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Abstract 

Such is the consistency by which performance on measures of short-term memory (STM) 

increase with age that developmental increases in STM capacity are largely accepted as fact. 

However, our analysis of a robust but almost ignored finding – that span for digit sequences 

(the traditional measure of STM) increases at a far greater rate than span for other verbal 

material – fundamentally undermines the assumption that increased performance in STM 

tasks is underpinned by developmental increases in capacity. We show that this digit 

superiority with age effect is explained by the relatively greater linguistic exposure to random 

sequences of digits versus other stimuli such as words. A simple associative learning process 

that learns incrementally from exposure to language accounts for the effect, without any need 

to invoke an STM mechanism, much less one that increases in capacity with age. By 

extension, using corpus data directed at 2-3 year old children, 4-6 year old children, and 

adults, we show that age-related performance increases with other types of verbal material are 

equally driven by the same basic associative learning process operating on the expanding 

exposure to language experienced by the child. Our results question the idea that tests such as 

digit span are measuring a dedicated system for the temporary maintenance and manipulation 

of verbal material, and as such have implications for our understanding of those aspects of 

typical and atypical development that are usually accounted for with respect to the operation 

of such a system. 

 

Keywords: Short-term memory; digit span; child development; associative learning; capacity. 
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Introduction 

“The notion that age differences in [verbal short-term memory] reflect structural changes in 

capacity has for many the status of an established fact that does not require formal 

endorsement” (Dempster, 1981, p.85). 

“Individuals differ in capacity, which ranges from about two to six items in adults (and fewer 

in children)” (Cowan, 2008, p.330). 

 

Ingrained within the developmental psyche are limits to cognitive performance in a given 

setting that are almost universally argued to be fundamentally underpinned by a limited 

capacity short-term memory (STM) system. Changes in STM performance across individuals 

and time are typically argued to be due, at least in part, to changes in that limited processing 

capacity. Empirically, such explanations are informed by the range of associations between 

performance on typical STM tasks and performance on higher level cognitive functions. Such 

is the consistency by which performance on STM tasks increases with age that it is assumed 

to play a developmental role in almost every domain that involves some form of information 

processing. This view sees STM as a processing primitive: a fundamental cognitive system 

whose operation constrains and determines higher functions built upon its operations.  

Studies of STM have largely focused on verbal STM (vSTM), where a short list of 

verbal material (e.g., syllables, words, digits) is presented and must be reproduced in its 

original order. There is a consistent pattern to every developmental study involving vSTM 

measures: increases in recall accuracy until adulthood (e.g., Bopp & Verhaeghen, 2005, 

Nettelbeck & Burns, 2010). Whether the focus is within or across ages, a wealth of studies 

shows associations between vSTM and a wide range of developmental tasks, implicating 

STM in domains ranging from language learning (Gathercole, 2006), mathematics (Stipek & 

Valentino, 2015), and general intelligence (Hornung, Brunner, Reuter & Martin, 2011), 
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together with involvement in atypical development (Helland & Asbjørnsen, 2004) and 

neuropsychological conditions (Hinton, De Vivo, Nereo, Goldstein & Stern, 2001).   

In this paper we present a parsimonious yet contentious explanation for observed 

developmental increases in vSTM tasks: associative learning that takes place within the 

linguistic environment of the rememberer. Associative learning is a process by which new 

knowledge is gained based on perceived associations between two or more stimuli or events. 

Contrary to traditional explanations of age-related increases in vSTM outlined above, an 

associative learning account implies that developmental changes in performance on vSTM 

tasks do not arise from increasing capacity of dedicated vSTM mechanisms, but rather from 

increasing knowledge of the sequential structure of language that is acquired via the 

expanding linguistic experience of the child. Associative learning is therefore heavily 

embedded in familiarity – items and item sequences that are often encountered in the 

language environment will be more amenable to learning than those that are not. The 

potential breadth of this learning is vast: children as young as 9 to 15 months hear around half 

a million words in a three-week period (Swingley, 2007) and so rather than linguistic stimuli 

being familiar or unfamiliar, familiarity is a question of degree based on the rememberer’s 

experience with their native language. Moreover, since the linguistic domain involves sound 

sequences (sublexical knowledge), words (lexical knowledge), and sentences/utterances 

(word sequences), familiarity will play a role across a range of scales of knowledge.  

Examining the influence of familiarity with the sequential structure of STM test 

stimuli requires an estimate of exposure to the particular stimuli. Typically in vSTM research, 

participants’ familiarity with the verbal material is characterized by establishing parameters 

for individual items or item sets (as opposed to sequences) such as frequency of occurrence 

(Turner, Henry, Smith, & Brown, 2004), phonological neighborhood density (Roodenrys & 

Hinton, 2002), or wordlikeness of nonwords (Archibald & Gathercole, 2006). However, 
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large-scale samples of child- and adult-directed speech are now available that provide 

opportunity for more ecologically grounded estimates of the linguistic experience of the 

rememberer. We use such large-scale corpora here, enabling investigation of the relationship 

between linguistic knowledge and the development of vSTM performance in a novel way. 

The main task we use is digit span, the archetypal measure of vSTM in children, 

appearing in almost every standardized test battery that includes a vSTM measure (e.g., Elliot 

& Smith, 2011; Kaufman & Kaufman, 2004; Wechsler, 2004, 2008, 2009) and more 

generally outnumbering other vSTM measures by a factor of at least 16:1 (G. Jones & 

Macken, 2015). The task involves lists of digits being read aloud for subsequent recall by 

participants. Studies universally show that digit span increases with age until adulthood 

(Bopp & Verhaeghen, 2005; Hale, Bronik & Fry, 1997; Salthouse, Mitchell, Skovronek & 

Babcock, 1989) and since this performance also correlates with an assortment of other areas 

of cognitive function (Stipek & Valentino, 2015; Helland & Asbjørnsen, 2004), vSTM is 

ascribed a fundamental role in child development. 

Digit span exhibits an interesting - and, it turns out, theoretically significant - 

phenomenon when considered developmentally: digit span increases with age at a far greater 

rate than span for other stimuli such as words or nonwords. For example, in Dempster’s 

(1981)1 meta-analysis involving studies that have used digit span and word span, digit span 

increased from 4.3 to 6.5 between the ages of five and twelve, whereas word span increased 

from 4.0 to 4.6. We call this age-related performance advantage for digits over other stimuli 

‘digit superiority with age’ and clearly such a phenomenon poses an issue for capacity-based 

explanations of development given the increasing discrepancy in the estimate of capacity 

depending on the stimulus type. Since Dempster's (1981) meta-analysis, developmental 

                                                           
1 Note that we could not find more recent meta-analyses that directly compared digit span and word span across 

developmental ages. 
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studies using digit span have increased exponentially whereas those using word span are 

comparatively rare.  

Typically, digit superiority with age has been explained with reference to factors such 

as digits forming a homogenous set and occurring with greater token frequency than words 

within natural language. In this way the typical account focuses on mechanisms operating on 

the processing of the individual lexical item, in much the same way as typical explanations 

of, for example, lexicality and word frequency are based on more robust processing of lexico-

phonological representations of individual items as a function of long-term language 

knowledge (e.g., Gathercole, Pickering, Hall & Peaker, 2001; Roodenrys, Hulme & Brown, 

1993; Stuart & Hulme, 2000. But see also Macken, Taylor & Jones, 2014). Regardless of the 

veracity of these explanations, the fact that the typical measure of STM capacity is one that 

shows a different developmental trajectory than would be found should another stimulus type 

be used at least raises a cautionary note about how such capacity increases should be 

interpreted.  

However, there is also a more fundamental theoretical issue at stake here: namely the 

role that development of a capacity-limited STM system (as indexed by span) plays in the 

development of cognitive function. A growing body of research suggests that, rather than 

construing STM as a primitive processing system, it is better thought of as a particular setting 

within which participants must deal with a relatively novel situation by flexibly co-opting 

whatever skills and knowledge they have to accomplish the particular task goals (e.g., G. 

Jones & Macken, 2015; D. M. Jones, Macken & Nicholls, 2004; Macken & D. M. Jones, 

2003; Macken, Taylor & D. M. Jones, 2015; see also, e.g., Craik & Lockhart, 1972; Ericsson 

& Kintsch, 1995). Such an approach turns the theoretical focus away from considerations of 

assessing the limited capacity of putative primitive processing systems and towards a 

consideration of the degree of convergence or divergence between the participants’ skills and 
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knowledge and the parameters (task requirements, material, etc.) of the particular STM 

setting.  

Our hypothesis is that associative learning may account for the digit superiority with 

age effect based solely on knowledge gained from the expanding experience of sequential 

structure inherent within language as a function of age. This approach differs from the typical 

focus in vSTM theory on merely item-level factors, as mentioned above (e.g., Gathercole, et 

al., 2001; Roodenrys et al., 1993; Stuart & Hulme, 2000). An account that focuses on 

experience (for vSTM, that experience represents associative learning taking place in the 

linguistic environment) has no need to assume existence of any bespoke vSTM mechanism, 

nor any need to invoke additional mechanisms to explain phenomena such as digit superiority 

with age. Under this view, digit span increases at a greater rate than span for other stimuli 

because, since such sequences are unconstrained by the syntax that typically constrains word 

order, experience of random sequences of digits (e.g., from numeracy lessons, soccer scores, 

dates, addresses, etc.) increases at a greater rate with age than does experience of random 

sequences of other stimuli. This would also explain more muted though robust increases in 

span for other stimuli; for example, while random sequences of words may not appear often 

in natural language, their occurrence inevitably increases with age. Along with digit span, 

therefore, we also examine word span, where an associative learning account predicts a 

shallower developmental trajectory to that of digit span. 

Some types of evidence have been used to make the claim that changes in capacity 

per se, rather than mere increases in task relevant knowledge, are needed to account for 

improved performance in STM tasks. For example, Cowan, Ricker, Clark, Henrichs and 

Glass (2015) compared probed-remembering of matrices of either ‘familiar’ (i.e., letters) or 

‘unfamiliar’ (i.e., abstract shapes) items. They revealed a developmental increase in 

performance across four age groups (7 years to 24 years) for both types of item with the rate 
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of increase for the familiar items being greater than that for the unfamiliar. However, when 

comparing normalized capacity estimates based on this performance data, the capacity 

estimates increased at the same rate for both letter and shape stimuli. Cowan et al. concluded 

that familiarity of the items – particularly in the case of familiar letters – could not explain 

these developmental increases, supporting a view of age-related increases in STM capacity. 

One questionable assumption underlying this conclusion is that changes in performance for 

the abstract shape stimuli should have little or no contribution from increasing knowledge 

with age. However, familiarity versus novelty is always a matter of degree, and it seems at 

least possible, contrary to the assumption of Cowan et al. (2015), that knowledge of 

nonverbal forms will increase over the examined age span, albeit at a slower rate than that for 

verbal stimuli. For example, increasing experience of lines, angled lines and circles (as used 

for ‘unfamiliar’ shapes by Cowan et al., 2015) as well as increasing knowledge of more 

objects with more and varied visual forms coupled with an increasing fluency in naming 

visuo-spatial stimuli, will lead to efficiencies in the representation of such items over 

developmental time. From this point of view, the increase in performance with both types of 

stimuli may well be due to increasing knowledge, but knowledge that is increasing at 

different rates for different stimuli. Thus the alignment of normalized development 

trajectories across stimuli, rather than revealing an underlying increase in capacity, may in 

fact reveal similar processes of knowledge acquisition that is merely accruing at different 

rates for different materials, depending on the extent to which those materials are encountered 

in the child’s environment. Here we will be able to evaluate which of these possibilities is 

most likely since the model we present below quantifies the graded levels of familiarity with 

different types of verbal stimuli, based solely on their presence within the linguistic 

experience of the child, without any supplementary assumptions about changes in underlying 

mechanisms such as STM capacity.  
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Our purpose is threefold: first, to investigate an associative learning account of 

increases in span performance with age without recourse to the idea of a limited (and 

developmentally increasing) STM capacity; second, to apply this account to differences in the 

developmental trajectories of digit and word span; and third, to manipulate the digit span task 

to more directly test whether such differences arise because of inherent properties of the 

stimulus items (e.g., digits versus words) or more plausibly arise from our associative 

learning account. To accomplish this, we use a computational model of associative learning 

that is trained on language samples that estimate the linguistic input that 5-10 year old 

children receive. In Study 1a, we compare digit and word span in children and model and in 

Study 1b we test whether performance is governed by inherent characteristics of digits by 

using mixed lists (lists containing a mixture of digits and words). In Study 2, we show that 

our model results appear in every language sample that we used. Before detailing the studies, 

we outline both the language samples used for our modeling environment and the modeling 

environment itself. 

 

Language samples and modeling environment 

Language samples used 

In order to have a developmentally appropriate sample of language, we used child-

directed speech from the Manchester corpus aimed at 2-3 year old children (306,831 

utterances, Theakston, Lieven, Pine & Rowland, 2001) and child-directed speech and 

children’s literature aimed at 4-6 year old children (ratio spoken:written is 2:1, 75,981 

utterances, see G. Jones, 2016). However, we could not find large quantities of child-directed 

speech for 7-10 year old children and hence used adult-directed speech and literature from the 

British National Corpus (BNC, 2007). Approximately 9 of the 10 million BNC utterances are 

taken from textual sources, so we pseudo-randomly sampled 2 million utterances to ensure a 
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spoken:written ratio of 1:1 to reflect the likelihood that a significant amount of older 

children’s language input will be speech-based. For ease of reference, we use ‘utterance’ to 

refer to both a spoken utterance and a written sentence. All utterances were converted to their 

phonemic equivalent using the CMU Pronouncing Dictionary 

(http://www.speech.cs.cmu.edu/cgi-bin/cmudict). In all cases, phonemic utterances were 

word-delimited on the basis that children above the age of 2 years can readily identify word 

boundaries (see Rowland, 2014, for a review). 

 

Computational modeling environment 

The computational modeling environment is based on CLASSIC (Chunking Lexical 

and Sub-lexical Sequences In Children; G. Jones, 2016; G. Jones et al., 2014; G. Jones & 

Macken, 2015, 2018; G. Jones & Rowland, 2017) that incrementally learns phoneme and 

word sequences from the type of language samples described above. For ease of reference, 

we will call any knowledge in the model (e.g., a learned phoneme sequence) a ‘chunk’. Our 

assumption is that sequence learning in the model reflects associative learning that may arise 

from a range of linguistic experience, including perceptual learning of sound sequences on 

the basis of their frequent occurrence in natural language as well as increasing proficiency in 

the execution of the sequences of articulatory gestures required for production of extended 

utterances. CLASSIC has been focused on the language domain because language offers the 

opportunity to estimate the type of sequence knowledge that one may experience (e.g., using 

child-directed language samples). 

At the outset, the only chunks in the model are the 44 phonemes of standard British 

English. Each input utterance is presented to the model one at a time, in the order that 

utterances appear in the language sample. The model processes each utterance as follows: (1) 

encode the utterance into the fewest chunks possible based on current (chunk) knowledge; (2) 
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learn new chunks by joining sequentially adjacent chunks from the encoded utterance, with 

the proviso that learning across word boundaries only occurs if the adjacent chunks are 

themselves either words or word sequences. The model therefore learns incrementally longer 

chunked sequences (initially involving phonemes, but later involving words) as it progresses 

through the input, developing an expanding repertoire of linguistic knowledge in the form of 

an increase in both the number and size of chunks as exposure to the language increases.  

As learning progresses, the model is likely to be able to encode each utterance more 

efficiently (i.e., needing fewer chunks to represent the whole utterance). Therefore, the model 

represents language knowledge, rather than being, for example, a model of language 

production or perception, per se. It is this characteristic that allows us to investigate our 

question – broadly, to what extent can the development of vSTM be accounted for with 

reference to growth of language knowledge, without invoking developmental changes in the 

processing capacity of an underlying STM system. As such, for any given input, the measure 

of performance of the model is the number of chunks it needs to encode that input, with 

fewer chunks corresponding to better performance, as a function of increasing knowledge2. 

Since our model learns incrementally, STM test stimuli can be presented to it for every 5% 

increment in the corpus input so that developmental progression can be examined and 

compared to 5-10 year old children.  

Starting from afresh, if the model was presented with the utterance ‘what’s this?’ 

(coded phonemically as W, AH, T, S / DH, IH, S), it would encode the input as seven chunks 

(one for each phoneme) and would learn five chunks (W AH, AH T, T S, DH IH, IH S). If 

presented a second time with exactly the same input, it would now be encoded using only 

                                                           
2 In this respect, our modeling application deviates substantially from the typical approach to modeling vSTM 

which has sought to simulate a variety of factors affecting patterns of STM, especially serial recall performance 

(see Hurlstone, Baddeley & Hitch, 2014 for an overview). Clearly, a key area for extension of our approach will 

require modeling of the process whereby the knowledge acquired by the model is converted into 

output/production within the task setting, which, as well as motivating further theoretical development, will also 

enable more fine-grained comparison of model and participant performance.  
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four chunks (W AH, T S / DH IH, S) and the model would subsequently learn two new 

chunks, both corresponding to words (W AH T S, DH IH S). Presenting the utterance a third 

time would lead to the utterance being encoded using only two chunks (one for each word), 

and learning would now be allowed to cross the word boundary such that a word sequence is 

learned (W AH T S DH IH S). CLASSIC learns at every opportunity; one would not expect 

children to do so, but this is a practical consequence of the model receiving a very small 

amount of language as input compared to children. In Table 1 we show how learning 

progresses when the first three utterances are different to one another.  

 

Table 1. How learning progresses in the model when presented with three different 

utterances, one after the other. The model begins with the phonemic inventory for standard 

British English (for ease of exposition we use the CMU Pronouncing dictionary phonemes). 

Word boundaries are represented using ‘/’ and chunks are separated using ‘,’.The model only 

learns across word boundaries if the chunks involved are words or word sequences. 

Utterance Encoded sequences Chunks learned 

[1] Where is she? 

(W EH R / IH Z / SH IY) 

W, EH, R / IH, Z / SH, IY 

Encoded using 7 chunks 

W EH, EH R, IH Z, SH IY 

4 chunks learned 

[2] Is she there? 

(IH Z / SH IY / DH EH R) 

IH Z / SH IY / DH, EH R 

Encoded using 4 chunks 

IH Z SH IY, DH EH R 

2 chunks learned 

[3] No she isn’t 

(N OW / SH IY / IH Z N T) 

N, OW / SH IY / IH Z, N, T 

Encoded using 6 chunks 

N OW, IH Z N, N T 

3 chunks learned 

 

CLASSIC has previously been applied to a number of language-related domains. G. 

Jones (2016) simulated children’s nonword repetition performance using the 2-3 year old and 

4-6 year old inputs in the current paper. Across six different studies involving six different 
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nonword sets and children of two to six years of age, the model was able to fit over 85% of 

child datapoints purely as a function of increased exposure to the linguistic input. G. Jones and 

Macken (2018) again used the same input sets, this time showing how the number of chunks 

required by the model to encode digit lists, word lists, nonsense words, and sentences predicted 

the performance of six year old children for the same stimuli. Finally, G. Jones and Rowland 

(2017) used the modeling environment and the 2-3 year old input to investigate differences in 

quantity and diversity of language exposure, showing how quantity was important early in 

learning with diversity important thereafter, consistent with findings from children (Rowe, 

2012). CLASSIC has therefore successfully been applied across a range of language-related 

domains, representing a good foundation for the examination of age-related increases in span 

performance. 

 

Study 1: vSTM performance in the model and in 5-10 year old children 

Both study 1a and 1b were approved by the College Research Ethics Committee of 

Nottingham Trent University. All analyses were run in R Version 3.5.2 (R Core Team, 2018), 

using the packages “lme4” (1.1-21; Bates, Mächler, Bolker, & Walker, 2015) and “ordinal” 

(version 2019.12-10; Christensen, 2019) for statistical analyses. 

Model language samples, study 1a and study 1b 

30 input files were produced to ensure that any model effects were not because of a 

fortuitous random sample. Each input file contained 75,981 randomly sampled utterances 

from the 2-3 year old input, a random ordering of the 75,981 utterances in the 4-6 year old 

input, and 75,981 randomly sampled utterances from the 2 million BNC input. Each input file 

was ordered so that the beginning contained 80% of 2-3 year old input, the middle contained 

80% of 4-6 year old input, and the remainder contained 80% of the adult input. The 

remaining 20% in each third was made up from the other samples (10% each). The rationale 
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here is simply to reflect the language input of the particular children. For example, a child of 

2-3 years of age will not solely hear linguistic input directed at 2-3 year old children. The 

model was run individually for each of the 30 input files. 

  

Study 1a: Model and child performance for digit and word lists 

Child participants  

143 5-10 year old children (M = 105.29 months [range 66 - 128], 63 boys) were 

recruited from five schools in the Nottinghamshire area using UK year 1 (5-6 years of age), 

year 3 (7-8 years of age) and year 5 (9-10 years of age) classes.   

Digit and word lists 

The basis for the digit and word lists was the digit span task from the Wechsler 

Intelligence Scale for Children, 4th Edition (WISC4, Wechsler, 2004) since these dominate 

assessment of vSTM. Participants hear increasingly longer lists of digits (e.g., nine-five-two-

seven) that they must repeat back in their correct order, with the longest list length accurately 

recalled being their ‘span’. There are two digit lists at each of eight lengths (i.e., two to nine 

digits).  

Word lists were produced by yoking a word to each digit and substituting digits for 

their corresponding words in all of the WISC4 digit lists (e.g., three-eight-two becomes door-

boat-water). Words were all highly imageable object nouns to mitigate any effect of digits 

forming a homogenous group and of digits existing in both verbal and numeral forms. 

Additionally, the average frequency of the words was substantially greater than that of the 

digits, while phonemic and syllabic word length was equal across digits and words. Note that 

no attempt was made to separate semantically associated words that may facilitate recall (e.g., 

boat-water in the example). Such associations act against our hypothesis and therefore any 
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superiority for digits over words is over and above semantic relations that may exist between 

words. 

Table 2 shows the key characteristics of the digits and words used in span lists. Note 

that although digits and words were comparable on key characteristics, this was not on a one-

to-one basis but as an average across the whole set of items due to the digit ‘one’ being of 

such high frequency that no highly imageable object noun of similar frequency was available. 

 

Table 2. Characteristics of the digits and words that comprise digit lists, word lists, and mixed 

lists (frequencies taken from the Children’s Printed Word Database that contains frequencies 

of words aimed at five to nine year old children, Masterson, Stuart, Dixon & Lovejoy, 2010). 

Digit Syllables/Phonemes/ 

Frequency 

Word Match Syllables/Phonemes/ 

Frequency 

one 1/3/3069 House 1/3/1880 

two 1/2/1114 Water 2/4/1525 

three 1/3/706 Door 1/3/857 

four 1/3/276 School 1/4/1393 

five 1/3/173 Bear 1/2/1214 

six 1/4/103 Bed 1/3/771 

seven 2/4/70 Food 1/3/925 

eight 1/2/41 Boat 1/3/563 

nine 1/3/38 Cup 1/3/216 

 M = 1.1/3.0/621.1  M = 1.1/3.1/1038.2 

 

Design 
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For the model, the independent variables were stimulus type (digits or words) and 

amount of input seen (5% increments), with the dependent measure being the average number 

of chunks required to encode digit and word lists.  

For the children, the independent variables were stimulus type (digits or words) and 

age (in months); the dependent variable was span size (longest list length accurately recalled) 

since this was used by Dempster (1981). The same results apply for total span (number of 

lists accurately recalled; see Appendix: Analyses - Study 1a). 

Procedure 

For children, the WISC4 instructions were followed for both digit lists and word lists 

so that the study was as similar as possible to previous studies involving digit span. 

Presentation of digit lists and word lists was counterbalanced. Each of the two lists of a 

particular length was spoken aloud separately (with a short pause between each item), starting 

at list length two. Children were asked to repeat the list immediately after presentation, with 

responses being recorded manually. Children only proceeded to the next list length if they 

correctly recalled one of the two lists correctly. Span size was recorded as the longest list 

length accurately recalled (e.g., a span size of 5 if at least one list of length 5 was recalled 

correctly but no lists of length 6 were recalled correctly). 

Results3 

As Figure 1 shows, while the number of chunks that are required by the model to 

encode digit lists and word lists reduces as the amount of input to the model increases, this is 

more pronounced for digit lists than word lists. The associative learning account therefore 

suggests: (a) span performance will increase with age; (b) digit span performance will be 

                                                           
3 Our statistical models could be improved by including item as a random effect. These analyses do not change 

the digit superiority with age effect and are included in the repository where our data reside. 
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superior to word span performance; and (c) a digit superiority with age effect whereby digit 

span will increase with age at a far greater rate than word span.  

The child data in Figure 1 were examined using two ordered categorical mixed-effects 

models to analyze span size4. We did this because our focus was on the digit superiority with 

age effect (i.e., the interaction) and we therefore wanted to examine the additional model fit 

that the interaction term supplies. These models were run using the R package “ordinal” 

(Christensen, 2019). Model 1 included stimulus type (digits, words) and age (months) as 

fixed effects. Model 2 additionally included their interaction as a fixed effect. A maximal 

random effects structure was included for participant for both models. Model 1 showed that 

span increased with age (p = .001) and was greater for digit lists over word lists (p < .001). 

The effect of stimulus type disappeared in Model 2 (p = .461), however age remained 

significant (p = .026) and the interaction was also significant (p = .039). Model 2 provided a 

significantly better fit to the data than Model 1 (p = .036) indicating a digit superiority with 

age effect within the children’s performance that supports the associative learning account 

(see Appendix: Analyses - Study 1a). 

However, while the model explains performance differences in terms of greater 

experience with random sequences of digits rather than inherent characteristics of digits 

themselves, the latter could still explain children’s performance. While we made every effort 

to match digits to words on key criteria, it may still be plausible that digits differ from words 

on some other criteria that we have not considered. We therefore detail Study 1b that shows 

how these explanations can be teased apart by using mixed lists. Mixed lists will allow us to 

compare recall of individual digits versus individual words (i.e., digits and words that are not 

part of a digit sequence or word sequence) and to compare recall of digit sequences versus 

                                                           
4 Categorical rather than linear models were used because span size is bounded, with scores either being 0 or 

from 2 to 9 inclusive (none of our participants scored 0). The same effects are seen when treating span as 

continuous. 
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word sequences. If digit superiority with age is due to inherent characteristics of digits over 

words as individual lexical items, then performance should be superior for both individual 

digits over individual words and for digit sequences over word sequences. 

 

Figure 1. Number of chunks required to encode digit lists and word lists as the model’s input 

increases (from 30%-100%), together with span size (longest list length accurately recalled) 

for the 5-10 year old children in study 1a (N = 143) based on the regression line (see 

Appendix: Analysis - Study 1a for a more in-depth view of the child data including variance 

across the regression line). 

 

Study 1b: Model and child performance for mixed lists 

Child participants  

70 5-10 year old children (M = 92.40 months [range 60-131], 34 boys) were recruited 

from two schools in the Nottinghamshire area using classes ranging from year 1 to year 5. 
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Note: Three additional children were tested but excluded from analyses because they were 11 

years of age (age in months 138, 140 and 143). 

Mixed lists 

Four novel digit lists were created (two of five items, two of six items). These were 

then converted into mixed lists by substituting particular digits for their corresponding word 

such that the lists contained isolated digits and isolated words – digits or words that are not 

flanked by another item of the same type – together with digit sequences and word sequences. 

Mixed lists were in pairs such that one list contained isolated digits or digit sequences at the 

same serial position as the isolated words or word sequences in the other list (e.g., three-two-

five-nine-four-eight became door-two-five-cup-four-eight and three-water-bear-nine-school-

boat). We did this to ensure that any effects seen are not because of serial position effects that 

are renowned in serial recall tasks (Grenfell-Essam & Ward, 2012). There were therefore 

eight mixed lists (see Table 3), four of five items and four of six. These lengths were chosen 

in order to both be challenging for children and to allow sufficient numbers of isolated digits 

(e.g., three), isolated words (e.g., door), digit sequences (e.g., two-five) and word sequences 

(e.g., water-bear). 

In total there were seven isolated digits and words, and eight digit and word pairs. 

Although the digit lists in the WISC4 have 72 possible pairs of digit sequences (2 lists at each 

of 8 list lengths from 2 to 9), we managed to ensure that the majority (5 of 8) digit pairs in the 

mixed lists did not occur in the WISC4 digit lists while not forming sequential runs (e.g., 

one-two) or familiar triplets (e.g., two-four-six). Each digit and word appeared at least twice 

and at most three times in the mixed lists. There were equal numbers of each digit and its 

corresponding word, and an equal number of digits and words appeared in each serial 

position.   
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If digit superiority with age is due to inherent characteristics of digits over words, 

then digit recall should increase at a faster rate than word recall, regardless of whether it is 

assessed as recall of items in isolation or sequence. In the above example, this would mean 

that both three and two-five would be expected to be recalled more accurately with age than 

door and water-bear. If, however, the steeper developmental trajectory for digit span is due 

to associative learning based on greater age-related exposure to random sequences of digits 

than random sequences of words, the digit superiority with age effect should only be found 

for sequence recall. 

 

Table 3. Mixed list stimuli comprising paired lists whereby one list in the pair contains 

isolated digits and/or digit pairs at the same serial position as isolated words and/or word 

pairs in the second pair. There are four lists of five items in length and four lists of six items 

in length.  

Pair Mixed lists 

1 seven two house door five  

1 food water one three bear  

2 boat one six nine food  

2 eight house bed cup seven  

3 four nine boat three six food 

3 school cup eight door bed seven 

4 door two five cup four eight 

4 three water bear nine school boat 

 

Design 
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For the model, the independent variables were stimulus type (digits or words) and 

amount of input seen (5% increments), with the dependent measures being the average 

number of chunks required to encode mixed lists plus the average number of chunks required 

to encode isolated digits, isolated words, digit pairs and word pairs. Recall of sequences is 

assessed at the level of item pairs, since this is the smallest (supra-lexical) sequential unit 

(i.e., one-six-nine is two paired sequences, with one-six as the first pair and six-nine as the 

second pair). 

For children, the independent variables were stimulus type (digits or words) and age 

(in months). The dependent variables were the number of mixed lists accurately recalled plus 

the number of isolated digits, isolated words, digit pairs, and word pairs accurately recalled.  

Procedure 

For children, each digit and word was recorded individually as an MP3 file and 

spliced together (with a short pause between each item) to produce the mixed lists. Children 

were placed in a quiet room near their classroom and were presented with all lists one at a 

time via headphones. Lists were presented in a randomized order for each child, with the 

child being asked to repeat each list immediately after they heard it. Responses were recorded 

manually. 

 

Results 

The model data in Figure 2 show that as the linguistic input increased, the model was 

able to encode mixed lists using fewer chunks. The child data in Figure 2 mirror those of the 

model, with accurate recall of mixed lists increasing with age (p = .001, see Appendix: 

Analyses - Study 1b). 
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Figure 2. Number of chunks required to encode mixed lists as the model’s input increases 

(from 30%-100%) together with the number of lists accurately recalled by the 5-10 year old 

children in Study 1b (N = 70) based on the regression line (see Appendix: Analysis - Study 

1b for a more in-depth view of the child data including variance across the regression line). 

 

The item-level model performance (see Figure 3) shows that marginally fewer chunks 

are required to encode isolated words than isolated digits across the whole input5. The model 

therefore suggests that the digit superiority with age effect is not caused by inherent 

characteristics of digits themselves. However, digit pairs are encoded using fewer chunks 

than word pairs across the whole input and more importantly, there is a pronounced reduction 

over time in the number of chunks required to encode digit pairs compared to word pairs. Put 

simply, over time the model learns more chunks containing digit sequences than word 

sequences.  

                                                           
5 The marginally greater reduction in encoding of isolated words over isolated digits is because some words 

must exist within a chunk that includes one or both digits in a digit pair e.g., one cup (otherwise there would be 

no difference between isolated words and isolated digits). 
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Figure 3. Number of chunks required to encode isolated digits, isolated words, digit pairs, and 

word pairs as the model’s input increases (from 30%-100%). 

 

Figure 4 shows the child data for the component items within the mixed lists. We used 

the same analysis format as per the digit and word lists, with analyses carried out using lme4 

(Bates et al., 2015) and outlined in full in the Appendix: Analyses - Study 1b. 
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Figure 4. Number of items correctly recalled for isolated digits, isolated words, digit pairs, 

and word pairs for the 5-10 year old children in Study 1b based on the regression line (see 

Appendix: Analysis - Study 1b for a more in-depth view of the child data including variance 

across the regression line). Maximum scores: isolated items = 7, item pairs = 8. 

 

Isolated items 

Model 1 showed an increase in recall of isolated items with age (p < .001) but no 

difference in recall between isolated words and isolated digits (p = .192). Adding the 

interaction term in Model 2 did not change the effect of stimulus type (p = .880), but age 

remained significant (p < .001) and there was no interaction between age and stimulus type (p 

= .908). Model 2 did not provide a significantly better fit to the data than Model 1 (p = .908).  

Item pairs 

Model 1 showed that recall of item pairs increased with age (p = .001) and was 

greater for digit pairs over word pairs (p = .005). When we added the interaction term in 

Model 2, the effect of stimulus type (p = .040) and age remained (p < .001). More 
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importantly, the interaction term was significant (p = .008) and Model 2 provided a 

significantly better fit to the data than Model 1 (p = .008). 

The children’s mixed list data are largely consistent with the model. Isolated words 

were recalled marginally though non-significantly better than isolated digits, and digit pairs 

were recalled better than word pairs. More importantly, this latter effect interacted with age, 

with the developmental increase in digit pair recall being far greater than that of word pairs, 

while there was no interaction between age and stimulus type for isolated items. We note 

that, unlike the model, for which there was no effect of age on performance for isolated 

items, the empirical data does show increased recall of isolated items with age. We will 

return to this finding in the general discussion, noting here that this effect is not the source of 

performance differences across digit and word lists since both isolated digits and isolated 

words increase at exactly the same rate with age. 

The effects seen in the model – and borne out in children – arise because of the 

greater presence in natural language of random sequences of digits compared to random 

sequences of words, and those digit sequences increase in number and diversity as the age at 

which the input is directed increases. That said, the model’s performance was based on 

random samples of both 2-3 year old child-directed speech and adult-directed language in 

order to match the 4-6 year old child-directed speech samples. We therefore examine each of 

the full samples of data to show how the same digit superiority with age effect is seen 

irrespective of the speech sample.  

 

Study 2: Model span performance for three different language samples 

Language samples used 

Each language sample was considered separately. For the 2-3 year old input, ten input 

files were created each containing 200,000 utterances randomly sampled from the full set of 
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utterances directed at 2-3 year old children. For the 4-6 year old input, ten input files were 

created each containing the full set of 75,981 utterances directed at 4-6 year old children but 

with each file having the utterances randomly ordered. For the 2 million BNC, ten input files 

were created each containing 200,000 randomly sampled utterances directed at adults from 

the 2 million BNC. The model was run individually for each of the ten input files from each 

source (2-3, 4-6, BNC). 

 

Design, materials, and procedure 

The digit and word lists from Study 1a were used as stimuli. The independent 

variables was stimulus type (digits or words), with the dependent measure being the average 

number of chunks required to encode digit and word lists. 

Results 

Since each input file corresponds to a particular age group (2-3, 4-6, adults) we plot 

digit span and word span performance after all input is seen rather than developmentally. 

Figure 5 shows that regardless of which sample is used – and therefore regardless of the age 

of the person at which the speech is directed – there is a pattern of digit span exceeding word 

span (i.e., fewer chunks required to encode digit lists than word lists). Moreover, the 

magnitude of the increase is greater as the age at which the input is directed increases. Digit 

span is more superior to word span for the input aimed at 4-6 year old children than for the 

input aimed at 2-3 year old children, and in turn, digit span is more superior to word span for 

the input aimed at adults than for the input aimed at 4-6 year old children. Although we know 

of no study that has examined digit span and word span from two years of age to adulthood, 

these results are consistent with the 4 to 15 year old children of Gathercole, Pickering, 

Ambridge and Wearing (2004): digit recall exceeded word recall by 5.85 at the youngest age 
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and 10.70 at the oldest age6. Notable also in Figure 5 is that word span increases with the age 

at which the input is directed, purely on the basis of an increasing number of instances of 

particular word sequences within the experimental stimuli. This is again consistent with the 

Gathercole et al. (2004) data. Put simply, as the age at which the input is directed increases, 

there are more instances of random sequences of words but - crucially - substantially more 

instances of random sequences of digits. This holds even when the input aimed at 2-3 year 

old children contains a total of 306,831 phonemic utterances whereas that aimed at 4-6 year 

old children contains only 75,981 phonemic utterances. 

 

Figure 5. Number of chunks required to encode lists relating to digit span (DS) and word 

span (WS) based on language inputs aimed at 2-3 year old children (2-3), the 4-6 year old 

children (4-6), and adults (British National Corpus, BNC). Note that fewer chunks to encode 

lists equates to superior performance. 

 

Discussion 

                                                           
6 Digit recall and word recall were assessed using the Working Memory Test Battery for Children (Pickering & 

Gathercole, 2001). 
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The capacity of STM, as a basic cognitive system or mechanism, is almost universally argued 

to increase with age – a developmental process that purportedly plays a determining role in a 

variety of developmental outcomes. Performance on measures of vSTM show individual 

differences and developmental increases to such an extent that performance on these 

measures have placed STM at the heart of explanations of age-related differences in 

performance and implicated vSTM and STM more generally across a broad range of 

cognitive functions. We have shown how associative learning is able to account for age-

related performance increases in the archetypal measure of vSTM (digit span) and variants 

(word span, mixed span) together with the digit superiority with age effect whereby span size 

for digits increases with age at a greater rate than span size for other stimuli. Our explanation 

is simple: performance on vSTM measures such as span recall increases with age because 

exposure to language increases with age; the reason for digit superiority over other stimuli is 

that natural language has a much higher prevalence of random sequences of digits than 

random sequences of other stimuli. By extension, improvements in vSTM performance for 

any verbal material as a function of age may be parsimoniously accounted for in terms of 

increasing exposure to, and learning about, language, rather than by the joint outcome of 

increasing knowledge plus an increase in the capacity of an underlying STM mechanism. An 

important corollary to this conclusion is that claims based on contrasts between performance 

with ostensibly novel and patently familiar materials should be treated with caution. Not only 

are such distinctions always a matter of degree, the idea that any stimuli can be constructed 

for which there is not at least some accumulation over time of some potentially useful 

knowledge is doubtful. As such, the acquisition of knowledge, rather than increases in 

underlying capacity (cf. Cowan et al., 2015) provides a theoretically more promising 

mechanism giving rise to increases in STM performance. 
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Our theoretical position is not unique. Indeed, it bears great resemblance to Case’s 

(1978) notion of automaticity whereby increased exposure to the same task or stimulus leads 

to processing efficiencies. The approach we present here represents an implementation of 

such a broad approach, whereby the processing efficiencies associated with automaticity arise 

due to the knowledge acquired via associative learning of the sequential structure of 

language. It also captures the graded nature of such automaticity/processing efficiency in 

terms of the degree of correspondence between the participant’s knowledge and the precise 

content of the vSTM material. In this way, our approach is also commensurate with those 

usage-based approaches to language in general (e.g., Bybee, 2010; Ellis, 2002) and more 

formal specifications of such approaches (e.g., Christiansen & Chater, 2016; McCauley & 

Christiansen, 2019), where child performance in a range of productive linguistic settings is 

argued to be directly related to the extent to which the child has been exposed to similar 

settings that may serve as analogies for dealing with the current, relatively novel material. In 

our model, we interpret the creation of larger chunks arising from increased linguistic input 

as being a proxy for a multitude of performance gains that arise from increased exposure to 

language (e.g., perceptual, speech-motor). This position not only fits with the ideas above but 

also our model and child data show how such a position is able to capture not only 

developmental increases with age but also differences in those increases on the basis of the 

stimuli involved.  

Related to the above theoretical viewpoints, we did find that recall of isolated items 

(both digits and words) increased with age. While the precise reason for the model’s failure to 

capture the child data here remains moot, it seems plausible that it relates to the nature of 

lexical knowledge that is acquired by the model compared to children. In the model, the only 

effect of greater linguistic experience is the extent to which a chunked lexical item becomes 

sequentially associated with other units, whereas one could parsimoniously account for the 
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effects seen by assuming, for example, that processing a chunk becomes more efficient as its 

frequency of encounter increases (e.g., the availability for encoding of chunks in the model’s 

repertoire varies probabilistically as a function of frequency of occurrence, rather than, as is 

currently modeled, being either present in the model’s knowledge, or not). For children, once 

a lexical item has been learned, increasing experience will also increase the richness of that 

lexical representation in itself. For example, richer semantic and episodic associations will be 

elaborated for that item of the type that will sustain better memory performance (see Jefferies 

& Lambon Ralph, 2006, for discussion of how lexico-semantic networks support STM). 

Indeed, increased experience with stimuli results in faster recognition and production, even 

for 5-10 year old children (Ojima, Matsuba-Kurita, Nakamura & Hagiwara, 2011), while for 

7-12 year old children, naming accuracy steadily increases with age as the frequency of 

encounter of a word increases (Newman & German, 2002). Another possibility is that the 

increase in item recall with age is an outcome of the increase in sequence recall; since both 

words and digits here form closed sets, the successful recall of any part of a given sequence 

will increase the likelihood that another element will be correctly recalled by chance. 

Alternatively, the divergence here between model and data might reflect a degree of 

insensitivity in the model to picking up knowledge of specific digit-plus-word chunks (such 

as two socks, five fingers) that have been acquired by the child with respect to the actual 

stimuli used in these experiments and that may therefore give rise to improved child 

performance that, given our stimulus structure and scoring method, will appear as increases 

in item recall. It is important to remember here that despite the very large corpus on which 

the model is trained, it nonetheless represents a mere fragment of a developing child’s 

encounter with language. For present purposes, the important point to note about this 

divergence is that the age-related increase in recall of isolated items in the child data cannot 

account for the digit superiority with age effect found with the digit and word lists in Study 
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1a. The Study 1b data show no interaction between (isolated) item type and age while in 

Study 1a, a performance advantage for digits over words that interacts with age is clearly 

present in both model and child performance. 

From a practitioner’s point of view, the usefulness of tests of vSTM and their value 

within assessment are not directly called into question by our argument; the extent to which 

they may serve as predictive or diagnostic measures derives, at least in part, from their 

statistical properties within such diagnostic and predictive settings. So, although our findings 

do not undermine the use of simple STM tasks as a means of predicting outcomes or 

identifying atypicalities, they do implicate a reappraisal of what such tasks measure, and 

therefore the sorts of possible underlying mechanisms that might give rise to those diagnostic 

or predictive properties. It has long been known that performance in vSTM tasks is affected 

by a variety of aspects of the long-term linguistic knowledge of the participant, but the 

implications of this association remain controversial. Traditional approaches interpret such 

effects as pointing to long-term memory and STM as distinct but interacting modes of 

processing, either in terms of distinct systems (Baddeley, 2012) or STM being the limited-

capacity activated state of long-term knowledge (MacDonald & Christiansen, 2002). Since 

our account captures the empirical pattern without invoking either temporary storage or any 

other limited-capacity process, the implication is that while measures of vSTM performance 

are undoubtedly predictive of higher cognitive functions, their predictive power does not 

stem from them measuring the functioning of a primitive STM system upon which those 

higher functions are built. Rather, STM is that setting within which participants deploy their 

relevant knowledge that may be utilized to accomplish a given task. Rather than concluding 

that researchers should simply take into account the interaction between long-term 

knowledge and STM in order to qualify their estimates of STM per se, instead we would 
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conclude that the theoretical approach be recast to place the long-term learning process itself 

as the focus of investigation. 

This approach may be fruitfully applied to understanding cases of substantial 

individual differences in the linguistic performance across children of the same age. For 

example, children from low socioeconomic status (SES) families are widely reported to have 

poorer language outcomes than same-age children from high SES families (Fernald, 

Marchman & Weisleder, 2013; Huttenlocher, Waterfall, Vasilyeva, Vevea & Hedges, 2010). 

A robust finding is that language exposure for low SES children is impoverished relative to 

high SES children. Under an associative learning account, this would lead to poorer language 

outcomes and poorer performance on language-related tasks such as vSTM (Fernald, 

Marchman & Weisleder, 2013; Ottem, Lian & Karlsen, 2007; Parra, Hoff & Core, 2011). 

Generally, our account predicts differences in outcomes due to opportunities for learning 

from linguistic experience rather than any age-related maturational factors. As such, if the 

opportunities for learning are themselves held constant, language differences across children 

would chiefly be expected where the linguistic experience is different. This is the case even 

in children from low SES families (Weisleder & Fernald, 2013). Therefore, striking language 

differences across same-age children do not necessarily point to an underlying impairment, 

since deficiencies may derive instead from the quality of the language experience 

encountered by children.  

Undoubtedly, individual differences will occur across children, even when language 

input is similar, but our account suggests that seeking explanation for this in individual 

differences in STM function will not be fruitful7. Instead, while the opportunity for learning 

is in part constrained by the linguistic environment of the child, it will also be constrained by 

                                                           
7 Note that vSTM in atypical populations is usually assessed using digit span or nonword repetition i.e., tasks 

that we have shown can be accounted for by associative learning based on linguistic experience (see G. Jones & 

Macken, 2018). 
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those low-level processes that transfer information to any learning mechanism (e.g., auditory 

perception) and by the child’s ability to learn from their linguistic experience, while 

performance is also influenced by low-level output processes (e.g., speech/motor 

mechanisms). For the model, the elements are already coded in sequential form, since they 

are presented as phonetic transcriptions; the key learning that occurs in the model relates to 

the sequences within language; and performance is measured as the number of chunks 

required to represent a given input. However, individual differences may occur within the 

basic auditory processes that underpin sequential perception (Bregman, 1990; Warren, 1999) 

as well as the basic motor processes that control the execution of sequences of gestures 

(Lenneberg, 1967; Siegel et al., 1982). Such perceptual and motor processing is associated 

with individual differences in a variety of language tasks in both impaired and unimpaired 

populations (e.g., Carello, LaVasseur & Schmidt, 2002; Krishnan, Alcock, Mercure, Leech, 

Barker, Karmiloff-Smith & Dick, 2013; Goswami, 2012). Indeed, many of the patterns of 

performance traditionally explained in terms of the operation of an underlying vSTM system 

in adults have been shown to be due to domain-general perceptual and motor functions, rather 

than STM processes, or even specifically verbal ones (D. M. Jones, Macken & Nicholls, 

2004; Macken, Taylor & D. M. Jones, 2014; 2015). Research has also shown that learning 

ability differs across typical and atypical children (Hsu & Bishop, 2014) while more 

generally there is large variability in learning associations amongst stimuli (Frost, Armstrong, 

Siegelman & Christiansen, 2015). In this sense, individual differences in low-level 

input/output processes and individual differences in one’s ability to learn will all result in 

performance differences in language-related tasks such as vSTM.  

Our results speak to the numerous studies that have drawn implications based on digit 

span and similar measures of vSTM. We have shown that such measures are inextricably 

linked to the linguistic experience of the rememberer. If it were possible to assume that 
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linguistic experience is broadly similar within the same age group, this would not be a 

problem. However, many factors affect the linguistic exposure of individuals at any given 

age. Even more problematic are those studies that draw conclusions on the basis of vSTM 

performance between ages where greater differences in linguistic experience are expected. To 

add further concern, language differences follow through into differences in reading ability 

(Lervåg & Aukrust, 2010), which in turn, may provide richer language experience than 

natural speech (Montag, M. N. Jones & Smith, 2015). Caution must therefore be applied in 

evaluating claims about development based on vSTM measures. 

All told, then, while the predictive power of tests of vSTM and their value within 

assessment are not in doubt, our findings suggest that how such effects are understood needs 

to be radically re-evaluated. We have shown that performance in such tasks can be modeled 

in terms of the linguistic experience of the child and the sequential learning about language 

that such experience affords, without any need for bespoke STM processes. Not only does 

this mean that the pivotal causal role in development which STM has been awarded should be 

reviewed, it also means that the quest for those causal mechanisms underlying the 

development of higher cognitive function (such as language) needs to be directed instead to 

basic associative learning processes operating within perception and production. 
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Appendix 

Analyses - Study 1a 

For each dependent variable, we ran two ordered categorical logistic mixed-effects models. 

Model 1 used stimulus type (digits or words) and age (in months) as fixed effects, while 

Model 2 additionally included the interaction between stimulus type and age as a fixed effect. 

A maximal random effects structure was included for participant.  

 

Span size 

Table A1 shows the analyses relating to span size and Figure A1 shows the plotted data. 

Model 1 showed that span increased with age (p = .001) and was greater for digit lists over 

word lists (p < .001). The effect of stimuli type disappeared in Model 2 (p = .461), the effect 

of age remained (p = .026), and the interaction was significant (p = .039). Table A2 illustrates 

the model comparisons, showing that Model 2 provided a significantly better fit to the data 

than Model 1 (p = .036). 

 

Table A1. Estimates, 95% CIs and p values for Model 1 and Model 2 with span size as the 

dependent variable. 

 

  Model 1 Model 2 

Predictors 
Odds 

Ratios 
CI p 

Odds 

Ratios 
CI p 

(Intercept: 

2|3) 

.22 .01 – 4.08 .309 .08 .00 – 1.72 .106 

(Intercept: 

3|4) 

1.18 .08 – 16.76 .901 .41 .02 – 7.12 .544 

(Intercept: 

4|5) 

34.98 2.47 – 495.76 .009 12.04 .69 – 208.63 .087 

(Intercept: 

5|6) 

1153.00 69.52 – 19121.43 <.001 428.59 20.94 – 8771.43 <.001 

(Intercept: 

6|7) 

7362.41 391.45 – 138472.33 <.001 2962.08 124.01 – 70750.04 <.001 

(Intercept: 

7|8) 

159386.83 5711.90 – 4447585.88 <.001 71488.05 1911.85 – 2673088.72 <.001 
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(Intercept: 

8|9) 

2200398.1

7 

29640.44 – 163349530

.21 

<.001 1200426.1

4 

10901.45 – 132186325

.76 

<.001 

Stimulus 

Type 

9.90 5.17 – 18.97 <.001 .28 .01 – 8.45 .461 

Age 1.04 1.02 – 1.07 .001 1.03 1.00 – 1.06 .026 

Stimulus 

Type * Age 

   1.04 1.00 – 1.07 .039 

Observatio

ns 

286 286 

 

 

Table A2. Comparisons between Model 1 and Model 2 for the span size data, total span data, 

isolated item data, and item pair data. Df = degrees of freedom; logLik = log likelihood; 

Chisq = chi square. 

 Model comparisons - Span size 

 Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) 

Model 1 12 758 - -367 - – – – 

Model 2 13 756 - -365 - 4.42 1 .036 

 Model comparisons - Total span 

Model 1 16 1073 - -520 - – – – 

Model 2 17 1071 - -518 - 4.08 1 .043 

 Model comparisons - Isolated item data 

Model 1 6 1168 1197 -578 1156 – – – 

Model 2 7 1170 1204 -578 1156 .01 1 .908 

 Model comparisons - Item pair data 

Model 1 6 1371 1401 -679 1359 – – – 

Model 2 7 1365 1401 -676 1351 7.07 1 .008 
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Figure A1. Span size by age (N = 143) for digit and word lists (25% of random noise was 

added to each y axis tick value to avoid datapoints sitting on top of each other). A regression 

line with 95% confidence interval was added. 

 

Total span 

Table A3 shows the analyses relating to total span and Figure A2 shows the plotted data. 

Model 1 showed that span increased with age (p = .001) and was greater for digit lists over 

word lists (p < .001). Adding the interaction term in Model 2 meant the effect of stimulus 

type disappeared (p = .694) but age was significant (p = .005) together with the interaction (p 

= .045). Table A2 illustrates the model comparisons, showing that Model 2 provided a 

significantly better fit to the data than Model 1 (p = .043).  

 

Table A3. Estimates, 95% CIs and p values for Model 1 and Model 2 with total span as the 

dependent variable. 

  Model 1 Model 2 

Predictors Odds Ratios CI p Odds Ratios CI p 

(Intercept: 

2|3) 

.31 .01 – 7.96 .479 .13 .00 – 3.87 .241 

(Intercept: 

3|4) 

.48 .02 – 11.07 .647 .21 .01 – 5.43 .345 

(Intercept: 

4|5) 

4.34 .22 – 84.65 .333 1.81 .08 – 40.45 .707 
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(Intercept: 

5|6) 

21.97 1.12 – 432.01 .042 8.94 .40 – 200.81 .168 

(Intercept: 

6|7) 

130.76 6.34 – 2695.82 .002 53.23 2.27 – 1248.67 .014 

(Intercept: 

7|8) 

762.12 34.52 – 16825.94 <.001 320.24 12.78 – 8021.63 <.001 

(Intercept: 

8|9) 

6820.58 282.12 – 164892.92 <.001 3077.17 111.06 – 85259.94 <.001 

(Intercept: 

9|10) 

22307.31 866.84 – 574054.91 <.001 10528.03 352.26 – 314649.33 <.001 

(Intercept: 

10|11) 

179619.45 5951.78 – 5420752.99 <.001 89117.55 2462.09 – 3225695.36 <.001 

(Intercept: 

11|12) 

526822.81 15440.70 – 17974722.

76 

<.001 269840.9

5 

6494.33 – 11211955.4

9 

<.001 

(Intercept: 

12|13) 

1694550.8

3 

39722.43 – 72289199.

94 

<.001 932764.1

4 

17563.04 – 49538641.

91 

<.001 

Stimulus 

Type 

11.56 6.47 – 20.65 <.001 .54 .03 – 11.28 .694 

Age 1.05 1.02 – 1.08 .001 1.04 1.01 – 1.07 .005 

Stimulus 

Type * Age 

   1.03 1.00 – 1.06 .045 

Observation

s 

286 286 
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Figure A2. Total span by age (N = 143) for digit and word lists (25% of random noise was 

added to each y axis tick value to avoid datapoints sitting on top of each other). A regression 

line with 95% confidence interval was added. 

Analyses - Study 1b 

Figure A3 shows the mixed span performance. We ran an ordered categorical logistic model 

on the mixed span data using age as the independent variable (see Table A4). There was a 

clear effect of age (p = .001) showing that as age increased, the number of mixed lists 

recalled also increased. 

 

Figure A3. Number of mixed lists accurately recalled (maximum = 8) by age (N = 70). 25% 

of random noise was added to each y axis tick value to avoid datapoints sitting on top of each 

other. A regression line with 95% confidence interval was added. 
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Table A4. Estimates, 95% CIs and p values with number of mixed lists accurately recalled as 

the dependent variable. 

Mixed lists recalled 

Predictors Odds Ratios CI p 

(Intercept: 0|1) 22.04 2.25 – 216.33   .008 

(Intercept: 1|2) 68.70 6.31 – 748.02   .001 

(Intercept: 2|3) 242.49 19.48 – 3018.22 <.001 

(Intercept: 3|4) 631.69 44.88 – 8892.11 <.001 

(Intercept: 4|7) 4284.12 169.87 – 108044.32 <.001 

Age 1.04 1.02 – 1.07   .001 

Observations 70 

Cox & Snell's R2 / Nagelkerke's R2 0.153 / 0.161 

 

 

We then ran binomial logistic mixed effects models separately for isolated items and item 

pairs using the same analyses technique as Study 1a and the same fixed and random effects 

that were used in Models 1 and 2. However, the dependent variable in this case was whether 

each isolated item or item pair was recalled correctly (0 = incorrect, 1 = correct). Since the 

mixed lists were intentionally challenging for the children, we considered an isolated item or 

item pair to be correctly recalled if it occurred in any serial position (i.e., free recall rather 

than serial recall; there is little difference between the two, Grenfell-Essam & Ward, 2012). 

  

Isolated items 

Table A5 shows the analyses relating to isolated items and Figure A4 shows the plotted data. 

Model 1 showed an increase in accurate recall of isolated items with age (p < .001) but no 

difference in recall accuracy for isolated words over isolated digits (p = .192). Adding the 

interaction term in Model 2 did not change the effect of stimulus type (p = .880), however 

age remained significant (p < .001). Crucially, there was no interaction between age and 

stimulus type (p = .908) and Model 2 did not provide a significantly better fit to the data than 

Model 1 (p = .908, see Table A2). 
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Table A5. Odds ratios, 95% CIs and p values for Model 1 and Model 2 for isolated items. 

  Model 1 Model 2 

Predictors 
Odds 

Ratios 
CI p 

Odds 

Ratios 
CI p 

(Intercept) .20 .07 – .61 .005 .21 .06 – .71 .012 

Stimulus Type 1.24 .90 – 1.71 .192 1.13 .23 – 5.58 .880 

Age 1.03 1.01 – 1.04 <.001 1.03 1.01 – 1.04 <.001 

Stimulus Type * Age    1.00 .98 – 1.02 .908 

Random Effects 

σ2 3.29 3.29 

τ00 .31 Id .30 Id 

τ11 .23 Id, Stimulus Type .23 Id, Stimulus Type 

ρ01 .54 Id .54 Id 

ICC .08 Id .08 Id 

Observations 980 980 

Marginal R2 / 

Conditional R2 

.06 / .20 .06 / .20 
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Figure A4. Recall of isolated items (maximum score = 7) by age (N = 70) for mixed lists. 

25% of random noise was added to each y axis tick value to avoid datapoints sitting on top of 

each other. A regression line with 95% confidence interval was added. 

 

Item pairs 

Table A6 shows the analyses relating to item pairs and Figure A5 shows the plotted data. 

Model 1 showed that recall increased with age (p = .001) and was greater for digit pairs over 

word pairs (p = .005). When we added the interaction term in Model 2, the effects of 

stimulus type (p = .040) and age remained (p <. 001). Crucially, the interaction term (p 

= .008) was significant and Model 2 provided a significantly better fit to the data than Model 

1 (p = .008, see Table A2). 

 

Table A6. Odds ratios, 95% CIs and p values for Model 1 and Model 2 for item pairs. 

  Model 1 Model 2 

Predictors 
Odds 

Ratios 
CI p 

Odds 

Ratios 
CI p 

(Intercept) .09 .03 – .26 <.001 .03 .01 – .12 <.001 

Stimulus Type .67 .51 – .89 .005 4.44 1.07 – 18.37 .040 

Age 1.02 1.01 – 1.03 .001 1.03 1.02 – 1.05 <.001 

Stimulus Type * Age    .98 .97 – .99 .008 
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Random Effects 

σ2 3.29 3.29 

τ00 .45 Id .50 Id 

τ11 .00 Id, Stimulus Type .01 Id, Stimulus Type 

ρ01 -1.00 Id -1.00 Id 

ICC .12 Id .13 Id 

Observations 1120 1120 

Marginal R2 / 

Conditional R2 

.05 / .15 .05 / .16 
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Figure A5. Recall of item pairs (maximum score = 8) by age (N = 70) for mixed lists. 25% of 

random noise was added to each y axis tick value to avoid datapoints sitting on top of each 

other. A regression line with 95% confidence interval was added. 


