
0740-7459 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2956701, IEEE Software

1

A Case for Human Values in Software Engineering

Jon Whittle, Faculty of Information Technology, Monash University, Australia

Maria Angela Ferrario, School of Computing and Communications, Lancaster University, UK

Will Simm, School of Computing and Communications, Lancaster University, UK

Waqar Hussain, Faculty of Information Technology, Monash University, Australia

Abstract

This article argues that human values – such as responsibility, transparency, creativity, and equality – are

heavily under-represented in software engineering methods. Based on experiences with real-world

projects with not-for-profits, we explore how human values can be integrated into existing participatory

agile practices. We propose new ways of considering human values in software practice, including: the

use of the Schwartz taxonomy of human values and values portraits to contextualise values definitions;

the use of values as a way to capture the rationale for requirements to ensure a culture of values

throughout the software lifecycle; and a simple adaptation of agile methods to include a role for a

‘critical friend’ who can champion values during decision making.

Keywords/taxonomy: D.2.14 Human Factors in Software Design, H.1.2.b Human-centered computing,

D.2.1 Requirements/Specifications

Three Actionable Insights:

1) Existing social science theories of human values can be brought into requirements engineering

to provide techniques for defining and refining human values in a software context.

2) Values provide the ‘why’ in requirements engineering – by documenting requirements with this

rationale, a project can ensure that values are considered throughout the software lifecycle.

3) There is no need for completely new software processes to handle human values; rather,

existing processes (e.g., agile methods) can readily be adapted to include consideration of

human values.

This article makes the case for considering human values (such as diversity, integrity and sense of

belonging) as “first class entities” in software engineering. Software practice includes a wide body of

knowledge on how to properly handle technical values (such as security and performance) and business

value but is lacking guidelines for how to deal with the broader set of human values. In particular, there

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/286353209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0740-7459 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2956701, IEEE Software

2

are no systematic software engineering methods that detail how to define, refine, and monitor human

values throughout the software development lifecycle.

Recent high profile cases have shown that ignoring human values can have devastating negative

economic impact. In the Volkswagen emissions scandal [1], software was deliberately designed in

contradiction to the company’s corporate value of “responsible thinking”, a decision that led to the

resignation of the CEO, a 30% drop in VW’s stock price and 25% drop in sales within a year. This is not,

however, an isolated example. Galhotra et al. [2] cite many examples of ‘biased’ software systems,

which act in a way different to the values intended by their designers: Amazon’s software for

determining which US zip codes to give free same day shipping, which turned out to be biased against

minority neighbourhoods; and US Justice Department risk-assessment systems, which have been proven

to unfairly flag black defendants as future criminals. Other examples have been called out by the media:

for example, the supply and demand pricing system that unexpectedly led to price gouging on airline

tickets for Hurricane Irma evacuees. The New York Times reported at the time, “There are no ethics

valves built into the system that prevent an airline from overcharging during a hurricane.” [3]

In short, whether deliberately or unintentionally, there are now countless examples where software has

not been designed to respect human values.

This article raises awareness about the importance of human values in software engineering. Based on

insights from a number of real-world projects in the not-for-profit sector – which took place over a three

year period – we make initial suggestions as to how human values can be handled in a software

development process.

What are Human Values?

Human values have been studied extensively in social science, leading to several well-evidenced values

theories. One of the most prominent is Schwartz’s Theory of Universal Values (Figure 1). Based on

surveys in 68 countries, Schwartz concluded that there are ten universal values, each subdivided into

finer-grained values [4]. These values are universal in the sense that all countries and cultures recognize

them as ‘legitimate’ values; however, an individual, organisation or society will hold a different subset of

these values. Schwartz’s model also makes no moral judgment. Thus, the value of ‘wealth’ is considered

just as valid as the value of ‘social justice’. Hence, there is a clear distinction between values and ethics:

ethics are societally-agreed moral expectations, whereas values may be good or bad and have no moral

connotation.

A related perspective on values is that of corporate values. Since the publication of the book, Built to

Last: Successful Habits of Visionary Companies [5], which concluded that one key ingredient of success is

a focus on corporate values, there has been a trend in the corporate world towards public expression of

values. In a study by consultancy firm Maitland in 2015 [6], 83 of the FTSE100 companies articulate a

clear set of corporate values. These values are typically social in nature and complement a corporation’s

need to drive profit margins.

Researchers in information systems and human-computer interaction have studied human values in

design since the late 1980s. To date, however, the software engineering community has not leveraged

this. Value-sensitive design [7] provides a suite of value-oriented techniques designed to elicit

0740-7459 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2956701, IEEE Software

3

stakeholder values, manage value conflicts, and influence high-level design decisions in software

systems. These techniques are usually ‘valuefied’ versions of well-known methods: e.g., semi-structured

interviews with stakeholders that focus on value elicitation, ethnographic methods viewed with a value

lens, and focus groups used to discuss potential values concepts. Values in design [8] studies how social

values are inherently embodied in technology and promotes a notion of ‘engineering activism’ whereby

engineers are on the look out for designs that misalign with values and ‘call them out’. Both value-

sensitive design and values in design have a lot in common with participatory and co-design approaches

to technology development, which emphasize a deep and thorough participation of users and other

stakeholders in design decisions. These methods, however, come from a social science perspective and

their application is therefore difficult or unclear in the technical world of software. Software engineering

has a wide range of technical development methods (cf. design patterns, penetration testing,

refactoring, software analytics); to date, the ideas and concepts from value-sensitive design and values

in design have not been mapped down to the level of software techniques.

The word ‘value’ is unfortunately a rather overloaded term. Value-based software engineering [9]

defines the notion of ‘value’ as largely economic. This is similar to the notion of value in some agile

development methods, where the emphasis is on ‘business value’.

Exploring Human Values in Practice

Our long term goal is to develop new software engineering practices that support practitioners in

considering human values as part of software development. As a first step towards this goal, we

undertook three real-world projects, each with customers from the not-for-profit sector. Two of these

projects are referred to in this paper (Figure 2). In each case, we worked collaboratively with a team of

developers, customers and other stakeholders to understand how values might be incorporated in the

software development process.

Our research approach is exploratory – given that this problem has not been studied in depth before in a

software engineering context, our intention was to experiment with adaptations of existing practices

and generate insights that could be further validated at a later date.

Each project was chosen to be in a context where stakeholders had clear ideas about their values. In

each project, a partnership was formed between researchers, software engineers and members of

customer organisations and other stakeholders. Using a participatory agile development approach, each

project developed an innovative software system in nine months that addressed a mutually identified

social problem. The research team worked collaboratively with the organisations following participatory

action research (PAR) principles.

For each project, we collected data on the development process and values intervention points, using a

variety of methods, including semi-structured interviews, ethnographic observations, focus groups, co-

design workshops, surveys and end-user trials.

Lessons Learned

Our initial studies suggested a number of ways in which human values can be incorporated into software

development practice. These insights were derived from one or more of the methods applied, as

0740-7459 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2956701, IEEE Software

4

described above, including analysis of the data collected using standard quantitative and qualitative

methods. We elaborate on four key insights.

Eliciting human values and making them more tangible

One of the immediate challenges when considering human values is the abstract nature of values and, in

particular, how to make these more tangible in software design. Software engineers need concrete

definitions to work with. It is likely impossible – and not desirable – to provide a universal definition for

each value as, by their nature, values are very contextual. Instead, therefore, the task is to provide

guidance on how each project can operationalize values definitions.

Based on our experience with the projects, we found it effective to use the Schwartz model as a starting

point and then define relevant values using a technique we invented called values portraits.

The Schwartz model provides a clear taxonomy of human values to consider in a project. One starting

point for a project, therefore, is to use the Schwartz model as a means to trigger discussion among

project stakeholders as to what are the project values.

Once a subset of Schwartz values has been agreed upon, the challenge is to make these values more

tangible in the context of the current project. We created values portraits for this purpose – see Table 1

for an example. A values portrait captures more detailed requirements as to what values mean in the

specific context of a project. Thus, the value of ‘reputation’ can be refined into ‘will not embarrass me’

which can, in turn, be refined into concrete design decisions. We used structured text for values

portraits, but the same approach could be applied using more formal modelling techniques.

A simple process for coming up with values portraits (which can be carried out collaboratively in a

workshop-style or individually) is:

1. Discuss the values from the Schwartz model to see which best represent the project

stakeholders’ values. Note that, at this point, the project team may decide to use slightly

different words to talk about their values – using the terms from the Schwartz taxonomy is less

important than using words which resonate with project stakeholders.

2. Refine the agreed values using values portraits.

3. Extract functional and/or non-functional requirements from these portraits to complement

requirements elicited elsewhere.

Values portraits were developed during the projects and then iteratively applied and proved effective.

(See sidebar, “The Clasp Project”, for an example.)

Documenting Values as the Rationale in Requirements

One key issue that came up is that for a values-driven approach to be successful, the project values must

be reiterated throughout the project team at every opportunity. This is to ensure that consideration of

values becomes part of the project culture.

We observed that values can provide the rationale for requirements. One view of requirements is that

functional requirements capture the ‘what’ of a software system, whereas non-functional requirements

capture the ‘how’. We discovered that values capture the ‘why’ and thus provide one way of

0740-7459 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2956701, IEEE Software

5

augmenting traditional requirements with rationale as to how the requirements relate to broader

human values.

This observation provides a way of documenting requirements and/or design decisions by providing

values-based rationale where appropriate, which can help with reminding the team why certain

decisions have been taken. (See sidebar, “The Clasp Project”, for an example).

Considering Values throughout a Participatory, Agile Process

Once values have been documented within a project, they must be considered at all stages of the

software development lifecycle. In our projects, we did not find the need for completely new

development methods to support this. Rather, existing methods can readily be applied, but, crucially,

they must be adapted.

We used a combination of participatory design and agile methods. Participatory design lends itself very

well to considering values. Participatory design, however, often involves lengthy and heavy consultation

with stakeholder groups as well as significant time spent co-designing solutions with participants. We

found that typical participatory design methods are too slow for the fast-paced world of software, and,

furthermore, that heavy levels of participation often do not lead to a better solution than a more

lightweight approach [10]. In particular, some of the methods often used in participatory design, such

as interviews and ethnography, can take a long time to produce results; we therefore adapted these

methods to a ‘quick and dirty’ approach.

Similarly, agile methods lend themselves naturally to consideration of values: the inclusion of certain

roles in an agile team (e.g., customer) provide natural points in which to insert values-driven thinking.

Indeed, in some agile processes, certain team roles are intended to question and ensure that solutions

are providing ‘value’. However, ‘value’ in agile methods is solely concerned with economic value. One

simple adaptation that we introduced was to assign a member of the agile team to the role of ‘critical

friend’ to raise concerns about design decisions which may interfere with agreed values. This led to

discussions around the appropriateness of design decisions and, in some cases, alternate decisions being

taken.

Considering the whole, and values conflicts

One major insight from our projects is that a values-driven approach cannot simply consider software in

isolation but must take a holistic approach. That is, even with careful design, there can be unintended

consequences from introducing a software system, which may impact negatively on the values a project

aims to uphold. Moreover, it is not always possible to satisfy all values within a project: values often

inherently conflict, sometimes in a way that cannot be reconciled. In such cases, we took an approach

that, where a particular value could not be fully satisfied within the software project, we would look for

ways outside the project to partially address the value. The take-away message here is that,

unsurprisingly, software cannot and should not attempt to be the sole enforcer of values; rather values

need to be considered in a holistic, systems-thinking framework. (See sidebar, “The Patchworks Project”,

for an example).

Conclusion

0740-7459 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2956701, IEEE Software

6

We have argued in this article that human values should be considered as first-class citizens in software

development. In the same way that quality concerns such as security and privacy have now become fully

integrated in software development processes, so too should other human values such as transparency,

respect, empowerment, and community responsibility. Indeed, the increasing prevalence of software in

society means that now is an opportune time to consider human values in software.

In this article, we presented some early insights on how human values could be addressed in the not-

for-profit sector. Further research is required to generalize these findings to other, more commercial

industries. Our research group is also involved in efforts to integrate these insights into well accepted

software methods such as agile development; hence, ongoing work is looking to formalize software

processes for human values.

Like any software process, if values are to be handled properly, they must be considered in software

specification, design and implementation, validation, and evolution. In essence, values-driven software

engineering should include “valuefied” versions of well-known software engineering processes and

techniques. Thus, for example, in requirements engineering, methods would allow business analysts to

specify and refine a project’s values, and, crucially, provide traceability to functional requirements. In

software design, design patterns could be valuefied to make more explicit the potential impacts

(positive and negative) on the project’s values. Or there may be entirely new design patterns which

capture best practice as to how certain values can be embedded in software. In implementation,

developer tools could provide support to deal with values – this could be refactoring tools that check for

breaking values, intelligent recommender systems that suggest the use of code fragments related to

values in design patterns, or reverse engineering tools that would use automation to extract implicit

values from code and make them explicit. In evolution, software engineering processes would be

updated to allow developers to track values in software over time through (e.g.) new software metrics

that give approximate measures of values. The challenge in all of this, of course, is the high level,

abstract nature of values, but, as previously pointed out, if methods are provided to refine values into

operational forms, technical software engineering solutions become viable.

Technical solutions for human values must go hand in hand with non-technical solutions. It may well be

that new legal frameworks will emerge that will enforce a consideration of human values. And

organisations will need to develop new structures for ensuring that staff are appropriately trained and

supported in implementing human values. These socio-technical considerations should lead in turn to

collaborative methods for dealing with values systematically: such as CERT-like repositories for

documenting values breaches so future developers can avoid them, or values assurance cases, for

organisations to provide evidence to regulatory authorities that they have properly considered human

values.

In short, we believe that the next few decades will bring an increased awareness of human values in

software development. As Grady Booch said in a 2015 keynote at the International Conference on

Software Engineering, we must come to understand that “every line of code we write has a moral and

ethical implication.” Given the distinction between ethics and values, we prefer a different version of

this statement – that “every line of code has a values implication” – but the sentiment is the same.

0740-7459 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2956701, IEEE Software

7

Figure 1: Theoretical Model of Relationships between Values in the Schwartz Theory of Basic Values (adapted from [11]). Boxed
are the ten universal values, subdivided into finer-grained values. Values closer to each other are complementary; those further
apart are in conflict.

Figure 2: (a) Patchworks, a collaboratively designed information system for the homeless
(http://vimeo.com/43110132); (b) Clasp [12], an anxiety tracking device for autistic adults
(https://www.youtube.com/watch?v=WjvLZrEYE7M).

0740-7459 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2956701, IEEE Software

8

The Clasp Project (sidebar)

In the Clasp project (Figure 2), we worked with a group of around fifty autistic adults and their carers

and family to develop new software that could tackle social anxiety. In particular, autistic people often

use a form of self-stimulatory behaviour, known as stimming, to reduce their anxiety. Stimming is a

repetitive movement, often involving objects (pulling on bracelets, repeatedly feeling soft materials,

etc.). By ‘digitizing’ a person’s stimming object, technology could provide a temporal map of levels of

anxiety which could be triangulated with GPS location data, diary entries, and other sensor data to

provide insights on what causes anxiety for a person and whether attempted behavioural interventions

are helping. Traditional software qualities (privacy, performance, etc.) were important, but equally

important were the human values of self-enhancement, openness to change, and conservation of

reputation.

Table 1 shows an excerpt of the values portraits developed by the team. These include values expected

of the technological solution and values expected of the process. These values were refined into

requirements and influenced design decisions. For example, the value of Conservation, as expressed by

“it won’t embarrass me” related to fears of the autistic adults sharing information about their anxiety on

social media. Participants wished to share information, but in a safe way. The decision was taken

therefore to avoid well-known social networks in favour of the use of Diaspora, a social network whose

stated principles (decentralization of data onto independently run servers, and freedom to use an

invented identity) more closely aligned with Clasp’s values.

We also documented the values in the statement of requirements – the values can be seen as the ‘why’

for a requirement. As an example, the project team decided that rather than only having sensing

technology that passively collected data about users (e.g., GPS location, interactions with stimming

objects), the system needed to also allow active interactions so the users would be in control. Hence,

the requirement, “The system shall allow users to view and modify data collected” was augmented with,

“Why? To support the value of feeling in control when reacting to stress.” We found that these “why”

statements were a good way to maintain a focus on values throughout the requirements and design

process.

0740-7459 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2956701, IEEE Software

9

Table 1: Values Portrait for Clasp.

The Patchworks Project (sidebar)

In Patchworks (Figure 2), we worked with a group of homeless people and a local charity. The aim was to

better understand the digital communication needs of the homeless, in a context where access to the

internet is patchy and/or restricted. Participants quickly agreed that access to information (on health

resources, temporary accommodation, etc.) with real-time updates (due to the constantly changing

nature of such limited resources) was critical, but that current access (e.g., use of public computers) was

not sufficient. The team therefore designed a bespoke RFID-based device that could be used to access

personalized, real-time information from a set of ‘stations’ in public locations available 24 hours.

0740-7459 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2956701, IEEE Software

10

While traditional software qualities were important – data privacy, availability, low cost of devices,

information accuracy – the Patchworks team was strongly inclined towards human values. Would the

device empower the homeless? Would it lead to greater respect between and towards the homeless?

There were also clear tensions between values. The developers on the project had a strong desire for

novelty and innovation. However, the charity needed something much more mundane (e.g., a new

website). These values of novelty and competitiveness, then, contrasted with the need for trust, respect

and empowerment that the homeless participants were hoping for.

The team needed to develop ways of dealing with these values tensions. The team therefore developed

ways to provide more ‘mundane’ benefits at the same time as exploring more innovative solutions. For

example, the charity needed a new website: whilst developing a website was out of scope for the

project, the team managed to facilitate a connection with a local web developer. This is an example

where the team found a mutually beneficial solution satisfying two sets of competing values but in a

way that advanced the project overall.

References

[1] Bojan Georgievski & Anas Alqudah (2016). The Effect of the Volkswagen Scandal (A Comparative Case

Study), Research Journal of Finance and Accounting, 7(2), 54-57.

0740-7459 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2019.2956701, IEEE Software

11

[2] Sainyam Galhotra, Yuriy Brun & Alexandra Meliou (2017). Fairness testing: testing software for

discrimination, Proceedings of ESEC/SIGSOFT FSE 2017, 498-510.

[3] Justin Sablich (2017). ‘Price Gouging’ and Hurricane Irma: What Happened and What to Do, New York

Times, Sep 17. Retrieved from https://www.nytimes.com/2017/09/17/travel/price-gouging-hurricane-

irma-airlines.html.

[4] Shalom Schwartz (2012). An Overview of the Schwartz Theory of Basic Values, Online Readings in

Psychology and Culture, 2(1).

[5] James Collins & Jerry Porras (1997). Built to last: successful habits of visionary companies, New York:

HarperBusiness.

[6] Simon Walker, Foreward (2015). The values most valued by UK plc, Retrieved from

http://www.maitland.co.uk/wp-content/uploads/2015/10/20151001-Maitland-Values-Report.pdf

[7] Batya Friedman, David Hendry & Alan Borning (2017). A survey of Value Sensitive Design methods.

Foundations and Trends in Human Computer Interaction. Boston and Delft: Now Publishers.

[8] Cory Knobel and Geoffrey Bowker (2011). Values in Design, Communications of the ACM, 54(7), 26-

28.

[9] Stefan Biffl, Aybuke Aurum, Barry Boehm, Hakan Erdogmus & Paul Grunbacher (2006). Value-based

software engineering, Springer.

[10] Jon Whittle (2014). How much participation is enough?: a comparison of six participatory design

projects in terms of outcomes. Participatory Design Conference, 121-130.

[11] Shalom Schwartz (2006). Basic human values: Theory, measurement, and applications. Revue

Francaise de Sociologie, 47, 929-985.

[12] Maria Angela Ferrario, William Simm, Stephen Forshaw, Adrian Gradinar, Marcia Tavares Smith &

Ian C. Smith (2016). Values-first SE: research principles in practice. Proceedings of ICSE (Companion

Volume), 553-562.

https://www.nytimes.com/2017/09/17/travel/price-gouging-hurricane-irma-airlines.html
https://www.nytimes.com/2017/09/17/travel/price-gouging-hurricane-irma-airlines.html
http://www.maitland.co.uk/wp-content/uploads/2015/10/20151001-Maitland-Values-Report.pdf

