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Abstract:  

Honeycombs or foams with reentrant microstructures exhibit effective negative Poisson’s ratio. 

Although they are light weight due to inherently empty space, their overall stiffness and 

damping are somewhat limited. With judiciously chosen filler material to fill the voids in star-

shaped honeycomb, it is numerically demonstrated its auxeticity may be enhanced. By 

combining the filler and skeleton, the hierarchical composite materials are constructed. The 

magnitude of the enhancement depends on inner and outer filler’s modulus mismatch, as well 

as the types of filling. Filler’s auxeticity also largely enhances overall auxeticity of the outer- 

and all-filled honeycomb. In addition, for outer-filled honeycomb, its effective viscoelastic 

modulus and damping are significantly increased, while maintaining relatively light weight, 

due to local stress concentration. 

 

Keywords: auxetic materials, finite element method, negative Poisson’s ratio, star-shaped 

honeycombs, viscoelasticity 
 

1. Introduction 

Foam-based negative Poisson’s ratio (NPR) materials, including reentrant honeycombs, 

contain macroscopic voids.[1] Auxetic materials may also be obtained through network design 

at molecular levels.[2] Mechanical responses of the auxetic materials have been reported in 

accordance with the prediction of the elasticity theory.[3,4] For materials with anisotropy, partial 

auxeticity, i.e., NPR along certain loading directions, may be more commonly observed.[5] 

Atomic analysis has shown that FCC hard sphere models containing certain type of planar 

defects may lead to directional NPR phenomena.[6] Recently, 2D NPR systems containing star-

shaped microstructures with square symmetry have been systematically studied for their 

effective elastic properties.[7] The effective Young’s modulus and Poisson’s ratio of planar 

structures containing elliptic inclusions, also with the square symmetry, have been investigated 

in detail by Pozniak et al.[8]  In addition, many studies have been conducted to obtain basic 

understanding of the 2D auxetic materials and systems.[9–11]. 

 

In addition to the reentrant cell shape as a mechanism to obtain NPR, other mechanisms have 

been investigated, such as connected stars,[12] connected rectangles,[13] and rotating units 

related structures.[14]. All of the mechanisms require empty space, i.e., voids, inside the 

material. It has been shown that phase-transformation-induced negative bulk modulus may lead 

to NPR in continuum without voids.[15] Furthermore, NPR may be observed in isotropic alloys 

near a morphotropic boundary due to phase transition.[16] In this work, our filled honeycombs 

also demonstrate the attainability of NPR materials with no need of empty space. 
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NPR materials are distinct from negative stiffness (NS) materials, though some materials or 

systems may simultaneously exhibit NPR and NS.[17–19] The inter-relations between negative 

compressibility and NPR have been demonstrated that they are attainable.[20] Using the phase 

field modeling, NS effects have been examined without directly assigning negative modulus 

values in calculations.[21,22] In addition, NS effects on the overall viscoelastic and coupled field 

properties have been investigated with the finite element analysis.[23] Furthermore, energy 

dissipation of a viscoelastic composite beam-column connector has been numerically analyzed 

to exhibit its high stiffness and high damping.[24]. 

 

In this work, we adopt the finite element method (FEM)[25] to numerically study the effective 

Poisson’s ratio of filled, re-entrant honeycomb for their in-plane elastic properties. In addition, 

effects on the linear viscoelastic properties due to the filling and local stress concentration are 

discussed. The system studied in this work is of square symmetry; not isotropic. Effective 

properties of the system under the loading along a symmetry axis are investigated. 
 

2. Elasticity Modeling 
 
For an isotropic and homogeneous elastic solid, its displacement field u is governed by the 

Navier equation, as follows.[26] 

 
where ρ, a, b are density, acceleration vector, and body force vector, respectively. The gradient 

and Laplacian operator are denoted by ∇ and ∇2, respectively. The shear modulus is denoted 

by μ and Lame constant λ. They are related to Young’s modulus E through 

. For isotropic and homogeneous media, Poisson’s ratio , where the symbols G and μ 

are used interchangeably for shear modulus. We adopt the FEM to numerically solve Equation 

(1) with suitable loading and boundary conditions to calculate the effective elastic Young’s 

modulus and Poisson’s ratio of the honeycomb under the plane strain conditions, provided with 

. The solid phase of the honeycomb is assumed to have Young’s modulus of 100MPa 

and Poisson’s ratio of 0.3. In our finite element calculations for the elastic properties, loading 

on the boundaries is under displacement control. Although we assume isotropy in the solid 

phases, the overall responses of the structures are not isotropic. They are of square symmetry 

due to the arrangements of the ribs. 

 

The effective properties of the honeycomb are calculated in terms of volume-averaged stress 

  and strain . When the sample is under straining along the horizontal direction, i.e., x-

direction, its effective Young’s modulus and Poisson’s ratio of the honeycomb are, 

respectively, calculated by  

 

 
The volume-averaged stress and strain are defined as follows:[27] 

 
Here Ω indicates the domain of material,  the boundary of the domain, V the volume of the 

domain, and A the surface surrounding the domain. The traction, displacement, and unit vector 

of associated boundaries are, respectively, denoted by ti, ui, and ni. Supported by Equation (4) 



and (5), we calculated the average stress and strain on the boundary of the domain to evaluate 

the effective elastic properties of the honeycomb. 

 

3. Viscoelasticity Modeling 

For the viscoelastic calculations, the relaxed bulk modulus (K) and shear modulus (G) of the 

solid phase are assumed to be 83.33, and 38.46 MPa, respectively. This choice of moduli 

correspond to the Young’s modulus and Poisson’s ratio used in the elasticity calculations, i.e., 

100 MPa and 0.3, respectively. For the linear viscoelastic case, the shear behavior of the solid 

phase is governed by the standard linear solid (SLS) model, as shown in Equation (6), whereas 

the bulk behavior is assumed to be purely elastic, Equation (7). 

 

Here, the deviatoric stress is denoted by , and deviatoric strain . 

Time derivative is indicated by . The time constants are T1=0.1s, and 

T2=T1(G+G1)/G=1.5T1 , where G1 is the shear modulus of the viscoelastic branch in the SLS 

model and is assumed to be G/2=19.23 MPa. The choice of these material parameters is 

representative to include linear viscoelastic effects in the FEM with suitable frequency 

dependence.[28]  Figure 1a,b shows the frequency-dependent viscoelastic modulus and loss 

tangent of the solid phase of the plates. We remark that the effective properties of the 

microstructured plates may be different from those of the solid-phase material due to the 

composite effects between the solid phase and empty space through the cell size and cell shape 

effects. All of our finite element calculations for effective viscoelastic properties are under load 

control. 

 

 
As for calculating the effective linear viscoelastic properties of the honeycomb, we apply low 

frequency (1 Hz) sinusoidal loading on the boundaries throughout this work, and calculate the 

stress–strain Lissajous curve of the honeycomb. The width and slope of the Lissajous curve 

may yield the information about the effective loss tangent and the absolute value of complex 

modulus, respectively.[29] 
 

4. Numerical Considerations 

In the 2D, plane-strain, finite element calculations, we adopt the triangular elements to form 

the mesh. Typical mesh is shown in Figure 2. Figure 2b,d,f are the zoom-ins of Figure 2a,c,e. 

The quadratic Lagrange shape function is used to interpolate field quantities within an element. 

The numbers of triangular elements for the three honeycomb models, i.e., inner-filled, outer-

filled, and all-filled honeycomb, studied in this work are shown in Table 1. The numbers of 

degrees of freedom (DOF) for the elastoelastic and viscoelastic analysis are listed in Table 2. 

To avoid singularities at the sharp geometric corners between ribs, all corners are smoothed so 

that every point in the domain is at least twice differentiable.[24,30].  

 

5. Results and Discussion 

5.1. Effects of Filler’s Modulus 

When the Young’s modulus of the inner filler (Ei) is chosen to be the same as that of the outer 

filler (Eo), the variations of effective Poisson’s ratio of the honeycomb on the filler-to-skeleton 

Young’s modulus ratio ER is shown in Figure 3. The definition of the Young’s modulus ratio 



is or  depending on if the bare honeycomb is inner-filled or outer-filled. 

The Young’s modulus of the honeycomb skeleton is denoted by Es, and is set to be 100 MPa. 

For the all-filled honeycomb, . Effects of the all-filled case with   are 

discussed along with Figure 4. The filler’s Poisson’s ratio is assumed to be 0.3. When the 

honeycomb is not filled at all, its effective Young’s modulus Exx =6.26 kPa and Poisson’s ratio 

νeff=-εyy/εxx=-0.492, has been previously obtained.[7] The enhancement observed in the 

partially filled model can be contributed to from the hierarchical effects.[31]  

 

As shown in the figure, when ER is about 10-4, the outer-filled honeycomb shows the lowest 

effective Poisson’s ratio (-0.65). When Eo is equal to Es, i.e., ER=1, the outer-filled honeycomb 

exhibits slightly positive Poisson’s ratio (νeff =0.0473). For the all-filled model, a minimum 

Poisson’s ratio occurs at ER=10-5, with νeff = -0.485. When the filler is placed in the stars in 

bare honeycomb (inner-filled case), the effective Poisson’s ratio shows a non-decreasing 

feature as ER increases. When ER = 10-3, the inner-filled honeycomb shows a maximum 

effective Poisson’s ratio νeff =0.392. When ER = 1, the effective Poisson’s ratio of the all-filled 

honeycomb reaches a maximum of νeff = 0.429, and the model contains no empty space. 

Furthermore, as the filler’s Young’s modulus and Poisson’s ratio are identical to those of the 

skeleton, it is impossible to distinguish the two phases. Therefore, the ER = 1 model behaves 

as an isotropic and homogeneous material with Young’s modulus 100 MPa and Poisson’s ratio 

0.3. It is remarked that in general the structure is of square symmetry when ER is not equal to 

1. The maximum Poisson’s ratio value 0.429 is different from 0.3 as the honeycomb is analyzed 

under the plane strain assumption. It is remarked that zero effective Poisson’s ratio may be 

obtained from all of the three filled honeycomb models by suitably choosing Ei, Eo, or both. 

To examine the effects of the Young’s modulus of the honeycomb skeleton, Figure 5a shows 

the effective Poisson’s ratio of the all-filled honeycomb with two different skeleton Young’s 

modulus Es = 100 MPa or Es = 100 GPa. In both cases, the Poisson’s ratio of the skeleton is 

set to be 0.3. After normalization on the filler modulus, the two cases show identical effective 

Poisson’s ratio versus En curve, indicating the systems can be scaled, as expected. The 

definition of En is as follows. For Es = 100 MPa, the normalization factor is 1000 and En = 

Ei/1000 = Eo/1000. For Es = 100 GPa, 106 is chosen as the normalization factor and En = 

Ei/106 = Eo/106. 

For the all-filled model, previous discussions focus on the Ei= Eo scenario, Figure 4 shows the 

effective Poisson’s ratio of the all-filled honeycomb when Ei ≠ Eo. We define the Young’s 

modulus ratio Ep = Eo/Ei, where Ei is set to be 10 kPa. The Young’s modulus of the skeleton 

is Es= 100 MPa. The Poisson’s ratio of the inner and outer filler, as well as the skeleton, is 

assumed to be the same and equals to 0.3. As can be seen, the lowest effective Poisson’s ratio 

(νeff=0.548) occurs at Ep = 10. When Eo >>Ei or Eo<<Ei, the effective Poisson’s ratio becomes 

positive. With this finding, one may design material with any Poisson’s ratio by suitably 

choosing the inner and outer filler. 

 

5.2. Effects of Filler’s Poisson’s Ratio 

When the Young’s modulus of the filler material fixed (Ei = Eo = 1 kPa), Figure 6 shows the 

effective Poisson’s ratio (νeff) of the filled honeycombs versus the Poisson’s ratio (ν) of the 

filler material. As can be seen, for the outer-filled and all-filled honeycomb, more negative ν 

would lead to more negative νeff. However, for the inner-filled case, the lowest νeff (=-0.3972) 

occurs at ν=-0.12. Based on the trend of the data, when ν approaches 0.5, νeff becomes positive 

for all cases studied here.  

 

 

 



5.3. Effective Viscoelastic Properties 

In the aforementioned studies, all materials, including the skeleton, inner, and other filler, are 

all elastic. In this section, we assume the skeleton is still elastic, but the filler materials are 

linearly viscoelastic. It is remarked that although the idea of using viscoelastic infills in foam 

has existed,[32] our work here explicitly and quantitatively demonstrate the viscoelastic effects 

in the all filled or partially filled auxetic structures. Figure 7 shows the stress–strain Lissajous 

of the systems under a few cycles of sinusoidal loading at 1 Hz. Transient responses exist in 

all three cases, and can be clearly observed in Figure 7b. The effective stress and strain are 

measured at the loading edge, i.e., the right edge of the square domain in Figure 2a,c,e. The 

maximum applied stresses (σxx)max are chosen differently to ensure small strain in the 

samples on the same order of magnitude about 10-6. The viscoelastic modulus and loss tangent 

are calculated from the Lissajous curves, after the transient responses are removed. The all-

filler honeycomb exhibits largest viscoelastic modulus and damping (|E*|= 120.965 MPa and 

tan δ=0.1299), as shown in Figure 7a. The inner-filled case shows the smallest modulus and 

damping (|E*|=3.125 MPa and tan δ = 0.0106). Comparing the bare honeycomb, which is 

purely elastic and has effective Young’s modulus 6.26 kPa, the filled honeycombs show large 

enhancements in effective modulus and damping. It is remarked that for light-weight 

applications, the outer-filled honeycomb has more enhanced viscoelastic modulus and damping 

than the inner-filled one. From Equation (8) and (9), the calculated storage and dissipation 

energy density are shown in Figure 8a–c for the all-filled, outer-filled, and inner-filled 

honeycomb under 1 Hz sinusoidal stressing along the x-direction. Both the left and right 

vertical axes are in logarithmic scale. The accumulation of the dissipation energy density (blue 

dashed curves) increases with time in the step-like manner. Storage energy reaches zero at half 

of loading period because of zero strain. As shown in Figure 8b, the outerfilled case shows 

largest storage and dissipation energy density due to large local stress concentration with the 

magnitude of 400 Pa in terms of von Mises average stress, as shown in Figure 9b. The external 

applied stresses σxx for Figure 9a–c are, respectively, 99.898, 100.22, and 1.894 Pa, as shown 

in Figure 7. These applied stresses are chosen so that the strain on the loading edge is on the 

order of 10-6. The all-filled honeycomb does not show strong local stress concentration. 

Although stress concentration is identifiable in the inner-filled honeycomb, its magnitude is 

small due to its overall Young’s modulus is small, so that to maintain similar deformation, the 

applied stress is much smaller, as compared with the other two filled honeycombs. Therefore, 

the energy dissipation capability of the inner-filled honeycomb is not significantly improved. 
 

6. Conclusions 

The auxeticity of honeycomb with reentrant microstructures may be enhanced by judiciously 

filling the voids. The outer-filled honeycomb with ER = 10-4 shows a 32% increase in the 

negativity of the Poisson’s ratio, i.e., from -0.492 to -0.65. For all-filled honeycomb with Ep 

=10, a smallest effective Poisson’s ratio about -0.55 can be achieved. Effects of structural 

hierarchy play a role in the enhancement of auxeticity. When the filler is made of auxetic 

material, the outer- and all-filled honeycombs show strongly enhanced effective NPR as the 

filler toward more auxetic. The inner-filled honeycomb shows the lowest effective Poisson’s 

ratio at filler’s Poisson’s ratio equal to -0.12. Overall viscoelastic modulus and damping are 

largely enhanced in the all-filled and outer-filled honeycomb. Considering low weight, the 

outer-filled honeycomb has more enhanced viscoelastic modulus and damping than the inner-

filled one. Significant local stress concentration in the outer-filled honeycomb leads to larger 

energy dissipation properties.  
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Figure 1. Frequency response of the a) absolute value of the viscoelastic shear modulus and 

b) tan δ of the SLS model used for the solid phase of the microstructured discs. 
  



 
Figure 2. Finite element mesh used in this study a,b) for the inner-filled, c,d) outer-filled, and 

e,f ) all-filled honeycomb model. The edge length of the square domain is 15 cm. The roller 

boundary conditions are assigned to the left and bottom edges of the samples. 
  



 
Figure 3. Effective Poisson’s ratio versus Young’s modulus ratio ER. The definitions of ER 

are as follows. ER =Ei/Es for the inner filled honeycomb, ER ¼ Eo/Es for the outer-filled 

honeycomb, ER =, Ei/Es = Eo/Es for all empty space filled honeycomb when Ei = Eo. The 

Young’s modulus of the honeycomb ribs, Es, is set to be 100 MPa. 
  



 
Figure 4. Effective Poisson’s ratio versus modulus ratio Ep= Eo/Ei, whereas Ei is fixed to 10 

kPa and the Young’s modulus of the honeycomb ribs is Es = 100 MPa. 
  



 

 
Figure 5. a) Effective Poisson’s ratio versus filler modulus for the honeycomb with all empty 

space filled by same material, and b) effective Poisson’s ratio versus normalized filler modulus 

under two different Young’s modulus for the skeleton. The definition of normalized Young’s 

modulus is stated in the text. 
  



 
Figure 6. Effective Poisson’s ratio of the honeycomb with various filler Poisson’s ratio. The 

lowest effective Poisson’s ratio of the inner-filled honeycomb is νeff¼_0.3972 at the filler’s 

Poisson’s ratio ν=-0.12. 

  



   
Figure 7. Stress–strain Lissajous curves of the a) all-filled, b) outer-filled, and c) inner-filled 

honeycomb at 1 Hz. Effective viscoelastic properties are as follows: a) tan δ = 0.1299, |E*|= 

120.965 MPa, b) tan δ = 0.1219, |E*|= 30.699 MPa, and c) tan δ = 0.0106, |E*| = 3.125 MPa. 

The skeleton of the reentrant honeycomb is elastic, and the effective Young’s modulus of the 

bare honeycomb is 6.26 kPa. 

  



 
 

Figure 8. Storage and dissipation energy density of the a) all-filled, b) outer-filled, and c) inner-

filled honeycomb driven at 1 Hz. Red solid curves are for the storage energy density, and blue 

dashed curves for the dissipation energy density. 
  



 
Figure 9. von Mises stress distributions in the a) all-filled, b) outer-filled, and c) inner-filled 

honeycomb at (σxx)max, indicated in Figure 7. Color bars are in units of Pa. 


