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ABSTRACT 
 

Rim seals are fitted in gas turbines at the periphery of the wheel-space formed between rotor discs and 

their adjacent casings. These seals, also called platform overlap seals, reduce the ingress of hot gases 

which can limit the life of highly-stressed components in the engine. This paper describes the development 

of a new, patented rim-seal concept showing improved performance relative to a reference engine design, 

using URANS computations of a turbine stage at engine conditions. The CFD study was limited to a small 

number of purge-flow rates due to computational time and cost, and the computations were validated 

experimentally at a lower rotational Reynolds number and in conditions under incompressible flow. The 

new rim seal features a stator-side angel wing and two buffer cavities between outer and inner seals: the 

angel-wing promotes a counter-rotating vortex to reduce the effect of the ingress on the stator; the two 

buffer cavities are shown to attenuate the circumferential pressure asymmetries of the fluid ingested from 

the mainstream annulus. Rotor disc pumping is exploited to reduce the sealing flow rate required to 

prevent ingress, with the rotor boundary layer also providing protective cooling. Measurements of gas 

concentration and swirl ratio, determined from static and total pressure, were used to assess the 

performance of the new seal concept relative to a bench-mark generic seal. The radial variation of 

concentration through the seal was measured in the experiments and these data captured the 

improvements due to the intermediate buffer cavities predicted by the CFD.  This successful design 

approach is a potent combination of insight provided by computation, and the flexibility and expedience 

provided by experiment. 

 

1. INTRODUCTION 
 

Turbine rotor discs are among the most highly-stressed components in the 

engine, where metal temperatures must be limited to ensure acceptable-life, integrity 
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and reliability. A typical turbine stage is shown in Fig. 1, where rim seals are fitted at the 

periphery of the wheel-space between the turbine disc and its adjacent stator to reduce 

the ingress of hot mainstream gases. The ingress is principally caused by circumferential 

pressure asymmetries in the mainstream annulus, radially outward of the rim seal. A 

superposed sealing (purge) flow, bled from the compressor, is used to cool the rotor 

disc and to prevent, or at least dilute the ingress to a tolerable level. Superfluous use of 

this purge air can reduce the cycle efficiency and it is important to understand the fluid 

dynamics governing rim-seal performance. 

The stationary vanes and rotating blades create an unsteady, three-dimensional 

distribution of pressure in the mainstream annulus near the seal clearance. Ingress of 

hot gas occurs in those circumferential regions of the clearance where the pressure in 

the annulus is higher than that in the wheel-space, and egress of sealing air occurs in 

those regions where this pressure difference is reversed. 

There is a growing trend in industry to use unsteady computational fluid 

dynamics (CFD) codes to design rim seals and explore the mechanisms of ingress, e.g., 

[1][2]. Predictions of the unsteady, three-dimensional flows in both the annulus and 

wheel-space are however time-consuming and computationally expensive, and require 

significant expertise and insight. Experimental research is needed to validate the CFD 

results, including the use of turbine-based rigs running close to engine-operating 

conditions, e.g., [3]. There is also a requirement for detailed measurements made in 

simplified, more-flexible rigs specifically designed for instrumentation access in a more 
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benign environment; such rigs can offer an efficient and relatively inexpensive means of 

assessing new rim-seal design concepts. 

This paper presents a design-concept study where CFD was used to create an 

improved rim seal operating at engine conditions (Reϕ ~ 107, annulus Mach number ~ 

0.65) with an engine vane and blade geometry. The numerical simulations were limited 

to just four purge-flow rates due to computational time and cost.  The rim-seal concept 

was tested experimentally under incompressible flow conditions (Reϕ ~ 106, annulus 

Mach number ~ 0.4) using the vane and blade geometries in the University of Bath 

single-stage turbine facility [4]. The test facility featured interchangeable rim-seal 

components offering flexibility and expediency in terms of data collection over a wide 

range of purge-flow rates. This enabled an efficient method of ranking and quantifying 

the performance of a wide range of generic and engine-specific seals, including the new 

seal concept developed from the CFD study. The experiments are thus used to inform 

design criteria that can be scaled to engine operating conditions through the use of 

theoretical models and CFD. 

Section 2 is an overview of research groups currently studying ingress. Section 3 

describes the new rim-seal concept. Section 4 describes the CFD model and the 

computational results. The experimental data are presented in Section 5, including 

details of the test facility and the rim seals investigated. Section 6 discusses the 

conclusions from this study. 

 

2. LITERATURE REVIEW 
 



Journal of Engineering for Gas Turbines and Power 

5 

GTP-15-1266 Scobie 

A historical review of ingress has been provided by Sangan et al. [4] and this 

topic remains an important issue to gas-turbine designers. This Section reviews the most 

recent literature, with a focus on research groups conducting current work in this area. 

The rotational Reynolds number (see nomenclature) for the associated test facilities is 

given and it can be seen that the operating envelope of most steady-state rigs is 

typically an order of magnitude below engine conditions. There are clear advantages in 

experimenting near engine-representative Mach and Reynolds numbers; in practice it 

can be economical to operate in a more benign environment which lends itself to 

experimental detail and flexibility. 

 

University of Aachen:  Reϕ ~ 1.5 x 106 

An experimental investigation of ingress into the upstream cavity of a 1.5 stage 

rig was conducted by Bohn et al. [5]. Unsteady two-dimensional Laser Doppler 

Anemometry measurements were reported, which mapped the velocity field found in 

the rim seal region. This showed the flow field was strongly influenced by both stator 

vanes and rotor blades. High pressure regions propagating upstream from the blades 

caused a local increase in ingress, even at large sealant flow rates.  

Results of different numerical approaches were presented by Jakoby et al. [6] 

using data from the Aachen test rig for validation. A 360° simulation of the time-

dependent flow field revealed large-scale structures also discovered in the experiments. 

When the sealant flow rate was small enough, low-pressure zones, which rotated at ~ 

80% of the rotor speed, were found to strongly influence the ingress. The CFD 
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significantly under predicted the degree of ingress, though the 360° model (rather than 

a restricted sector model) produced results closer to experiment.  

 

University of Sussex:  Reϕ ~ 2 x 106 

Eastwood et al. [7] investigated re-ingestion of sealant flow in a two-stage 

turbine stator-well rig at the University of Sussex. The test facility was developed to 

study the interaction of stator-well cooling and main-annulus air. Gas concentration 

measurements showed the amount of egress re-ingested into the downstream wheel-

space was approximately 7% for the engine-representative sealing flow rates tested. 

The amount of re-ingestion reduced with increasing sealing flow. This rig has also been 

extensively used to study heat transfer in turbine hub cavities e.g., Dixon et al. [8]. 

 

Arizona State University:  Reϕ ~ 0.6 x 106 

Experimental measurements in a low-speed one-stage turbine rig were 

published by Zhou et al. [9]. Three rim-seal configurations were tested, including a 

double seal, to determine the influence of seal geometry on main gas path ingestion. 

The instantaneous fluid-velocity field was mapped using PIV at multiple circumferential 

positions; CO2 gas concentration was used to determine the effectiveness. At low 

sealant flow rates, the measured radial- and tangential-velocity components identified 

areas where ingress and egress occurred. An unsteady, three-dimensional, sector CFD 

model under-predicted ingress, as the circumferentially rotating low pressure zones, 

predicted by the 360° simulations, could not be captured. 
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Wang et al. [1] performed numerical simulations using a 360° time-dependent 

approach, based on the ASU rig geometry with a radial and axial clearance seal. This 

work was extended by Mirzamoghadam et al. [2]. Circumferential distributions of 

ingress and egress rotating at the rotor speed were identified at lower sealant flow rates 

where ingress was significant. The periodicity of these distributions was not associated 

with the numbers of vanes or blades. At higher sealant flow rates, where little ingress 

occurs into the stator boundary layer, it was found the velocity distribution was 

associated with the blade pressure field. Note that the computations in this paper were 

performed at practical engine-operating conditions where the ingress is relatively small, 

and a sector model is expected to capture all significant effects present in a 360o model. 

 

GE Global Research Centre:  Reϕ ~ 3.5 x 106 

Palafox et al. [3] discussed a new 1.5 stage hot gas ingestion rig designed to 

operate at near engine conditions, including representative Mach and Reynolds 

numbers. This rig has the capability of providing CO2 gas concentration data, as well as 

unsteady pressure and temperature measurements. CFD validation of the preliminary 

rig data was documented by Ding et al. [10]. 

 

Penn State University:  Reϕ ~ 1 x 107 

Most recently, Barringer et al. [11] presented the design of a new 1.5 stage gas 

turbine research facility containing engine-representative hardware. This impressive 

facility will operate in a continuous, steady-state, high-pressure flow environment 
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approaching engine conditions. Future experiments will simulate the aerodynamic and 

thermal flow-field interactions between the mainstream gas path and the egress. 

 

University of Bath:  Reϕ ~ 1 x 106 

The single-stage test facility at the University of Bath which features in this study 

was first presented by Sangan et al. [4]. The rig has been the focus of an extensive 

ingress research programme and is described in detail in Section 5. The test facility 

features interchangeable rim-seal components allowing a wide range of generic and 

engine-specific seal concepts to be tested. Most recently, Sangan et al. [12] investigated 

the feasibility of a finned turbine rim seal design. Measurements of gas concentration, 

pressure and swirl ratio were used to show the fins improved the seal performance. 

 

Governing non-dimensional parameters for ingress 

The ingress of fluid through the rim seal is an inertial phenomenon driven by 

differences in pressure, whereas the flow inside the wheel-space is controlled by the 

boundary-layers on the rotor and stator. Defined below are two non-dimensional flow 

rates (Φ0 and λT) which respectively govern these inviscid and viscous phenomena.  

The sealing flow parameter, Φ0, combines the effects of Cw,0, Gc and Reϕ into a single 

variable:  

     
b

U

G

C
Φ

c

ow

o



 Re2

,           (1) 

where U is the bulk mean radial velocity of sealing air through the seal clearance. As 

both Reϕ and Cw,0 include viscous terms which cancel, Φ0 is therefore an inertial 
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parameter. The symbols are defined in the nomenclature and the reader is referred to 

Owen [13] for a detailed discussion of the so-called effectiveness equations which 

express the sealing effectiveness in terms of Φ0. 

Within the wheel-space, boundary layers will develop over both the rotating and 

stationary surfaces. At the rotor surface, fluid is accelerated to the disc speed by friction 

and pumped centrifugally. This phenomenon is often referred to as disc-pumping. On 

the stationary surfaces the tangential velocity decreases to zero near the wall and the 

radial pressure gradient causes a radial inflow. 

The swirl ratio of the fluid in the inviscid core between the boundary layers in 

the wheel-space is defined as  

                                                                     
Ωr

V
β=

               (2) 

where Vϕ is the tangential component of velocity in the core. The swirl ratio controls the 

radial distribution of static pressure in the wheel-space. In a rotating inviscid fluid, the 

radial component, and the axial gradients of the axial and tangential components, of 

velocity must be zero [14]. All radial flow occurs inside the boundary layers, and the 

value of β adjusts to satisfy the continuity of the flow rate in the boundary layers. 

The structure of the flow in the wheel-space is determined by the turbulent flow 

parameter (governing a viscous phenomenon), which is defined as 

                      80
0 Re

.
w,T Cλ


       (3) 

For the free disc, where there is no stator, the entrained flow rate is characterized by λT 

≈ 0.22. It follows from Eqs. (1) and (3) that  
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                        o
.

cT ΦGπλ
20

Re2        (4) 

 

3. NEW RIM-SEAL CONCEPT 
 

Figure 2 illustrates the rim-seal geometries which were investigated 

computationally. Figure 2(a) shows the reference design to which the performance of 

the improved rim seal concept (b) was compared. This benchmark geometry, similar to 

that shown in Fig. 1, represents a typical double rim seal configuration found in current 

gas turbines. The new rim-seal concept will be simply referred to as the angel-wing seal. 

An enlarged view of the angel-wing seal is shown in Fig. 3, which labels the 

outer-, intermediate- and inner-seal clearances and three corresponding wheel-spaces. 

The minimum radial clearance from the reference seal was maintained for the improved 

seal design. The essential differences between the new and reference seals are that the 

latter features (i) a stator-side angel wing, (ii) a relatively large outer wheel-space and 

(iii) an intermediate seal and wheel-space relatively close to the rotor surface. The 

intention of the angel wing is to create a mixing cavity to contain the hot ingress; the 

shape is designed to promote a counter-rotating vortex to reduce the effect of this 

ingress on the stator.  The larger buffer volume in the outer wheel-space attenuates the 

circumferential pressure variation of the ingested fluid reducing the penetration of 

ingress to the intermediate wheel-space and highly-stressed rotor disc. The new seal 

concept takes advantage of the disc pumping effect: the sealing flow from the rotor 

boundary layer is pumped directly in the direction opposing the ingested flow, helping 
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to prevent ingress into the intermediate wheel-space while also providing cooling to the 

underside of the rotor blade platform. 

Although not presented in this section, an iterative process was employed 

featuring five conceptual variations of the seal (see Section 5.2) before an improved 

geometry was established for the CFD calculations. This iterative process was possible 

using the flexible, expedient process in the experimental programme. Each variant was 

experimentally tested over a range of purge flow rates to identify improvements 

associated with a series of geometric changes. The final, patented geometry was 

designed to be practical for an industrial application while encompassing many of the 

beneficial features from the evolving concepts. The patented seal would be appropriate 

for different stages of the industrial turbine, and applicable for the first-stage of an 

aero-engine with axial assembly. 

 

4. COMPUTATIONAL STUDY 
 
4.1  Computational model 
 

The CFD model used in this study consists of a stationary domain, involving three 

nozzle guide vanes in the mainstream annulus and a rotating domain with the rotor and 

five turbine blades - see Fig. 4(a). A sliding plane connecting the stationary and rotating 

domains was placed midway between the rim seal and the leading edge of the rotor 

blades. 7.5 million hexahedral elements were used to mesh the entire domain, with a J-

grid and H-grid topology employed for the stationary and rotating domains respectively. 

Fig. 4(b) shows the mesh for the wheel-space domain with a y+
ws ≈ 1, a grid expansion 
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ratio between adjacent mesh cells of 1.3, and y+
gp ≈ 10 in the mainstream gas path. The 

commercial CFD code CFX v13 was used. The SST turbulence model was employed and 

the numerical methods used were the same as those described by Teuber et al. [15] 

with the exception of the time-step used here, which was 2.351 x 10-6 seconds. 

The URANS computations were started from a frozen-rotor solution at engine 

representative conditions with Reϕ ≈ 107. Figure 5 shows the typical convergence 

behavior for a transient rim-seal computation with the computed sealing effectiveness 

monitored at four different positions; for clarity, these monitoring positions are also 

shown in Figure 4 (b). The vertical axis is εcc = cs / co, the ratio of the stator concentration 

to that of the sealant: when εcc = 1 everywhere the wheel-space is sealed from ingress; 

and when εcc = 0 the wheel-space is entirely filled by ingress. Each unsteady simulation 

took up to four revolutions of the disc before the mixed out gas composition, consisting 

of the tracer gas and the ingested mainstream flow, was fully convected within the rim 

seal and the wheel-space. The solution was considered converged when a quasi-periodic 

behavior for the sealing effectiveness, static and total temperatures and pressures were 

obtained at selected monitoring points. The computations were performed with two HP 

Z800 workstations resulting in computational times of up to five weeks using 20 nodes 

in parallel. 

 

4.2 Computational results 
 

Computations were conducted at engine-representative conditions for a 

currently-operating Siemens engine with the associated vane, blade and wheel-space 



Journal of Engineering for Gas Turbines and Power 

13 

GTP-15-1266 Scobie 

geometries. The double radial-clearance seal (Fig. 2a) acted as the reference design. Due 

to the time available for the study, numerical simulations were restricted to just three 

sealing flow rates for this reference seal: Φ0 = 0.065, 0.085 and 0.1; for the largest flow 

rate, the time-averaged value of εcc → 1 on the stator at r/b = 0.96 (in-board of the 

angel wing) and the minimum flow rate to prevent ingress into the inner wheel-space 

was estimated to be Φmin ~ 0.1. Only a single computation was made for the angel-wing 

seal at Φ0 = 0.072; relative to the reference seal, the time-averaged εcc was greater than 

those at both Φ0 = 0.065 and 0.085. The CFD thus demonstrated that the improved 

design outperformed the reference case although insufficient data exists to quantify this 

improvement.  

It should be noted that the experimental measurements using this inner-seal 

showed that Φmin ~ 0.03 - see Section 5. The measurements would not be expected to 

be matched by the CFD as the vane and blade geometries and the annulus flow 

conditions were different in the experiment and computations. Teuber et al. [14] discuss 

means of scaling Φmin from rig to engine conditions. The computations carried out for 

the engine also include a small leakage flow into the outer wheel-space immediately 

beneath the stator platform. 

 

4.3 Computational results for new rim-seal concept 
 

Computational results for the angel-wing seal are described in this section. At 

the single purge flow rate tested, the inner wheel-space is nearly sealed, i.e. εcc → 1 on 

the stator. While the time-averaged effectiveness is high in the outer and intermediate 
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wheel-spaces, there are maximum peaks of ingress and egress depending upon the 

unsteady pressure field in the annulus; this cyclic pressure field is governed by the 

relative position of the vanes and blades. Maximum ingress and egress occur when the 

superimposed pressure field above the rim-seal is, respectively, at a maximum or 

minimum relative to the wheel-space pressure. Figure 6 shows an instantaneous snap 

shot of (a) the computed velocity streamlines (b) the swirl ratio β and (c) the 

effectiveness for the case of maximum ingress. The case for the relative juxtaposition of 

vane and blade to create maximum egress is shown in Figure 7. 

Consider Fig. 6a. The streamlines in the mainstream gas-path show fluid is 

ingested from near the surface of the stator hub in the annulus. Outside the stator 

boundary layer the swirl in the annulus is as high as βa = 1.8 but decreases to zero near 

the stator wall (see Fig. 6b). The ingress with β < 1 is seen to migrate towards the stator-

side of the seal lip and the highly-swirling flow (β > 1) down the rotor platform lip, 

before being ingested into the outer wheel-space. In the seal-gap region the 

effectiveness (see Fig. 6c) is nearly zero, i.e. the instantaneous gas temperatures would 

be near that in the annulus. A small amount of flow remains in the seal gap to form a 

clockwise-rotating vortex. Figure 6 illustrates the strength of the mixing between the 

ingested and sealant fluids through the outer seal, both in terms of concentration and 

swirl ratio. This implies a significant exchange of momentum and concentration 

between the two fluids.  

The outer wheel-space acts as a buffer cavity to attenuate the variation in 

circumferential pressure which drives ingress further through the intermediate seal. 
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Here, this mixed-out ingress is directly opposed by the sealant flow which is pumped 

radially upwards by the rotating disc in the intermediate wheel-space. Within the seal 

clearance the sealing flow from the rotor boundary layer is pumped directly in the 

direction opposing this ingress, helping to prevent ingestion into the intermediate 

wheel-space. This boundary layer also provides cooling to the underside of the rotor-

blade platform.   

The shape of the angel wing helps to induce a counter- rotating vortex structure 

in the outer wheel-space. This is assisted by the minor leakage flow ejected from 

underneath the stator platform. Under conditions of maximum ingress, the fluid in this 

cavity is predominately ingested from the gas path. Fig. 6c shows the ingress migrates 

towards the center of the counter-rotating vortex; this ensures that the gas with the 

highest temperature does not directly contact the stator components.  

Figure 7 shows an instantaneous snap shot of (a) the computed velocity 

streamlines, (b) the swirl ratio β and (c) concentration for the case of maximum egress. 

The streamlines in the outer wheel-space demonstrate the same counter-rotating 

vortex structure. Here this structure is predominately created by the sealing flow 

ejected through the clearance intermediate seal and the underside of the rotor 

platform. The majority of the sealing flow is expelled directly into the seal gap and the 

egress mixes with the mainstream the gas path.  

Ideally, computations would have also been conducted at rig conditions and 

validated with experimental data. Due to time limitations, computations were carried 

out only at engine conditions. Computations using the same CFD sector model were 
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performed at the rig conditions by Teuber et al. [15] for generic-seal designs (not those 

used here) and good agreement between the CFD and experiments was presented. 

 

5. EXPERIMENTAL STUDY 
 

A series of rim sealing geometries, leading to the improved angel-wing seal were 

examined experimentally using the University of Bath single-stage gas-turbine test 

facility. This Section describes the facility, the seals tested and the experimental results. 

 

5.1 Experimental facility 
 

The steady-state experimental facility was constructed in 2008 and is described 

in detail by Sangan et al. [4]. The test section, shown in Fig. 8, features a turbine stage 

with 32 vanes and 41 blades. The blades were symmetric NACA 0018 aerofoils which 

avoid the necessity of a dynamometer; the ratio of the leading-edge diameter to chord-

length was 0.0984. The diameter of the disc was 380 mm and the height of the annulus 

was 10 mm. 

By means of an electric motor, the disc could be rotated up to speeds of 4000 

rpm, providing a rotational Reynolds number, Reϕ = 1.1 × 106. Although this is typically 

an order-of-magnitude less than that found in gas turbines the turbulent flow structure 

in the boundary layers is principally governed by the turbulent flow parameter, λT, and 

depends only weakly on Reϕ [14]; hence the flow structure in the rig is considered to be 

representative of that found in the cooling systems of engines. 
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The vanes and blades in the annulus also produced a flow structure 

representative of those found in engines, albeit at lower Reynolds and Mach numbers. 

Table 1 shows the three design points used in the experiments: each design point 

created similar velocity triangles and non-dimensional pressure distributions 

(determined on the vane platform) in the annulus [4]. The flow exiting the vanes is 

virtually incompressible and near atmospheric pressure; the density, ρ, speed of sound, 

a, and air viscosity, μ, are determined from the static temperature and pressure 

measured inside the wheel-space on the stator at r/b = 0.993. At the design points, the 

distribution of effectiveness and swirl in the wheel-space was shown to be independent 

of Reϕ for all seals tested. 

Sealing air was introduced into the wheel-space at a low radius (r/b = 0.642) 

through an inlet seal. In order to measure the degree of ingress, the sealing flow was 

seeded to a 1% level with a carbon dioxide tracer gas. The concentration of CO2 was 

monitored at the entrance to the wheel-space, c0, and in the unseeded upstream flow 

through the annulus, ca. The variation of concentration cs with radius (0.55 < r/b < 0.993) 

along the stator in the wheel-space was determined by sampling through 15 

hypodermic tubes of diameter 1.6 mm. Two of these radial locations (r/b = 0.958 and 

0.850) were used as reference monitoring points for the outer and inner wheel-spaces, 

respectively, for the seals described in Section 5.2. In all cases the gas was extracted by 

a pump, which delivered the samples to a dual channel infrared gas analyzer. The 

measurements were time averaged and the completion of a full radial traverse of 

concentration took approximately 20 minutes. The combined uncertainty of the 
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concentration measurements was +/- 0.015% of the measured value; a detailed 

uncertainty analysis is presented in the appendix. A second series of 15 taps, similar to 

the concentration taps, were used to determine the radial distribution of static 

pressure, p, on the stator. Seven complementary Pitot tubes in the wheel-space, aligned 

with the tangential direction, were used to measure the total pressure, pT in the fluid 

core. The tangential component of velocity in the core at each of the seven radial 

locations was calculated from Bernouilli’s equation: 

                                 
1/2

T

ρ

p)2(p
V 







 
      (5) 

The estimated uncertainty in the measured values of Vϕ were +/- 3%. 

The concentration effectiveness εc is defined as 

            
ao

as
c

cc

cc
ε




              (6) 

where the subscripts a, 0 and s respectively denote the air in the annulus, the sealing air 

at inlet, and at the surface of the stator. For the experiments conducted here, ca and c0 

were constants (approximately 0% and 1% respectively) and cs varied with radius on the 

stator. In particular, εc = 1 when cs = c0 (zero ingress) and εc = 0 when cs = ca (zero sealing 

flow). Note this definition is consistent with εcc as ca = 0 in the computations. 

 

5.2 Rim-seals investigated experimentally 
 

Interchangeable 360° rim seals could be fitted to the periphery of the wheel-

space, with both rotor- and stator-side features. These components were CNC machined 

from aluminum and were designed as scaled versions of those used in the engine.  Seal 
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changes and re-alignment could be completed in a single working day. The experimental 

rig was specifically designed for this flexibility, providing relatively simple and expedient 

measurements over a full range of purge-flow rates and rotational speeds. 

The improved angel-wing seal evolved from an iterative process using six 

variations of the seal geometry. The variations were created using a 360° angel wing 

mounted onto the stator and an insert, or combination of inserts, attached to the rotor 

and rotor-platform. This allowed an investigation of various radial-overlapping 

arrangements with the angel wing. The minimum clearance, sc,rad = 1.28 mm was 

maintained throughout the study. Sketches of the seal evolution from a bench-mark 

reference double seal (similar to that in Fig. 2a) through to the improved angel-wing seal 

(scaled from Fig. 2b) are shown in Fig. 9. Note the flow through the annulus is left to 

right. Full sets of data were collected for each variation over a range of sealant flow 

rates 0 < Φ0 < Φmin at the three design points - this data included the radial distribution 

of sealing effectiveness, pressure and swirl. Each geometric iteration created a marginal 

improvement in sealing performance in the outer, intermediate and inner wheel-spaces. 

Detailed data is presented in the next section for the reference and the 

improved seals, i.e. seals (a) and (f) respectively in Figure 9. Schematic diagrams of these 

two rim seals (labelled Reference and Angel Wing) are shown in Figure 10 (a) and (b) and 

the static dimensions are given in Table 2. Concentration data was collected at 15 radial 

locations on the stator. For the angel-wing seal, two sampling taps were located within 

the angel-wing section to assess the variation in effectiveness through the outer, 

intermediate and inner wheel-spaces; these monitoring positions are shown in Fig. 
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10(c).  Note that the discussion below will reference the outer, intermediate and inner 

rim seals and wheel-spaces as labeled in Fig. 3. 

 

5.3 Radial variation of sealing effectiveness 
 

Figure 11 shows the radial variation of concentration sealing effectiveness 

measured on the stator for both the reference and angel-wing seals. A thumb-nail 

sketch of the seals is included in this figure; it should be noted the external flow is from 

left to right (i.e. from the stator towards the rotor). The experiments were conducted at 

Reϕ = 8.2 x 105 at three consistent sealant flow rates (Φ0 = 0.03, 0.05 and 0.07) between 

both cases; at this rotational Reynolds number, Φ0 and λT are, coincidently, nearly equal 

in magnitude.  Though not shown in the figure, the data is independent of Reϕ at the 

three design points tested, as previously demonstrated by Sangan et al. [16] with a 

range of single- and double-clearance seals.   

At all radii within the outer wheel-space (r/b > 0.93), the angel-wing seal 

provides an improved effectiveness over the reference seal. As expected, εc increases as 

Φ0 increases. There is a dramatic increase in effectiveness from εc = 0 in the annulus, 

indicating mixing of the ingress and egress fluids through the outer rim seal. The 

concentration at the stator wall is determined by this mixed fluid, which enters the 

boundary layer and flows radially inward. For both seals the effectiveness is essentially 

constant in this outer wheel-space, suggesting that near-complete mixing has occurred 

in a region very close to the outer rim seal. 
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Between the outer and the inner (0.65 < r/b < 0.85) wheel-spaces there is a 

significant increase in effectiveness; the ingress is predominantly contained within the 

outer buffer volume. For the angel-wing seal, the effectiveness is seen to increase in 

two stages through the intermediate wheel-space (0.85 < r/b < 0.95) as predicted by the 

CFD.   

For the angel-wing, the inner wheel-space is sealed (εc = 1) for all three sealing 

flow rates presented here. The inner wheel-space for the reference case is sealed at the 

higher two flow rates but not at Φ0 = 0.03. Again, εc is invariant with radius; the rapid 

increase at r/b < 0.65 is caused by the presence of the inlet seal where the sealing flow 

is introduced.  

In the practical situation of an engine, the inner wheel-space could operate at an 

acceptably low metal temperature with the hot, ingested gas confined to the outer 

wheel-space protected by a more robust alloy. 

 

5.4 Variation of sealing effectiveness with sealing flow 

Figure 12 shows the variation of εc with Φ0 for the angel wing seal measured at 

four monitoring locations. A thumb-nail sketch of the seal configuration showing these 

locations is included in this figure. At Φ0 = 0.03 the inner wheel-space is virtually sealed 

despite the outer wheel-space experiencing an effectiveness of ~ 50%. The data reveals 

that the intermediate seal limits the penetration of ingress into the intermediate wheel-

space, as predicted by the CFD. The lower portion of this wheel-space features a stator-
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rotor-stator labyrinth. This is shown to be an effective seal, inhibiting ingress into the 

inner wheel-space. 

Also shown in Fig. 12 are comparisons between the experimental data and the 

theoretical variation of effectiveness according to the effectiveness equations originally 

presented by Sangan et al. [4]. The fit between these equations and the measured 

variation of εc with Φ0 was optimized using the statistical model featuring maximum 

likelihood estimates described by Zhou et al. [17]. For all cases the experimental data is 

in good agreement with the theoretical curves. 

The table inserted into Fig. 12 lists Φmin', the value of Φ0 required for εc = 0.95. 

The table shows that the flow rate required to seal the inner wheel-space to 95% is 

approximately a quarter of that required for the outer wheel-space; this demonstrates 

the virtue of the intermediate-cavity design. The measurements in the intermediate 

wheel-space have captured the features predicted by the CFD and it is encouraging to 

see the data support the concept behind the design of the seal discussed in Section 3. 

Figure 13 shows a comparison between the reference and angel-wing seals. In 

both cases the effectiveness was determined in the inner wheel-space at r/b = 0.85 and 

in the outer wheel-space at r/b = 0.958. The data was collected at the three design 

points (see Table 1) and shown to be independent of Reϕ. The added complexity of the 

angel-wing geometry clearly provides an improved sealing performance over the full 

range of Φ0 in both the inner and outer wheel-spaces. The improvement in Φmin' is 

quantified in the table inserted into Figure 13. 
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Figure 9 illustrates the six (a–f) different seal configurations tested 

experimentally. Fig. 14(a) provides further detail from Fig. 13, illustrating the 

improvement in sealing performance in the inner wheel-space for the reference (a) and 

improved angel-wing (f) seals. Also shown are the intermediate marginal improvements 

associated with seal configurations (b) and (d), which represent the significant changes 

in the design evolution. As the four data sets are closely spaced, a detail of the 

highlighted region in Fig. 14(a) is shown in Fig. 14(b). The small improvements in Φmin' 

for each configuration are shown in the Table inserted into Fig. 14(a). 

The first iteration (b) incorporates the angel-wing stator-side feature of the 

improved geometry and the outer seal of the reference design. The data demonstrates a 

marginal improvement over the baseline case even in the absence of an inner seal 

feature. By incorporating the rotor attachment in seal (d), an inner overlap is formed 

and a further improvement in sealing performance is demonstrated. The most effective 

seal performance was achieved when all the iterative complex features were 

incorporated to form the double overlap inner seal found in the improved angel-wing 

design. Seals (c) and (e) produced similar results that fitted between the closely-spaced 

sets of data. 

 

5.5 Radial variation of swirl ratio 
 

Figure 15 illustrates the variation of swirl ratio β with non-dimensional radius for 

both the reference and angel-wing seals. The measurement locations for total pressure 

in the cores of the inner and outer wheel-spaces are shown for both seals. Once again 
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the data for both seals are shown for pairs of common superposed flow rates (λT = 0, 

0.05 and 0.07) at Reϕ = 8.2 x 105, though the distribution of swirl has been shown to be 

independent of Reϕ at the three design points. The swirl ratio reduces dramatically from 

βa = 1.8 in the annulus to β < 1 inside the outer wheel-space. This implies a rapid 

exchange of angular momentum through the outer rim-seal clearance. 

For the case λT = 0, there is no superposed flow and the core rotation β = 0.44 is 

observed for r/b < 0.85, in accordance with Daily et al. [18]. The swirl in the outer wheel-

space is seen to increase with the influence of highly swirling ingress. The case λT = 0 has 

maximum ingress and the concentration effectiveness everywhere in the wheel-space is 

zero. Increasing the sealing flow causes a reduction in the core rotation as the wheel-

space is pressurized. The level of swirl at the periphery of the wheel-space also reduced 

as the increased sealant flow decreased ingestion from the annulus. 

At common λT (i.e., common Φ0) there are differences in the amount of ingress 

between the reference and angel-wing seals. Despite this, the swirl in the inner wheel-

space for the two cases are similar, illustrating that β is governed principally by λT. 

 

6. CONCLUSIONS 
 

This paper presents a successful design approach where CFD was used to create 

a new, patented rim seal operating at engine conditions. The numerical simulations 

predicted an improved performance relative to a reference engine design, but the CFD 

was restricted to a small number of purge-flow rates due to computational time and 

cost. The new rim-seal concept was tested experimentally under incompressible flow 
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conditions. The test facility featured interchangeable rim-seal components offering 

flexibility and expediency in terms of data collection over a wide range of purge-flow 

rates and rotational speeds. An iterative process was employed featuring five 

conceptual variations of the seal before an improved geometry was established for the 

CFD calculations. Each variant was tested experimentally to identify improvements 

associated with a series of geometric changes. The final, patented geometry was 

designed to be practical for an industrial application while encompassing many of the 

beneficial features from the evolving concepts.  This successful design approach is a 

potent combination of insight provided by computation, and flexibility and expedience 

provided by experiment. 

The new rim seal features a stator-side angel wing and two buffer cavities 

between outer and inner seals: the angel-wing promotes a counter-rotating vortex to 

reduce the effect of the ingress on the stator; the two buffer cavities are shown to 

attenuate the circumferential pressure asymmetries ingested from the mainstream 

annulus. The disc-pumping effect is exploited to reduce the sealing flow rate required to 

prevent ingress, with the rotor boundary layer providing protective cooling. 

Measurements of gas concentration, pressure and swirl were used to assess the 

performance of the new seal concept relative to a bench-mark reference seal at the 

University of Bath. The experiments measured the radial variation of concentration 

through the seal and the data captured the improvements through the intermediate 

buffer cavities predicted by the CFD.   
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NOMENCLATURE 
 

a   

b    

c    

CF    

speed of sound (m/s)  

radius of seal (m)  

concentration of tracer gas (%) 

flow coefficient (W/ Ωb) 

Cw,0    

Gc    

ṁ    

M    

p  

pT    

r    

nondimensional  sealing flow rate (= ṁ/μb)  

seal-clearance ratio (= sc,ax/b)  

mass flow rate (kg/s) 

Mach number  

static pressure  (Pa)  

total pressure (Pa)  

radius (m) 

Rew  

Reϕ    

sc    

U    

Vϕ    

W    

β     

εc    

axial Reynolds number in annulus based on radius   (= ρWb/μ)  

rotational Reynolds number (= ρΩb2/μ)  

seal clearance (m)  

bulk mean radial seal velocity (= ṁ0/2πρbsc)  

tangential component of velocity (m/s)  

axial velocity in annulus (m/s)  

swirl ratio (= Vϕ/Ωr)  

concentration effectiveness  
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εcc    

Φ0    

Φmin    

λT    

μ    

ρ    

Ω 

 

Subscripts 
 

a 

ax 

min  

rad  

0   

computed concentration effectiveness (= cs /c0)  

nondimensional sealing parameter (= Cw,0 /2π Gc Reϕ)  

minimum value of Φ0 to seal wheel-space  

turbulent flow parameter (= Cw,0 Reϕ
-0.8)  

dynamic viscosity (kg/ms)  

density (kg/m3)  

angular speed of rotating disc (rads/s) 

 

 

 

annulus  

axial  

minimum  

radial 

sealing flow 

s   
   
   

 

stator surface 
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APPENDIX: UNCERTAINTY IN EFFECTIVENESS MEASUREMENTS 
 

For convenience, the definition of sealing effectiveness (εc denoted here for 
simplicity as ε) given in Eq. 6 is repeated below: 
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                     (A1) 
where the subscripts a, 0 and s respectively denote the air in the annulus, the sealing air 
at inlet, and the surface of the stator. 

Let δε, δs, δ0, δa be uncertainties in ε, cs, c0, ca respectively so that 
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If (±δ0 ± δa) / (c0 - ca) << 1 then 
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Hence, 
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     (A5) 
If the uncertainty is a percentage of the full-scale range, which was the case in 

the experiments, then δs = δ0 = δa = δ, say, and Eq. (A5) simplifies to 
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The average standard deviation, σ, in the range 0 < ε < 1 can be calculated from Eq. (A7) 
by 
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      (A8) 
 

The CO2 gas analyser had an overall uncertainty of 0.015% of each of its ranges. 
In the tests, where the 1% range was used, the concentration of gas in the sealing flow 
was close to the 1% range maximum. Hence δ / (c0 - ca) ≈ 0.015, and from Eq. (A8) it 
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follows that σ ≈ 0.046. This value, which is an upper bound, exceeds the standard 
deviation found from the fitted Φ0 – ε curves.  
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Figure Captions List 

 
 
 

 
Fig. 1: (a) Typical high-pressure gas-turbine stage;  

(b) detail of rim seal [4] 
 

 

         
                        (a)                                           (b) 

Fig. 2: Rim-seal concepts investigated by CFD: (a) reference seal (b) angel-wing seal 



Journal of Engineering for Gas Turbines and Power 

34 

GTP-15-1266 Scobie 

 
Fig. 3: Nomenclature for angel-wing seal 

 
 
 

 
                   (a)                                              (b) 

Fig. 4: CFD model; (a) model domain; (b) wheel-space mesh 
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Fig. 5: Convergence behaviour for the sealing effectiveness εcc at four rim-seal positions 

 
 

 
(a) 
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(b) 

 
(c) 

 
Fig. 6: Case of maximum ingress for improved seal design; (a) computed velocity stream 
lines; (b) contour plot with swirl ratio β – note, the swirl contours were limited to β = 1 

despite β > 1 in the annulus; (c) contour plot of sealing effectiveness εcc 
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(a) 

 
(b) 
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(c) 
Fig. 7: Case of maximum egress for improved seal design; (a) computed velocity stream 
lines; (b) contour plot with swirl ratio β – note, the swirl contours were limited to β = 1 

despite β > 1 in the annulus; (c) contour plot of sealing effectiveness εcc 
 
 

 
Fig. 8: Rig test section highlighting pressure instrumentation (red, stationary; blue, 

rotating) 
 
 

 
 (a)       (b)       (c)           (d)          (e) (f) 

Fig. 9: Evolution of rim seal design from reference seal to angel wing  
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(a)    (b) 

 

 
(c) 

Fig. 10: (a) Reference rim seal; (b) angel-wing seal;  
(c) close up of angel-wing seal showing a selection of the 15 radial measurement 

locations including two sampling taps within the angel-wing structure. 
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Fig. 11: Radial distribution of concentration effectiveness for reference and angel-wing 
seals at three sealing flow-rates 

 
 
 

 
Fig. 12: Measured variation of concentration effectiveness with non-dimensional sealing 

flow-rate for angel-wing seal at four sampling points (Symbols denote data; lines are 
theoretical curves) 

 
 
 
 

 
Fig. 13: Experimental variation of concentration effectiveness with non-dimensional 

sealing flow-rate for reference and angel-wing seals, tested at the range of conditions 
given in Table 1 (Symbols denote data; lines are theoretical curves) 
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Fig. 14(a): Experimental variation of concentration effectiveness with non-dimensional 

sealing flow rate for four seal configurations 

 
Fig. 14(b): Detail of highlighted region in Fig. 14(a) 
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Fig. 15: Radial distribution of swirl ratio for reference and angel-wing seals at three 

sealant flow-rates 
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Table Caption List 
 
 
 

Table 1 Parameters for experiments 

 

Geometric 

Symbol 

Seal Configuration 

Reference Angel-Wing 

h 10.0 

b 190 

S 20.0 

sc,ax 2.00 

sc,rad 1.28 

soverlap 1.86 2 

hbuffer 10 15.9 
 

Table 2 Geometric dimensions of seal configurations (measured in mm under 

static conditions) 

  

  

  

  

 
 

Parameter Disc Speed (RPM) 

2000 3000 3500 

Reϕ 5.32 x 105 8.17 x 105 9.68 x 

105 

Rew 2.86 x 105 4.40 x 105 5.21 x 

105 

CF 0.538 0.538 0.538 

M 0.225 0.339 0.398 


