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Abstract 12 

The accurate forecast of water demand is challenging for water utilities, specifically when 13 

considering the implications of climate change. As such, this is the first study that focuses on 14 

finding associations between monthly climate factors and municipal water consumption, using 15 

baseline data collected between 1980 and 2010. The aim of the study was to investigate the 16 

reliability and capability of a combination of techniques, including Singular Spectrum Analysis 17 

(SSA) and Artificial Neural Networks (ANNs), to accurately predict long-term, monthly water 18 

demands. The principal findings of this research are as follows: a) SSA is a powerful method 19 

when applied to remove the impact of socio-economic variables and noise, and to determine a 20 
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stochastic signal for long-term water consumption time series; b) ANN performed better when 21 

optimised using the Lightning Search Algorithm (LSA-ANN) compared with other approaches 22 

used in previous studies, i.e. hybrid Particle Swarm Optimisation (PSO-ANN) and 23 

Gravitational Search Algorithm (GSA-ANN); c) the proposed LSA-ANN methodology was 24 

able to produce a highly accurate and robust model of water demand, achieving  a correlation 25 

coefficient of 0.96 between observed and predicted water demand when using a validation 26 

dataset, and a very small root mean square error of 0.025.  27 

Keywords 28 

Artificial Neural Network, climate change, Lightning Search Algorithm, Singular Spectrum 29 

Analysis and water prediction 30 

1 Introduction 31 

Nowadays, many countries face numerous concurrent challenges in the management of, and 32 

access to, potable water. The authors in UNDP (2013), Ferguson et al. (2013) and Hossain et 33 

al. (2018), among many others, have identified the impact of global warming and related 34 

climate change, such as an increased frequency and severity of drought and flooding as one of 35 

the most significant impacts on our aquatic environment. As a result, considerable pressure is 36 

being placed on water infrastructures. It has also been reported that global warming generates 37 

considerable uncertainties on the long-term planning projections of water demand in urban 38 

areas (Urich and Rauch (2014). These uncertainties can lead to significant problems in other 39 

related areas such as supply, operation and cost, which traditional planning methods cannot 40 

solve. 41 
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The aforementioned increasing concerns about the impact of climate change have led to the 42 

need to plan and manage water in advanced, to guarantee meeting municipal water demand to 43 

the satisfaction of the consumer (Zhang et al., 2019). This type of strategic planning, as 44 

conveyed by Cutore et al. (2008), means planning now for an uncertain future. However, since 45 

conventional models are no longer adequate to predict urban water consumption under the 46 

pressure of climate change in the future, several researchers have been investigating and 47 

improving various mathematical models to develop techniques to better estimate essential 48 

parameters and better model forecast uncertainties (Marlow et al., 2013).  49 

The accurate water demand prediction can play an important role in optimising the design, 50 

operation and management of municipal water supply infrastructures (Pacchin et al., 2019). 51 

This can also minimise the uncertainty that results from a rapid increase in water demand due 52 

to the impact of climatic factors (Bougadis et al., 2005). Previous studies such as Gato et al. 53 

(2007), Tian et al. (2016) and Brentan et al. (2017), have established that water consumption 54 

is affected by weather variables throughout the year. In this area of research, Artificial Neural 55 

Networks (ANNs) have been developed and compared with various traditional statistical 56 

models, the results indicating that ANN techniques offer better forecasting models such as 57 

those in Sebri (2013), Behboudian et al. (2014), Mouatadid and Adamowski (2016) and Guo 58 

et al. (2018).  59 

The need for increased reliability, capability and accuracy regarding data-driven techniques 60 

has motivated the development of hybrid models, which would integrate two or more 61 

techniques with the aim of outperforming the capability of single models. In these hybrid 62 

approaches, typically one of the techniques would be deemed as the primary one, and the others 63 

would work as pre-processing or post-processing methods (Araghinejad, 2014). Recently, 64 
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several hybrid techniques have been applied to predict water demand, for example Anele et al. 65 

(2017), Altunkaynak and Nigussie (2018) and Seo et al. (2018). 66 

Although previous studies have recognised the impact of weather factors, research has yet to 67 

thoroughly and systematically investigate the effect of these factors in terms of using adequate 68 

data pre-processing to remove the impact of socio-economic factors, which are insensitive to 69 

climate change, and to apply a powerful and effective forecasting technique on a systematic 70 

basis, instead of a commonly used trial and error approach. As such, studies to date have not 71 

been able to detect to what extent climate factors have driven municipal water demands, the 72 

debate continuing about the best strategies for the management of municipal water demand, 73 

under the impact of climate change. 74 

Previous research on the influence of climate change on municipal water demand using a 75 

recommended baseline period has not been properly conducted. These studies have suffered 76 

from inadequate sample size, the mixing of evidence for climate change impact with 77 

socioeconomic factors and several conceptual and methodological weaknesses. 78 

Various optimisation approaches can be adopted to handle a range of issues for different 79 

application domains. The goal of the optimisation algorithm is to determine the best parameter 80 

values of the system under different conditions (Ahmed et al., 2016). Recently, the gravitational 81 

search algorithm (GSA) proposed by Rashedi et al. (2009)  has been applied to tackle various 82 

optimisation issues such as unconstrained global optimisation problems (García-Ródenas et al., 83 

2019), hydrology (Karami et al., 2019) and in the geothermal power plant optimisation 84 

(Özkaraca and Keçebaş, 2019). Particle Swarm Optimisation (PSO) algorithm has been used 85 

in different fields such as sediment yield forecasting (Meshram et al., 2019), operation rule 86 
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derivation of hydropower reservoir (Feng et al., 2019) and semi-supervised data clustering (Lai 87 

et al., 2019).  88 

Following the above review, the principal objectives of this paper are: 89 

1) To remove the effect of socioeconomic factors which are insensitive to weather and 90 

have a deterministic relationship with water consumption, and also to remove noise 91 

from water consumption for a long-term, monthly time series. 92 

2) To provide a new reliable and efficient hybrid technique (LSA-ANN) to forecast long-93 

term monthly municipal water demands and evaluate how it compares with hybrid 94 

(GSA-ANN and PSO-ANN) models. 95 

3) To assess the long-term influence of climate change using monthly municipal water 96 

demand relative to the period 1980-2010. 97 

To the best of our knowledge, this is the first study that tackles the aforementioned 98 

objectives to assess long-term influence of climate change using monthly municipal water 99 

demand from the baseline period 1980-2010. 100 

2 The study area  101 

One catchment area in Australia, Greater Melbourne, Victoria, was employed to evolve the 102 

water demand model. Yarra Valley Water (YVW), is one of three retail water utilities that 103 

deliver essential municipal water supplies and sewerage services to more than 1.8 million 104 

people and 50,000 businesses, in the catchment area of Yarra River, Melbourne City. YVW 105 

buy water wholesale from Melbourne Water, which is usually harvested from protected 106 

catchments in the mountains. They deliver water to different sectors including commercial, 107 

industrial and residential (indoor and outdoor uses) users. The service area managed by the 108 
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company is approximately 4,000 square kilometres, covering the northern area of Melbourne 109 

and the eastern suburbs, from Wallan in the north to Warburton in the east (YVW, 2017). 110 

3 Model data set 111 

This study will use monthly historical data containing information such as measured municipal 112 

water consumption (Megalitre, ML), maximum temperature (°C), minimum temperature (°C), 113 

mean temperature (°C), rainfall (mm) and solar radiation (MJ/m2) over the periods 1980-2010. 114 

These data were collected from the Yarra Valley Water Company from areas they serve in 115 

Melbourne city.  116 

This range of climate factors have been used by several researchers (Kadiyala et al., 2015, 117 

Osman et al., 2017, Fenta Mekonnen and Disse, 2018) in different areas of study, to assess the 118 

impact of climate change as they are considered robust predictors, able to simulate municipal 119 

water demands, as shown in Zubaidi et al. (2018a). Socioeconomic variables such as 120 

population, water price and household income are deterministic signals (Zhoua et al., 2000, 121 

Gato et al., 2005) and for this reason, were not included in the current analysis, as these signals 122 

are out of the scope of this study. 123 

Melbourne City has various meteorological stations that are spread throughout the city. The 124 

Yarra Valley Company provided us with the average daily values of all the climate factors 125 

covered by its service area. The aforementioned company had obtained these data from the 126 

Australia Bureau of Meteorology, which had applied the arithmetic mean method to calculate 127 

average values of climate factors. With this technique, all climate variable values from different 128 

metrological stations are added together and then divided by the total number of stations, to get 129 

the mean value of that variable as shown in Eq. (1). This is a simple and standard technique to 130 
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calculate average daily values. Each metrological station has equal weight, regardless of its 131 

location (Bhavani, 2013). 132 

𝑝𝑚 = {(𝑝1 + 𝑝2 + 𝑝3 + ⋯+ 𝑝𝑛)/𝑛}              (1) 

4 Methodology 133 

The municipal water demand model proposed here allows a long-term time series demand 134 

prediction to be calculated regarding climate change. Figure 1 presents a diagrammatic 135 

representation that contains the steps required to build the water prediction model. 136 
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 137 

Fig. 1 Flowchart showing the steps required to forecast future municipal water demand 138 

4.1 Pre-processing of data 139 

The data pre-processing approach followed in this study comprises three techniques: 140 

normalisation, cleaning and determination model input. They are detailed below. 141 
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4.1.1 Normalisation 142 

In this study, the natural logarithm method was used to normalise the data to be more static and 143 

to remove any collinearity from the independent variables (Behboudian et al., 2014). 144 

4.1.2 Cleaning 145 

Data cleaning includes the identification and removal of trends and non-stationary components 146 

from a data set, as explained in Abrahart et al. (2004). A time series 𝑦t can be decomposed into 147 

trend (T), oscillatory (O), stochastic (S) and noise (Ɛ) components (trend and oscillatory 148 

considered deterministic signals) as shown in Eq. (2) (Araghinejad, 2014).  149 

𝑦𝑡 = 𝑇𝑡 + 𝑂𝑡 + 𝑆𝑡 + Ɛ𝑡 (2) 

To identify outliers, the box and whisker method was used, and the outliers then treated. The 150 

SSA technique was also used to detect the stochastic signals for long-term monthly municipal 151 

water consumption and the climate variables time series (i.e. to remove the impact of 152 

socioeconomic variables and noise from the municipal water consumption data). 153 

SSA is a robust method used to decompose the raw time series, which may exhibit nonlinear 154 

properties, and to uncover the stochastic component after the removal of noise, trend and 155 

oscillatory components, as illustrated by Khan and Poskitt (2017). The stochastic component 156 

helps to identify the impact of climate volatility on water consumption, to enhance the accuracy 157 

of the forecasting and to decrease the scale of error between measured and predicted water 158 

demand (Zubaidi et al., 2018a). The SSA method consists of two steps: analysis of the original 159 

time series into various principal components (PCs) containing trend, oscillatory and irregular 160 

components, followed by noise removal to allow the reconstruction of a new time series that 161 

has less noise (Zubaidi et al., 2018a). This approach does not require the imposition of any 162 
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statistical assumptions such as normality or linearity. It has been successfully applied in 163 

different sectors including industry (Al-Bugharbee and Trendafilova, 2016), mid-term water 164 

demand prediction (Zubaidi et al., 2018c) and hydrology (Ouyang and Lu, 2017). Further 165 

details about SSA can be found in Golyandina and Zhigljavsky (2013). 166 

4.1.3 Determination model input 167 

The choice of the explanatory variables that influence water consumption as model input data, 168 

is an important step in the development of not only an ANN forecasting model, but any good 169 

model (Maier and Dandy, 2000). In this study, cross-correlation and variance inflation factor 170 

(VIF) techniques were applied to select the model input and examine for multicollinearity 171 

among them, as previously carried out by Zubaidi et al. (2018a).   172 

To decide on the appropriate sample size needed to develop a good model, Tabachnick and 173 

Fidell (2013) propose using a sample size that is dependent on the number of predictors, as 174 

shown in Eq. (3). In this study, the sample size is 372. 175 

𝑁 ≥ 104 + 𝑚 (3) 

where N = sample size and m = number of independent variables. 176 

4.2 Artificial neural network techniques for forecasting municipal water demand 177 

This section will briefly present the techniques used in this study, including ANN, LSA as an 178 

optimisation algorithm, and the hybrid LSA-ANN technique.    179 
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4.2.1 Artificial Neural Networks (ANN) 180 

Previous studies have demonstrated the power of ANN to produce good non-linear models for 181 

urban water demand (Toth et al., 2018). However, unlike other applications of hydrology, ANN 182 

has not been extensively used in municipal water demand modelling (Zubaidi et al., 2018b), 183 

even when it has proven to be able to deal with a large number of input and output patterns, 184 

and is capable of handling different complex nonlinear environmental problems, making it 185 

appropriate for long-term prediction modelling (Mutlu et al., 2008). 186 

For this study, a multilayer perceptron (MLP) network was used (a feed-forward, 187 

backpropagation network), along with the Levenberg-Marquardt learning algorithm (LM). The 188 

tansigmoidal activation function was adopted in both hidden layers to cover all negative input 189 

values, while the output layer operated under a linear activation function to cover the positive 190 

values of water demand. The model was implemented using the MATLAB Neural Network 191 

Toolbox (Mathworks, 2017). The data was randomly separated into three sets include training, 192 

testing and validation sets, using 70%, 15% and 15% instances for each set, respectively, as 193 

previously done in Zubaidi et al. (2018b) and Zubaidi et al. (2018a). 194 

4.2.2  Overview of the Lightning Search Algorithm for ANN optimisation 195 

Optimisation in this context refers to the process of determining the best solution for issues 196 

relying on input variables after locating the fitness function as a constraint. Often, the 197 

formulation of this function is dependent on a certain application and can be expressed as 198 

minimal error / cost, or optimal design / management. LSA is a new, nature-inspired 199 

metaheuristic optimisation algorithm, based on the natural phenomenon of lightning to tackle 200 

constraint optimisation issues. The hypothesis of this algorithm is inspired by the probabilistic 201 

nature and tortuous characteristics of lightning discharged during a thunderstorm. The 202 
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generalisation of the LSA algorithm is via the mechanism of step leader propagation. This 203 

algorithm allows for the involvement of fast particles, identified as projectiles, in the 204 

configuration of the binary tree structure of a step leader. Three kinds of projectiles are 205 

developed to represent transition projectiles: the 1st step leader population N; the space 206 

projectiles that attempt to be the leader, and the lead projectile representing the optimum 207 

positioned projectile found amid N number of step leaders (Mutlag et al., 2016, Shareef et al., 208 

2015). 209 

LSA is similar to other metaheuristic algorithms in that it needs a population to start the search 210 

(Ahmed et al., 2016). Further details about LSA algorithm, including a review of its basic 211 

concepts, can be found in Shareef et al. (2015). 212 

4.2.3 Hybrid Lightning Search Algorithm-Based Artificial Neural Network 213 

ANN can be employed to predict municipal water demands using climate variables as the 214 

model input (Zubaidi et al., 2018a). To do so, it is important to consider the number of neurons 215 

in the hidden layers and the learning rate coefficient as these are essential factors of an ANN 216 

architecture. These factors are responsible for mapping the relationship between the input and 217 

output variables used to develop the ANN model and to minimise error (Gharghan et al., 2016). 218 

However, the choice of neurons and learning rate are dependent on trial and error processes 219 

that may not offer an optimal solution. LSA addresses this issue, thus enhancing the 220 

performance of ANN, by estimating the best values for learning rate coefficients and the 221 

number of neurons in each hidden layer of the ANN model. It uses a root mean squared error 222 

(RMSE) based fitness function to improve the performance of the LSA-ANN by minimising 223 

the error function. 224 
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4.3 Performance measurement criteria 225 

After calibrating all the model structures using the calibration/training data set, performance 226 

was assessed using several standard statistical criteria which identify the errors related to the 227 

model simulations (Adamowski, 2008). These criteria offer a means of measuring estimate 228 

accuracy, this implying that estimate errors play an important role in the selection of an 229 

appropriate model and in providing insight for alterations to current models to reduce 230 

deviations in future simulations (Donkor et al., 2014). The following statistical criteria will be 231 

used in the current model's calibration: mean absolute error (MAE), mean squared error (MSE), 232 

root mean squared error (RMSE) and correlation coefficient (R). These criteria are defined in 233 

Eq.s (4) through to (7). 234 

𝑀𝐴𝐸 =
∑ |𝑦𝑜 − 𝑦𝑝|𝑁

𝑚=1

𝑁
 (4) 

𝑀𝑆𝐸 =
∑ (𝑦𝑜 − 𝑦𝑝)

2𝑁
𝑚=1

𝑁
 (5) 

𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑜 − 𝑦𝑝)
2𝑁

𝑚=1

𝑁
 (6) 

𝑅 =

[
 
 
 ∑ (𝑦𝑜 − 𝑦𝑜̅̅̅)(𝑦𝑝 − 𝑦𝑝̅̅ ̅)𝑁

𝑚=1

√∑(𝑦𝑜 − 𝑦𝑜̅̅̅)2 ∑(𝑦𝑝 − 𝑦𝑝̅̅ ̅)
2

]
 
 
 

 (7) 

where yo represents observed water consumption; yp, simulated water demand; N, sample size; 235 

𝑦𝑝̅̅ ̅, mean of simulated demand, and  𝑦𝑜̅̅̅, the mean of observed consumption. 236 
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The stationarity of the stochastic time series for all variables has been examined by the 237 

Augmented Dickey-Fuller (ADF) test and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) 238 

test. A residual analysis will also be used to check the goodness of fit of the ANN model. 239 

5 Results and discussion  240 

5.1 Model inputs 241 

This section corresponds to step A in Fig. 1. Five monthly climate factors have been used to 242 

assess the impact of climate change on monthly water consumption. These factors are 243 

maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tmean), 244 

solar radiation (Radi) and rainfall (Rain). Following data pre-processing, which included 245 

normalisation by natural logarithm and cleaning data outliers, a pre-treatment signal analysis 246 

(SSA) was used to uncover the stochastic component. Components of the original time series 247 

were examined to detect the stochastic signal. It represents the third signal in water 248 

consumption and all the climate factors time series, except the solar radiation time series, which 249 

was the second signal. The stationarity of the stochastic signals has been examined using ADF 250 

and KPSS tests. Figure 2 presents the original time series and the first four components of water 251 

consumption and all the climate factors.  252 

 253 

 254 

 255 

 256 
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Fig. 2 Original signal and the 1st four components obtained by SSA 

To detect noise components, Ghodsi et al. (2009) pointed out that a significant drop in 257 

eigenvalue spectra values could be assumed as the beginning of pure noise. Figure 4-a shows 258 

the graph of the eigenvalue spectra for the water consumption time series, where it can be seen 259 

that the first signal, which represents a trend, was prevailing and covered all the details. 260 

Therefore, the first signal was removed, and the graph redrawn in section b. In this section, a 261 

significant drop occurred in the third signal, this representing the beginning of the noise floor. 262 
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A B 

Fig. 3 Eigenvalues of water consumption time series 

 

A variance inflation factor (VIF) was used to examine the multicollinearity between the model 263 

input variables. Three independent factors, Tmax, Radi and Rain, were selected as the model 264 

input. The sample size required for the model was estimated by using Eq. (3), which revealed 265 

that 107 (104+3) were needed. In this study, the number of cases is N=372, which is more than 266 

three times the minimum required. 267 

A Pearson product-moment correlation coefficient was used to determine the relationship 268 

between the stochastic components of water consumption and the chosen climate variables. 269 

Figure 4 shows the correlation between the independent and dependent variables. A strong 270 

correlation was found between the stochastic signals of long-term water consumption and 271 

maximum temperature R=0.94. This result reveals that the data pre-processing techniques are 272 

powerful. 273 
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 274 

Fig. 4 Correlations between water consumption and climate factors 275 

From these results, we can see that water demand (dependent variable) can be expressed as a 276 

function of Tmax, Radi and Rain (independent variables). 277 

5.2 Application of the hybrid LSA-ANN algorithm 278 

This section corresponds to step B in Fig. 1. A MATLAB toolbox was used to run the LSA-279 

ANN, GSA-ANN and PSO-ANN algorithms. In order to estimate the best number of hidden 280 

neurons and the optimum learning rate coefficient of all three techniques, five population sizes, 281 

10, 20, 30, 40 and 50, were used. Note that these population sizes relate to the size of the swarm 282 

which is different to the sample size mentioned before. As can be seen in Fig. 5, a population 283 

size of 50 provides the best solution for all three algorithms. Closer inspection of the fitness 284 

function values for all algorithms shows that the RMSE for the LSA-ANN algorithm (after 40 285 

iterations) is 0.0236, whereas GSA-ANN does not improve beyond an RMSE of 0.0241. The 286 

PSO-ANN algorithm only reaches its best RMSE of 0.0245 after 62 iterations. As such, the 287 
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LSA-ANN algorithm outperforms GSA-ANN and PSO-ANN, as it achieves a smaller error 288 

(better performance) in a smaller number of iterations, making it a less complex model. Table 289 

1 lists the design parameters of the ANN model based on the LSA-ANN algorithm. 290 

  

  

Fig. 5 Fitness function for various populations using the computational intelligence 

algorithms 
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Table 1 ANN-designed parameters 291 

Parameter Value Type 

Number of inputs 3 As discussed in section 5.1 

Number of outputs 1 Our target, which is water demand 

Number of hidden layers 2 As used in (Zubaidi et al., 2018a)a 

Number of neurons in hidden layer N1 3 Estimated by LSA 

Number of neurons in hidden layer N2 4 Estimated by LSA 

Learning rate coefficient 0.1988 Estimated by LSA 

5.3 Application of Artificial Neural Networks 292 

This section corresponds to step C in Fig. 1. After identifying the parameters for the ANN, the 293 

model was run several times to find the best neural network architecture to forecast municipal 294 

water demand. A range of statistical tests was applied to evaluate the performance of the model. 295 

Firstly, the results of the correlation analysis and residual distribution between observed and 296 

simulated municipal water, are presented in Fig. 6, the correlation coefficient for the validation 297 

stage, 0.96. 298 

 299 

Fig. 6 LSA-ANN algorithm performance for the validation data 300 
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Additionally, table 2 provides three measures of the differences between the predicted and 301 

observed time series, to evaluate the model performance. It can be seen that the differences 302 

between the observed and predicted water demands are negligible (MSE= 6.3911 e-04).  303 

               Table 2 Three statistical criteria for the validation data 304 

Data MAE MSE RMSE 

Validation 0.0201 6.3911 e-04 0.0253 

MAE: mean absolute error, MSE: mean square error, RMSE: root mean square error  305 

All these results reveal and confirm that:  306 

(1) Tmax, Rain and Radi are reliable predictors to use to simulate long-term municipal water 307 

demand, which were successfully used previously to simulate mid-term water demand.  308 

(2) Data pre-processing techniques have a significant role to play, specifically the SSA method, 309 

to uncover the stochastic signal and remove the impact of socio-economic factors and noise for 310 

long term time series. That means these data pre-processing techniques are effective to apply 311 

for the long term as well as for mid-term as shown in previous work. 312 

(3) The LSA-ANN algorithm is a reliable model which can be successfully used to forecast 313 

long-term municipal water demand, performing more accurately than the GSA-ANN and PSO-314 

ANN algorithms (used in previous studies for short and mid-term), evaluated in this study.  315 

 (4) The most important result to emerge from the results is the confirmation of the association 316 

between climate change and water demand over the long term. 317 

This study has been one of the first attempts to thoroughly examine the influence of climate 318 

change on municipal water demand. The key strengths of this study are the use of data over an 319 

extended baseline period, 1980-2010, and the use of climate factors, extending knowledge of 320 
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how climate change drives municipal water demand. Further research is however needed to 321 

determine the long-term effects of global warming on water demands. 322 

6 Conclusion  323 

Estimating water demand is an essential component in the planning and management of water 324 

resources as this can help to identify suitable alternatives to guarantee a balance between water 325 

demand and supply in the future. This study explored the influence of climate change on 326 

monthly, long-term, municipal water demand, using baseline period data from 1980-2010, 327 

applying a coupled SSA and LSA-ANN technique. One of the more significant findings to 328 

emerge from this study is the confirmation that maximum temperature, radiation and rain, are 329 

reliable predictors when forecasting long-term municipal water demand, as previously seen for 330 

mid-term. The SSA has revealed itself to be a powerful technique to uncover the stochastic 331 

components of long-term water consumption, after removing the effect of noise and socio-332 

economic factor components that confirm the technique to work successfully in different 333 

lengths as shown before. The LSA-ANN algorithm has proven successful, and indeed more 334 

accurate than the GSA-ANN and PSO-ANN algorithms previously applied to different terms 335 

time series. The paired SSA and LSA-ANN model had the ability to predict water demand with 336 

an R of 0.96. The current findings clearly support the relevance of climate change on water 337 

consumption, which are significant to both practitioners and policy-makers. More research, 338 

however, is required to develop a deeper understanding of the relationship between climate 339 

change and municipal water demand over the long-term and at different locations. 340 
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