the improvement of the interaction potentials to describe 

other stages of order > 2 for lithium insertion in graphite. Recently, Mercer et al. [64] have 

been able to theoretically reproduce a peak and sharp change in potential that occurs for the 

insertion/deinsertion of Li+ into / from graphite in the dilute Li+ occupation limit. This 

improvement will be introduced in the kMC scheme in future studies. 
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Tables 

Table 1: Parameters introduced in the Hamiltonian of equation (1) 

[eV]  [Å]mr  [eV]  [Å]br    [eV]  

0.0255 4.26 0.255 1.42 4 -0.03 

 

Table 2: Parameters used to simulate the transients shown in Figure 5. The parameter 
was defined in  ref. [42] and its evaluation for the present system is discussed in the text.  

Temperature, T [K] Diffusion time 

constants, 0, ,y T  [s] 
0,log TD  [cm2.s-1]   



296 5.145 x 10-4 -8.34 1.15 

313 2.35 x 10-4 -8.00 1.43 

333 1.03 x 10-4 -7.64 1.70 

 

Table 3: Activation energy for charge transfer obtained from the Arrhenius plots of Figure 

12 at different occupations conditions.  

stage Electrode potential [mV] Activation energy for 

charge transfer [eV] 

Id 150 0.720 ± 0.003 

II 95 0.679 ± 0.002 

I 50 0.675 ± 0.001 

 

Table 4: Activation energy for diffusion, as obtained from the Arrhenius plots of Figure 

14b at different Li-ion occupations conditions.  

x  Activation energy for 

diffusion [eV] 

0.00 0.370 ± 0.001 

0.10 0.395 ± 0.002 

0.21 0.53 ± 0.01 

0.38 0.52 ± 0.04 

0.52 0.21 ± 0.03 

0.57 0.36 ± 0.07 

0.80 0.471 ± 0.003 

0.91 0.55 ± 0.04 

 

  



Figures 

 

Figure 1: Events and restrictions imposed to the system. Li-ions are represented in blue, 

graphite in grey, solvated Li-ion are represented with blue spheres surrounded by orange 

balloons. 

 

 

Figure 2: kMC chronoamperometric response to a potential step. The current densities for 

oxidation and reduction (absolute value) are shown versus time, the exchange current is 

marked with dotted line. In the inset the net current density vs time is represented. 

 

 



 

Figure 3: Effect of temperature on simulated voltammetric profiles.  a) Voltammograms at 
-15.00 mV.sv   and for different temperatures. b)  

1

1pE vs T  for voltammetric data from 

the  simulations shown in Figure 3a (red dashed lines, the symbols are different for 

oxidation and reduction). 
1

1pE vs T 
from experimental data, taken from Fig 1 from ref. [2] 

(black solid lines, the symbols are different for oxidation and reduction). On Figure b the 

error bars for the simulated data are smaller than symbol size. 

 

 

 

 Figure 4: Isotherms at different temperatures, 296 K (a), 313 K (b) and 333 K (c), 

indicated in each figure, at -15.00 mV.sv  . These plots were constructed from the 

voltammograms in Figure 3. For simplicity, the colors and line types are the same as those 

used in Fig 3. Black arrows indicate the direction of hysteresis reduction as temperature 

increases. 

 

 

 



 

Figure 5: kMC simulations of potentiostatic transients for three different temperatures, 

emulating the Langmuirian conditions from reference [42].  

 

 

 

Figure 6: Equilibrium isotherms for Li-ion insertion in graphite at T = 296 K (blue dotted 

line), 313 K (black line),333 K (red dashed line). The electrode potentials selected to 

perform the potentiostatic steps are indicated with vertical dotted black lines. The stages 

occurring at the plateaus are indicated with italic letters. 

 

 



 

 

Figure 7: kMC results for a potentiostatic step from 120 mV to 150 mV at the temperatures 

indicated in the figure. a) chronoamperometric profiles. b) |i|t1/2 vs log t representation.  

 

 

 

 

 

Figure 8: kMC simulations of a potentiostatic step from 50 mV to 95 mV for three different 

temperatures. a) lithium composition vs t. b) chronoamperometric response. c) |i|t1/2 vs log t 

plots. Features for the different processes are marked with arrows from (i) to (v) in Figs b 

and Figure c. The denominations of the peaks are only marked for T=333 K, but the same 

notation is valid for all temperatures. The different (i) to (v) features may be correlated with 

simulation snapshots presented in Figure 9.  

 

 

 



 

Figure 9: Snapshots taken from kMC simulations for a potentiostatic steps from 50 mV to 

95 mV. Li-ions are represented in blue; graphite was omitted with visualization purposes. 

The graphite / electrolyte interphase (Li-ion exchange) is highlighted on the left of Figure a 

with arrows, illustrating lithium intercalation / deintercalation. On the right of the figure, 

lithium ions are confined by a wall and cannot be exchanged with the reservoir of particles. 

This effect is represented with crossed arrows. 

 

 

 



 

Figure 10: kMC results for the Cottrell representation for a potentiostatic step 

95mV 78mV . The main features are pointed with arrows from (i) to (v) for T = 313 K. 

The peaks  p1 and p2 are indicated for T = 313 K. The different features may be correlated 

with simulation snapshots presented in Figure 11. 

 

 



 

Figure 11: Snapshots for kMC simulations for the potentiostatic step from 95 mV to 78 

mV. Li-ion are represented in blue; graphite was omitted with visualization purposes. The 

graphite / electrolyte interphase (Li-ion exchange) is highlighted in Figure a at the left of 

the figure with arrows for lithium intercalation / deintercalation. At the right of the figure 

lithium ions cannot be exchanged with the reservoir of particles, this is represented with 

crossed arrows. Figures a to d corresponds to T=313 K. Figure e, enclosed in a dashed line 

rectangle, is the frame corresponding to the final state of the simulation at T=333K. 

 

 



 

 

Figure 12: Arrhenius-type plots of the exchange current density for three different stages of 

Li-ion insertion in graphite. Stage Id is represented in blue triangles, stage II with red 

circles and stage I with black squares. 

 

 

 

Figure 13: a) Occupation by lithium ions as a function of potential in a small potential 

window from Figure 6. The change of the occupation of stage Id with temperature can be 

appreciated. The potential used for the analysis of the activation energy of Stage Id is 

indicated with a vertical dotted line. b) Arrhenius plot for different activation barriers for 

the insertion/deinsertion process, Δ*
i/d. The lattice occupation corresponds to stage II and 



the exchange current densities were evaluated at 95 mV. The slopes of the linear fits are 

given in the plot. Error bars in Figure b are smaller than symbol size. 

 

 

 

 

 
Figure 14: a) Chemical diffusion coefficients for different temperatures, calculated with 

equation (4). b) Arrhenius plots for the diffusion coefficients obtained at different lithium 

composition, dotted lines are drawn to guide the eye. 

 


