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Abstract 1 

The potentially high release of estrogens to surface waters as a result of high population 2 

density and local livestock production in the Beijing-Tianjin-Hebei region may pose 3 

adverse effects on the reproductive systems of aquatic organisms . This study found 4 

that total measured concentrations of estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-5 

ethinylestradiol (EE2) and diethylstilbestrol (DES) were 468±27.2 ng/L in treated 6 

wastewater and 219±23 ng/L in river waters in this region. E2, E3 and EE2 were the 7 

predominant estrogens in river waters. The restriction of DES for human use should 8 

have been enforced, however concentrations of DES were relatively high compared to 9 

other studies. It has been estimated that the Haihe and Yongdingxin Rivers deliver 10 

approximately 1.8 tonnes of ∑estrogens to the Bohai Bay annually. Concentrations of 11 

individual estrogens were significantly higher in river waters in the dry season, however, 12 

mass loadings were significantly higher in the wet season. The E2-equivalent 13 

concentrations (EEQ) reached 1.2±0.16 and 0.64±0.08 µg-E2/L following long-term 14 

and short-term exposure estimates, respectively, in river waters with an average EE2 15 

contribution of over 90%. This could potentially give rise to high risks to fish 16 

populations. The presence of estrogens in river waters largely derive from human 17 

excretion. Field studies on estrogenic effects on fish reproductive systems are required 18 

in this region as a result of high estrogen contamination levels.  19 
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1. Introduction 22 

Over the past thirty years, natural and synthetic estrogens released to the environment 23 

have raised great scientific and regulatory interest, as a result of their global presence 24 

and potential disruption of the normal physiological functions of endocrine systems of 25 

wildlife and humans [1-5]. Natural estrogens such as estrone (E1), 17β-estradiol (E2) 26 

and estriol (E3), and synthetic estrogens such as 17α-ethinylestradiol (EE2) have been 27 

identified as the major contributors to endocrine disrupting activity in the aquatic 28 

environment [6]. The presence of intersex fishes induced by the presence of these 29 

estrogens has been widely reported throughout the world [4, 6, 7]. These chemicals can 30 

enter the aquatic environment via discharge from municipal wastewater treatment 31 

plants (WWTPs), point-source and non-point-source discharges of untreated domestic 32 

wastewaters, livestock farms, and land-applied biosolids. Although WWTPs can 33 

remove these chemicals relatively efficiently, low level discharge in WWTP effluents 34 

can potentially pose adverse reproductive effects in aquatic organisms [8, 9]. Therefore, 35 

continuous attention is required to quantify environmental releases, occurrence and 36 

risks of estrogens. 37 

The Beijing-Tianjin-Hebei region has one of the highest population densities in China. 38 

The region also produced approximately 5.3 million tonnes of meat annually in 2016 39 

and 2017 [10]. Therefore, large quantities of estrogens (e.g. E1, E2 and E3) could 40 

potentially be released from both human and animal excretion, and ultimately enter the 41 

Wenyu River, Beiyun River, Haihe River and Yongdingxin River running through 42 

Beijing, Tianjin and Langfang (in Hebei Province) through different pathways as 43 



described above. Grill et al. (2018) suggested that EE2 use in Beijing is the highest 44 

across China [11]. It is a principal component of oral contraceptives and also used in 45 

hormone replacement therapy, so it enters the river systems mainly with domestic 46 

wastewater. Previous estimates have identified E2 and EE2 as the most important 47 

pharmaceuticals amongst several widely used drug classes entering the environment 48 

potentially resulting in high risks in surface waters across China [12]. Their predicted 49 

concentrations were elevated in the Beijing-Tianjin-Hebei region [11, 12], which may 50 

also raise the issue of potential human health risks in this region [13-15].  51 

Diethylstilbestrol (DES) is also a synthetic estrogen which has a long history of use. It 52 

has been prescribed to pregnant women for prevention of miscarriages and other 53 

pregnancy problems since 1938, but was banned by 1971 in the USA due to health risks 54 

to pregnant women, as well as potential carcinogenicity or adverse effects to the 55 

reproductive system of born of these pregnancies, who were exposed to DES before 56 

birth [16, 17]. It is still occasionally used to treat advanced prostate cancer [18]. 57 

However, it is unclear when DES restrictions in China were introduced. Meanwhile, 58 

DES has been used in feed supplements or in subcutaneous implants for livestock 59 

production [19], which could lead to contamination in the environment as a result of 60 

residues present in manure. 61 

To the authors’ best knowledge, only limited research has investigated the presence of 62 

estrogens in untreated and treated wastewater in this region along with associated 63 

environmental risks of estrogen mixtures. This study attempted to investigate the 64 



sources and presence of estrogens in the Beijing-Tianjin-Hebei region and assess the 65 

potential additive estrogenic mixture risks to fishes. The study also intended to 66 

investigate whether DES could be detected in this region since its use has been restricted. 67 

The study was designed to quantify mass fluxes and spatial and seasonal variations in 68 

the study rivers relating these to potential sources. Such information is important to 69 

develop local management plans to reduce environmental and potential human health 70 

risks resulting from the release of these substances. 71 

2. Materials and methods  72 

2.1 Chemicals 73 

The targeted chemicals for this study included three natural estrogens, i.e. E1, E2 and 74 

E3, and two synthetic estrogens, i.e. DES and EE2, as mentioned above. Isotope-labeled 75 

chemicals, including estrone-2,4,16,16-d4 (E1-d4), 17β-estradiol-2,4,16,16,17-d5 (E2-76 

d5), estriol-2,4-d2 (E3-d2), 17α-ethinylestradiol-2,4,16,16-d4 (EE2-d4), were used as 77 

internal standards (ISs). All standards and the ISs were purchased from Sigma-Aldrich 78 

(UK) with the purity ≥ 97%. The physicochemical properties of the selected estrogens 79 

are provided in Table S1 in the Supporting Information (SI). 80 

2.2 Study area and sample collection 81 

Sampling campaigns were conducted during a dry season (October 2016) and during a 82 

wet season (August 2017), during which no precipitation was recorded. However, there 83 

were several heavy rainfall events before the sampling period in the wet season. The 84 



Wenyu River, Beiyun River, Haihe River and Yongdingxin River constitute a sub-85 

catchment of the Haihe River catchment with a total population of more than 26 million. 86 

The sub-catchment receives treated and untreated wastewater linked to 70% of 87 

population and 90% of drainage tanks in the Beijing-Tianjin-Hebei region.  88 

Municipal wastewater and receiving river waters in the Beijing-Tianjin-Hebei region 89 

from 51 sampling sites were collected. To explore potential sources of estrogens to the 90 

river systems, both treated and identified untreated wastewater (UW) samples were 91 

collected. This included treated wastewater from the effluent of four major WWTPs in 92 

Beijing (designed treatment capacity, 0.35 – 1 million m3/day) and two major WWTPs 93 

in Tianjin (0.15 and 0.4 million m3/day). Details are given in Table S2. The four 94 

WWTPs in Beijing serve a total of 6 million population and discharge to tributaries of 95 

the Wenyu River within Beijing. The two WWTPs in Tianjin serve a population of 96 

approximately 1 million and discharge into tributaries of the Yongdingxin River and 97 

Haihe River, respectively, within Tianjin. UW samples were collected from three UW 98 

discharge sites with unknown sources identified along the mainstream of the Wenyu 99 

River. River water samples were taken from an additional 42 sampling sites along the 100 

rivers receiving WWTP effluents, including the Wenyu (tributary, Lingou River), 101 

Beiyun (Liangshui River), Haihe and Yongdingxin (Chaobaixin River) Rivers. The 102 

sampling locations started from the outlet of the Shahe Reservoir in Beijing and ended 103 

at the estuaries of the Haihe River and Yongdingxin River to the Baohai Bay (Fig. 1).  104 

A total of 4 L water was taken at each sampling site. For river waters, the mixed 4 L 105 



grab sample was taken from the middle and bank edge of rivers (0-20 cm below water 106 

surface) at the cross section of each sampling site. The water samples from WWTP 107 

effluents and UW discharges were collected from the outlets or sewers before 108 

discharging into the rivers using a bucket. All water samples were stored in a pre-109 

cleaned amber glass bottle and acidified to pH=2.5 by using 2 mol/L hydrochloric acid 110 

to stabilize the samples [20]. All samples were delivered to the laboratory on ice and 111 

extracted within 24 h. The meteorological conditions and further details relating to the 112 

sampling sites are provided in the SI (section S1.1). 113 

 114 

Fig. 1. Location of the Haihe River sub-catchment with the distribution of sampling 115 

sites 116 

2.3. Sample pretreatment and analysis 117 

Sample pretreatment was conducted according to methods in previously published 118 



studies with minor modifications [20-22]. In brief, the water sample from each site was 119 

filtered through 0.7 μm glass fiber filters, split into triplicate samples (1 L each) and 120 

spiked with 100 ng ISs each. The filtered samples were extracted by the solid-phase 121 

extraction using HLB (hydrophilic−lipophilic-balanced) cartridges that were 122 

conditioned in sequence with the mixture (10 mL, 1:1, v/v) of acetonitrile (ACN) and 123 

ethyl acetate (EA), methanol (MeOH, 10 mL) and MQ water (10 mL) before extraction. 124 

Cartridges were eluted with 12 mL mixture of ACN and EA, followed by 12 mL MeOH 125 

after being loaded with water samples. The eluent was concentrated to 1 mL under a 126 

stream of nitrogen. The target estrogens were analyzed by ultra-high-performance 127 

liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). More detailed 128 

information on sample pretreatment, gradient program of LC separation and mass 129 

spectrometric parameters are described in SI (S1.2 and S1.3). 130 

2.4 Quality assurance and quality control 131 

The calibration curve for each target estrogen exhibited a strong linearity (R2 > 0.99) 132 

over a wide range of concentrations (several to 500 or 1000 μg/L, equivalent to ng/L in 133 

water samples) (Table S4). The method quantification limit (MQL) for the selected 134 

estrogens ranged 0.47-6.35 ng/L (Table S4). For each batch of samples, reagent blanks, 135 

procedural blanks and sample replicates were analyzed to monitor possible 136 

contamination and instrumental performance. The experimental procedure was 137 

determined to be free of contamination. The relative standard deviations of the triplicate 138 

samples were less than 15%. The recoveries were determined using a standard addition 139 



method at three spiking concentrations of 10, 50, 100 ng/L for river water and tap water 140 

matrices. The absolute recoveries ranged72.6–93.9% in river waters and 82.4-105% in 141 

tap water. More detailed information can be found in the section S1.4 and Table S4-S5 142 

(SI). 143 

2.5 Environmental risk and linkage to effects to fish reproductive systems 144 

Environmental risks of mixtures of the five estrogens were assessed in this study. These 145 

are major contributors to estrogenic activity in the aquatic environment, normally 146 

exhibiting 3 to 7 orders of magnitude higher potencies compared to other endocrine 147 

disrupting chemicals [23-26]. Typically, the estrogenic potency of estrogens is 148 

measured in relation to E2, which has a defined potency of 1. The additive effects of 149 

the five estrogens to aquatic species were compared to E2 equivalent (EEQ) 150 

concentrations which were derived after accounting for the relative potencies of 151 

individual estrogens, as described in Eq. 1 below. 152 

EEQ= ∑ Ci×RPFi
n
i=1                                                   (1) 153 

Where Ci and 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 refer to the measured concentration and relative potency factor 154 

of estrogen i, respectively. As fish are likely to be the most sensitive aquatic taxa to 155 

these estrogens and studies on estrogenic potencies and related RPF values were the 156 

most abundant in fish among aquatic organisms for all the five estrogens [27, 28], this 157 

study mainly focused on environmental risks to fish. As a reflection of environmental 158 

risks to the whole river water system, indirect effects to other taxa via the food web 159 

may result from changes in the fish population [28]. 160 



RPF values varied considerably in the literature especially for EE2, as a result of the 161 

selection of different fish test species, endpoints and assay methods. For example, the 162 

RPF of EE2 was found to be as high as 30.6 and 40 in inducing vitellogenin (VTG) in 163 

adult female zebrafish and adult male fathead minnows, respectively [29, 30], but only 164 

5 in inducing intersex of fish in another study [31]. Jobling et al. used different sets of 165 

values to estimate EEQ for induction of intersex and VTG, respectively [4]. The range 166 

of RPF values for fish could range from 1.19 – 40 for EE2, 0.2 – 0.4 for E1 and 0.024 167 

– 0.033 for E3 [4, 32-35]. In this study, RPF values of these estrogens were derived 168 

from the relative difference of PNECs (predicted no effect concentrations) protective 169 

of reproductive effects in fish following both long-term and short-term exposures  [27, 170 

34]. PNECs in the case of long-term exposures derived from species sensitivity 171 

distributions, and the corresponding RPF values were 0.33, 0.033 and 20 for E1, E3 and 172 

EE2; whilst PNECs for short-term exposures derived from no-observed-effect 173 

concentrations (NOECs), and the corresponding RPF values were 0.25, 0.025 and 10 174 

for E1, E3 and EE2 [34]. RPF values for DES are very limited in the literature, however, 175 

0.026, used in this study, was reported based on the median effective dose values [36].  176 

3. Results and discussion 177 

3.1 Estrogens in wastewater 178 

Although surface runoff from soils contaminated by livestock waste can be an important 179 

diffuse input of steroidal estrogens to aquatic environment, WWTP effluents are 180 

considered dominant sources especially for heavily urbanized regions [37]. Estrogens 181 



in effluents from conventional biological WWTPs can typically range from ng/L to 182 

µg/L [38]. To identify potential sources in the highly urbanized region in this study, 183 

estrogens in WWTP effluents and UW were analyzed. All five estrogens were detected 184 

in 100% of samples collected from the effluents of the six WWTPs included in the study. 185 

The average total concentration of ∑estrogens was 468±27.2 ng/L and the concentration 186 

of individual estrogens ranged from 54.5 to 137 ng/L (Table 1). This was within the 187 

concentration range for E1 (not detected (nd) – 205 ng/L) and E3 (nd – 590 ng/L), but 188 

exceeding the range of E2 (nd – 44.6 ng/L) included in the global review by Liu et al 189 

[39]. The estrogens found in the WWTP effluents were present at higher concentrations 190 

than those from other studies. Previous studies have not always detected DES in WWTP 191 

effluents in this area [40, 41], however, DES concentrations were relatively high in this 192 

study with a detection rate of 100%. As abovementioned, DES is restricted for human 193 

use but may still be used to treat livestock. In previous studies, E2, E3 and EE2 were 194 

detected at concentrations below or around 10 ng/L in WWTP effluents in Beijing, 195 

whilst E1 concentrations were much higher (> 80 ng/L) [40-42].  196 

In the UW discharges, seasonal average concentrations were 94±22, 143±29, 133±41, 197 

127±30 and 73±11 ng/L for E1, E2, E3, EE2 and DES, respectively. Concentrations 198 

were significantly higher in WWTP effluents with the exception of EE2 and DES 199 

(Tukey-Kramer HSD, p < 0.05). The predominant estrogens were E2, E3 and EE2 in 200 

both WWTP effluents and UW discharges with a total contribution of approximately 201 

70%. On average, EE2 was the most abundant in WWTP effluents (26%), although a 202 

difference in composition existed between effluents in Beijing and Tianjin. In Beijing, 203 



E2 exhibited the second highest proportion in effluents, however in Tianjin, E3 was the 204 

second most abundant, which, however, has a proportion very close to  EE2. Previous 205 

studies have reported EE2 to be present at comparable concentrations to natural 206 

estrogens in WWTP effluents, although annual prescription rates are relatively low (e.g. 207 

50 kg in Germany, production of 41 kg in China) [43, 44]. This could be a result of its 208 

higher stability and the cleavage of the principally excreted glucuronide conjugates [43]. 209 

In contrast to this study, E1 has been reported to be the most abundant in WWTP 210 

effluents, mostly due to its poor removal efficiency in WWTPs [40-42, 45]. However, 211 

E3 is the final estrogen human metabolite, and its presence in influents is likely to be 212 

high. E2 is the primary human metabolite. The excretion rates of the two estrogens from 213 

pregnant women is high with the excretion rate for E2 reaching up to 5 mg/day [38]. 214 

Therefore, these two estrogens could be more abundant in effluents than other estrogens. 215 

Different effluent compositions from separate studies and locations may be related to 216 

varying human excretion rates, population characteristics including number of pregnant 217 

women, chemical properties and numerous parameters that will affect their removal 218 

efficiencies in WWTPs, including temperature, flow rates and microbial activity [42, 219 

46].  220 

Table 1 Seasonal average concentrations of estrogens in WWTP effluents (mean221 
±STD, ng/L) 222 

 E1 E2 E3 EE2 DES Sum 
WWTP1 74.7±32.2 125±24.3 112±26.0 137±9.3 64.8±19.5 513±51.9 
WWTP2 78.8±20.3 111±21.6 95.6±6.6 118±13.2 54.5±16.7 458±64.8 
WWTP3 78.5±39.8 114±24.3 93.8±2.7 116±6.8 61.7±23.4 464±75.3 
WWTP4 84.9±36.7 101±19.7 106±14.9 119±7.1 70.4±21.1 481±73.0 
WWTP5 67.0±21.8 93.8±7.2 117±16.9 118±12.8 66.6±21.8 462±31.6 
WWTP6 58.8±21.9 99.6±13.3 107±4.5 110±13.0 56.0±24.5 432±73.4 



Mean 73.8 108 105 120 62.3 468 
STD 9.4 11.5 9.0 9.0 6.2 27.2 

STD: standard deviation 223 
 224 

3.2 Spatial distribution of estrogens concentration and composition in receiving 225 

rivers 226 

The presence of estrogens in river water samples from Beijing to the estuaries entering 227 

Bohai Bay, receiving above municipal wastewater, were analyzed. In all river water 228 

samples, the average total concentration of ∑estrogens was 219 ± 23 ng/L, of which the 229 

three natural estrogens accounted for 62% averagely. The average concentrations were 230 

33, 51, 53, 58 and 24 ng/L for E1, E2, E3, EE2 and DES, respectively. Comparing these 231 

data with other studies worldwide (Table S6), the concentrations of E1 were comparable 232 

with or lower than other studies; and the concentrations of the other four estrogens were 233 

relatively higher than those from other studies with the exception of data from 139 234 

streams in the USA [47]. Lei et al. reported a lower concentration of all five estrogens 235 

in the Yongdingxin River compared to this study [48]. Overall, the concentrations 236 

reported in this study were higher than those from many other studies worldwide. This 237 

matches the estimate by previous studies in this region, which have suggested that 238 

emissions were high for four of the estrogens (except DES), even after WWTP removal, 239 

as above mentioned.  240 



 241 
Fig. 2. Spatial distribution of average concentrations of ∑estrogens in the two 242 
seasons along rivers (A); River names are denoted in italic bold characters; Figure 243 
B is an enlargement showing the spatial distribution of the concentration within 244 
the dashed-line square in Figure A. The sites named UW1-3 are UW discharge 245 
sites; the sites marked with asterisk (*) indicate WWTPs. 246 

The spatial distribution of average concentrations of ∑estrogens in the two seasons 247 

along the study rivers is illustrated in Fig. 2. It has been demonstrated that WWTP 248 

effluents and UW discharges were the major contributors of the estrogens measured in 249 

the study rivers, provided that estrogen concentrations in WWTP effluents or UWs were 250 

significantly higher than those in river waters (T-test, p < 0.05). Estrogen concentrations 251 

at the downstream site after the confluence of tributaries that receive WWTP effluents 252 

were generally higher than those at upstream sites (Figs. 2A and 2B). By using the 253 

Tukey-Kramer HSD test (α = 0.05), ∑estrogens water concentrations were not 254 

significantly different between the four rivers. However, multifactor analysis of 255 

variance showed that individual estrogens may have exhibited significant concentration 256 

 

  

  
  
  
  
  
  



differences between rivers. Specifically, concentrations of E1 were significantly higher 257 

in the Wenyu River compared to the other three rivers with no significant difference 258 

found among the other three rivers. Concentrations of EE2 were found to be 259 

significantly higher in the Yongdingxin River compared to the Wenyu River. 260 

Concentrations of DES were significantly higher in the Wenyu River than in the Beiyun 261 

and Haihe Rivers. No significant differences were found for the other individual 262 

estrogens among the other rivers not indicated above. If examining the difference 263 

between river reaches separated by administrative boundaries, it was found that 264 

concentrations of E1, DES and ∑estrogens in Beijing (site ID ≤ S23) were significantly 265 

higher than those in Langfang (with only three sites in) and Tianjin. This was probably 266 

a result of the higher population density in Beijing than in the other two cities. No 267 

significance was found between Beijing and the Tianjin-Langfang region for E2, E3 268 

and EE2 individually. 269 

The estrogen composition between the sampling campaigns was relatively stable along 270 

the four rivers with E2, E3 and EE2 being dominant especially for the Beiyun, Haihe 271 

and Yongdingxin rivers. Their concentrations were significantly higher than E1 and 272 

DES. Concentrations were not significantly different between E3 and E2, or between 273 

E3 and EE2, respectively; however, EE2 was found at significantly higher 274 

concentrations than E2. DES showed the lowest concentrations among the five 275 

estrogens which is reasonable given that its human use has been restricted. 276 

3.3 Mass fluxes of estrogens along rivers and from WWTP effluents 277 



River flow rates were estimated by measurements of the flow velocity (m/s) and the 278 

width and average depth of the river cross section at the sampling site when collecting 279 

samples. Average effluent flow rates were obtained from the WWTP managers. The 280 

mass fluxes of estrogens were therefore calculated by multiplying measured 281 

concentrations and flow rates. The mass flux of ∑estrogens from outlet of the Shahe 282 

Reservoir to the Wenyu River was estimated to be 6.3 g/h on average, with a total annual 283 

mass loading of ca. 55 kg. The seasonal average mass flux of ∑estrogens from the three 284 

UW discharging sites to rivers ranged from 2.4 to 3.6 g/h, with a total mass loading of 285 

approximately 81 kg/year, with natural estrogens accounting for ca. 65%. The mass flux 286 

of ∑estrogens was the highest from WWTP3 (19 g/h) which is the largest WWTP in 287 

Beijing with a 1 million m3/day wastewater treatment capacity (Table S2). The total 288 

input of ∑estrogens from WWTPs 1-3 to the Wenyu River was estimated to be 303 289 

kg/year with natural estrogens contributing approximately 62%. The mass flux of 290 

∑estrogens in effluents from WWTP4 was estimated to be 12 g/h, with estimates of 2.9 291 

g/h and 7.2 g/h for WWTP5 and WWTP6, respectively. The mass flux of ∑estrogens 292 

from one river to another and from tributaries to the mainstream is shown in Fig. 3. The 293 

estimated total mass loading of ∑estrogens was approximately 1.8 tonnes/year from the 294 

Haihe and Yongdingxin Rivers to the Bohai Bay, with natural estrogens contributing 295 

approximately 63.5%. 296 



 297 

Fig. 3 Mass fluxes of ∑estrogens along rivers and mass loadings from WWTPs to 298 
rivers (g/h) for both seasons 299 

3.4 Seasonal variation of concentrations and mass fluxes 300 

Seasonal differences between the two sampling campaigns were investigated for both 301 

concentrations and mass fluxes. The average concentration of ∑estrogens in river 302 

waters was 248 ± 28.8 ng/L in the dry season and 190 ± 27.5 ng/L in the wet season 303 

(Table S7). Concentrations were significantly higher in the dry season for each 304 

individual estrogen (T-test, p < 0.05). In contrast, the mass flux of ∑estrogens in river 305 

waters was significantly higher in the wet season (averagely, 55.0 ± 45.4 g/h) than in 306 

the dry season (29.5 ± 25.6 g/h) (Table S8), with significant differences also found for 307 

individual estrogens (T-test, p < 0.05). This suggests that mass loadings were greater in 308 

the wet season although concentrations were diluted (Figs. 4 and S1). This matches 309 

previous findings for home and personal care product ingredients and antibiotics in the 310 

same rivers [22, 49]. These observations were probably a result of the combined effect 311 

of (1) higher dilution factors and (2) higher inputs of estrogens with sanitary sewer 312 

overflows and/or with land surface runoff during or after precipitation in the wet season 313 

compared to the dry season [12, 50, 51]. Land application of manure from livestock 314 
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operations followed by runoff could also be an important source of estrogens to the 315 

rivers in the wet season [52, 53]. Fig. S2 illustrates concentrations and mass fluxes of 316 

∑estrogens, as well as for E1, E2 and DES individually in WWTP effluents, which 317 

demonstrates that they were significantly higher in the dry season compared to the wet 318 

season. This supports the probable occurrence of the sanitary sewer overflow and inputs 319 

with land surface runoff in the wet season, assuming that population sizes served by 320 

these WWTPs and human excretion rates were the same in the two seasons. 321 

 322 

 323 

Fig. 4 Seasonal concentrations (A) and mass fluxes (B) of ∑estrogens 324 

A comparison of estrogen composition in treated and untreated wastewaters and river 325 

waters between the two sampling campaigns was carried out. The percentage 326 

contribution from each estrogen was transformed (arcsine squareroot) before a 327 
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statistical comparison using the T-test (α = 0.05). River water samples across the whole 328 

target region showed significantly higher proportion of E1 and DES in the dry season 329 

compared to the wet season, with an inverse pattern observed for E2, E3 and EE2. This 330 

seasonal feature generally matched those for UW and WWTP effluents, with the 331 

exception for E2, for which the seasonal difference in the composition was not 332 

significant in both UW and WWTP effluents (Fig. S3). However, across the study rivers 333 

(Fig. 5) the proportion of EE2 was not significantly different between the two seasons 334 

in the Wenyu and Haihe Rivers. This was also the case for the proportion of E3 in the 335 

Haihe and Yongdingxin rivers. Additionally, seasonal differences were insignificant for 336 

E1 and DES proportions in the Haihe River, and for E2 proportions in Yongdingxin 337 

River. The seasonal composition pattern for the other estrogens across the other rivers 338 

aligned with the pattern in river waters for the whole region.  339 

 340 

Fig. 5 Composition of estrogens in river waters of different river reaches in the dry 341 
and wet seasons 342 

3.5 Risk assessment of estrogen mixtures  343 
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Adverse effects and associated risks were assessed for the mixture of estrogens rather 344 

than for individual substances as a result of multicomponent chemical “cocktail” in 345 

reality. The EEQ for the five measured estrogens was calculated to provide an 346 

assessment of risks to fish induced by the mixture of estrogens. RPF values from both 347 

long-term and short-term fish studies were taken from the literature. The corresponding 348 

EEQ was compared with the long-term E2 PNEC (2 ng/L) and the short-term E2 PNEC 349 

(5 ng/L), respectively [27]. The estimated additive EEQ was 1.2±0.16 µg-E2/L (range, 350 

0.96 – 1.7 µg-E2/L) following long-term exposures and 0.64±0.08 µg-E2/L (range, 0.5 351 

– 0.86 µg-E2/L) following short-term exposures in river waters using averaged data. 352 

The average additive EEQ was 2.5 µg-E2/L and 2.7 µg-E2/L in WWTP effluents and 353 

UW, respectively, following long-term exposures; and 1.3 and 1.4 µg-E2/L in WWTP 354 

effluents and UW, respectively, following short-term exposures. The data clearly shows 355 

that the EEQ at all sampling sites exceed both the long-term and short-term E2 PNECs, 356 

which indicated a high risk to fish from exposure to estrogen mixtures in these rivers. 357 

Additionally, the estimated EEQ was higher than the NOECs for inducing intersex (1 358 

ng/L) and VTG (5 ng/L) and even higher than the LOECs (the lowest observable effect 359 

concentrations) for inducing intersex (10 ng/L) and VTG (25 ng/L) selected by Jobling 360 

et al. for their risk assessment [4]. Arlos et al. estimated that an EEQ ≥10 ng-E2/L was 361 

associated with high intersex incidence and severity [54]. Therefore, concentrations of 362 

estrogens measured in this study in the target region are likely to have been high enough 363 

to cause intersex or VTG etc., which will affect the reproduction and ultimately the 364 

population size of fishes locally. Subsequently, the abundance of other aquatic taxa, 365 



such as algae, zooplankton, microorganism and invertebrates, might be affected because 366 

of trophic linkage to fish [28]. Field observation of feminization, intersex or synthesis 367 

of plasma VTG in wild fish induced by estrogens, effects on fish populations and other 368 

aquatic taxa communities has been widely reported in the UK and the USA [4, 6, 55, 369 

56], but is extremely rare in China.  370 

The percentage of EEQ from individual estrogens could reflect the contribution of each 371 

estrogen to risks induced by mixtures. Fig. 6 illustrates that EE2 was the major 372 

contributor (>90%) of the cumulative estrogenic activity to fish in the target region. The 373 

percentage was similar in municipal wastewater and river waters receiving the 374 

wastewater as shown in Fig. 6. This is in contrast with the chemical mass compositions 375 

in river waters and wastewaters (Figs. 5 and S3), which suggests that concentrations 376 

alone do not reflect the environmental risk. As a result, estrogenic potency should be 377 

considered in addition to concentration profiles. As EE2 contributed to higher potency 378 

in long-term exposures (a selected RPF of 20 in this study) than in short-term exposures 379 

(a selected RPF of 10), the percentage of its EEQ was higher in the case of long-term 380 

exposures (95%) than short-term exposures (90-91%). E2 followed EE2 and showed 381 

the second highest contribution to EEQ, ranging from 4.2 to 4.3% following long-term 382 

exposures and 8.0-8.1% following short-term exposures. This observation aligns with 383 

those in river waters of eight Asian countries including China reported by Duong et al. 384 

[57]. They found E2 and EE2 made a predominant contribution toward estrogenic 385 

activity. DES shared the lowest percentage contribution to EEQ with the lowest mass 386 

concentrations and relatively lower RPF values compared to the other estrogens. 387 



 388 
Fig. 6 Composition profile of EEQ of estrogens in WWTP effluents and river 389 

waters following long-term and short-term exposures respectively 390 

 391 

3.6 Sources of estrogens 392 

Given the potentially high risks to fish induced by local estrogen mixtures, it is 393 

important to investigate sources of these estrogens in this region. Human urine is 394 

frequently considered to be major sources of both natural and synthetic estrogens in the 395 

aquatic environment [4, 32]. A ratio of E3/(E1+E2+E3) > 0.2 in WWTP effluents could 396 

be used as an indicator of natural-estrogen release from human excretions [40]. In this 397 

study, the average ratio was 0.37 in WWTP effluents with a range of 0.26-0.48 for 398 

individual WWTPs in the two seasons. The ratio in the wet season (0.40 – 0.48) was 399 

higher compared to the dry season (0.26 – 0.37). Therefore, the natural estrogens 400 

reaching WWTPs and ultimately entering rivers are likely to originate mainly from 401 

 

E1
0.89%

E2
4.2% E3

0.14%

EE2
95%

DES
0.05%

E1
1.29%

E2
8.0%

E3
0.21%

EE2
91%

DES
0.10%

E1
0.96%

E2
4.3% E3

0.14%

EE2
95%

DES
0.06%

E1
1.39%

E2
8.1%

E3
0.20%

EE2
90%

DES
0.12%



human excretions.  402 

Taking into account the production of EE2 (approximately 41 kg) for use in 403 

contraceptives in China in 2016 with the assumption of a human excretion rate of 100% 404 

for EE2 [44, 58] and based on the total human excretion of E1 (5.1 tonnes/year), E2 405 

(1.4 tonnes/year) and E3 (27 tonnes/year) in China in 2010 estimated by a previous 406 

study [59], EE2 only accounted for approximately 0.12% of these estrogens excreted 407 

by humans in China. The Chinese population increased in 2016, which would probably 408 

only cause a slightly higher excretion of natural estrogens. This would not reduce above 409 

percentage greatly. This percentage was much lower than that in Netherlands (1%) [32], 410 

which indicates a lower prescription rate of pharmaceuticals containing EE2 in China 411 

nationally. However, the measured concentrations and percentage of EE2 were 412 

comparable to the natural estrogens in the present study region, which indicates a 413 

comparable prescription rate of EE2 containing contraceptives in Beijing and Tianjin 414 

with that in developed countries such as Netherlands. This aligns with the predicted 415 

distribution of EE2 across China by Grill et al. [11] and the conclusion made by Zhu et 416 

al. in a previous study [12]. Natural estrogens could be also contained in prescribed 417 

pharmaceuticals for human use, however it is difficult to differentiate those naturally 418 

excreted and those in prescription form via measurements. 419 

As indicated above, agricultural sources are also potentially important sources of 420 

estrogens, since livestock excrete E1, E2 and E3. In most situations effluents or waste 421 

from livestock farms will not be treated. The quantity of estrogens present in urine and 422 



faeces of livestock that enter rivers depends on their chemical properties, the distance 423 

of livestock farms from rivers and precipitation rates. About 0.61, 8.2, 3.2 and 150 424 

million head/units of live cattle, swine, sheep and poultry respectively were marketed 425 

around the years 2016 and 2017 [60-62]. Such production would potentially result in 426 

diffuse inputs of estrogens to the study rivers but this remains largely unknown.  427 

As EE2 is only used in human prescriptions and DES is officially restricted in human 428 

use, the insignificant correlation of EE2 and DES concentrations for both seasons 429 

(Table S9) implies that the restriction of DES use probably has been strictly enforced. 430 

Because DES is mostly being used in animals, EE2 and DES could be considered to be 431 

indicators of human and livestock sources respectively. E3 significantly correlated to 432 

EE2 but not to DES in both seasons, indicating its predominant human sources. All 433 

three natural estrogens significantly correlated to EE2 in the wet season, but only two 434 

(E2 and E3) significantly correlated to EE2 in the dry season. The correlation 435 

coefficient was higher in the wet season than in the dry season. This indicated a closer 436 

link of natural estrogens to human sources in the wet season compared to the dry season. 437 

This is probably caused by the sewer overflow after precipitation in the wet season, 438 

which transported more human excreted estrogens into the rivers. Johnson et al. 439 

estimated that 15% of all the estrogens in UK waters were from farm animals, if 1% of 440 

steroid estrogens in soils were transported to river waters by overland runoff [63]. 441 

Therefore, it will facilitate the contamination control of estrogens, if the proportion of 442 

estrogens in river waters derived from livestock excretions can be quantified in this 443 

region and across China. 444 



4. Conclusions 445 

Seasonal variation and spatial distribution of concentrations, mass fluxes and 446 

composition and the EEQ of five estrogens have been investigated in municipal 447 

wastewater and river waters receiving wastewater in the Beijing-Tianjin-Hebei region. 448 

With the exception of E1, the other four estrogens in this region showed higher 449 

concentrations compared to measurements from other studies. E2, E3 and EE2 were the 450 

predominant estrogens in both municipal wastewater and river waters. The high 451 

additive EEQ of estrogen mixtures indicated a potentially high risk of adverse effects 452 

to fish, both at an individual level and at a population level. EE2 contributed over 90% 453 

to the EEQ. As a result, field observations of such effects in the wild fish population is 454 

urgently required across China where there is a lack of such data. Although this will 455 

require considerable effort, such investigations will ensure a clearer picture of the 456 

estrogenic effects to different fish species and ecosystems, along with identifying any 457 

potential impact to human health. The impact of the introduction of policy controls on 458 

the use of DES has also been addressed in this study. An assessment of the prevalence 459 

of DES across the study rivers implies that the animal excretion could be a major source 460 

of DES. However, more accurate quantitative estimates are required to assess the 461 

sources of different estrogens in river systems in the future, and the effects of human 462 

activities need to be explored further. This will ensure that river contamination by 463 

estrogens can be controlled and the effects of their presence reduced.. 464 
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