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1/fα spectra in elementary cellular automata and fractal signals
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We systematically compute the power spectra of the one-dimensional elementary cellular automata
introduced by Wolfram. On the one hand our analysis reveals that one automaton displays 1/f
spectra though considered as trivial, and on the other hand that various automata classified as
chaotic/complex display no 1/f spectra. We model the results generalizing the recently investigated
Sierpinski signal to a class of fractal signals that are tailored to produce 1/fα spectra. From
the widespread occurrence of (elementary) cellular automata patterns in chemistry, physics and
computer sciences, there are various candidates to show spectra similar to our results.

PACS numbers: 05.45.Df, 89.75.Da, 82.40.Np, 45.70.Qj

In 1984 Wolfram introduced the so-called elementary
cellular automata (ECA), opening a field still being
vividly active 20 years thereafter [1]. Wolfram’s more
recent popular book [2] has attracted great attention,
although the opinion of the work’s merits are divided
among the scientific community [3]. ECA are discussed
extensively in the context of computationally irreducibil-
ity of physical systems [4], e.g. it is proven that in the
Turing sense [5] rule 110 (being one of the possible 256
ECA) is an universal computer [1]. Moreover, possible
transformations between difference equations and (E)CA
have been investigated [6]. Among the numerous physical
applications we mention here only (kinetic phase transi-
tions in) catalytic reaction-diffusion systems [7, 8, 9, 10],
deterministic surface growth [11], branching and annihi-
lating random walks [12] and random boolean networks
[13].
It is important to note that Wolfram’s ECA are often

studied for different boundary conditions on a finite ar-
ray. A particular boundary condition (e.g. a periodic
or an absorbing one) disturbs the pure evolution of an
ECA. As a result, some automata display complex be-
havior, while other are simply periodic. Though there is
no algorithm for classifying a given elementary automa-
ton, Wolfram conjectured that ECA can be grouped into
four classes of complexity:
Class 1: Steady state, class 2: Periodic or nested struc-

tures, class 3: Random (chaotic) behavior, class 4: Mix-
ture of random and periodic behavior.

The first class represents automata that are (for al-
most all initial conditions) trivial in the sense being static
or finally evolve to the some steady state. Those rules
that belong to the second class produce simple periodic
or self-similar, i.e. fractal, structures. The third class in-
cludes rules exhibiting random patterns, e.g. a particular
rule (number 30) is used to generate random numbers in
Mathematica. The fourth class is somehow a mixture of
classes 2 and 3 generating the most complex structures.
For more rigorous classifications we refer the reader to

the literature [4, 14].
Since the coining paper of Bak, Tang, and Wiesenfeld

[15], there has been considerable interest in the long-time
behavior of cellular automata, especially for occurrence
of long range correlations, and correspondingly for power
spectra exhibiting a power law decay S(f) ∼ f−α with
α ≈ 1.0. Despite the abundance in nature, systems ex-
hibiting spectra with exponents near to 1 are poorly un-
derstood. While the mechanisms generating 1/fα spec-
tra may be substantially different from each other, some
models and the observed 1/fα power laws have become a
paradigm for complex dynamical systems in general [16]
(see also references in [10]).
Definition of ECA. An elementary cellular automa-

ton consists of an infinite one-dimensional lattice of cells
being either black (1) or white (0), and a deterministic
update rule. At each discrete time step, a cell is updated
xt
n → xt+1

n according to the state of the next-neighbor
sites and its own state one time step before:

xt+1
n = f(xt

n+1, x
t
n, x

t
n−1) (1)

where f (the rule) is determined by 8 bits being the out-
put of the possible input bits 000, 001, ..., 111. As a
consequence, there are 256 (ECA-)rules that are named
rule 0 - 255. In this article we focus on rules 90 and 150
defined by

xt+1
n = [xt

n−1 + rxt
n + xt

n+1] mod 2 (2)

where r = 0 defines rule 90, and r = 1 rule 150, re-
spectively. As demonstrated earlier, rule 90 can be in-
terpreted in the context of catalytic processes. A pro-
cess (catalysis) is initiated (or continued) when exactly
1 neighbor site is active whereas the process (catalysis)
is stopped when too many, i.e. 2, or to less, i.e. no,
neighbor sites are active [10].
A similar interpretation may be given for rule 150.

Catalysis at xt
n is stopped when no or two neighbor sites

(now xt
n included) are active and it is initiated (or contin-
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ued) when one or three sites are active. Note that both
rules mimic local self-limiting reaction processes [9, 17].

Spectra of sum signals. It is known that ECA on fi-
nite lattices for various boundary conditions display no
1/fα spectra [1]. Rather than evaluating the rules on
finite lattices we calculate the evolution on an infinite
lattice. More precisely, we focus on a sum signal defined
as the total (in)activity, magnetization, etc. of the whole
system:

X(t) =
∑

n

xt
n. (3)

We have systematically investigated all 256 rules, for lo-
calized initial conditions (i.e. single 1, 11, 101, 111, ...),
as follows. The sum signal for non-trivial rules exhibits
increasing mean 〈X〉t well fitted by a power law in time
[20]. Consequently, we focus on the detrended sum signal
defined by

Y (t) = X(t)− f(t) (4)

where the coefficients of f(t) = atb are fitted. However
for some ECA Y (t) possesses an increasing mean vari-
ance. Thus we investigate for each automaton another
signal (and its spectrum)

Z(t) = Y (t)/〈Y 〉1/2{t−l+1,t+l} (5)

where 2l is the width of a sliding window that normalizes
the fluctuations of the detrended signal Y (t) according to
the method of detrended fluctuation analysis (DFA) ap-
plied for non-equilibrium processes [18]. We have calcu-
lated the corresponding power spectra |X(ω)|2, |Y (ω)|2
and |Z(ω)|2 for all 256 ECA. It turns out that that 25
of the 256 rules exhibit 1/fα spectra whereas 231 do not
(see table I). 23 of those automata that exhibit 1/fα

spectra display Sierpinski patterns, i.e. well studied self-
similar structures [10]. Their spectra are extensively in-
vestigated in [10] exhibiting 1/fα spectra with exponents
1.15± 0.05.

The two other rules, i.e. 105 and 150, show a different
behavior. Here we focus on rule 150 [21]. The first 128
time steps of the evolution for a single 1 as initial condi-
tion is depicted in Fig. 1 (upper inset). It is a Sierpinski-
like self-similar structure. However the fractal dimension
differs from the Sierpinski gasket (d = 1.58) being the
golden mean d = (1 +

√
5)/2 ≈ 1.69. Fig. 1 shows also

the corresponding signals X(t) and Z(t). The spectrum
Y (ω) is displayed in Fig. 2. For ω not too small, the
averaged spectrum exhibits a straight line in the log-log-
plot verifying a power law behavior. Depending on the
average process and fit range we obtain a fit exponent of
about α = 1.27± 0.05. Due to dominating randomness,
members of classes 3 and 4 typically produce thermal
1/f2 spectra (see Fig. 2).

Class ECA rule number

1 218

2 (26, 82, 167, 181), (154, 210)

3 (18, 183), (22, 151), (60, 102, 153, 195), (90, 165),

(122, 161), (126, 129), (146, 182), 105, 150

4 -

TABLE I: Rules that produce 1/fα spectra. Rules in brackets
belong to one equivalence class. Rules 105 and 150 (bold)
produce spectra with power law exponents about α = 1.3.
All other listed rules exhibit spectra with exponents about
α = 1.2. The 231 rules not listed are not capable to produce
1/fα spectra, e.g. most of the spectra display no power law
decay, or exhibit thermal 1/f2 spectra (see Fig. 2).
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FIG. 1: The first 128 time steps of the time signal X(t)
generated by rule 150. Upper Inset: Self-similar structure
generated by rule 150 for the first 64 time steps. Lower Inset:
Normalized signal Z(t); the straight line indicates Z = 0.

1 10

ω

P
ow

er
 s

pe
ct

ru
m

 S
( 

 )ω

100

Rule 110

Rule 150

ω−2

1000 10000

0.001

0.01

0.1

1

FIG. 2: Rule 150 and rule 110: Averaged power spectrum
of Y (t) up to T/8 for T = 218 using (incommensurable) 1.1k-
bins, i.e. the k-th interval is defined by [⌈1.1k⌉, ⌈1.1k+1⌉]
where the brackets ⌈ ⌉ denote upwards rounded integer values
(ceiling function). The inset shows the rule 150 spectrum,
averaged using 2k-bins, i.e. the k-th interval is defined by
[2k, 2k+1 − 1]. Both averages correspond to a constant δω/ω
ratio. The graphs are well fitted by a power law with exponent
α = 1.27. The thermal 1/f2 decay of rule 110 (grey) as a
typical member of Class 4 is shown for comparison.
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Fractal signals produce 1/fα spectra. All ECA that
are capable to produce a self-similar structure exhibit
1/fα spectra. Hence one may naively expect that ev-
ery (self-similar) fractal structure produces 1/fα spectra.
However it is important to note that this is not the case.
There are many fractals like the Koch snow flake, Can-
tor dust etc. exhibiting no 1/fα spectra because their
respective sum signals simply grow exponentially [19].
Rather than a geometric approach we focus on fractal

signals itself. Thus we now generalize the recently inves-
tigated Sierpinski signal [10]. As we will see, the gener-
alized signal is capable to model 1/fα spectra producing
spectra with continuously tunable power law exponents.
More precisely, we consider the signal

Xδ(t) = 2
δ
∑

j
σj{t} (6)

where σj is the jth bit of the binary decomposition of the
discrete time t = 0, 1, 2, .... For δ = 1 we have shown re-
cently both numerically and analytically that the signal
exhibits 1/fα spectra with α close to unity. The special
ansatz, eq. (6), represents a straightforward generaliza-
tion of the closed form for the sum signal of the Sierpinski
pattern produced by rule 90 [10]. In the next paragraph
we show that for deviations from δ = 1 the signal can
produce 1/fα spectra within a wide range of exponents
α.
In analogy to the calculation in Ref. [10], we calculate

the periodogramX(ω) of the time signal (6) analytically:

X(ω) =

2N−1
∑

t=0

eiωtXδ(t)

=
∑

{σ0,...,σN−1}

exp(iω
∑

j

σj2
j) Xδ(

∑

j

σj2
j)

=
∑

{σ0,...,σN−1}

N−1
∏

j=0

exp
(

σj(iω2
j + δ ln 2)

)

=

N−1
∏

j=0

∑

{σj}

exp
(

σj(iω2
j + δ ln 2)

)

=

N−1
∏

j=0

(

1 + exp(iω2j + δ ln 2)
)

. (7)

The absolute value of X(ω) simplifies to a trigonometric
product which the logarithm converts into a sum:

ln |X(ω)|2 =
N−1
∑

j=0

ln[1 + 22δ + 21+δ cos(ω2j)]. (8)

We roughly estimate the sum in eq. (8) replacing the sum
by an integral, and substituting y = ω2j,

ln |X(ω)|2 ≈
∫ N−1

0

ln[1 + 22δ + 21+δ cos(ω2j)]dj(9)

=

∫ ω2N−1

ω

ln[1 + 22δ + 21+δ cos y]

y ln 2
dy.(10)

As ln(a+ bx) ≈ ln(a) + b
ax for |x| ≪ 1, we obtain

ln |X(ω)|2 ≈ ln(1 + 22δ)

ln 2

∫ ω2N−1

ω

dy

y
+

21+δ

(1 + 22δ) ln 2

∫ ω2N−1

ω

cos(y)

y
dy. (11)

The integral over the integral cosine is nearly indepen-
dent of the upper boundary for high values of the bound-
ary. Thus, we can substitute the upper boundary ω2N−1

by some N -dependent constant, say cN ≫ 1. Finally,
replacing the cosine by one yields immediately a rough
approximation of the power spectrum:

|X(ω)|2 ≈ c′Nω
− 21+δ

(1+22δ) ln 2 . (12)

For a given power law exponent 0 < α ≤ 1/ ln 2 ≈ 1.44,
we obtain δ from eq. (12) as

δ =
ln
(

1+
√

1−α2(ln 2)2

α ln 2

)

ln 2
. (13)

To generate signals with goal exponents, e.g., α1 =
0.8, α2 = 1.0, α3 = 1.2, one can use the correspond-
ing value of δ according to Eq. (13). Fig. 3 shows the
spectrum of the detrended signal (6) for δ2 = 1.31184
(corresponding to α2 = 1.0). For δ1 = 1.72425 and
δ3 = 0.902749 the individual spectra exhibit similar
graphs (not shown). Depending on the averaging the
power law fits giving α1 = 0.8 ± 0.1, α1 = 0.95 ± 0.05
and α3 = 1.2 ± 0.05, are in good agreement with the
theoretical results.
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FIG. 3: Averaged power spectrum of the detrended signal (6)
for δ = 1.31184 up to T/8, T = 220 using (incommensurable)
1.1k-bins, i.e. the k-th interval is defined by [⌈1.1k⌉, ⌈1.1k+1⌉]
where the brackets ⌈ ⌉ denote upwards rounded integer values
(ceiling function). The inset shows the spectrum, averaged
using 2k-bins, i.e. the k-th interval is defined by [2k, 2k+1 −
1]. Both correspond to a constant δω/ω ratio possessing fit
exponents of about α = 0.93. The corresponding spectrum for
the variance detrended signal exhibits power spectra around
α = 1.0. The theoretical exponent is α = 1.0.
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Two-dimensional automaton. While one-dimensional
experimental setups as in [17] seem to be quite artificial
for (self-limiting) catalytic processes, two-dimensional
dynamics is more generic. Consider the Sierpinski dy-
namics on a (i, j)-plane:

xt+1
i,j = [xt

i+1,j + xt
i−1,j + xt

i,j+1 + xt
i,j−1] mod 2. (14)

For a single 1 as initial condition on a plane the sum
signal X2D(t) =

∑

i,j x
t
i,j generates the sequence

X2D(t) = 1, 4, 4, 16, 4, 16, 16, 64, . . . (15)

More precisely, the recurrence relation generating eq.
(15) is given by un → un+1 = (un, 4un) for u0 = (1).
First, if the factor 4 is replaced by 2, the relation be-

comes equivalent to the 1d-Sierpinski signal X1D(t) in
Ref. [10]. Second, we obtain X2D(t) = X1D(t)2 and
therefore X2D(t) = Xδ=2(t). Thus the generalized Sier-
pinski pattern in two dimensions exhibits 1/fα spectra
with exponents around the value according to eq. (12)
for δ = 2, that is α = 0.679. We numerically verified the
value obtaining exponents around α = 0.7 as expected.
Conclusions. Elementary Cellular automata are a

paradigm for emergence of complex spatiotemporal be-
havior from extremely simple dynamics. We systemati-
cally investigated all 256 elementary cellular automata.
As expected, among those as (nested) periodic/chaotic
classified rules (classes 2 and 3) there are various rules
that display 1/fα spectra (see table I). Unexpectedly,
on the one hand all rules classified as complex display no
1/fα spectra, while on the other hand, the trivial rule
218 does (being a member of class 1). It is important
to note that the numerically calculated spectra are ro-
bust against noise, that is, the fit exponents change only
slightly for other initial conditions than a single seed.
Moreover we generalized the approach of a sum signal

introduced in [10] to derive analytically the spectra of
the 2D Sierpinski automaton. The investigated fractal
signals (6) serve also as a fit model for signals produced
by elementary cellular automata rules. We have obtained
a time series generator with continuously tunable power
law decay exponent. The tailored signals represent ana-
lytically tractable (nontrivial) 1/fα generators that shed
light on the arcane mechanisms of 1/fα spectra.
From our results, we expect that in experimental sys-

tems showing spatiotemporal pattern formation similar

to the ECA patterns, the power spectra of the total
(in)activity will exhibit power law behavior within a cer-
tain range.

∗ Electronic address: claussen@theo-physik.uni-kiel.de
[1] S. Wolfram, Physica D 10, 1-35 (1984); Nature 311, 419

(1984); Rev. Mod. Phys. 55, 601 (1983).
[2] S. Wolfram, A New Kind of Science, (2002).

http://www.wolframscience.com/nksonline/toc.html.

[3] News feature, Nature 417, 216, (2002).
[4] Navot Israeli and Nigel Goldenfeld, Phys. Rev. Lett. 92,

074105 (2004); Phys. Rev. Focus 13, story 10 (2004).
[5] The Universal Turing Machine, A Half-Century Survey,

edited by R. Herken (Springer-Verlag, Wien, 1995).
[6] Nobe A., Satsuma J. and Tokihiro T., J. Phys. A 34,

L371-L379 (2001).
[7] Robert M. Ziff, Erdagon Gulari, and Yoav Barshad,

Phys. Rev. Lett 56, 2553, (1986).
[8] Y. Hayase, J. Phys. Soc. Jpn. 66, 2584 (1987); Y. Hayase

and T. Ohta, Phys. Rev. Lett. 81, 1726 (1998); Y. Hayase
and T. Ohta, Phys. Rev. E 62, 5998 (2000).

[9] A. W. M. Dress, M. Gerhardt, N. I. Jaeger, P. J. Plath, H.
Schuster, in: L. Rensing and I. Jaeger (eds.), Temporal
Order, Springer, Berlin (1984).

[10] Jens Christian Claussen, Jan Nagler, and Heinz Georg
Schuster, Phys. Rev. E 70, 032101 (2004).

[11] J. Krug, H. Spohn, Phys. Rev. A 38, 4271, (1988).
[12] John Cardy, and Uwe C. Täuber, Phys. Rev. Lett. 77,
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