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Abstract 26 

 27 

Objective  28 

In this review, the current biopharmaceutical approaches for evaluation of oral formulation 29 

performance in paediatrics are discussed. 30 

Key findings  31 

The paediatric gastrointestinal (GI) tract undergoes numerous morphological and physiological 32 

changes throughout its development and growth. Some physiological parameters are yet to be 33 

investigated, limiting the use of the existing in vitro biopharmaceutical tools to predict the in vivo 34 

performance of paediatric formulations. Meals and frequencies of their administration evolve during 35 

childhood and affect oral drug absorption. Furthermore, the establishment of a paediatric 36 

Biopharmaceutics Classification System (pBCS), based on the adult Biopharmaceutics Classification 37 

System (BCS), requires criteria adjustments. The usefulness of computational simulation and modeling 38 

for extrapolation of adult data to paediatrics has been confirmed as a tool for predicting drug 39 

formulation performance. Despite the great number of successful physiologically based 40 

pharmacokinetic models to simulate drug disposition, the simulation of drug absorption from the GI 41 

tract is a complicating issue in paediatric populations. 42 

Summary 43 

The biopharmaceutics tools for investigation of oral drug absorption in paediatrics need further 44 

development, refinement and validation. A combination of in vitro and in silico methods could 45 

compensate for the uncertainties accompanying each method on its own.  46 
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1. Introduction 120 

In recent years, there has been an increased effort to improve safety and effectiveness of medicines 121 

that are specifically designed for paediatric patients [1-3]. Not only is it important to develop age 122 

appropriate medicines, it is also crucial to establish methodologies for evaluating the performance of 123 

a formulation as a function of age [1]. Understanding of the physiological and anatomical development 124 

of the human gastrointestinal (GI) tract is a demanding task and crucial for understanding the 125 

pharmacokinetics (PK) [1]. Absorption, Distribution, Metabolism and Excretion (ADME) can all be 126 

affected by the transformations that occur throughout childhood, hence in order to design better and 127 

more appropriate paediatric medicines, changes occurring from birth to adulthood need to be taken 128 

into consideration [4]. 129 

 130 

The International Conference on Harmonisation (ICH) has previously subdivided the paediatric 131 

population in several age groups (Table 1). The ICH aims to harmonise guidance for regulatory 132 

agencies and industry. Europe, United States of America and Japan are regulatory founders of this 133 

initiative. The European Medicines Agency (EMA) follows the age subdivision proposed by the ICH, 134 

and further classifies children into pre-school children and school children. US Food and Drug 135 

Administration (FDA) endorses ICH age classification as one of the possible classifications, however, 136 

small differences in paediatric age groups can be found across literature including information from 137 

regulatory partners and health organisations. FDA’s new draft guideline presents a different 138 

classification according to Centre for Drug Evaluation and Research [5]. A separate classification is 139 

also presented by World Health Organization (WHO) [6]. Differences between these classifications 140 

are small and reside on the days (d) until the sub-population “newborn” is considered, i.e. 27 days 141 

versus one month (mo). Other differences reside in how a child can be sub-classified and how the end 142 

of adolescence is described, i.e. 16, 18 or 20 years (yr). All paediatric subpopulations need to be 143 

considered in the drug development process. The more traditional methods for paediatric dosing, also 144 
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known as allometric scaling, are based on algorithms that allow estimation of doses by scaling adult 145 

values, based on comparison of parameters such as body weight (BW), age, and body surface area 146 

(BSA) [7]. These approaches do not account for maturation changes, such as ontogeny of enzymes and 147 

transporters [7], in comparison to more complex mathematical models, e.g. physiologically based 148 

pharmacokinetic (PBPK) modeling, which in certain cases might deliver a more adequate prediction 149 

of the appropriate paediatric dose.  150 

BW and BSA differences between paediatric age groups and adults are presented in Table 1. Paediatric 151 

BW was retrieved from the 50th percentile boys and girls values in the Centre for Disease Control and 152 

Prevention (CDC) growth charts for paediatrics; adult 50th percentile BW values were obtained from 153 

clinical charts that include multiple races and a wide range of ages in U.S [8]. BSA values were 154 

calculated using the Mosteller formula (𝐵𝑆𝐴 =   (
𝑊𝑒𝑖𝑔ℎ𝑡 × 𝐻𝑒𝑖𝑔ℎ𝑡

3600
)

1

2  ) [9]. Body height used for the 155 

calculations was retrieved from the same source as the respective BW. Newborns and infants are the 156 

age groups that show the highest differences compared to the adult population in terms of BW and 157 

BSA. The younger subpopulations show large differences in terms of physiological and anatomical 158 

factors. The absorption process in the younger subpopulations is highly influenced by the type of food 159 

ingested and the co-administration of medicine with food. The definition of a fasted state in newborns 160 

and infants is a difficult task and should be addressed with care in the design of in vitro experiments.  161 

In this review, the parameters concerning paediatric oral drug absorption are explored. The current 162 

knowledge and considerations for the biopharmaceutical evaluation of orally administered drug 163 

products for paediatrics and the in vitro and in silico tools to help guide the development of appropriate 164 

paediatric medicines are discussed.  165 

 166 

Please place Table 1 here 167 

 168 

 169 
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2. Paediatric nutrition 170 

Nutrition represents a major determinant in body development, and maturation in paediatrics; 171 

moreover, certain nutritional patterns (e.g. duration of breastfeeding) have been associated with long-172 

term health consequences, such as cardio-vascular disease prevalence [12]. Therefore, food 173 

components should be adjusted to the specific needs of each body developmental stage and health 174 

status, e.g. presence of chronic or acute diseases that alter the metabolic state, malabsorption of nutrient 175 

components, or food allergies and intolerances [12; 13]. Accordingly, meal properties and portions 176 

vary amongst the paediatric age groups. Eminent nutritional changes occurring during growth and 177 

maturation of healthy paediatric populations are addressed in the following section [14]. 178 

 179 

2.1. Age-dependent feeding: recommendations and practice 180 

The most heterogeneous groups with regards to the meal type appear to be newborns and infants. 181 

International and national guidelines aim to harmonise global feeding practices, which can vary 182 

depending on food availability and cultural factors [15]. According to the WHO [16; 17], the European 183 

and the British guidelines [15; 18], newborns and infants younger than 6 months, should be exclusively 184 

breastfed or receive formula milk. A complementary meal should be added during the 6th month, 185 

followed by the introduction of “finger foods” by the 8th month. In contrast, according to the American 186 

and the French authorities weaning should begin between the 4th and 6th month, as the 4-month-old GI 187 

tract is able to assimilate soft foods [15; 19]. Food consistency increases along with the infant’s ability 188 

to “munch” and chew. By the 12th month of age, infants can usually consume minced or chopped 189 

family foods and meal transition to common “adult” food should be completed by the age of two 190 

years [16]. Milk and dairy products remain an essential meal component throughout infancy [14; 17]. 191 

In practice, introduction of complementary food begins before the 6th month [20; 21]. Diverse studies 192 

report earlier access to solid or semi-solid foods, accompanied by usual overfeeding and disregarding 193 

recommendations on food composition [22-24].  194 
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2.2. Paediatric energy needs and feeding frequency 195 

Average energy requirements for healthy individuals are derived from total energy expenditure, which 196 

is defined as the product of energy spent on activities and the resting energy expenditure. Equations 197 

obtained from regression analysis of measured resting energy expenditure from various subject groups 198 

are utilised for its prediction [25; 26]. Growth processes require additional energy for synthesis and 199 

deposition of new tissues. This parameter has been shown to have the highest relative contribution to 200 

total energy requirements in the first month of life (40%) and decreases to 3% during the 201 

12th month [25]. The European guidelines utilise the equations for resting energy expenditure for 202 

paediatrics proposed by Henry et al. [27]. Ultimately, different levels of physical activity are assigned 203 

to the paediatric groups: light, moderate, or heavy activity. The recommended daily caloric intake for 204 

European and American paediatric populations is shown in Figure 1 [18; 26; 28; 29]. The non-linearity 205 

of the energy requirements as a function of age can be explained by the BW-based nature of the 206 

calculations behind them. The caloric needs of paediatric subpopulations increase with age towards 207 

adult values, and factors such as gender and physical activity, become more and more relevant over 208 

time [26]. According to the European Food and Safety Authority (EFSA) newborns, infants, and 209 

children up to four years of age are more likely to have a sedentary level of activity (Figure 1A), 210 

whereas older children and adolescents tend to show higher activity level (Figure 1B) [18]. The 211 

aforementioned energy requirements are estimated for average healthy individuals [26]; various health 212 

conditions, e.g. severe infections, fever, diarrhoea etc., would demand special treatment also with 213 

regard to nutritional amount and composition [30]. 214 

 215 

Please place Figure 1 here 216 

 217 

The required number of meals depends on their caloric density [17]. Newborns should be breastfed at 218 

least 8 times during the day and night for 4 weeks (wk), starting at birth [31]. This frequency is also 219 
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reflected in current practice, whereby breastfeeding occurs 8 to 10 times daily [32]. Bergman et al. 220 

suggest a feeding interval of one hour, which may not be easily applicable in everyday life [33]. The 221 

recommended mother’s milk or formula milk volumes and feeding intervals for infants are shown in 222 

Figure 2 [12]. The feeding intervals for formula feeding and breastfeeding show differences until the 223 

second month of life, with shorter intervals being attributed to breastfeeding [33]. Infants receive 224 

complementary meals in addition to milk beginning in the 6th month (EU recommendations) [15; 34]. 225 

This would result in a narrower feeding interval for general feeds in comparison to the shown data, 226 

which only depicts milk feedings. The number of meals decreases with advancing age; adult meal 227 

frequency is recommended for children and adolescents: a three-times daily meal, accompanied by one 228 

snack [16]. Recently, the following feeding frequencies for paediatrics were reported by Johnson and 229 

colleagues: from birth to six months individuals receive six feedings daily, from six months to one 230 

year - five feeds, and beyond one year of age four feeds [35]. 231 

Please place Figure 2 here 232 

 233 

2.3. Water and fluid intake 234 

Water (fluid) intake is required in order to maintain normal hydration status through compensating for 235 

body water losses; these occur mainly by urinal and faecal excretion and evaporation via skin and 236 

lungs [36]. Newborns and infants differ from children and adults in their water needs due to their tissue 237 

composition, e.g. greater total body water contents, greater BSA/BW ratio, lower sweating capacity 238 

and limited concentrating ability of the kidneys. Higher daily fluid volumes normalised per BW are 239 

attributed to younger age-groups compared to older children and adults [35]. The younger populations 240 

obtain water mostly through the consumed food [37]. During the first days after birth, a healthy 241 

newborn receives only breast milk. Measurements of urine osmolality have shown adequate hydration 242 

status in ad libitum breastfed newborns and infants without a necessity for additional water [38; 39]. 243 

On the contrary, formula-fed newborns and infants require 400 - 600 mL of water per day in addition 244 
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to the water consumed from milk; these needs can be explained by the greater renal solute load of 245 

cow’s milk infant formulae compared to human breast milk, 97 mOsmol/kg and 307 mOsmol/kg for 246 

breast milk and cow’s milk, respectively. European recommendations on water intake are based on 247 

water needs per consumed calories and observations of water intake in populations with adequate urine 248 

osmolality values. Water intake reference values for healthy individuals from the paediatric population 249 

as reported by EFSA are presented in Figure 3 [36]; the reported amounts include water present in 250 

foods and other fluids administered throughout the day. Higher water intake is attributed to males 251 

compared to females beginning at the age of 9 years. 252 

 253 

Please place Figure 3 here 254 

 255 

Although juices can be introduced to infants at the age of 1 year, intake should be limited [40; 41]. In 256 

France, the fluid consumption of children and adolescents amounts to 1.0 - 1.1 L/day, with water being 257 

the most common drink, followed by dairy drinks and juices [42]. Water requirement in adolescents 258 

and adult populations are mainly shaped by the physical activity level and health status [36]. Paediatric 259 

daily fluid requirements in a hospitalised setting tend to be lower than those for healthy populations; 260 

fluid reference values are usually acquired by the Holliday-Seger method (calculation that takes basic 261 

metabolic caloric expenditure, caloric exhaustion determined by the physical activity level under 262 

hospitalised conditions, corrected by urinary and insensible water loss into account). Paediatric 263 

populations undergo dynamic physiological development; this is taken into account by dividing the 264 

fluid requirements according to three BW bands: patients under ten kilograms, up to and beyond twenty 265 

kilograms of BW [43]. 266 

 267 

 268 
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2.4. Food composition 269 

Human breast milk undoubtedly offers the optimal macro- and micronutrients composition for 270 

newborns and infants [17]. The composition of breast milk changes rapidly: the first milk, colostrum, 271 

undergoes compositional alterations from the fifth to fifteenth day postpartum (intermediate milk) to 272 

reach mature milk composition in the third week after birth [44; 45]. The major differences between 273 

colostrum and mature milk are the notably decreased protein content and increased fat fraction, as 274 

indicated in Table 2 [44]. The high protein content measured in human breast milk (14% from the total 275 

caloric content) might not be of nutritional value, as it has been previously reported to contain high 276 

levels of non-digestible lactoferrin and IgA [44; 45]. A great variability with regard to macronutrient 277 

contents and amounts have been observed for breast milk in relation to the maternal health background 278 

and diet [46; 47]. Formula milk development is based on the properties of human breast milk. 279 

Accordingly, these two types of milk exhibit similar macronutrient composition, which is shown in 280 

Table 2 [45; 47]. Furthermore, regulations ensure the appropriateness of the essential macro and 281 

micronutrients in marketed infant formulae in the EU [45]. The proportions of casein to whey-proteins, 282 

lipid composition, fat-globule structure and size, and milk origin, (e.g. soy or cow’s milk) are variable 283 

among different formulae and not equal when compared to human breast milk [48; 49]. The presence 284 

of bile salts in human breast milk, but not in formula milk, should be considered as an additional 285 

potential factor that might affect oral drug absorption [48]. Unmodified cow’s milk contains higher 286 

protein fraction than human breast milk, hence the earliest administration of fortified full-fat cow’s 287 

milk should only occur after the first year of age [38]. It is interesting to note that proteins account for 288 

less than 10% of the calories in human breast milk and infant formula milk. Carbohydrates represent 289 

the main energy source in complementary foods, while fats contribute less to the total caloric content 290 

when compared to breast milk. The protein fraction in infants’ weaning foods depends on the meal 291 

type (Table 2). From children to adults, the meal protein content increases, while the fat content 292 
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decreases. Carbohydrates reach adult recommended levels already in the meals for infants (45 - 65%) 293 

(Table 2). 294 

Please place Table 2 here 295 

 296 

2.5. Physicochemical properties of meals and beverages 297 

Foods for infants differ from adult meals regarding their texture and physicochemical properties. The 298 

properties of 15 commonly used soft foods, juices, and suspensions (vehicles) have been investigated 299 

for their physicochemical characteristics (Figure 4) [55]. Formula milk exhibits greater viscosity than 300 

juices and cow’s milk. The viscosity of meals for different paediatric populations becomes greater with 301 

increasing age, i.e. milk formula versus soft foods. Juices and “fruity vehicles” show acidic pH values, 302 

which in some cases can compromise drug stability [55; 56]. Milk types exhibit different buffer 303 

capacity and osmolality, which might result from addition of excipients (e.g. sugars, lecithin) in 304 

flavoured milk compared to cow’s milk (Figure 4B and 4C). In agreement with the similar 305 

macronutrient composition of human breast milk and formula milk, similar pH and osmolality values 306 

were found in the literature for human breast milk, pH of 6.8 and osmolality of 290 - 299 mOsmol/kg 307 

[57], when compared to the values presented in Figure 4. Recently, the physicochemical properties of 308 

26 types of soft foods and beverages available on the EU and USA market were investigated [56]. A 309 

significant difference among formula milk types was reported for the surface tension of the three tested 310 

products (Formula First Milk, Formula Soya Infasoy®, and Formula Soya Wysoy®) [56]. Differences 311 

among milk types and yogurts, e.g. soy, plain product, and flavoured product, were observed for the 312 

measured buffer capacity, osmolality, surface tension, and viscosity. Variability among different 313 

brands of applesauce and blackcurrant squash available on different markets (i.e. UK, Germany, and 314 

USA) was shown in their buffer capacity, osmolality, surface tension and viscosity; some of these 315 

reported differences are probably related to the different amount of sugars added to the products [56]. 316 

Currently, food-effect bioavailability and fed state bioequivalence studies for paediatric drug product 317 

are performed in adults, under conditions that comply with the recommendations provided by the US 318 
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FDA and EMA with a high-calorie, high-fat standard adult breakfast as a meal for the fed state 319 

investigation [52; 53]. The physicochemical properties of the FDA/EMA standard breakfast (Table 2) 320 

[58] deviate from the physicochemical properties of the tested vehicles for paediatric use in terms of 321 

pH values, viscosity, and osmolality (Figure 4). Although some trends can be observed from the 322 

available data for the reported soft foods and drinks, e.g. fruit juices, dairy products, formula milk and 323 

milk types, further investigation of the product variability between different brands with focus on their 324 

physicochemical characterisation might be of interest. 325 

 326 

Please place Figure 4 here 327 

 328 

3. Physiological and anatomical changes in paediatrics 329 

Growth and maturation continuously take place from birth to adulthood. These processes, which 330 

govern paediatric development, are fastest in the youngest paediatric subpopulations (newborns and 331 

infants). As previously mentioned, BSA and BW increase significantly during the first year of life 332 

(Table 1). Furthermore, changes in body composition take place. A decrease of body water and an 333 

increase of lipid and protein are seen throughout development [60; 61]. Therefore, younger 334 

populations, such as newborns and younger infants, present higher extracellular water contents [60]. 335 

Physiological and anatomical age-related changes in the GI tract are capable of influencing oral drug 336 

absorption processes, such as rate and extent of drug absorption [61-64]. In the following sections, the 337 

main changes in the GI tract that may influence the pharmacokinetics following oral drug 338 

administration in paediatric populations will be discussed. 339 

 340 

3.1. Gastrointestinal volumes 341 

Gastric volumes in the fasted state are most often reported as a function of BW (Table 3), with similar 342 

volume values reported across the different ages. Values of gastric volumes were selected if no clear 343 
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fluids (e.g. water, tea, clear apple juice) had been administered for at least 2 h or more, and constraint 344 

of solid food/semi-solid food/other fluids lasted for a minimum of 4 h prior to the gastric volume 345 

measurement. Nevertheless, studies have shown that small volumes (less than 2 mL/kg) of clear fluids 346 

(such as water, tea and others) are not expected to affect measurements of gastric volume within a 2 h 347 

period [65]. Literature studies have evaluated the fasted gastric volume across the paediatric 348 

subpopulations, and no clear age distinction among the studied subpopulations (newborns, infants and 349 

children) is reported. Maekawa et al. also reported that ingestion of higher volumes (10 mL/kg of BW) 350 

of fluids (apple juice) ingested up to 2 h before measurements are not expected to affect gastric volume 351 

[66].  352 

 353 

Please place Table 3 here 354 

 355 

In the paediatric population, it is more likely that the medication is dosed with food. Considering that 356 

the youngest subpopulations are mainly in the postprandial state, due to the higher frequency of food 357 

intake, food will most likely already be available in the stomach [48]. Following the ingestion of food, 358 

the stomach content can increase significantly (up to 50 fold), and stomach capacity volumes can range 359 

from 10 to 100 mL in newborns, 90 to 500 mL in infants, 750 to 960 mL in children, and 1500 to 360 

2000 mL in adolescents and 3000 mL in adults [78]. For the youngest sub-populations, the gastric 361 

volume in the fed state will be mainly represented by the volume of the food ingested [35]. Gastric 362 

volume in children measured 3 h after administration of drinks (orange squash, maximum 200 mL) 363 

and of drinks and biscuits (orange squash, maximum 200 mL and two plain biscuits) was 0.39 mL/kg 364 

and 0.46 mL/kg, respectively (compared to 0.25  mL/kg measured after 7 h fasting) [70]. 365 

Roman et al. investigated the effect of gastric secretions on gastric volumes in premature newborns 366 

(n = 9, ~5 wk postnatal age), by assessing the difference between residual meal volumes, and total 367 

gastric content volumes after ingestion of human milk and infant formula [79]. Volumes of gastric 368 

contents were determined by aspiration from 0 - 180 min after meal ingestion, and residual meal 369 
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volumes were calculated by the difference between initial meal volume and gastric emptying (GE). 370 

Gastric secretions were a significant contributing factor of gastric contents in the fed state: 32%, 28%, 371 

and 43% v/v at 30, 60, and 90 min following feeding, respectively. A separate study showed that 372 

volumes of gastric secretions corresponded to 2.0 ± 1.4 mL/kg BW in newborns (n = 8, 4 - 24 wk) in 373 

the first postprandial hour [80]. Smaller contributions of gastric secretions to total gastric volume 374 

(1  mL/kg in 30 min following meal intake) have also been reported in premature newborns (n = 10, 375 

1 - 9 wk postnatal age) [81].  376 

The gastric volume after administration of three types of food (i.e. human milk 18.4 ± 0.5 mL/kg; 377 

SMA-SP® formula 17.4 ± 0.5 mL/kg; and Similac SC® formula 17.0 ± 0.7 mL/kg) to newborns and 378 

infants (1 - 11 wk) was measured at 10, 30, and 50 min after food intake [82]. Ten minutes after feeding 379 

the volume ranged from 10 to 13.5 mL/kg and after 50 minutes there was still a volume of 4 to 6 mL/kg 380 

present in the stomach [82]. Based on these studies, a mean feeding volume of newborns and young 381 

infants of 23.5 ± 4.2 mL/kg has been suggested [48]. No information was found on intestinal volumes 382 

across paediatric subpopulations.  383 

 384 

3.2. Gastrointestinal fluid composition 385 

In paediatrics, fasted gastric pH is widely described as being neutral moments after birth, ranging from 386 

values of 6 to 8, mainly due to amniotic fluid ingestion [83; 84]. Contradictory information has been 387 

reported with regards to the time after birth which is needed to reach acidic pH values. Nevertheless, 388 

reviews of original reports show that fasted gastric acidic pH values of 1.5 to 3 are reached hours after 389 

birth, up to the first two weeks of life [48; 63; 85; 86]. A summary of the pH values of GI contents of 390 

paediatric population and of adults is presented in Figure 5.  391 

 392 

Please place Figure 5 here 393 

 394 
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Newborns and young infants are mainly fed with milk, whether it is breast milk or different types of 395 

formulae, which can have an impact on several characteristics, including fed gastric pH. Studies have 396 

reported that pH values over 4 were detected more frequently in newborns and infants than in older 397 

children [79; 106; 107], mainly due to feeding patterns in this subpopulation and the high buffer 398 

capacity of breast milk and formulae [106; 108]. Comparison of two separate studies (adults vs. 399 

newborns) of continuously monitoring of the fed gastric pH showed that 2 h after a meal, higher fed 400 

gastric pH values (0.7 - 1.8 units) were found in newborns (2 - 15 d) [109]. The meal ingested by adults 401 

consisted of a standard solid meal (1000 Kcal), opposed to newborns where formula milk was ingested 402 

(14.5 - 29.0 mL/kg per feeding) [98; 99]. It should be noted that the interpretation of pH in the fed state 403 

is difficult, as differences might simply arise as a function of meal composition, or the time interval 404 

after intake of the meal and the measurement. 405 

 406 

Available data on fasted and fed intestinal pH indicates high variability of measured values, for both 407 

adults and paediatric age groups, and that similar intestinal pH values are seen in the two groups 408 

(Figure 5). Children and adolescents (n = 12, 8 - 14 yr) present similar fasted intestinal pH, ranging 409 

from 6.4 - 7.4 [94], and similar mean fed intestinal pH values of 6.3 (n = 16, 7 - 16 yr) [105]. Fasted 410 

intestinal pH in newborns (n = 10, 1 - 25 d) has been studied by Fallinborg et al., and mean pH values 411 

were 6.5 [94]. Newborns and infants (2 wk - 3 mo, breastfed and formula-fed) also seem to present 412 

similar fed intestinal pH profiles compared to adults, with values ranging from 6 to 7 in the 413 

duodenum [110]. Nevertheless, studies concerning intestinal pH in both fasted and fed states are 414 

scarce, especially for newborns and infants, and limit conclusions. Furthermore, the variety of 415 

techniques used to measure the pH (i.e. pH electrode measurements of enteric aspirates, in situ pH 416 

electrode measurements, or radio transmitting pH-sensitive capsule), could attribute to the observed 417 

variability of the measurements.  418 

 419 
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The concentration and composition of bile salts vary with age. Total duodenal bile salts concentrations 420 

[48; 109] are usually reported as a small pool of bile salts in newborns and infants when compared to 421 

adults, and lack in secondary bile salts [48; 111]. In the younger populations (newborns and young 422 

infants), tauro-conjugation of bile acids is predominantly detected, with glycol-conjugation and 423 

glycine conjugates reaching adult levels by 7 to 12 months of age [112]  424 

High variability with respect to fasted bile salt levels in the small intestine (SI) of newborns and young 425 

infants has been identified [48; 109]. Fasted bile salt levels in duodenal aspirates have been shown to 426 

increase continuously during the first 60 days of life in breastfed infants, from 2 mM to 8 mM (n = 41, 427 

mean 4.4 ± 2.0 mM) [48]. The effect of breastfeeding compared to formula supplemented with 428 

different amounts of taurine and cholesterol has been investigated [113]. Total bile salt concentrations 429 

were evaluated in the fasted state, in duodenal aspirates of 65 pre-term newborns 430 

(31 - 36 gestational age), while higher bile salt concentrations were found in breastfed newborns. In 431 

breastfed newborns, the concentrations increased from ~5 mM (1 wk postnatal) to ~8 mM (5 wk 432 

postnatal) [113]. Signer et al. found that premature newborns (n = 9, 14 d) fed with cow’s milk 433 

formula, exhibited higher total bile acid concentration in duodenal samples, when compared to 434 

breastfed newborns (n = 9, 14 d), in both the fasted (8.8 mM vs 3.8 mM) and fed state 60 min following 435 

feeding (4.4 mM vs 1.9 mM). Nevertheless, this was attributed to the difference in gestational age 436 

between the two groups (breastfed: 35 wk vs. cow’s milk formula: 37 wk) [114]. Investigation of the 437 

effect of administration of a test meal [carbohydrate (4%), protein (4%), and fat (4%)] was performed 438 

by Harries et al., duodenal aspirates were collected 2 h after administration of a meal to 13 infants and 439 

children (1.3 - 16.3 yr, mean 3.3 yr), and revealed fed total bile salt concentration values of 7.4 mM 440 

(range of 3.0 - 16.0 mM) [115]. Comparison of total bile salts concentration between pre-term 441 

newborns (2 wk postnatal age) and infants/children (3 mo - 6 yr), revealed lower concentrations of bile 442 

salts in the younger groups. Newborns were divided into two groups, where different types of milk 443 

were administered (evaporated milk vs modified milk), and older children received a test liquid feed 444 
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(containing corn oil, glucose, polyethylene glycol-4000 and water). Fed total bile salt concentration 445 

was measured in duodenal aspirates and values were ~1 mM (evaporated milk) and ~0.5 mM (modified 446 

milk), and ~5.9 mM in the older group [116]. A linear trend was recently established between the 447 

logarithm of age and bile salt concentration data collected from available studies of fed state duodenal 448 

bile salts concentration of newborns and infants (R2 = 0.54, 7 paediatric studies and 5 adult studies) 449 

[109]. Based on this, mean fed intestinal bile acid concentration was found to be approximately 450 

2.5 mM for newborns and 7.5 mM for infants.  451 

 452 

The role and importance of digestive enzymes in newborns and infants has been described in a recent 453 

review [48]. A summary highlighting the differences of relevant digestive enzymes between adults and 454 

paediatrics will be discussed in this review. The following enzymes have been proven to be essential 455 

for the digestion and lipolysis in newborns and infants: human gastric lipase, pancreatic triglyceride 456 

lipase (and colipase), carboxylester hydrolase, pancreatic lipase-related protein 2, and bile salt-457 

stimulated lipase [48]. Human gastric lipase is a pre-duodenal lipase which is responsible for 458 

intragastric lipolysis in newborns, its expression is fully matured at birth and its activity in the stomach 459 

is similar to adults [48]. Pancreatic triglyceride lipase plays a major role in the lipid lipolysis process 460 

in adults. Its activity in the fed state has been shown to be lower in newborns, possibly due to dilution 461 

of enzyme levels in response to high frequent feedings in the younger subpopulations, contrary to what 462 

happens in adults, where enzyme secretion is stimulated by the presence of macronutrients [48]. The 463 

expression of carboxylester hydrolase and pancreatic lipase-related protein 2 is not fully developed at 464 

birth [48]. 465 

 466 

Pepsin is a protease secreted by the stomach and its expression is not fully matured at birth [48]. Lower 467 

pepsin secretions have been reported in younger cohorts, such as newborns and infants less than one 468 

year of age, compared to older children and adults [92]. Fasted gastric pepsin concentrations in younger 469 
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newborns (birth and 8 d of postnatal age) appear to be approximately 15% of adult values, while older 470 

newborns (10 - 32 d) and infants (67 - 110 d) express similar mean concentrations of approximately 471 

41% of the adult values [109]. Similarly to pepsin, trypsin expression is not matured at birth, and lower 472 

concentrations have been reported in newborns and infants when compared to children and adults [48]. 473 

In summary, pancreatic enzyme concentrations are lower at birth and appear to reach mature levels by 474 

one year of age [63].  475 

 476 

Limited information is available on osmolality and buffer capacity of paediatric GI fluids. A positive 477 

linear correlation has been reported between the osmolality of the diet as a function of the osmolality 478 

observed in the stomach and duodenum in 15 low-birth-weight newborns monitored for three hours 479 

after food ingestion [117]. Maharaj et al. built a linear regression model for a 60 min postprandial 480 

period (R2 = 0.95, n = 8 separate feeds) to predict neonatal fed gastric osmolality based on results 481 

obtained from Billeud et al. [109; 117]. The predictions were compared with a separate study in which 482 

osmolality was measured after three separate breast milk feeds fortified with minerals/supplements 483 

[118]. As an example, after a feed with an osmolality of 344 mOsmol/kg, the corresponding measured 484 

fed gastric osmolality at 60 min was of 354 mOsmol/kg, and the predicted osmolality was 327 485 

mOsmol/kg, with 7.6% under-prediction error. The developed model predicted fed gastric osmolality 486 

within one hour after feeding, whereby the time period was selected to reflect the high frequency of 487 

feeding in paediatric populations. The same approach was used to predict fed state duodenal osmolality 488 

(R2 = 0.92, n = 8 separate feeds). Due to scarcity of data in paediatrics, predictions were validated 489 

against two adult studies reported by Kalantzi et al. and Clarysse et al. Measured duodenal osmolality 490 

values were 405 and 392 mOsmol/kg, 60 min following administration of liquid meals characterised 491 

by an osmolality of 610 and 670 mOsmol/kg, and predicted osmolality were adequate with values of 492 

430 (6% over-prediction) and 454 (16% over-prediction) mOsmol/kg respectively [97; 119]. In 493 

newborns and young infants, buffer capacity of the fed gastric fluids is likely to be similar to the buffer 494 



16 
 

capacity of the administered food, as the volume of fasting gastric contents is small, and therefore 495 

unlikely to have an impact on the buffer capacity of the fed gastric fluids [109]; especially in the 496 

younger cohorts, where the frequency of meals is higher when compared to older children and adults. 497 

 498 

3.3. Gastric emptying  499 

Newborns and young infants have slower GE rates when compared to older children and adults [64; 500 

84; 120]. In the fasted state, migrating motility complex (MMC) is responsible for the regulation of 501 

the GE rate [121]. Non-nutrient liquids do not normally interfere with the MMC [122]. The gastric 502 

emptying half-life (GEt1/2), is reported to be 6.9 min for a liquid non-caloric meal (5 mL/Kg) in 503 

newborns (1 – 8 d), measured by epigastric impedance using four electrodes [123]. The use of other 504 

techniques for the measurement of GE of liquids have shown higher values, Euler and Byrne measured 505 

emptying rate of distilled water by the dilution marker technique and reported the mean GEt1/2 to be 506 

15 minutes after administration of 20 mL/kg of water to infants (2 - 24 mo) [124]. Administration of 507 

20 mL/kg of tap water to children (mean age 8.25 ± 2.24 yr) led to a mean GEt1/2 of 27.1 min when 508 

measured by the ultrasound technique [124].  509 

In the fed state, the dependency of GE on meal type and composition, meal volume and osmotic 510 

pressure has been described [84; 85; 125; 126]. In a recent meta-analysis of mean gastric residence 511 

time studies showed that GE was not affected by age and confirmed the importance of food in 512 

influencing GE rates [121]. Aqueous solutions (without calories) empty faster than liquids containing 513 

fat or protein, such as milk. Milk, the main food type for newborns and infants, empties faster than 514 

common solid foods that are ingested by older children and adults. It should be noted, that newborns 515 

and infants are the paediatric populations most likely to show differences in the fed state when 516 

compared to adults, due to the differences in meal types, but also because of the high frequency of 517 

feedings in the youngest subpopulations. Differences in composition of breast milk and formula result 518 

in faster GE of breast milk [121]. GEt1/2 was affected by administration of equal volumes of breast 519 
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milk compared to infant formula in newborns and infants (4 wk - 6 mo) [127], where GEt1/2 was 48 ± 520 

15 min, and 78 ± 14 min, respectively, indicating that infant formula empties at slower rates than breast 521 

milk. The faster emptying of breast-milk was also reported by Ewer et al. who compared GEt1/2 of 522 

breast-milk (36 min) and formula milk (72 min) in pre-term newborns (n = 14, postnatal age 4 - 26 d) 523 

[128]. Staelens et al. compared GE in infants (n = 17, 2 d - 3 mo) fed with intact protein formula (Nan 524 

1, Nestle®), a partially hydrolysed formula (Nan H.A.1, Nestle®), and an extensively hydrolysed 525 

formula (experimental formula); GEt1/2 was 55, 53 and 46 min, respectively [49], confirming that faster 526 

fed GE was observed following ingestion of protein hydrolysate formula, when compared with a 527 

formula containing native cow’s milk protein, and also that the extent of dairy protein hydrolysis may 528 

affect GE. Casein-predominant feeds (typical for cow’s milk products) have also been showed to 529 

empty slower than feeds with a greater whey fraction, but the authors highlighted that different 530 

methodology, food compositions and patient groups, limit the validity of the conclusions [129]. A 531 

summary of GEt1/2 studies is presented in Figure 6. The use of various techniques for the GEt1/2 532 

measurement may be associated with the observed variation. Increments of GE variability as a function 533 

of age in Figure 6, can be attributed to a broader spectrum of food types ingested by the older 534 

populations (i.e. caloric density).  535 

 536 

Please place Figure 6 here 537 

 538 

3.4. Small intestinal transit times 539 

Analysis of available literature concerning small intestinal transit times (SITT) as a function of age, 540 

indicates that there are no significant differences in SITT across ages and that the measurement 541 

technique can have an impact on the estimated SITT value [134]. A limiting factor from the study 542 

resides in the low number of paediatric patients included in the analysis; namely only one newborn 543 

(0 - 30 d); one infant (1 mo - 2 yr); three young children (2 - 5 yr); 10 children (6 - 12 yr); and one 544 
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adolescent (12 - 18 yr) were present from a total of 52 subjects (16 paediatric subjects compared to 36 545 

adults). Therefore, conclusions might change if data from a greater number of newborns and infants 546 

was available to be included in the analysis [134].  547 

The International Commission on Radiological Protection (ICRP) publication 89 also reports SITT to 548 

be independent of age and type of meal ingested with a mean value of 3.9 ± 1.5 hours and recommends 549 

the adoption of a reference value of 4 h for males and females of all ages. These results were obtained 550 

from a meta-analysis of data derived where several techniques were used [135]. In conclusion, 551 

although differences between measuring techniques have been previously reported [84; 134], SITT is 552 

generally considered independent of age [48; 85].  553 

 554 

3.5. Intestinal surface area 555 

The intestinal surface area is related to both radius and length of the intestinal segment [84]. The length 556 

of the intestine changes with growth, ranging from approximately 275 cm at birth, 380 cm at 1 year, 557 

450 cm at 5 years, 500 cm at 10 years, and 575 cm at 20 years [136]. The radius of the SI also naturally 558 

increases with age, and ranges from approximated values of 1.2 - 2.6 cm in newborns, compared to 559 

values of 3 to 6 cm in adults [135]. Since both intestinal length and radius increase with paediatric 560 

development, the functional surface area can increase significantly [137]. Furthermore, specific 561 

morphological features on the luminal surface, such as folds, villi and microvilli, naturally increase the 562 

surface area available for absorption [138]. SI villous patterns start developing at an early stage of 563 

gestation. The growth of these features occurs by crypt hyperplasia and crypt fission (a process where 564 

the crypts unzip and duplicate). Cummins et al. studied these mechanisms and showed that crypt 565 

fission occurred predominantly during infancy, and crypt hyperplasia occurred during both infancy 566 

and childhood [139; 140]. Mean crypt fission rates in newborns, infants, children and adults were 567 

7.8%, 15%, 4.9%, and 1.7%, respectively. The peak of crypt fission was found to be 18% in 5 infants 568 

from 6 to 12 months of age. Villus height, measured in biopsies of younger children, exhibits lower 569 

values compared to healthy adults, while the crypt depth has been shown to be greater in young 570 
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children [63; 141]. Newborns show elongated small finger-shaped villi and small crypts, with leaf-571 

shaped villi appearing from one month after birth [140]. Feeding has been described as a modulating 572 

factor of differences in villi structure between newborns and infants, where smaller crypts have been 573 

described for those fed with breast milk, when compared to those fed with formula milk [140], whereas 574 

other literature has described villi as single projections in children younger than three years, with 575 

development of leaf or finger-shaped villi above this age [84]. Reports concerning the development of 576 

these features in early childhood are conflicting and provide a rather qualitative type of 577 

information [84]. Overall, comparison of newborns and infants with older children and adults, shows 578 

presence of lower intestinal surface area, with differences in both structure and quantity of the villi 579 

[84].  580 

 581 

3.6. Intestinal permeability 582 

Intestinal permeability is high at birth for preterm infants, with a decrease to adult values over the first 583 

week of postnatal life [142-144]. Nevertheless, both decreases and increases in permeability during 584 

the first month after birth have been reported, which might be attributed to several factors, such as 585 

differences in gestational age, clinical condition, feeding regimen, and postnatal age at the time of 586 

assessment [145]. It is unclear at which age full maturation of permeability processes is reached [142]. 587 

Children over 2 years of age present similar permeability values to adults [83; 146; 147]. Additionally, 588 

processes involved in passive and active transport are fully developed in infants by ~ 4 months old 589 

[137; 142]. Growth factors, hormones, breast milk and changes in the thickness and viscosity of the 590 

intestinal mucus, have been described as factors underpinning the development of permeability 591 

processes [145]. 592 

Intestinal permeability and influence of the type of feeding, have been evaluated with dual sugar test, 593 

lactulose and mannitol, and creatinine. No differences in intestinal permeability were found between 594 

infants fed with breast milk, and standard cow’s milk formula, nor when different types of formulae 595 
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were compared [148]. Lower permeability is often linked to ingestion of human milk, due to the 596 

presence of bioactives [145]. Stratiki et al. showed that infant cow’s milk formula supplemented with 597 

bifidobacteria tended to decrease intestinal permeability [149; 150].  598 

Recently, intestinal influx oligopeptide transporter peptide transporter 1 (PEPT1) was studied to 599 

understand how the disposition of substrates of this transporter changes with age. The expression and 600 

tissue localisation across the paediatric age range were investigated by analysing intestinal samples 601 

(n = 20 newborns/infants, n = 2 children, n = 4 adolescents). Lower mRNA expression levels of PEPT1 602 

was observed in newborns/infants opposed to older children, nevertheless, the difference was small 603 

and the distribution in intestinal tissue of the transporter was similar. Therefore, similar absorption 604 

profiles with respect to PEPT1 transporter substrates are expected in the paediatric subpopulations and 605 

adults [151]. 606 

Contradictory literature can be found on the ontogeny of the efflux transporter P-glycoprotein (Pgp), 607 

also referred to as multidrug resistance protein-1 (MDR1) [137; 142]. Mooij et al. studied the gene 608 

expression of several hepatic and intestinal drug transporters. Intestinal mRNA expression of MDR1, 609 

MRP2, and OATP2B1 was determined in surgical small bowel samples (newborns, n = 15; infants, n 610 

= 3; adults, n = 14), and expression values for MDR1 and MRP2 were similar to the values in adults. 611 

Intestinal OATP2B1 expression in newborns was significantly higher than in adults [152]. The 612 

methodology should be considered and results should be carefully interpreted with regard to mRNA 613 

data, which may not be entirely representative of transporters’ protein expression or activity [153]. 614 

Quantitative data on paediatric intestinal permeability is limited [48; 142; 146]. The need for further 615 

research in the field of drug transporters in the paediatric populations has been highlighted [154]. Some 616 

of the factors that may interfere with studies on drug transporter activity are disease, drug-gene 617 

interactions, drug-drug interactions, food-drug interactions, and exposures to environmental 618 

chemicals [154]. Access to high-quality tissue samples in the paediatric population is limited. Current 619 

tissue sources include left-over tissue from surgery and biopsies and post-mortem tissue from organ 620 
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transplants and autopsies. Issues arising from the current samples used are the periods between sample 621 

collection and death of the subjects as well as the available sample size. Additionally, acquiring 622 

parent’s consent for autopsy is challenging. Development of methodologies, which will enable 623 

quantitative measurement of transporter proteins using small biologic samples, would contribute to 624 

gain insight into ontogeny trajectories of various transporters [155]. Furthermore, the development of 625 

a paediatric biobank of healthy tissues would improve research on the ontogeny of transporters and 626 

metabolic enzymes [156].  627 

 628 

3.7. Metabolism 629 

The intestine and liver are the two main sites for metabolism of drugs. The activity of drug 630 

metabolising enzymes is low at birth and reaches adult levels by early childhood [142]. In older 631 

children, due to a larger liver size and higher hepatic blood flow, when normalized per BW, increased 632 

hepatic clearance is observed, even if enzyme activity is described as similar to adults [142].  633 

Drug metabolism in the gut lumen is characterised by the presence of intestinal microbiota, with 634 

changes in bacterial colonisation affecting drug absorption [63; 157]. Microbiota is present right after 635 

birth [142]. A wide variety of factors influence the patterns and extent of microbiota colonisation of 636 

the gut, including gestational and postnatal age, mode of birth, type of food, etc. [63; 158]. The 637 

intestinal microflora of the infants’ intestine start to resemble adults’ one at the end of the first year of 638 

age [145], but full maturation is only reached between 2 and 4 years of age. 639 

Ontogeny of intestinal wall metabolism requires further investigation [142], with infants and children 640 

being the age groups with less information available [63; 142]. Reports of enzyme ontogeny describe 641 

changes in mRNA, protein, and activity levels [106]. In adults, cytochrome P-450 enzymes (CYPs) 642 

are mainly represented by the CYP3A4 and CYP3A5 [142]. In paediatrics, more information is needed 643 

about CYP intestinal enzymes to draw a conclusion. The mRNA expression of CYP3A4 and CYP3A5 644 

decreases with age, although protein expression increases significantly with age [106]. Ontogeny of 645 
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these enzymes remains to be elucidated [63]. Age-dependent changes of other metabolic enzymes 646 

responsible for gut wall metabolism have been reported [142]; for example, the intestinal activity of 647 

Glutathione S-transferase alpha 1 (GSTA1-1) is significantly greater in paediatric patients younger 648 

than 5 years (as estimated by intestinal biopsies) compared to adults and older children. 649 

Sulfotransferase (SULT) mean activity values were three times higher in foetal intestinal tissues 650 

compared to adults [142]. However, not all metabolic enzymes are reported to change as function of 651 

change, for example intestinal alcohol dehydrogenases maintain the same expression levels throughout 652 

infancy and adulthood [142].  653 

The ontogeny of hepatic metabolic enzymes has been studied more broadly than intestinal metabolism. 654 

Regarding CYPs, low levels are seen in younger paediatric subpopulations. Adult values start to be 655 

reported from 1 - 5 years depending on the isoform [142]. A recent examination of CYPs’ hepatic 656 

expression, activity and abundance as a function of age have reported greater enzyme activity and 657 

abundance for enzymes of the CYPA1-3 families after birth, except for the isoform CYP3A7 [159]. 658 

When compared to postnatal samples, a different trend is seen, in which activity is higher than 659 

abundance [159]. The evaluated samples represented the subpopulations of newborns and infants 660 

(< 1 yr, n = 6), a juvenile group (1 - 18 yr, n = 10), and the adult population (>18 yr, n = 9); the lack 661 

of differentiation among the juvenile group, hinders the formation of a firm conclusion on age-662 

dependent metabolic activity in this group [159]. In general, infants and juvenile groups, displayed 663 

high enzymatic abundance accompanied by a lower activity, when compared to adults [159]. 664 

Moreover, other hepatic metabolic enzymes have shown age-dependency, such as 665 

Uridine 5'-diphosphate-glucuronosyltransferase; SULT; N-acetyltransferases. 666 

More research in the field of the ontogeny of metabolic enzymes is still required. More paediatric 667 

subpopulations should be addressed, such as infants and children. Intestinal gut metabolism should be 668 

further studied in order to give clarity on how gut wall enzymes change with age. Changes in enzyme 669 

expression and activity can result in profound differences in production of metabolites that are not 670 
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obligatory encountered in adults [142]. As for permeability, measurement techniques should be 671 

considered when interpreting the results, as mRNA information might not be able to predict changes 672 

in levels of activity and protein expression. Literature reports should, therefore, be interpreted 673 

carefully, and methods such as protein quantification, such as targeted liquid chromatography-tandem 674 

mass spectrometry, and functional assays with ex vivo material should be preferred [63; 153].  675 

 676 

4. Paediatric Biopharmaceutics Classification Systems (pBCS) 677 

The introduction of the Biopharmaceutics Classification System (BCS) by Amidon et al. in which 678 

drugs are divided into four categories based on their solubility an permeability, set the foundation for 679 

evaluation of oral drug absorption in the fasted state [160]. Since its establishment, the BCS’ role has 680 

evolved into a useful regulatory framework, which allows extrapolation of drug product 681 

bioequivalence, in specific cases, based on in vitro dissolution experiments, and the correlation to 682 

in vivo drug product performance, also known as BCS-based biowaiver [142; 161]. Additionally, the 683 

key role of BCS in early drug development is undeniable as part of the decision making on salts and 684 

polymorph form selection and timing of dedicated studies, support of formulation decisions in pre-685 

clinical animal models, and drug formulations intended for humans [162]. 686 

A recent survey, conducted among experts in the field of paediatric biopharmaceutics, confirmed the 687 

need of a Paediatric Biopharmaceutics Classification System (pBCS), outlined current trends, possible 688 

criteria for its establishment, and prioritised the areas of insufficient knowledge that need to be further 689 

explored [147]. Division of the paediatric population into 4 - 7 subpopulations has been proposed, with 690 

the question of the appropriateness of a further breakdown of the covered age rages [156; 163]. The 691 

challenges towards the pBCS criteria establishment and the possible approaches for setting the 692 

classification criteria will be discussed in the following subsections. 693 

 694 

4.1. pBCS solubility classification criteria 695 
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The three key factors that define the solubility classification of a drug (the highest dose strength, the 696 

initial gastric volume which is available upon drug arrival, and the solubility of the drug) vary amongst 697 

all paediatric subpopulations. Paediatric dose determination can be based on various calculations 698 

(i.e. allometric or isometric scaling) or on clinical observations [164; 165] and an, therefore, result in 699 

different recommendations for each specific paediatric subset.  700 

 701 

The paediatric initial gastric volumes have been calculated by a BW-extrapolation method based on 702 

the initial gastric volume found in adults (250 mL, corresponding to a glass of water administered in 703 

adult bioequivalence studies) and a paediatric fasted gastric fluid volume of 0.56 mL/kg [65; 146; 147; 704 

163]. Slight variation of the initial gastric volume for paediatric subpopulations is observed depending 705 

on the average weight reference values selected for the same paediatric age group (Figure 7) [146; 706 

163]. The calculation of paediatric initial gastric volumes by BSA-extrapolation function based on the 707 

adult initial gastric volume (i.e. 250 mL) and adult BSA of 1.73 m2 has also been reported and results 708 

in a greater volume estimated for paediatric subpopulations compared to BW-based extrapolations 709 

(Figure 7) [164]. 710 

Although newborns and young infants typically receive none or only small amounts of water, the BW 711 

or BSA-based extrapolations of the volumes based on adult water intake with a medicine may be 712 

applicable to other typical fluids for these subpopulations, e.g. breast milk or formula milk. The down-713 

scaling of the recommended administered volumes in adults to children may slightly overestimate the 714 

“real-life” administered volumes, as the adult value of 250 mL utilised in the extrapolation to 715 

paediatrics has been reported to overestimate “real-life” administered volumes in adults [166].  716 

 717 

Please place Figure 7 here 718 

 719 
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Another reasonable approach for determining the initial gastric volumes for the pBCS might be to 720 

investigate the administered fluid volumes, considered representative for each paediatric sub-group, 721 

and establish the limits on an empirical basis [147]. In a recent study, it was found that the majority of 722 

infants and young children take no additional fluids to facilitate oral drug administration, the authors 723 

explained these results with the fact that liquid formulations were commonly administered to these age 724 

groups and that no additional fluid is required to facilitate drug intake [166]. In this case, the only 725 

available fluid for drug dissolution would be the volume of the administered formulation, adding up to 726 

5 mL for a liquid preparation [167], plus the available fluid in the fasted stomach. When fluids were 727 

used to enable medication administration, water and milk were preferred for these age groups [166]. 728 

Liquids for drug intake by the older paediatric participants were usually reported as half a glass of 729 

water, juices or soda [166]. For adults, the recommended volume to administer oral medication consists 730 

of a glass of water (250 mL), whereas “real-life” studies report that only half of this volume is used 731 

for medicine intake [166]. Generally, the volumes of consumed liquids increase with advancing age. 732 

Evidence-based appropriate fluid volumes for drug administration throughout the paediatric subgroups 733 

are insufficient to underpin a limit for the reference volume and could beneficially be investigated 734 

further to provide guidelines [147]. Ultimately, it should be noted that drug administration with 735 

beverages other than water has been reported to affect the drug’s bioavailability [168].  736 

Further investigation is required on the need of matching dose strength to initial gastric volume for 737 

each paediatric subset [142]. In the case that a default dose of the drug is not set for the subpopulation 738 

of interest, an individual body-weight or BSA-based dose calculation in the phase of fast growth 739 

(e.g. a child of 7 years of age versus a child of 11 years of age) might lead to a BCS class change, if 740 

the dose is doubled, while the values for solubility and initial volume remain constant [146]. 741 

 742 

For the dose/solubility-ratio, the lowest measured thermodynamic solubility of the drug in the pH range 743 

1.2 - 6.8 has been proposed [160]. In the context of a pBCS, the choice of a relevant pH-range for the 744 
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solubility assessment requires more reliable data on paediatric GI fluid characterisation for the separate 745 

paediatric subpopulations, as outlined in Section 3.2. [147]. The majority of the paediatric 746 

biopharmaceutics experts surveyed by Batchelor et al. considered the adult pH range for solubility and 747 

dissolution appropriate for the pBCS [147].  748 

 749 

4.2. pBCS permeability classification criteria 750 

Permeability values have been derived from absolute bioavailability data in paediatric patients [164]; 751 

due to the limited pharmacokinetic data generated in paediatrics, alternative determination methods 752 

need to be examined. Calculated log P values guided the provisional classification of the drugs 753 

included in the WHO list of essential drugs for children with view to drug permeability [146]. 754 

Calculated log P values showed a high linear correlation with experimentally established log P values 755 

for selected compounds (R2 = 0.92, n = 35) and were therefore utilised for the BCS classification of 756 

drugs regarding their permeability [163]. Although several publications have reported log P and 757 

calculated log P to correlate to adult SI permeability, which might be applicable to paediatric groups 758 

over 2 years of age, the appropriateness of these parameters for newborns and infants remains 759 

unknown [146; 163]. In the aforementioned expert survey, the determination of the permeability limit 760 

for school children and adolescents was set as equal to the criteria of the adult BCS [147]. A PBPK 761 

modeling approach has been proposed as a means to detect the sensitivity of the cumulative fraction 762 

absorbed (fa) to a permeability decrease in children, results show that fluconazole would remain a 763 

Class I drug regardless of its permeability in children [125]. The controversial nature of the available 764 

information on permeability in newborns and infants poses a hurdle towards establishing meaningful 765 

permeability criteria for these subpopulations. 766 

 767 

 768 

 769 
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4.3. Challenges for the pBCS criteria determination 770 

In spite of recent advances in the field of paediatric biopharmaceutics, significant knowledge gaps 771 

concerning absorption processes, maturation and growth of the GI tract impede the establishment of 772 

solid, evidence-based pBCS criteria. One more challenge towards the establishment of the pBCS 773 

originates in the developmental heterogeneity of the paediatric subpopulations. The necessity of a 774 

subdivision of the paediatric subpopulations has been highlighted several times; the selected groups 775 

should account sufficiently for growth and maturation changes [142; 147; 164; 169]. On one hand, the 776 

pBCS should discriminate as many paediatric age groups as needed, but on the other hand, it should 777 

not be overcomplicated and deprived of its universal and simplistic character. In order to establish 778 

distinct and adequate pBCS criteria, further research in the area of paediatric physiology and anatomy 779 

is needed, of which permeability of the SI as a function of age has been given the highest priority by 780 

the majority of paediatric biopharmaceutics experts surveyed by Batchelor et al. [147]. Biorelevant 781 

media and dissolution tests for paediatric formulations require further improvement, in order to 782 

establish appropriate pBCS dissolution test criteria for a potential pBCS-based biowaiver [147]. 783 

Another raised concern is whether the development of a pBCS is meaningful with respect to the 784 

available paediatric formulations. Although conventional tablets are not the formulation of choice for 785 

the youngest paediatric groups, other solid formulations (e.g. chewable tablets, mini-tablets, 786 

multiparticulate formulations, orally disintegrating tablets or films, lingual tablets, dispersible tablets) 787 

are gaining further popularity for low-solubility drugs [170].  788 

Early biopharmaceutical risk assessment in paediatric drug development is crucial [171] and a simple 789 

system such as pBCS, compared to more complex tools like PBPK modeling, can offer a satisfactory 790 

estimation of the oral drug absorption and help troubleshoot potential limiting parameters [169]. 791 

A pBCS establishment would contribute to formulation bridging, line extensions, and minimising 792 

clinical trial and regulatory burden [169].  793 

 794 
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5. Food effects on oral drug absorption in paediatrics  795 

Oral delivery continues to be the route of choice for administration of most drugs both in adult and 796 

paediatric populations. A review of submitted Paediatric Investigation Plans (PIPs) to the EMA in 797 

2009, shows that 73% of pharmaceutical dosage forms developed for paediatric use were oral dosage 798 

forms [172]. EMA defends that if possible, the formulation should be available in more than one oral 799 

dosage form (solid and liquid) in order to facilitate administration and improve acceptability [10]. 800 

Liquid formulations are likely to be the most appropriate oral formulations from birth to 5 years due 801 

to swallowability and dose flexibility. Supporting evidence shows that with support and training 802 

younger children, i.e. below 6 years, can learn to take solid dosage forms such as tablets and capsules. 803 

The definition of an ideal formulation for all paediatric age-groups is challenging due to individual 804 

preferences and specific characteristics of patients [168]. An algorithm was proposed to guide the 805 

development of age-appropriate medicines with a focus on acceptability in every age 806 

subpopulation [173]. For newborns, liquid formulations and appropriate 2 mm mini monolithic tablets 807 

were suggested. For infants, more options become available, including liquids, mini monolithic tablets, 808 

multi particulates and orodispersible tablets. In children from 2 - 5 years, in addition to the 809 

formulations mentioned above, chewable tablets become an option [173]. Off-label drugs are widely 810 

used in paediatrics, most of the times due to lack of an appropriate paediatric oral formulation. 811 

Frequently, the most commonly used formulations in adults are modified and administered to children; 812 

crushing tablets or opening capsules to facilitate dosing are not uncommon practice [168]. Martir et al. 813 

reviewed the recommendations for administration of oral drugs by the British National Formulary for 814 

children and showed that the most common formulation administered to newborns are capsules, which 815 

are meant to be opened, and sprinkled or mixed with food and beverages [168]. In infants, a wider 816 

selection of formulations is recommended to be mixed with food, but capsules remain the most 817 

frequently used formulation (30%). The following section outlines the current regulations for drug 818 

administration after a whole meal or when mixed with small amounts of food or beverages and focuses 819 
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on the adjusted pharmacokinetic investigation approaches for paediatric formulations. Additionally, 820 

the food effect, seen from the perspective of paediatric drug formulation will be discussed. 821 

 822 

5.1.  Regulations and current practice: administration after a meal 823 

The EMA and FDA guidelines provide a precise framework for the conduct and evaluation of food-824 

effect bioequivalence studies in adults [52; 53]. The need of investigating drug pharmacokinetics in 825 

the paediatric population has been acknowledged by regulators through the issuing of relevant 826 

guidelines, while no specific regulations on food effect evaluation in paediatrics have been published 827 

[5; 174; 175].  828 

In order to estimate the current trends regarding bioavailability studies for paediatric formulations, a 829 

search of the EU Clinical Trials Register was performed (status November 2017). The platform 830 

includes 31465 clinical trials with a EudraCTprotocol (16 % of which were paediatric clinical trials) 831 

and additional 18700 paediatric clinical trial reports. The search yielded 32 completed and ongoing 832 

bioavailability investigations, 16 of the studied formulations were intended for the oral administration 833 

route. Three of the studies investigated food effects; all of them were performed in an adult study 834 

population with a standardised high-caloric, high-fat breakfast. The tendency that food effects on the 835 

bioavailability of paediatric drug formulations is usually investigated in adult populations has recently 836 

been reported by Elder et al. [169]. In the context of food effect studies, age-adjusted meals were 837 

sometimes taken into consideration: milk was a common meal option for formulations intended for 838 

infants and younger children, whereas a breakfast was used for older children [176]. The study design 839 

should aim to investigate the maximum effect, which the meal can have on the formulation of interest 840 

[176]. 841 

Milk is not only the key energy source in the early life stages, but it additionally offers a caloric 842 

breakdown similar to the FDA standard breakfast (Table 2). The type of milk should be chosen 843 

carefully, as the various infant formula types and cow’s milk has different composition and 844 
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physicochemical properties (Section 2.5.) and exhibit different GE-rate in infants and newborns when 845 

administered with a similar energy amount (Section 3.3.) [49; 117]. To the best of our knowledge, the 846 

effects of different milk, and formula milk types on adults GE has not been studied; the potential impact 847 

should be considered if whole cow’s milk is used instead of breast milk or formula milk when 848 

conducting bioavailability or bioequivalence studies for paediatric populations in adults.  849 

Food effects on drug absorption following a meal in paediatric patients have been reported [176-185]. 850 

Drugs with reported food effects in adult populations showed no significant bioavailability changes in 851 

paediatric populations in the fasted versus fed state [177; 178; 181; 183; 184; 186], as it was observed 852 

for formulations of desmopressin, cefpodoxime proxetil, and methotrexate. On the contrary, food 853 

effects in paediatrics were observed for amoxicillin and ampicillin, while adult studies showed no 854 

significant food influence on the extent of drug absorption [182; 187]. Therefore, a food effect 855 

bioequivalence study in adults, following the design recommended for adult drug products, might not 856 

always be considered a reliable predictive tool for formulation performance under fed conditions in 857 

the paediatric population [176].  858 

Some of the inconsistencies (e.g. significant and non-significant differences in drugs bioavailability 859 

due to distinct prandial state) might be explained by heterogeneous, lenient or indefinite requirements 860 

or reporting concerning the fasting time prior to drug administration (e.g. 30 - 120 minutes among 861 

different studies), food and fluid consumption at the time of administration, and meal standardisation. 862 

Whereas the majority of paediatric studies were based on real-life dosing conditions with regard to 863 

meal type and quantity, adult studies investigate the maximum food impact on the formulation’s 864 

bioavailability. In contrast to paediatrics, adult food effect studies were usually conducted according 865 

to relevant guidelines. Although the adoption of such a guideline for paediatrics would ensure a unified 866 

approach and comparability of the investigations, ethical and recruitment issues may pose a challenge 867 

in guideline’s development and applicability. 868 
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 869 

5.2.  Regulations and current practice: co-administration of formulation with food/ drinks 870 

Small amounts of soft foods and juices are used for improving acceptability and palatability of 871 

formulations in the paediatric population. Previous cases reporting significant drug bioavailability 872 

alterations have raised safety concerns [59; 188-190]. As a result, vehicles (discussed in Section 2.5.) 873 

which are considered safe or inappropriate to be mixed with the formulation, should be included in the 874 

product information supported by relevant in vivo or in vitro studies. The amount of soft food or 875 

beverage for co-administration is crucial for the study outcome, and a “small portion (e.g. one spoon) 876 

or otherwise justified quantity of the food or drinks” is recommended by the EMA [167]. There is a 877 

lack of guidance on what an exact age-appropriate amount is. EMA guideline on pharmaceutical 878 

development of paediatric medicines [167], suggests an optional in vivo study, which can be a separate 879 

bioequivalence study in adults [191], alternatively paediatric clinical trials can be conducted with the 880 

vehicle(s) of choice, as reported for omeprazole and montelukast paediatric formulations [192; 193]. 881 

On the other hand, the sprinkling of formulations on soft food is referred in the FDA guidance on 882 

Food-Effect Bioavailability and Fed Bioequivalence Studies. In the case of investigation of 883 

formulations that are meant to be sprinkled on foods, a study in healthy adult volunteers is usually 884 

requested by regulatory authorities [53]. Investigation of the vehicle(s), as part of the paediatric clinical 885 

trial, would provide the highest reliability in terms of product safety and efficacy, although it might 886 

further complicate the trial design (through introduction of additional drug administration conditions), 887 

execution (e.g. patient recruitment difficulties), and outcome interpretation [169; 194].  888 

The type and quantity of studied foods or beverages varied in adult studies investigating the 889 

administration of paediatric formulations mixed with small amounts of vehicles. Quantities from one 890 

tablespoon to 120 mL were reported for the commonly used soft foods and typical fluids were 891 

investigated in volumes ranging from 5 to 240 mL [176; 190]. Possible food-drug interactions may 892 

occur with the commonly used applesauce and apple juice, e.g. for fexofenadine inhibition of 893 



32 
 

OATP transporters in the GI tract have been reported with influence on the pharmacokinetic 894 

profile [195]. A recent study reported by Batchelor et al. described how in vivo, in vitro and in silico 895 

investigations were adjusted to the previous knowledge available for two model drugs categorised as 896 

BCS class II and III [196]. Briefly, the stability of each drug in various vehicles was confirmed and 897 

possible vehicles for co-administration were selected; this was followed by a combination of in vitro 898 

dissolution and solubility studies and in silico modeling [196; 197]. 899 

Although the regulatory bodies acknowledge the importance of conducting paediatric studies, the 900 

paediatric trials should provide benefit for the patients and should not be unnecessary [198]. Studies 901 

performed in adults are accepted and the applicability of the results to the paediatric population should 902 

be discussed; additionally, in vitro and in silico tests are accepted as supportive evidence [167]. Finally, 903 

a regulatory statement concerning the appropriate volumes for product testing would provide valued 904 

information and ensure a more unified approach to the dedicated studies. 905 

 906 

5.3. Food effects and paediatric dosage forms 907 

The type of dosage form can contribute to the occurrence and extent of food effects. Formulation-908 

related food effects are generally regarded as less common for oral liquid formulations, because of the 909 

liquids’ greater mobility in the adult GI tract and less variable GE rate in the fasted and fed state [199]. 910 

Cases of absorption delay have been reported for suspensions, solutions and powder for 911 

reconstitution [185; 200-202]. The presence of food in the stomach limited gastric disintegration and 912 

dissolution of a solid dosage form in adults, leading to delayed absorption of fosamprenavir [203]. 913 

This effect might not be relevant for younger paediatric patients who are not able to swallow a whole 914 

tablet but should be considered in formulation development for school children and adolescents.  915 

Drug absorption from innovative paediatric solid formulations, which are usually formulated into a 916 

hard capsule, such as multiparticulates and mini-tablets, show less dependency on the time needed for 917 

disintegration, compared to the intact formulation. Differences in the pharmacokinetic profiles have 918 
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been observed after administration of a capsule and sprinkled formulation in the fed state, achieved by 919 

the two formulations in an adult study [204]. McLean et al. compared the performance of 920 

administration of an intact carbamazepine controlled-release formulation in the fasted and fed states 921 

and sprinkling of the contents in applesauce [205]. The different treatments showed bioequivalence, 922 

although the extent of absorption in the fed state was slightly higher than in the fasted state for the 923 

intact formulation and for the sprinkled formulation administered with applesauce. The sprinkled 924 

formulation achieved slightly greater extent of absorption compared to the intact formulation in the 925 

fasted state; it remains unclear if this difference might be due to the presence of soft food used for the 926 

administration or to the drug product itself (intact capsule or sprinkled contents). The increased 927 

absorption in the presence of food was explained by the drug’s properties and was not formulation-928 

associated [205]  929 

The process of formulation transfer into the SI could explain further formulation-related food effects. 930 

Small particles pass into the SI together with the chyme during the GE of the meal. In contrast, non-931 

disintegrating dosage forms with a diameter greater than 2 mm [176] are commonly cleared into the 932 

SI during MMC Phase III (in the fasted prandial state) and less frequently through isolated distal antral 933 

contractions [206]. Generally, such formulations (matrix tablets or coated tablets) would arrive in the 934 

SI earlier in the fasted state than in the fed state, as the MMC only occurs in the fasted state [206].  935 

Monolithic non-disintegrating formulations can usually be considered for paediatric patients older than 936 

6 years of age mainly for swallowability reasons [10]. The solid monolithic formulation behaviour in 937 

the presence of food is dependent on multiple factors, e.g. properties of the coating agent and stability 938 

in different pH media, type of matrix material used, breaking force of the tablet, and general 939 

formulation robustness when exposed to different GI fluids. Investigations performed in adults report 940 

remarkable differences between formulations, with positive food effects (an increase of exposure 941 

up to 50%) with or without absorption delay, or significantly reduced drug absorption, or no influence 942 

of the prandial state [207; 208]. Formulation-related food effects for theophylline in paediatric patients 943 
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aged between 4 and 14 years revealed great variability after drug formulation administration after a 944 

standardised breakfast, consisting of approximately 20% fats, 70% of carbohydrates, and 945 

up to 13% of  proteins; the total caloric count was normalised per BW 10 - 15 Kcal/kg [209]. One 946 

formulation (Somophyllin®, sustained release sprinkle product) showed no changes regarding the 947 

extent of absorption, but a delayed absorption. A second sustained-release 948 

formulation (Theo-Dur® sprinkle) showed less variable in vivo performance in the fasted state 949 

compared to the fed state; this sprinkled formulation performed similarly in adults and paediatric 950 

patients, although the negative food effect was more pronounced in the paediatric group [207; 209]. 951 

The exposure achieved by the monolithic theophylline formulation (Uniphyllin®, sustained-release 952 

tablet) in the fed state was doubled compared to the fasted state, due to dose dumping, which occurred 953 

in 50% of the population. GI transfer delay might not only result in an unfavourable impact on the 954 

timing of the drug effect when rapid drug onset is required, but it can have an impact on drug 955 

bioavailability for drugs with narrow absorption windows, as observed for pregabalin controlled-956 

release tablets in adults [210]. In order to ensure that the extrapolation of food effects for non-957 

disintegrating or controlled-release formulations from adults to paediatrics is reliable, further accurate 958 

knowledge about the MMC process, size of particles that can pass through the pylorus sphincter, GI 959 

motility, and transit times across the GI is essential. 960 

 961 

6. In vitro evaluation of drug products for paediatrics 962 

GI developmental changes must be addressed in the design of in vitro models to achieve adequate 963 

predictions of oral drug absorption as a function of age. In the following subsections, recently proposed 964 

in vitro methodologies will be presented. 965 

 966 

 967 

 968 
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6.1. Paediatric biorelevant media  969 

Compositional differences in GI fluids for the development of biorelevant media, representative of 970 

newborns and infants in the fasted and fed state, have recently been addressed by Maharaj et al. [109]. 971 

The proposed media gathered information on physiological relevant components of GI fluids, such as 972 

pepsin concentrations, food type for fed state media, bile salt concentration, pH, osmolality, and others 973 

(Table 4) [109]. The paediatric biorelevant media were developed for the youngest subpopulations, 974 

newborns and infants (1 - 12 mo), and were based on the adult biorelevant media composition [109]. 975 

As discussed above, these age groups show the highest degree of developmental differences, when 976 

compared with adults. Values reflecting the physiological conditions (where available) were set in 977 

order to simulate more closely the GI composition of fluids in newborns and infants. Solubility studies 978 

of seven BCS class II drugs were performed in the paediatric biorelevant media. The solubility changes 979 

in paediatric media, compared to the solubility in adult biorelevant media, was evaluated based on risk 980 

assessment (risk set when values were outside the 80 to 125% range) [109]. The impact of age-related 981 

alterations in GI fluid composition on compound solubility was revealed, as for 6 of the 7 BCS Class 982 

II compounds investigated the solubility in at least one of the developed paediatric media fell outside 983 

the 80 to 125% range compared to the solubility in adult media [109].  984 

Kamstrup et al. performed a literature review of relevant physiological components and proposed a 985 

composition of physiologically relevant medium for newborns and young infants (0 – 2 mo) 986 

representative of the fasted and fed state. Biorelevant components addressed included bile salts 987 

concentration, the ratio of bile salts to phospholipids, and digestive enzymes (pepsin, human gastric 988 

lipase, and pancreatic triglyceride lipase). The media were developed with the purpose of being used 989 

for an in vitro lipolysis method, and it has been applied to study the in vitro lipolysis of furosemide, 990 

which will be discussed in the next section [48].  991 

 992 

Please place Table 4 here 993 
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6.2. Evaluation of drug products characteristics 994 

In vitro dissolution testing is a standard method used for the characterisation of drug products. 995 

Questions regarding the relevance of dissolution tests within paediatrics have been raised in a recent 996 

review since dissolution testing mainly aims to characterise solid oral dosage forms, and its 997 

applicability to commonly used paediatric formulations as liquids, semisolids, or orally disintegrating 998 

tablets is debatable [169]. Nevertheless, as mentioned in Section 4.2., paediatric solid formulations 999 

(e.g. chewable tablets, mini-tablets, multiparticulates, etc.) are gaining further popularity for low-1000 

solubility drugs [170]. The mini-paddle apparatus, that is based on the pharmacopoeia paddle apparatus 1001 

(USP II apparatus with scaled down dimensions), and the flow-through cell apparatus 1002 

(USP IV apparatus) have been acknowledged as superior to USP I and II apparatus, in terms of 1003 

simulating paediatric conditions [169]. 1004 

 1005 

New paediatric dissolution setups have been proposed by Karkossa et al., which investigated different 1006 

dosing scenarios of a paediatric formulation of sodium valproate (BCS class I compound; pKa = 4.8 1007 

and log P = 2.75) extended-release mini tablets formulation (Orfiril long®) [211]. Two scenarios were 1008 

investigated: i) impact of gastric pH on drug release, in a new dissolution apparatus (proposed in the 1009 

study as a modified USP III vessel (shortened height and glass ring in outer surface) in a water bath 1010 

with stirring provided by a magnetic stirrer (550 rpm), and ii) impact of co-administration of different 1011 

vehicles in a mini-paddle apparatus with a subsequent transfer to a new dissolution apparatus. 1012 

Residence times for the simulation of each stage of GI tract were 30 min for the gastric compartment, 1013 

240 minutes for the SI and 480 min for the proximal colon [216]. Gastric fluids were simulated by 1014 

mixing 10 mL of simulated gastric fluid (pH range 1.8 - 4.0), and 50 mL of water. After 30 min, 1015 

simulated gastric contents were transferred to a second vessel where 110 mL of simulated small 1016 

intestinal fluid (pH 6.8 bicarbonate based simulated intestinal fluid, 50 mL) was present. Results 1017 

showed that gastric pH had no impact on overall drug release. During the short-simulated fasted gastric 1018 
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residence time of 30 min, almost no drug was released. Approximately 50 - 60% of the dose was 1019 

released during simulated small intestinal residence time, and drug release was complete at the end of 1020 

the simulated passage through the SI and proximal/mid colon. The impact of co-administration of 1021 

dosing vehicles on drug release was investigated with a two-stage dissolution model. Gastric residence 1022 

of the administered formulation with water, apple juice or soft foods (applesauce, yoghurt, or pudding) 1023 

was performed in the mini-paddle apparatus (170 mL; 30 min; 75 rpm). After the first 30 minutes, 1024 

60 mL of the simulated gastric contents together with the tablets were transferred into the modified 1025 

USP III vessel, with the addition of 50 mL of bicarbonate-based simulated intestinal fluid, in order to 1026 

simulate the intestinal conditions. Drug release under these conditions was screened for 12 h 1027 

representing residence time in the SI and proximal colon. These release studies revealed that 1028 

administration of the formulation with other beverages, and soft foods should not affect bioavailability 1029 

and confirmed the appropriateness of the paediatric dosing recommendation for this formulation [211]. 1030 

In vitro release profiles from experiments simulating co-administration with different soft foods 1031 

(applesauce, yoghurt, and pudding) were similar to those obtained in water and apple juice, suggesting 1032 

that co-administration of soft food will not affect bioavailability of the extended-release formulation.  1033 

Brassine and Fotaki investigated the effect of age-related physiological parameters, the effect of dose, 1034 

and the effect of hydrodynamics on the performance of carbamazepine (BCS class II; non-ionisable in 1035 

the physiological pH range; log P = 2) for paediatric use. Biorelevant media, with adjusted bile salt 1036 

concentration, were incorporated in an in vitro dissolution testing to evaluate the effect of age on 1037 

dissolution and release of carbamazepine pellets prepared by extrusion-spheronisation [212]. The 1038 

dissolution study was conducted with the dissolution USP IV, and parameters were adjusted (flow rate 1039 

and residence time) to simulate GI physiological parameters in paediatric groups (newborns, infants 1040 

and children) and adults. Furthermore, the effects of the hydrodynamics on the dissolution was studied 1041 

by setting the closed-loop mode (for simulation of gastric conditions) followed by the intestinal 1042 

conditions simulated with the open-loop mode. Results showed a slower release of carbamazepine 1043 



38 
 

under all paediatric-simulated conditions when compared to the conditions used for the adults; 1044 

nevertheless, no significant differences were revealed for the release of carbamazepine between the 1045 

investigated paediatric groups [212]. 1046 

The same USP IV biorelevant set-up for the fasted state was performed to investigate age-related 1047 

differences in the dissolution performance of Tegretol® 200 mg tablets [213]. Paediatric biorelevant 1048 

media developed by Maharaj et al. were used. Results showed that carbamazepine was not completely 1049 

dissolved in all of the tested conditions. An age-dependent dissolution profile of carbamazepine from 1050 

Tegretol® tablet was observed in the two studied paediatric groups revealing the impact of the GI 1051 

differences (fluid composition and transition times) between the age groups on dissolution. 1052 

Furthermore, the use of the closed-loop mode for the simulation of dissolution in the gastric 1053 

compartment resulted in a higher discrimination of the dissolution profiles between the two age groups 1054 

[213]. 1055 

 1056 

Non-compendial apparatus for the evaluation of paediatric formulations have also been proposed. 1057 

[169]. A TNO Gastro-Intestinal Model (TIM) paediatric setup (TIMpaediatric) has been developed, 1058 

which simulates conditions in the GI tract determined by four interactive factors: i) degree of 1059 

maturation of the age groups (term newborns; infant; or toddler), ii) food type, iii) health status and vi) 1060 

co-medications [214]. The TIMpaediatric was applied to investigate age-related effect of 1061 

co-administration of food matrices with paracetamol (BCS class I; pKa = 9.5; log P = 0.2), diclofenac 1062 

(BCS class II; pKa = 4.15; log P = 4.51), and esomeprazole (BCS class II; pKa = 4.78; log P = 0.6), 1063 

where bioaccessibility curves were constructed (amount of drug available when sampling). Selected 1064 

dosage forms were tested in the in vitro TIMpaediatric by taking into consideration the simulation of 1065 

daily practices used for administration of paediatric medicines, including crushing of tablets, mixing 1066 

drugs with appropriate amounts of food (simulations performed for administration with formula milk 1067 

vs. water), and simulation of the co-administration with proton pump inhibitor were simulated 1068 
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(simulations performed under high gastric pH conditions (pH 6.7 to 6.0). A validation experiment of 1069 

TIMpaediatric was performed by comparing in vitro bioaccessibility profile with in vivo clinical data 1070 

for Calpol® syrup suspension (containing paracetamol) mixed with food, under term-newborn, infant 1071 

and toddler GI conditions, and similar bioaccessible amounts were found when compared to plasma 1072 

concentration profiles, demonstrating the quality of the predictions obtained from the TIMpaediatric. 1073 

Further experiments were then performed, paracetamol formulations investigated were Sinaspril® 1074 

syrup, Sinaspril® tablets (crushed), and Marel® tablets (crushed, also contain caffeine) and results 1075 

showed that paracetamol concentration available for intestinal absorption was independent of the 1076 

different GI conditions of the age-groups, the tested dosage forms, the food matrix, and the co-1077 

administration of a proton pump inhibitor. Two brands of enteric-coated diclofenac tablets were tested 1078 

(Voltaren® vs. Diclofenac Sodium Teva®), results showed that diclofenac available for absorption of 1079 

is not influenced by co-administration of a proton pump inhibitor, but the administration of a crushed 1080 

tablet with infant food showed a significant positive effect on diclofenac bioaccessibility. The 1081 

investigated formulation of esomeprazole formulation was Nexium® enteric coated tablets (crushed), 1082 

and results showed after a first dose of a crushed tablet to infants was low, but increases after repeated 1083 

dosing due to a higher gastric pH by the proton pump inhibitor [214]. 1084 

 1085 

A recent literature review has been performed with the intention of developing an in vitro digestion 1086 

model for newborns and infants (0 - 2 mo) based on a previous lipolysis model for adults [48]. 1087 

Considerations were taken to represent changes during the feeding cycle of newborns and infants, 1088 

which is approximately 3 h. The in vitro digestion model was argued to be more appropriate than other 1089 

in vitro predictive tools, due to the frequent feeding of newborns. Since newborns are mainly in the 1090 

fed state, this can ultimately affect the composition of the fluids and hydrodynamics available for drug 1091 

dissolution and solubilisation processes. For the design of the in vitro setup, several physiological 1092 

factors were reviewed including GE, SITT, gastric volumes etc, and suggested flow rates for the 1093 
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transfer of GI fluids under fed state conditions. A two-step model was proposed as more appropriate, 1094 

comprising a gastric phase and an intestinal phase, where the duration of each phase, and the transfer 1095 

between the two phases, should be reflective of GE and SITT in newborns/young infants. The 1096 

performance of Furix® 20 mg furosemide (BCS class II compound) tablets, in the newborn and infant 1097 

GI tract was investigated with this set-up [215]. Fasted and fed states were simulated to represent 1098 

feeding patterns in the studied population; therefore, the fasted state assumed the presence of small 1099 

amounts of milk. The physiological relevant media used were composed of a chosen appropriate milk 1100 

(Nan 1, Nestle®), and the inclusion of digestive enzymes (i.e. pancreatic triglyceride lipase and pepsin 1101 

and human gastric lipase). Two in vitro models simulating the GI transfer were utilised. In the 1102 

immediate transfer model, a concentrated intestinal medium was added in a single step at a designated 1103 

time point, altering the digestion medium from gastric to intestinal medium instantaneously. In the 1104 

continuous model, digestion medium was continuously pumped from a gastric to an intestinal 1105 

compartment, where the concentrated medium simulating the SI fluid was present. The results 1106 

suggested that the oral bioavailability of furosemide in this subpopulation increased in the presence of 1107 

food [215]. In contrast, parameter manipulation, such as simulation of food digestion and crushing of 1108 

the tablets seemed to cause no alterations in the oral performance of furosemide [215]. The entire 1109 

furosemide dose was completely soluble in the aqueous phase of the simulated postprandial state, 1110 

which led the authors to conclude a high bioavailability of the drug in the presence of food [215]. GI 1111 

digestion of food ingested showed no effect on the amount of furosemide solubilised, nor did the 1112 

administration of the pure powder form of furosemide, which indicates that the dosage form does not 1113 

influence the oral performance of furosemide. The results suggest that presence of food in newborns 1114 

and young infants is affected by the pH at fed state and volume available for drug solubilisation, which 1115 

allows the that the entire dose of furosemide is solubilised in the digestion studies without being 1116 

affected by excipients and digestion. On the contrary, In order to further evaluate and validate these 1117 

results and usefulness of the in vitro models, in vivo data is required [215]. 1118 
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A considerable amount of progress has been made in the development of paediatric in vitro dissolution 1119 

tests. Compendial and non-compendial apparatus have been used, and biorelevant setups have been 1120 

proposed. Nevertheless, further research is required to better characterise GI physiological and 1121 

anatomical changes in paediatrics, in both the fasted and fed state, which will inevitably allow 1122 

optimisation and proposal of more biorelevant models. Validation of the in vitro setups with clinical 1123 

data would be helpful to establish confidence in these methods so that they can be used to inform the 1124 

development of more complex and innovative paediatric dosage forms. Furthermore, a combination of 1125 

biorelevant in vitro tests with paediatric PBPK models is expected to improve knowledge and 1126 

understanding of oral drug absorption in paediatrics [169]. 1127 

 1128 

7. In silico evaluation of drug products for paediatrics 1129 

Regulatory frameworks allow investigators to use existing adult clinical data as supporting evidence 1130 

for efficacy in paediatric populations [216; 217] assuming that disease progression and exposure-1131 

response in both populations are expected to be similar. A significant number of conducted 1132 

pharmacokinetic and efficacy studies in the paediatric population did not achieve labelling for various 1133 

reasons, such as poor study design planning or inappropriate dose determination, indicating the need 1134 

of robust and reliable approaches for interpreting and benefiting from already available clinical data 1135 

[218].  1136 

Predicting in vivo drug performance relies on the estimation of the drug’s ADME properties and the 1137 

understanding of the physiological processes influencing pharmacokinetic parameters. Scaling of 1138 

parameters for different organisms can be facilitated by calculations using isometric or allometric 1139 

functions, or be performed on a more complex level such as PBPK modeling [219].  1140 

 1141 

 1142 

 1143 
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7.1. Allometric scaling 1144 

Paediatric parameters are calculated as a function of the normalized BW or BSA and a specific 1145 

allometric coefficient [220]. For example, a fixed allometric coefficient of 0.75 is used for clearance 1146 

scaling, whereas a value of one is used for the down-scaling of the volume of distribution [220]. 1147 

Mahmood et al. reported that drug clearance calculated by allometric scaling with an adjusted 1148 

allometric exponent, and clearance predicted via PBPK modeling achieved similar results for 1149 

newborns and infants < 3 months of age; the studied drugs were mainly cleared by 1150 

glucuronidation [221]. The prediction accuracy for newborns and infants is expected to be 1151 

compromised for drugs undergoing more complex metabolism, due to variable enzyme ontogeny, 1152 

maturation processes, and alternative metabolic pathways. The use of fixed-coefficient allometric 1153 

scaling is recommended after 2 - 5 years of age when the maturation processes can be considered 1154 

completed [220; 222-225]. The method’s simplicity and unproblematic utilisation contribute to its 1155 

widespread application in clinical settings.  1156 

 1157 

7.2. PBPK modeling 1158 

While allometric functions are still useful for scaling ADME properties, PBPK modeling would be 1159 

preferred, if more complex processes need to be studied [226]. PBPK modeling is an in silico 1160 

biopharmaceutical tool describing the pharmacokinetics of a compound while taking the drug 1161 

properties and drug product characteristics into consideration when introduced to a specific system 1162 

(e.g. healthy adult body) according to a pre-defined study design (e.g. administered formulation). In 1163 

adults, PBPK modeling is often used to predict drug product performance [227]. In paediatrics its use 1164 

has increased the last decade, recognised by the EMA and FDA by publishing guiding documents on 1165 

the appropriate use of previous knowledge (e.g. adults) in paediatric medicines development and by 1166 

PBPK modeling guideline [216; 228; 229]. 1167 

 1168 
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Two modeling strategies may be used to construct a PBPK model, depending on the input used for the 1169 

system. The “top-down” approach is based on observed clinical data as a model for the system (human 1170 

body), followed by an investigation of the components and occurring processes (e.g. parameter 1171 

estimation from plasma drug concentration-time profiles). In contrast, a model that is based solely on 1172 

a combination of physiological processes parameters and in vitro experiments, generating numerous 1173 

connected compartments, which represent an organ or the whole body, is regarded as a “bottom-up” 1174 

approach (usual PBPK model). While the latter depends on absolute knowledge of details, which 1175 

contribute to drug performance in order to predict pharmacokinetics and pharmacodynamics a priori, 1176 

the former relies completely on already obtained clinical data but may not be able to provide the 1177 

necessary detail in each case. A “middle-out” concept that benefits from the combination of the two 1178 

approaches might offer a sensible compromise when some parameters have not been reliably estimated 1179 

yet or need refinement through already available clinical data [230; 231]. Several software platforms 1180 

enable the building of PBPK models for adults (e.g. GI-Sim®, PK-SIM®, Stella®, MATLAB®), while 1181 

some of them do not provide an integrated detailed model of oral absorption (MATLAB®) [227]. 1182 

Additionally, commercially available software platforms, such as, GastroPlus® (Simulations Plus Inc. 1183 

[232]), and Simcyp® (Simcyp Ltd., Sheffield, UK [233]), facilitate the development of whole-body 1184 

PBPK models and models focused on oral drug absorption for adults and their further extrapolation to 1185 

the paediatric population [234].  1186 

 1187 

7.2.1. Paediatric PBPK models: current status 1188 

A search in PubMed with the keywords “Paediatric PBPK” OR, “PBPK model Paediatric” AND, 1189 

“infants”, “newborns”, “children”, “adolescents” OR, “PBPK paediatric modeling”, OR “mechanistic 1190 

model paediatric pharmacokinetics” identified 405 relevant entries, including reviews and original 1191 

articles (status August 2017). A snowball sampling of the review articles for potentially mentioned 1192 
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articles, complying with the focus of the search was performed and the papers, which reported a 1193 

developed PBPK model for paediatric populations, were selected (n = 93; Figure 8). 1194 

  1195 

Please place Figure 8 here 1196 

 1197 

Pre-term and term newborns were found to be less studied (Figure 8A) – a trend also reported in 1198 

clinical trials performed in paediatrics. Over 80% of the paediatric PBPK models were developed 1199 

based on a PBPK model for adults (Figure 8B). Evaluation of the aims of the models developed 1200 

showed numerous successful mechanistic clearance and drug-disposition models for intravenous (IV) 1201 

administered drugs. Twenty nine percent of PBPK models following oral drug administration have 1202 

been established until now (Figure 8C). A similar trend was observed for the adult PBPK models, 1203 

where modeling oral drug absorption accounted for only 12% of the developed PBPK models [235]. 1204 

The biggest part of the PBPK models was built with the help of a commercially available software 1205 

platform, whereby Simcyp® appeared to be the most frequently used one (Figure 8D). Additionally, 1206 

the BCS classes of the orally administered drugs, used for modeling were analysed (Figure 9). 1207 

A preference of PBPK model development for highly soluble drugs might be related to the fact that 1208 

these would usually not introduce further solubility or dissolution complications in addition to the 1209 

model uncertainties originating in the complexity of the oral drug absorption processes itself [7]. The 1210 

low number of medicines modeled containing BCS IV compounds can be explained by the great 1211 

number of uncertainties accompanying both permeability and solubility of these compounds in 1212 

paediatric populations. 1213 

  1214 

Please place Figure 9 here 1215 

 1216 

 1217 
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7.2.2. Building a PBPK model 1218 

The most common approach in constructing a paediatric PBPK model is to build first the adult 1219 

disposition PBPK model (Figure 10, Step 1), and after ensuring reliability of the intravenous model, 1220 

oral administration can be incorporated (Figure 10, Step 2) [236].  1221 

If the adult PBPK model provides an adequate prediction of the available clinical data in adults, the 1222 

scaling to the paediatric population could proceed [237]. By selecting a specific paediatric population 1223 

as the study population in the software platform, default age-dependent changes and parameters of 1224 

physiology and anatomy are incorporated into the paediatric model.  1225 

 1226 

Please place Figure 10 here 1227 

 1228 

Step 1: Building drug disposition PBPK model for adults 1229 

For the development of a PBPK model, system-dependent and compound-dependent parameters are 1230 

needed [7; 169; 236; 238-240]. System-dependent components (i.e. organ sizes, blood flow, and tissue 1231 

composition) are incorporated in the commercially available software platform for the species of 1232 

interest (e.g. human, dog, mouse). Drug-dependent parameter values are derived from literature or 1233 

experimental data. Parameters describing the drugs physicochemical properties (i.e. molecular weight, 1234 

log P, pKa, compound type, and pH-dependent solubility) are used. Drug parameter values that depend 1235 

on the drug and the adult human physiology (fraction unbound, permeability, plasma/blood-1236 

partitioning, intrinsic clearance) may require further investigations and adjustment for the modeled 1237 

system or special population [240].  1238 

 1239 

The human body is represented as a network of organs and tissues, linked by an arterial and venous 1240 

blood, with attributed specific blood flows. The disposition model is based on differential equations  1241 

that describe the distribution of the drug into the different tissue compartments and organs [7; 227; 1242 

235]. A simulation takes place when the input parameters and the study design (e.g. selecting study 1243 
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population, age, sex, dose strength, dosing conditions, duration of infusion, etc.) have been defined. If 1244 

the pharmacokinetic simulations of the model incorporating predicted values for clearance or volume 1245 

of distribution mismatch the observed clinical intravenous data, model optimisation can be achieved 1246 

by informing the model with clinical data (if available). Once the predictions forecast the observed 1247 

data from IV administration, the modeling of oral drug absorption can be undertaken [236; 237]. 1248 

 1249 

Step 2: Building oral absorption PBPK model for adults 1250 

The oral absorption of a drug can be modeled in detail using the relevant available commercial software 1251 

oral models, such as ACAT™ model (GastroPlus®), or ADAM™ model (Simcyp®). In both models, the 1252 

GI tract is divided into sequentially connected transit compartments, beginning with the stomach, 1253 

which gives the input for the SI according to a specific emptying-rate. The SI is further divided into 1254 

sub-compartments (representing the duodenum, upper and lower jejunum, and upper and lower ileum) 1255 

and it is linked subsequently to the colon. Each compartment exhibits different surface area, luminal 1256 

fluid composition and volumes, and metabolising luminal enzymes. In addition to the mass-balance 1257 

differential equations, the model considers the local pH-dependent solubility by the incorporation of 1258 

the Henderson-Hasselbalch equation and calculates the dissolution behaviour with e.g. Noyes-Whitney 1259 

kinetics [227; 240]. In this step, the drug formulation, which is to be investigated, is incorporated. If 1260 

relevant, available dissolution data from biorelevant in vitro tests can be used to inform the model 1261 

[227]. Ultimately, drug dissolution, precipitation, or supersaturation are considered if relevant for the 1262 

drug/drug formulation; hence the absorbed, degraded, or metabolised drug fraction are taken into 1263 

account simultaneously [227]. 1264 

The permeability of a drug can be derived from in vivo or in vitro studies or estimated via the utilised 1265 

software. In case that active transporters are involved in the drug uptake, the kinetic parameters 1266 

(i.e. Michaelis Menten constant (Km) and maximum rate achieved at saturating substrate concentration 1267 

(Vmax)) of the substrate, the transporter availability, and activity, at the sites of interest are needed and 1268 

an adequate estimation of permeability-limited transport through the cell membranes should be 1269 
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included [239]. If relevant information is not available in the literature or from in vitro studies 1270 

performed, a model fitting based on in vivo data from oral drug administration studies can be 1271 

applied [240]. The accuracy of the model’s prediction needs to be confirmed and refinements should 1272 

be undertaken if needed before application to other populations can proceed. 1273 

 1274 

Step 3: PBPK model conversion to the paediatric population 1275 

The GastroPlus® platform (PBPKPlus™ module) generates physiological parameters for the model by 1276 

its feature Population Estimates for Age-Related Physiology (PEAR®). It takes the population 1277 

(e.g. American/Western Japanese, and Chinese), gender (male/female) age, gestational age (including 1278 

pre-mature newborns), BW, height, body-mass index, percent body fat into account and adjusts tissue 1279 

volumes and perfusion rates accordingly [241]. Correspondingly, in the Simcyp population-based 1280 

simulator (Simcyp®), physiological parameters are adjusted by converting to the available module 1281 

Simcyp® Paediatric [237]. Age-dependent changes are introduced to the full PBPK model, e.g. 1282 

adjustments of compartment volumes, blood perfusion rates, tissue compositions, specific partition 1283 

coefficients for tissues. In addition to these adjustments, a model with focus on oral drug absorption 1284 

in paediatrics addresses GI specific physiological parameters such as GE rates, SITT, fluid volumes 1285 

throughout the GI tract, composition of the GI fluids, GI hydrodynamics, and size of the separate 1286 

compartments of the GI tract; all of these parameters influence drug movement through the GI tract, 1287 

drug dissolution and absorption rates, and therefore drug product performance following oral 1288 

administration [125; 242].  1289 

In the ACAT Model (GastroPlus®), GI organs and their respective blood flows change dependent on 1290 

age, intestinal length and radius are calculated according to intestinal growth data and are based on the 1291 

assumption that proportional growth occurs throughout the SI [242]. Age-adjusted SITT values are 1292 

incorporated in the model, although it should be noted that the data used for this assumption is highly 1293 

dependent on the method utilised for the measurement (Section 3.4), thus introducing a level of model 1294 
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uncertainty [242]. Furthermore, fluid secretion volumes are scaled as a function of age for the 1295 

paediatric population in the ACAT™ model (GastroPlus® version 9.0) [243]. Adult values are adopted 1296 

for the gastric and intestinal pH and GE in the model. The villi structure is also reflected, as for adults, 1297 

due to the qualitative nature of the information available (Section 3.5); this leads to a large uncertainty 1298 

for the estimation of passive absorption of drugs, especially for the youngest populations < 3 years of 1299 

age [242]. Due to the scarcity of data found for bile salt composition and site of reabsorption, adult 1300 

parameter values are adopted; model inaccuracies can be expected for compounds that exhibit great 1301 

solubility and permeability dependency on bile salts. Ultimately, intestinal enzyme levels for CYP3A4 1302 

are implemented in the modeling platform according to age, based on paediatric in vivo data, but for 1303 

less well-characterised intestinal enzymes and transporters adult values are utilised. Since expression 1304 

density and ontogeny are expected to show differences in newborns and infants compared to adults, 1305 

the user has the option to modify the default values of enzyme/transporter expression levels per 1306 

intestinal compartment based on surface area, and the enzyme/transporter density in adults [242]. 1307 

 1308 

Within the Simcyp® platform, the intestinal diameter, length and surface area are scaled according to 1309 

age by using BSA-based functions; here it should be noted that no correction is incorporated for the 1310 

potentially additional available surface area created by villi and microvilli with increasing age [35]. 1311 

Fasted gastric pH for paediatrics is assigned similar values as for adults, except for the age groups of 1312 

newborns and infants. For these paediatric subpopulations, higher values are considered appropriate in 1313 

order to simulate the more frequently administered meals and the absence of a ‘true’ fasted state [35]. 1314 

Salivary secretion is described by a BW-based function and is further incorporated in the calculation 1315 

of the fasted gastric volume. The fed gastric volume is calculated according to BW and is characterised 1316 

for 3 age groups, based on the different daily fluid requirements and the feeding frequency [35]. Fluid 1317 

secretion volumes are scaled based on BSA-functions. Intestinal pH values observed in adult 1318 

populations are designated to all paediatric subpopulations [35]. GE is described as a function of meal 1319 
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type, the user is given a choice of simulating the effects of liquid, semi-solid or solid meal ingestion; 1320 

the SITT values for paediatrics are adopted from the adult model [35]. Ultimately, the ontogeny and 1321 

presence of metabolising luminal enzymes of the CYP and UGT families are calculated in the same 1322 

pattern as the well-defined CYP3A4 in paediatrics. The enzyme abundance follows a BSA-dependent 1323 

function, specifically assigned to the different intestinal segments. Assumptions are needed for some 1324 

less investigated parameters, such as intestinal transport proteins, for which adult values are 1325 

adopted [35; 244]  1326 

 1327 

Simulation in paediatric subpopulations usually begins in the subpopulation most similar to adults, 1328 

e.g. adolescents or children, proceeding gradually to the younger subpopulations [236]. Throughout 1329 

the process, confirmation, validation, and if necessary, refinement steps are undertaken. The gradual 1330 

adaption of the model facilitates easier detection of probable refinement demand [236]. Mismatches 1331 

between the predicted and observed paediatric clinical data should be further investigated through 1332 

parameter sensitivity analysis (PSA) [35; 125; 236]. This is also a useful approach for investigating 1333 

“what-if” scenarios related to the assumptions and uncertainties which were included in the model 1334 

throughout development [216]. 1335 

 1336 

7.2.3. Examples of paediatric PBPK models: focus on oral drug absorption 1337 

Prediction of oral drug exposure to sotalol was built over the entire paediatric age range (i.e. newborns, 1338 

infants, children and adolescents) and adults, by Khalil et al., with the utilisation of two modeling 1339 

software platforms, Simcyp® (version 12.1) and PK-SIM® (version 4.2.2) [238]. Sotalol is an 1340 

amphoteric compound (pKa values: 8.3 and 9.7) with hydrophilic characteristics (log P of 0.37). 1341 

Firstly,  the adult disposition model was developed. Parameters from the model after IV administration 1342 

were kept constant, and parameters relevant to oral drug absorption were adjusted. Lastly, age-specific 1343 

anatomical and physiological changes, which are part of the paediatric module of the software, were 1344 



50 
 

taken into account. Adult values were used for several parameters, such as gastric and intestinal pH, 1345 

GE, SITT, intestinal enzyme ontogeny/abundance, and intestinal transporter ontogeny/abundance. 1346 

Drug-specific parameters, including solubility, remained unchanged throughout all age groups 1347 

regardless of the utilised software. Information on the sotalol formulations investigated with the PBPK 1348 

models, was not provided. Further complications arose from the data scarcity of neonatal and infant 1349 

pharmacokinetic data, which are needed in order to validate the PBPK models. Simulations from both 1350 

paediatric models (Simcyp® and PK-SIM®) were comparable and showed acceptable adequate 1351 

description in adults, adolescents, children and infants, when compared with in vivo clinical data. For 1352 

newborns, the predictions generated with the Simcyp® simulator successfully reflected the time at 1353 

which Cmax is reached (tmax), and rate of elimination (ke) when compared with the clinical in vivo data, 1354 

but were inadequate in the forecasting area under the curve (AUC) AUClast in newborns, and maximum 1355 

plasma concentration reached (Cmax) in newborns; moreover the model tended to under-predict drug 1356 

plasma levels in all paediatric subpopulations ( (for AUClast, Cmax, and tmax for all of the paediatric 1357 

populations studied: mean observed/predicted ratios >1). Results obtained with the modeling platform 1358 

PK-SIM® successfully predicted AUClast, Cmax and ke, although the pre-defined two-fold error range 1359 

was exceeded for tmax in newborns and infants (<1 yr). The results from this study confirm the 1360 

importance of gaining deeper insight into intestinal paracellular permeability, transporter ontogeny, 1361 

intestinal fluid dynamics, and characteristics of the intestinal unstirred boundary layer in order to 1362 

develop a reliable PBPK model for oral drug administration [238].  1363 

 1364 

Paediatric PBPK models have been developed (GastroPlus® version not mentioned) for two highly 1365 

soluble, and highly permeable compounds (sotalol and paracetamol) by Villiger et al. [236]. As 1366 

previously described, Sotalol is an amphoteric compound, and paracetamol is a hydrophilic weak acid 1367 

(pKa = 9.5; log P = 0.2). The same approach for model building was used as in the first example, where 1368 

a drug disposition model was developed to simulate the IV profiles in adults, followed by the 1369 
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adjustment of parameters for oral administration in adults. Secondly, after attaining confidence in the 1370 

adult models, the paediatric oral model was built in a stepwise approach. In this study, in vitro 1371 

dissolution testing was performed for immediate-release formulations, Sotalex® tablets (containing 1372 

sotalol) and Dafalgan® powder-filled sachets (containing paracetamol), in order to investigate the 1373 

formulation performance and understand drug release in the GI tract [236]. For the in vitro tests, 1374 

conditions more closely reflecting newborn physiology were simulated by adjusting GI volumes to 5 1375 

mL and the use of formula milk as dissolution medium, in comparison to an adult setup, represented 1376 

by 250 mL of adult biorelevant media. Results showed that the described age-adjusted conditions did 1377 

not influence dissolution of both test drugs. Dissolution information was not used to inform the model 1378 

building, and further information on the formulations and their incorporation into the models was not 1379 

reported for the performed simulations. PSA revealed that slower mean gastric transit times led to 1380 

slower absorption rate of sotalol and paracetamol in newborns and infants when compared to older 1381 

children and adults [236]. Good predictions were observed after scaling age-dependent factors 1382 

incorporated in the software used (Gastroplus®), for children 2 - 11 years, but discrepancies were 1383 

again seen by Villiger et al. for younger populations with under-prediction of Cmax and over-prediction 1384 

of tmax (newborns and infants) [236]. As previously described in the first example, Khalil et al. also 1385 

obtained good predictions for other age-groups, except for newborns [238]. Interestingly Khalil et al. 1386 

did not conduct PSA, but Villiger et al. took advantage of PSA to understand the critical parameters 1387 

of oral drug absorption for these compounds, and subsequent improvement of the models predictions 1388 

was possible, demonstrating the importance of conducting such analysis [236]. Adjustments of mean 1389 

gastric transit times (default value of 0.25 h for all age groups) was performed by incorporating 1390 

prolonged times. Sotalol simulations were improved by changing mean gastric transit time from 1391 

2.3 to 2.5 h in both infants and newborns, while for paracetamol, a prolonged mean gastric transit time 1392 

of 0.8 to 1.5 h in infants and 0.1 to 0.8 h in newborns gave the best predictions. Improvements of Cmax 1393 

and tmax (Observed/Predicted ratios) were seen for the simulations in newborns and infants.  1394 
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A mechanistic absorption model for predicting formulation performance in paediatric subjects has been 1395 

described for paracetamol and theophylline (BCS class I compounds), and ketoconazole, (BCS class 1396 

II compound) for the fasted and fed state using the ADAM™ module of the Simcyp® software 1397 

paediatric (version 15.1) [35]. Theophylline simulations were developed for the oral administration of 1398 

an oral solution to newborns, infants, and adults; the aqueous drug solubility was used for the model. 1399 

Although the investigated paracetamol formulation was a suspension and required the incorporation 1400 

of a dissolution model within ADAM™, no further dissolution testing was performed as previous 1401 

studies have reported that drug dissolution was not the absorption rate-limiting step [35; 236]; again, 1402 

the aqueous drug solubility value was incorporated in the model. Ketoconazole is a drug with a highly 1403 

pH-dependent aqueous solubility; hence, reference solubility values at physiologically relevant pH 1404 

range 3.3 - 7.5 were used to inform the model; dissolution data were not included as an input parameter. 1405 

Additionally, the model considers further processes such as intraluminal supersaturation and 1406 

precipitation and bile salt mediated solubility. Paracetamol and ketoconazole simulations were 1407 

developed for the oral administration of a suspension to newborns, infants, children and young adults. 1408 

Theophylline plasma profiles were predicted with good accuracy (observed/predicted ratio: 0.85 - 1.25 1409 

range); the accuracy of the predictions for paracetamol and ketoconazole was evaluated as reasonable 1410 

(observed/predicted ratios: 0.82 - 1.33-fold for paracetamol) [35]. The prediction for full-term 1411 

newborns failed to predict the observed pharmacokinetic data for pre-term newborns. PSA revealed 1412 

that extremely prolonged GE times, resulting from the absence of enteral feeding, could lead to a low 1413 

systemic exposure as observed in vivo (i.e. decrease of Cmax in the range GE  2 - 20 h), and that elevated 1414 

gastric pH values (i.e. values higher than 4) are less likely to cause low plasma drug levels. The fa for 1415 

paracetamol and theophylline was similar in the fasted and fed state, while tmax was shown to be slower 1416 

in the fed state. For both drugs, the slowest absorption rate among the age groups studied was the 1417 

newborns. For all three compounds, tmax values in the fed state were greater for all ages and showed a 1418 

trend towards an increase with advancing age; a slightly shorter tmax was demonstrated for liquid foods 1419 
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compared to semi-solid or solid meals. For ketoconazole, increasing age was related to a longer tmax 1420 

and lower fa. Higher fa values were observed in the fed state compared to the fasted state in all ages 1421 

and no difference was observed between solid and semi-solid foods [35].  1422 

 1423 

A PBPK model was developed for montelukast (BCS class II/I; log P 8.79; pKa 2.7 and 5.8) in 1424 

Simcyp® for adults and paediatric patients. Montelukast is an amphiphilic drug with a high 1425 

lipophilicity [245]. The simulations were first built for adults after IV and oral administration of a 1426 

solution (no information about food state), and film-coated tablets in the fasted and fed state. Following 1427 

validation of the adult model, scaling was performed to simulate the administration in paediatric 1428 

populations after administration of oral granules in infants, and film-coated tablets in 1429 

children/adolescents, but no information was given about food state in paediatrics. The model building 1430 

included the experimental in vitro measurements of particle size and solubility in fasted simulated 1431 

gastric and intestinal fluid, and the dispersion type of the different formulations. Visually, the 1432 

absorption profiles were not well described for any of the paediatric age groups and mismatches of 1433 

observed vs. predicted pharmacokinetic profiles could be seen for infants after administration of 1434 

granules and children. Based on the model building process where parameterisation was based on sub-1435 

models, and what information was known for each age-group, predictions of plasma concentration 1436 

profiles were regarded as reasonable, which in most cases appeared to be within two-fold of the 1437 

observed values (no ratios of observed/predicted were provided) [245].  1438 

 1439 

An adult and paediatric disease PBPK model for oral administration of carvedilol, a BCS class II drug, 1440 

has been developed for patients with heart failure [246]. Carvedilol is a weak base with a pKa of 7.97 1441 

and log P of 4.19. The model was used to investigate the oral pharmacokinetics in infants, children, 1442 

adolescents (oral suspension) and adults (capsules and oral suspension). Changes in hepatic and renal 1443 

blood flows were incorporated in the model to simulate more accurately the physiology of chronic 1444 
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heart failure patients and the accuracy of the predicted (mean ratio observed vs. predicted) 1445 

pharmacokinetic parameters were improved in adults with chronic heart failure after oral 1446 

administration of a capsule or a suspension. The paediatric model for carvedilol was then constructed 1447 

with the pharmacokinetic parameters of carvedilol scaled to the paediatric patients by using the 1448 

paediatric module of Simcyp® (version 13.1). The predictions of the exposure of carvedilol in the 1449 

paediatric patients did not show as good correlations as for adults, except for patients above 17 years 1450 

of age. The limitations of the applied paediatric ADAMTM model was attributed to the lack of 1451 

information on anatomical and physiological changes, such as information on gastric and intestinal 1452 

pH, bile secretion, transporters, and gut fluid dynamics [246].  1453 

 1454 

A PBPK model was developed to investigate the age dependency in oral absorption of the poorly 1455 

soluble lipophilic compound, carbamazepine (non-ionisable in the physiological pH range; 1456 

BCS class II; log P of 2) [243]. The model was developed to simulate administration of different 1457 

formulations in the separate age groups: administration of tablets children/adolescents, suspension 1458 

prepared from crushed tablets administered to newborns and infants, and administration of oral 1459 

solution, suspension and Tegretol® tablets to adults. After the development of the adult model for oral 1460 

administration of different formulations, doses and food status, adjustment of clearance (to take into 1461 

account patient characteristics and co-medication), the model was scaled to paediatric patients using 1462 

the default parameters of Gastroplus® (version 9.0) paediatric physiology adjusted module. In vitro 1463 

experiments were conducted to investigate biorelevant solubility and dissolution (µDISS Profiler®) in 1464 

adult and paediatric biorelevant media developed by Maharaj et al. [109]. The dissolution experimental 1465 

setups for adults and paediatrics were performed with Tegretol® tablets (or weighted fraction) added 1466 

to 20 mL of the pre-heated dissolution medium (37° C). Samples were stirred at 100 rpm and the 1467 

amount of dissolved drug was determined over 2 h. Dissolution experiments did not show any specific 1468 

influence on carbamazepine dissolution, more than 80% dissolved in 20 min for almost all tested 1469 



55 
 

media, and for all tested media in 30 min. Despite this, neither dissolution experiments, nor solubility 1470 

in paediatric biorelevant media were used as parameters for building the models. Simulated dissolution 1471 

and fa profiles were compared, and as expected for a BCS class II compound, permeation was not 1472 

found to be a rate-limiting step for absorption. Nevertheless, aqueous solubility and solubility in adult 1473 

fasted and fed intestinal simulated fluids were used in the model building process. Interestingly, PSA 1474 

revealed that solubility and dose were the most sensitive parameters for carbamazepine fa. Particle 1475 

radius, SITT, fraction of small intestinal fluid volume, SI length and radius, permeability and bile salt 1476 

solubilisation ratio, showed an impact at higher doses of carbamazepine, but only a minor impact at 1477 

low doses. The prandial state was also shown to be critical for absorption of higher doses, where 1478 

increases in the extent of absorption were observed for simulations in the fed state. With the exception 1479 

of one study in paediatrics, the pharmacokinetic data used for the validation of the simulations did not 1480 

specify food status of the patients. Nevertheless, both fasted and fed states were investigated. 1481 

Interestingly, accuracy of the simulations in newborns was improved when assuming fed state 1482 

conditions when compared to fasted state simulations, which supports the common assumption that 1483 

newborns and young infants are mainly in fed state due to the high frequency of feedings. Fraction 1484 

absorbed of carbamazepine was shown to be dose-dependent, at high doses fa was sensitive to intestinal 1485 

length and transit time, while simulations for lower doses of carbamazepine resulted in complete 1486 

absorption, for a wide range of simulated intestinal lengths, and transit times [243]. The authors 1487 

highlighted that this dose-dependency of carbamazepine is an important factor to take into account, as 1488 

paediatric patients can sometimes require higher doses per BW. Finally, it was shown that age could 1489 

influence both rate and extent of oral absorption. Low carbamazepine doses (children dose 9 mg/kg 1490 

and newborns 5 mg/kg) was associated with complete absorption within 4 to 6 h after drug 1491 

administration, in all age-groups, however a slower rate of absorption was seen for newborns in 1492 

comparison with the older age-groups, moreover, high carbamazepine doses (19 and 17 mg/kg 1493 

respectively) were related to incomplete absorption in children and newborns [243]. 1494 
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 1495 

The examples provided above (excluding Johnson et al., 2018) demonstrate the general approach 1496 

followed when building the PBPK oral absorption models, as previously discussed in the Section 7.2.2. 1497 

In all of the examples, knowledge gaps concerning physiological and anatomical changes in 1498 

paediatrics, relevant to oral drug absorption, were pointed out as limiting factors of the models 1499 

predictions. Furthermore, in most examples, several details concerning study design and formulation 1500 

were lacking. The in vitro dissolution of the compounds was evaluated in three out of the eight 1501 

examples, with  two of these compounds being highly soluble ones. Moreover the  dissolution data 1502 

were not incorporated (as an input parameter) in the PBPK models, since no discrepancies in 1503 

dissolution-adjusted conditions for paediatrics were observed for the compounds/formulations 1504 

investigated so far. In future studies, it would be interesting to investigate the absorption of other 1505 

classes of BCS compounds, especially poorly soluble (BCS II and IV). The prandial state in paediatric 1506 

simulations has been explored in one of the examples, in most cases no information was provided for 1507 

the simulations performed, which might be a result of lack of quality in clinical data for paediatrics 1508 

that is used for validation of the predictions. Furthermore, the paediatric data sets used for the 1509 

validation of the PBPK models, applied a sub-division of the paediatric population according to the 1510 

common sub-groups. The majority of the examples were able to generate appropriate predictions for 1511 

older paediatric populations (i.e. children) while simulations in newborns and infants were more 1512 

challenging. There is still a long way to go in terms of paediatric PBPK absorption modeling, the 1513 

examples of the models developed so far, are useful to generate knowledge about oral drug absorption 1514 

modeling.  1515 

 1516 

7.2.4. Challenges in the paediatric oral drug absorption model 1517 

The determination of organ/tissue sizes (e.g. volume), tissue blood flow and tissue composition 1518 

estimations introduce a model uncertainty. Typically, due to lack of clinical data, relevant parameters, 1519 
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e.g. length and diameter of GI tract, are extrapolated from adult data, based on BSA function for the 1520 

paediatric populations and assume a proportional growth of the organs [125; 242]. The determination 1521 

of GE rates and luminal composition (including the pH) in newborns and infants is challenging, due 1522 

to frequent meal administration, therefore, food-related physiological responses in paediatrics is 1523 

difficult to define [236]. Although biorelevant media for newborns and infants have recently been 1524 

proposed [109], drug solubility estimations under conditions reflecting the luminal composition are 1525 

challenging due to the limited information in the various paediatric populations and the unclear fasted 1526 

vs. fed state, especially in newborns and infants. Intestinal permeability in paediatrics has been the 1527 

subject of a number of studies, nevertheless, no precise values or methods have been reported; therefore 1528 

the intestinal permeability for paediatric virtual populations is usually adjusted from the permeability 1529 

parameter for adults (Caco-2 permeability or in situ permeability studies) [137; 169]. In the case of 1530 

transporter involvement in the uptake or excretion of the drug, in addition to the parameters used for 1531 

the adult model, the transporter availability and functionality in the paediatrics need to be confirmed 1532 

and adjusted accordingly. Alternative influx and efflux routes only relevant in paediatrics populations 1533 

and their contribution to the absorption process should be further investigated for the age range of 1534 

interest, as shown in the process of building a PBPK model for valganciclovir, a substrate of the 1535 

transporter PEPT1 [239]. In addition to the accuracy of the parameters used to describe paediatric 1536 

physiology, a reasonable parameter variability value needs to be introduced in order to ensure that the 1537 

generated predictions would match real-life heterogeneity among the paediatric population [227]. This 1538 

can be challenging due to the nature of available paediatric data. For some of the presented examples 1539 

of paediatric models in Section 7.2.3., possible formulation influence on the absorption processes was 1540 

taken into consideration, although solubility and dissolution tests were not always performed, thus 1541 

outlining further aspects that should be the subject of future evaluation. The established model requires 1542 

validation towards clinical data acquired in the target population. Due to the lack of published high-1543 

quality clinical data in specific paediatric populations, confirmation of the developed paediatric PBPK 1544 
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models has not always been possible. Finally, great importance has been assigned to the comparison 1545 

of the model-predicted outcomes to clinical paediatric in vivo data by the EMA in the “Guidelines on 1546 

the qualification and reporting of PBPK modeling and simulation” and a “Reflection paper on the use 1547 

of extrapolation in the development of medicines for paediatrics” [216; 229].  1548 

  1549 

8. Conclusions 1550 

Despite ongoing advances in the paediatric biopharmaceutics field, detailed knowledge on 1551 

physiological differences among paediatric subpopulations and between adults is still lacking. While 1552 

there have been many study outcomes reported on physiological parameters such as gastric fasted pH 1553 

levels, GE times, and hepatic drug metabolism, other areas, such as GI fluid composition and SITT, 1554 

intestinal metabolism, drug transporters and permeability, have been investigated to a very limited 1555 

extent. Inconsistencies amongst meal types and frequencies throughout paediatric studies result in a 1556 

complex definition of the paediatric prandial state, which further complicates the prediction of drug 1557 

and formulation performance. Specific guidance by regulatory agencies on bioequivalence studies and 1558 

age-specific definitions of fasted and fed state conditions for paediatrics is lacking, which make the 1559 

development of solid evidence-based pBCS criteria quite challenging. Common background 1560 

knowledge is needed for the development and validation of age-specific in vitro and in silico 1561 

biopharmaceutics tools. A combination of both methods, in vitro/PBPK, can be utilised to obtain 1562 

information that is able to compensate for the uncertainties of the single tool on its own.  1563 
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List of Tables 2088 

 2089 
Table 1 Age groups classification according to ICH [10; 11], FDA and WHO [5; 6]. (d - days; mo - months; yr 2090 

- years).   2091 

 2092 

 2093 
(a) Usually known in literature as neonates 2094 

(b) Infants and toddlers  2095 

(c) Pre-school child  2096 

(d) Young child  2097 

(e) School child  2098 

(f) Child 2099 

(g) Depending on region  2100 

male female male female

3.4 3.2 0.22 0.21

4.5 4.1 0.38 0.37

9.6 8.9 0.56 0.53

13 12 0.68 0.67

16.1 15.9 0.82 0.8

20.9 20 0.95 0.95

25.5 25.5 1.11 1.12

32 33 1.11 1.12

40.5 41.9 1.29 1.33

51 49.5 1.52 1.49

61 54 1.72 1.56

67 56 1.81 1.59

85.9 72.1 2.05 1.8

Body Surface Area (m²)
Age Groups ICH FDA WHO

Body weight (kg)

20 yr

birth

1 mo

1 yr

6 mo

12 yr

14 yr

16 yr

0.430.457.9 7.3

2 yr

4 yr

6 yr

8 yr

Adults >16-18 yr >16 yr >18 yr 

Adolescents 12-16 or 18 yr (g) 12 – 16 yr 12 – 18 yr

6 - 11 yr (e)  6– 12 yr (f)

18 yr

Children

2 – 5 yr (c)

2 – 12 yr

2 – 6 yr (d)

10 yr

Newborn 0 – 27 d (a) 0 – 1 mo 0 - 30 d

Infants 28 d – 23 mo (b) 1 mo – 2 yr 1 mo – 2 yr
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Table 2 Characteristics of usual meals in paediatric subpopulations and adults. (d - days; mo - months; yr - years) 2101 

Type of food Age 

Total caloric content 
Caloric density 

[kcal/g] 

Caloric 

content/recommended 

portion [kcal] 

Portion size 

 Fats  

[%] 

Carbohydrates 

[%] 

Proteins 

[%] 

Human breast milk 

(colostrum) [12; 44]  
1-3 d 30 42 15 0.5-0.6 30-35 60 mL 

Human breast milk 

(mature milk) [12; 44; 50]  
>15 d 46-54 41-46 7 0.6-0.7 54-126 90-180 mL 

Infant formulae [51] >1 d 40-55 36-54 7-10 0.6-0.7 -42-140 70-230 mL 

Follow-on formulae [51] >6 mo 35-55 36-54 7-14 0.6-0.7 160-170 230-240 mL 

Fortified milk 1+ [51] >12 mo 37-45 39-52 12-16 0.6-0.7 150-160 240 mL 

Whole cow's milk >36 mo 47-53 27-30 21 0.6-0.7 165 250 mL 

Fruit pureea 5 mo 2-9 87-96 2-6 0.5-0.6 50-125 100-190 g 

Fruit with cereala 6 mo 2-7 88-91 3-8 0.6-0.9 120-160 190 g 

Porridge and Creamsa 8 mo 25-35 55-62 10-14 1.0-1.3 200-240 180-210 g 

Infant Meala 
5 mo 26-45 44-55 12-20 0.6-0.9 110-170 190 g 

12 mo 27-39 44-60 12-19 0.7-0.8 170-200 250 g 

Recommended meal  [28] 
>12 mo 30-40 45-65 5-20 1.0-1.1b  230-380b 220-370 gb 

>4 yr 25-35 45-65 10-30 0.6-1.8c 150-350c 150-350 gc 

Recommended meal [28] >19 yr 20-35 45-65 10-35 1.1-1.2d 500-760d 490-680 gd 

FDA/EMA standard 

breakfaste [52; 53] 
adults 50-60 25-30 15-20 1.5-1.8 800-1000 500 g 

 2102 

a On average basis; calculated from a search including commercially available infant meals, fruit purees and infant formula milk products  2103 
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b Portions of the recommended foods are adjusted to the suggestions for meal distribution as recommended in [16; 28]  2104 

c Parameters were calculated from recommended family recipes, aimed at promoting healthy eating habits among children [54] 2105 

d Parameters calculated from the proposed sample meal [28] 2106 

e Suggested by the US FDA and EMA in the respective guidelines on investigation of food effect bioavailability and fed bioequivalence studies [52; 53]   2107 

 2108 

 2109 
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Table 3 Fasted gastric volumes as a function of BW reported in the literature [N:  sample size; SD: standard deviation; yr - years]. 2110 

Age group of participants N 

Age [yr] Weight [kg] Volume [mL/kg] 

Ref. 

Mean (SD) Range Mean (SD) Weight Mean (SD) Range 

infants/children/adolescents 248 8.1 (5.7) 0.17-18 31.2 (32) 3.1-115 0.35 (0.45) 0-3.14 [67] 

infants/children 20 3.3 (3.9) 0.5-5 14.3 (12.1) - 0.40 (0.6) - [68] 

infants/children/adolescents 25 6.2 (0.7) 0.5-12 24.6 (2.8) 6.8-58.1 0.49 (0.04) 0.21-1.15 [69] 

infants/children/adolescents 35 4.5 (2.9) 1.2-12 17.5 (8.1) 9-43.5 0.36 (0.42) 0-1.64 [66] 

infants/children/adolescents 55 6.6 1-14 26.1 10-77 0.25 (0.04) - [70] 

infants/children/adolescents 100 - 1-14 - - 0.56 (0.39) 0.1-2.5 [65] 

infants/children/adolescents 19 5.2 (0.55) 1-14 21 (2.17) - 0.25 0-1.1 [71] 

infants/children 66 - 1-16 - - 0.5 (0.4) 0-1.89 [72] 

infants/children/adolescents 68 7.3 (4.6) 1-18 29 (17.7) - 0.57 (0.51) 0-2.23 [73] 

children/adolescents 64 5.7 (2.5) 2-12 26.1 (7.6) 5.7 (2.5) 0.39 (0.37) 0.04-1.97 [74] 

children 40 7.4 (1.7) 5-10 26.1 (7.6) - 0.43 (0.46) 0.01-1.65 [75] 

children 31 7.4 (1.6) 5-10 26 (7) 7.4 (1.6) 0.45 (0.31) 0.02-1.15 [76] 

adolescents 76 15 (2) 13-19 60 (16) 15 (2) 0.48 (0.40) 0.02-2.11 [77] 

adults 50 38.8 (2) 18-64 68.5 (2.3) 45.5-110.0 0.37 (0.04) 0.05-1.33 [69] 

2111 
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Table 4 Composition of adult reference biorelevant media and age-specific (grey) simulating fasted and fed state gastric and intestinal media 2112 

[109]. 2113 

 Gastric Media Intestinal Media 

 fasted state fed state fasted state fed state 

Component FaSSGF 
Pn-

FaSSGF 

Pi-

FaSSGF 
FeSSGF 

Pnc-

FeSSGF 

Pns-

FeSSGF 

FaSSIF-

V2 

P50%-

FaSSIF 

P150%-

FaSSIF 

FeSSIF-

V2 

Pnb-

FeSSIF 

Pnc-

FeSSIF 

Pi-

FeSSIF 

Sodium 

Taurocholate (mM) 
0.08 0.02 0.060 - - - 3 1.5 4.5 10 2.5 2.5 7.5 

Lecithin (mM) 0.02 0.005 0.015 - - - 0.2 0.1 0.3 2 0.5 0.5 1.5 

Glyceryl 

Monooleate (mM) 
- - - - - - - - - 5 5 6.65 5 

Sodium Oleate 

(mM) 
- - - - - - - - - 0.8 0.8 1.06 0.8 

Pepsin (mg/mL) 0.1 0.015 0.025 - - - -   - - - - 

Sodium Chloride 

(mM) 
34.2 34.2 34.2 237.02 100.35 94.79 68.62 68.62 68.62 125.5 95 111.73 107.35 

Acetic Acid (mM) - - - 17.12 7.25 7.25 - - - - - - - 

Sodium Acetate 

(mM) 
- - - 29.75 64.65 64.65 - - - - - - - 

Maleic Acid (mM) - - - - - - 19.12 19.12 19.12 55.02 55.02 55.02 55.02 

Sodium Hydroxide 

(mM) 
- - - - - - 34.8 34.8 34.8 81.65 81.65 81.65 81.65 

Milk:Buffer - - - 1.1 1.1 1.1 - - - - - - - 

HCl/NaOH qs pH1.6 pH1.6 pH1.6 pH5 pH5.7 pH5.7 pH6.5 pH6.5 pH6.5 pH5.8 pH5.8 pH5.8 pH5.8 

pH 1.6 1.6 1.6 5 5.7 5.7 6.5 6.5 6.5 5.8 5.8 5.8 5.8 

Osmolality 

(mOsmol/Kg) 
120.7 120.7 120.7 400 340 240 180 180 180 390 300 330 330 

Buffer Capacity 

(mmol/L/ΔpH) 
- - - 25 15 15 10 10 10 25 25 25 25 

 2114 
FaSSGF – Adult fasted-state gastric media; 2115 

Pn-FaSSGF – Paediatric fasted-state gastric media representative of newborns (0–28 days); 2116 

Pi-FaSSGF – Paediatric fasted-state gastric media representative of infants (1–12 months); 2117 

FeSSGF – Adult fed-state gastric media;  2118 
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Pnc-FeSSGF – Paediatric fed-state gastric media representative of newborns (0–28 days) fed cow’s milk-based formula;  2119 

Pns-FeSSGF – Paediatric fed-state gastric media representative of newborns (0–28 days) fed soy-based formula. 2120 

FaSSIF-V2 – Adult fasted-state intestinal media; 2121 

P50%-FaSSIF – Paediatric fasted-state intestinal media formulated with bile salt concentrations 50% (i.e. 1.5 mM) of adult levels;  2122 

P150%-FaSSIF – Paediatric fasted-state intestinal media formulated with bile salt concentrations 150% (i.e. 4.5 mM) of adult levels; 2123 

FeSSIF-V2 – Adult fed-state intestinal media;  2124 

Pnb-FeSSIF – Paediatric fed-state intestinal media representative of newborns (0–28 days) fed breast milk;  2125 

Pnc-FeSSIF – Paediatric fed-state intestinal media representative of newborns (0–28 days) fed cow’s milk-based formula;  2126 

Pi-FeSSIF – Paediatric fed-state intestinal media representative of infants.2127 



76 
 

Figure captions 2128 

 2129 

Figure 1 Average amount of energy required for paediatric populations as recommended for different physical 2130 

activity levels by the EFSA (solid lines and filled symbols) and the U.S. Department of Health and Human 2131 

Services and U.S. Department of Agriculture (discontinued lines and open symbols). (A) daily average energy 2132 

requirement related to a sedentary lifestyle; (B) daily average energy requirement related to a moderate level of 2133 

activity; Recommendations for males (blue diamonds) and females (red circles). The retrieved data for newborns 2134 

and infants are independent of the physiological activity level. Data included in this figure were obtained from 2135 

[18; 26; 28; 29]. 2136 

 2137 

Figure 2 Range of feeding volumes for formula-fed newborns and infants (A) and feeding intervals (B) for 2138 

newborns and infants, receiving either infant or follow-on formula (“formula”, open blocks), or being breastfed 2139 

(grey-filled blocks). The feeding intervals for breastfed and formula-fed infants are the same beyond the age of 2140 

two months (purple blocks) (mo: months; modified from DiMaggio and co-workers [12]) 2141 

 2142 

Figure 3 European recommended ranges for total water intake in paediatrics. Values include intake of water, 2143 

beverages of all kind, and water from food moisture. Populations younger than 9 years: filled purple blocks; 2144 

males: blocks filled in grey; females: open blocks. Recommendations for adolescents >14 years of age are also 2145 

applicable for adults (d - days; mo - months; yr - years). Data used for this figure was retrieved from [36]. 2146 

 2147 

Figure 4 Physicochemical properties of various soft foods and liquids administered in paediatric populations 2148 

and an adult meal used for food effect investigation of bioavailability and bioequivalence of drug products (FDA 2149 

standard breakfast): (A) pH-values; (B) Buffer capacity measured with 0.1 N sodium hydroxide solution; (C) 2150 

Osmolality; (D) Surface tension; (E) Viscosity; * Soft foods/foods are non-Newtonian fluids. Modified from 2151 

[55; 56; 58; 59].  2152 

 2153 

Figure 5 Gastric (A) and intestinal (B) pH in fasted (open symbols) and fed state (closed symbols). Paediatric 2154 

and adult pH values were collected from literature and depicted as either mean (circles) or median (triangles) 2155 

values. In the fed state values depicted represent values measured after ingestion of different types of food. 2156 

When patients participating in the paediatric studies belonged to more than one age group, values were used as 2157 

mean age, or if a specific age range was reported without denoting the groups mean age, data was depicted using 2158 

the middle of the age range [65-67; 70-77; 87-105].  2159 

 2160 

Figure 6 Fed Gastric Emptying half-life for newborns and young infants (0-10 wk), children and adults: values 2161 

depict either mean (circle symbols) or median values (triangle symbols). Infant formula milk: yellow symbols; 2162 

breast milk: blue symbols; cow’s milk: green symbols; solid food: red symbols. Data was collected from 2163 
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different studies and milk products and solid food did not contain the same amount of calories and were 2164 

administered in different volumes [49; 84; 124; 126; 130-133]. 2165 

 2166 

Figure 7 Extrapolated initial gastric volumes during drug administration to paediatric populations based on 250 2167 

mL volume of water administered to adults with solid dosage forms. Extrapolation was based on BW: grey 2168 

blocks [146; 147] and white blocks [163], or based on BSA-function: black blocks [164]. 2169 

 2170 

Figure 8 Statistics of published PBPK models, search performed on PubMed (Status August 2017; n = 93). (A) 2171 

Studied paediatric subpopulations; (B) Basic model used for paediatric PBPK model development; (C) Aim of 2172 

PBPK modeling; (D) Software platforms utilised for paediatric PBPK model development. (DDI – drug-drug 2173 

interactions). 2174 

 2175 

Figure 9 BCS class distribution amongst modeled drugs, identified in the PBPK search in PubMed. Only 2176 

compounds, modeled for oral absorption are considered in this figure, n = 32. The numbers above each bar refer 2177 

to the number of drugs studied according to their BCS classification. ND = Not defined. 2178 

 2179 

Figure 10 Usual strategy for paediatric PBPK model development with a focus on oral drug absorption. PSA: 2180 

parameter sensitivity analysis; bio-dependent drug properties: drug parameter values that depend on the drug 2181 

and the adult/paediatric human physiology. 2182 

  2183 
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Figure 2 2187 
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