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Abstract

Deep learning-based health status representation learning and
clinical prediction have raised much research interest in re-
cent years. Existing models have shown superior perfor-
mance, but there are still several major issues that have not
been fully taken into consideration. First, the historical vari-
ation pattern of the biomarker in diverse time scales plays a
vital role in indicating the health status, but it has not been ex-
plicitly extracted by existing works. Second, key factors that
strongly indicate the health risk are different among patients.
It is still challenging to adaptively make use of the features for
patients in diverse conditions. Third, using prediction mod-
els as the black box will limit the reliability in clinical prac-
tice. However, none of the existing works can provide satis-
fying interpretability and meanwhile achieve high prediction
performance. In this work, we develop a general health sta-
tus representation learning model, named AdaCare. It can
capture the long and short-term variations of biomarkers as
clinical features to depict the health status in multiple time
scales. It also models the correlation between clinical fea-
tures to enhance the ones which strongly indicate the health
status and thus can maintain a state-of-the-art performance in
terms of prediction accuracy while providing qualitative in-
terpretability. We conduct a health risk prediction experiment
on two real-world datasets. Experiment results indicate that
AdaCare outperforms state-of-the-art approaches and pro-
vides effective interpretability, which is verifiable by clinical
experts.

Introduction
Health status prediction (e.g., mortality risk prediction, dis-
ease prediction) is of great interest to physicians. For inpa-
tients or patients with chronic diseases who face severe life
threats and receive long-term treatments, their health condi-
tions are complex and continually changing over time. By
predicting patient’s health status, physicians can select per-
sonalized follow-up treatments, prevent adverse outcomes,
assign medical resources effectively, and reduce the medi-
cal cost. Normally, some biomarkers, such as blood albumin
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Figure 1: Perform dynamic patient health risk prediction to
trigger the alarm for adverse outcomes and take an early in-
dividualized intervention.

and blood glucose, are recorded through the treatment tra-
jectories and further have been taken into consideration for
the predication. In a practical diagnosis process, physicians
need to comprehensively evaluate the health of patients by
identifying the high-risk factors. The precise risk prediction
requires a high level of clinical expertise and experience.

Nowadays, electronic healthcare information systems are
widely used in various healthcare institutions, which can
precisely record the lab test results and health information
of patients in terms of Electronic Medical Records (EMR).
As depicted by Figure 1, EMR can be seen as a type of mul-
tivariate time series data and provide essential healthcare in-
formation for the data-driven healthcare prediction.

Recently, due to the remarkable representation learning
ability of deep neural networks, many deep learning-based
models have been developed to tackle such prediction tasks
by using EMR data, including mortality prediction (Ma et
al. 2020), disease diagnosis prediction (Lee et al. 2018),
and patient phenotype identification (Baytas et al. 2017).
Usually, those models first embed the EMR data into low-
dimensional feature space to learn the dense representation
of the patients’ health status and then perform specific clin-
ical analysis tasks based on such representation. However,
there are still some issues that are not yet fully resolved by
existing research works, i.e., how to effectively embed tem-
poral health information comprehensively, and how to as-
sure the trustworthiness of the representation learning model
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Figure 2: The long-term descending trend of blood albumin
(left) and short-term abnormal rising of hypersensitive C-
reactive protein (right) indicate the health risk.

in terms of providing verifiable interpretations. The issues
are summarized as follows:

• I1: Historical variation pattern of the biomarker in
different time scales. Not only the value of lab test
results but also its variation pattern contains essential
information on the health status. The long-term varia-
tion trend and short-term abnormal variation of differ-
ent biomarkers both show the health status of patients
from different aspects. Thus, it is vital that the varia-
tion of different biomarkers can be captured at differ-
ent time scales. For example, for end-stage renal dis-
ease (ESRD) patients, the long-term descending trend of
blood albumin is a strong indicator of malnutrition and
health deterioration (Bharadwaj et al. 2016). On the con-
trary, the short-term abnormal rising of hypersensitive C-
reactive protein indicates the high-risk clinical event (e.g.,
peritonitis) (Ma et al. 2018b). Although several research
works try to utilize the convolutional operator to extract
temporal patterns of clinical events (Cheng et al. 2016;
Ma, Xiao, and Wang 2018), none of them can capture
such patterns in multi-level time scales simultaneously.

• I2: Adaptively making use of the clinical features for
patients in diverse conditions. Key factors that strongly
indicate the health risk are different among patients
(Valko and Hauskrecht 2010). So it is critical that the
model can utilize the features adaptively when learning
the health status representation and performing prediction
for patients in different conditions. The model adaptabil-
ity can be specifically expressed in two aspects:

– The importance of features in different time-scales
varies among different patients. For example, for the
patient suffering from chronic disease, the feature ex-
tracted in the long term may be more representative for
depicting the health status. On the contrary, for the pa-
tient diagnosed with acute disease, the short-term fea-
ture describes the health risk more precisely.

– The importance of features should also be adaptive to
different characteristics. For example, the model should
pay more attention to creatinine and urea when they
rise 1, and the model should concentrate more on di-
astolic blood pressure when the patient has been diag-
nosed with cerebrovascular disease2.

1Plasma concentrations of creatinine and urea are usually as-
sociated with systemic manifestations (uremia) for chronic kidney
disease patients (Anna Malkina 2018).

2The level of diastolic blood pressure is usually associated with

• I3: Interpretability for various patients. Medical ex-
perts need to understand how a certain decision is made
by a model to a particular patient at different visits. So
that the prediction results are trustworthy for developing
individualized intervention and extracting medical knowl-
edge (Tangri, Ansell, and Naimark 2011). For example,
if the model triggers a health warning by taking the cre-
atinine and urea as key factors, the physician is alerted
to assess such patients for possible systemic manifesta-
tions. Moreover, it will also remind the physicians of the
previously unknown correlation between the biomarker
and death reason. However, most of the existing works
can only provide visit-level or disease-feature-level in-
terpretability by attention mechanism (Ma et al. 2017;
Bai et al. 2018). As far as we know, RETAIN (Choi et
al. 2016) is the only work that can provide reasonable
biomarker-feature-level interpretability by utilizing two-
level attention as an end-to-end model, but its prediction
accuracy is unsatisfactory (Ma, Xiao, and Wang 2018;
Ma et al. 2018a). To bridge this research gap, our model
AdaCare can provide a fine-grained feature-level inter-
pretation for the model prediction, but also achieves a
state-of-the-art prediction accuracy.

By jointly considering the above research issues in clin-
ical practice, we propose a clinical health status represen-
tation learning model via scale-adaptive feature extraction
and recalibration, AdaCare3. It monitors biomarkers in
long and short time scales simultaneously to extract tem-
poral variation patterns, depicting the health status compre-
hensively for patients in diverse conditions (e.g., diagnosed
with chronic diseases or acute diseases). AdaCare models
the high relationship between clinical features to abstract the
input. At each visit, AdaCare selects the most indicative
medical features to build health status representation. Em-
pirical studies show AdaCare boosts the performance and
meanwhile offers key features that lead to the prediction.
Our main contributions are summarized as follows:

• We build a general health status representation learning
model, AdaCare, to effectively embed the health sta-
tus and provide reasonable interpretability for patients in
diverse conditions. AdaCare uses the dilated convolu-
tion with multi-scale receptive fields to capture the long
and short-term variation patterns of biomarkers as clinical
features and depict patient health status more comprehen-
sively (addressing I1).

• We build the scale-adaptive feature recalibration mod-
ule, which explicitly and adaptively models the feature
relationship based on squeeze-and-excitation block (Hu,
Shen, and Sun 2018) to selectively enhances high-risk
features and meanwhile suppress the useless ones (ad-
dressing I2). And thus, AdaCare can provide inter-
pretability on health status representation learning for pa-
tients in diverse health conditions as an end-to-end model,
and further remind the physicians with the precursor of

cerebrovascular disease (Rabkin, Mathewson, and Tate 1978)
3We release our code and case studies at GitHub https://github.

com/Accountable-Machine-Intelligence/AdaCare



health risk (addressing I3). Such interpretability is indica-
tive of understanding how the model utilizes EMR data to
make the assessment and extract valuable medical knowl-
edge.

• We conduct two prediction tasks (i.e., decompensation
prediction and mortality prediction) on two real-world
datasets (i.e., MIMIC-III dataset and end-stage renal dis-
ease dataset) respectively to verify the performance. The
results show that AdaCare outperforms the baseline ap-
proaches in both tasks. The interpretability of AdaCare
is demonstrated by an overall observation of feature re-
calibration. Besides, the obtained medical knowledge has
been positively confirmed by clinical experts.

Related Work
Over the past ten years, there has been a massive explo-
sion in the amount of digital information stored in electronic
medical records, which opens a door for researchers to make
secondary use of these records for various clinical applica-
tions. Deep learning-based models have shown the capabil-
ity to perform mortality prediction, patients subtyping, and
diagnosis prediction. Though the medical tasks vary from
each other, their essences are usually learning the health sta-
tus representations of patients. There are two essential con-
cerns among deep-learning-based EMR analysis researches:

Temporal Medical Feature Extraction
Some researches tried to extract high-level temporal clin-
ical features by convolution modules as well as perform-
ing healthcare prediction (Cheng et al. 2016; Ma, Xiao, and
Wang 2018). However, according to medical experience, the
variation of biomarkers should be evaluated in different time
scales simultaneously when evaluating the patient’s condi-
tion. To the best of our knowledge, there has not been any
research extracting clinical features in multiple time scales
effectively.

Interpretability of EMR Analysis
On the one hand, the interpretability shown in most of
the existing works mainly focuses on visit-level attention.
For example, some researches proposed RNN-based models
with attention mechanisms to measure the relationships of
different visits (Ma et al. 2017; Lee et al. 2018).

On the other hand, several researches have also explored
the interpretability in the medical-feature-level. Timeline
(Bai et al. 2018) utilizes self-attention to generate clini-
cal visit embedding, but can only identify disease code-
level importance. Some researches show the importance
of features via adversarial attack, which is not an end-to-
end framework (Sun et al. 2018). RETAIN (Choi et al.
2016) is more closely related to our work in terms of inter-
pretability, which achieves feature-level interpretability by
using attention mechanisms. However, the prediction per-
formance of RETAIN is limited (Ma, Xiao, and Wang 2018;
Ma et al. 2018a), due to the deficiency of effective high-
level clinical feature extraction. Existing studies still can-
not capture the importance of biomarkers dynamically and

meanwhile gain a performance boost in an end-to-end deep
learning-based healthcare predictive model.

Preliminary
A Motivating Example
We take the health status prediction of end-stage renal dis-
ease (ESRD) patients as the motivating example. Currently,
many people are suffered from ESRD in the world (Tan-
gri, Ansell, and Naimark 2011; Isakova et al. 2011). They
face severe life threats and need lifelong treatments with
periodic visits to the hospitals for multifarious tests (e.g.,
blood routine examination). The whole procedure needs a
dynamic patient health risk prediction to help patients re-
cover smoothly and prevent the adverse outcome, based on
the medical records collected along with the visits. The core
task of AdaCare is to learn the health status representation
of the patient and perform the healthcare prediction.

Table 1: Notations used in AdaCare

Notation Definition
yt Groundtruth of prediction target at t-th visit
ŷt Prediction result at t-th visit
rt ∈ RNr Multivariate visit record at t-th visit
urt ∈ R|rt| Feature recalibration weight of rt
r̃t ∈ R|rt| Weighted input record
ct ∈ RK∗Nc Extracted convolutional embedding of rt−L+1:t

uct ∈ R|ct| Scale-adaptive recalibration weight of ct
c̃t ∈ R|ct| Weighted convolutional embedding
vt ∈ RNr+K∗Nc Visit embedding at t-th timestep
ht ∈ RNh Hidden state of GRU at t-th timestep

Problem Formulation
We assume that a patient overall visits clinic T times, gen-
erating time-ordered EMR records denoted as rt ∈ RNr

(t = 1, 2, · · · , T ). Each EMR record contains Nr features
such as different lab test results. Thus the prediction prob-
lem in this paper can be formulated as, given t historic EMR
data of a patient, i.e., (r1, · · · , rt), how to predict the pa-
tient’s healthcare status yt which is the probability of suf-
fering from the specific risk (e.g., mortality risk, disease di-
agnosis, decompensation). The next section will detail our
solution AdaCare.

Methods
Figure 4 shows the model structure of AdaCare, a Gated
Recurrent Units (GRU) based architecture is used to em-
bed the health status at each clinical visit and perform the
healthcare prediction. The visit record sequence is embed-
ded by the GRU to obtain the hidden state ht. On the one
hand, if the model depends on the latest record rt alone, it
would be overly sensitive to abnormal values of rt brought
by the missing data and noise of EMR, thus the prediction
may lack robustness. On the other, if the model only de-
pends on the historical characteristics, the alertness of its
prediction will be compromised. In AdaCare, both of the
historical characteristics ct extracted by multi-scale dilated
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Figure 3: Capture the variation pattern of biomarkers in
diverse time scales by dilated convolutional module with
multi-scale receptive fields.

convolutional module and the rt are taken into considera-
tion to build the visit embedding vt. Finally, we use ht to
predict ŷt. In summary, the novelty of AdaCare lies in the
following two model components:

1. As Figure 3 shows, we develop a dilated convolution (Yu
and Koltun 2015) with multi-scale receptive fields to cap-
ture the variation characteristics of biomarkers (address-
ing I1).

2. As illustrated in Figure 4, we extend the squeeze and ex-
citation block (Hu, Shen, and Sun 2018) to dynamically
capture the clinical features which strongly indicate the
health risk (addressing I2).

Multi-Scale Dilated Convolution
One of our goals is to capture the dynamic variations of
biomarkers over time and extract such local patterns as addi-
tional clinical features. But RNN module alone is difficult to
achieve this. The work (Yu and Koltun 2015) demonstrated
the effectiveness of Dilated Convolution to extract local
patterns on images. Thus, AdaCare adopts a similar idea
by adding a convolution filter before GRUs. But different
to (Yu and Koltun 2015), we extend the dilated convolu-
tional layers with different time spans (i.e., receptive fields),
as depicted in Figure 4. By doing so, AdaCare demon-
strates the remarkable capability to capture both long-term
trends and short-term abnormal variations of biomarkers si-
multaneously. Mathematically, theDilated Convolution is
a convolution applied to input with defined gaps:

d[i] =

L∑
l=1

b[i+ k · l] · z[l], (1)

where b is the input biomarkers of records, d[i] is the output
feature map, z[l] denotes the convolutional filter of length
L, and k corresponds to the dilation rate. We use multiple
filters to generate different filter maps, and the number of
filter maps is Nc. We concatenate the multiple filter maps
to get the final convolution output, denoted as convkt . Fig-
ure 5 shows how dilated convolutional Layers with different
dilation rates work.

In AdaCare, the dilated convolutional module is ex-
tended with multi-scale receptive fields consists of multiple
parallel convolutional branches with the same filter size and
stride but different dilation rates of k1, k2, ...,K. For a given
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Figure 4: AdaCare Framework. Historical variation pat-
terns of the biomarker in diverse time scales are extracted
by a scale-adaptive dilated convolutional module. Both his-
torical characteristics and the most recent record, which is
attended by feature recalibration, are combined as clinical
visit health status embedding. AdaCare can adaptively cap-
ture the predictive feature extracted in proper time scales and
indicate the high-risk for the current health condition.

dilation rate k = 2
filter size L = 3

stride = 1

…

…

Causal Padding Sequence of biomarkers in record

1 2 3 4 5 6 7

…

…

Causal Padding Sequence of biomarkers in record

i = 1 i = 2 i = 3 i = 4

i = 1 i = 2 i = 3 i = 4

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

dilation rate k = 3
filter size L = 3

stride = 1
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one record per input, and k = 3 means relative long-term
convolution skipping two records



dilation rate, each layer takes multiple records of a time
span, and the filters scan across the records to generate fea-
ture maps, which are concatenated to represents the long and
short-term variation by ct = [convk1t ; convk2t ; ...; convKt ].
Moreover, to prevent the leakage of follow-up records, we
utilize causal padding (Yu and Koltun 2015).

Scale-Adaptive Clinical Feature Recalibration
As we extract the sophisticated variation patterns of
biomarkers, the multi-scale dilated convolutional module
also introduces redundancy into the model inevitably. Be-
sides, some of the clinical features recorded in EMR have a
high correlation with each other or even contribute little to
the prediction target. It will reduce the interpretability and
robustness of the learned representation if such redundant
information is fed into the network. To improve the adapt-
ability of AdaCare in terms of feature utilization, we de-
sign the scale-adaptive clinical feature recalibration module
based on SEblock (Hu, Shen, and Sun 2018). This mod-
ule is trained to model the nonlinear dependencies between
clinical features explicitly. For a particular patient, it can se-
lectively give more weights to the representative and predic-
tive features but suppresses the unimportant features. For pa-
tients with different disease conditions (e.g., suffering from
chronic disease), the representative and predictive features in
the corresponding time scale (e.g., the long-term dilated con-
volutional feature) would be enhanced. Concretely, we de-
sign two fully-connected layers to learn the abstract weight
representation and then re-scale it to the original dimension.

uct = σ(UcReLU(Wcct)), (2)

where ct is the input of the abstraction operation; parameter
matrix Wc∈R

|ct|
r ×|ct|, Uc ∈ R|ct|× |ct|

r ; r is the compress
ratio that determines the abstraction degree of features; Uc

denotes the mapping matrix which rescales the input into
Nc-dimensional; σ is the Sigmoid activation function. Then
the learned weight uct can be applied to the original features
with an element-wise multiplication:

c̃t = uct � ct (3)

The original input vector ct is filtered to be sparser, and the
redundancy of the network is reduced. Such feature recali-
bration can be adjusted adaptively and dynamically through
the visits according to the particular health condition.

Besides, in AdaCare, both the raw features and the fea-
tures captured by the dilated convolutional layers are used
to represent the current health status together via a recali-
brated skip-connection. The selectively enhanced predictive
features can be treated as a precursor of health risk for the
given patient.

urt = σ(Ur ·ReLU(Wr · rt)), (4)

r̃t = urt � rt. (5)
The weighted raw features and the weighted convolutional
features are concatenated together: vt = [r̃t; c̃t]. The visit
embedding vt are fed into GRU to obtain hidden representa-
tions: ht = GRU(ht−1,vt). The attention mechanism can
be easily adopted on the hidden representation here, but it is

not the primary concern in this paper. Finally, the healthcare
prediction is obtained as:

ŷt = σ(Wyht + b) (6)

Experiment
We conduct the decompensation prediction experiment on
the MIMIC-III dataset and mortality prediction experiment
on the ESRD (i.e., end-stage renal disease) dataset. The ef-
fectiveness of dynamic feature recalibration is investigated
by an overall observation. In order to intuitively show the
implication and prediction process of AdaCare, we also de-
velop a simple visualization prototype. The source code of
AdaCare, statistics of datasets, case studies, and the visu-
alization prototype are available at the GitHub repository4.

Data Preprocessing and Prediction Tasks
• MIMIC-III Dataset 5. We use ICU data from the pub-

licly available Medical Information Mart for Intensive
Care (MIMIC-III) database (Johnson et al. 2016). We per-
form the detection of physiologically decompensating pa-
tients, which is formulated as a binary classification prob-
lem based on patients’ clinical events produced during
ICU stays (Harutyunyan et al. 2017). Physiologic decom-
pensation is formulated as a problem of predicting if a
patient would die within the next 24 hours by continu-
ously monitoring the patient within fixed time-windows.
Decompensation labels were curated based on the occur-
rence of the patient’s date of death (DOD) within the next
24 hours, and only about 4.2% of samples are positive in
the benchmark. There are 1,203 patients (about 2.89%)
with overlong sequences (i.e., > 400). Without loss of
fairness, we truncate the length of samples to a reasonable
limit (i.e., 400). Eventually, a cohort of 41, 602 unique
patients with a total of 3,431,622 samples (i.e., records) is
used in our dataset. We fix a test set of 15% of patients and
divide the rest of the dataset into the training set and val-
idation set with a proportion of 85%:15%. We resample
the test set 1000 times using the bootstrap method (Haru-
tyunyan et al. 2017) and calculate the standard deviation
of the results.

• ESRD Dataset. We perform the mortality risk predic-
tion on a real-word end-stage renal disease dataset. In this
study, all end-stage renal disease patients who received
therapy from January 1, 2006, to March 1, 2018, in a
real-world hospital are included to form this dataset. We
select the features that are observed in more than 60%
patients’ records. For missing values, we fill the missing
front cells with the data backward to prevent the leak-
age of future information. If the backward record of a pa-
tient is missing, we impute it with the first front observed
record of the patient. The cleaned dataset consists of 656
patients with static baseline information and 13,091 dy-
namic records. There are 1196 records with positive labels

4https://github.com/Accountable-Machine-Intelligence/
AdaCare

5https://mimic.physionet.org



(i.e., died within 12 months) and 10,804 records with neg-
ative labels. We evaluate the models with a 10-fold cross-
validation strategy and report the average performance,
similar to (Ma, Xiao, and Wang 2018).

Similar to related researches, we assess performance us-
ing area under the precision-recall curve (AUPRC) (Keil-
wagen, Grosse, and Grau 2014), the minimum of precision
and sensitivity Min(Se,P+), and area under the receiver op-
erating characteristic curve (AUROC) (Hanley and McNeil
1982). The Min(Se,P+) is calculated as the maximum of
min(sensitivity, precision) on the precision-recall curve.

Implementation Details and Baselines
Several models share part of the similar insights with
AdaCare to learn the representation of patient status, some
of which are taken as baseline approaches and listed as fol-
lows. We conduct a grid search over hyper-parameters space
for the models.

• GRU is the standard Gated Recurrent Unit network.

• RETAIN (Choi et al. 2016) utilizes a two-level neural at-
tention mechanism to detect influential visits and signifi-
cant variables, which provide interpretability.

• T-LSTM (Baytas et al. 2017) handles irregular time in-
tervals by enabling time decay. We modify it into a super-
vised learning model.

• SAnD∗ (Song et al. 2018) models clinical time-series data
solely based on self-attention. We re-implement SAnD by
using rt−k+1:t to build input embedding at the measure-
ment position t (i.e., causal padding (Van Den Oord et al.
2016)), instead of the one proposed in the original paper
rt:t+k−1, to avoid the violation of causality. The kernel
size of convolutional embedding is set to 1.

We also compare AdaCare with the variants of our ap-
proaches. Subscript c in Table 2 denotes the multi-scale di-
lated convolution. Subscripts σ and ς denote the raw fea-
ture recalibration module learned with activation function
sigmoid and sparsemax respectively.

For AdaCare, we set the hidden units of AdaCare to 64
for the ESRD dataset and 128 for MIMIC-III dataset. We use
64 filters for convolutional layers, the kernel size is set to 2,
and the dilation rate is set to 1,2,3/1,3,5 for ESRD/MIMIC
dataset, respectively. For the feature recalibration block,
we set the compression ratio to 2/4 for ESRD/MIMIC
dataset, respectively. We also utilize the dropout strategy
(the dropout rate is 0.5) between the RNN layer and the final
output layer for all approaches. We utilize Adam optimizer
(Kingma and Ba 2014) with the mini-batch of 128 patients,
and the learning rate is set to 1e− 3. The training is done on
a machine equipped with CPU: Intel Xeon E5-2630, 256GB
RAM, and GPU: Nvidia Titan V. We implement AdaCare
with Pytorch 1.1.0.

Results of Healthcare Prediction
Table 2 shows that the performance of all approaches on two
datasets: MIMIC-III and the ESRD dataset. AdaCare out-
performs all baseline models across both datasets in all eval-
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Figure 6: Importance of biomarkers differentiated by dy-
namic feature recalibration.

uation metrics, especially AUPRC, which is the most infor-
mative and the primary evaluation metric when dealing with
a highly imbalanced and skewed dataset (Davis and Goad-
rich 2006; Choi et al. 2018) like the real-world EMR data.
Compared to the best baseline model, AdaCare achieves
relative improvements of 14.2% and 9.1% for AUPRC in
ESRD and MIMIC dataset respectively. Although RETAIN
can provide interpretability, its performance is worse than
the basic GRU model on both two datasets, which is consis-
tent with the results reported in (Ma et al. 2018a).
AdaCarec,− (i.e., with multi-scale dilated convolution)

outperforms the baselines mentioned above. It confirms our
assumption that extracting the historical variation pattern of
the biomarker in different time scales can depict the health
status more comprehensively. AdaCarec,σ (i.e., multi-scale
dilated convolution and feature recalibration with sigmoid
activation function) outperforms the baseline approaches in-
cluding AdaCarec,−. It suggests that the feature recalibra-
tion module can enhance the predictive feature to build the
representation effectively, and improve the performance.

To further verify the effectiveness of the model when
clearly providing the most high-risk clinical feature in lat-
est visit for the physician, we also test the performance of
AdaCarec,ς , which utilizes sparsemax as the activation
function of the raw feature recalibration. Such recalibration
enhances only a few most predictive features and suppresses
most of the features. When performing the mortality predic-
tion on the ESRD dataset, the performance of AdaCarec,ς
is slightly worse than AdaCarec,σ , and consistently better
than most of the comparative approaches. The result indi-
cates that the AdaCarec,ς is still reliable when performing
health prediction on the ESRD dataset.

Interpretability and Implications
The case study of a specific sample is usually used to ver-
ify the interpretability in the EMR analysis researches, but
it is still not convincing enough due to the contingency of
case studies. In order to quantitatively identify the reason-
ability of feature recalibration from an overall perspective,
we calculate the average importance weights of biomark-
ers on different causes of death on ESRD validation sets.
The feature-death reason importance are visualized on Fig-
ure 6. Some of the essential medical knowledge learned by
AdaCare are summarized as follows:



Table 2: Results of Health Risk Prediction. Values in the parentheses denote standard deviations.

Mortality Prediction on ESRD Decompensation Prediction of MIMIC
AUPRC min(Se, P+) AUROC AUPRC min(Se, P+) AUROC

GRU 27.14% (.025) 31.66% (.030) 80.66% (.013) 27.84% (.003) 32.60% (.004) 89.83% (.003)
RETAIN 26.18% (.021) 29.98% (.033) 79.25% (.027) 25.97% (.004) 29.00% (.005) 87.64% (.002)
T-LSTM 27.84% (.019) 33.37% (.028) 81.13% (.021) 26.11% (.003) 31.86% (.004) 89.44% (.002)
SAnD∗ 26.31% (.033) 29.94% (.037) 79.54% (.032) 25.24% (.003) 28.99% (.004) 88.25% (.003)
AdaCare−,σ 27.66% (.025) 30.55% (.039) 79.64% (.028) 28.11% (.002) 32.71% (.003) 89.77% (.003)
AdaCarec,− 30.77% (.021) 33.45% (.022) 81.22% (.012) 28.37% (.003) 33.10% (.003) 89.81% (.002)
AdaCarec,ς 30.98% (.025) 33.31% (.033) 80.61% (.019) 28.95% (.004) 34.23% (.004) 89.93% (.002)
AdaCarec,σ 31.79% (.020) 34.46% (.030) 81.51% (.017) 30.37% (.004) 34.29% (.004) 90.04% (.003)

• Serum albumin is strongly related to adverse outcomes
of ESRD patients, especially for the Peritoneal Dialysis-
Associated Peritonitis (PDAP). This is consistent with the
medical researches (Blake et al. 1993; Spiegel et al. 1993;
Cheng et al. 2008; Meijers et al. 2008), which figure out
that the abnormal value and decreasing trend of serum al-
bumin usually indicate that the patient may suffer from
inflammation and fluid overload.

• Urea is related to gastrointestinal (Gl) disease and
cachexia. According to medical research(Honda et al.
2006), the abnormal value and decreasing trend of Urea
usually indicate that the patient may suffer from low pro-
tein intake and malnutrition.

• Serum chlorine (Cl) is strongly related to adverse out-
comes of ESRD patients, especially for the cachexia and
infection. According to medical experience, the serum
chlorine level reflects the renal function of the patient to
some extent. However, the relationship between infection,
cachexia, and serum chlorine has not been fully explored
by existing medical researches. This noteworthy medical
finding has already raised the interest of medical experts.
We conduct application-grounded evaluation (Doshi-

Velez and Kim 2017) by inviting 12 experienced med-
ical practitioners (with 5-15 years practicing time) from
nephrology departments of 5 different hospitals, to evalu-
ate the agreement degree of interpretability generated by
AdaCare. The interpretability provided by AdaCare is
highly consistent with the practice experience of human ex-
perts. Some of the extracted medical knowledge has already
been introduced as the ESRD management aid by physi-
cians. More details about the experiment are described at
our GitHub repository.

Conclusion
In this paper, AdaCare is proposed to learn the clinical
health status representation. Specifically, we utilize the di-
lated convolutions with multi-scale receptive fields to cap-
ture the long and short-term historical variation of biomark-
ers. AdaCare models the nonlinear dependencies of fea-
tures by extending SE-block. Such a feature re-calibration
process selectively enhances predictive features extracted in
proper time scales and the most high-risk factors in the lat-
est visit. It builds effective health status representation and
provide reasonable interpretability. Experiment results on

MIMIC-III dataset and ESRD dataset show that AdaCare
outperforms the baseline approaches with powerful inter-
pretability. Medical knowledge learned by AdaCare has
been positively confirmed by human medical experts and re-
lated medical literature.
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