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Abstract: The multi-energy vibration processing, namely the combination of different energies or
forces acting on a free abrasive medium for grinding of metal parts, is becoming more used in
finishing processes, in recent years. However, the complexity that is involved in the aforementioned
process requires a careful look in the particularities of the process itself in general and the movement
of the abrasive media, in particular. In this paper, the nature of the collective movement of abrasive
granules between the independently oscillating surfaces of the reservoir and the processed parts is
described. This study presents the dissipation of the kinetic energy of the granules in a pseudo-gas
from the working medium granules. The motion of the medium granules near the part surface, which
is caused by pseudo-waves initiated by vibrations of the working surfaces of the vibration machine
reservoir, is demonstrated. Furthermore, the nature of the motion of the granules near the oscillating
part surface is described. The analysis that is presented here permits the determination of metal
removal quantity from the surface of the workpiece as a result of multi-agent group action of the
vibrating reservoir surface and the processed part. The optimal conditions for the finishing process
can be determined based on the analysis presented.

Keywords: multi-energy vibration processing; dissipation of kinetic energy; pseudo-wave; movement
of medium granules; movement of part; metal removal

1. Introduction

In this paper, the results of the theoretical simulation of the situations that arise in the case
of multi-energy vibration processing of parts are presented. Multi-energy vibratory finishing and
grinding is a process that is organized by combining various processing schemes, energies, or forces
acting on a free abrasive medium and autonomously moving parts placed in an oscillating vibration
machine reservoir while using spindle devices and vibration manipulators. The present studies and
reasoning are based on the assumption that the behavior of the granules of the working medium
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under the action of oscillations is analogous to the behavior of the gas. The physical situations of
multi-energy vibration processing of autonomously moving parts significantly differ from situations
when pseudo-gas from abrasive granules moves during the classical vibration processing, when the
parts are placed “heaped up” or “fixed” in the reservoir of a vibration machine. This assumption is
based on the conclusions of previous works [1–3], where it is asserted that, under the influence of
autonomous oscillations of the working surfaces of the reservoir and the processed parts, the granules
of the medium acquire significant kinetic energy and they begin to perform movements analogous to
the motion of atoms or gas molecules. This is due to the fact that the working surfaces of the vibration
machine reservoir, which form oscillatory movements in the pseudo-gas of abrasive granules, and the
part move with different amplitudes and frequencies.

An analysis is given in [1] for the possibility of forming a compressed pseudo-gas layer from
abrasive granules on the surface of the processed part that moves autonomously. This phenomenon
is analogous to the effect of a shock wave in a conventional gas. It is shown how compaction of the
pseudo-gas from abrasive granules leads to an intensification of the vibration processing. With the
obtained relationships, it is possible to estimate the intensification value of the process, depending
on the values of the speeds of the working surfaces of the vibrating machine and the surface of the
processed part. However, solving the problem of improving the mechanisms and modes of vibration
processing requires a more detailed analysis of the process, while taking into account the influence of the
amplitude and frequency characteristics of the autonomous parts and oscillating walls of the vibration
machine reservoir. Towards this goal, the works by Mediratta et al. [4] and Yang and Li [5] provide
overviews of mass finishing processes, including multi-energy vibratory finishing and grinding. In the
past, modeling with different methods was used to achieve an insight of advanced manufacturing
processes [6,7]. The category of vibratory finishing is no exception and works while using Finite
Elements and Discrete Elements methods can be found in the relevant literature [8,9]. The works
by Hashimoto and Johnson [10], Sokolov and Krol [11,12], and Sokolov and Rasskazova [13] focus
more on the equipment and tools of vibratory finishing. However, in the at hand paper, modelling is
performed using the example of propagation of force action in the pseudo-gas from abrasive granules.
Such a force action is accomplished from one oscillating infinite surface to another, which oscillates
with a frequency and amplitude different from the first. At the same time, one surface plays the role of
the wall of a vibration machine reservoir, and the other surface is the surface of the processed part.
It is shown in [2,3] that the collective motion of a pseudo-gas that is caused by the motion of a flat
or rounded surface is similar. Therefore, such a scheme allows for us to reveal the main theoretical
regularities of the interaction of the abrasive granules activated by the oscillating walls of the reservoir
with the surfaces of the autonomously moving processed parts.

2. Basic Provisions and Approaches

The study shows two oscillating surfaces, between which there is a pseudo-gas from abrasive
granules (Figure 1). The circles show the dynamics of any point of each of the surfaces. Differences in
the radii of circles correspond to the difference in the amplitude of the motion of the surfaces. Directions
of chaotically moving abrasive granules are indicated by the straight arrows. The frequencies of
oscillations are also different. The coordinate system is chosen, so that the Y axis is horizontal and
the X axis is vertical (Figure 1). This is due to the fact that the solutions for collective motion of an
array of abrasive granules were obtained earlier [2] in this coordinate system. These expressions
are rather cumbersome and their transformation when using a different coordinate system can lead
to inaccuracies.

According to the scheme, the pseudo-gas fills an infinitely long strip of width (Figure 1). Each point
of the left surface or for the wall of the vibration machine reservoir moves with a velocity, the components
of which can be represented as:

Vry = Ar ωr cos (ωrt) (1)

Vrx = Ar ωr sin (ωrt) (2)
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Similarly, for the right surface or for the surface of the processed part, the components can
be written:

Vdy = Adωd cos(ωdt) (3)

Vdx = Ad ωd sin(ωdt) (4)

Here, Vrx , Vry , Vdx , Vdy are the components of the speeds of movement for any point of the
reservoir surface and the processed part, directed along the axes and X, Y, respectively, ωr, ωd—circular
frequency of oscillations of the walls reservoir and the part.

To solve the set task, we use the continuity Equation (5) and Navier-Stokes Equation (6) [14]:

∂ρ

∂t
+ div

(
ρV

)
= 0 (5)

dV
dt

= F−
1
ρ

grad p + ν∆V +

(
ζ
ρ
+
ν
3

)
grad divV (6)

Here V—speed of movement of an elementary volume of gas (liquid), F—field strength of mass
forces, ρ—gas density, ν = η/ρ and η—constant coefficients of kinematic and dynamic viscosity,
and ζ—constant coefficient of the second or bulk viscosity.
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After simplifications that are based on reasonable assumptions [2], the Navier-Stokes equations
for finding the velocity components Vx and Vy have the form:

∂Vx
∂t = Fx + ν∂

2Vx
∂y2

∂Vy
∂t = Fy −

1
ρ
∂p
∂y + ν

∂2Vy

∂y2

(7)

Neglecting the mass forces, that is, the gravitational forces, we obtain two linear independent
equations with respect to the two components of the velocities of the motion of the pseudo-gas from
the abrasive granules.

Equation (7) describe the propagation of vibrations of the abrasive granules in the pseudo-gas.
The oscillations are transmitted from the working surfaces of the reservoir and the surfaces of the
processed parts. This is described by the Equations (1)–(4). In acoustics, the propagation of oscillations,
in any medium, is called a wave. This definition is confirmed by the solution of system (7), as shown
in [2]. In the case when only the working reservoir surface exerts a force action on the mass of the
abrasive, the solution for the components of collective motion is as follows:

Vx(y, t) = −Aωe−
√
ω/2νy cos

(
ωt−

√
ω
2ν y

)
Vy(y, t) = Aω

[
e−
√
ω/2νy

((
1 + 2

3 kA
√
ω
2ν

)
cos

(
ωt−

√
ω
2ν y

)
+

+ 2
3 kA

√
ω
2ν sin

(
ωt−

√
ω
2ν y

))
−

2
3 kA

√
ω
2ν e−2

√
ω/2νy

×

×

(
cos

(
ωt−

√
ω
2ν y

)
+ sin

(
ωt− 2

√
ω
2ν y

))] (8)

These expressions are derived from the hypothesis that the velocity of the pseudo-gas layer in
close proximity to the reservoir working surface is equal to the velocity of the reservoir [15], and the
pressure on a vibrating surface is determined from the relation p ∼ ρkT ∼ ρV2.

It can be seen from Equation (8) that the components of the rate of collective motion of the
pseudo-gas from the abrasive granules are described by a superposition of functions characterizing
the damped wave motion occurring at velocities

√
2νω and 0.5

√
2νω that depend on the oscillation

frequency of the reservoir. Due to this, as well as taking into account the linearity of the Equation (7),
the motion of the abrasive granules can be regarded as a superposition of damped waves. Consequently,
the movement of the abrasive working medium under the influence of oscillations of the vibration
machine between two independent solid surfaces of the reservoir and the part can be considered as
the interaction of acoustic waves that are generated by their motion. This approach allows for us to
determine the interaction of the working medium with the surface of the processed part, while using
acoustic approximation.

2.1. Boundary Conditions

Let us consider the surface of the processed part (Figure 1). In the reflection of a plane acoustic
wave moving perpendicular to the elastic surface of the processed part, the product of the densities and
velocities of sound in the medium of propagation of the wave and in the material of the part play an
important role. In our case, this is ρcg, ccg and ρd, cd. Here, ρcg, ccg corresponds to the average density
of the collective of granules and the speed of propagation of disturbances in it, that is, the speed of
sound in the pseudo-gas from the abrasive particles. The notation ρd, cd corresponds to the density
of the material of the processed parts and the speed of sound in it. The density of metal processed
parts exceeds the density of the material of the granules and, thus, exceeds the average density of
the pseudo-gas from the abrasive granules. It is assumed that the speed of sound in the metal of
the part is several kilometers per second, but the speed of sound in the pseudo- gas cannot exceed
the speed of movement of the abrasive granules. At a maximum oscillating frequency of vibration
machine of about 70 Hz and the greatest oscillation amplitude of 5 mm, it is slightly more than 2 m/s.
Thus, we can write that ρcgccg � ρdcd. In this case, the wave that is reflected from the surface of the
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processed part changes the phase of oscillations by half the period of oscillations of the incident wave.
The amplitude of oscillations of the reflected wave, without taking into account inelastic losses, is equal
to the amplitude of the oscillations of the incident wave [16].

Thus, on the surface of the processed part, the boundary conditions are determined by a
superposition of the incident and reflected waves, besides the thermodynamic parameters of the
pseudo-gas. Here, as in [1], we will take the loss of kinetic energy upon impact of the abrasive granules
with the surface of the processed part with the help of the recovery coefficient into account [15].

2.2. Surface of the Processed Part

Let us consider the process of collision of a moving single granule with the moving surface of the
processed part in more detail.

Let us schematically show the arrival of abrasive granule to the surface of the processed part
(Figure 2). The speed of approach of the granule and the part is the geometric sum of the velocities of
both. Consequently, the component of the approach velocity, the granule and the part directed along
axis Y, will be VgyΣ = −Vdy + Vgy , and the component directed along the axis is X–VgxΣ = −Vdx + Vgx .
According to [17], the component of the rebound velocity directed along the Y axis can be written in
the coordinate system moving together with the processed part, in the form Vgyreb = VgyΣ β, where

β =
√

1− f
1+ f is the recovery coefficient, and f is the coefficient of dry friction. Thus, for the component

of the rebound velocity directed along the Y axis in the coordinate system that is associated with the
surface of the processed part, we can write:

Vgy reb =
(
Vdy −Vgy

)
β (9)
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The component of the velocity of the granule after the rebound along the X axis can be determined
from the following considerations (Figure 3).
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The collision process, by virtue of the fact that the mass of the part exceeds by several orders the
magnitude the granule mass—mg, can be described in a coordinate system moving with the part at the
moment of collision by the following system of equations: mg

dVgy Σ

dt = N(t)

mg
dVgx Σ

dt = f N(t)
(10)

Here, N(t) is the reaction force of the plane when it hits the processed part.
The solution of the system of Equation (10) is difficult because of the unknown function N(t).

However, finite expressions for the components of the motion velocities can be obtained while using
the law of conservation of momentum [14]. We equate the change in the vertical component of the
number of granule movement as a result of the collision, to the impulse of reaction force of the part,
which acts into the granule during the impact—∆t:

∆t∫
0

N(t) dτ = mg
(
Vdy −Vgy

)
(β+ 1) (11)
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On the other hand, the reaction force of the part during the impact will cause a change in the
amount of movement of the granule in the direction along the X axis due to the frictional force:

f

∆t∫
0

N(t) dτ = mg ∆Vgx (12)

In the case where the component of the speed of the granule along the X axis is opposite to the
direction of the component of the wall, the speed of the granule will decrease, whereas it will increase
in the opposite case. The maximum possible change in the horizontal component of the granule can be
expressed from the Equations (11) and (12) by the formula:

∆Vgx max = f
(
Vdy −Vgy

)
(β+ 1) sign

(
Vdx −Vgx

)
(13)

2.3. Working Surface of the Vibrating Machine Reservoir

The working reservoir surface is lined with hard rubber (Figure 1). The Young’s modulus of
shock rubber absorbers is ≈10 MPa [18]. It is known that if the natural oscillation frequency of the
“rubber lining-granule” system is much higher than the oscillation frequency of the vibrating machine,
then the velocity of the abrasive granule after the collision with the working reservoir surface should
not depend on its speed before collision [19]. The cyclic frequency of the “rubber lining-granule”
system is equal to the oscillation frequency of the spring pendulum and it is determined by the relation
ω0 ≈

√
k/m [14]. Here, k is the hardness coefficient of the rubber. In our case, we have k ≈ 104 N/m.

The mass of the granule is about one gram. Then the oscillation frequency will be ω0 ≥ 3 · 103 rad/s.
This value is almost an order of magnitude greater than the maximum circular vibrational frequency of
the vibrating machine. This frequency will be about 440 rad/s. Thus, when calculating the propagation
of force action from the working reservoir surface by the pseudo-gas from the abrasive, the granules’
velocities prior to impact against it can be ignored.

Real boundary conditions consist in the fact that the oscillatory movements of the working
medium, together with the surface of the processed part and the reservoir, do not occur during the
whole oscillation period. At some moment of time t0 = α0 /ω, when one of the surfaces is removed
from the granules, tearing off of the granule mass takes place, that is, the components of the velocity of
the abrasive granules along the Y axis become smaller than the components of the surface velocity of
the reservoir along this axis. In this case, the movement of the mass of the abrasive, without regard for
gravity, will be rectilinear. Such rectilinear motion is retained until time t∗ = α∗/ω, when the reservoir
surface during its movement again comes into contact with the granules of the working medium.
The moments of separation and pick-up will be different for the working surfaces of the reservoir and
the processed part, for the left (reservoir wall) and for the right (part wall) planes.

3. Collective Movement of the Abrasive Granules Between the Independently Oscillating
Surfaces of the Reservoir and the Processed Part

Earlier, it was shown that the collective motion of the mass of the working medium under the
influence of vibrations of the vibrating machine between two autonomously moving solid surfaces
can be considered as the propagation of damped acoustic waves generated by their motion. In their
movement between the two surfaces these waves receive energy, mainly from the working surface
of the vibrating machine reservoir and partly from the oscillating surface of the processed part.
The dissipation of energy of waves occurs due to inelastic collisions of the granules with each other
during the propagation of a force pulse into the working medium. The efficiency of this energy is
minimal. The second (useful) channel for absorbing the energy of surface vibrations is the removal of
metal from the surface of the processed part.
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Thus, it is necessary to determine initially the characteristics of the waves initiated by both
surfaces, taking both energy absorption channels into account to clarify the pattern of motion of the
medium granules between two surfaces.

3.1. Movement of the Collective of the Abrasive Granules Under the Action of the Working Surfaces of the
Reservoir

From the foregoing, it follows that the motion of the granules can be regarded as a superposition of
damped waves generated by independent vibrational motion of the working surfaces of the reservoir
and the surface of the processed part. Near the surface of the vibrating machine reservoir, the solution
of Equation (7) is described by the relationships that are presented in the work [2] with an allowance
for real boundary conditions. The movement of the abrasive granules caused by the oscillations of the
working surfaces of the reservoir, according to the work [2], is described by the following relationships:

Us
∑ = a0

2 +
∞∑

k=1

(
Wsxk(y, t) + Vsxk(y, t)

)
Vs

∑ =
∞∑

k=1

(
Vsyk(y, t) + Wsyk(y, t)

) (14)

Here, UΣ and VΣ are the components of the motion of the granules of the working medium along
the X and Y axes, respectively.

The terms of the series in Equation (14) are described by the following dependences:

Vsxk(y, t) = −bU
k l−
√

2ωk/νk y sin
(
ωkt−

√
2ωk
νk

y
)

Vsyk(y, t) = −aV
k

[
l−
√
ωk/νk y

((
1 + 2

3 l
aV

k
ωk

√
2ωk
νk

)
cos

(
ωkt−

√
2ωk
νk

y
)
+

+ 2
3 l

aV
k
ωk

√
2ωk
νk

sin
(
ωkt−

√
2ωk
νk

y
))
−

2
3 l

aV
k
ωk

√
2ωk
νk

l−2
√

2ωk/νk y
×

×

(
cos

(
ωkt− 2

√
2ωk
νk

y
)
+ sin

(
ωkt− 2

√
2ωk
νk

y
))] (15)



Wsxk(y, t) = −aU
k l−
√

2ωk/νk y cos
(
ωkt−

√
2ωk
νk

y
)

Wsyk(y, t) = bV
k

[
l−
√
ωk/νk y

((
1 + 2

3 l
bV

k
ωk

√
2ωk
νk

)
sin

(
ωkt−

√
2ωk
νk

y
)
−

−
2
3 l

bV
k
ωk

√
2ωk
νk

cos
(
ωkt−

√
2ωk
νk

y
))
+ 2

3 l
bV

k
ωk

√
2ωk
νk

l−2
√

2ωk/νk y
×

×

(
cos

(
ωkt− 2

√
2ωk
νk

y
)
− sin

(
ωkt− 2

√
2ωk
νk

y
))] (16)

The coefficients aV
k , aU

k and bV
k , bU

k are expressed, as follows:

aU
s0 = −

2As

T
[(αs

∗
− αs0) sinαs0 + cosαs

∗
− cosαs0] (17)

aV
s0 = 0 (18)

aU
s1 = −

2As

T

[1
4
(cos 2αs

∗
− cos 2αs0) + sinαs0(sinαs

∗
− sinαs0)

]
(19)

bV
s1 = −

2As

T

[1
4
(cos 2αs

∗
− cos 2αs0) + cosαs0(cosαs0 − cosαs

∗)
]

(20)

aU
s0 = −

2As

T
[(αs

∗
− αs0) sinαs0 + cosαs

∗
− cosαs0] (21)

aV
s0 = −

2As

T
[(sinαs0 − sinαs

∗) + (αs
∗
− αs0) cosαs0] (22)
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aU
sk = −

2As
T

[
1

2(k+1) (cos(αs
∗(k + 1))−

− cos(αs0(k + 1))) + 1
2(1−k) (cos(αs

∗(1− k))−

− cos (αs0(1− k))) + sinαs0
k (sin(kαs

∗) − sin(kαs0))
] (23)

bU
sk = −

2As
T

[
1

2(k+1) (sin(αs
∗(k + 1))−

− sin(αs0(k + 1))) + 1
2(1−k) (sin(αs0(1− k))−

− sin(αs
∗(1− k))) − sinαs0

k (cos kαs
∗
− cos kαs0)

] (24)

aV
sk =

2As
T

[
1

2(k+1) (sin(αs0(k + 1))−

− sin(αs
∗(k + 1))) + 1

2(1−k) (sin(αs0(1− k))−

− sin(αs
∗(1− k))) + cosαs0

k (sin(kαs
∗) − sin(kαs0))

] (25)

bV
sk =

2As
T

[
1

2(k+1) (cos(αs
∗(k + 1))−

− cos(αs0(k + 1))) + 1
2(1−k) (cos(αs0(1− k))−

cos(αs
∗(1− k))) + cosαs0

k (cosαs0 − cosαs
∗)
] (26)

The Equations (23)–(26) that were obtained as a result of the transformations are valid for the
values of k = 2, 3, 4 . . . ∞. For values of k = 1 they have an uncertainty, therefore these relations are
written separately—Equations (19) and (20).

The coefficients aU
1 and bV

1 , having a singularity in previous Equations (17)–(26), can be obtained
while using L’Hôpital’s rule [20]. Afterwards, we get:

aU
s1 = −

2As

T

[1
4
(cos 2αs

∗
− cos 2αs0) + sinαs0(sinαs

∗
− sinαs0)

]
(27)

bV
s1 = −

2As

T

[1
4
(cos 2αs

∗
− cos 2αs0) + cosαs0(cosαs0 − cosαs

∗)
]

(28)

For the coefficients aV
1 and bU

1 , the application of L’Hôpital’s rule gives an incorrect result.
Therefore, it is necessary to integrate Equations (27) and (28) for the value of k = 1. As a result, we get
the following:

bU
s1 = −

2As
T

[
1
2 (αs0 − αs

∗) + π+ 1
4 (sin 2αs

∗
− sin 2αs0)+

+ sinαs0(cosαs
∗
− cosαs0)]

(29)

aV
p1 = 2As

T

[
1
2

(
αp0 − αp

∗
)
+ π+ 1

4

(
sin 2αp0 − sin 2αp

∗
)
+

+cosαp0
(
sinαp

∗
− sinαp0

)] (30)

Thus, the final expressions for the real components of the horizontal and vertical velocity
components U(t) and V(t) on the working reservoir surface have the form:

UsΣ(t) =
aU

s0

2
+
∞∑

k=1

(
aU

sk cos(kωt) + bU
sk sin(kωt)

)
(31)

VsΣ(t) =
∞∑

k=1

(
aV

sk cos(kωt) + bV
sk sin(kωt)

)
(32)

3.2. Movement of the Abrasive Granules of the Working Medium Near the Surface of the Processed Part

The movement of the surface of a part is described by the following relationships:

Vdy = Adωd cos(ωdt + ϕ) (33)
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Vdx = Ad ωd sin(ωdt + ϕ) (34)

Here, ϕ is the phase difference between the oscillations of the reservoir working surface and the
processed part.

According to the adopted model of acoustic approximation (see Section 2), the pressure near the
working reservoir surface will be composed of three components [16]. The movement of the surface of
the vibrating machine reservoir creates the pressure of the pseudo-gas and the surfaces of the reservoir
and the processed part create the acoustic pressures. Thus, we can write the following relation:

ρcg
〈Vx〉

2

3
= ρpg

〈Vsd〉
2

3
+ ρcg〈Vx〉

√
γ

3
〈Vsda〉+ ρcg 〈Vx〉

√
γ

3
〈Vda〉 (35)

where 〈Vsda〉 is the root-mean-square velocity of chaotic movement of granules in a pseudo-gas created
near the surface of a part by the oscillating surface of a vibrating machine reservoir; 〈Vx〉 is the
root-mean-square velocity of the granules in the pseudo-gas, which was acquired as a result of the
total action of acoustic waves and by the chaotic movement of the pseudo-gas granules; 〈Vsda〉 =√

1
t

t∫
0

V2
sda(t) dt—is the time-averaged velocity of oscillatory motion of the granules under the action of

an acoustic wave produced by the reservoir surface near the part surface; 〈Vda〉 =

√
1
t

t∫
0

V2
da(t) dt is

the time-averaged velocity of the granules near the part surface acting as an oscillating plane acoustic
radiator; ρcg, γ is the density of the pseudo-gas and the adiabatic index, respectively, equal to 5/3 in
our case.

Solving the Equation (35) with respect to the unknown root-mean-square velocity 〈Vx〉, we obtain
the relation:

〈Vx〉 =

√
〈Vsd〉

2 +
3
4
γ (〈Vsda〉+ 〈Vda〉)

2 +

√
3γ
2

(〈Vsda〉+ 〈Vda〉) (36)

3.2.1. Dissipation of the Kinetic Energy of the Granules in the Pseudo-Gas from the Granules of the
Working Medium

To determine the decrease in the rates of chaotic and wave motion of the granules that are
associated with friction between granules during their collisions, we use the results of [21]. It is shown
there that the mean free run length of granules in a pseudo-gas from the abrasive granules is expressed
by the following relationship:

l =
πR

(
1 + C〈V〉2

)
3r
√

2π
(37)

where R is the radius of the granule, 〈V〉 is the root-mean-square velocity of the granule, r is the laying
ratio of the granules (r = 0.66).

The constant C is proportional to the value of the ratio of the density of the material of the granules
to the pressure that was created by them during the circulation movement. It does not depend on the
density of the granule material. Its value in the International System of Units SI can take values in the
range 10–30.

The loss of kinetic energy of the granule in inelastic collisions with the rest of the abrasive granules
is determined by the relation:

〈∆En〉 = 〈E0〉(1− ε)
n (38)

where En is the kinetic energy after the n-number collision of granules in their translational motion;
E0 the initial kinetic energy of granules; and, n the number of granules collisions during its chaotic
motion in the pseudo-gas.
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The value ε is equal to the loss of kinetic energy for one inelastic collision between the granules
and, according to [21], taking into account the recovery coefficient [17] (see Section 2.2), it is determined
by the following relation:

ε = 7
(

cos3 α
3 − cosα

)
|
tn−1(7β f )
0 +

+ f
(

7
2 ×

cos3 α
3 |

tn−1(7β f )
π
2

−
sin3 α

3 |
π
2
tn−1(7β f )

) (39)

Using the Equations (38) and (39), we can express the velocity of chaotic movement of the granules
as a function of the velocity of the working reservoir surface and the distance from it:

〈V〉2

〈V0〉
2 = (1− ε)n (40)

The number of collisions –n when abrasive granules transfer the pulse during their chaotic motion
for some distance – r occurs randomly. Therefore, the relationship between n, r and the distance at
which momentum is transmitted –λ must be determined by the relation r2 = λ2n [22]. The value λ is
equal to the sum of the mean free run length of the granule in the pseudo-gas and the diameter of the
granule. It is λ = d + l Thus, Equation (40) can be written in the following form:

〈Vsd〉
2/〈V0〉

2 = (1− ε)
y2/(d+

(1+C〈VHB〉
2)

6
√

2 ·0.66
d)

2

(41)

Here, the variable y means the distance of the point where the root-mean-square velocity of the
chaotic movement of the granules is determined in the pseudo-gas from the surface of the vibrating
machine reservoir, 〈V0〉 is the root-mean-square velocity of chaotic motion near the working surface of
the reservoir.

Ratio (41) also contains the variable d– the diameter of the abrasive granule. Equation (41) can only
be solved with respect to 〈Vsda〉 numerically. The result of the numerical solution of Equation (41) for
different values of the diameter of the granules (Figure 4) on the curves is indicated by dots. The graphs
that were obtained with an approximate formula are represented by continuous lines.

The curves V1 nu, V2nu, V3nu, V4nu correspond to diameters of abrasive granules of 10 mm; 20 mm;
40 mm; and, 60 mm and they are an approximation to the numerical data that were obtained by the
Equation (42).

The approximate formula, which is necessary for further calculations, has the form: V1 a

〈Vsd〉

As ωs
' e− f1(d)·(y− f2(d))

2.99
(42)

f1(d) and f2(d) are the functions of the diameter of the abrasive granules, which are the result of
interpolation of the numerical solution of Equation (41). Both functions have the following form:

f1(d) = 1800 ·
[
e−400 (d−0.008) + 0.001789 e8.5 (d−0.035)

+0.04 e−136 (d−0.05)
] (43)

f2(d) = 0.0103− 15.9 (d− 0.035)2 (44)

The degree of coincidence of functions f1(d) and f2(d) and the calculated data (Figures 5 and 6)
was obtained by numerically solving Equation (41) for four values of the diameters of the abrasive
granules of 10 mm; 20 mm; 40 mm; and, 60 mm.
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The root-mean-square relative deviation of the values that were calculated by the Equation (42)
from the values obtained by the numerical solution of the Equation (41) is less than 6%.

3.2.2. The Motion of the Medium Granules Near the Part Surface Caused by Pseudo-Waves Initiated
by Oscillations of the Working Surfaces of the Vibrating Machine Reservoir

To establish the value 〈Vsda〉, it is necessary to perform calculations while using Equations (14)–(30),
which determine the vertical and horizontal components of the velocities of the pseudo-wave motion
of the granules that were initiated by the working surface of the reservoir. The graphs of the wave
motion velocity modulus—

∣∣∣Vsda(t)
∣∣∣ and 〈Vsda〉 calculated under the same conditions are also given

here. The time-averaged velocity of the oscillatory motion of the granules under the action of an
acoustic wave is also determined at a distance of 0 mm and 200 mm from the working surface of the
vibrating machine reservoir (Figure 7). Calculations are made for the amplitude of the oscillations
A = 1 mm and v = 50 Hz (ω = 314 radian/s) and are carried out with Mathcad.

It can be seen from the graphs that in the immediate vicinity from the reservoir working surface
(Figure 7a) the values

∣∣∣Vsda(t)
∣∣∣ and 〈Vsda〉 practically coincide and they are independent of time, in spite

of the fact that the vertical and horizontal components of the motion of the granules in the pseudo-wave
are not of a harmonic character. These velocities are equal to the product of the amplitude of the
oscillations of the reservoir and the circular speed of the engine of the vibration machine, which drives
the reservoir working surfaces. At a considerable distance from the surface of the reservoir, the picture
changes (Figure 7b), and averaging over time for the velocity modulus of the pseudo-wave motion
becomes necessary.
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Figure 7. Horizontal and vertical component of the velocities of the pseudo-wave motion of the
granules, the velocity modulus of the wave motion of the granules, the velocity of oscillatory movement
of the granules under the action of an acoustic wave: (a) in the immediate vicinity of the reservoir
working surface; and, (b) at a distance of 20 mm from the reservoir working surface.

Points in Figure 8 show dependence 〈Vsda〉 on the distance to the working reservoir surface
calculated by Equations (14)–(30).
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Figure 8. Dependence of the speed of granules movement 〈Vsda〉 on the distance to the reservoir
working surface.

The dependences of calculated values of 〈Vsda〉 on the distance to the plane of the reservoir
and approximate curves 〈Vsda〉a of interpolation of values 〈Vsda〉 are shown by dots. The curves are
presented for diameters of (d) granules: 1—10 mm; 2—20 mm; 3—40 mm; and, 4—60 mm.

The interpolation curve has the following form:

〈Vsda〉a = As ωs e−3.3 y/10 d (45)

The approximate curve is the result of interpolation of the calculated values (Figure 8).
Dependences 〈Vsda〉 and 〈Vsda〉a practically coincide.

3.2.3. The Movement of the Granules Near the Surface of the Oscillating Part

In the framework of the model used, we need to carry out the calculations analogous to those that
were carried out in [2], while taking into account the real boundary conditions that are not described
by harmonious functions, in order to determine the collective motion of granules under the action of
the displacement of the part surface. However, the results obtained show that, immediately in the
vicinity of the oscillating surface, the averaged velocity of the granules is equal to the product of the
amplitude of the oscillations of the plane and the circular rotational speed of the engine of the vibration
machine, which drives the reservoir working surfaces (see Figure 7a).

Thus, we can write the following relation:

〈Vd〉 = Ad ωd (46)

where Ad and ωd are the product of the amplitude of the oscillations of the reservoir surface and the
rotational speed of the vibrating machine engine, respectively.
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Proceeding from the Equations (42) and (43), the Equation (36) for the root-mean square velocity
of chaotic motion—〈Vx〉 near the part surface can be written in the following form:

〈Vx〉 =

√
As2 ωs2 e− f1(d) (y− f2(d))

2.99
+ 3

4 γ
(
As ωs e−3.3y/10d + Ad ωd

)2
+

+

√
3γ

2

(
As ωs e−3.3y/10d + Ad ωd

) (47)

4. The Removal of Metal from the Part Surface as A Result of Multi-Agent Group Action of the
Oscillating Reservoir Surface and the Part

The expression for determining the removal of metal from the surface of a part, depending on the
frequency and amplitude of oscillations of the part surface and the reservoir, is known [21]. However,
for our case, this expression is unacceptable, since it assumes a processing mode in the conditions of
immovable fixation of the part.

In the case under consideration, when the autonomous movement of both the reservoir working
surface and the surface of the processed parts simultaneously takes place, it is necessary to determine
the rate of chaotic movement of the granules, which is proportional to the product of the amplitude
and angular velocity of oscillations of the plane wall of the reservoir.

It is obvious that, in our case, the speed of chaotic motion of molecules near the part surface is
equal 〈Vx〉; therefore, the formula for metal removal will be as follows:

Q =
CΣ R 〈Pm〉

0.875 (1−kωdωd
2
−kωsωs

2+kAdAd
2+kAsAs

2)
(1+C 〈Vx〉

2)
×

×〈Vx〉
2 F(k)sprot

(48)

Here, F(k) and spro is a function that depends on the coefficient of friction and the surface area of the
processed parts; CΣ and 〈Pm〉 is a combined constant, which is determined by the mechanism of “cutting”
by a granule of metal from the surface of the processed part and by the pressure exerted by the group
of pseudo-gas granules on the processed part surface; kωs, kωd, kAs, kAd are the coefficients of the speed
〈Vx〉 corrections to the circulation motion of the granules according to the parameters of the frequency
and amplitude of the vibrations of the reservoir working surface and the part; C ≈ (10− 30) c2

m2 ; R is
the average radius of the abrasive granule; and, t is the time of vibration processing.

The single medium granule value, averaged over the pressure 〈Pm〉 of cross-section of the reservoir,
is determined by the relation:

〈Pm〉 =
CprAω

(1 + CA2ω2)
(1− ε)

3
√

2Lr
2R(1+CA2ω2)

(49)

where r is the filling factor of the volume with granules (≈ 0.66) and R is the radius of the
abrasive granules.

Function F(k) is determined by the following expression:

F(k) = (cos(tn−1(7k))− 7
2 k(1−sin(tn−1(7k)))(1−sin(tn−1(7k))))

( π2 −tn−1(7k))
+

+
(1−cos(tn−1(7k)))

2

7k(tn−1(7k))

(50)

Function F(k) is derived from the assumption that the reflection of the granule from the processed
part surface in the direction perpendicular to its surface is absolutely elastic, that is, without the loss of
kinetic energy. Taking into account the recovery coefficient and Equations (9)–(13), we assume that
k = 0.5(1 + β) f [18].

The Equation (50) is illustrated by a curve (Figure 9).
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Figures 10–19 show the results of calculations of the metal removal, which were obtained from 
Equation (48). 
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Figures 10–19 show the results of calculations of the metal removal, which were obtained from
Equation (48).
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Figure 10. Dependence of the metal removal Q, mg/h·cm2 on the amplitude of Ar, mm and the oscillation
frequency ωr, Hz of the reservoir working surface for different values of the vibration frequency of the
processed part surface: (Q1, Q2, Q3, Q4, Q5—metal removal at ωd = 0; 16; 34; 52; 70 Hz); amplitude
Ad of the oscillation of the part surface 1 mm.
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Figure 11. Dependence of the metal removal Q, mg/h·cm2 on the amplitude of Ar,mm and the oscillation
frequency ωr, Hz of the reservoir working surface for different values of the amplitude of oscillations of
the part surface: (Q1, Q2, Q3, Q4, Q5—metal removal at Ad = 1; 2; 3; 4; 5 mm); frequency of oscillations
ωr of the reservoir surface 16 Hz.
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Figure 12. Dependence of the metal removal Q, mg/h·cm2 on the amplitude of Ad, mm and frequency
ωd, Hz of oscillations of the processed part surface for various values of the amplitude of oscillations of
the reservoir working surfaces: (Q1, Q2, Q3, Q4, Q5—metal removal at Ar = 1; 2; 3; 4; 5 mm); frequency
ωr of oscillations of the reservoir working surface 50 Hz.
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Figure 13. Dependence of the metal removal Q, mg/h·cm2 on the amplitude Ad, mm and frequency ωd,
Hz of oscillations of the processed part surface for various values of the vibration frequency of oscillations
of the reservoir working surfaces: (Q1, Q2, Q3, Q4, Q5—metal removal at ωr = 0; 16; 34; 52; 70 Hz);
the amplitude Ar of oscillation of the working reservoir surface is 1 mm.
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Figure 14. Dependence of the metal removal Q, mg/h·cm2 on frequencies of oscillations ωr, Hz and ωd,
Hz of the reservoir working surface and the processed part for different values of the amplitude of the
oscillations of the part: (Q1, Q2, Q3, Q4, Q5—metal removal at Ar = 1; 2; 3; 4; 5 mm); the amplitude Ar

of oscillation of the reservoir working surface is 1 mm.
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Figure 15. Dependence of the metal removal Q, mg/h·cm2 on frequencies oscillations ωr, Hz and ωd,
Hz of the reservoir working surface and the processed part for different values of the amplitude
of the oscillations of the reservoir working surface: (Q1, Q2, Q3, Q4, Q5—metal removal at
Ad = 1; 2; 3; 4; 5 mm); the amplitude Ad of oscillations of the part surface 1 mm.
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Figure 16. Dependence of the metal removal Q, mg/h·cm2 on the amplitudes of oscillations Ar, mm
and Ad, mm of the reservoir working surface and the processed part for different values of frequencies
of oscillations of the part surface: (Q1, Q2, Q3, Q4, Q5—metal removal at ωd = 0; 16; 34; 52; 70 Hz); the
oscillation frequency ωr of the reservoir working surface is 50 Hz.
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Figure 17. Dependence of the metal removal Q, mg/h·cm2 on the amplitudes of oscillations Ar,
mm and Ad, mm of the reservoir working surface and the processed part for different values of
frequencies of oscillations of the working reservoir surface: (Q1, Q2, Q3, Q4, Q5—metal removal at ωr

= 0; 16; 34; 52; 70 Hz); the frequency ωd of oscillations of the part surface 50 Hz.
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Figure 18. Dependence of the metal removal Q, mg/h·cm2 on the frequencies of oscillations ωr, Hz and
ωd, Hz of the reservoir working surfaces and the processed part for different values of the distance
between them: (Q1, Q2, Q3, Q4, Q5—metal removal at Y = 40; 80; 120; 160; 200 mm); the amplitudes of
the oscillations of the reservoir surface Ar and the processed part Ad planes are 1 mm.
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Figure 19. Dependence of the metal removal Q, mg/h·cm2 on the amplitudes of oscillations Ar, mm and
Ad, mm of the reservoir working surfaces and the processed part for different values of the distance
between them: (Q1, Q2, Q3, Q4, Q5—metal removal at Y = 40; 80; 120; 160; 200 mm); the frequencies of
oscillations of the reservoir ωr working surfaces and the part ωd surface 50 Hz.

Analysis of the metal removal during the processing of parts with multi-energy vibration
processing technology allowed for us to make the following comments to the obtained graphical
dependencies when varying the parameters of amplitude and frequencies of oscillations of the reservoir
surface and the processed part, as well as the distance between them and the size of the granules of the
working medium used.

It is established that the oscillatory movements of the part surface and the vibrating machine
reservoir provide the energy of the movement of the granules necessary for the machining of the part.
In this case, if the part surface transmits the force impulse directly to the adjacent granules, the transfer
of kinetic energy from the reservoir surface to the granules of the abrasive located in the immediate
vicinity of the part surface should occur through two “channels”:

—the first “channel” transmits the impulse of chaotic movement of the granules—〈Vsd〉. In this
case, the dependence of its magnitude on the distance to the reservoir surface is shown graphically
(Figure 4); and,

—the second “channel” for impulse transmission determines the pseudo-wave motion of the
working medium granules. The dependence of the time-averaged velocity of the oscillatory motion of
the granules under the action of a pseudo-acoustic wave—〈Vsda〉 is mapped (Figure 8).

The quantitative relationships that were obtained in the work make it possible to calculate the
efficiency of metal removal in the case of multi-energy vibration processing of parts, depending on the
amplitudes and vibration frequencies of the part and vibrating machine, the distance from the reservoir
wall to the processed parts surface, and the diameter of the abrasive medium granules. The total
multi-agent action on the vibration processing process is graphically shown (Figures 10–21). On all
graphical dependencies, various constants are added to the values of metal removal to improve visual
perception. The constants are shown for each surface. Without such an operation, the dependencies
can partially merge with each other.
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Figure 20. Dependence of the metal removal Q, mg/h·cm2 on the amplitudes of oscillations Ar, mm and
Ad, mm of the reservoir working surfaces and the processed part for different values of diameters of the
abrasive granules: (Q1, Q2, Q3, Q4, Q5—metal removal at d = 10; 15; 20; 25; 30 mm); the frequencies of
oscillations of the reservoir ωr working surfaces and the part ωd surface 50 Hz.
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Figure 21. Dependence of the metal removal Q, mg/h·cm2 on the frequencies of oscillations ωr, Hz
and ωd, Hz of the reservoir working surfaces and the processed part surface for different values of the
diameters of the abrasive granules: (Q1, Q2, Q3, Q4, Q5—metal removal at d = 10; 15; 20; 25; 30 mm);
amplitudes of oscillations of the reservoir Ar working surfaces and the part Ad 1 mm.

The metal removal Q, depending on the amplitude Ar and the oscillation ωr frequency of the
reservoir surface for various values of the amplitude Ad and frequency ωd of oscillations of the part
surface is graphically shown (Figures 10 and 11). It can be seen from the dependences that for small
values of the amplitude and frequency of the oscillations of the part surface, the dependence of the
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metal removal on the oscillation frequency of the reservoir surface reaches its maximum. The amount
of metal removal decreases with an increase in the amplitude and frequency of oscillations of the
part surface and the frequency of oscillations of the reservoir surface. This is connected with the
redistribution of the vibrational energy into the energy of the granules’ motion, that is, when the
energy of the chaotic movement of the working medium granules decreases, the metal removal is
also decreased.

The metal removal Q depending on the amplitude Ad and frequency ωd of the oscillation of the
part surface for different values of the amplitude and frequency of oscillations of the reservoir surface
is graphically shown (Figures 12 and 13). The nature of the dependence of metal removal (Figure 12) is
similar to the previously presented trends (Figures 10 and 11). The dependences have some differences,
which result from the fact that the metal removal maximum is manifested at all values of the oscillation
frequencies of the reservoir surface (Figure 13). This is due to the weakening of the propagation of
oscillations as they move away from the reservoir surface to the part surface.

The metal removal Q depending on the oscillation ωr frequencies and of the reservoir surface the
ωd part surface for different values of the oscillation amplitude of the part surface and the reservoir
surface is graphically shown (Figures 14 and 15). The dependence of the metal removal on the
oscillation ωr frequency is practically absent (Figure 14). This is due to the damping of the oscillations
of the reservoir surface as they propagate from the reservoir surface to the part. The dependence of the
metal removal on the frequency of oscillations of the part surface has an ordinary character with a
clearly expressed maximum. As the amplitude of the oscillations of the reservoir surface increases,
the influence of the frequency of their oscillations on the metal removal begins to appear (Figure 15).
The non-monotonic dependence of the metal removal on the vibration frequency of the ωd part surface
is not manifested due to the small value of the oscillation amplitudes of the part.

Thus, proceeding from the regularities graphically shown (Figures 10–15), it can be concluded
that in the case of multi-energy treatment the combined action of the frequencies and amplitudes of
vibrations of the vibration machine reservoir surfaces and the processed part surface exerts influence
upon the distribution of kinetic energy between the movement of granules and their chaotic movement.

The metal removal Q, depending on the amplitudes Ar of oscillations and of the reservoir wall and
Ad part surface is graphically shown (Figures 16 and 17) for different values of vibration frequencies of
the surfaces of the part and the vibrating machine reservoir. The dependences of the metal removal on
the amplitudes are of monotonic character. At the same time, the dependence of metal removal on the
oscillation frequencies of the part and the reservoir surface is not monotonic. This is manifested in the
need to sharply increase the values of the constants added to the values of metal removal to facilitate
visual perception of the dependencies, which begins at a frequency of 34 Hz.

The metal removal Q, depending on the frequencies and amplitudes of oscillations of the reservoir
surface and the part surface, is graphically shown for different values of the Y distances between the
surfaces of the reservoir and the part (Figures 18 and 19). These dependences qualitatively coincide
with those given earlier (Figures 15 and 16). On the graph, the presence of the optimum relationships
between the oscillation frequencies of the reservoir surface and the part is clearly visible (Figure 18).
It ensures maximum metal removal. The dependences illustrate the monotonous increase in the metal
removal rate as the amplitude of oscillations of the reservoir surface and the part surface increases
(Figure 19).

The metal removal Q dependence on the amplitude and frequency of vibrations of the reservoir
surface and the part is graphically shown (Figures 20 and 21) for different values of diameters of
abrasive granules. The results show that, as in the previous graphs, the maximum value of metal
removal is achieved at some optimum values of vibration frequencies of the reservoir surface and the
part (Figure 21). The dependence illustrates the situation when the maximum value of metal removal
is realized at the maximum values of the oscillation amplitudes of the reservoir surface and the part
(Figure 20).
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It should be separately noted that, when constructing metal removal surfaces (Figures 20 and 21),
we did not have to use the method of adding some constants to improve the visual perception of
the graphs, as was done earlier (Figures 10–19). This is a consequence of a sharp decrease in the
frictional losses of kinetic energy at the moment of mutual collisions of the granules of the working
medium during the transfer of the force impulse from the reservoir surface to the part surface as the
granule sizes increase (Figures 4 and 9). This explains the use of a mixture of the working medium
abrasive granules with two different sizes but the same masses, if vibration processing of the part
surface is required with the help of small size granules. The granules of large size abrasive in such a
medium work as “distributors” of a power pulse with smaller frictional losses than the granules of
small dimensions during mutual collisions. The identity of the masses of large and small granules is
explained by the fact that the transfer of momentum from large abrasive granules to small granules
will be the highest possible in this case.

5. Conclusions

The modelling of processes occurring during multi-energy vibration processing of parts, conducted
on the basis of the application of the kinetic theory of gases, makes it possible to find the optimal
combination of various process parameters in terms of maximizing the intensity of metal removal.
Among these parameters are: frequencies and amplitudes of oscillations of the vibration machine
reservoir surface and the surface of the processed part; the distance between them; and, the size of
the granules.

It is quite clear that the whole variety of shapes of processed parts cannot be quantitatively
described by this model, because of the simplicity that was used as a basis for the design scheme (the
reservoir surface and the parallel flat part surface). At the same time, the search for optimal relationships
between the parameters that characterize the process of vibration processing, for each particular shape
of the processed parts, requires additional experimental studies. However, the developed model
establishes the mutual influence of the main parameters of vibration processing on its efficiency. Thus,
the model makes it possible to carry out experiments to optimize the process while taking into account
the influence of all the characteristics and, consequently, its application will significantly reduce the
time and material costs of conducting such experiments.

An analysis of experimental studies of the vibration multi-energy processing, which consist in
joint action of the forces on the working medium and the processed part, made it possible to establish
a numerical increase in the mass metal removal by 1.6–1.8 times in comparison with traditional
vibration processing, in which there is no independent action on the working medium of autonomously
oscillating processed parts. In addition, the use of multi-energy processes makes it possible to establish
the dependence of the weight metal removal on the vibration modes of the working surfaces reservoir
and the processed parts, as well as their distances from these surfaces and the size of the abrasive
working medium granules being used. The problems that are considered in this article can be used
in the development of draft standards governing the functional indicators of finishing and grinding
vibrating machines.
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