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Abstract-The resonance frequencies (eigenvalues) and 

amplitudes (eigenvectors) of coupled micro/nano-resonator 
arrays are used in sensors to measure applied physical 
perturbations such as mass. A higher sensitivity is obtained 
by measuring amplitude changes rather than frequency 
variations corresponding to identical perturbations. In this 
paper we present a new technique by measuring the 
difference of displacement amplitudes of two resonators in 
perturbed and unperturbed conditions that can increase 
the sensitivity by several orders of magnitude compared 
with frequency/amplitude measurements. Two coupled 
resonators implemented in SOI technology are modeled in 
Coventor to provide a proof of concept for the proposed 
idea. In the example coupled resonator, differential 
sensitivity is increased by 570 times for the first mode and 
by 170 times for the second mode compared with absolute 
sensitivity. 

I. INTRODUCTION 

Nano/micro resonant sensors have been used for 

measuring mass, acceleration, etc. in a number of 

applications [1-2]. However, a single sensor per chip 

fails to utilize the potential offered by the advances 

in nanofabrication. Techniques have been suggested 

which utilize the collective behavior of an array of 

coupled nano-resonators to provide sensory 

multiplexing on a chip [1], [3]. Two different 

approaches have been suggested as sensory output 

from these systems. In one, the resonance frequency 

and hence the eigenvalue of the coupled array is 

used for sensing [3]. Any change in any of the 

element would lead to a change in all eigenvalues, 

which can be measured from the frequency response 

of any of the resonators. Alternatively, one can use 

the amplitude ratios of the coupled resonators, and 

hence the eigenvectors of the system. It has been 

reported that the eigenvectors have significantly 

higher sensitivity than the eigenvalues [1]. In this 

paper, we report a third technique, which has 

significantly higher sensitivity as well as common 

mode noise rejection capabilities than either of these 

techniques. Using a set of two-coupled resonators, 

we show that using a differential measurement of 

amplitudes of the two resonators provides two order 

of sensitivity enhancement.   

II. COUPLED SYSTEMS 

Figure 1 demonstrates the lumped model of a set of 

two coupled resonators. The model can be 

mathematically analyzed with second order 

differential equations: 

 

𝑚𝑥1̈ + 𝑘𝑥1 + 𝑘𝑐(𝑥1 − 𝑥2) = 0 (1) 

 

𝑚𝑥2̈ + 𝑘𝑥2 + 𝑘𝑐(𝑥2 − 𝑥1) = 0 (2) 

 

Where k denotes the spring constant of the elements 

and kc denotes the strength of the coupling spring. It 

has been assumed that the system has weak 

damping, which can be ignored for mathematical 

analysis. The system can be analyzed using its 

matrix equivalent 

 

𝑀𝑥1̈ + 𝐾𝑥 = 0   (3) 

 

Where M is a diagonal matrix of the masses of 

individual elements and K is a tridiagonal matrix of 

m1 m2
k1

kc

k2

x1 x2

Mass1 Mass2

 
Figure 1:Lumped model of a coupled resonator 

 



spring constants.  

 

𝐾 = [
𝑘 + 𝑘𝑐 −𝑘𝑐

−𝑘𝑐 𝑘 + 𝑘𝑐
]  (4) 

 

The eigenvalue of the system can be used for finding 

the resonance frequencies of the system (𝑓𝑖 =

√𝜆𝑖/(2𝜋)). For the present system, the eigenvectors 

are k/m and (k+2kc)/m. This means that any change 

in mass would lead to a change in the eigenvalues 

and hence the measured resonance frequencies. 

Furthermore, this can be recorded from the response 

of any one of the resonator. This, therefore provides 

a sensing mechanism with a well-known sensitivity 

and the need to measure or connect to only one 

resonator.  In addition, the amplitudes of the two 

resonators at these resonance frequencies is related 

to the eigenvectors of the system. This in turn 

provides another mechanism for sensing wherein 

one can record the change in eigenvectors. To better 

appreciate this, let us consider a normalized system 

of k=1, m=1 and a normal weak coupling of kc =0.1, 

one can obtain eigenvalues to be 1 and 1.2. The 

eigenvectors are for this system of identical 

resonators are {0.7, 0.7} and {0.7, -0.7}, 

respectively. If one now considers small change of 

1% in the first element, it would lead to a change in 

eigenvalues of 1.0049 and 1.2051. Similarly, 

eigenvectors would change to {0.69,0.72} and 

{0.72, -0.69}, respectively. One can observe that the 

change in eigenvectors have higher sensitivity for 

these normalized systems. This has been proposed 

as a technique to enhance the sensitivity of coupled 

resonators [1]. 

However, it is worth noting that both eigenvectors 

related to both terms undergo a change. 

Furthermore, for a system of identical resonators, 

the amplitude for the unchanged resonators for the 

first eigen-modes are equal in amplitude as well as 

phase. This means that a differential output from 

these resonators will have zero output for this eigen-

mode. This also means that any change introduced 

in the system would lead to a large relative change 

in the differential output. Hence, rather than 

measuring the amplitude of each of the two resonant 

system, we now measure the difference of the 

amplitudes. In this case, the net response of the 

sensor for two different resonant frequency changes 

from {0, 1.41} to {0.0353, -1.4138}. This, hence, 

suggests that a much higher sensitivity can be 

achieved with this sensing mechanism. Furthermore, 

this technique enables one to design a measurement 

system which essentially monitors any change of the 

output at the first resonant frequency from zero to a 

non-zero number. Such a differential measurement 

technique for a change from zero detector, is 

significantly easier to design. 

III. ANALYSIS 

To further analyze the sensing approach, let us 

consider the eigenvalue perturbation problem. For 

symmetric tri-diagonal matrices such as the one 

observed in linear coupled arrays of resonators, one 

can express the eigenvalue problem in terms of the 

system matrix S=M-1/2KM1/2. One can then obtain 

the change in eigenvalue and eigenvectors for any 

perturbation in system matrix, Δ𝑆 to be [4] 

 

Δ𝜆𝑖 = 𝒓𝑖
𝑇𝚫𝑺𝒓𝑖   (5) 

where ri is the eigenvector corresponding to the ith 

eigenvalue. Similarly, the change in any eigenvector 

can be expressed as 

Δ𝒓𝑖 = ∑
𝒓𝑗

𝑇∆𝑺𝒓𝑖

𝜆𝑖−𝜆𝑗

𝑛
𝑗=1
𝑗≠𝑖

𝒓𝑗    (6) 

For an array of two identical elements, both of these 

simplifies to  

 

Δ𝒓1 =
{0.7 −0.7}Δ𝑆{

0.7
0.7

}

2𝑘𝑐/𝑚
{
−0.7
0.7

} (7) 

Δ𝒓2 =
{0.7 0.7}Δ𝑆{

0.7
−0.7

}

−2𝑘𝑐/𝑚
{
0.7
0.7

}  (8) 



 

However, if one takes the difference of the response 

of the two resonators at each frequency (x1-x2), one 

can observe that the difference at both of these 

frequencies will be proportional to 

 

Δ𝑟1
1 − Δ𝑟1

2 = 1.4
{0.7 −0.7}Δ𝑆{

0.7
0.7

}

2𝑘𝑐/𝑚
 (9) 

Δ𝑟2
1 − Δ𝑟2

2 = 1.4
{0.7 0.7}Δ𝑆{

0.7
−0.7

}

2𝑘𝑐/𝑚
 (10) 

 

This means that the change introduced in the 

differential readout is at least double that of the 

change introduced in any one of the readouts. More 

importantly, the unchanged eigenvectors for the first 

mode have the same value and hence the difference 

of the response of the two resonator will be zero. 

Hence, the sensitivity should ideally be very high.  

Two points are worth noting. First, these derivations 

are only true for small changes in resonators, bound 

by the limits of the perturbation analysis [4]. Such 

changes are known to be nonlinear and hence any 

eigenvector based sensing has a small dynamic 

range. Furthermore, that it is very difficult, if not 

impossible, to make two identical resonators. Hence, 

the actual sensitivity obtained will always be lower 

than this. Nevertheless, one can show that for 

reasonable mismatch between the resonators, this 

differential sensing will still provide significant 

improvement over direct eigenvalue or eigenvector 

based sensing. 

 

IV. DIFFERENTIAL CONFIGURATION OF COUPLED 

ARRAYS 

To verify the new sensing method, we undertook a 

simulation study of a typical cantilever based system 

in a standard Silicon on Insulator (SOI) technology. 

Figure 2 illustrates a three dimensional (3D) model 

of two coupled resonators. Cantilever dimensions 

are 400um×35um×10um, which are coupled by a 

90um×35um×10um under-etched silicon. The 

mechanical coupling strength can be adjusted in 

design by changing the length of silicon between 

two cantilevers. The resonance behavior of the 

beams was characterized by undertaking harmonic 

balance analysis on finite elements of the meshed 

model in tools provided by Coventorware. The 

simulation settings included nonlinear mechanical 

physics accompanied by harmonic balance analysis, 

which is setup to apply Lanczos algorithms to the 

meshed model of cantilever. The displacement of 

free ends of two cantilever tips are measured in 

response to a very small mechanical load applied to 

one of the cantilevers in perpendicular (z) direction 

as shown in Figure 3. 

In addition, a perturbation is modeled by changing 

one of the cantilever arrowheads to a flat head, 

 

 

    
(a)                                 (b) 

 

    
(c)                                   (d) 

Figure 3: First two shape modes of coupled resonators, (a) in phase 

unperturbed, (b) out of phase unperturbed, (c) in phase perturbed, and 

out of phase perturbed. 

 

Figure 2: Fixed-free coupled microcantilever model in standard Silicon-on-

Insulator (SOI) process. 



which can model physical inputs for sensing 

applications such as mass changes.  Simulation 

setup for harmonic balance analysis include 50 

points over the 70KHz ~ 140KHz frequency range 

with 0.01 modal damping ratio. The first two modes 

of perturbed and unperturbed resonators are 

illustrated in Figure 3.  The z-displacement 

amplitude of two cantilevers over a frequency range 

that covers these two modes is sketched in Figure 4. 

The two mode shapes are detected in identical 

frequencies according to the limits we had set on the 

simulation accuracy. Slightly asymmetric cantilever 

structures, to consider fabrication imperfections, 

leads to marginal differences in resonance amplitude 

of the two cantilever tips for both mode shapes. This 

marginal difference is magnified in an inset of 

Figure 3a. The difference in displacement amplitude 

of two resonators in perturbed and unperturbed 

mode shapes demonstrates a much larger variation 

compared to their absolute values as illustrated in 

Table 1. This phenomenon leads to around 660 time 

higher differential sensitivity (1st mode) compared to 

absolute measurements. The measured values in 

Table 1 are extracted from Figure 3 that approves 

the proposed methodology.  

 

V. CONCLUSION 

Coupled micro/nano resonators have been 

investigated for their sensing capabilities in 

applications such as mass and acceleration 

measurement. The amplitude and resonance 

frequency of a resonator changes as a function of 

applied physical input such as mass. We propose to 

measure the difference in the amplitude of two 

resonators displacement in perturbed and 

unperturbed conditions for an increased sensitivity. 

Simulation results are in absolute agreement with 

the presented method. 

 
Table 1: The resonance frequency and displacment magnitude and 

sensitivity of coupled resonators. 

 
References 

1. M. Spletzer, A. Raman, A. Q. Wu, X. Xu, and R. 

Reifenberger, “Ultrasensitive mass sensing using 

mode localization in coupled microcantilevers” Appl. 

Phys. Lett. 88, 254102, 2006. 

 

R
eso

n
an

ce F
req

 

(K
H

z) 

R
eso

n
ato

r 1
  T

ip
 

d
isp

lacem
en

t (u
m

) 

R
eso

n
ato

r 2
  T

ip
 

d
isp

lacem
en

t (u
m

) 

D
ifferen

ce  

A
b

so
lu

te S
en

sitiv
ity

 

D
ifferen

tial 

S
en

sitiv
ity

 

1st mode 

unperturbed 
87.936 6.224 6.21 0.013 

0.23 133 

1st mode perturbed 87.479 7.67 5.94 1.73 

2nd mode 

unperturbed 
125.39 3.555 3.538 0.017 0.4 67.5 

2nd mode 

perturbed 
118.67 2.132 3.2795 -1.15  

 

 
(a) 

 

 
(b) 

 

  

 

Figure 4 Resonance displacement magnitude of coupled resonators, 

(a) Unperturbed, and (b) perturbed system. 
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