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Abstract 

Blooms of the cyanobacterium, Nodularia spumigena occur regularly in the Baltic Sea typically 

producing a wide range of bioactive peptides including the hepatotoxin nodularin (NOD), spumigins, 

anabaeopeptins, and nodulopeptins (molecular weights;917, 901 and 899 Da). This study reports the 

production of intracellular and extracellular NOD and nodulopeptin 901 (the major secondary 

metabolites), at various nitrate and phosphorus concentrations produced by N. spumigena KAC 66, which 

was originally isolated from the Baltic Sea. The growth was observed by cell biomass and intracellular 

and extracellular peptides monitored by high performance liquid chromatography with photodiode array 

and mass spectrometry (HPLC-PDA-MS). In the present work it was investigated that the high 

concentrations of nitrate and phosphorus have a considerable effect on biomass and toxin levels produced 

by N. spumigena.  In common with many studies, the maximum amount of NOD was retained within the 

cells during 5 weeks of growth. In contrast, as much as ~40% of nodulopeptin 901 was excreted into the 

media throughout the duration of experiments. At 6.5 and 3.5 mg.L-1 nitrate the maximum concentrations 

of peptide per unit biomass was 1.78 ng NOD (in week 4) and1.42 ng . µg nodulopeptin 901 (in week 3) 

were detected. However, the high concentrations of both peptides were produced in the absence of nitrate. 

The phosphate experiment indicated growth and peptide production were dependent on availability of 

phosphorus. At 0 mg.L-1 of phosphate an increased amount of intracellular (502.4 ng  . µg biomass) 

nodulopeptin 901 was recorded. This report evaluates the effect of nutrients on the production of biomass 

and toxins, which may predict the formation and control of blooms of N. spumigena in the Baltic Sea. It 

also provides information to improve the growth conditions to produce high biomass and toxins under 

suitable conditions, which may be helpful in the research. The results from the current study will also be 

helpful to predict about possible blooms of N. spumigena in the Baltic Sea with reference to increase or 

decrease in nitrate and phosphate concentrations. 

Keywords: Cyanobacterium, abiotic factors, toxins, biomass, Baltic Sea, nodularin, nodulopeptin 901 
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The growth and bloom formation of microalgae in environments are controlled by abiotic and biotic 

factors such as light intensity, pH, salinity, temperature and nutrient availability, especially nitrogen and 

phosphorous (Sivonen 1996). Nitrogen and phosphorus are primary nutrients, which are essential for the 

survival of all living organisms for the synthesis of primary metabolites such as proteins and nucleic acids 

and production of other biologically important compounds such as hepatotoxins, neurotoxins and 

lipopolysaccharde endotoxins (Lehtimäki et al. 1997). Over the last few decades human activities i.e. 

urbanisation, industrial and agricultural development, have contributed a major role in increasing 

cyanobacterial blooms in the Baltic Sea.The annual nitrogen fixation in the Baltic Sea occurs due to 

extensive blooms of diazotrophic/heterocystic cyanobacteria, toxic Nodularia spumigena along with non 

toxic Aphanizomenon flos-aquae (Mur et al.1999) and Anabaena spp. (Syn. Genus Dolichospermum; 

Halinen et al. 2008; Kutser et al. 2009; Brutemark et al. 2015), which is approximately equal to the total 

nitrogen input from atmospheric deposition, river run off and agricultural lands (Schneider et al. 2004). 

In the Baltic Sealow nitrogen and high phosphorus favour the blooms of these cyanobacteria (Lehtimäki 

et al. 1997; Mazur-Marzec et al. 2006) with moderate salinity (5–13 PSU; Mazur-Marzec et al. 2006). In 

general, cyanobacteria require N:P ratio as 7:1 which depends and varies from species to species (Mazur-

Marzec et al. 2005). The diazotrophic bacteria are primarily limited by low N:P ratio (Mur et al. 1999; 

Stal et al. 2003). An increase or decrease in nitrogen and phosphorus concentrations affects cyanobacterial 

growth, community structure and toxin production (Lehtimäki et al. 1997; Henriksen 2005; Mazur-

Marzec et al. 2005; Vintila and El-Shehawy 2010; Mazur-Marzec et al. 2013). 

The variation in biotic and abiotic factors has great influence on increase or decrease of cell biomass, Chl-

a and peptide production. The control on availability of nutrients can also be helpful to control 

cyanobacterial blooms and their toxin production in natural water bodies as well as production of high 

amounts of  these peptides for laboratory based experiments. The nutrient concentrations can also inform 

about the developing blooms. A number of studies have been performed on the effects of abiotic factors 

(light, temperature, salinity, phosphate and nitrate) on the production cell biomass and intracellular NOD 

production. Like other nutrients phosphorus also plays an important part in increasing cyanobacterial 

biomass in the Baltic Sea. Enhanced phosphorus input from increased river run off since the early 1970s 

lead to the high phosphorus concentrations in the surface layers of the Baltic (Wasmund1997; Eilola et 

al. 2009) and resulted in an increase in intensity and duration of the N. spumigena blooms. 

There is no information available regarding the effects of nitrate and phosphorus on the production extracellular 

NOD and intra and extracellular levels of recently characterised secondary metabolite, the nodulopeptin 901, 
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produced by N. spumigena KAC 66. This is the first study to determine the impact of nitrate and phosphate 

concentrations on the production of NOD and nodulopeptin 901 in N. spumigena KAC 66. 

Materials and methods 

In the present study the influence of abiotic factors (nitrate and phosphate) on the cell biomass and 

production of extra and intracellular nodularin (NOD) and nodulopeptin 901 in batch cultures of toxic 

cyanobacterium, N. spumigena KAC 66 was investigated. N. spumigena KAC 66 was obtained from 

Kalmar Collection Centre, Kalmar University, Sweden isolated from samples collected from Askö, Baltic 

Sea (7‰). 

For routine maintenance of stock culture, 50 mL of pure isolate of N. spumigena KAC 66 was inoculated 

in an Erlenmeyer flask (1L) filled with 500 mL autoclaved (Astell Scientific, UK; for 15 mins at 105 Pa 

and 121°C; Kawachi and Noёl, 2005) blue green algal growth medium (BG-11; Allen and Stanier, 1968 

modified by Stanier et al. 1971) to give a final culture volume of ~550 mL/flask. The BG-11 was prepared 

in one fifth strength Instant Ocean artificial seawater (equal to 2‰). The cultures were transferred under 

aseptic conditions in a laminar flow hood (Microflow, Biological Safety Cabinet, UK). Cultures were 

sparged by continuous slow aeration and kept under continuous cool white fluorescent illumination tubes 

(36 W) delivering 13.3 to 13.49 µmol photons m-2 s-1 (LI-250A, light meter, USA) in a temperature 

controlled room (22°C). The flasks were left for one month to obtain mass sufficient culture for 

experiments to use as stock culture (cell biomass 43 μg . mL−1 and Chl-a 0.033 μg . mL−1).  

In this experiment, a range of and NO-
3-NO-

2, nitrate and phosphate concentrations were tested, recorded from 

the different locations of the Baltic Sea (Lehtimäki et al. 1997; Repka et al. 2001; Stolte et al. 2002; Stal et al. 

2003; Lilover and Stips 2008; Nausch and Nausch, 2011 and Vuorio et al. 2005). 

 

Nitrate concentrations 

To evaluate the effect of nitrate on cell biomass and peptide production various concentrations (0, 3.5, 

6.5, 7.5, 8.5 and 9.5 mg  . L-1) of nitrate was used. For nitrate experiment 18 Erlenmeyer flasks (500 mL) 

were prepared with 350 mL of BG-11 (2 ‰) medium and adjusted at different concentrations of sodium 

nitrate (NaNO3, Fisher Scientific, UK) in triplicate. All flasks were supplied by 2 silicon tube outlets and 

autoclaved for sampling and aeration. 

 
Phosphate concentrations 
 



5 
 

 To determine the effects of phosphorus on biomass and peptide production the experiment was 

performed in the Erlenmeyer flasks (21 x 500 mL) prepared containing 350 mL of BG-11 medium (2‰). 

The phosphate concentrations in each flask were adjusted to the required concentrations (0, 0.1, 10, 40, 

70, 100 and 120 mg . L-1) using potassium phosphate (Fisher Scientific, UK). The Erlenmeyer flasks were 

supplied by 2 silicon tube outlets, one for sampling and the other to provide constant aeration. All flasks 

were autoclaved and left for cooling. 

 For all experiments flasks (39x100 mL) were inoculated with 35 mL of 1 month old stock 

culture (cell biomass 43 μg . mL−1 and Chl-a 0.033 μg . mL−1). The experiment was conducted in a 

temperature controlled room at 22°C. All 39 flasks were kept under constant illumination from two cool 

white fluorescent tubes (36 W) delivering 13.5-14.5 µmol photons m-2 s-1). The nitrate and phosphate 

experiments were run in triplicate. 

Sampling and analysis of samples 

The sampling methods and analysis of samples for cell biomass, intra and extracellular NOD and 

nodulopeptin 901 for both experiments were same as described in Hameed et al. (2017). The sampling 

was done on day of inoculation (T0) and on weekly basis for 5 weeks (T1-T5; Hameed et al. 2017). For 

sampling all flasks were shaken manually and 25 mL was removed from each flask. Twenty mL sample 

was used for cell biomass and extracellular peptide level determination (Hameed et al. 2017), while 1.5 

mL was used intracellular peptide level analysis (Hameed et al. 2017).  

Cell biomass determination 

Twenty mL of sample cultures of each treatment was taken and filtered through a pre-weighed GF/C 

glass microfiber filter discs (55mm Ø, Whatman, UK) to determine cell biomass. The filter papers with 

cells were freeze dried over night using freeze dryer (HSC 500, Modulyo, Edwards, UK) at -45ºC and 10-

1 m bar. The filtrate was used to determine extracellular toxins (Hameed et al. 2017).  

Extraction of peptides 

The identification and quantification of peptides, NOD and nodulopeptin 901, were measured using High-

performance Liquid Chromatography Photodiode Array Mass Spectrometry (HPLC-PDA-MS; Hameed 

et al. 2017).  

a- Extracellular peptides 

Twenty mL filtrate of sample was used for the detection of extracellular toxins, released into the 

surrounding growth medium. The spent medium was freeze dried and re-suspended in 1 mL 80% 
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MeOH:H2O (80:20, v/v) for 1 h. The extracellular peptide levels were further analysed on UPLC-PDA-

MS.  

b- Intracellular peptides 

From 25 mL of the culture sample 1.5 mL was centrifuged at 13,000 x g (Eppendorf Centrifuge 5410, 

Germany) for 10 mins. The obtained pellets were vortexed with 150 µl MeOH (80%) and left for 1 

h for extraction to analyse on UPLC-MS. 

Analysis of NOD and nodulopeptin 901 

The system combined a Waters Alliance 2695 solvent delivery system,  photodiode array detector (PDA, 

model 2996) and mass detector (ZQ 2000 MS), all supplied by Waters (Elstree, UK). The separation of 

peptides was achieved on a Sunfire C18 column (5 µm particle size; 2.1 mm i.d. 150 mm long) maintained 

at 40°C. The mobile solvent phase A was Milli-Q water with 0.05% (v/v) trifluoroacetic acid (TFA; 

Fisher Scientific, UK) and mobile solvent phase B was acetonitrile (Fisher Scientific, UK) with 0.05% 

TFA (v/v). Samples and standards were separated using a gradient increasing from 15 to 60% B for 25 

minutes at a flow rate of 0.3 mL .min-1 followed by ramp up to 100% B and re-equilibration after 10 next 

minutes. Mass spectrometry was performed in positive ion electro-spray mode (ESI+), scanning from m/z 

100 to 1200 with a scan time of 2 seconds and inter-scan delay of 0.1 second ion source parameters. The 

sprayer voltage was set at 3.07 kV, and cone voltage 80 V. The source temperature and desolvation 

temperatures were 100ºC and 300ºC, respectively. MassLynx software v4.0 was used to control the 

instrument for data acquisition and processing. The photo diode array (PDA) was set to a resolution of 

1.2 nm and data acquired from 200 to 400 nm. The injection volume for standards and samples was 10 

and 20 µl, respectively. Quantification of peptides was based on calibration with external standards NOD 

at 238 nm and nodulopeptin 901 at 210 nm. 

 

Results 

Analysis of cell biomass at nitrate concentrations 

The observations indicated that all nitrate concentrations favoured the growth of N. spumigena. An 

increased biomass (183.3 to 1068.3 µg . mL-1) production was noted in NaNO3 free conditions. At all 

concentrations the highest cell biomass was observed in week 5 ranged from 1,068.3 to 2,223.3 µg .mL-

1. At 7.5 mg . L-1 less cell biomass (1,160.7 µg . mL-1) was recorded compared to 6.5, 8.5 and 9.5 mg . L-

1 (1,826.7, 1973.3 and 2,223.3 µg . mL-1, respectively). It showed that a rise in nitrate concentration 

increased the cell biomass production (Fig. 1). 
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Figure 1. Cell biomass for cultures of N. spumigena KAC 66, grown at different concentrations of nitrate 
for 5 weeks at 22°C (n=3, bars=1 SD). 

 

Analysis of peptides at different nitrate concentrations 

The results indicated that the N. spumigena can easily grow at low and high concentrations of nitrate with 

an increase in NOD concentrations in the cell biomass (Fig. 2).  Combining the observations an increased 

in NOD per cell biomass (0.1-1.78 ng NOD . µg cell biomass-1) was noted from the first day of inoculation 

(T0) to week 3. It remained constant and then declined by week 5 (Fig. 2). In general week 2 had the 

highest amount of nodulopeptin 901 (Figs. 2A-F). At 3.5 mg . L-1nitrate concentration, the highest 

concentration of nodulopeptin 901 per cell biomass was recorded in week 2 compared to other nitrate 

concentrations i.e. 0, 6.5, 7.5, 8.5and 9.5 mg . L-1 (Figs. 2A-F). 
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Figure 2. Concentration of peptides µg-1 cell biomass for cultures of N. spumigena KAC 66, grown at 
different concentrations of nitrate for 5 weeks at 22°C (n=3, bars=1 SD). A:- 0, B:- 3.5, C:- 6.5, D:- 7.5, 
E:- 8.5 and F:- 9.5 mg .L-1. 
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similar pattern of extracellular NOD production, as time passed the amount of NOD increased from week 
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level (Fig. 3D). The extracellular NOD level at 9.5 mg. L-1 was minimum in week 1 and 3, 8.2 and 8.3 ng 

. mL-1, respectively.  This amount was maximum in week 2 (Fig. 3F). At all nitrate conditions, except at 

T0, no traces of extracellular NOD were observed in week 4 and 5. 

Nodulopeptin 901 was detected intra and extracellularly in all nitrate conditions (0-9.5 mg . 

mL-1; Fig. 4), which increased as time progressed. The observations indicated that at all nitrate 

concentrations, the higher intracellular nodulopeptin 901 levels were recorded in week 4, except at 7.5 

mg . L-1. Analyzing all nitrate concentrations, T0 and 6.5 mg . L-1 led to a higher intracellular 

nodulopeptin 901 concentrations in week 4 (Figs. 4A and C). The observations indicated an increase in 

extracellular nodulopeptin 901 production in all nitrate conditions, showed an exponential increase from 

week 1 to week 4, with a decrease in week 5 (Fig. 4). The extracellular nodulopeptin 901 concentrations 

at T0 and at 7.5 mg . L-1, showed same trend but less amount was recorded in 7.5 mg . L-1 (Figs. 4A and 

D). At 3.5 and 6.5 mg . L-1 nitrate conditions a slight decrease in extracellular nodulopeptin 901 was 

recorded in week 3 (Figs. 4B and C). In the absence of nitrate the highest amount of extracellular 

nodulopeptin was recorded in week 4 (Fig. 4A). At the day of inoculation and in week 5 no traces or 

undetectable amount of extracellular NOD was observed and 100% NOD retained within the cells 

(Table 1). During the whole experiment period low percentage of extracellular NOD was recorded from 

week 1 to week 4 ranged from 1-5%. Between 3-29% of total extracellular nodulopeptin 901 was found 

under all conditions. The percentage composition of nodulopeptin 901 represented that 71-97% retained 

intracellularly (Table 1). 
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Figure 3.The Intra and extracellular levels of NOD at different concentrations of nitrate for cultures of N. spumigena KAC 66 grown for 5 weeks  at 22°C (n=3, bars=1 SD).   
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Figure 4. The Intra and extracellular levels of nodulopeptin 901 at different concentrations of nitrate for cultures of N. spumigena KAC 66 grown for 5 weeks  at 22°C 
    (n=3, bars=1 SD).  
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Table 1. Percentages of NOD and nodulopeptin 901 in extra and intracellular 
levels for cultures of N. spumigena KAC 66 grown for 5 weeks at different nitrate 
concentrations (n.d= not detected).   

 
 

Analysis of cell biomass at different phosphate concentrations 
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growth period (Figs. 5C and G). In PO4
-3 free cultures the lowest cell biomass values were recorded 
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Figure 5.Cell biomass for cultures of N. spumigena KAC 66, grown at different concentrations of 
phosphate for 5 weeks at 22°C (n=3, bars=1 SD).   
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cell biomass-1) and nodulopeptin 901 (0.9-1.1 ng . µg cell biomass-1) concentrations in cells biomass. It 

was also noted  that in the both experiments, the peptide per cell quota decreased over time as shown in 

Figs 2 and 6, but concentrations per volume remained quite constant following initial increase. 

 

Figure 6. Concentration of peptides µg-1 cell biomass for cultures of N. spumigena KAC 66, grown at 
different concentrations of phosphate for 5 weeks at 22°C (n=3, bars=1 SD). A:- 0, B:- 0.1, C:- 10 , 
D:- 40, E:- 70, F:- 100 and G:- 120 mg . L-1. 
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was very low in week 4 and 5 (Fig. 7A). In all experimental conditions maximum concentrations of 

intracellular NOD were detected in week 2 (Fig. 7), which then gradually decreased until week 5. The 

relative proportion of extracellular NOD was very low compared to concentrations of  NOD within the 

cell. At 0, 10  and the highest 120 mg . L-1 phosphate conditions, the concentration of extracellular NOD 

was lowest in last three weeks (Figs. 7A, C and G). At T0 an increased extracellular NOD was observed 

till week 3 followed by a decrease in week 4 and 5 (Fig. 7A). In 40 mg . L-1 this peptide started decrease 

in week 3 and 4 with a slight increase in week 5 (Fig. 7D). At 100 mg . L-1, N. spumigena released the 

highest amount of NOD in surrounding medium (Fig. 7F), although levels were still relatively low. 

Comparing all conditions of phosphate on concentrations of intracellular nodulopeptin 901 resulted in 

the same trend; increase upto week 2, followed by a decrease (Fig. 8). At all concentrations an elevated 

level of this peptide was noted in week 2, with a slight increase in week 5 at 40 mg . L-1 (Fig. 8D). The 

levels of this extracellular peptide showed the same trend and decreased over time. In general week 3 

and 4 supported the maximum release of nodulopeptin 901 in growth medium. At the day of inoculation 

the highest nodulopeptin 901 was observed in week 3 (Fig. 8A). Forty mg . mL-1 supported an increase 

in extracellular nodulopeptin 901 as time passed (Fig. 8D). At 0, 70, 100 and 120 mg . L-1 phosphate 

conditions the cultures demonstrated the same pattern with an increase in 3 and 4 (Figs. 8C, E, F and 

G).  

Between 96-100% of total NOD was found intracellularly under all conditions and it was not 

release in surrounding medium (Table 2). Extracellular nodulopeptin 901 released in surrounding 

medium (11-49%) at all phosphate conditions and much amount retained (51-89%) within the cells.  At 

0, 0.1 and 70 mg . L-1 conditions an equilibrium were observed between extra and intracellular 

nodulopeptin 901 concentrations in week 4. 
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Figure 7. The intra and extracellular levels of NOD at different concentrations of phosphate for cultures 
of N. spumigena KAC 66 grown for 5 weeks at 22°C (n=3, bars=1 SD).   
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Figure 8.The intra and extracellular levels of nodulopeptin 901 at different concentrations of phosphate 
for cultures of N. spumigena KAC 66 grown for 5 weeks at 22°C (n=3, bars=1 SD).    
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Table 2. Percentages of NOD and nodulopeptin 901 in extra  and intracellular levels  
for cultures of N. spumigena KAC 66 grown for 5 weeks at different phosphate 
concentrations (n.d= not detected).  

 

Time Phosphate

(weeks) conditions

(mg/l)

To 3 97 25 75
T1 2 98 22 78
T2 1 99 16 84
T3 1 99 44 56
T4 6 94 49 51
T5 13 87 36 64

To 2 98 37 63
T1 2 98 24 76
T2 1 99 11 89
T3 2 98 27 73
T4 1 99 48 52
T5 3 97 40 60

To 3 97 33 67
T1 2 98 26 74
T2 1 99 20 80
T3 0 100 35 65
T4 0 100 40 60
T5 0 100 33 67

To 3 97 31 69
T1 2 98 21 79
T2 8 92 17 83
T3 1 99 41 59
T4 0 100 42 58
T5 1 99 39 61

To 3 97 27 73
T1 2 98 20 80
T2 1 99 15 85
T3 0 100 30 70
T4 2 98 45 55
T5 1 99 40 60

To 3 97 19 81
T1 2 98 17 83
T2 1 99 14 86
T3 1 99 33 67
T4 4 96 37 63
T5 0 199 33 67

To 4 96 37 63
T1 3 97 22 78
T2 1 99 16 84
T3 0 100 33 67
T4 4 96 47 53
T5 8 92 37 63

120

0

0.1

10

40

70

100

Nodulopeptin 901 (%)NOD (%)

Extracellular Intracellular Extracellular Intracellular
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Discussion 

 The effect of nutrient status on occurrence of blooms of N. spumigena in the Baltic Sea is still a 

debated topic. The current study is a step towards the effect of nutrients on the production of peptides 

produced by N. spumigena KAC 66, isolated from the Baltic Sea. It was observed that the intra and 

extracellular levels of peptides are triggered and regulated by availability of nitrate and phosphate 

contents. A look into the results of the current study it was monitored that the highest cell biomass was 

recorded in week 5 at the highest concentrations of nitrates. Vintila and El-Shehawy (2010) mentioned 

that N. spumigena strains isolated from the Baltic Sea, did not respond considerably to nitrate rich 

cultures. They suggested that N. spumigena strains are not efficient at utilising dissolved inorganic 

nitrogen (DIN) compared with other nitrogen fixing cyanobacteria. In the Baltic Sea N. spumigena 

produces blooms in N limited areas (Stal et al. 2003) and seem to be affected by other factors i.e. salinity 

(Voß et al. 2013; Hameed et al. 2017; Teikari et al. 2018), temperature and phosphorus (Vintila and El-

Shehawy 2010). It has been suggested that due to geographical distribution and variability in the genetic 

background within N. spumigena strains respond differently (Vintila and El-Shehawy 2010).  Stal et al. 

(2003) and Kivi et al. (1993) speculated that in late summer N. spumigena forms blooms in nutrient 

limited conditions in the Baltic Sea. According to them it is an assumption that low N:P ratio in the 

Baltic Sea water promotes the cyanobacterial growth. However, it seems to be opposite in this 

laboratory based study the highest cell biomass was observed at high concentrations of NO-
3. Stal et al. 

(2003) suggested that abundance of N2-fixing cyanobacteria in the Baltic Sea is due to low N:P ratios. 

According to Bianchi et al. (2000) the blooms of currently N2-fixing cyanobacteria in the Baltic Sea, is 

not due to human activities but it is a natural phenomenon since 7000 years.  These blooms start due to 

high amount of phosphorus, leaching from sediments and phosphorus rich seawater. Other than nitrogen 

and phosphate; salinity and temperature also effect on the distribution and abundance of species and 

toxin production by N. spumigena KAC 66 (Hameed et al. 2017; Teikari et al. 2018) and Anabaena 

spp. (Syn. Genus Dolichospermum; Brutemark et al. 2015; Halinen et al. 2007) isolated from the Baltic 

Sea. 

At lower nitrate conditions and control cultures, an increased intracellular NOD levels were observed, 

this hypothesis is supported by laboratory based experiments that Anabaena spp. (Rapala et al. 1997) 
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and N. spumigena (Lehtimäki et al. 1997) demonstrated an increase in microcystin and nodularin  under 

N2 limited conditions, respectively. In another study, Vuorioet al. (2005) performed an experiment on 

the effect nitrogen and phosphorus ratio on the phytoplankton community structure in mesocosm,  

Archipelago Sea, Northern Baltic Sea. In the end of 3 weeks experiment they found that microcystin 

and NOD increased with increasing biomass of Anabaena spp. and N. spumigena. The results of this 

study for production of NOD were consistent with other work where nutrient limitations resulted in a  

decrease in the production since biosynthesis consumes significant energy and cells use limited nutrient 

sources to survive. Vezie et al. (2002) did a comparative study between toxic and non toxic Microcystis 

spp. under variable nitrogen (0.84-84 mg . L-1) and phosphorus (0.05-5.5 mg . L-1) conditions. They 

noted that in nutrient limited conditions toxic strains reduce the production of toxins and use resources 

for their growth only. Therefore, non toxic Microcystis strain grew better than toxic strain. It might be 

that the biosynthesis of hepatotoxic microcystin requires additional energy consumption during toxin 

production process. 

 Cyanobacterial strains have ability to store phosphorus and can maintain their growth and toxin 

production under phosphorus deficient conditions (Karjalainen 2005). This was demonstrated in this 

study where N. spumigena grew under all phosphorus conditions. At the highest phosphorus level a 

linear increase in cell biomass was recorded compared with other conditions. It shows that the high 

phosphorus concentration supported the growth of N. spumigena. The blooms samples of 

Aphanizomenon  flos-aquae and N. spumigena collected from the Gulf of Finland, Baltic Sea, grew to 

high biomass under high phosphorus and low N:P ratios (Kononen et al. 1996). The laboratory based 

experiments also indicated that the inorganic phosphorus (Pi) enriched conditions have exponential 

effect on growth, carbon and N2 fixation by N. spumigena. It indicates that the Baltic Sea contained all 

nutrients, which support the bloom formation of N. spumigena (Olofsson et al. 2016) and Anabaena sp. 

(Teikari et al. 2015) limited by phosphorus Olofsson et al. (2016) also mentioned that the high biomass 

and total N2 fixation ability of N. spumigena was high under elevated phosphorus concentrations in the 

Baltic Sea. 

 In present study the high cell biomass, intra and extracellular NOD and nodulopeptin 901 

concentrations were found in the end of log phase and in beginning of stationary phase in control to 
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high phosphorus conditions, which followed by a decline. Microcystins, anabaenopeptilides and 

anabaenopeptins, produced by Anabaena strain 90, showed the highest peptide concentrations in the 

medium phosphate levels (Repka et al.  2004). Similar results were found for microcystins at the middle 

of the growth period (Sivonen and Jones, 1990). In general, in this study, at all phosphorus conditions 

extracellular NOD and nodulopeptin 901 (except in control medium) a decline of toxins was observed 

with incubation time. Lehtimäki (2000) reported that at different phosphorus conditions extracellular 

NOD concentrations increased with increasing time. Studies on both phosphorus starved inocula of 

strains represented the slow growth by hepatotoxic N. spumigena and stimulated growth by non-toxic 

A. flos-aquae, from the Baltic Sea. It is suggested that in deficient medium non toxic strains grow well 

because they do not spend energy on the biosynthesis of hepatotoxins (Lehtimäki et al. 1997). 

 In the present study, the majority of NOD was retained within the cells during late log phase and 

early stationary growth phases consistent with other cyanotoxins. It may also be due to the cell death, the 

toxins could not be released in the surrounding media. While concentrations of nodulopeptin 901 

indicated a negative correlation; a decrease of cell contents showed an increase of extra and intracellular 

nodulopeptin 901 contents. Carmichael et al. (1988) and Lehtimäki et al. (1997) mentioned that N. 

spumigena collected from the Baltic Sea, showed a positive correlation with extra and intracellular toxins. 

Under favourable conditions anatoxin-a (Rapala et al. 1993) and microcystin (Sivonen 1990; Rapala et 

al.1997) mostly retained within the cells. Vezie et al. (2002) also noted that when toxic Microcystis 

cultures at late log or early stationary phases, the maximum amount of microcystin retained within the 

cell, while growing in different N and P concentrations. In the present study at high concentrations of 

nitrate the lower amounts of intra and extracellular peptides were recorded. Lehtimäki et al. (1997) found 

that at high inorganic N2 concentrations lower amount of intracellular NOD was found in nitrogen fixing 

N. spumigena. No data is available on the effects of environmental factors on production of intra and 

extracellular nodulopeptin 901. 

In this study in all experiments a fluctuation in cell biomass was observed, probably due to start of 

death phase of cultures and died cells were measured as cell biomass. The second reason was that the 

nitrate contents remained on filter discs, used for filtration to determine cell biomass, which may cause 

variation in cell biomass (Lehtimäki et al. 1997; Hobson and Fallowfield 2003). Many scientists also 



22 
 

recommended that Chl-a pigments are good to determine biomass of growing strains (Becker 1994; 

Lehtimäki et al.1997; Lawton, 1999; Gupta et al. 2002; Murphyet al. 2005).  

 In general, different nitrate and phosphate conditions had similar effects on intra and extracellular 

peptide levels, they decreased with increasing time. The absence of nitrate in the medium had a 

significant negative effect on the cell biomass concentrations and total NOD production (intra and 

extracellular). However, intra and extracellular nodulopeptin 901 were high under this condition. In 

phosphate deficient medium N. spumigena maintained its growth at all concentrations but after 3 weeks, 

a decrease in cell biomass and total peptides was observed. It may be due to shortage of stored phosphate 

within the cells. 

It is recommended that the alteration in nitrate and phosphorus, can enhance the yield of intra and 

extracellular peptides and biomass in laboratories and can be helpful to control the bloom formation 

and toxin production in natural environments. Alter in nitrate and phosphorus conditions are also best 

to obtain the high amount of NOD and nodulopeptin 901. It is suggested that there is much work needed 

to know about the fate and use extracellular peptides. It is also recommended that to obtain highest 

amount of cell biomass, and intracellular and extracellular peptides, there is need to make some changes 

in recipe of BG-11 and time to harvest N. spumigena KAC 66 cultures.  The role of toxin and other 

bioactive peptides by cyanobacteria is still unclear, potential use as signalling compounds or for defence 

against microorganisms that feed on cyanobacterial strains (Mundt et al. 2001).There is some 

information available on the fate of toxins released in surrounding medium. Sivonen and Jones (1999) 

studied degradation of NOD under different environmental conditions. They reported that under light 

and dark conditions NOD was photochemically degraded into smaller peptides, recycled by bacterial 

communities or maybe reused by cyanobacterial cell themselves. 

The investigations on the growth limiting N2 or P nutrients and the response of the N. spumigena are 

still being unexplored. It was observed that ≈40-50% nodulopeptin 901 released consistently into the 

media. There are further investigations required to note the role of nodulopeptin 901 as a signalling 

compound.  
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