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ARTICLE

Bayesian Data Assimilation to Support Informed Decision 
Making in Individualized Chemotherapy

Corinna Maier1,2, Niklas Hartung1, Jana de Wiljes1,3, Charlotte Kloft4 and Wilhelm Huisinga1,*

An essential component of therapeutic drug/biomarker monitoring (TDM) is to combine patient data with prior knowledge for 
model-based predictions of therapy outcomes. Current Bayesian forecasting tools typically rely only on the most probable 
model parameters (maximum a posteriori (MAP) estimate). This MAP-based approach, however, does neither necessarily 
predict the most probable outcome nor does it quantify the risks of treatment inefficacy or toxicity. Bayesian data assimila-
tion (DA) methods overcome these limitations by providing a comprehensive uncertainty quantification. We compare DA 
methods with MAP-based approaches and show how probabilistic statements about key markers related to chemotherapy-
induced neutropenia can be leveraged for more informative decision support in individualized chemotherapy. Sequential 
Bayesian DA proved to be most computationally efficient for handling interoccasion variability and integrating TDM data. 
For new digital monitoring devices enabling more frequent data collection, these features will be of critical importance to 
improve patient care decisions in various therapeutic areas.

In the presence of a narrow therapeutic window and large 
interpatient variability, therapeutic drug/biomarker monitor-
ing (TDM) is indicated for safe and efficacious therapies. 
With the help of Bayesian forecasting tools, patient-specific 
data are combined with prior knowledge from previous 
clinical studies and a drug-specific model to enable mod-
el-informed precision dosing (MIPD).1 Typically, only the most 
probable individual parameter values (i.e., the maximum a 
posteriori (MAP) estimates, are used to predict the individual 
therapy outcome without quantifying associated uncertain-
ties.2 Thus, relevant risks associated with a dosing regimen 

selection (e.g., treatment inefficacy or unacceptable toxicity), 
are not determined hindering well-founded therapeutic deci-
sion making.

Quantifying associated uncertainties is at the heart of mak-
ing more informed decisions, not only in clinical applications. 
In this article, we thoroughly compare in a TDM context dif-
ferent Bayesian data assimilation (DA) methods that either 
(i) estimate the full posterior distribution (termed full Bayesian 
approaches) to quantify uncertainties, or (ii) estimate only its 
mode (MAP estimation) without uncertainty quantification. 
The full Bayesian approaches comprise not only methods that 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  Typically, maximum a posteriori (MAP) estimation is 
used to combine prior knowledge with patient-specific 
monitoring data for model-based predictions to support 
individualized therapy (e.g., in chemotherapy).
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  The study addresses major limitations of MAP-based 
prediction for efficient and reliable clinical decision sup-
port: (i) it only provides a point estimate without associ-
ated uncertainties, (ii) it does not transform into the most 
probable observation (e.g., nadir concentration), and (iii) it 
processes data in a batch.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  Bayesian data assimilation (DA) methods are compared 
that allow a comprehensive uncertainty quantification by 

approximating the full posterior distribution. We dem-
onstrate the advantages of uncertainty quantification in 
therapeutic drug/biomarker monitoring for chemother-
apy-induced neutropenia. Sequential DA methods were 
found to be particularly suitable for long-run analyses as 
they process data sequentially.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTIC?
✔  Comprehensive uncertainty quantification and recur-
sive data processing enable reliable, efficient, and indi-
vidual decision support during ongoing treatment and will 
become increasingly relevant with the development of 
novel digital monitoring devices.

mailto:﻿
mailto:huisinga@uni-potsdam.de
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process patient data collected over time in a batch (i.e., all at 
once), like Markov Chain Monte Carlo (MCMC), sampling im-
portance resampling (SIR), and a normal approximation (NAP) 
to the posterior at the MAP estimate, but also particle filters 
(PFs) that allow for efficient sequential data processing. PFs 
are well-established in areas of application in which real-time 
predictions based on online/monitoring data are required, as 
in navigation, meteorology, and tracking.3–5

In the context of chemotherapy-induced neutropenia—
the most frequent dose-limiting side effect for cytotoxic 
anticancer drugs with substantial decrease of neutrophil 
granulocytes and, thus, potentially life-threatening fever and 
infections6—we demonstrate the clear benefits of uncertainty 
quantification compared with purely MAP-based predictions 
(e.g., ref. 7) using the gold-standard model for neutropenia.8 
Further, we compare the full Bayesian approaches regarding 
quality of uncertainty quantification and computational run-
time for multiple cycle chemotherapy.9 Although MCMC, SIR, 
and PF all provide a reliable uncertainty quantification, the 
efficient data processing of the sequential approach will be 
clearly beneficial in a continuous monitoring context, where 
digital healthcare devices (e.g., wearables) allow patients to 
measure and report individual marker concentrations online.

METHODS

First, the statistical framework of MIPD in TDM is intro-
duced, which is used throughout the different methods 
described below. Then, the considered clinical application 
scenarios are described along with the prior knowledge 
from literature.

Statistical framework
TDM in the context of MIPD builds on prior knowledge in the 
form of a structural, observational, covariate, and statistical 
model. In the sequel, TDM data are considered for a single 
individual and, therefore, there is no running index for individ-
uals. The structural and observational models are given as:

with state vector x=x (t) (including drug/biomarker concen-
trations), individual parameter values θ (e.g., volumes and 
clearances), and rates of change f (x;θ,u) of all state variables 
for a given input u (e.g., dose). Because typically only a part 
of the state variables is observed, the function h maps x to 
the observed quantities h(x,θ) (e.g., plasma drug or neutrophil 
concentration), including potential state-space transforma-
tions (e.g., log-transformed output). The initial conditions x0 
are defined by the pretreatment levels (e.g., baseline values). 
The covariate and statistical model link the patient-specific 
covariates “cov” and observations (tj,yj )j=1,…,n to the model 
predictions hj (θ)=h(x(tj ),θ), accounting for measurement er-
rors and possibly model misspecification.

where θTV(cov) denotes the typical hyperparameter val-
ues (TV) that might depend on covariates. The dot (“·”) 
in a probability distribution serves as placeholder for its 
argument. Often, Yj|Θ=θ =hj (θ)+εj with εj ∼iid (0,Σ). Prior 
knowledge about the parameters is provided by popula-
tion analyses of clinical studies, in which nonlinear mixed 
effect (NLME) approaches are used to estimate the func-
tional relationship cov↦θTV (cov), and the parameters Σ 
and Ω.

The challenge in MIPD is to infer information on the 
individual parameter values θ of a patient based on 
his/her covariate values and measurements. Here, a 
Bayesian approach is highly beneficial: the unexplained 
interindividual variability in the population model (Eq. 4) 
defines the prior uncertainty about the individual param-
eter values. In this context, the hyperparameters (i.e., all 
parameters after the semicolon in Eq. 4) are assumed 
to be known (fixed). As a consequence, we drop them 
as well as the subscripts in the notation in the sequel. 
As a result, the likelihood at the individual level reads 
p( ⋅ |θ)=p( ⋅ |θ;hj (θ) ,Σ) and the prior p( ⋅ )=pΘ

(
⋅;θTV (cov) ,Ω

)
.  

Then, assimilating measurements y1:n= (y1,… ,yn)
T into 

the model based on Bayes’s formula:

allows to learn about individual parameter values from the  
data. The remaining uncertainty of parameter values is  
encoded in the posterior p( ⋅ |y1:n). Note that 
p(y1:n|θ)=p(y1|θ) ⋅… ⋅p(yn|θ) due to independence in Eq. 3. 
The denominator p

(
y1:n

)
 in Eq. 5 serves as a normaliza-

tion factor, denoting the probability of the data. In contrast 
to MAP estimation, which summarizes the posterior by its 
mode, Bayesian DA approaches rely on sample approxima-
tions of the posterior

based on a sample

with sample parameters θ(s)n  of the posterior (Section 2.5 in 
ref. 10), weights w(s)

n , which sum to one (i.e., 
∑S

s=1
w

(s)
n =1 and 

point masses δ
θ
(s)
n
 at θ(s)n ). If w(s)

n =1∕S for all s, the sample is 
called unweighted. Based on the posterior sample, we may 
also approximate quantities of interest in the observable 
space by solving Eqs. 1 and 2 for all elements in �n. This 
also serves as the basis for credible intervals (CrIs); applying 
subsequently the residual error model Eq. 3, the basis for 
prediction intervals.

Because direct sampling from the posterior is, in general, 
not possible, alternative approaches (described below) 
need to be used to generate a sample of the posterior. For 
a detailed description, see Section S3–Section S7.

(1)
dx

dt
(t)= f (x(t);θ,u), x(t0)=x0(θ)

(2)h(t)=h(x(t),θ)

(3)Yj|Θ=θ ∼p( ⋅ |θ;hj (θ) ,Σ), j=1,… ,n (independent)

(4)Θ∼pΘ

(
⋅;θTV (cov) ,Ω

)
,

(5)p(θ|y1:n)=
p(y1:n|θ) ⋅p (θ)

p
(
y1:n

)

(6)p(θ|y1:n)≈
S∑

s=1

w
(s)
n �

θ
(s)
n
(θ)

�n:=
{(

θ
(s)
n ,w

(s)
n

)
, s=1,… ,S

}
,
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MAP estimation
MAP estimation approximates the mode of the posterior 
distribution (i.e., the most probable parameter values given 
patient-specific measurements y1:n):

The MAP estimate θ̂MAP
n

 is a one-point summary of the 
posterior distribution, without quantification of the associ-
ated uncertainty.

NAP
To overcome the one-point summary limitation of the MAP 
estimate, the posterior p( ⋅ |y1:n) may be approximated 
locally by a normal distribution located at the MAP esti-
mate (Section 4.1 in ref. 11).

where  denotes the total observed Fisher information ma-
trix (Section 2.5 in ref. 12).

of the posterior. The uncertainty in the parameters is then 
propagated to the observables by first sampling from the 
normal distribution in Eq. 8 and then solving the structural 
model for each sample.13 Alternatively to this sampling-based 
approach, the Delta method (Section 5.5 in ref. 14) could be 
used, see also Section S4 and Figure S2.

SIR
The SIR algorithm is a full Bayesian approach. It generates 
an unweighted sample �n from the posterior p(θ|y1:n) based 
on a sample from a so-called importance distribution G, 
from which samples can easily be generated (Section 10.4 
in ref. 11). SIR proceeds in three steps. S-Step: Sampling 
from the importance distribution G resulting in a sample �̃n.  
We considered the prior as importance distribution, as-
suming that the patient under consideration is sufficiently 
well-represented by the clinical patient populations given by 
the prior. I-Step: Each sample point θ̃(s)n ∈ �̃n is assigned an 
importance weight w̃(s)

n =p(y1:n|θ̃
(s)
n ) given by the likelihood 

(in case G is the prior). R-Step: After normalization of the 
weights w(s)

n = w̃
(s)
n ∕

∑
s w̃

(s)
n , a resampling is performed: S 

unweighted samples θ(s)n  are drawn from θ̃(s)n  according to 
weights w(s)

n .
Note that once a new data point yn+1 becomes avail-

able, the SIR algorithm does not simply update the 
present sample points θ(s)n  in �n, but re-performs all three 
steps based on the updated posterior p( ⋅ |y1:n+1) to deter-
mine �n+1.

MCMC
A popular alternative to SIR in Bayesian inference are 
MCMC methods with a wide range of different algorithms.15 
MCMC generates an unweighted sample �n from the 

posterior by means of a Markov chain (Section 11 in ref. 11). 
MCMC comprises two steps to generate sample points θ(s)n :  
a proposal step (generating a potential new sample point θ∗) 
and an acceptance step (accepting or rejecting θ∗ as a new 
sample point). The challenge in MCMC is to design applica-
tion-specific proposal distributions.

In TDM, MCMC was previously considered with the prior as 
fixed proposal distribution (independence sampler) for sparse 
patient monitoring data.16 We observed, however, large rejec-
tion rates with increasing number n of data points, because the 
posterior becomes narrower, see Section S6. To counteract 
large rejection rates, we used an adaptive Metropolis-Hastings 
sampler with log-normally distributed proposal distribution 
(see Section S6 and Figure S4 for details).

PF
In contrast to SIR and MCMC, which process data in a batch, 
PF constitutes a sequential approach to DA, see 3,17,18 for 
a detailed introduction. Given a weighted sample �n of the 
posterior p( ⋅ |y1:n) and a new data point yn+1, PF generates a 
weighted sample �n+1 of the posterior p( ⋅ |y1:n+1) by updating 
�n using a sequential version of Bayes’s formula, as follows:

For n=0, the distribution p(θ|y1:0) is identical to the prior 
p (θ) (Section 3 in ref. 10). Note that p(yn+1|θ)=p(yn+1|y1:n,θ) 
due to independence in Eq. 3. Analogously to the I-step in 
SIR, the weights w(s)

n  are updated proportional to the (local) 
likelihood: w(s)

n+1
∝p(yn+1|θ) ⋅w

(s)
n  involving, however, only the 

new data point yn+1. As in SIR and MCMC, evaluation of the 
likelihood involves solving the structural model (1). Because 
the structural model is deterministic, one may either solve 
Eq. 1 with initial condition x0 (θ) for the total timespan 

[
t0,tn+1

]
,  

or with initial condition xn (θ) for the incremental timespan [
tn,tn+1

]
. The latter approach requires to store for each sam-

ple point 
(
θ
(s)
n ,w

(s)
n

)
 also the corresponding state x(s)n  at time 

tn, because typically the structural model cannot be solved 
analytically. The incremental approach makes use of the 
Markov property that the future state is independent of the 
past when the present state is known.

The resulting triple 
(
θ
(s)
n ,w

(s)
n ,x

(s)
n

)
 is called a particle. In our 

setting, the ensemble of particles can be interpreted as the 
state of a population of virtual individuals at time tn, whose “di-
versity” represents the uncertainty about the state/parameters 
of the patient at time tn, given the individual measurements y1:n.  
The posterior p( ⋅ |y1:n) obtained by n sequential update steps 
in Eq. 9 is mathematically identical to the posterior obtained in 
Eq. 5 by assimilating all data y1:n in a batch (Section 3.3.3 in 
ref. 19). However, the sequential update is much more efficient 
as it involves a reduced integration time span.

In contrast to SIR, PF does not perform resampling by 
default. Only if too many samples carry an almost negligible 
weight and the total weight is limited to only a few samples 
(weight degeneracy), a resampling is performed. We used a 
criterion based on the effective sample size

(7)θ̂MAP
n

=argmax
θ

p(θ|y1:n).

(8)p( ⋅ |y1:n)≈
(
θ̂MAP
n

,−1
(
θ̂MAP
n

))
,

 (θ) :=post (θ)=−
d2

dθ2
logp(θ|y1:n)

(9)p(θ|y1:n+1)∝p(yn+1|θ) ⋅p(θ|y1:n).

Seff(tn):=
1

∑S

s=1

�
w

(s)
n

�2



156

CPT: Pharmacometrics & Systems Pharmacology

Bayesian DA in Individualized Chemotherapy
Maier et al.

to decide whether to resample. Starting initially with uni-
form weights w(s)

0
=1∕S with Seff

(
t0
)
=S, resampling was 

carried out once Seff<S∕2 (effective ensemble size half of 
the initial ensemble size). If resampling is performed, it is 
followed by a so-called rejuvenation step3 to prevent sam-
ple impoverishment by fixation to limited parameter values:

with rejuvenation parameter τ, where θ̃(s)n  denotes the re-
sampled parameters. These two steps, resampling and 
rejuvenation, ensure that the weighted sample �n adequately 
represents areas of posterior probability, see also Figure S5.

Biomarker data during chemotherapy for single/
multiple cycle simulation studies
Two simulation studies (see below) were performed in 
MATLAB R2017b/2018b, see supplementary information 
files SCode, to analyze the approaches regarding their suit-
ability to support MIPD.

For the single cycle study with docetaxel (100 mg∕m2, 1 hour 
infusion), we used the NLME model in ref. 20. It is based on 
the well-known pharmacodynamic model in ref. 8 (Figure S6)  
and describes the effect of a single dose of the antican-
cer drug docetaxel based on monitoring neutrophil counts. 
Important model parameters are the drug effect parameter 
“Slope” and the pretreatment baseline neutrophil concentra-
tion “Circ0.” For inference, neutrophil concentrations were 
considered on a log-scale at time points t=0,3,… ,21 days 
postdose, see Section S8 for full details. This simulation 
study aims to demonstrate the limitations of MAP estimation 
for a model frequently used in MIPD for TDM.7,21 Because 

recursive data processing and decision-support gain in rel-
evance for long-term monitoring, we performed a simulation 
study for multiple cycle therapy with paclitaxel using the 
NLME model in ref. 9. It describes the effect of the anticancer 
drug paclitaxel (200 mg/m2, 3-hour infusion) over six cycles 
of 3 weeks each, corresponding to treatment arm A of the 
CEPAC/TDM study.22 In ref. 9, an aggravation of neutropenia 
over subsequent treatment cycles is accounted for by bone 
marrow exhaustion9 (Figure S6). The model includes in-
teroccasion variability (IOV) on pharmacokinetic parameters 
describing the variability between cycles within one patient. 
Therefore, the parameter values comprise the interindividual 
parameters (θIIV) and a parameter for each occasion (θIOV). As 
a consequence, the size of θ increases with every occasion/
cycle, θ=

(
θIIV,θ

1
IOV

,… ,θ
nc
IOV

)
, where nc denotes the number of 

cycles, see Section S9 for details. Neutrophil counts were 
assumed to be monitored every third day. We were interested 
in a setting where data become available sequentially (one-
by-one). To this end, neutrophil count data were simulated 
for a virtual patient using Eqs. 3 and 4 and the corresponding 
model. Then the individual parameter values were inferred 
based on the simulated neutrophil count data available up to 
a certain time point, using the same model. For the statistical 
analysis, this procedure was repeated for N=100 virtual pa-
tients (with covariate characteristics mirroring the real study 
population underlying the NLME model).

Key characteristics for decision support in cytotoxic 
chemotherapy
We investigated different characteristics T (⋅) of the neutro-
penia time-course related to risk and recovery.7 Depending 
on the nadir (i.e., minimal neutrophil concentration), differ-
ent grades of neutropenia are distinguished, see Figure 1. 

θ
(s)
n =θ̃

(s)
n +ξ

(s)
n , with ξ

(s)
n ∼iid

(
0,τ ⋅

|||𝜃
(s)
n
|||
)
.

Figure 1  Key characteristics for decision making in cytotoxic chemotherapy related to risk (dark blue) and recovery (light blue) of 
neutropenia. Neutropenia grades are defined according to the Common Terminology Criteria for Adverse Events.31 Note that the 
shades of red are related to the increasing toxicity; however, grade 0 (white) over the whole cycle is associated with ineffective 
treatment. As key statistics for decision support we consider the lowest neutrophil concentration (cnadir), the time at which the nadir 
is reached (tnadir), the duration of neutropenia grade 3 and grade 4 (tdur3 and tdur4, respectively), as well as the times until recovery to 
neutropenia grade 2 and 0 ( trec2 and trec0, respectively).
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Neutropenia grade 4 is dose-limiting as this severe reduction 
in neutrophils exposes patients to life-threatening infections. 
On the contrary, neutropenia grade 0 is also undesired as it 
is associated with a worse overall treatment outcome.23 The 
time tnadir at which the nadir is reached is important for time 
management of intervention. We considered the patient out 
of risk at time trec2 when neutropenia grade 2 is reached post 
nadir. For the initiation of the next treatment cycle, the recov-
ery time trec0 to grade 0 is important. In addition, risk is also 
related to the duration tdur3 and tdur4 of an individual being in 
grade 3 and 4 neutropenia, respectively.

Workflow in Bayesian forecasting
In full Bayesian forecasting, uncertainty is quantified on the 
parameter level and subsequently propagated to the observ-
able level, possibly summarized for some key quantities of 
interest, see Figure 2. Prior to observing patient-specific 
data, the parameter uncertainty is characterized by the 
prior (cmp. Eq. 4). It allows to make a priori predictions of 
the neutropenia time course and its uncertainty in form of 
a (1−α)-confidence interval. In addition, a priori predictions 
for quantities of interest can be derived (e.g., the neutro-
penia grade (Figure 2, left column)). Once patient-specific 
data are assimilated into the Bayesian model, the remaining 
uncertainty on the parameter values is characterized by the 
posterior, allowing to also update the uncertainty in the ob-
servable space (CrIs) and the quantities of interest (Figure 2, 
middle column).

Forward uncertainty propagation corresponds to trans-
forming a probability distribution (prior or posterior) under a 
(possibly nonlinear) mapping T ( ⋅ ), resulting in a transformed 
quantity ψ=T (θ). For illustration, we assume the one-dimen-
sional case with strictly increasing T and θ=T−1(ψ). Then the 
posterior in terms of � is given by Section 1 in ref. 24.

which is approximated in sampling-based approaches (cf. 
Eq. 6) by

with ψ(s)=T (θ(s)). This allows the computation of any desired 
summary statistic (e.g., posterior expectation or quantiles). 
MAP estimation, in contrast, characterizes the posterior 
by a single value and allows only to make a single MAP-
based prediction by mapping the MAP estimate θ̂MAP to the 
quantity of interest T

(
θ̂MAP

)
, lacking crucial information 

on its uncertainty (Figure 2, right column). Importantly, for 
nonlinear T, this does not result in the most probable out-
come, due to the Jacobian factor dθ

dψ
=

dT−1(ψ)

dψ
 in Eq. 1025,26: 

The most probable outcome is defined as the outcome with 
maximum posterior probability.

which satisfies (assuming for illustration that T is strictly 
increasing).

For the transformed MAP estimate, ψ=T
(
θ̂MAP

)
, the first 

term in the right hand side of Eq. 12 is zero, because its first 
factor vanishes by definition. The second term, however, is 
non-zero, because both its factors are non-zero for nonlin-
ear T. Therefore, the transformed MAP estimate does not 
satisfy the condition for the mode of the transformed poste-
rior probability and, hence, T

(
θ̂MAP

)
≠ ψ̂MAP.

Method comparison
For all sampling-based methods (NAP, SIR, MCMC, and PF) 
we used a sample of size S=103. Because the posterior is 
analytically intractable, an extensive sample of size S=106 
was used as reference, called “full Bayes (reference)” in the 
sequel, which was generated by SIR and cross-checked 
with MCMC (see Figure S7, because these approaches 
are exact in the limit S→∞). As a statistical measure for 
the quality of uncertainty quantification, we considered the 
Hellinger distance

which measures the difference between the discrete 
sampling-based a posteriori probability distribution 
P̂=

(
p̂1,… ,p̂b

)
 and the reference solution Pref=

(
pref
1
,… ,pref

b

)
 

generated with SIR S=106 for b fixed bins.

RESULTS

First, we show the limitations of MAP estimation for MIPD 
and how full Bayesian approaches can overcome these 
limitations (using SIR with S=106 as reference). Next, we 
compare different full Bayesian approaches with reduced 
sample sizes regarding accuracy and computational 
efficiency.

Unfavorable properties of MAP-based predictions
The first example of decision support in individualized 
chemotherapy uses the most frequently used model of 
neutropenia.8 The MAP estimate θ̂MAP

n
 is derived from 

the parameter posterior p( ⋅ |y1:n) given experimental data 
y1:n= (y1,… ,yn)

T, see Eq. 7. In the context of TDM, it is 
used to predict the future time course x

(
t;θ̂MAP

)
 of the 

patient and thereon based observables. In mathemati-
cal terms, θ̂MAP is mapped to some quantity of interest 
T
(
θ̂MAP

)
 (e.g., the nadir concentration). As pharmacom-

etric models are generally nonlinear, this does, however, 
not result in the most probable outcome (see also para-
graph preceding Eq. 12 in the Methods). This is due to 
the fact that first determining the MAP estimate and then 

(10)pΨ(ψ|y1:n)=pΘ(θ|y1:n) ⋅
dT−1(ψ)

dψ
,

p̂Ψ(ψ|y1:n)=
S∑

s=1

w
(s)
n δψ(s) (ψ),

(11)ψ̂MAP
n

=argmax
ψ

pΨ(ψ|y1:n),

(12)

0=
d

dψ
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Figure 2  Overview of the workflow in model-informed precision dosing comparing full Bayesian inference to maximum a posteriori 
(MAP)-based prediction. In full Bayesian inference, uncertainties in the parameter values are propagated to uncertainties in the 
observable space and quantities of interest. The posterior p(θ|y1:n) is displayed for the parameters “Slope” (drug effect parameter) and 
“Circ0” (pretreatment neutrophil concentration). For the prior and full Bayes (reference) approach (sampling importance resampling 
with S=106) samples (dots) from the distributions are shown with contour levels. In the observable space, the point estimates (solid 
lines) are displayed with the central 90% confidence interval or credible intervals (dashed lines and shaded area) along with the 
therapeutic drug/biomarker monitoring data (crosses). The a priori/a posteriori probabilities are calculated for the neutropenia grades 
(grade 0–4). Note that y1 corresponds to the measurement of baseline neutrophil counts (“Circ0”) and is taken into account in the 
posterior.

posterior

po
st

er
io

r

0 10 20

Circ0

0

20

40

60

S
lo

pe

gra
de

 0

gra
de

 1

gra
de

 2

gra
de

 3

gra
de

 4
0

0.2

0.4

0.6

0.8

a-
pr

io
ri 

pr
ob

ab
ili

ty

gra
de

 0

gra
de

 1

gra
de

 2

gra
de

 3

gra
de

 4
0

0.2

0.4

0.6

a-
po

st
er

io
ri 

pr
ob

ab
ili

ty

gra
de

 0

gra
de

 1

gra
de

 2

gra
de

 3

gra
de

 4
0

0.5

1

a-
po

st
er

io
ri 

pr
ob

ab
ili

ty
time

ne
ut

ro
ph

ils

time

ne
ut

ro
ph

ils

time
ne

ut
ro

ph
ils



159

www.psp-journal.com

Bayesian DA in Individualized Chemotherapy
Maier et al.

applying a nonlinear mapping is, in general, different from 
first applying the mapping to the full parameter posterior 
and then determining its MAP estimate: T

(
𝜃̂MAP

)
≠�T (𝜃)

MAP,  
see Figure 3 for an illustration with T (θ)=cnadir (θ) and 
Figure S1 for more details.

Thus, MAP-based estimation lacks both, a measure of 
uncertainty and the feature to predict the most probable 
observation/quantity of interest. In addition, relevant out-
comes, such as the risk of grade 4 neutropenia cannot 
be evaluated from the point estimate alone. MAP-based 
estimation, therefore, provides a biased basis for clini-
cal decision making. In contrast, full Bayesian inference 
provides access to the full posterior distribution of the pa-
rameters and correctly transforms uncertainties forward 
to the observables and quantities of interest, allowing to 
compute any desired summary statistic and relevant risks 
(Section 5.2 in ref. 19).

Uncertainty quantifications for more comprehensive, 
differentiated understanding, and better informed 
decision making
The first scenario served to demonstrate the limitations 
of MAP-based estimations for the gold-standard model,8 

however, the model does not account for the observed 
cumulative neutropenia over multiple cycles. Therefore, 
we considered for dose adaptations a model account-
ing for bone marrow exhaustion over multiple cycles,9 
see paragraph about the multiple cycle study paclitaxel. 
We exemplarily considered the dose selection for the 
third treatment cycle based on prior information and pa-
tient-specific measurements during the first two cycles. 
The patient-specific data together with the full Bayes (ref-
erence) model fit and prediction are shown in Figure 4a, 
see also Figures S8 and S9. The CrIs (dashed) and pre-
diction intervals (dotted) show the uncertainty about the 
“state of the patient,” without and with measurement er-
rors, respectively.

For optimizing the dose of the third cycle, different dos-
ing scenarios were considered: the standard dose and a 
–15%, −30%, and +10% adapted dose. Figure 4b shows 
the probability of the predicted grades of the third cycle for 
each dose. To find an effective and safe dose, the risk of 
being ineffective (neutropenia grade 0) should be minimized 
jointly with the risk of being unsafe (neutropenia grade 4). 
For illustration in Figure 4b, the dashed horizontal lines in-
dicate a 10% and 5% level of being ineffective and unsafe, 

Figure 3  Maximum a posteriori (MAP)-based predicted nadir concentration is not the most (a posteriori) probable nadir concentration. 
We considered the single cycle study docetaxel with four observed data points y1:4 and forecasted the nadir concentration based on 
the posterior p(θ|y1:4) using MAP estimation and the full Bayes (reference) approach (sampling importance resampling with S=106),  
where θ comprises the parameters baseline neutrophil counts (Circ0), mean transit time (MTT), and “Slope” (drug effect). The MAP 
estimate of the parameters coincides with the mode of the posterior distribution of the parameters (left panel), however, the mode is 
not preserved under nonlinear transformation (see text). Therefore, cnadir

(
𝜃̂MAP

)
 with cnadir( ⋅ ) denoting some observable T ( ⋅ ) does not 

equal the mode of the a posteriori probability pT (Θ)( ⋅ |y1:n) of the nadir concentration. Please also refer to Figure S1 for further illustration 
and analysis.
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respectively. The standard dose and the increased dose 
have a risk of toxicity larger than 5% (lower horizontal line). 
A decrease in dose also leads to an increased risk of an 
ineffective dose (upper horizontal line). The 15% reduced 
dose is with 96% probability safe and efficacious (grades 
13), with 3% probability ineffective (grade 0) and with 1% 
probability unacceptably toxic (grade 4). If grade 3 is also to 

be avoided, the 30% reduction would be preferable, as it is 
with 74% probability safe and efficacious (grades 12), with 
15% probability ineffective (grade 0) and with 11% proba-
bility toxic (grades 34). Thus, the choice of an optimal dose 
might depend on how priority is given to the risk of ineffi-
cacy and toxicity. As both risks are described by the tails 
of the posterior distribution, a point estimate is not able to 

Figure 4  Uncertainty quantification by full Bayesian methods gives important information for therapy dosing selection. The scenario 
described in multiple cycle study paclitaxel is used and the results are shown for the full Bayes (reference) solution with sampling 
importance resampling (SIR) using S=106 samples. (a) Forecasting the third cycle for different doses based on the patient's covariates 
and measurements of the first two cycles. (b) Full Bayesian inference allows for probabilistic statements of the different grades. Color 
coding of neutropenia grades shows trade-off between efficacy and toxicity. No toxicity (grade 0) is associated with poorer treatment 
outcome (orange) but severe neutropenia (grade 3 and 4) is also not desired (yellow and red). (c) A posteriori probabilities of quantities 
of interest for the third cycle based on the posterior at the end of second cycle (week 6) for the standard dose. Statistics, such as day 
of grade 4, were computed given that grade 4 is reached. Note for all displayed forecasts the full Bayes (reference) approach (SIR with 
S=106) was used. CrI, credible interval; PI, prediction interval.
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adequately capture them. The MAP-based predicted grades 
were: grade 2 (standard dose and +10% dose), grade 1 
(−15% dose); and grade 0 (−30% dose), which do not only 
make it difficult to distinguish between some doses, but also 
do not reflect the true most probable grades.

Posterior-based predictions of important statistics related 
to the neutropenia time course can help to answer questions 
like “How probable is it that the patient will suffer from grade 
4 neutropenia?” or “How probable is it that the patient will re-
cover in time for the next scheduled dose so that the therapy 
can be continued as planned?” To answer such questions, 
Figure 4c shows important predicted quantities of interest, 
illustrated for the standard dose in cycle 3. We inferred that 
the risk of grade 4 neutropenia is 8%, and if the patient were 
to reach grade 4, it would be most probable (68%) on day 12. 
The probability that the patient’s duration in grade 4 is a day 
or longer is very small (< 7%). As the probability to not have 
been recovered until day 21 is negligible, the administra-
tion can remain scheduled on day 21 for cycle 4. Therefore, 
uncertainty quantification improves the decision-making 
process by quantifying the a posteriori probabilities of rel-
evant risks and quantities of interests. Repeating the above 
analysis for different doses, therefore, allows for an improved 
distinction between dose adjustments.

Approximation accuracies comparable across 
different full Bayesian approaches
We next compared different established methods for un-
certainty quantification with regard to their approximation 
accuracy. To this end, posterior inference was investi-
gated for a patient at day 5 of the first cycle (Figure 5). 
Whereas the marginal posterior distribution for the pa-
rameter “Circ0” (pretreatment neutrophil concentration) 
is close to a normal distribution, the marginal posterior 
for the drug effect parameter (“Slope”) is closer to a 
log-normal distribution. Accordingly, the NAP is rather 
reasonable for “Circ0,” but is questionable for the “Slope” 
parameter. In addition, sampling from the normal dis-
tribution can lead to unrealistic (negative) parameter 
values (Figure 5a). In addition, NAP very clearly under-
estimated the patient’s risk to reach grade 4 neutropenia 
(Figure 5b,c), which could possibly lead to a fatal dose 
selection. Considering a Student’s t distribution instead 
of the normal approximation, as in ref. 13, did not lead 
to an adequate improvement (Figure S3). Consequently, 
the NAP approach can result in overoptimistic, overpes-
simistic, and unrealistic predictions. In contrast, the full 
Bayesian methods (SIR, MCMC, and PF) adequately rep-
resent the tails and respect the positivity constraint of 
parameter values. The resulting CrIs are comparable to 
the reference CrIs. For illustration, Figure 6a shows the 
approximation error for the predicted probability of neu-
tropenia grades, measured in the Hellinger distance (see 
Eq. 13). Overall, SIR and PF showed the best approxima-
tion, whereas NAP resulted in the largest errors.

Sequential DA processes patient data most efficiently
The need for real-time inference algorithms is increas-
ing with the possibilities to more frequently collect 

patient-specific data (online collection) during treatment. 
Sequential DA methods (e.g., PF) provide an efficient 
framework for real-time data processing. At any time, all 
information (including associated uncertainty) is present 
in a collection of particles that can be interpreted as rep-
resenting the current state and associated uncertainty of 
a patient via a virtual population. With a new datum, this 
information is updated. Approaches that rely on batch 
data analysis (i.e., MAP, SIR, and MCMC), need to redo 
the inference from scratch. This has impact on the com-
putational effort as the number of data points increases. 
Figure 6b shows a comparison of the computational cost 
to assimilate an additional data point. All approaches 
show some kind of increase in effort every 21 days—due 
to the IOV on some parameters. Clearly, PF shows low-
est and almost constant costs, whereas for batch mode 
approaches computational costs increase over time due 
to an increasing number of parameters (one additional 
parameter for every cycle due to the IOV, see paragraph 
about the multiple cycle study with paclitaxel) and an 
increasing integration time span to determine the likeli-
hood. This could become computationally expensive in 
view of long-term treatments and higher time resolution 
of data points provided by new digital healthcare  de-
vices. Figure 6c summarizes the features of the different 
inference approaches. Note that all sampling-based ap-
proaches can be accelerated by parallel computing. In 
summary, it was found that PF processes patient moni-
toring most efficiently and facilitated the handling of IOV 
because only the IOV parameter of the current occasion 
needs to be considered.

DISCUSSION

In the context of chemotherapy-induced neutropenia, we il-
lustrated the severe drawbacks of MAP-based approaches 
for forecasting and thereon based decision making. A pre-
diction based on the MAP estimate does neither correspond 
to the most probable outcome nor does it allow to quantify 
relevant risks as the uncertainties are not quantified. Both 
are highly undesirable characteristics and make MAP-
based inference difficult to interpret in a TDM setting. A 
normal approximation of the posterior at the MAP estimate 
is no alternative, as it retains the same point estimate and 
proved to be unsuitable in case of skewed parameter dis-
tributions. We demonstrated that full Bayesian approaches, 
like SIR, MCMC, or PF, provide accurate approximations to 
the posterior distribution, enabling comprehensive uncer-
tainty quantification of the quantities of interest (e.g., nadir 
concentration). Among the three considered approaches, 
PF is a sequential approach that is beneficial in a more con-
tinuous monitoring context.

Uncertainty quantification in TDM is scarce. In ref. 27 
the SIR algorithm was previously used in the TDM setting 
to construct CrIs using a Student’s t distribution located 
at the MAP estimate as importance function. A sequential 
approach in the context of MAP estimation is discussed in 
ref. 28 with a moving estimation horizon (window of data 
points that are considered). A sequential DA approach has 
been investigated previously for glucose forecasting,29,30 
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yet, not in combination with an NLME modeling framework 
and without decision-support statistics. A systematic com-
parison of approaches, as presented herein, is lacking.

In this study, particle filtering is applied in TDM within 
an NLME modeling framework to represent the current pa-
tient status via an uncertainty ensemble. A challenge in the 

application of PF is the potential for weight degeneracy (i.e., 
a gradual separation into a few large and many very small 
weights). A rejuvenation approach (as applied in this study) re-
solves this problem, but requires specification of an additional 
parameter (magnitude of the rejuvenation). A too large value 
might result in an artificially increased uncertainty, whereas 

Figure 5  Comparison of uncertainty quantification at the level of parameters, observables, and quantities of interest. Exemplary 
comparison of the different methods for one patient after having observed four data points up to day 5. (a) The posterior is shown for 
parameters “Slope” and “Circ0” showing the kernel density estimates of the sampling distribution univariately and as scatter plots 
for the bivariate sampling distributions with contour plots for the full Bayesian approach (full Bayes (reference), sampling importance 
resampling (SIR) with S=106) and the normal approximation located at the maximum a posteriori (MAP) estimate. (b) On the level of 
the observable (neutrophil concentration) the point estimates (median or MAP) are displayed along with the 90% credible intervals 
(CrIs). For illustration purposes, the prediction intervals are not shown here. (c) The forecasted a posteriori probability of the different 
neutropenia grades (0–4) is shown for the different approximations (filled bars) in comparison with the full Bayes (reference; black 
outlined bars). MCMC, Markov Chain Monte Carlo; NAP, normal approximation; PF, particle filter.
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a too small value might hinder exploration of the parameter 
space. In the present application context, however, IOV coun-
teracts in addition to the rejuvenation step weight degeneracy.

Sequential data processing is not only computation-
ally efficient and convenient for IOV handling, but has 
the additional advantage that already assimilated exper-
imental data need not be stored to assimilate future data 
points. Sampling approaches allow a simple extension 
for hierarchical models to include the uncertainties in the 
population parameters for even more holistic uncertainty 
quantification. This would enable a continuous learning 
process between clinical trials from drug development 
(e.g., phase III) and continue during the acquisition of re-
al-world data after market authorization in quantifying the 
diverse population of patients  who have taken a given 
drug. For a future patient, this “historic” diversity would 
transform into well-quantified uncertainty in a TDM set-
ting. The absence of need to store “historic” experimental 

data can also be helpful for the exchange of information 
among clinics, health insurances, and pharmaceutical 
companies. The current knowledge, present in form of a 
sample of particles, can easily be exchanged without the 
need to exchange the experimental data. The “historic” 
data are implicitly present in the particles.

In view of new treatments and new mobile  healthcare 
devices (e.g., wearables) gathering data from various 
sources, clinicians have to deal with new challenges and 
an increasing complexity of treatment decision making, 
which demands for comprehensive approaches that inte-
grate data efficiently and provide informative and reliable 
decision support. We illustrated that comprehensive un-
certainty quantification can result in a more informative, 
reliable, and differentiated decision support, which is not 
only limited to individualized chemotherapy but has the po-
tential to improve patient care in various therapeutic areas 
in which TDM is indicated, such as oncology, infectious 

Figure 6  Comparison of methods regarding important aspects for model-informed precision dosing. (a) Approximation error 
(measured as Hellinger distance) of the probability of neutropenia grades (“Single cycle study docetaxel”). (b) Qualitative runtime 
comparison to sample from the parameter posterior. Median of N=100 repeated analyses (“Multiple cycle study paclitaxel”). (c) 
Comparison of method properties. For Markov Chain Monte Carlo (MCMC) several chains could be run in parallel, however, in this 
study, only one chain was considered. MAP, maximum a posteriori; NAP, normal approximation; PF, particle filter; SIR, sampling 
importance resampling.
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diseases, inflammatory diseases, psychiatry, and trans-
plantation patients.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).

Supplementary Material - SText.pdf. Contains additional information 
regarding the employed methods, a detailed overview of the PK/PD 
models and some additional supporting analyses and figures.
Supplementary Material - SCode.zip. Contains the model, imple-
mented algorithms and figure generating MATLAB code.
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