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Summary

Both the net effects and the m echanism s of action of 

intracellular pH (pHj) perturbations upon vascular tone have been 

in v es tig a ted .

p H j was modified using two procedures; NH 4 CI application 

and withdrawal (NH 4 CI pulse) and organic salt application. NH4 CI 

application and its subsequent withdrawal have been found to 

p roduce  in tra ce llu la r  a lk a lin ity  and acidity , respectively, in 

various non-vascular (Roos and Boron, 1981; Thomas, 1984) as 

well as vascular tissues (Spurway and Wray, 1987). Application

of weak organic salts has been found to decrease pHj in various

tissues (Roos and Boron, 1981).'

M ost experim ents concerned with mechanism were carried

out on one or both of two preparations: the rabbit ear vascular 

bed perfused through its central artery and the isolated perfused 

rat tail artery, each activated with NA, at about 20°C . Experiments 

concerned with the generality of NH4 CI effects involved a variety 

of perfused and ring preparations from rabbits, rats and cats,

studied at both 20° and 37° C.

N H 4 CI application in the rabbit ear artery vascular bed has 

previously been reported to produce dilatation and its subsequent
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w ithdraw al caused constriction (Ighoroje and Spurway, 1984). 

Results in this thesis show that 19 different vessels belonging to 

three different mammals behave basically the same way as the 

rabbit ear in response to NH 4 CI application and withdrawal. The 

sole lim it to this generalization is that the behavior of certain 

in te rn a l vesse ls  (ao rta , pu lm onary  artery  and the ductus 

arteriosus) fitted the previous description only when they were 

investigated at 3 7 ° C. Responses of the ductus arteriosus were all 

in the above typical direction when investigated at each of three 

different oxygen levels; 2-3%, 10%, and 100%.

After attaining its minimum value (usually in the first two 

m inu tes) tone recovered  back tow ards baseline  over the 

subsequent part of NH4 CI application time. The following findings 

were obtained on this recovery:

1- Recovery rate was slowed by the addition of 0.1 mM BaCl2 > 

which is believed to inhibit NH 4 + permeation (Zeiske and van 

Driessche, 1983).

2- Recovery was faster in: K activated than NA activated 

p rep a ra tio n s , ring p repara tions than perfused  ones, an 

electrically active preparation (portal vein) than in electrically 

stable vessels, preparations at 37° C rather than 20° C, and in 

weakly activated or nonactivated preparations. In all these 

situations the recovery was so fast that tone frequently
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overshot pre-am m onium  level w ithin the period of NH 4 C I 

app lica tion .

From these findings it was concluded that NH 4 CI application has, 

in addition to its pHj effect, a membrane potential one due to the 

presence of high concentration in the external solution and the 

perm eation into cells of the K-like cation, NH 4 + . This effect is 

considered to be the m ajor cause of tone-overshoot in the late 

stages of NH 4 CI application.

Salts of ten organic acids produced constrictions of the 

perfused, NA-activated preparations of the rabbit ear and rat tail 

at 20°C . The same results were obtained, at 37°C, when certain of 

the salts were applied to aortic, pulm onary and basilar artery 

rings and portal vein longitudinal strips. Two findings lead to the 

conclusion  that the weak acid in its associated form was 

perm eating the cells, dissociating in the cytoplasm and lowering 

pH there.

1 - C onstrictions were greater with the w eaker-acid salts 

(notably propionate and butyrate) than with stronger-acid ones 

(such as benzene sulphonate and glutamate).

2- W eaker-acid  salts produced more constric tions when 

applied at external pH of 6.7 than at neutral pH.

The m echanism  of perm eation  of these  salts was 

in v e s tig a te d  using  a -cy an o -4 -h y d ro x y c in n am ate  (C H C ), a
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substance  know n to b lock  p y ruva te  p en e tra tio n  into cells 

(H alestrap  and D enton, 1974). Only constrictions induced by 

pyruvate and L-lactate were significantly reduced by Im M  CHC; 

which implies that permeation of these two physiological salts in 

v a scu la r sm ooth m uscle is ca rrie r  m ediated . O ther salts 

investigated (propionate, butyrate and D -lactate) entered vascular 

smooth muscle mainly by diffusion.

Intracellu lar calcium  [Ca^+Jj changes were measured using 

the calcium  fluorescent dye fura-2. [C a^+ ]j decreased when pHj 

was elevated by NH 4 CI application and it was increased when pHj 

was reduced by propionate , or L-lactate application, or by NH4 CI 

washout. A theory is proposed in the general discussion for the 

mechanism of action of pHj oh [Ca^+ ]j and therefore on tone. The 

suggestion is that intracellular protons displace calcium ions from 

sto rag e  s ite s  such as the sarcoplasm ic reticu lum , and the 

consequent elevation of [Ca^+]j increases tone.
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Chapter

Introduction

E xtr a c e l lu la r. p H ,-Affe c t

It has been know n fo r m ore than a century  that 

ex tracellu lar acidity dilates blood vessels (Gaskell, 1880). The 

species originally studied was frog. Since then a lot of researchers 

have confirm ed G askell's finding, working with both isolated 

vessels and intact circulations of mammals (Severinghaus, 1968; 

Duling, 1977; Kontos, 1981); and it has been widely accepted that 

acidity is an im portant control mechanism on blood vessel tone 

assisting the rapidly m etabolizing, and particularly the anaerobic 

tissue to "help itself to more blood". However, in vivo blood is 

acidified by CO 2  and lactic acid - both of which are capable of 

rapidly entering cells and acidifying the cytoplasm. Though it 

seems obvious that CO 2  and lactic acid would affect pHj in  

addition to their effect on pHe , the effect of intracellular acidity 

has not been looked at till recently.

Two reasons m ight have contributed to the delay in 

investiga ting  such an im portan t physio log ical phenom enon 

(intracellular pH changes) in blood vessels. First, the assumption 

that H+ , OH", and HC0 3 " ions are passively distributed across the 

cell membrane; i.e. that intracellular pH of animal cells depended 

only on the external pH and the membrane potential (Thomas,
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1984). The present understanding of p H j  regulation proved that 

th is assum ption is wrong. p H j  m easurem ents in many cells 

indicate that the cells are doing something equivalent to extruding 

protons from  the cytoplasm  (Roos and Boron, 1981; Thomas, 

1984).The second reason was the proposal that the effect of 

extracellular acidity was mediated through an intracellular action 

on the contractile proteins (Peiper et al, 1976; Duling, 1977). This 

proposal has also been shown to be invalid by the finding that the 

effects of intra- and extra-cellular acidities, on vascular tone, are 

opposite (see below).

Intracellular effects of CCb

Indications of in trace llu lar acidity affecting tone in a 

d ifferen t way than extracellu lar one were first obtained by 

M cLellan et al (1974). They conducted their experiments on the 

rabbit ear artery and found that when acidity was produced by 

lowering bicarbonate tone declined. On the other hand, reducing 

pH by raising CO2  concentrations, so that both extracellular and 

intracellular pH would be varied together, no longer causes tone to 

fall simply as above. Clearer results were obtained by Pickard et 

al (1976). They found that if CO2  were increased 5-fold and pHe 

m aintained constant by increasing HCO 3 " 5-fold, a contraction 

resulted.
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A survey of the literature reveals some other pointers to the 

possib ility  that in tracellu lar acidification induced by CO2  may 

have a vasoconstrictor action. Extracranial vessels of the head 

were reported to constrict to CO2  (H achinski, N orris, V ilaghy, 

Rudelli and Cooper, 1981). Vessels of a denervated bat’s wing 

constricted to CO2 , although the innervated wing dilated (Harris, 

L ongnecker, M iller and W iiegm an, 1976). In the cerebral 

circulation Kontos, Wei, Raper and Patterson (1977) showed, by 

plotting results from their own and other experiments together, 

that a given reduction of pHe produced greater dilatation when it 

was brought about by lowering [HCO3 "] than when it was achieved 

by raising P ^ q ^ .  On the other hand, CO2  has been reported to have 

dilator effect of variable potency in different locations of the body 

circulation. It is a potent dilator of the cerebral (Severinghaus, 

1968; Kontos, 1981) and perhaps the coronary circulation (Case 

and Greenberg, 1976), but not of most others. Its effect on skeletal 

m uscle blood flow, for instance, is small (Sparks and Belloni, 

1978). Probably the cause of this variability in CO2  effects on tone 

is its effect on different mechanisms that can influence tone in 

c o n tra s tin g  w ays. CO 2  w ill affect both in trace llu lar and 

extracellular pH's and another major effect of CO2 , reported in the 

rat cerebral artery, is a significant membrane hyperpolarization
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(H arder, 1982a). G iving rise  to all p rev iously  m entioned 

phenom ena, CO 2  effects on tone cannot be attributed purely to 

extra- or intra- cellular pH changes. Another difficulty in using 

C O 2  to study pH effects in in vitro experiments is its ability to 

escape through plastic tubing.

Alternatives to CO2

A lterna tive ly , non-volatile  agents to vary pHj w i th o u t

affecting pH e have been introduced recently. The commonest and

easiest method used to achieve that effect is to treat cells with 

bathing m edia containing weak acids and bases. The general 

explanation for p H j  modification caused by weak acids and bases 

is as follows. Salts of weak acids and bases are always partially 

dissociated; so that both the charged and uncharged molecules are 

present in the solution. Cell membranes are far more permeable to 

the uncharged than the charged molecules of any substance (Roos 

and Boron, 1981). Therefore these undissociated (uncharged) acids 

or bases will easily inter the cell and either combine with protons 

(if bases) or release a proton (if acids).

Effects of NH/jCl

Recently it has been shown that rabbit ear artery vascular

beds as well as a number of other vascular preparations dilated
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when treated with a weak base (NH4 CI) and constricted when 

N H 4 CI was washed out by normal Ringer’s (NLR) solution (Ighoroje 

and Spurway, 1984; Ighoroje, 1987: an illustration of the kind of 

effect obtained can be seen in the present thesis at figure 4, 

p. 47). Using nuclear magnetic resonance (NMR) techniques, in the 

rab b it ear artery , Spurw ay and W ray (1987) proved that 

application  of NH 4 CI produced in tracellu lar alkalinity and its 

subsequent washout resulted in intracellular acidity - in keeping 

with the m icroelectrode results from other tissues. Ighoroje has 

investigated various aspects of the mechanisms of NH 4 CI effects in 

the rabbit ear artery. Those will be briefly presented in the 

following subsection as the bases of my work.

Ighoroje's (4987) conclusions on the NH/jCl effect

The basic NH 4 CI effects occurred in both K and NA activated 

p reparations, which showed the receptor-independence of its 

effects. The effect was also independent of endothelium. Using 

various concentrations of extracellular buffers, she showed that 

the effect of NH4 CI application and washout was greatest with the 

highest extracellular buffer concentration. This finding lead her to 

the conclusion that the effect of NH4 CI on tone is purely due to 

intracellular pH perturbations, not to their "mirror images" in the 

ECF. From experiments with various levels of background tone, on
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which NH 4 CI was applied, she concluded that there was a sort of 

sigm oidal relation between background tone and NH 4 CI effects. 

W hen the background tone was very low usually no dilatation 

resu lted  from  NH 4 CI application but the w ashout produced 

marked constrictions. W ith high background tone no constriction 

was obtained to NH 4 CI washout and the application dilatation was 

great. W hen the background tone was interm ediate the relative 

decrease and increase in pressure on NH 4 CI application and 

washout, respectively, were fairly well matched. The effect was 

also not affected by m etabolic inhibition.Treating the rabbit ear 

with C N '/F" in concentrations known to block metabolism had no 

significant effect on both NH4 CI application and washout. In all 

situations NH 4 CI application produced dilatation which reached its 

minimum within two minutes then tone recovered towards pre­

ammonium level over the remaining period of NH4 CI application. 

This tone recovery overshot pre-am m onium  level when the 

background tone of the preparation was low or when the NH4 CI 

application was longer than 10 minutes. The recovery during 

N H 4 CI application was retarded by replacing chloride with PI1SO3 ", 

or by introducing HC 0 3 " into the solution and by SITS. These 

results lead to the conclusion that HCO3 " extrusion by C1' /H C 0 3 _ 

exchange is playing a role in the recovery from NH4 CI application.
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On the other hand, adaptation from NH 4 CI washout constriction 

was found to be dependent on the presence of Na in the external 

solution and it was inhibited by Amiloride. These results showed 

that adaptation from  NH 4 CI washout constriction was due to 

N a+/H + exchange, where protons are extruded from the cells.

Generality of NH/jCl effect

In the same laboratory, Taggart (1986) obtained sim ilar 

tone changes with the rabbit femoral vascular bed and isolated 

rabbit aorta. The same results have also been reported by at least 

tw o re se a rc h e rs  (in  d if fe re n t la b o ra to rie s )  w ith  o ther 

preparations; e.g. isolated porcine coronary artery (Hoang 1988); 

rabb it aortic  helical strips (Furtado, 1988). H ow ever, other 

w orkers repo rted  d ifferen t resu lts w ith yet o ther vessels. 

Perfused guinea pig ductus arteriosus, contracted with 100% O2 , 

relaxed when pHj was reduced by NH 4 CI washout and other 

procedures (G arnier and Roulet, 1986). Rat m esenteric small 

vessels produced qualitatively the same results as those reported 

above (Ighoroje and Spurway, 1984) when background tone was 

achieved with NA activation. However, the same preparations, but 

with 125K activation, were found to produce mainly a potentiated 

tone in response to NH4 CI application. In these experiments pHj 

changes were m easured (using pH fluorescent dye, BCECF)
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sim ultaneously with tone and found to be the same as those 

reported above by Spurway and Wray (A alkjaer and M ulvany, 

1988).

Questions arising

From the above presentation four main groups of questions 

could be asked.

F irst: w hether different vessels respond to pHj variation by 

N H 4 CI application in opposite directions?. A lternatively, the 

above d ifferent results could be due to different techniques 

and preparations. I have attempted to answer these questions 

in the first part of my work entitled 'Generality of NH4 CI effect 

on vascular tone'.

Second: how could the tone overshoot pre-ammonium level 

while ammonium is still applied?. Tone recovery during NH 4 CI

application can not be expected to overshoot pre-ammonium

level by the above mechanism of C T /C H 0 3 ~ exchange. Boron 

and De W eer (1976) pointed out that NH4 + perm eation would 

cause som e acidification of the cytoplasm  during NH 4 C I 

application. Dealing with tone, one would expect that this NH4 +

perm eation would also increase the recovery by membrane

depolarization. To test the existence of NH4 + permeation during 

the recovery from NH 4 CI induced dilatation, I have used BaCl2
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which is known to block NH 4 + entry into cells (Zeiske and van 

Driessche, 1983).

Third: Is pHj effect on tone the same when another procedure, 

other than NH 4 CI, is used?, and what is the effect of the main 

organic salt expected to acidify the tissue in the body, namely 

lactate?. To answer these questions I have used organic salts to 

acidify the cytoplasm of some of the vessels subjected to N H 4 C I  

above.

Fourth: H o w  does p H j  affect tone?

The bases for answering the last two questions will be 

presented in the following subsections.

Lactate and other organic salts:

In view  of the p rev ious com plications of m em brane 

potential effects of N H 4 C I ,  and to give more general grounds to p H j  

effect on tone, I decided to use another known technique to 

achieve pH | modifications, the application of organic salts. Though 

some of these salts are physiologically important, their effects on 

vascular tone have not been studied fully before.

Mechanism of salt transport:

The effect of salt applications on p H j  will be dependent on
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how they enter the cells. If the salts are transported with protons 

or p ro to n  eq u iv a len ts  they  w ill ac id ify  the cy top lasm . 

Acidification of the cytoplasm on application of organic salts has 

been found in many tissues; e.g. sheep Purkinje fibers (De-

Hemptinne et al., 1983); mouse skeletal muscle (Vanheel and De- 

Hemptinne, 1986); and frog sartorius muscle (Mason and Thomas, 

1987). Alternatively, salts could be transported through a coupled 

Na-salt cotransport. Then the subsequent efflux of the salt with a 

proton (or the exchange of salt for extracellular base) would result 

in intracellular alkalinity; such a transport mechanism has been

identified in both renal proximal tubule cells and small-intestine 

cells (Wright, 1985; Siebens and Boron, 1987).

No doubt lactate is the most important salt physiologically. 

The m echanism of lactate entry into cells has been extensively

studied using a-cyano-4-hydroxycinnam ate (CHC), a known 

inh ib ito r o f lac ta te  and pyruvate carrier-m ediated transport 

(H alestrap and D enton, 1974; H alestrap, 1976; Spencer and

Lehninger, 1976). In light of indications of a carrier mediated 

transport for lactate in many tissue; e.g. red blood cells (Leeks and 

Halestrap, 1978); sheep Purkinje fibers (De Hemptinne et al, 1983) 

and frog skeletal m uscle (Mason and Thomas, 1987), I have 

investigated the mechanism of entry of lactate and other salts into 

vascular smooth muscle using CHC.

14



Having established the basic effects of pHj perturbations on 

vascular tone in a more general way than previously reported, 

obviously the next question that should be answered is how does 

p H | affect tone? The background to the work which would answer 

this question will be presented in the following subsections. I will 

first present the general understanding of the m echanism  behind 

drug induced tone changes, and then I w ill present the present 

evidence for pHj effect on [Ca^+ ]p

Calcium and vascular tone:

A rise in cytosolic free calcium [Ca^+ ]j is considered to be the 

im m ediate trigger for contraction in mam m alian vascular smooth 

m uscle (B olton, 1979; Jones, 1981; H artshorne, 1982). Three 

separate but in teracting  m echanism s can produce increase in 

[Ca^+]j (Rang and Dale, 1987) :

1- R elease of calcium  from in tracellu lar stores (m ainly the 

sa rco p la sm ic  re tic u lu m ), w hich  can occur w ithout any 

depolarization of the cell. There is evidence that the calcium 

perm eability of the sarcoplasmic reticulum  (SR) is regulated by 

the phophatidylinosito l breakdown produced by many agonists 

(M ichell, 1975) and precisely by its product triphosphoinosito l 

(IP 3 ) (B erridge et al, 1983; Putney et al, 1983).

2 -In c re a se  o f m em b ran e  p e rm e ab ility  to calcium  ions via
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recep to r-o p e ra ted  channels (R O C ).

3 - D epolarization of the membrane, caused by the increased 

perm eability to calcium ions and sodium ions, which acts on a 

separate population of calcium  channels (potential-operated 

channels, or POC) allowing further entry of calcium.

The above mechanisms could account for contraction of the 

v a sc u la r  sm o o th  m u sc le  w hen tre a te d  w ith  v ario u s  

vasoconstrictor agents. On the other hand, drugs can cause 

smooth muscle relaxation by two main mechanisms:

1- By interfering with calcium ion entry;

2- by increasing in tracellu lar cAMP or cGMP concentration 

(Rang and D ale, 1987)/ cAMP could produce relaxation by 

regulating [Ca^+ lj distribution or by suppressing the contractile

i

machinery by reducing the affinity of myosin light chain kinase 

(MLCK) for Ca-calm odulin. cAMP m ight also hyperpolarize 

membranes and suppress spike activity (Bulbring and Tomita, 

1987).

pHj and rCa^+ 1j

Consideration of the effect of pH on calcium  and the 

contractile machinery has been mostly focused on the effect of 

extracellular pH. Intracellular pH can not be assumed to have the 

same effect, because, as I have stated earlier, the effects of
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in tracellu lar protons on vascular tone are opposite to those of 

extracellular ones.

It has been suggested that H+ and C a^+ share common 

buffering sites (Meech and Thomas, 1977). So it is expected that 

any rise  in in trace llu la r protons w ould lead to a rise  in 

in tracellu lar calcium . Indeed, this has been reported in sheep 

Purkinje fibers by Bers and Ellis (1982) using Ca and H selective 

m icroelectrodes. They found that application of NH 4 CI produced a 

transient decrease of ]{ that accompanied an alkaline change

in pHj. Rem oval of NH 4 CI produced a transient in tracellu lar

acid ification  and increase in [Ca^ + ]j. Using calcium  and pH 

fluorescent dyes Gillespie and Greenwell (1988) found that NH4 CI 

washout produced intracellular acidity and a large increase in 

[C a^  + ]j in rat salivary gland acini. Interestingly, this increase in 

[C a^+]j was also seen in acini bathed in Ca^+ free media, indicating 

that H+ can m obilize C a^+ from intracellular sites. In rat acinar 

pancreatic cells activated with ACh, NH4 CI application induced

both an increase in pHj and a decrease in [Ca^ + ]j which was

followed by a gradual rise in [Ca^ + ]j followed by a plateau. 

Subsequent rem oval of NH 4 CI acidified the cells and caused a 

transient rise in [Ca^+ ]j (Arkle, Gillespie & Greenwell, 1988). In all 

these instances [H+ ]j and [Ca^+ ]j move in the same directions, with 

the possibility that one change causes the other.
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Since the effect of intracellular pH changes on [Ca^ + j - i n

vascu la r sm ooth  m uscle  has no t been  looked  at, I have 

investigated the relation between pH^ changes, produced by NH4 CI

application and washout and by the application of propionate and 

L - la c ta te ,  and the level of [Ca^ + ]j m easured  with the calcium

sensitive dye fura-2 .

S u m m ary

In sum m ary, therefo re , the questions addressed in this 

thesis are:

1) W hether d ifferen t vesse ls/p repara tions respond to NH 4 CI

application and washout in opposite directions - see "Generality 

of NH 4 CI effect on vascu lar tone", chapter two, results,

se c tio n  1 .

2) W hether NH 4 CI application acts solely to raise pH^ - see

"Recovery and tone overshoot during ammonium application", 

chapter two, results, section 2 .

3) W hether o ther in fluences on p H j  have tone effects in 

accordance with those produced by N H 4 C I  - see " Constrictions

produced by salts of weak acids" chapter three.

4) W hether the effects of pHj on tone are mediated by changes
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in in trace llu lar calcium  - see "Fura-2 experim ents" chapter 

four.
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Chapter two

G en era lity  o f NH^CI effect on v ascu la r tone 

M a te r ia ls  an d  m ethods 

Theoretical back ground:

induced alkalinization and acidification 

N H 3  has been known to affect pHj for a long time (see Roos 

and Boron, 1981, for h istorical background). However, Thomas 

(1974) was the first to give experim ental evidence for the two 

extremes of pHj modifications when NH4 + salts are applied for a 

short period (NH 4 + pulse) and subsequently washed out. He 

briefly exposed snail neurons to NH4 + w hile  monitoring pHj with 

microelectrodes. He found that p H j  was elevated when NH4 + w as 

applied and on washout pHj mot only went back to prepulse level 

but also undershot it. His finding of acidification on removal of 

N H 4 + was the first experim ental evidence for significant NH 4 + 

permeation through cell membranes (Roos and Boron, 1981). The 

details of the m echanism s behind the various stages of pHj 

modification by NH4 + pulse was first given by Boron and De Weer 

(1976). Their account is illustrated in Figure 1, here, where the 

overall NH4 + effect is divided into three phases, A-C.

Phase A: When cells are exposed to NH4 + , NH3  rapidly enters 

and combines to H +  to form N H 4 + , thereby raising p H j .
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Phase B: The new thing the above authors found was that 

during longer exposure to NH 4 4* pH levels off and then 

gradually goes down - a period which they termed ’plateau 

phase acidification’. They explained this phase by a slow entry 

of NH 4 + driven by its electrochemical gradient. By entering the 

cells NH 4 + would dissociate into N H 3  and release protons into 

the cytoplasm. At equilibrium N H 3  entry will cease and further 

N H 4 +  entry will lead to efflux of N H 3 ,  decreasing p H j  fu rther. 

In this manner NH4 + are functioning as proton carriers.

Phase C: Washout of external N H 4 +  will drive intracellular N H 3  

outward and therefore intracellular NH4 + will dissociate into 

N H 3  and protons leading to decrease in p H j .  The fall in p H j  

continues until all intracellular NH 4 + has dissociated and all 

resu ltan t NH 3  moved out of the cell. Only then the pH] fall 

ceases and thereafter pHj recovers back to prepulse level by 

acid extruding mechanisms.
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Figure' 1: Schematic representation of the effect o f NH4+ salts on pHj. 

Phase A: Alkalinization caused by NH3 entry into the cells where it
combines with protons. Phase B: 'Plateau phase acidification' caused by
the slow entry of NH4+ into cells, where it dissociate and release protons. 
Phase C: Acidification of the cytoplasm produced by washout of the external 
N H 4 + solution causing the efflux of internal NH4+ as NH3 leaving protons 
behind.
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General consideration:

R epresen tative  and purposely selected vessels of three 

mammals: rat, rabbit, and cat were subjected to NH 4 CI challenge 

(table 1). Since rabbit ear and rat tail arteries were used as 

controls for some of the newly studied vessels, they have been 

subjected to more variations in preparations, concentrations and 

mode of activators, and temperature.

A n im a ls :

Rats: W hite W istar rats weighing 200-350 g. were killed by 

a blow to the back o f  the neck and exsanguination. Smaller 

an im als ( 2 0 0  g) w ere used specially  for perfused  aortic  

preparations to get a smaller vessel diameter. The blow to the 

neck frequently  caused rupture of the thoracic aorta in these 

small animals; in order to avoid this complication, ether overdose 

was used to kill this batch of animals.

Rabbits: Large New Zealand white rabbits, usually aged 

about 3 months and weighing between 2 and 4Kg, were killed by 

a blow to the back of the neck. Animals used for basilar artery 

experim ents were killed by Saffan overdose (alphaxolone and 

alphadolone acetate, Glaxovet Ltd. M iddlesex, England) injected 

through the ear vein. All animals were cage-reared and normal at
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the time of sacrifice.

Cats: This group of animals was obtained from another lab, 

in which they were subjected to long in vivo experiments ( > 1 0  

h o u rs). A n im als (w eighing  2-4K g) w ere  sacrificed  w ith 

phenobarbitone overdose and usually left for 2 0  minutes before 

the start of my dissection.

P r e p a r a t io n s :

The preparations used are summarized in table 1.

Rat tail artery:

The tails were cut immediately after death at their highest 

point near the body to obtain largest vessel diameter. The skin 

was rem oved, the caudal arteries were located, then various 

preparations were made. To perfuse the whole tail, about 2cm of 

the connective tissue covering the artery was dissected, then the 

artery  underneath  was pulled out, cleaned, and cannulated 

usually by about 8 cm length of gauge 23 (blue) flexible (Portex) 

cannula, which was then tied in place by a ligature. Intact distal 

1/3 (2-3cm) was prepared by dissecting and isolating the artery

l - 2 cm proxim al to the point where the tail was cut to obtain 

larger vessel diam eter for easier cannulation. Isolated proximal 

l/3(2-3cm ) of the artery was used in the bulk of my work after a 

few trials with the first two preparations mentioned above. This
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Animal Vessel
Mode of 
activation Preparation

Rat Tail art ** NA & 50 -1 25K Perfused
M esenteric art. ** NA & 50 -1 25K Perfused

Portal vein NA Longitudinal strips
Pulm. art. * NA Rings & perfused
A orta NA Rings & perfused

Rabbit Ductus arteriousus 0 2  & NA Rings
Neonatal pulm. art. NA Rings
Neonatal aorta NA Rings
Renal art. NA Perfused
Femoral art. NA Perfused
Ear art. * NA & 25K Rings & perfused
Basilar art. NA & 25K Rings
Portal vein NA Longitudinal strips
Pulm.art. NA Rings
Aorta NA Rings

Cat Tail art. NA Perfused
Portal vein 50K Longitudinal strips
Pulm. art 50K Rings
A orta 50K Rings

Table (1): P reparations studied for NH 4 CI effect. *=
Preparations perfused as vascular beds only. **= Preparations 
perfused as both vascular beds and isolated arterial segments.
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was prepared sim ply by cutting through the connective tissue 

covering the artery up to the required length, then the artery was 

pulled out by a sharp forceps up to the end of the cut. During this 

forced pulling of the artery all small branches were cut off, then 

the artery was cut off and cannulated. The two p reparations 

(usually from two animals for one experiment) were mounted one 

on each side of a twin perfusion system which will be described 

later in the text.

Rabbit ear vascular bed:

The ears were removed from all animals by cutting them 

close to the skull to obtain the largest vessel caliber. The edges of 

the ears were trimmed just peripherally to the lateral veins. The 

subsequent dissection of the ears involved the removal of the skin 

on the dorsal (vascular) surface as far as was possible -usually 

from about the proximal 3/4 of the length. The proximal ends of 

the central arteries were then cannulated using about 8 cm length 

of flexible (Portex) cannulae, usually Gauge 16 (pink cannulae). To 

aid both identification and cannulation of the central arteries, the 

blood was left in them until dissection and cannulation were 

completed. The cannula was then tied in place with two ligatures, 

one around the artery only and the other through the underlying
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cartilage. The ears (usually both members of a pair for one 

experiment) were then mounted on the perfusion system.

Other perfusion preparations:

T hese include iso la ted  ra t m esenteric  and pulm onary

arteries and aortae, segments of the renal and femoral arteries of 

the rabbit, and isolated cat tail artery (table 1 ).

Rat pulm onary vascular beds were perfused through the

m ain lobar arteries which were cannulated by blue Portex

cannulae. Rat aortae were cut from their first thoracic part 

(descending aorta) and dissected down to the branching of the 

anterior m esenteric artery. In some experim ents the abdominal 

aorta was included in the preparation up to the bifurcation into

the two iliac arteries, with all earlier branches tied. These large

vessels were cannulated with red Portex cannulae (Gauge 12).

A nterior m esenteric artery preparations of the rat were 

perfused in two fo rm srl- the artery was isolated with its 

surrounding m esentery, but this form developed edema during 

the course of the experiment; 2 -the  artery was isolated and freed 

from all fat around it, and all big branches were tied. Cannulation 

was done by pink Portex cannulae (Gauge 16).

Rabbit renal artery was isolated by dissecting through the

kidney starting from the renal artery and following a segmental
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branch down to one of its interlobar branches and ending to the 

sm allest dissectib le  arcuate branch. During dissection all other 

segm ental and interlobar branches were tied to m inim ize fluid 

leakage during perfusion. Cannulation was carried out with a pink 

Portex cannula.

Rabbit femoral artery was isolated starting from the region 

below the inguinal ligament and going down through the anterior 

tibial branch tying all other branches; the preparation was then 

cannulated with a pink Portex cannula.

The cat tail arteries were dissected and isolated by the same 

method as the rat tail qnes, but here gauge 16 Portex cannulae 

were used.

Ring preparations:

All rings were, of course, short cylinders of artery. These 

were 2-3m m  long, and were cut by a sharp scalpel or small pair of 

scissors. Strips, dissected as below, were 5mm cylinders of vessels 

mounted longitudinally. Aortic and pulmonary rings and portal 

vein longitudinal strips were prepared from the three animals 

used in my work rat, rabbit, and cat.

Aortic rings were prepared without difficulty from different 

parts of the vessel but mostly from the thoracic aorta.
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Pulmonary artery was the most awkward vessel to identify 

and to dissect, especially in small animals, because of its close 

relation to the great vessels near the heart and the great amount 

of connective tissue surrounding these vessels. The artery was 

followed from its origin in the right ventricle along its course 

dissecting out all connective tissue including the remnants of the 

ductus arteriosus, and cutting the right pulm onary artery to 

follow the left one till it approached the left lung where it was cut. 

Preparations were made from different parts of the artery.

Portal vein longitudinal strips were obtained by making a 

lo n g itu d in a l incision  through the abdom en, rem oving all 

m esentery to one side, the portal vein was then located and 

dissected out. After cleaning the vein segment, two ligatures were 

tied 5mm apart along its course, one of them was used to fix the 

vein strip to the hook in the organ bath and the other was tied 

from the other end to the tension transducer.

Rabbit basilar artery rings were obtained from animals 

killed by Saffan overdose injected through the ear vein. The brain 

was quickly removed and placed in NLR solution. The basilar 

artery was then dissected and isolated under the microscope, and 

several ring preparations were made.

Ductus arteriosus is the small vessel in the fetus which 

conducts blood from the pulmonary trunk to the aorta, thus
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bypassing the lung. This vessel starts to close within 24 hours 

after birth, therefore animals were always sacrificed within the 

first 24 hours of postnatal life (often in the first 10 hours). 

Neonatal rabbits were killed by a stroke on the back of the neck, 

then the chest was opened and the ductus was localized. This 

vessel, although small, was not difficult to identify and isolate, 

maybe because it forms connection between two large arteries. 

W hen identified it was cut from one side, then held by sharp 

forceps to avoid its loss, and after that isolation was completed by 

cutting the other side of the vessel.

A p p a r a tu s ;

Two main system s were used for all experim ents, the 

perfusion and the rings apparatus.

The perfusion apparatus:

Solutions were pumped through a pair of matched but 

separate circuits which allowed independent and sim ultaneous 

perfusion of two preparations.

The perfusion circuit as illustrated in figure 2 consisted 

mainly of:

1- A set of flasks containing physiological solutions and a 

multiway tap system from which the desired solutions could be 

d raw n .
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2- A W atson-M arlow 502 peristaltic ’constant flow’ pump, 

adjusted to give the desired flow rate (see below) in each of two 

tubes in parallel, side by side within the pump. With the gauge of 

tubing used, the desired flow-rate for different preparations was 

attained at different pump speeds (table 2 ).

3- The cannulae were connected to the W atson-M arlow 

pump outflows via Elcomatic Em 751 pressure transducers.

4- The two parallel outlets of a Palmer slow infusion pump 

(through which NA was introduced) were attached to the mixing 

chambers just before the cannulae connections to avoid oxidation 

of NA- and therefore avoid any significant difference in oxidation 

caused by solutions of different pH.

5- Input (perfusion) pressures indicating changes in tone 

w ere continuously  recorded on twin channel pen recorders 

(Devices, L inseis or Speedomax) via bridge am plifiers. The pen 

recorders were calibrated with a mercury manometer at the end 

of each experiment. The time interval between the selection of a 

new experim ental solution and the beginning of b iological 

response to it varied with the flow rate used for different vessels. 

Initially it was one minute for the rabbit ear preparations and two 

minutes for rat tail ones. Checks with colored liquids indicate that 

almost all this delay occurred in the tubing. It could therefore be
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timed to within seconds. Nevertheless, during the later part of the 

work the tubes were shortened further to reduce the intervals to 

half their above values.

A1 0
B1 o
C1 ~~o
D1 “O
E1 ~o
F1 ~T>
A 2 _o
B2 _o
C2 __o
D2 _o
E2 _Q
F2 _Q

M ultiway  
tap system  
for changing  
bulk
solu tions

constant

flow peristaltic 
pump

To pressure 
trasducers 
and continuous 
tw in-channel 
recoder

<ziz>

Noradrenalin
from
twin-channel 
slow infusion 
pump

f l iu d
drainage

mixing
chamber

canulated
a r te r ia l
preparatioi

Figure (2): Perfusion set-up.

The flow rates:

Table (2) shows the different flow rates used for different 

preparations. For most preparations the flow rate was adjusted to 

that level which gave an initial pressure (before introduction of 

NA) of about 30mmHg above that caused by cannula resistance. 

The in itial pressure for the perfused pulm onary artery was 

adjusted to about 15mmHg, while that of the aorta was not

32



effectively adjustable by flow rate, possibly because of the large 

vessel diam eter.

Preparation
Pump speed (r.p.ms) 

%
Flow Rate 

(mis/mint)

Rabbit ear 24-35 5 -7

Rabbit renal 1 6 -2 4 3 -5

Rabbit femoral 1 6 -2 4 3 -5

Rat rail 11 -16 2 - 3

Rat aorta 20-24 4 -5

Rat mesenteric 16-20 3 -4

Rat pulmonary ' 9 - 1 3 1.5-2

Table (2): Pump speeds used to obtain the required flow rates for 
perfused preparations.

Although flow rate of NA from the slow infusion pump was 

frequently adjusted with an unfam iliar preparation to obtain the 

desired NA concentration and subsequently adequate vascular 

resistance ( > 2  x initial vascular resistance), experience with a 

particu lar preparation usually enabled me to adjust syringe- 

concentration of NA such that satisfactory tone was obtained with

33



a standardized infusion rate of 0.18ml/min. The concentration of 

NA in the reservoir syringe of the slow infusion pump was 

calculated using the main flow rate, the anticipated infusion rate 

and the desired final concentration value i.e.

syringe conc.= main flow rate x desired final conc./syringe flow rate.

A problem  which was encountered in certain rabbit ear

preparations, and whole and intact distal 1/3 of the rat tails, was 

that of sinusoidal pressure oscillations of period icity  30-50

seconds. Usually this was tackled by turning NA perfusion up.

Tem perature of perfusion experiments:

Most of the perfusion experiments were carried out at room 

te m p e ra tu re , how ever ex p erim en ts  on in te rn a l v esse ls  

(aorta,pulm onary and mesenteric arteries) required 37°C to obtain 

optimum NA activation. The tail artery was used as a control in 

some of these experiments. To achieve proper warming of the 

preparations, they were immersed in two tunnels made in a 

water-jacket chamber, in such a way that the vessels were totally 

immersed in their perfusate which was being warmed by the

water circulated inside the jacketing chamber. The temperature in 

the solution surrounding the vessel was kept around 37°G by 

adjusting the tem perature of the circulated warm water in the

chamber.
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Rings apparatus;

Vessels which had a large lumen diameter, e.g: aorta and

pulm onary artery, were not suitable for perfusion apparatus 

because in most cases they did not develop appreciable baseline 

resistance. Also other vessels for several reasons were more 

conveniently used as ring preparations (table 1). Two set ups

were used; first, the one present in our Glasgow lab on which all 

preparations, except the ones noted below, were mounted. Second, 

experiments on the rabbit basilar artery, and on ears at 37° C as 

their controls. These were carried out at Southampton General

Hospital in the lab of Prof.J.Pickard and Dr.A.Young, so a different 

set up was used for these two preparations.

Our rings set up consisted of: Four 30ml organ baths 

(figure 3 ) in which preparations were mounted by stainless-steel 

wire hooks. These in turn were connected by threads to four 

isom etric tension transducers (G rass, m odel FT 03) which 

continuously recorded the tension developed between the two

hooks holding each ring. The tension recordings were plotted on a 

polygraph chart recorder (Grass, model 7PCPA). The four baths 

were connected to each other in a stepwise direction, i.e the first 

being the highest and the fourth the lowest, so that solutions could 

flow from the first bath to the second and so forth by the effect of 

gravity. This connection enabled me to washout most of NH4 CI
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solution present in the baths without the need to open the taps 

which otherwise disturbed the measurement traces at a critical 

point.

The apparatus used for basilar artery preparations and their 

control ear rings was basically the same as ours except that the 

organ baths were smaller (5ml) and the hooks were connected to 

the same Grass tension transducers but by stainless-steel rods.

G

D
Q

B

H

A= Physiological solution inlet
B= Physiological solution outlet
C= Hot water inlet
D= Hot water outlet
E= Preparation held by two hooks
F— Stainless-steel hooks
G=Thread leading to the tension transducer
H= Drainage tap
1= 30ml organ bath

Figure 3: 30ml organ bath used for ring preparations.
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S o l u t i o n s ;

The normal Ringer's solution (NLR) contained 140mM NaCl, 

6 mM KC1, 1.5mM CaCl2 , ImM MgCl2  and lOmM Glucose; it was 

buffered with 1.5mM NaH 2 P 0 4 - The osmolarity of samples of this 

solution (as of all others) was measured by the freezing point 

depression method and found to be 285-295mosmol.

The pH of NLR and all other solutions was adjusted by 10- 

0.2N NaOH or 1-0.2N HC1 to the required value. The pH's of all 

solutions were measured with an Analytical M easurements pH 

meter which was itself calibrated prior to readings with standard 

bu ffers .

High K solutions (50-125K) were prepared by equimolar 

substitution for Na in both the control and experimental solutions 

(eg.96-NaCl, 50-KC1). Other constituents were as NLR.

Barium  chloride was used in two pro tocols. 1- Low 

concentration (O.lmM) which was simply added to the control 

Ringer’s and NH4 CI solutions. 2-Higher Barium concentrations (2-

6-1 OmM) were used with K free solutions. These (K free solutions) 

were prepared by totally removing and substituting extracellular 

K with equivalent Na (146-NaCl, 0-K), other constituents were the 

same as NLR. The barium was then substituted for equivalent Na 

in K free solution (e.g. 6 -BaCl2 » 140-NaCl).

N H 4 CI solutions were prepared by isosmotic substitution for
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NaCl (commonly 30mM NH4 C1, llOmM  NaCl) in the R inger’s. This 

condition was achieved with all solutions, however the manner of 

introducing the NH4 CI differed according to the experimental set 

up. In all perfusion experiments solutions were premixed in the 

final form. In ring set ups while all control solutions were 

introduced in the previous form experimental ones were applied 

in one of two ways. In the large organ baths (30ml) NH4 CI was 

added as a pure 140mM NH4 CI Ringer's which contained no NaCl 

but had all other constituents the same as the control solution. The 

volum e added was calculated to give the required NH 4 C 1 

concentration in the bath. In the smaller organ baths it was not 

possible to follow  the previous method, so alternatively the 

concentration in the 5ml organ bath was varied by either 

replacing the total bath content with the experim ental solution 

(isosmolar method) or by adding about 5 molar stocks of NH4 CI in 

m icroliter quantities (addition m ethod). A ddition method was 

used to introduce NH4 CI concentrations 2-40m M . Results from 

these solutions were subsequently corrected for the vasodilator 

effects of hyperosmolarity. .....

Experiments on ductus arteriosus were conducted at three 

oxygen levels; 2-3% O2  with 97-98 N 2 ; 10 O2  with 90% N 2 ; and 

100% O 2 . These mixtures were made up by a rotameter system
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used for anesthetic gas dispension, and were stored in Douglas 

bags. The gas mixture was verified by analysis o f samples by 

oxygen and carbon dioxide meters (Servomex 570A, Morgan 901

respectively) which were carefully calibrated on the morning of

the experiment.

Noradrenalin solutions:

N oradrenalin  {NA, A rterenol b ita rtra te  (Sigm a)} stock 

solution of 10 '^M , with 2.10"^M  E.D.T.A to prevent oxidation,

were prepared with distilled water and stored in a refrigerator. 

Dilutions were made with the control Ringer's solution appropriate 

to the respec tive  experim ents, to the appropria te  syringe 

concentration to produce a final dilution in the perfusate usually 

between 5.10"^ to 4.10“^M .

In ring experiments the NA stock solution was diluted to the 

appropriate  concentration in small volum es of the required 

solutions (control or experimental), to avoid oxidation at the lower 

NA concentration, and these were added to the bath freshly.

Other activators

T hrom boxane derivative  (U19) and vasopressin  were 

prepared as 10"^M stock solutions. On the day of the experiment

the required dilution was made to achieve proper activation of the
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preparation. Calculations of syringe syringe concentration and the 

final desired concentration were the same as described before for 

NA.

5-HT was directly introduced into the rings organ bath in 

the required concentration.

General procedure:

In perfusion experiments solutions were changed simply by 

turning the multiway taps. Each experimental solution was left for 

at least 5 minutes and washed out by its control solution for 

m ostly 10 minutes; in certain experim ents the washout period 

was extended to 15-20 m inutes if the tone was still above 

baseline by the tenth minute.

Rings were mounted on the hooks under particular initial 

tension (table 3), which was achieved by simply pulling the upper 

hook up, and left to settle for at least 60 minutes before any 

experimental solution was applied.
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Vessel Initial tension (gm)

Aorta 2

Pulmonary artery 1

Portal vein 1

Neonatal aorta 1

Ductus arteriosus 0.3

Ear artery 0.6

Basilar artery 0.3

Table 3: Initial tension for the different ring preparations of the 
vessels shown.

In ring experim ents solutions were introduced either by 

simple replacem ent of bath content or by addition (see above). 

Organ baths were emptied in one of three ways:

1- Suction, which was used in all experim ents on basilar 

arteries and their control ear preparations. To avoid disturbing 

the preparations new solutions were introduced gently while 

bath contents were sucked.

2-In the glasgow set up, the 30ml organ baths were fitted with 

outlet for contents controlled by taps. By opening the taps
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solutions in the bath could be emptied completely. However 

this method often caused irregularity in the traces therefore an 

alternative method was adopted.

3- W ashing the so lu tions by gravity  m ethod was the

alternative to opening the taps. A lthough solutions were 

actually diluted and not totally displaced by this method the 

results obtained were not significantly different from others 

obtained by draining solutions through the taps-except that the 

drainage-artifacts were absent. To ensure that the major part 

of each NH 4 CI solution was washed out, NLR solutions were 

poured generously into each bath (usually twice the volume of 

each bath was added). To avoid built up of NH4 CI in the baths,

the contents w ere d rained  through the taps when the

experim entally-observed w ashout period was over, therefore 

new Ringer's solution was introduced into each bath after

every pulse.

N H 4 CI solutions were applied typically for 5 minutes. 

However exceptions were ring preparation experiments at 20°C. It 

was applied to rat portal vein longitudinal strips for 2  minutes 

and to the aorta and pulmonary artery for 3 minutes. In the 

rabbit ring experim ents, NH 4 CI was applied for 4mins to all 

preparations. Washout period was typically for lOmins, but it was 

increased to 15-20mins in vessels where no adaptation occurred
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during the lOmins, e.g: pulmonary artery at 20°C.

In barium experim ents, required barium concentration was 

introduced in exchange for NLR solution at least 2 minutes before 

N H 4 CI with the same barium concentration was applied. Washout 

was also carried out with the same barium concentration. In K- 

free experiments the vessels were perfused with 0-K solution for 

1-2 hours before the start of NH4 CI pulses. Control pulses (barium 

free) were carried out before and after the whole series of barium 

contain ing  N H 4 CI pulses. The later step was done to take into 

account changes attributable to aging of the preparations.

Analysis of  traces;

Traces obtained  from  perfusion experim ents could be 

qu an tified  as p ressu re  (m m H g) changes. S tandard  (pre- 

experim ental) as well as experim ental readings had a lot of 

variations in their absolute pressures from one vessel to another, 

therefore to plot these in a neater way relative pressures (Q) of 

experimental readings to standard ones were calculated for every 

pulse. The equation used was:
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A

Q— De-Dc/Ds-Dc

D e= Mean experimental displacement from zero

D s= Mean control displacement from zero
O O

D c= Mean displacement from zero due to cannula

In rings experim ents basically the same procedure was 

followed except that these traces had no cannula readings. I did 

not take initial tensions as equivalents of cannulae readings 

because these were built in the vascular wall and therefore might 

contribute to tone changes if they have some myogenic tone. This 

could be the cause for some dilatory responses to NH4 CI reducing 

tone below the initial tension; a phenomenon which would never 

be expected to occur in perfusion experiments if cannula was 

taken to be equivalent to initial tension. The traces obtained from 

portal veins frequently had irregularities due to the spontaneous 

activity in this vessel, so standard readings were taken as the 

average of about 1 0  read ings over five  m inutes before 

ex p erim en ta l so lu tio n s  w ere ap p lied . F o rtu n a te ly  these 

irregu larities  d isappeared when experim ental so lu tions were 

applied or washed out.

D e for all NH 4 CI pulses was taken as the maximum 

displacement during NH4 CI application (the timing of which varied 

between preparations, but normally between 0.5 and 2mins after 

first application) and again as displacement just before washout
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(fifth minute in most pulses). For NH4 CI washout, De was taken as 

the maximum displacem ent during washout (usually occurring 

during the first 3 minutes), and displacements every five minutes 

from the start of washout period to the end of the pulse.
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R e s u l ts

section 1: Fundamental effect of NH 4 CI on variety of vessels:

N H 4 CI effect on rabbit, rat, and cat vessels will be presented 

in this part. Unless otherwise stated NH 4 CI concentration was 

30mM. Since the NH 4 CI effect was first established on a rabbit 

vessel, namely ear artery, (Ighoroje & Spurway, 1984) I will start 

with this species first.

R a b b it vessels:

Preparations studied were normally activated with NA or K, 

though a few preparations were sometimes subjected to NH 4 CI 

without activation. Unless otherwise specified NA concentration 

was varied from l - 6 p M  to 'ach ieve  the appropriate baseline 

resistance in various preparations.

Rabbit ear artery:

Perfused preparations at 20°C

Applying 30mM NH 4 CI to the rabbit ear activated with 2jiM 

NA produced d ila tation  which reached minimum within one 

minute, then the tone recovered towards pre-ammonium level in 

the next four m inutes. W ashout of NH 4 CI by NLR solution 

produced constriction which reached maximum within the first 2  

minutes, then the tone went down towards baseline in the next 6 -
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8  minutes. The average dilatation obtained was to 44% of pre­

ammonium tone (n=7, p<0.01), while the average constriction was 

to 132% (figures 4a & b).

The vessel responded to NH4 CI application and washout in 

the same direction when Vasopressin or Thromboxane derivative 

(U19) were used to activate the preparations in place of NA.

LA I

Rabbit  ear  a r t e r y ,  r e sp o n s e  to 30mM NH^Cl

2 5 0 - ,
30mM NH,C1 PH7.2

•hT NLR pH7.2 .........

Time (mins)

(B)

1.5-1 (n=7)

30-NH4C1

Q.

0 .5 -

0.0
2  0 2 4 6  8  1 0  1 2  1 4  1 6

Tim e (mins)

Figures (4A  & B): (A) Original trace o f  perfused rabbit ear artery at 2 0 ° C , 
m inimum tone on N H 4 CI application was reached within the first minute while

maximum washout tone was attained within the first two m inutes. (B) A graphical 
representation o f  means o f several original traces like A above. Many o f the 
subsequent illustrations in the thesis w ill be o f this type, points=m ean, bars= SEM, 
and **=p<0 .0 1 .
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Ear ring preparations at 20° C:

E ar rings ac tiva ted  w ith NA produced "d ila ta tions" 

(relaxations) to NH 4 CI application which are less than perfused 

ones (average tone=82% of pre-ammonium level, n=4, p<0.01), 

then tone recovered to overshoot baseline whilst NH4 CI was still 

being applied. However w ashout of NH 4 CI produced further 

increase in tone (to 124% of pre-ammonium tone, n=3, p<0.01). 

W hen the same ear ring was treated with NH 4 CI with no 

activation there was a small transient dilatation in the first 2 0  

seconds then the tone went up steeply to overshoot baseline level 

w ithin the first minute.. W ashout of NH 4 CI produced a small 

transient further increase in tone in the first 2 0  seconds after 

which the tone fell down to 'reach baseline within 5 minutes.

Ear rings at 37° C:

Since these experim ents, with the basilar artery ones, 

involved changes in osmolarity when NH 4 CI was added by the 

addition method; the results used to correct the hyperosmolarity 

will be presented first.

The hyperosmolarity effect was checked by applying NLR 

solutions to which different quantities of NaCl or DMSO had been 

added. Graphs of the dilatations produced, in both ear and basilar
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preparations, 0.5 and 5 minute(s) after application of the osmotic 

challenge, and of the degree of recovery 1 m inute after its 

w ithdrawal. These values were subsequently used for correction 

of all results obtained with the addition method. Therefore all 

following results are corrected ones, i.e. pure NH4 CI effects.

25K activated preparations

25K constricted the ear rings to 5 times resting tone (1.7 gm 

tension). Applying NH 4 CI pulses by the addition method (see 

M aterials & Methods section) dilated the vessels increasingly in 

the range 2-1 OmM NH4 CI, however the dilatations decreased over 

the range 20-40mM NH4 CI. NH 4 CI washout produced constrictions 

proportional to NH 4 CI concentrations in the preceding pulse over 

the whole range (2-40mM).

Applying 30mM NH 4 CI substituted for 30mM NaCl in 25K 

R inger’s solution dilated rings of the rabbit ear. However the 

vessel recovered and tone overshot baseline level even during 

N H 4 CI pulse. On washout the tone went up further reaching 

maximum within a minute, then adapted back to baseline in 1 0  

minutes (figure 5).

NA activation

These preparations were used as controls for the rabbit 

basilar artery therefore higher NA concentrations than usual for
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ear vessels were used. 6.10"^NA constricted the ear artery rings 

to almost 4 times resting tone (2gm tension). Under the continuing 

activation of NA the preparations dilated to NH4 CI application 

reaching minimum within one minute; then tone recovered back 

towards baseline and overshot during the later minutes of the 

N H 4 CI pulse. On washout of NH4 CI tone increased above any value 

to which it had already overshot, reaching maximum within one 

m inute, then diminished again to reach pre-N F^C l level within 

10-20 minutes (figure 5). However most of these changes, though 

highly significant, were of small amplitude relative to p r e - N ^ C l  

tone.

cJ3
CO
c
©

©>
J O
©

DC

Time (mins)

Figure 5: Pooled results of experiments on rabbit ear artery rings

at 37°C with 6 uM NA and 25K activations. Dilatations to NH4 CI application
were significantly below baseline (p<0.1 for 25K plot, p<0.01 for NA plot). 
Tone overshoot was more marked in 25K activation. **=p<0.01, bars=SEM.

(n=3)
25-K

2 -

6uM-NA
30-NH4C1

2 0 4 6 8 1 0  1 2  1 4  1 62
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Rabbit femoral and renal arteries:

Perfused femoral and renal arteries, at room tem perature, 

responded in the same direction to NH 4 C I application  and 

w ashout. H ow ever the isolation of both arteries took much longer 

time than did that of the ear and some other vessels. Possibly for 

this reason the responses were slower, minimum tone being 

reached in 2-3 minutes with little or no subsequent recovery, and 

maximum washout tone being reached in 3-5 minutes after NH4 CI 

withdrawal (figures 6 a & b).

1.7 5 -

(n=7)

30-NH4CI1 .2 5 -

0 .7 5 -

0.25
2 0  2 4  6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2

B
(n=4)

®k.
3
CO
CO
©
k.

30-NH4CI

a.
©
>

©cc
0.50

2 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2

Tim e (m ins) Time (mins)

Figures 6 a & b: Pooled results o f perfusion experiments on A: renal
artery, B: femoral artery. Both vessels had slower responses to NH 4 CI application and

washout. Note slower adaptations. **=p<0.01, *=p<0.05 & p<0.1.
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Rabbit basilar arterv:

Rings of the basilar artery were subjected to the ammonium 

challenge at 37°C  under three modes of activation.

1-25K activation:

25K constricted the basilar artery typically to 3 times 

baseline tone (tension went up by 0.5g). Applying NH4 CI pulses by 

the addition method (see M aterials & M ethods) dilated the 

preparations increasingly with greater NH 4 CI concentrations, in 

the range 2-20mM; however^ 30 and 40mM NH4 CI produced less 

d ilatations than 20. NH 4 CI w ashout p roduced  co n stric tio n s 

proportional to NH 4 CI concentration in the preceding pulse over 

the whole range (2-40mM).

Applying 30mM NH4 CI substituted for 30mM NaCl in 25K 

Ringer's solution dilated the preparations, then tone recovered 

and overshot baseline during the late stages of the NH4 CI pulse. 

On washout, tone at first went further up and then adapted back 

to baseline in the typical way (figure 7a).
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2 -NA activation:

6.10~6 NA increased tension of the basilar rings only by 50- 

200mg. However the preparations responded to NH4 CI application 

and washout in the typical way except that preparations which

had particularly low tone gave transient constrictions during the

first 30 seconds of applying 30mM NH4 CI (figures 7b & c). These

transient constrictions are not apparent in the graphical plots for 

two reasons. First, they did not occur in all pulses (two out of four) 

so if plotted will not be appreciated. Second, they had clear 

correlation with background tone. They occurred in preparations

which gave only somg increase in tension to NA while the other 

which gave 2 0 0 mg had no sign of them. However, when all results 

at 0.5 minute are pooled together these constrictions become 

insignificant.

3- 5-HT activation:

Activated in itially  by 1 0 '^  5-HT, basilar rings dilated to 

N H 4 CI, applied by addition, then tone recovered much as before. 

Increasing 5-HT to 10“̂ M increased the pre-ammonium tone, and 

the magnitude of NH4 CI dilatation. Washout effect was not studied 

in this experiment because 5-H T  was washed out with the NH4 CI 

by NLR solution.
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Figures 7a,b, & c: A: Original trace o f  rabbit basilar ring preparation
activated with 25K, note the fast recovery during NH 4 CI application. B Original trace

o f  the same preparation but activated with 6 uM N A , note the low  baseline tone 
compared to A, the transient constriction in the Fust 30 seconds o f NH 4 CI application,

and the slow er recovery during NH 4 CI application. C: Average plot o f several

original traces like a & b above. Minimum dilatation to NH 4 CI application and

maximum washout constriction were reached faster in 25K activation (open squares) 
than in NA activation (solid symbols).
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When activation was low [10"^ 5-HT] but not when it was 

high [10"5 5-HT] transient increases of tone occurred within the 

first 30 seconds of applying NH 4 CI, preceding the dilatations 

described above.

10-5 ACh dilated three of the four preparations activated by 

1 0  "5 5-H T; the fourth preparation did not dilate to ACh but 

nevertheless responded normally to NH4 CI.

Pulm onary arteries:

Three experim ents were carried out on perfused lobar 

artery at 20°C . The preparations had sluggish responses to the 

highest NA concentration applied (10"5), perhaps for this reason 

no responses to NH 4 CI application or washout could be obtained. 

On the other hand rings of the main pulmonary artery produced 

about 0.75 gm increase in tension when activated with lO ^ M  NA 

at 20°C. Under the continuous activation of NA, NH4 CI application 

caused a little dilatation in the first 2-3 pulses (figure 8 a), then in 

the following pulses some preparations gave no dilatation and 

others gave instantaneous constrictions on application of NH4 CI 

(table 4). In all cases the tone overshot pre-am monium  level 

during the pulse. Washout of NH 4 CI produced constriction in all 

pulses, the magnitude of which seemed to be dependent on the 

in itial vessel tone. Generally when the tone was lower the
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constriction obtained was greater. The tone usually went up for 

the first 1 0  m inutes of washout then adapted slowly towards 

baseline in the next 20-30 minutes (figure 8 a). This constriction 

was som etim es biphasic in cases where ammonium application 

had produced constriction. The first phase was small transient 

lasting only 40 seconds after the start of washout; then the tone 

went down to baseline in the next 1-2 minutes. In the second 

phase the tone went back up again to overshoot baseline over the 

next 1 0  minutes (figure 8 b).

Rabbit aortic rings:

Aorta responded to NH 4 CI much like pulm onary artery 

(table 4). Here the dilatations to NH4 CI application were greater in 

magnitude than in the pulmonary (figure 9a). One feature which 

was clear in aortic rings and could apply to the pulmonary ones 

was that the response depended on the preparation tension. In 

one experiment decreasing the vessel tension from 1 . 2  gm to less 

than 0.4 gm reversed the constrictor response to NH 4 CI to a good 

dilator one. In another experiment where the ring’s tension was 

>1.5 the washout of NH 4 CI produced much the same kind of 

biphasic pattern as that explained for the pulm onary vessel. 

However here the washout tone not only went down to baseline 

after the sm all transient constriction but also undershot it
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(figure 9b). 
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figure 8 A: Response of rabbit pulmonary artery rings to 30mM
N H 4 CI. Note the fast recovery and overshoot of tone during application and
the absence of adaptation after washout constriction.

B Tension
(gm )

30-NH4C1

Time (mins)

Figure 8 B: Original trace .^of rabbit pulmonary artery rings showing 
biphasic constriction to NH4 CI washout.
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Figure 9A: Average plot of NH4 CI effect on the rabbit aortic rings at

2 0 °C , note the slower recovery from washout constriction than seen in ear 
artery. *= p<0.1 & p<0.05.
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Figure 9Br Original trace showing biphasic constriction to NH4 C 1 

washout in rabbit aortic rings.
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Vessel
Pulse NH4CI applcation NH4CI washout

number D C NR C D N3

Aorta First
pulse

2 0 1 3 0 0

Other
pulses

10 2 2 1 5 0 0

Portal
vein

First
pulse

3 0 1 4 0 1

Other
pulses

23 0 1 24 0 1

Pulm.
artery

First
pulse

2 0 1 3 0 0

Other
pulses

7 3 2 1 5 0 1

C=constriction, D=dilatation, NR= no response.

Table ,4: summarized effect of 30mM NH4 CI on the rabbit internal

vessel rings at 20° C, showing the difference in the response between the 
first pulse and following pulses in the same experiment. Note that the 
pulmonary and aortic rings sometimes constricted to NH4 CI application but
they never dilated to NH4 CI washout.
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Portal vein:

Portal vein showed the typical responses to NH 4 C 1 

application and washout in all experim ents. It produced good 

initial dilatation to NH4 CI application yet the tone recovered and 

overshot the baseline in all of the 4-minute pulses (figure 10).

2.0 - t
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Figure 10: Pooled results of experiments on portal vein longitudinal
strips, the preparation dilated significantly to NH4 CI application (p<0.01)
and constricted to its washout. Note the fast overshoot during NH4 CI
application.

60



Neonatal aorta and pulmonary arterv:

Aorta and pulmonary vessels of the neonatal rabbit (age<5 

days) at 20° C behaved much like the adult ones in response to 

N H 4 CI. However at 3 7 °C both preparations consistently  gave 

typical ear artery responses to NH4 CI.

Neonatal aorta at 37° C with no activation produced no 

sign ifican t d ila tation  but very fast and sign ifican t (p< 0 .0 1 ) 

’overshoot' (upsw ing) in NH 4 CI; on washout the tone went up 

further then recovered back to baseline within the 1 0  minutes 

washout. When the same preparations were activated with NA the 

dilatation obtained by NH 4 CI was greater and significant, while 

the tone overshoot was less in magnitude and significance (p<0 .1 ) 

(figures 1 la  & b). The washout constriction was absolutely and 

relatively less in the NA-activated preparations than that in the 

non-activated ones, and the tone adapted back to baseline within 

5 minutes in the NA-activated vessels.

Neonatal pulmonary artery at 3 7 ° C produced almost the 

same degree of tone reduction on introducing NH4 CI in both NA- 

ac tiv a ted  and nonactiva ted  p rep a ra tio n s. S u rp rising ly  the 

recovery of tone during NH 4 CI application was also almost the 

same. On washout of NH4 CI with NLR solution, preparations with
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O-NA gave more constriction than those with N A -activation 

(figure 1 2 ).
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Figures 11A & B: Average results o f NH^Cl effect on Neonatal rabbit
aortic rings, A: N onactivated rings, note the fast overshoot during ammonium  
application. B: NA activated preparations, note the clear dilatation to ammonium  
a p p lic a tio n .
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Figure 12: Pooled results of NH4 CI effect on neonatal pulmonary artery
rings with 0 and ljiM  NA. Tone overshoot was marked in both situations 
(p<0 .0 1 ), while the washout constriction was greater in 0 -NA than that in 
ljiM NA.

Neonatal ductus arteriosus:

Rings of the ductus arteriosus at 20° C were m ostly 

unresponsive to O2  activation and NH4 CI pulses. Only one vessel 

out of eighteen produced constriction to 1 0 % and 1 0 0 % O2  relative 

to its tone in a bath without bubbled O2 . However applying NH4 CI 

on preparations bubbled with 2-3% O2 , 97-98% N 2  produced 

mostly dilatations. Raising O2  to 10% & 100% made the responses 

more variable with some tendency to constriction on NH 4 C I 

application. W ashout of NH 4 CI produced variable responses, 

com parable to those exp lained  for ao rtic  and pulm onary 

preparations at this tem perature, although in this vessel there 

was some tendency for a dilator response with higher O2  levels.
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All preparations at 37°C constricted to 10% & 100% O2 . They 

produced about twice as much constrictor response as at 20° C 

(average 70mg). The preparations responded in the typical "ear- 

artery" way to NH 4 CI application and washout over the whole 

oxygen range (3%, 10%, & 100%) (figures 13a, b, c, & d). The 

washout constriction adapted to baseline tone in 5 minutes, then 

the tone continued to go down to undershoot the baseline. This 

undershoot was greatest in the vessel which had given the 

greatest constriction to O2 .
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Figures 13A, B, C & D: .Effect o f  NH4 CI on rings o f  the ductus arteriosus at

3 7 ° C  at three oxygen levels: A 2%, B 10% & C 100%, all with 0-NA . Dilatations to 
N H 4 CI were significant at the higher 0 2  levels. D: Represent average results for the

same preparations as A but with lp M  NA.
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Rat vessels:

Unless otherwise specified all vessels were treated with 

30mM  NH 4 CI under the continuous activation with l-4uM  NA. 

Since the rat tail was meant to be a substitute preparation for the 

more expensive rabbit ear it deserves to be the first presented.

Perfused rat tail artery 

At 20°C:

This vessel was chosen to be a substitute for the rabbit ear 

artery, as it possesses the same features of being exposed in vivo 

more than other vessels^ to the atmospheric temperature, and also 

of being both easily isolated and convenient for perfusion.

I started first with the whole tail perfused through the 

caudal artery, but this preparation developed edema after 20-30 

minutes. Using PVP at 1.2-5% concentration only delayed edema 

by a factor of about 2 x and did not improve the vessel response to 

N H 4 CI. Then I used the distal 1/3 of the tail perfused through the

caudal artery with no PVP, and this preparation produced the

typical response to NH4 CI. However the artery diameter was small 

in this preparation which made cannulation difficult. Then I made 

the final preparation which I used in the rest of my work, that is 

isolating the proximal 1/3 of the main caudal artery. Here the 

diameter was large enough for easy cannulation, however more
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NA was needed for optimum activation.

NA dose response curve:

N A  elevated  the tone of the ra t tail artery  dose- 

dependently. Maximum constriction to N A  was obtained usually 

within the first 5 - 1 0  minutes of application. In my experiments 

the highest constrictor response of the rat tail artery to N A  was 

produced by 2 . 1 0 " ^ N A  (figure 14).  In the rest of my work, 

5 . 1 0 “ 7 - 2 . 1 0 " f > M  Was used to activate the tail artery

p rep a ra tio n s .
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Figure 14: Concentration response curve of maximum constrictor

effect produced by each NA concentration plotted.
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NH/jCl effect on the rat tail at 20° C:

N H 4 CI application produced dilatation which reached minimum 

tone within the first 1 - 2  minutes; however its magnitude was less 

than that of the rabbit ear artery (tone fell down to 69% of pre­

ammonium level, n=23, p<0.01), subsequently the tone recovered 

towards baseline during the rest of NH4 CI pulse, mostly without 

overshoot. On washout the vessel constricted; maximum tone was 

achieved by the 2nd-3rd minute of the washout period. The 

constriction obtained when NH 4 CI was withdrawn in the rat tail 

was greater than that in the rabbit ear ( tone went up to 165% of 

preammonium level, n=23, p<0.01) (figurel5a).

Tail artery at 37^C:

Applying the same NH 4 CI concentration (30mM) as in 

previous experiments at 20°C  produced less dilatation (tone fell to 

7 3 % of preammonium level, n=8 , p<0 .0 1 ), then the tone recovered 

to overshoot baseline in the last part of the pulse. Subsequent 

washout of NH4 CI produced greater constriction than that at room 

tem perature (tone elevated to 193% of baseline, n= 8 , p<0.01) 

(figure 15b).
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Figures 15A & B: Pooled results of the effect of NH4 CI on Perfused

rat tail artery at A 20°C  and B 37° C. Responses at body temperature were 
faster than at room temperature.

Perfused mesenteric artery:

This preparation was activated w ith 4uM  NA and/or 

potassium  (50K & 125K). The vessel responded to NH 4 C I
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application and washout in the direction typical of most vessels 

studied, w hatever the mode of activation used. As shown in 

figures 16a and b, NA and 125K activations at 3 7 °C have nearly 

the same magnitude of NH4 CI- induced dilatation (to 87% of pre­

ammonium tone), recovery and washout constriction. When both 

activations were com bined, the same concentration of lOmM 

N H 4 CI produced more dilatation (to 81% of pre-NH 4 .Cl tone); the 

recovery rate and washout constrictions were almost the same.
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Figures 16A & B: Average results of experiments on perfused rat 
mesenteric artery showing the effect of lOmM NH4 CI with two modes of
activation; A 4p.M NA and B 125K.
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Rat aorta;

Rings at 20^C:

Aortic rings at 20° C were maximally constricted by 1 jiM 

NA, though only 0.12-0.18 gm increase in tension was obtained. 

Increasing the NA concentration further to 3 pM  and to 10 JiM did 

not increase the preparation's response to NA any more than it 

had enhanced its tone.

Applying 30mM NH 4 CI to the NA activated preparations 

produced mostly dilatations, then tone recovered in the normal 

way. However washout of NH4 CI produced sustained constrictions 

which did not all recover to baseline (figure 17a). Some vessels 

were not responsive to NH 4 CI application and washout, while a 

few others produced constrictions when NH4 CI was applied. These 

constrictions occurred in later parts of some experiments, never in 

the first pulse (table 2 ), after that the tone sometimes sank back 

towards baseline. On washout, biphasic constrictions were usually 

obtained (figure 17b).

50K activation was introduced to some preparations during 

the course o f experim ents. In this m ode of activation no 

dilatations to NH 4 CI application could be obtained, however the 

washout effect was not basically different from the NA activation 

one (table 5).
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Rings at 37°C:

1 jiM  NA activation produced 0.6-0.8g increase in tension, 

which was 6  times more than the increase produced by the same 

NA concentration at 2 0 °C. To exclude vessel variations, in one 

experim ent the starting temperature was 2 0 ° C where ljiM  NA 

produced O.lg increase in tension, when the tem perature was 

raised to 37°C the response went up to 0.6 g.

At this, the physiological tem perature, the responses to 

N H 4 CI application and washout were always the typical "rabbit 

ear" type of dilatation and constriction. lOmM NH 4 CI produced 

less dilatation and constriction than 30mM NH 4 CI (figure 17c). 

Unlike at 2 0 °C, the washout constriction here always recovered 

down to pre-ammonium level.

Perfused preparations at 37° C:

NA activation of this large-diam eter perfused preparation 

produced detectab le  increase in baseline tone only in 2  

experiments out of 8 , however fortunately this tone was enough 

to dem onstrate the NH4 CI effect on this preparation. Applying 

N H 4 CI in two concentrations, 10 and 30mM, on this low tone 

produced the typical responses obtained with most normal-tone 

vessels.
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Figure 17a,b, & c: Pooled results of the effect of 30mM NH4 CI on the

NA activated aortic rings. A: Rings at 20°C, obvious dilatation on NH4 CI
application and constriction on its washout, note that tone was still high
even by the end of 10 minutes washout period. B: Rings at 20° C showing
constriction on NH4 CI application. C: Rings at 37°C, NH4 CI effects were
basically the same as plot A, note the washout constriction was maximum by 
the first minute, and the tone went down to baseline by the end of washout 
period.
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Pulmonary arterv:

Rings at 20° C:

Maximum NA activation was obtained with 5.10"^M  NA, 

though only 0.1 g increase in tension was observed. Although 10" 

NA was used in most experiments the pulmonary artery rings 

were mostly unresponsive to NH4 CI application (table 5). In a few 

pulses the preparation showed dilatation to 30mM NH 4 CI (figure 

18a). Washout of NH4 CI produced mostly constrictions comparable 

to those of aortic rings at 20° C, but on two occasions the 

pulmonary artery showed d ila ta tion  on washout (table 5).

Rings at 37°C: . ,

1 0 " 6  NA gave 0.2-0.6 g increase in tension. Applying 30 mM 

N H 4 CI on rings under th is ' activation consistently  produced 

d ila ta tions on app lication , w ith a m arked overshoot, and 

constrictions on washout which recovered completely to baseline 

by the tenth minute (figure 18b).

Perfused pulmonary vascular bed:

After failing to isolate the pulmonary artery I succeeded to 

carry out a few pulses with the intact lung perfused through its 

main artery (right or left). The preparation, activated with NA

activation at 3 7 ° C, showed basically the same responses as those

of the rings at the same tem perature. However it developed
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edema during the course of the experiments, possibly because of 

that it showed slower recoveries from both NH 4 CI induced 

dilatation and NH4 CI withdrawal constriction (figure 18c).
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Figures 18A, B & C: Effect of 30mM NH4 CI on pulmonary artery

preparations activated with NA. A: Rings at 20° C, preparations had huge 
variations in magnitude of constrictor response (large SEM), note the slow
recovery from washout constriction. B: Rings at 3 7 ° C, note the fast 
recovery from both dilatation and constriction. C: Perfused preparations at
37°C , both recoveries were slower than in rings at the same temperature.
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P o rta l v e in :

P o rta l vein long itud inal strips w ere a lm ost equally  

responsive to NA activation at 20 and 37°C .

At both temperatures NH4 CI application produced obvious 

dilatation and its washout gave marked constriction in all pulses 

carried with this preparation (table 5). During NH 4 CI pulses 

overshoot occurred within 2  minutes; this was more marked at 

2 0 °C  than at 3 7 °C. By contrast, the adaptation from washout 

constriction was faster at 37° C than at 20°C (figures 19a and b).
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Figures 19a & b: Average results of the effect of 30mM NH4 CI on
NA activated portal vein longitudinal strips at two temperatures.
A: strips at 2 0 °C, note the fast overshoot during NH4 CI application.

B: strips at 37° C, here the recovery from washout constriction was faster
than at the former temperature.
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Vessel
Pulse NH4CI application NH4CI washout

number D C NR C D NR

Aorta f irs t
pulse

7 0 5 10 0 3

Other 54 1 1 15 85 0 13
pulses

50K pulses 0 1 7 7 0 2

Portal First 6 0 2 8 0 2
vein pulse

Other 71 0 7 76 0 7
pulses

50K pulses 1 2 4 7 0 0

Pulm. First 3 0 6 7 0 3
artery pulse

Other
pulses 1 9 12 60 74 2 16

50K pulses 1 1 5 7 0 0

D= dilatation, C= constrction, NR= no response

Table 5: Summarized results of the basic effect of 30mM NH4 CI 
application and washout on rings of the rat aorta, and pulmonary artery, 
and portal vein longitudinal strips. Showing the difference between the 
first and other pulses of the NA activated preparations, as well as the basic 
effect on 50K activated preparations.
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C at vessels:

As noted under "methods", these experiments were carried 

out on anim als which had been subjected to other long 

experim ents firs t. Furtherm ore anim als were sacrificed  by 

phenobarbitone overdose and usually were left dead for 1 0 - 2 0  

minutes before the beginning of my dissection. Probably for those 

reasons preparations of the internal vessels were more responsive 

to K activation than to NA, and all of their responses to NH4 CI 

were slow. However cat tail which was activated with 4 pM  NA 

gave normal "rabbit ear" results (figure 2 0 a).

The pulmonary artery under 50K activation produced some 

constriction in the first minute of applying NH4 CI then dilated 

progressively in the following 4 minutes. Washout produced slow 

elevation of tone which went above baseline by the fifth minute 

and continued to go up over the next five minutes (figure 2 0 b).

The aortic rings, activated also with 50K, produced no 

change of tone on the first minute of NH4 CI application, however it 

then dilated progressively to the end of the pulse. W ashout 

produced constriction by the second minute which reached its 

maximum at the fifth minute, then tone declined a little over the 

following five minutes (figure 2 0 c)

The portal vein, under the continuous activation with 50K,
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produced dilatation to NH4 CI application in the first minute, but 

unlike previous results from other animals it did not recover over 

the next 4 minutes, rather it dilated further up to the end of the 

pulse. W ashout produced constriction comparable to that of aorta 

(figure 2 0 d).
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Figures 20a,b,c & d: Effect of NH4 CI on cat vascular preparations. A: Perfused

tail artery with NA activation at 20°C. B: Rings of the pulmonary artery at 37°C with 
50K activation, note the transient constriction to NH4 CI application. C: Aortic rings

at 37°C and 50K activation. D: Portal vein longitudinal strips at 37°C and 50K 
activation. *=p<0.05, **=p<0.01.
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G e n era l co m p ariso n :

Perfusion preparations have given the greatest dilatations in 

both rat and rabbit vessels. Perfused rabb it ear preparations 

showed the g reatest dilatory response to NH4 CI with the perfused 

rat tails second. On the other hand, in both species, the pulmonary 

artery rings at 20°C produced the least dilatory response to NH4 CI 

application, while the portal vein showed the greatest washout 

constriction (Tables 6  & 7). Dilatations to NH4 CI application were 

greater at 20° C than at 37° C in all preparations treated with 

N H 4 CI at both tem peratures. In general, perfused preparations 

showed more d ilatations to NH 4 CI applications than rings. 

Amongst all perfused preparations the rat mesenteric artery had 

the least dilatory response to NH4 CI application (tables 6  & 7).
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Preparation n Temperature 
degrees C

NH4CI application 
(% of control tone)

NH4CI washout 
(% of control tone)

Ear perfused 7 20 44** 132 **

Ear rings 4 20 82 ** 124 **

Ear rings 2 37 89 ** 119 **

Femoral pert. 4 20 71** 159 **

Renal perfused 7 20 60 ** 155 **

Basilar rings 4 37 83 ** 112 **

Pulm. rings 4 20 9 6 * 154 (NS)

Aortic rings 7 20 88* 130 (NS)

Portal vein 
LS

20 20 77 ** 170 **

Neonatal aortic 
rings

4 37 92 ** 114**

neonatal pulm. 
rings

4 37 94 (NS) 132 **

L.s=longitudinal strips, perf.= perfused, *=p<0.1, **=p<0.01, NS=not significant.

Table 6 : Summary of basic effect of 30mM NH4 CI on rabbit vessels
studied under NA activation. Note that the aortic and pulmonary rings gave 
the least significant responses to NH4 CI treatments. The greatest dilatation
was produced by the rabbit ear while the largest constriction was obtained 
with the portal vein.
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Preparation Temperature 
degrees C

n NH4CI application 
% of control tone

NH4CI washout 
% of control tone

Tail perfused 20 23 69 ** 165 **

Tail perfused 37 8 73 ** 193 **

M esenteric
perfused

37 8 87 ** 134 **

Aortic rings 20 12 87 ** 128 **

Aortic rings 37 1 4 8 8  * * 118 **

Pulm. rings 20 6 82 * 128 (NS)

pulm. rings 37 8  , 9 3  * * 150 **

portal vein 
L S

20 30 7 4  * *- 189 **

portal vein 
L S

37 8 00 CO * * 240 **

L.S=longitudinal strips, perf=perfused, *=p<0.05, **=p<0.01, NS=not significant.

Table 7: Summary of the basic effect of 30mM NH4 CI application and

washout on rat vessels under NA activation. The pulmonary rings at 20°C

had the least significant results which were improved at the physiological 

temperature (37°C). The dilatory responses to NH4 CI application were less at

3 7 °C  than at 2 0 °C. At both temperatures the rat tail gave the greatest

dilatations on NH4 CI application, and the portal vein produced the highest 

washout constrictions.
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Section 2; Tone recovery and overshoot during NH^Cl application 

In the previous section of the results I have shown that 

N H 4 CI application produced dilatation which in the majority of 

preparations recovered towards baseline tone, and this recovery 

was sometimes so fast that the tone overshot baseline level even 

w hilst NH 4 CI was still applied. In this part of the results I am 

going to present the situations where this overshoot has been 

more marked - these will help us to understand its mechanism 

(see discussion). Also I will present the effect of barium on 

recovery rate in general.

Let me em phasize here a point of usage which recurs 

throughout the following discussion. "Overshoot" will always be 

the term used for swing of the tone above pre-ammonium level 

occurring while NH/|C1 is still being applied. "Washout constriction" 

will mean the peak tone reached during NH4 CI washout: this is 

always at least slightly greater.

Percentages of recovery and the extent of tone upswings 

during NH 4 CI applications were all calculated using the formulae 

shown in Figure 21.

Situations where overshoot was more evident:

Faster tone recovery and more overshoots were obtained in 

certain  conditions and preparations. Am ongst these are the

84



following (some of the figures for these were shown in the past 

section):

A. Fresh and more lively preparations:

Preparations (mostly of internal vessels) which required a 

longer time of dissection and/or were not well soaked with 

Ringer’s solution during dissection had slower or no recovery and 

never overshot baseline. The majority of preparations tended to 

have slower recoveries and less overshoots towards the end of 

long experim ents. Recovery was stopped by edem a which 

developed during some experim ents in certain  preparations 

(pu lm onary  and m esenteric  arte ries when perfused  with 

surrounding tissues).

B. Long NH/{C1 pulses:

If  the preparation  avoided the p revious unfavorable 

conditions longer ammonium pulses ( 1 0 - 2 0  m inutes) alm ost 

alw ays produced overshoots in both perfused  and ring 

preparations. It was noticed that the magnitude of the peak tone 

attained on washout of NH 4 CI was in direct relation to the 

duration of the preceding pulse.

C. Weakly or non-activated preparations:

Non-activated ring preparations with some myogenic tone 

were responsive to NH4 CI application either by a small transient
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dilatation in the first minute after which marked overshoot 

occurred or by constriction occurring one-two m inutes after 

ammonium application with no preceding dilatation. Sim ilarly 

preparations with low activation tone (typically < 2  x preactivation 

tone) d ilated briefly , but tone recovered fast and showed 

overshoots during 5 minute NH4 CI pulses.

D. Preparations at 37° C:

Preparations at 3 7 °C had more overshoots than others of the 

same vessel at 20° C (table 8 ), provided the vessel had almost 

equal responses to NA at both temperatures.

E. Ring and strip preparations:

Rings of the rabbit pulm onary and ear arteries and 

longitudinal strips of rat and rabbit portal veins had overshoots

even at 2 0 ° C (table 8 ).

F. Potassium activated preparations:

It has been shown previously that perfused rabbit ear 

arteries activated with 5OK recovered 3x faster than NA activated 

ones (Ighoroje 1987). I have obtained the same order of speeds

with the perfused rat tail arteries activated with 125K as

compared with NA (figure 22). In another preparation, which had 

more tendency for overshoot than usual, recovery was faster 

when activation was achieved with 50K and NA than with NA

alone (figure 23). Comparable results were also obtained with the
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rat perfused mesenteric artery. Ear rings activated with 25K at 

3 7 °C  showed the fastest recovery amongst all vessels tested (table 

8 )- but note that higher K concentrations were not tried on this 

p rep a ra tio n .

Relative 
pressure

1-

NH4CI

a

0

Time (mins) 

recovery=d/c X 100 Extent of upswing= d X 100.

Figure 21: Formulae used to express the adaptation rates during 
NH 4 CI application.
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preparation n
treatment 

(pulse duration) % recovery
extent of 
upswing

Rat portal 
vein L.S

3 0 Standard solutions at 20oC 
(2 mins)

2 2 8 82

Pulmonary 
artery rings

4 standard solutions 20oC 
(4 mins)

5 0 5 20

Rabbit portal 
vein L.S

20 standard solutions 20oC 
(4 mins)

170 40

rabbit ear 
rings

4 standard solutions 20oC 
(4 mins)

152 26

rabbit ear 
rings

2 standard solutions 37oC 
(5 mins)

2 1 4 24

rabbit ear 
rings

3 25K activations 37oC 
(5 mins)

1000 161

perfused rat 
tail artery

1 7 10mM NH4CI. standard 
solutions 37oC (5 mins)

144 32

perfused rat 
tail artery

12 10mM NH4CI. 125K 
activation 37oC (5 mins)

3 4 3 96

Table 8 : Adaptation rates during NH4 CI application on the various
preparations shown. Note that the fastest upswings occurred with K 
activations and rat portal veins. L.S= longitudinal strips.
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Figure 22: Pooled results of the effect of NH4 CI on rat tail
preparations, showing the effect of using 125K against NA as activators. 
The tone overshot baseline markedly by the fifth minute o f NH4 C 1

application and was significantly above that in NA (p<0 .0 1 , unpaired t-test)
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Figure 23: Results of the effect of 30mM NH4 CI on the rat tail

preparations at 20°C under two modes of activation, NA and NA + 50K. Note 
the faster recovery when 50K was added to NA. This result, though not 
significant statistically, is supported by many different results which point 
to the same way (see text for details).
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Effect of BaClo on recovery from NH^Cl induced dilatation:

Barium has been found to block ammonium permeation in 

epithelium tissue, even when applied at concentrations as low as

0.1 mM (Zeiske and Van Dreissche 1983). Since, according to these 

and many earlier authors, barium will interfere in addition with 

K + perm eation at concentrations >0.5-1.0mM , in the present 

experiments it was applied in two protocols. In all cases, vessels 

were treated with the required BaCl2  concentration at least 2  

m inutes before NH 4 CI application, and washed out by Ringer's 

containing the same concentration of BaCF?.

1. Standard solutions:

0.1 mM B aC l2  did not affect the tone significantly when 

applied in control Ringer's solution. However the same BaCl2  

concentration was enough to reduce the adaptation rate in both 

rabbit ear and rat tail arteries (figures 24A and B) these being 

preparations where mean overshoot did not occur during 5- 

minutes NH 4 CI applications. Furthermore, in two low-tone rat tail 

arteries, 0.1 mM BaCl2  applied 5 minutes after the start of the 

p u ls e  decreased the tone in one preparation, and prevented 

further recovery in the other (figure 25).
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Figures 24A & B: Effect of O.lmM BaC^ on the recovery from NH4 CI
dilatation in rabbit ear (A) and rat tail (B) preparations, p values represent 
the significance between the control and barium tone at the fifth minute 
of NH4 CI application.
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30-NH4C1

Time (mins)

Figure 25: Original traces of low-tone rat tails showing the effect of 
applying O.lmM BaCl2  5 minutes after the start of NH4 CI pulses. Preparation
with lower tone (top trace) showed overshoot during NH4 CI application.
B aC l2  reduced the tone in one preparation and prevented further recovery

in the other!

2. 0-K NH/jCl applied from control 0-K Ringer’s:

This protocol was applied to exclude the possibility that 

B a C l2  was reducing the recovery rate by affecting K permeation,
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and to investigate the effect of higher BaCl2  concen tra tions 

(>0.1 mM) which could not usefully be applied in NLR solution as 

they would definitely be expected to interfere with K+ as well as 

N H 4 + permeation. Experiments were carried out on both rabbit 

ear and rat tail arteries.

The first step was to minimize [ K + ] j  by perfusing the vessels 

with 0-K Ringer's solution for 1-2 hours before 0-K 30mM NH4 CI 

was applied. Control pulses of 0-K, 30mM NH4 CI were done before 

starting and after finishing the series of BaCl2  concentrations.

In the rabbit ear, even though NA activation had elevated 

the tone to greater than 2 x preactivation value, both preparations 

had a marked overshoot in late stages of NH4 CI application in 

control (0 -BaCl2 ) conditions. In all pulses (control and B aC ^ - 

m odified) during this experiment dilatation produced by NH4 CI 

was at its maximum in less than 30 seconds after application, and 

w ashout constric tion  was g rea test by one m inute after 

reapplication of Ringer's. This situation is untypical for NLR 

perfusion experiments, but more like what is seen in ring ones 

(see section 1). Fast recovery from washout constriction occurred 

after all pulses; the tone usually undershot baseline within 5 

m inu tes.

Barium chloride decreased the recovery rate during NH4 CI 

application, but not at all concentrations (table 9). Perhaps the
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reason for faster recoveries than expected at 2 and 4mM BaCl2  

m ight be that these NH 4 CI pulses were applied against the 

background of lower baseline tone in BaCl2  than in its controls.

Treatment
BaCl2

concentration
(mM)

n
% tone 

recovery
Extent of 
upswing

Standard solutions 0 3 95 57

0.1 3 62 35

0-K NH4CI 
applied after

0 4 120 60

perfusing the 
vessel with

0.1 2 118 70

0-K Ringer's 
for 1-2 hours 
and throughout

2 2 136 66

the experiment 4 2 148 65

6 4 47 22

8 2 41 20

Table 9: Effect of BaCl̂ * on the adaptation rate from NH4 CI induced
dilatation in the rabbit ear artery. Higher values in both third and fourth 
numerical columns indicate faster recoveries.
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In the rat tail artery, tone declined dram atically after the 

first few NH 4 CI pulses under this protocol, so I decided to limit 

B aC l2  concentrations to the most extreme ones (0.1 and lOmM).

First, a few results were obtained on the effect of 0-K

R inger's solution applied from NLR one. About 7 m inutes,

application of 0-K Ringer's produced dilatation in the first 1-2 

m inutes then tone went up above baseline; washout by NLR 

produced constriction for about 2  minutes then tone went down to 

reach baseline within 10 minutes (figure 26). Longer applications 

of 0-K  R inger’s produced further elevation of tone which

plateaued after usually 2 0  minutes.

0-K NH 4 CI pulses applied from 0-K Ringer's were not

significantly different from their NLR controls (unpaired t-test, 

n=15, figure 27A). O.lmM BaCl2  slowed the recovery from NH4 CI 

dilatation (table 10). On the other hand, surprisingly, lOmM BaCl2  

produced less dilatations compared to their controls, recovery to a 

h igher overshoot level during NH4 CI application, and greater 

washout constriction (figure 27B, and table 10).
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Figure 26: Original trace of rat tail artery activated with NA showing 
the effect of applying 0-K ringer's from NLR solutions. Note the dilatory 
effect during the first 2  minutes of application.

Treatment
BaC12

concentration
(mM)

n
% tone 
recovery

Extent of 
upswing

Standard solutions 0 ,  , 4 65 2 2

0.1 4 23 8

0-K NH4CI/ 0-K 
Ringer's

0 7 94 24

0.1 5 79 18

0 4 85 28

10 4 185 24

Table 10: Effect of BaCl2  on the adaptation rate from NH4 CI dilatation 
in the rat tail artery. 0 -BaCl2  refer to the controls preceding the respective

n-BaC l2  concentrations.
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A
OK NH4CI/ OK Ringer's 
(n=15)

2.5 n

2.0 -o
3
(0
CO
9

30-NH4CL

1 .5 -
CL
O
> 1.0 - Control 

(n=11)a
9
0C 0 .5 -

0.0
2 0 2 4 6 8 10  1 2  1 4  16

Time (mins)

9cc

(n=4)
30-NH4CL

2 . 0 -

1 . 0 -

10mM BACL2

0.0
6 8 1 0  1 2  1 4  1 642 0 2

Time (mins)

Figures 27A & B: A: Pooled results of 0-K NH4 CI pulses carried out
from 0-K Ringer's compared to their control pulses. B: Pooled results of
the effect of lOmM BaC^ on NH4 CI pulses compared to their controls.
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D is c u s s io n

"Basic" effect of NH/jf !1 on various vessels:

The results in this chapter collectively indicate that in the 

wide variety of preparations studied NH 4 CI application and 

washout has qualitatively the same effect. NH 4 CI application 

produced dilatation and its washout gave constriction in almost all 

the variously activated preparations. Results on the rabbit ear 

artery were in total agreem ent with the first full and well 

controlled report of NH4 CI effect on vascular tone obtained with 

this preparation (Ighoroje and Spurway 1984). Sim ilar to my 

results, rabbit aortic rings and helical strips were reported, by 

other researchers, to respond to NH4 CI application and washout in 

the same way (Taggart, 1986; Furtado, 1988). Interestingly, 

isolated porcine coronary artery, a vessel never studied in our lab, 

has also been reported to respond to NH4 CI in the same directions 

(Hoang, 1988).

My resu lts  include a rte ries belonging  to d iffe ren t 

classifications and to various parts of the circulations. Elastic 

arteries (pulmonary and aorta) showed qualitatively the same 

response to NH4 CI application and washout as muscular ones; 

however, they tended to give less dilatation to NH4 CI application. 

Results on rabbit ear vascular beds and those with other vascular 

beds studied indicate that the microcirculation possess the same
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response to NH 4 CI as the macro-one. Perfused rabbit ear could be 

the best preparation in which to study NH4 CI effect on vascular 

tone for two reasons.

1 -It gave the largest dilatory response to NH4 CI application.

2 -It is a stable vascular bed.

Rat tail is the next best perfused preparation; however it 

tended to decay (i.e. to lose sensitivity to all agonists, not just to 

N H 4 CI) quicker than the rabbit ear. Portal vein has given good 

responses to NH 4 CI at both room and body temperatures; this 

makes it the best nonperfused preparation to study NH4 CI effects.

My results also show that at least one cerebral vessel is 

responding to NH 4 CI application and washout in the same 

direction as other vessels studied. This is in agreement with the 

conclusion of Andersson et al. (1981) that ammonia produces 

dilatation in the rabbit basilar artery. (These appear to have been 

the first studies of the action of NH4 + salts on vascular tone. 

H ow ever, two draw backs exist in the A ndersson et al. 

experiments. They dealt only with ammonium application and not 

with the washout; and their paper does not show clearly whether 

osmolarity was controlled on application of NH4 CI (which was by 

addition to the solution in their bath). A major part of the dilatory 

response to NH4 CI application obtained by Andersson et al. might
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have been due to hyperosm olarity  as the response was 

unexpectedly not affected significantly when ammonium was 

introduced in three different forms; NH4 CI, ammonium acetate, 

and ammonium bicarbonate.)

My results with the neonatal pulmonary artery and aorta 

showed that NH 4 CI effect, at least in the rabbit, does not depend 

on animal age.

Let us now recall that the major previously-known effect 

of NH 4 CI was on intracellular p H  ( p H j ) ,  its application producing 

intracellular alkalinity and its subsequent washout giving rise to 

intracellular acidity in many biological tissues including vascular 

smooth muscle (see introduction). These p H j  perturbations due to 

N H 4 CI pulses, measured with NMR in v.s.m., have been well 

correlated with control tone results, sim ilar to mine, obtained 

from  separate  experim ents on m atched rabb it ear artery  

preparations (Spurway and Wray, 1987). Furtherm ore, sim ilar 

results were obtained when p H j  and tone changes due to NH4 CI 

application and washout were measured sim ultaneously in the 

same NA activated rat mesenteric resistance vessels (Aalkjaer and 

Mulvany, 1988).

The argument that these tone changes could be due to 

extracellular pH changes in place of proposed intracellular one has 

been rejected before (Ighoroje, 1987) principally on the grounds
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that the w ashout constriction was greater, not less, when 

extracellular buffering capacity was increased.

With such consistent results on vessels belonging to three 

m am m alian species one could propose that the effect of 

in trace llu la r alkalinity  and acidity, respectively , is sim ple 

decrease and increase in tone of the activated vessel.

On the other hand, it has been reported that isolated guinea- 

pig ductus arteriosus, perfused at 3 7°C with bicarbonate-buffered 

solution, d ila ted  to NH4 CI washout as well as to other techniques 

known to lower pHj in a variety of tissues (Garnier and Roulet,

1986). However, my results with the rabbit ductus rings at 37°C 

indicate that this vessel like others dilates to NH 4 CI application 

and constricts to its washout in all expected physiological oxygen 

concentrations (fetal and neonatal) as well as in the 1 0 0 % oxygen 

contracted preparations. Possible explanations for the different 

results include different species, preparations, and techniques. 

Also, and probably more importantly, the presence of bicarbonate 

in the Garnier-Roulet solutions. HCO3 " has only second-order 

effects upon the NH4 CI response of the perfused rabbit ear at 

2 0 °C  (Ighoroje and Spurway, 1985; Ighoroje, 1987). However in 

such a transitional vessel between fetal and neonatal lives, HCO3  

could contribute peculiar pH} changes attributable for instance to 

coupled Na+ -H C O 3 ” transport. Such Na+ -H C O 3 " cotransport has
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been reported in many tissues, e.g: epithelial cells, such as 

am phibian and mammalian kidney (Boron and Boulpaep, 1983; 

A lp h e rn , 1985; Je rtsch  et a l., 1985), ch ick  em bryos 

(G illesp ie  and Greenw ell, 1988) and leech glia (D eitm er and 

Schlue, 1989). So it would be interesting to investigate this 

possibility in future research.

Results of the perfused rat mesenteric artery, activated with 

NA, are in agreement with other experiments performed on rings 

of the small resistan t branches of the artery (A alkjaer and 

Mulvany, 1988). However, contrary to my finding, these authors 

seem to have obtained mainly the constrictor effect of NH 4 C I 

application when their preparations were activated with 125K. 

Several differences in the techniques and preparations exist; 

however these alone cannot explain the divergence as the results 

ob ta ined  by A alk jaer and M ulvany from  N A -ac tiva ted  

preparations (reported above) were sim ilar to mine. The main 

triggering factor for the potentiating effect on tone by NH 4 C I 

application in their results might be membrane depolarization due 

to the K-like cation, NH4 + (this point will be elaborated further 

below ). Furtherm ore, small rabbit m esenteric arteries showed 

peculiar contractile properties when compared with most other 

arteries (oscillatory NA contractions, phasic high K contractions:
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Haeusler et al., 1981).

Complicating influence of NH/|+ on membrane potential

When modifying intracellular pH one should take account of 

the effect of the procedure used on other phenomena that could 

affect tone independently of pHj. Results in this chapter were all 

obtained by treating the preparations with NH4 CI. This substance 

is known to affect pHj (see above); however, NH4 + , being a K+ -like 

cation, would be also expected to depolarize the membrane (Shaw, 

1966; Guggenheim and Bougoignie, 1971; Hamm et el., 1985) and 

therefore elevate tone independent of pHj. The suggestion that 

N H 4 + will depolarize the membrane is based on studies on other 

non-vascular tissues because electrophysiological studies of the 

v.s.m are limited. This is due to the difficulty in studying such 

small cells surrounded by a lot of connective tissue as the v.s.m. 

There is almost no literature on the selectivities of ion channels in 

the resting v.s.m cell membrane, and little even on the more 

readily-studied visceral smooth muscles.

N H 4 + could enter the cells either through K-channels or by 

substituting for K in the inward limb of the electrogenic Na+ 

pump. The second route for NH4 + entry is more probable when 

extracellular K is removed; therefore discussion of this route will 

be delayed to the part concerning the experim ent with 0-K
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so lu tions. N H 4 + is known to perm eate through K-channels, 

however its permeability is lower than that of K itself - typically 

P n H 4 +^ K  ~ 1/10. There seem to be no direct studies on the effect 

of NH 4 + on the permeability of K when both are present at the 

same time. However, other ions which can pass through K+ 

channels, such as Rb+ and Tl+ , reduce Pj^; it is therefore likely that 

NH 4 + does so too.

From these considerations, the possible influences upon 

v.s.m of adding 30mM-NH4+ to my Ringer's solutions containing 

6 m M -K + , can be summarized in the following two points:

i) The 6 -fold increase in concentration of permeating cations 

outside the membrane must have a depolarizing effect - This 

effect will be in the same direction as elevating [K+ ] 0  from 6  to 

36mM, though because NH4 + permeability is less than that of 

K + , the depolarization will be substantially less extreme.

ii) As [NH4 +]i rises, so that the mean concentration of NH4 + ions 

in the K+ channels increases too, itself will probably be 

diminished. The ultimate result of the decrease in Pj^ or g £  is 

fu rther m em brane depolarization by the effect of other 

conductance channels, Na+ and Cl“, which have equilibrium  

potentials positive to the resting potential (Casteels,

1981).

Thus when NH 4 CI is applied it will have two conflicting
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e ffe c ts , N H 3  entry which will tend to decrease tone by 

intracellular alkalinity and NH4 + depolarization  which will tend to 

elevate tone. Two general consequences of the depolarization were 

p ro b ab ly :

i) A component of the tone-recovery occurring in the late 

stages of the NH4 CI pulses, with all preparations.

ii) The largely or solely constrictor effect of NH4 CI on non­

activated preparations.

In add ition , in the resu lts  ob tained  w ith  various 

preparations I came across unexpected observations which could 

be exp lained  by greater than usual effect of m em brane 

depolarization by NH4 + . These include:-

a) Higher concentrations of NH4 CI produced less dilatations 

than intermediate ones in both rabbit ear and basilar arterial 

rings.

b) Ring preparations had less dilatations than perfused ones in 

general and in the same vessels.

c) T ransient constrictions of weakly activated preparations, 

rings more than perfused, occurred in the first few seconds of 

N H 4 CI application, d) Preparations at 3 7 ° C showed less 

dilatations than those at room temperature.

e) Tone overshoot during NH4 CI application was more marked
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at 3 7 ° C than at room temperature and in ring preparations 

than perfused ones - this feature will be discussed further in 

the subsection concerning the results with barium.

Most of the above situations are found particularly in ring 

p reparations which we suggest are more depolarized than 

perfused ones. Small rings, cut at both ends, must be appreciably 

depolarized throughout a good part of their length by injury 

potentials (length constant of the pulmonary artery was found to 

be 1.48mm: Casteels et al., 1977). If already partly activated by 

depolarization, prior to NH4 CI application, such preparations are 

probably in the steep part of their electrochemical coupling range, 

and therefore more sensitive than perfused, 20° C preparations to 

N H 4 + -induced voltage perturbations.

Temperature dependence of internal vessels response:

Results at room temperature of the rat aortae, pulmonary 

arteries and ductus arteriosus showed, when compared to those at 

3 7 °C , less responsiveness to NH4 CI. When they responded they 

usually showed little  dilatations on application and sustained 

constrictions on washout. The same vessels at 37°C showed good 

dilatory response to ammonium application and recovered in the 

normal way when it was washed out. Possible explanations for 

these differences between responses at room tem perature and
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those at body temperature include the following:

1-These preparations produced less constriction to NA at room 

tem perature than at 37° C, therefore the membrane potential 

effect of NH4 + would be greater at the lower temperature.

2-The slower recovery from washout constriction would be 

expected if the acid extrusion mechanisms and/or the calcium 

extrusion mechanisms are less efficient at this temperature.

The biphasic responses to NH 4 CI washout obtained with 

these vessels at room temperature are hard to explain, but they 

could  involve a com plex relation  betw een the m em brane 

repolarization due to NH4 + rem oval and the intracellular acidity 

induced by the same washout of NH4 CI. The optimum explanation 

could have been achieved if I was measuring both intracellular pH 

and membrane potential in my preparations, but the required 

equipment was not available in our lab.

Tone recovery and overshoot during ammonium application:

Recovery rate after am m onium -induced d ila tation  was 

previously shown to be partly due to HC 0 3 "_ C 1 " e x c h a n g e  

(Ighoroje & Spurway 1985). However this m echanism cannot 

explain the observation that tone during NH4 CI application could 

overshoot baseline. There is at least one additional acidifying 

mechanism, which was first pointed out by Boron and de Weer
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(1976 ), and is due to the cation NH4 + also entering the cell, 

d riven by the membrane potential, and d issociating  in the 

cytoplasm to NH3  and H+ . We thought of yet a third way to acidify 

the cytoplasm  after NH 3  entry, that is by simple H+ e n tr y .  

How ever, significant contribution of direct H+ entry to tone- 

reco v ery  is excluded by resu lts  w ith d iffe ren t bu ffer 

concentrations: tone overshoot was least marked with the lowest 

buffer outside, in which [H+ ] 0  must rise most (Bamosa et al., 1987; 

Ighoroje, 1987). Results with 0.1 mM BaCl2  (see next subsection) 

support the concept of NH4 + permeation during recovery from 

ammonium dilatation.

In all cases where NH4 CI produced overshoot of tone whilst 

ammonium was still applied, at least one of two events should 

take place:

1- Intracellular acidification, after the initial alkalinization.

2- Membrane depolarization giving rise to the increase of 

tone observed.

Both effects could take place, however I am proposing that, 

except possibly for the longest duration pulses, the second is 

predominating for the following reasons:

1- Situations where this overshoot was more marked (see 

results) include mostly ring preparations which are expected to
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be more responsive to additional membrane depolarization 

than perfused ones. Perfused ear artery had never overshot

pre-am m onium  level whilst ammonium was applied, in my 

work or previous work (Ighoroje 1987), but ear artery rings 

overshot baseline tone consistently in all modes of activations 

and even at 2 0 °C. Portal vein, of both rat and rabbit, a vessel 

which is electrically active, showed fast overshoot during NH4 CI 

application. When baseline tone was more dependent on 

membrane potential, e.g: K -activation, overshoot was more 

marked; even perfused ear artery, thus activated, showed it.

2-pH m easurem ents by the end of 10 m inutes NH 4 C 1

application in various tissues (mouse soleus, snail neuron, 

barnacle muscle, sheep heart Purkinje fiber) indicate that the 

pH, though it had recovered a little, was still alkaline (Boron 

1977, Aickin and Thomas 1977, Thomas 1984). Comparable 

measurements in vascular smooth muscle show that, in the 

rabbit ear artery, pH was still alkaline in the first 7-9 minutes 

of NH 4 CI application, but the results might have been

underestimating because of less stirring in the NMR tubes than 

in a perfusion or ring preparation (Spurway and W ray,

personal communication). More reliable results obtained using 

pH-sensitive dyes (BCECF) in the rat mesenteric resistance 

vessels, support the previous finding, where pHj, though it
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recovered much like before, was still alkaline at the end of 1 0

m inutes NH 4 CI application (Aalkjaer and M ulvany, 1988).

In teresting ly  in the same experim ents these researchers 

obtained potentiation of tone on ammonium application, in K

activated preparations, even though the preparation pHj was 

a lkaline.

All the above studies support the concept that NH4 CI does 

not cause a fall in pHj below prepulse value in the first 1 0  

m inutes of application, so the tone overshoot must be due to

another effect, most probably being the membrane depolarization 

due to NH4 + explained in previous subsection.

Barium results:

Now we can say that recovery of tone during ammonium 

application has three components:

1-Chloride bicarbonate exchange (Ighoroje and Spurway 1985)

2-Acidification of the cytoplasm by NH4 + entry.

3 -N H 4 + membrane depolarizing effect.

Barium, by blocking ammonium permeation, would affect 

the last two processes, but not the first, so would be expected to 

decrease the recovery rate. Indeed this is what the results with 

0.1 mM barium show. However one could argue that this slowing 

of recovery was due to blockade of K+ permeation not NH 4  +
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permeation. The results with 0-K solutions perfused for more than 

one hour were not conclusive and can not exclude the above 

possibility. However, 0-K solutions did not affect the recovery 

from NH 4 CI dilatation significantly, in my results and in previous

results with rabbit ear artery (Ighoroje 1987), which makes the

interpretation that barium effect was on potassium perm eability 

less probable. Furthermore, if barium was to affect K permeability 

significantly at that low concentration (0.1 mM) we would expect it 

to elevate the tone of NA activated preparations in NLR solutions. 

However O.lmM barium h a d , no effect on control tone before 

ammonium application.

lOmM barium, which was found to block NH4 + permeability 

completely in frog skin (Zeiske and van Driessche, 1983), applied 

in 0-K solutions did not reduce the recovery - rather it accelerated 

it. In addition if BaCl2  was to completely block NH4 + permeation it 

seem s thatnot much washout constriction would be observed;

whereas I in fact saw marked constriction even in this case. This

result m ight indicate that barium does not totally block NH4 + 

perm eation in v.s.m. The accelerated recovery with this barium

concentration could be due to one of two possibilities:

1) Barium  has a d irect effect on tone (by m em brane

depolarization  or by direct interaction with in trace llu lar
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calcium: cf. Harder, 1982b).

2) Ammonium could substitute for K in the electrogenic Na+/K + 

pump, as has been suggested in mouse soleus muscle (Aickin 

and Thomas, 1977). Other K+ -like cations (Rb+ , Cs+) are capable 

of partially substituting for K+ in the inflow limb of the pump 

in squid axons (Sjodin and Beauge, 1968). This possibility can 

not be excluded by my experiments nor can it be supported, 

however it could be the explanation for a previous finding that 

ouabain slowed the recovery from NH4 CI dilatation (Ighoroje,

1987).

The lack of effect of removal of external K  on tone reco v ery  

following acidification not only suggests that K + - H +  exchange was 

not involved in the p H j  regulating system, but also that the 

mechanism in which H +  share the outward limb of the Na pump 

was unlikely to be involved since removal of external K inhibits 

the Na pump.

112



Sum m ary:
The possible influences of NH4 CI application and washout on 

arterial tone could be summarized as shown in the figure below.

TONE

1

NH4C! TIME
0

F requency  of incidence o f phases:-
E,F- Almost always seen.
B ,C- Very occasionally  absen t in to ta lly  unactiva ted  
p rep a ra tio n s .
A ,D- Only comm on in ' ' w eakly and non-activated  
p rep a ra tio n s.
D w ithout A- common also in rings and K -activated 
p rep a ra tio n s .

P ro p o sed  e x p la n a tio n s :-
A- D epolarization due to high [NH 4  + ] 0 . (continues as
background influence till E.)
B- Alkalinization due to NH3  entry.

C- Neutralization due to NH4 + entry and HCC>3 _ exit.

D - Further depolarization due to displacem ent of [K+ ] j b y

[NH 4 +]j and perhaps reduction of Pj£ by NH4 + ions also.
E- Acidification due to NH3  exit.

F - Neutralization by Na+ /H + exchange, also repolarization as 

[NH4 + ] 0  falls and [K+]{ rises.
(Each process noted is sufficient to explain the associated 

phase - but successive processes would actually, of course, 
overlap .)
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Chapter three 

Constrictions produced bv salts of weak acids 

M aterials and methods

Theoretical back ground: pH j modification using organic salts

Salts of weak organic acids will contain both anions and the 

undissociated organic acid. For any weak acid (HA) the relation 

between the concentration of the anion [A-] and the acid [HA] is 

given by the Henderson-Hasselbalch equation:

pH= pKa + log [A1/[HA]

The dissociation constant, pKa , is the pH at which a weak 

acid or base is half-dissociated so that [A~]= [HA]. Weaker acids, of 

h igher pK a , will contain more of the undissociated form. 

Therefore, at a concentration of lOmM and pHe 7.2, a salt like 

propionate of pKa 4.9 will contain 50uM [HA] while salt of strong 

acid like benzensulphonate of pKa 0.7 will contain only 3nM [HA].

From the previous equation it can be seen that when the pH

of the salt solution is reduced the amount of the undissociated

acid molecule will increase. Therefore when the pH is reduced 

from 7.2 to 6.7 the amount of HA will increase by about three 

folds.

These acid m olecules, being freely perm eable through 

m em branes, w ill rapidly enter the cells. Inside cells they
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dissociate and release protons thereby lowering pHj. This process 

continues until equilibrium  is reached. Clearly the dissociation of 

the acid m olecules inside the cells will also fit into the above 

eq u a tio n .

T heoretically  anion perm eation, when present, would tend 

to elevate pHj by binding to intracellular protons; as a result 

decrease the effect of HA perm eation on pHj. However, anion 

p e rm e a tio n  ( P ^ ) is orders of m agnitude less than the acid 

perm eab ility  (P h a )* Keifer and Roos (1980) found in barnacle 

muscle, using DMO, a ratio of permeabilities (Ph a / ^ a ) ab°ut 

1000. In the ra t diaphragm  m uscle treated with D -lactate this 

ration was more than 3000 (Roos, 1975).

General consideration:

Experiments in this chapter were designed to investigate the 

effect of some organic salts on certain preparations. The rabbit ear 

and the rat tail, perfused as before, were used in the majority of 

experiments. However the basic effect of some of the salts was 

also obtained on preparations of internal vessels.

The preparations and apparatus used were the same as the 

ones described in chapter two.
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Solutions:

Organic salts (5-80mM ) were usually introduced as sodium 

salts substituted for equivalent NaCl in NLR solution. Lactates 

(D, L, and DL) were all introduced first as the pure acids which 

w ere subsequently reacted with NaOH (0 .2 -ION) to obtain the 

sodium salts. In sodium free experiments this neutralization was 

carried out by reacting KOH (0 .2-ION) with the required volume 

of the acid used (propionic and L-lactic acids).

A cids in  tab le  11 (excep t a -k e to b u ty ra te ) w ere all 

alternated with lOmM HEPES buffered control solution where 

both solutions (control and experimental) contained no phosphate 

(e.g. controls containing 131.5mM NaCl, lOmM HEPES; and salts 

containing 131.5mM NaCl and lOmM salt). In this protocol salts 

were functioning as the buffers in their respective solutions.

In sodium  substitution experiments NaCl was to tally  and 

isosm otically replaced by choline chloride or sucrose and 1.5 mM 

K H 2 P O 4  replaced NaH 2 P 0 4  as a buffer. Noradrenalin was diluted 

with the Na substitute solution in each such experiment.

M am m alian K reb's solutions were buffered  w ith 25m M  

N aHCC > 3  replacing equivalent NaCl in Ringer's solution and gassed 

continuously  with 5% 0 2 .
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Alpha-Cvano-4-Hydroxv-Cinnam ate (C H O  fSigm al:

CHC stock solution of 0.1M was prepared by dissolving the 

calculated weight of CHC in excess of NaOH.

The required CHC concentration (0 .5-4mM) was introduced 

in to  each solution (R inger's and organic salts) by equim olar 

substitution for equivalent NaCl.

General procedure:

-All salts were applied for at least 5 m inutes and washed

out by their appropriate control solutions usually for 5 minutes.

- In C H C . experim ents, the preparations were treated with 

the required concentration of the .drug for 2-5 minutes before the 

salt (with CHC) was applied. W ashout was carried out with the

same CHC concentration for 2-5 minutes as well. Organic salts with 

CHC were applied in two protocols. First, short CHC treatment with 

short salt pulses; where CHC was applied for 2 minutes, then the 

salt was introduced with the same CHC concentration  for 2

minutes; subsequently the salt was washed out with CHC for 2

m inutes as well, therefore the vessel was treated with CHC for 

total of 6  m inutes duration. Second; long CHC treatm ents with 

usual duration salt pulses, where CHC was first applied for 5 

m inutes then the salt was in troduced  for 5 m inutes and
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subsequently washed out for 5 minutes with CHC present all the 

way through. In long pulses the vessels were treated with CHC for 

total of 15 m inutes duration. Long pulses were first perform ed 

with high CHC concentration (4mM), but proved to be harmful to 

the preparations; therefore these long pulses were lim ited to ImM  

CHC concentration carried out with all six salts applied (butyrate, 

propionate, pyruvate, and L,D &DL- lactates). Short pulses were 

performed to study the effect of CHC concentrations (0.5, 1, 2, & 

4mM) on the constrictions produced by propionate and L-lactate.

-In Na substitution experim ents, control salt pulses were 

carried out with NA activation at the beginning and at the end of 

each series of Na substitution salt solutions. Each Na substitute 

was used as the activator for its respective salts application, thus 

NA was switched off during the application of all Na free solutions.

118



Results

Effect of organic acid salts on tone of rat tail and rabbit car 

a rte rie s :

The effects of ten organic acid salts (table 11) were 

investigated on both the rabbit ear and the rat tail arterial 

preparations. These salts were selected to cover a wide pKa range 

and to include the m ost im portant ones physiologically. Unless 

otherw ise m entioned the preparations were activated w ith 0.5- 

2 p M  NA at room tem perature (18-22°C ) and pHe 7.2; and all 

solutions were buffered with 1.5mM N aH ^P O ^

Fundamental effect of lOmM organic acid salts:

All weak-acid salts (pK a 4 .9-2 .7) consisten tly  produced 

constrictions when applied to the rabbit ear and rat tail arteries 

for 5 minutes at pH 7.2 and about 2 0 °C. The constriction started 

rapidly (w ithin one minute) and reached peak mostly by three 

m inutes; thereafter it was common for tone to stay virtually  

constan t (though exceptions w ill be p resen ted  shortly ). On 

washout tone went down to baseline in 2-5 minutes (figure 28 & 

table 11). On the other hand amongst the salts of stronger acids 

applied (last three in the table, pKa 2.2-0.7) the only one which 

produced significant constriction was glutamate applied to the rat
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lOmM p r o p i o n a t e  pH = 7 . 2  
mmHg i------------------------------------------»

Rabbit ear

Time (mins)
U-i----------------)------------------------------------------ 1---------------------------------------- j

0 5 10

Figure 28: Original trace of the constrictor response of the rabbit ear 
artery to lOmM propionate application.

Salt pKa

Percentage tone increase (and n)

Rabbit ear Rat tail

Propionate 4.87 59.0 ± 9.0** (10) 60.5 ± 14.1** (8)
Butyrate 4.81 63.8 ± 8.3** (4) 70.1 ±9.7** (7)
Acetate 4 .75 41.1 ±9.1** (7) 22.5 ±4.1** (14)
Benzoate 4.19 24.3 ± 3.2** (6) 4 8 .7 ± 10.6* (7)
Formate 3.75 32.0 ± 5.8** (10) 26 .8  ± 10.9* (4)
Lactate 3.6 38.0 ±9.7** (8) 27.3 ± 12.0** (7)
Pyruvate 2.7 37.3 ± 3.9** (20) 21.3 + 3.0** (8)
(X -Ketobutyrate 2.2 Not tried 5.3 ± 2 .4 (4)
Glutamate 2.2 5.8 ± 3 .8 (4) 10.3 ±3.0* (4)
Benzene su lphonate 0.7 -2.0 ± 3.3 (8) 3.3 ± 3 .6 (6)

Table 11: Responses of the rabbit ear and rat tail preparations to 
lOmM concentration of the salts shown. Values are means + SEM of peak 
tone increases recorded during 5 minutes application; n=number of trials,
p k a= acid dissociation constant at 20 or 2 5 °C (Handbook o f Physics &
Chemistry). Significance of increase over control-solution tone: **=p<0.01,
*=p<0.05 (formate <0.1).
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Both preparations when treated with salts of the weakest 

acids (pKa>4) frequently showed a degree of relaxation again after 

a tta in ing  the ir m axim um  constric tions. T his adap tation  was 

occasionally down to the baseline -by the fifth minute and in very 

rare instances below it. Long pulses (7-11 m inutes) which were 

em ployed only with acetate usually allowed further adaptation 

towards baseline. The tendency of the tone to go down again 

during the later stages of salt application was more when the 

vessel starting tone was greater, and it was more pronounced in 

the first pulse of the salt than  with later ones. W hen this 

adaptation  occurred subsequent washout tone usually  reached 

baseline fast (within 2  minutes) and continued to go down below 

baseline over the follow ing 3 m inutes, then recovering back 

towards baseline again over the next 5-10 minutes. By contrast 

with the above situation, salts of stronger acid (pKa<4) mostly did 

not attain their maximum constriction during the five m inutes 

application , and if  they did usually no adaptation occurred. 

C onsequen tly  the w ashout of these salts seldom  produced  

undershoots. The speed of the washout effect of these stronger 

salts varied from one vessel to another, however on the average 

pyruvate, glutam ate, and lactate were slower than formate which 

was closer to the previous group (weaker salts). One additional
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anion, not listed in table 1 1 , namely a-cyanoacetate was applied to 

the rat tail. However it looked to be toxic to the vessel as there 

was irreversible decrease in tone and the subsequent response to 

other organic salts (butyrate & pyruvate) was abolished.

M ost o f the salts in tab le  11 have been applied  in

alternation with HEPES buffered Ringer's solution instead of in the 

continuing presence of 1.5mM phosphate. This was done to 

exclude any direct effect due to the buffering power of the acids

(see m ethods). Results obtained were in the same direction as

previous ones (phosphate buffered), however -on the average-

constrictions obtained with the HEPES solutions were less than 

phosphate ones. A lso when HEPES was the buffer benzene 

sulphonate caused significant dilatation in the rabbit ear.

lOmM L -lactate produced significantly greater constriction 

than lOmM D-lactate, when they were applied in succession to the 

same ra t tail artery. Also tone recovered faster from  L -lactate 

than from the D isomer (figure 29).

20mM salts at 37°C :

20mM lactate and propionate were applied to the same rat 

tail artery preparations at 3 7 ° C. Both salts produced the typical 

constrictions induced by them and almost all other salts at 2 0 ° C .
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Interestingly the lactate produced alm ost the same constriction as 

p rop ionate , and p rop ionate  produced a sig n ifican t w ashout 

undershoot w ithout any preceding recovery during application 

(figure 30). H ow ever it should be noted that lactate in these 

experim ents has been applied m ostly on a lower baseline tone 

than propionate and so would be expected to produce m ore 

constric tion  (Ighoro je , 1987). P rop ionate  did produce m ore 

constriction than lactate when both were applied on the same 

starting tone.

1-4 n
L-lactate
(n=6)

©»_3
CO
CO
©

1.2 -

D-lactate
(n=5)C L 1.0 -

©
>

.2«
CC

0.8 -

10-lactate

0.6
2 8 10 122 4 60

Time (mins)

Figure 29: D & L lactates applied to the same rat tail artery with NA 
activation. Note L-lactate produced significantly more constriction than D-lactate. 
*=p<0.05, bars=SEM.
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Figure 30: Pooled results of the effect of 20mM propionate and lactate
on the rat tail artery at 37° C. Both salts produced significant constrictions 
as measured at the third and fifth minutes of application (p<0.01 in all 
readings).

C oncentration response:

This part of the work was done only on the rat tail artery, 

except that with lactate which was also applied to the rabbit ear. 

Figure 31 shows the effect of different concentrations (5-40 mM) 

of propionate: the peak constrictions increase roughly linearly  

with concentration. Responses to most other salts follow a similar 

pattern except that butyrate, which is the m ost potent at low 

c o n ce n tra tio n s , show s signs of sa tu ra tio n  a t h igh  ones 

(figure 32A). W ith the strongest acid anion, benzene sulphonate, 

the tone was increased little even by 40mM solution, but 80mM 

produced appreciable increase in tone. Table 12 shows the details 

of the various concentration responses. The first three salts are of
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strong acids, here the peak constriction obtained was at 5  minutes 

o f application of all concentrations, and the washout tone was 

always above baseline at 2 minutes and never below it at 5 

minutes. By contrast, the last three salts are of weak acids (pKa> 4), 

here peak constric tion  was com m only obtained w ithin three 

m inutes o f application. The vessels sometimes recovered during 

application, and the washout tone went down to baseline mostly 

by 2 minutes and occasionally undershot it by 5 minutes.

Lactate was given special consideration as it is the only salt 

which has two isomers and it is no doubt the most important one 

physio log ica lly . D L -lactate  concentration  response was linear 

throughout the range studied in both rabbit ears and rat tails. So 

was that o f D -lac ta te  though its perm eability  seem ed low er. 

However interestingly L-lactate when applied to rat tails showed 

a non-linear relation with clear sign of saturation after 20mM 

concentration (figure 32B).
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Figure 31: Pooled results o f the effect o f propionate concentrations 
on the rat tail artery. Values are maximum constrictions obtained in 5 
minutes application.
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Figures 32A  & B: Pooled results o f  the response o f  rat tail preparations to 
various concentrations o f  the salts shown. A: Only butyrate shows sings o f  saturation. 
B: D- and DL-lactates show linear tone-concentration response w hile L-lactate shows 
clear saturation above 20m M . V alues indicate m eans o f  m axim um  con strictions  

obtained during 5 minutes application.
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S a l t Concentration
Time of peak  
constriction  

fmins)

%  recovery
during
aDDlication

W ashout tone

S econ d  minute Fifth minute

B enzene
sulphonate

20 ,40 ,80 5 NIL t
A

*4 -------- ►

Pyruvate 1 0 , 2 0 , 4 0 5 NIL t *4 -------- ►

a-ketobutyrate 1 0 , 2 0 , 4 0 5 NIL t *4 -------- ►

Benzoate 10 3 9 * 4 ---------► 1
2 0 O 5o

4 0 3  , 1 0

B u tyrate 1 0 5 NIL

2 0 , 4 0 3 NIL t < -------- ►

Propionate 5 3 2 t 1
1 0 3 9 * 4 -------- ► * 4 -------- ►

2 0 3 4 t 1
4 0 3 7 t *4 -------- ►

►  = W ashout tone on the baselinse, ^  = above baseline, ^  = below  baseline

Table 12: Summarized results on the effect of salts concentrations on 
the rat tail artery. The first three salts are of stronger acids than the last 
three in the table, note differences between the two groups in the various 
parameters shown in the table (see text for details).

127



Effect of a-cyano-4-hydroxvcinnam ate (C H O

CHC is considered to block the permeability of the unionized 

forms of organic acids - particularly L-lactic and pyruvic acids - 

through cell m em branes (H alestrap & Denton, 1974; H alestrap, 

1976). Previous workers (e.g. de-Hemptine et al., 1983) used CHC 

to block the intracellular acidifications produced in their tissues 

(e.g. cardiac muscle) by some of the salts listed in table 11. So in 

the present study the effects of CHC were investigated on the 

to n e -re sp o n ses  o f ra t ta ils  to 20m M  c o n cen tra tio n s  o f

represen ta tive  salts.

T rea ting  NA ac tiv a ted  vesse ls w ith  4m M -CH C (de-

H em ptine's concentration) m ostly caused a progressive decrease 

in tone continuing throughout the rest of the experiments. In the 

continuing presence of 4mM  CHC (total o f 15 m inutes, see 

m ethods), standard 5-m inute pulses of propionate, butyrate, and 

D L-lactate produced transient constrictions. On the other hand 

pyruvate and L -lactate produced d i la to ry  responses. This tone 

reduction caused by CHC could be due to cyanide release from the 

com pound. T here w ere two c lues, 1- to ne-reduction  was

som etim es produced by l-3m M  cyanide (Ighoroje and Spurway,

1984; Spurway, personal comm unication). 2- Biochem ical actions 

on CHC could release cyanide (Thomas and H alestrap, personal
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comm unication). Taking that into consideration, I conducted other 

experim en ts w here CHC con tact-tim e w ith the vesse l was 

minimized or CHC concentration was decreased.

Treating the vessels with only 1 mM CHC did not change the 

reference tone significantly in most experiments, however it was 

enough to cause decrease in the maximum constrictions produced 

by some of the salts applied (figure 33). Propionate was the least 

susceptible salt to the drug in all experiments conducted, D and 

DL-lactate and even butyrate constrictions were also not changed 

significantly by CHC. On the other hand L-lactate and pyruvate 

constrictions were both significantly lowered by CHC (table 13).

Using short CHC pulses (total of 6  minutes, see methods for 

details) the constrictions produced by propionate and L -lactate 

were compared in the absence and the presence of various CHC 

concentrations (0.5-4m M ). Propionate-induced constrictions were 

not affected by CHC over the whole range of concentrations (0.5- 

4mM ), w hile L-lactate ones were increasingly  reduced as the 

concentration of CHC was increased from 0.5-4m M  (figure 34).

The effects of CHC on both lactate  and pyruvate were 

com pletely reversible by 1 0  m inutes w ashout of the drug with 

NLR solution.
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Figure 33: Average results o f the effect of 1 mM CHC on the 
constrictor response of the rat tail artery to 20 mM salt concentration, 
blank squares represent controls, and filled ones represent the salt with 
1 mM CHC. Only L-lactate and pyruvate constrictor responses were 
significantly inhibited by CHC.
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Salt n
% inhibitions of tone increase  
caused by 1mM CHC

P<
unpaired t-test

L-lactate 4 64 0.05

Pyruvate 7 54 0.01

DL-lactate 6 42 NS

Butyrate 4 15 NS

Propionate 4 0 NS

D -lactate 3 5 NS

Table 13: Effect of 1 mM CHC on the constrictions produced by the salts shown, 
expressed as % of the constriction produced in control solutions. NS= not significant.

1 2 0  -i

1 0 0  -

80 -

60 -

4 0 -

2 0  -

3 4 5210

Concentration of CHC (mM)

Figure 34: Effect of CHC concentrations on the constrictor response
of the rat tail artery produced by 20mM L-lactate.
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Salt solutions applied at pH 6.7:

a-L ow ering  the pH o f the phosphate-buffered  con tro l 

solution to 6.7 caused the classically recognized dilatation (Gaskell 

1880) in rabbit ears (to a mean of 70% previous tone, n=10, 

p<0 .0 1 ), the magnitude of which did not change significantly with 

varying NA concentration from 0.5 through 1 to 2 jiM  in the same 

vessel; however there was a lo t of biological variation between 

vessels. Rat tails responded far less than the rabbit ears to pH 6.7 

control solution (to a mean of 92% previous tone, n= 8  & p<0.05); a

few preparation were even unresponsive to pHe variation.

b- In the rabbit ear, not withstanding the dilator effect of 

external acidity alone, when the standard (pH 7.2) control was 

displaced by high pka organic salts (propionate, butyrate) at pH 

6.7, greater constrictions were produced than by the same salts, at 

the same concentration, applied at pH 7.2. Figure 35A shows the

mean effect with propionate - slightly  more than twice the

constriction was produced by application at 6.7 than at 7.2. By 

contrast, salts of interm ediate pKa (table 14) either had little pH 

sensitiv ity  (form ate and pyruvate) or constricted  arteries le s s  

when applied at 6.7 than at 7.2 (DL-lactate, figure 35B). The effect 

of pyruvate and DL-lactate appeared to vary with the sensitivity 

of the preparation to pHe : both salts produced mostly dilatations 

at pH 6.7 in ears of higher pHe sensitivity, while in less pH e
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sensitive preparations they produced mostly constrictions.

A
3

pH 6.7  
(n=9)

pH 7.2  
(n=10)2

1

10-propionate

0
2 20 4 6 8 10 12

B
1.6 n

pH 7.2 (n=8)
® 1.4-
3
COCOo pH 6.7  

(ns=8 )o. 1 .2 -

>
« 1 .0 -ooc 10-lactate

0 . 8
2  0 2  4  6 8 1 0  12

Tim e (m lns) Tim e (m ins)

Figures 35A & B: Average results o f the effect o f  applying salts at pH 6.7 from  
NLR solution pH 7 .2  on the tone o f NA activated rabbit ear artery. A: For propionate, 
B: for D L-lactate. N ote that in A 6.7 solution caused greater constrictions than 7.2  
w hile the opposite occurred in B.

Organic salt
P ercentage tone increase &(n)

P t-test
pH 7.2 pH 6.7

Propionate 59 .1+9.8  (10) 117 .7+19.3(9) 0.01 Unpaired

B utyrate 63 .8+8.3  (4) 174+9.9 (4) 0.01 Unpaired

Form ate 34 .5+8.5  (6) 38 .6+12.9  (5) NS Paired

D L -lactate 38 .0+9.7  (8) 7 .9+8.7  (8) O.05 Unpaired

P yru vate 37 .3+ 3 .9  (20) 39 .0+ 15 .6 (12 ) NS Unpaired

Table 14: Maximum constrictor response o f  the rabbit ear to the salts shown at 
control situation (pH 7.2) and when the salt pH was decreased to 6.7 w hile the NLR pH 
stayed at 7 .2 . Note that DL-lactate is the only salt which has given  sign ificantly less 
constriction when applied at 6.7 than that at 7.2.
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W ashout of high pKa salts at pH 6.7 caused slower decreases 

of tone towards baseline than at pH 7.2. The same applies to salts 

o f interm ediate pK a when they had produce more constriction in 

the acidified medium, but they behave the same as neutral salts 

when they had produced the same or less constriction.

c- To exclude the possibility that at lower pH (6.7) the salts 

w ere producing less constriction due to less perm eation of the 

associated acids at that pH for any reason (e.g. less efficiency of 

carriers), I have applied the salts, to the rabbit ears, in another 

protocol. That was to introduce the salts (DL-lactate and pyruvate) 

at pH 6.7 from NLR at the same pH (6.7). When both DL-lactate 

and pyruvate  w ere applied, in the sam e preparation  where 

application of the same salts at pH 6.7 from NLR at pH 7.2

produced significant dilatation, at pH 6.7 from NLR at the same pH 

(6.7) more constriction was produced than when both solutions 

were at pH 7.2.

d- By contrast in the rat tail, which has a lower pHe

sensitivity than the rabbit ear, no dilatation was ever obtained by 

applying D L-lactate and pyruvate. Rather all salts, except DL-

lac ta te , produced m ore constrictions at pH  6.7 than at 7.2

( ta b le  15).
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Salt concentration
fmMl

Percentage tone increase and (n)
p< (Paired 

t-test)pH 7.2 pH 6.7

Propionate 10 27.5+6.7 (4) 43.2+25.5 (2) NS
20 35.5+5.5 (2) 55.3+16.9 (3) NS
40 87.5+16.9, (6) 110.5+55.9(2) 0.1

Butyrate 40 52.0+8.0 (2) 89.0+22.0 (2) 0.05

Benzoate 40 106.3+34.6( 3) 166.5+33.5(2) 0.005

DL-lactate 10 24.0+3.0 (4) 20.2+4.7 (4) NS

Pyruvate 40 41.5+6.7 (4) 45.7+10.7(3) NS

Benzene
sulphonate

80 33.5+2.5 (2) 48.5+5.5 (2) 0.1

Table 15: Average results of the effect of decreasing the pH of the salts shown 
from 7.2 to 6.7 on the tone of the NA' activated rat tail arteries. Note no salt gave a 
significantly lower constrictor response at 6.7 than that at 7.2, compare with ear 
results in table 4.

Effect of changing the pHe of L-lactate:

As th is is the w eak-acid  organic anion  o f g rea test 

physio log ical in terest, and it seems likely  that the pH of 

in te rs ti tia l  flu id  in ex erc is in g  sk e le ta l m uscle  m ay fa ll 

considerab ly  below  6.7 (see d iscussion ), the e ffec ts  w ere 

investigated of applying L-lactate at pHe 's down to 6.2. Decreasing 

the pH of the NLR solution from 6.7 to 6.2 produced further 

dilatations in both rat tails and rabbit ears.

10 mM L-lactate applied at pH 6.7 from NLR (pH 7.2) 

produced less constriction in both preparations than when both
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solutions were at 7.2. Rabbit ear vessels sometimes dilated to 6.7 

L -lactate application and constricted to its washout though rat 

tails never did that at this pH (figures 36A & B). Lowering the pH 

of L -lactate  to 6.2 reduced it's constric tor effect further and 

occasionally reversed it in both preparations (figures 36A & B). In 

a rabbit ear which was less responsive than most to L-lactate 

(7.2), 6.7 L-lactate solution application produced dilatation which 

reached minimum tone in the first three m inutes, then tone went 

up again towards baseline over the subsequent two m inutes. On 

washout the vessel constricted (figure 36C).

Sim ilar experim ents were repeated over what is probably 

the more precisely physiological pHe -range 7.4 to 6.4. Applying

6.4 L-lactate from NLR solution 7.4 produced dilatation in the 

rabbit ears, which unlike in the previous 6 . 2  experim ents, was 

increasing during the whole period of application. On washout the 

tone went up towards baseline, however it did not reach it even 

by the end of the five minutes (figure 37A). Rat tail preparations 

was almost equally responsive to L-lactate at 7.4 from ringer’s 7.4 

and at 6.4 from Ringer’s at 7.4 (figure 37B).
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Figures 36A, B & C: Pooled results of the effect of changing the pH of L-lactate
solution from 7.2 (blank circles) to 6.7 (black circles) and 6.2 (triangles) while 
keeping the NLR at the same pH 7.2 in all situations. A: Rabbit ear preparations. B:
Rat rail preparations. C: Less responsive rabbit ear to L-lactate than most.
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W hen 6.4 L -lactate  was applied from 6.4 NLR, in both 

preparations, m ore constrictions were produced than when both 

solutions where at 7 .4  (control situation) (figure 37A & B). 

W ashout o f the 6.4 L -lactate  did not differ significantly from 

control one in the rat tail. However the rabbit ear recovered faster 

from 6.4 L-lactate than from 7.4.
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Figures 37A & B: Pooled results of the effect of changing the L-
lactate pH from 7.4 (blank circles) to 6.4 (black circles) while keeping the 
pH of the control unchanged (7.4), triangles represent the effect of L- 
lactate at 6.4 applied from NLR at 6.4. A: In the rabbit ear preparations,
note the dilatory effect caused by 6.4 L-lactate. B: In the rat tail artery, 6.4 
L-lactate does not differ significantly from 7.4 ones in both protocols.
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Salts applied in Kreb's solution:

In the rat tail artery, Kreb's solution, containing 25mM 

H C 0 3 * and bubbled continuously with 5% O2 , produced significant 

constriction (n=4, p<0.01), when applied from NLR; both solutions 

were at pHe 7.2 (figure 38A).

lOmM L -lactate and propionate application in K reb's and 

from  K reb’s solutions produced constrictions w hich w ere not 

significan tly  d ifferen t from  their NLR-type ones in the same 

experim ents. Subsequent w ashout low ered the tone down to 

baseline within five minutes in all cases (figure 38B). The rate of 

tone decline on w ashout was not significantly  d ifferen t from 

controls.

Organic salts effect on K-activated preparations:

25 and 50K solutions failed to raise the tone of the rat tail 

a rtery . H ow ever raising  the concentra tion  fu rth er to 125K 

produced appreciab le  baseline tone as in p rev ious ra t tail 

preparations (results in chapter 1 ).

20m M  L -lactate  and propionate app lica tion , w ith 125K 

activation, produced qualitatively the same constrictions obtained 

previously with NA activations. W ashout o f both solutions, with 

125K R inger's, lowered the tone down to baseline w ithin 5
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minutes (figures 39A & B).
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Figures 38A & B: Pooled results on the rat tail artery perfused with 
Kreb’s solutions. A: constrictions induced by Kreb’s solutions applied
from Ringer's ones. B: Organic salts applied in Kreb's solutions.
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Figures 39A & B: Pooled results of the effect of organic salts on the
rat tail artery with 125K activation'.

Na substitution: < ,

It has been shown that, in rabbit ear preparations, Na+ /H + 

exchange plays a role in the recovery from  intracellular acidity

produced by NH 4 CI washout (Ighoroje and Spurway, 1985). The

experiments in this section were designed to investigate whether

the same m echanism is operating in recovery from intracellular

acidity produced by organic salt applications in rabbit ear as well

as in ra t tail preparations. Since the experim ents involved

removal of all extracellular Na, the effect of this will be presented

firs t.

When Na was totally and isosmotically substituted by one of
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choline or sucrose in the NLR solution tone went up in both rabbit 

ear and rat tail artery preparations. Sucrose produced greater 

constriction than that induced by choline in both preparations 

(figures 40A & B).

I have applied two salts in this series o f experim ents, 

namely propionate and L-lactate, both at 20mM concentration. In 

all experim ents salts were applied in three solutions: sucrose 

Ringer's, choline Ringer's, and NLR.

A -P rop ionate:

In the rat tail, 20mM propionate applied in Sucrose Ringer's 

solution produced greater relative constriction than when applied 

in the NLR solution, however this constriction was less sustained 

than in the control solution. On the o ther hand, propionate 

application in choline R inger's solution produced virtually  the 

same relative constriction as in the control situation. W ashout of 

both solutions, with their appropriate control ones (sucrose and 

choline Ringer's), produced less decline of tone by the fifth minute 

than in the control situation (figure 41 A).

In the rabbit ear, 20mM propionate produced progressive 

constriction over the 5 m inutes application in sucrose Ringer's 

solution, w hile in choline R inger's the tone stayed virtually  

constant after the third m inute. By con trast in the control
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situation the tone declined progressively after the third minute of 

propionate application.W ashout produced the usual return of tone 

towards baseline, but by the fifth minute of washout, unlike the 

control situation, the tone in sucrose and choline solutions was still 

significantly above baseline (figure 41B).

B- L-lactate:

In both preparations, 20m M  L -lacta te  -like propionate- 

produced the greatest constriction in sucrose Ringer's solution. In 

the rabbit ear, tone did not decline during application of L-lactate 

in all three solutions; rather in sucrose solution the tone was 

steeply increasing over the five m inutes L -lactate application. 

Subsequent washout of all three solutions, w ith their controls, 

lowered the tone almost to baseline by the fifth minute in each 

case (figure 42A). By contrast, in the rat tail, tone declined after 

the third m inute of L -lactate application in both sucrose and 

choline solutions. However, on w ashout the tone went down 

towards baseline in each situation (figure 42B).
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Figures 40A & B: Pooled results of the effect of totally and
isosmotically substituting NaCl by One of sucrose or choline chloride in the 
NLR solution, A; .in rat tail artery and B in rabbit ear artery. Note that 
sucrose has given greater constrictions than choline. Points represent the 
mean of maximum tone achieved within 5 minutes.
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Organic salts applied to internal vessels:

To estab lish  the effect of in trace llu lar acidity , w hether 

produced by NH 4 CI washout or organic salts, on vascular tone in a 

m ore general sense, some representative vessels subjected to 

N H 4 CI in the first part of the work were also subjected to some 

organic salts in this part.

Rat vessels:

Three salts were chosen to cover a good range of pK a . 

lOmM propionate, glutam ate, and L-lactate were applied to NA 

activated preparations at 3 7 ° C. All salts produced constriction 

which was in all cases in the ^following order propionate>L- 

lac ta te> g lu tam ate .

Portal vein:

Portal vein longitudinal strips were the m ost responsive 

preparations to NH 4 CI washout in previous experim ents (chapter 

1 ), and  in  th is se t o f experim ents they  w ere  a lso  the m ost 

r e s p o n s iv e  to  p r o p io n a te  a n d  L - la c ta te  a p p l ic a t io n .  

P e c u lia r ly ,  p o r ta l  v e in  p re p a ra t io n s  a t ta in e d  m a x im u m  

constric tions to salt app lica tions by the f irs t m inu te  then  tone 

w en t dow n  tow ards b ase lin e  in  the fo llo w in g  4 m in u te s
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application o f all th ree  sa lts ; h o w ev er on the  average it d id 

no t und ersh o o t b ase lin e  d u rin g  ap p lica tio n . O n w ashou t tone 

w ent dow n to base line  ( if  n o t a lready  there) w ith in  the firs t 

tw o m inu tes, w ith  no s ig n if ic a n t u n d e rsh o o t ov e r 5 m inu tes 

(figure 43A).

A orta:

Aortic rings constricted when treated with all three salts. 

The constric tion  was c learly  greatest w ith propionate and it 

reached its peak in the previous "typical" pattern by the third or 

the fifth minute of application. Unlike portal vein described above, 

the aorta showed little tone reduction during the late stages of the 

salt application. On washout, tone went down to baseline by the 

second m inute with no significant undershoot over 5 m inutes 

(figure 43B).

Pulm onary a rte ry :

Rings of the pulmonary artery produced more constriction to 

all three salts than those of aorta, apart from this it behaved much 

like the aorta in the other respects mentioned above (figure 44A).

Perfused pulmonary artery preparations activated with NA 

at 3 7 ° C constricted when treated with 20mM propionate or L-
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lactate. The constriction to both salts was less than in ring 

preparations; how ever, as w ith the rings, propionate produced 

greater constrictions than L-lactate (figure 44B).
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Figures 43A & B: Pooled results 'of the effect of lOmM organic salts;
propionate (blank circles), L-lactate (black circles), and glutamate (squares), on rat 
vessels. A: Portal vein longitudinal strips. B: aortic rings. All constrictions are 
significantly above baseline.
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Figures 44A & B; Average results of the effect of organic salts on rat 
pulmonary artery preparations at 37° C. A: Ring preparations. B: Perfused 
preparations. All constrictions were significantly above baseline.
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Rabbit basilar artery rings:

Since experim ents w ith organic salts on this preparation 

involved changes of pH e , these results w ill be reported first. 

Unless otherw ise m entioned the preparation was activated with 

25K at 37°C .

Basilar artery rings relaxed when medium pH was decreased 

from 7.5 to 6.5 (tone went down to 85% of baseline, n=2, p<0.01) 

and from 7.25 to 6.85 (to 87%, n=2, p<0.05). On the other hand, 

when the pH of the control solution was raised from 7.0 to 7.5 the 

preparations constricted (tone went up to 109% of baseline, n=3, 

p<0.05).

By contrast, in tracellu lar acidity achieved by organic salt 

application produced constriction of all preparations. 2 to lOmM 

concentrations of formate, butyrate, propionate, and acetate, when 

applied by the addition method (see methods in chapter 2) at pH

7.4 caused only slight constrictions, though the effects were more 

evident as I increased concentration. However applying the same 

concentrations at lower pH values (7.25_7.0_6.5) produced greater 

constrictions as I decreased the pH, i.e: the constriction was 

inversely related to pH value.

Applying 20mM butyrate, substituted for equivalent NaCl, at 

pH 6 . 8  from NLR at pH 7.4 with no activation caused elevation of
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tone much greater than in the above experim ents (figure 45A). 

The maximum constriction was obtained in three m inutes, the 

tone staying virtually constant for the subsequent two m inutes. 

On washout of the butyrate the tone went down to reference level 

in 2-5 minutes.

L-lactate was applied only in lOmM concentration. lOmM L- 

lactate at pH 7.4 when applied from control solution at the same 

pH, caused less constriction than when both solutions were at pH 

7.0 (figure 45B). In another single experim ent lOmM L-lactate 

elevated the tone by 40% when both it and the reference solution 

were of pH_6.9; on washout tone went to baseline in 5 minutes.
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Figures 4 5 A & B: Pooled results o f  the effect o f  organic salts on rabbit basilar 
artery ring preparations. A: Effect o f  20mM  butyrate on the tone o f  non-activated  
preparations. B: Effect o f  lOmM L-lactate at two pHe 's, 7 .0  and 7 .5 , constrictions were

higher with low er pH. All constrictions are significantly above baseline.
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D i s c u s s i o n

Basic effect of weak organic salts on vascular tone:

Most salts of organic acids applied to both rat tail and rabbit 

ear a rte ria l p reparations in this section  had caused  c lear 

constrictions. I am assum ing that the constriction produced by 

application  of these salts was due to the m ovem ent of the 

a s s o c ia te d  acid m olecules into cells where they dissociate and 

consequently lower pH there. Evidence supporting this assumption 

includes:

1 -p H j decreased when many of these salts were applied to 

v a rio u s  other tissues (Roos and' Boron, 1981; de Hemptinne et 

al., 1983; Thomas, 1984).

2-The broad correlation of vasoconstrictor potency with pK a . 

Salts o f weaker acids (with higher pK a ) p ro d u ced  g rea te r 

constrictions than those of stronger acids. Salts of weaker acids 

will contain more of the undissociated acid (HA) molecules than 

those of stronger acids. Therefore the constrictions produced by 

the salts are in direct relation to the amount of HA molecules. 

D ep artu res  from  pK a sequence are read ily  a ttribu ted  to 

differences of perm eability and/or m etabolism  (this point will 

be discussed further below).
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3-The enhancem ent of the constrictor effects of high pK a 

organic salts by application at pH 6.7 instead of 7.2. At pH 6.7, 

the HA species are about three times more concentrated - and I 

have observed that the constric tor effects are g rea ter by 

am ounts o f that order. This finding is particu larly  telling 

because, o f course, the d irect effects o f low ered pH e are 

vasodilatory.

The constrictor influences of these salts would depend on 

the m agnitude of pHj decrease caused by each salt. Therefore the 

constric to r effects are dependent on four factors (as seen by 

Siebens and Boron, 1987) :

A- the initial pHj. ' ,

B- Concentration of the anion species of the salt outside.

C- The apparent pKa of the equilibrium between the associated 

and the dissociated forms of the salts.

D- The non-salt buffering power of the cell.

As they were reporting these factors for only one salt used in 

their study (L-lactate) it is obvious that one further influencing 

factor is expected when com paring different salts in my work 

which is;

E- the mem brane perm eability (P) of the associated form  of 

each salt. P will affect the maximum pHj decrease achieved by

152



each salt because a steady state can only be reached when the 

rate of H+ extrusion (or other processes causing continuous 

"buffering of new ly-entered H+ ) becomes equal to the rate of 

formation of those new ions in, the cell - which is effectively 

equal to the rate of entry of new HA m olecules. W here P is 

high, so that HA entry-rate is high, a higher H+ extrusion rate 

w ill be required  before a steady sta te  can be a ttained . 

W hatever the exact relation between [H+ ] | and H+ extrusion- 

rate in v.s.m., it seems certain that the two must be positively 

related - i.e. the higher extrusion rate w ill only be achieved 

when [H+ ]j is greater. Thus we may conclude that the maximum 

lowering of pHj brought about by a high-P salt will be greater 

than that brought about by a salt of o therw ise-identical 

properties but mower P. Assum ing constant in itial p H j  and 

buffering power of the v.s.m. cells, would leave us with three 

variables; pK a , P, and the anion concentration outside the cell. 

As I was using the same anion concentration for all salts in 

table (11), which was lOmM, we are left with two factors on 

w hich  depend  the m agn itude  of pH j decline; and in 

consequence the constrictor effect, caused by each salt: namely 

p K a , and P. Jacobs (1940; quoted by Roos and Boron, 1981) 

derived an equation for the estimation of p H j  changes due to
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weak acids and bases which shows that the magnitude of pHj 

change is dependent on; pK a , pHe , and the sum o f total 

concentrations o f acids and anions outside and inside cells. 

(Jacobs m ust have considered jonly  passive buffering by the 

cell, not active H+ extrusion; this would account for the 

omission of P from his equation.) Recently de-Hemptinne and 

his coworkers (1983), reported that, in sheep cardiac Purkinje 

fibers, for m any organic acids tested, a relation was found 

between the rate of intracellular acidification and the product 

o f their d issociation constant (pK a ) and d iisopropylether-to- 

water partition ratio (p') - the later being a property to which 

the perm eability , P, o f undissociated acid through lipid 

bilayers may be expected to be closely proportional.

My results and the above reports all support the view that 

p K a is a major factor in determining the magnitude of p H j  d e c lin e  

caused by each salt. How ever, the constrictions produced by 

pyruvate and lactate were higher than that expected from their 

p K a . The cause for that could be the presence of carriers, which 

would produce the equivalent of exceptionally high P values for 

these two physiological salts (further evidence for this w ill be 

discussed shortly).

The anion perm eability  o f each salt applied would also
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theoretically  affect the m agnitude of the pHj shift produced. It 

would tend to decrease the acidity produced by each salt, by 

com bining w ith pro tons inside the cell. H ow ever, m em brane 

perm eability for m ost organic anions I used is probably several 

orders of m agnitude low er than that for the corresponding acid 

(cf. the ratio of the lipid-to-water partition ratio for aliphatic acids 

to that of the anion is of the order of 10^: Leo et al., 1971). For 

this reason I am assuming that the effect of anion permeation on 

the final in tracellu lar acidity, produced by salt application, is 

neglig ible except for cases jvhere perm eation could involve a 

carrier for the physiologically important anions (see below).

Effect of salt applications at lower pHe

The effect of lowering the pH of the salts seemed to be 

dependent on the constrictor potency of that salt. Salts producing 

great constric tions at neutral pHe (e.g. propionate) tended to 

produce even more constrictions when applied at pHe 6.7. The 

reverse was true for the less potent salts. The reason for this 

general difference between the greater and less constrictor salts is 

clearly the fact that when the pHe of the salt is decreased while 

the pH of the NLR was kept neutral we will end up with two 

opposite effects; the dilator influence of extracellular acidity and
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the constrictor effect of the intracellular one. In this light it is 

satisfactory that individual perfusion preparations for which the 

ra t io

% constriction produced by salt at pH 7.2

% dilatation produced by pH 6.7 NLR solution

was high were the ones for which the ratio

% constriction produced by salt at pH 6.7

% constriction produced by salt at pH 7.2

was also high.

There was a clear difference between results obtained with

the rat tail as compared with those for the rabbit ear; the latter

tended to produce more dilatations to less potent salts than the

form er. This difference could be explained by the low er pHe

sensitiv ity  of m ost rat tails tested. The cause of low er pHe

sensitivity in the rat tail might be due to lower g £  and Pj£ in this 

preparation. In support of this suggestion my finding in this work 

that the threshold for K-induced contraction was above 50mM in

the rat tail while 25mM was sufficient in rabbit ear. It has been

suggested that preparations with higher gj£ will be more sensitive 

to increases in [K ] 0  than those with lower g ^  (Harder, 1982b).

One interesting feature of the results with salts applied at 

pH 6.7 was that lactate was the only salt tried which produced
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less constrictions at the lower pH; though other salts (e.g. formate), 

which produced the same constrictions as lactate at 7.2, tended to 

p roduce  m ore constric tions at pH 6.7 . This cou ld  be a

physiologically  im portant phenomenon.

L-lactate is released from exercising tissues where pH could

decrease to less than 6.5 around the active muscles. Therefore,

this salt was chosen for further analysis of the in teraction  

between the two conflicting influences, of intra- and extra-cellular 

ac id ities , on regional blood flow. R esults showed increased 

tendency for a dilator effect in the rabbit ear when the pH was 

decreased from  7.4 or 7.2 to 6.4 or 6.2, which could be an

advantage for further increase in flow to that region. However, rat

tail results showed variability which could be due to difference in

p H e sensitiv itie s of the various p reparations stud ied . The 

constrictions produced when the salts were applied at pH 6.4 from 

NLR at pH 6.4 were not up to the level expected by the increase in

total amount of associated acid at that pH. This could be due to

one of two possibilities; first, the background tone m ight have 

been too low for the salt to produce its effect; second, the 

transport m echanism  for L -lactate  m ight be sensitive  to pH 

changes in such a way that it is less efficient at lower pHe s.

In vivo, of course, ears and tails m ust be assum ed to 

produce negligible lactate, except possibly in periods of profound
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peripheral vasoconstriction. Extrapolation to the skeletal muscle 

v a scu la r  bed th e re fo re  req u ires  cau tio n . N ev erth e less  the 

indication  that even these vessels can treat lactate  differently  

from  non -physio log ica l o rgan ic^  anions sure ly  suggest that 

skeletal-m uscle vessels will treat it at least as specifically  as 

described above.

Salts applied in modified Ringer's and in Kreb's solutions

In Na free experim ents (sucrose-based solutions) L-lactate 

and propionate tended to produce greater constrictions than those 

in NLR solutions; the cause for that might be that the salts were 

applied to a lower background tone- in the sucrose solutions and so 

w ould be expected to produce higher constric tions (Ighoroje, 

1987). On the other hand, in choline solutions (which gave still 

low er background tone than that of sucrose) both salts usually 

produced less constrictions than those of controls; that could have 

been due to some toxic impurity present in the choline.

Application of propionate with the above Na substitutes, in 

both rat tail and rabbit ear arteries, revealed a tendency for the 

w ashout tone to stay higher in Na substitu tes than in NLR 

solutions. However, L -lactate results in N a-substituted solutions 

were not significantly different from their controls. A possible
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explanation for the results obtained with propionate is a slower 

proton extrusion in the N a-substituted solutions; therefore the 

w ashout pHj would tend to stay more acidic than controls. The 

reason for L -lactate  not showing the same results as propionate 

might be that L-lactate was metabolized to a certain degree and 

this has been reported to be a net H+ -c o n su m in g  p ro c e ss  

(Hochachka and Mommsen, 1983). So my results, though far from 

being conclusive, could point to the possible existence of a H+ -N a+ 

exchange as a mechanism of acid extrusion during salt application. 

Other evidence for the existence of such an exchanger has been 

found in  various tissues including  vascu lar sm ooth m uscles 

(Ighoroje and Spurway, 1985; Aalkjaer and Mulvany, 1988, Little 

et al., 1988).

Results obtained when phosphate was elim inated from both 

salt and Ringer's solutions (being replaced by lOmM HEPES in the 

latter) indicate that the constrictor effects of the salts was not 

related to their buffering power.

Absence of bicarbonate from experim ental solutions can, on 

occasion, produce opposite p H j  effects to the real physiological 

situation when bicarbonate is present (Thomas, 1989). However, 

the existence of the constrictor influences o f propionate and L- 

lactate  in bicarbonate solutions (dem onstrated in th is thesis)
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indicates that intracellular acidity produced by these salts is not 

qualitatively affected by the presence of bicarbonate. It is even 

not affected  quan tita tive ly  as resu lts w ere not sign ifican tly  

d iffe ren t from  con tro l constric tions obtained  in N L R -based 

solutions.

Mechanism of transport of L-lactate and other salts:

R esu lts  w ith  a -c y a n o -4 -h y d ro x y c in n a m a te  (C H C ), a 

substance which is known to inhibit pyruvate transport in human 

erythrocytes, suggest that only pyruvate and L -lactate could be 

transported  to a sign ifican t ex tent by carriers. C onstrictions 

produced by others substances tested (propionate, D-lactate, DL- 

lactate and butyrate) were not significantly affected by this drug 

which indicates that their transport is m ainly through sim ple 

diffusion. Acidification produced by propionate was unaffected by 

CHC in sheep Purkinje fibers (de Hemptinne et al., 1983) and in 

frog sartorius muscle (M ason and Thomas, 1988), which suggest 

that the transport of this substance in these tissues, as in others 

(Spencer and Lehninger, 1976), is mainly by simple diffusion.

Three findings in my results indicate that the carrier for 

lactate can distinguish between the stereoisomers:

1- The greater constriction produced by L -lactate com pared
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with those obtained with D-lactate, when both were applied to 

the same preparations.

2- L -la c ta te  to n e -c o n c e n tra tio n  resp o n se  show ed c lea r 

saturation after 20mM while those of D and DL-lactates were 

linear.

3- CHC inhibited the constrictions produced by L-lactate while 

those obtained with D and DL-lactates were not significantly 

a ffec ted .

A stereospecific transport of L -lactate has also been found in 

mammalian red cells (Deuticke et al., 1978), placenta (Moll et al., 

1980), blood brain  barrier (Nem oto and Severinghaus, 1971; 

Oldendorf, 1972), enterocytes (Storelli et al., 1980), Ehrlich ascites 

tum or cells (Spencer and Leninger, 1976), and sheep Purkinje 

fibers (de Hemptinne et al., 1983).

CHC concentrations (0.5-4mM ) had a progressive inhibitory 

effect on the L-lactate induced constrictions, of such a potency 

that the constrictor influence of L-lactate was reversed to a dilator 

one when CHC concentration was as high as 4mM. This finding 

could be interpreted in one of two ways; first it is possible that 

the effect was due to the higher concentrations of the drug per-se. 

H ow ever, th is is un like ly  to be true; because p ropionate  

constrictions were totally unaffected when treated with the same
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C H C  concentrations in the same preparations and in the same 

m ethods as L -lactate. Second, the finding could be taken as 

indicative of an im portant physiological mechanism; that L-lactate 

is transported com pletely through^, a carrier m ediated mechanism 

across vascular smooth m uscle. Taking the second proposal; the 

dilator influence at high C H C  concentrations could be explained by 

un inh ib ited  perm eation of the anion alone which would be 

expected to increase p H j .

To p roduce  the co n stric tio n s  observed  on L -lac ta te  

application , the carrier has Jo transport L -lactate with proton 

equivalents. This could be achieved through the cotransport of L- 

lactate and protons, exchange of' L-lactate with hydroxyl ions, or 

the transport of L-lactic acid. The exact substrate for the transport 

process cannot be determ ined from  the results in my work 

because all three m echanism s would produce the observed 

constrictions.

The finding that L -lactate  and propionate  actions were 

usually not significantly different from normal when extracellular 

Na was totally substituted by sucrose or choline indicates that 

transport of both salts in vascular smooth muscle is not coupled to 

Na. Coupled transport of Na and lactate (D and L) has been 

proposed in proximal tubular cells (Ullrich etal, 1982), and could
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be one of the explanations for lactate producing in tracellu lar 

alkalinization in various tissues, e.g; rat liver (Cohen etal, 1971), 

trout heart and liver (Milligan and Wood, 1986).
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Chapter four 

Fura-2 experiments 

Materials  and methods

Theoretical back ground: M easurement of FCa^+l- —

Since calcium  is regarded as one of the m ost im portant 

" in trace llu la r m essengers"; its m easurem ents and contro l has 

received a lot of attention in the past 30 years.

I will briefly outline the techniques used to measure [Ca^+ ]j 

as review ed by Tsien (1983).

1- Calcium -selective m icroeleptrodes

Though many highly specific calcium electrodes have been 

d ev e lo p ed , s till  these have 'some draw backs. D isadvantages 

include; relative slowness, big size so that small cells cannot be 

stud ied , and possib le  calcium  leakage through the electrode 

penetration point into the cell.

2- Optical indicators

T hree classes of op tical indicators have been used to 

m easure [Ca^+Jj: photoproteins, bis-azo dyes and tetracarboxylate 

d yes.

Photoproteins include aequorin and oblin which when bound 

to calcium  ions convert chem ical energy stored by the cell into 

photons of blue light. Overestimation of calcium levels is one of
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the d isadvan tages o f th is m ethod. T his is due to uneven 

sensitivity to calcium . Aequorin is maximally sensitive to calcium 

ions between about 0.5 and IOj iM. A nother difficulty  of using 

these  p ro te in s is tha t they requ ire  specia l and som etim es 

destructive techniques to be introduced into cells.

B is -a z o  d yes c o m p rise  m ain ly  a rsen a zo  III and 

an tipy ry lazo  III. On b inding  calcium  these  dyes develop  a 

characteristic  change in their absorbance curve. They have low 

se le c tiv ity  fo r  ca lc iu m  'and they  bind s ig n ific an tly  to 

intracellular proteins. They are used only for qualitative estimates 

of changes in Ca^+ .

T e traca rb o x y la te  dyes are re la ted  to the w ell-know n 

calcium  chelator, EGTA. The major advantage of these dyes over 

all previous known indicators is that they could be trapped in the 

ce lls  easily . The dye is m ade ce ll-perm ean t w ith special 

e sterify ing  groups (acetoxym ethyl groups). W hen inside  the 

cytoplasm , esterases gradually cleave the ester group and restore 

the dyes to their original m em brane-im perm eant, C a^+ -b in d in g  

forms.

Two generations of these dyes have been discovered.

F irst generation: single wavelength dyes. The most common 

used dye of this generation is quin2. Quin2 signals C a^ + by 

increasing  fluorescence at its preferred excitation w avelength
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339nm. It shows high affinity  and one-to-one stoichiom etry for 

C a 2  + , low affin ity  for M g2 +  and H+, large absorbance and 

fluorescence changes resulting from Ca2 + -binding, and negligible 

binding to m em branes (Tsien 1980). However the dye has many 

draw backs which have been overcom ed by the synthesis of the 

second generation of such dyes.

Second generation : This group comprises six dyes derived 

from BAPTA, nam ely; fura-1, fura-2, fura-3, s til-1 , stil-2, and 

indo-1. The m ost prom ising members, fura-2 and indo-1, are less 

hydrophobic than the rest. Compared to quin2 , they show much 

stronger fluo rescence , w avelength  sh ift upon Ca2+  binding , 

somewhat weaker affinity for Ca2 + , and better selectivity against 

magnesium and heavy metals (Grynkiewicz et al., 1985).

The increase brightness of these dyes over the previous 

group can be used to decrease in tracellu lar dye loading and 

buffering of [Ca2 + ]j transients.

A major feature of this group of dyes is the ability of ionized 

calcium  to a lter the w avelength  not ju s t am plitude of the 

fluorescence  excita tion  or em ission peaks. This enable the 

calculation of Ca2+ from the ratio of the fluorescence intensities 

at the two excita tion  w avelengths, independent of total dye 

co n cen tra tio n , path leng th , or abso lu te  sen sitiv ity  of the 

instruments.
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F u ra-2  is the  p re fe rred  dye fo r m ost ap p lica tio n s 

(G rynkiew icz 1985). Since the discovery of this dye it has been 

the m ost w idely used m ethod for m easurem ent of [Ca^ + j j  in 

various tissues. For these reasons I have- used fura-2 for the 

m easurem ent of [C a^+ ]j changes induced by pHj perturbations in 

the rat tail artery.

General consideration:

All experim ents were carried out on preparations of the rat 

tail artery. The animals a n d , the procedures of killing them and 

dissecting the vessels were the same as described in previous 

chapters. The vessels were always cleaned well of all adipose 

tissue before mounting. Two preparations were used :

1. Longitudinal preparation :

A hypodermic needle (gauge 23, such that arteries were a 

stretch fit over it) was flattened in a vice for about 0 .8 cm of its 

length towards the distal part.

l - 2 cm of the proximal end of the rat tail artery was impaled 

on the flattened hypodermic, which was then fixed in place totally 

im m ersed in a 10ml organ bath contain ing  norm al R inger's 

solution. All experim ental procedures were carried out on this 

preparation. Solutions in the bath were changed by syringes. The
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purpose of im palem ent was to stab ilize the preparation  and 

m aintain  constan t diam eter under the action of agonists and 

relaxants. The purpose of flattening the needle was to achieve 

uniform  illum ination intensity across the microscope field, as well 

as uniformity o f the focus depth into the preparation.

2. Ring preparations :

These were used only to investigate which part of the 

vascular smooth muscle layers were loaded best with fura-2. The 

rest of the experim ental procedures were not successful on this 

p re p a ra tio n .

A Perspex stub, over which the arterial rings could be 

slipped, was prepared by filing (figure 46).

VESSEL IMPALED 
ON THIS PART

BASE

POINT

PERSPEX STUB

Figure 46: Mounting stub used for ring preparations.
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The mounting stub was pressed into the wax in the base of 

5ml organ bath. A rat tail artery "ring" (i.e. a short cylinder of 3- 

5mm length) was gently stretched over the top o f the Perspex 

stub in the organ bath, which was filled with normal Ringer’s. To 

avoid dam aging the viewing lens the arterial tissue was always 

left projecting slightly above the top of the mounting stub.

L o ad in g  so lu tio n s :

Standard control and experim ental solutions were prepared 

by the m ethods described previously , except that a loading 

R inger's solution containing 2-3pM  fura-2 AM (cell perm eant 

fura-2 ester) was also required. To, achieve this, 1 mg fura-2 AM 

was dissolved in 1 ml DMSO and then divided into 10 parts and 

kept in the freezer. On the day of the experim ent 0.02-0.03 ml of 

the stock fura-2 AM was added to 10 ml of normal Ringer's to 

make a final concentration of 2 -3 . 1 0 '6 M .

When it enters the cell fura-2 AM is m etabolized to fura-2 

acid which is the calcium sensitive form.

L o ad in g  p ro c e d u re :

M ounted specimens were loaded with fura-2, in the fura-2- 

Ringer's solution just described, for 40-60 minutes at 37 C. Then 

the fura - 2  solution was sucked out of the bath and the specimen
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was washed twice with normal Ringer’s. The specimen was then 

incubated for further 20 minutes at 37°C in norm al R inger's to 

allow it to com pletely hydrolyze the entrapped ester. This post 

loading warm incubation was found to be vital for proper take up 

of fura - 2  by the rat tail arterial smooth muscle (see discussion).

Calibrating solution :

A stock solution of fura-2 acid (the calcium sensitive dye ) 

o f 10“ 3M  concentration, made by dissolving lm g fura - 2  acid in 

lm l of lOOmM-K, lOmM-HEPES solution and then divided into 10 

parts in small bottles which were stored in the freezer.

F u ra -2  ac id  c a lib ra tio n  a g a in s t d if fe re n t  c a lc iu m  

co n cen tra tio n s was carried  out in specia l E G T A -contain ing  

solutions. Two original solutions were made, the first contained 

nominally no calcium and consisted of lOOmM-K^E^EGTA, and the 

second was calcium-EGTA solution which consisted of 100mM-KCl, 

lOm M -HEPES, 10mM -K 2 CaEGTA; both solutions had lp M  fura-2 

acid (0.1ml of the above stock) and their pH was adjusted to 7.2. 

Equality of calcium and EGTA in the second solution was ensured 

to better than 0.1% by the pH titration method (M iller & Smith 

1984), using a meter capable of resolving 0.001 pH units. Calcium 

con tam ination  in the nom inally  calcium  free so lu tions was 

estimated to be ~20uM total calcium, 0.3nM free calcium (Miller
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& Smith 1984). Six final solutions were prepared from the above 

two original ones; table 16 gives the constitution of 1 0  ml of each. 

In each case pH was readjusted to 7.2.

C hem ical sources w ere : -

HEPES Sigma 

Fura-2 Molecular probes

EGTA Sigma (97%  pure )

10 ml OF EACH BUFFER SOLUTION

BUFFER VOLUME ADDED (mis) TOTAL

NUMBER
CALCIUM FRE

EGTA
SOLUTION

E CALCIUM

EGTA
SOLUTION

FREE
CALCIUM

(nM)

1 1 0 0 ~9.5

2 8 2 38

3 6 4 101

4 2 8 605
4

5 0 10 3.10

6 0 10+1mM
CaCL2

1 0 6

Tabic 16: Constitution of 10ml of the six Ca-EGTA buffer solutions used 
for fura-2 calibration.
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Apparatus :

As shown in figure 47, the apparatus consisted of the 

following key parts :

1- UV light source:

This, the availab le  source in the laboratory , an HBO-200 

m ercury lamp. Such lamps have three disadvantages over the 

more expensive xenon lamps :

i/ A lower energy at 350nM wavelength than at 380nM.

ii/ Much higher energy at 364nM  than at either of the above

w av e len g th s .

iii/ Inferior stability.

The way these problem s were dealt with will appear from 

what follows.

2- Filters :

Black filter; which block alm ost the whole spectrum  when in 

the light bath, so during exposures it was always swung out. 

Broad-band exciter filter; which was used to obtain the best

fluorescence ratio between 350nM and 380nM excitations. This

was chosen, after experimenting with many different filters of 

different thicknesses, to be 2.5mM ug5 filter.

364 filter, which was used to cut off wavelengths around

364nM where HBO 200 em ission is particularly intense; and 

therefore better distinction between 350 and 380nM could be
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o b ta in ed .

350 and 380nM  filters were alternated m anually to provide 

the dual ex c ita tio n  w avelengths requ ired  for the fu ra - 2  

p ro ced u re .

510nM  wideband (40nM ) pass filter was placed before the 

photometer to allow only this emission band through.

3- Dichroic mirror :

D ichroic m irror deflects most of the lamp's short wavelengths 

downwards, through the objective; yet it allows longer waves, 

em itted  by specim en, to * pass predom inantly  upward for 

viewing.

4- W ater immersion lens : ' '

Dealing with experiments where the specimen had to be always 

under solutions required a water immersion lens to focus on it, 

25x m agnification was enough for our purpose. The one 

obtainable to fit the existing Leitz Orthoplan microscope was a 

L eitz  ob jective of num erical aperture 0 .6 , having _ 2  5 %  

transmission at 350nM and ^64%  transmission at 380nM.

5- MPV compact photometer:

This instrum ent measures the intensity of the em itted light : 

and was connected to a com puter for data-logging  and 

subsequent calculations of the ratios of intensities emitted in
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response to the alternate excitation wavelengths.

u/v
LAMP
hfiO
200W

MPV
COMPACT

PHOTOMETER

0

"CONDENSER"
LENS

BLACK FILTER

t
HEAT 
ABSORBING 
FILTER

350 nM

380 nM

EYEPIECE

364 nM 
REJECTION
FILTER

BROADBAND
EXCITER
FILTER

ALTERNATE
NARROWBAND
EXCITATION

FILTERS

510 nM WIDEBAND 
PASS FILTER

PLOEM
DICHROIC MIRROR

25X WATER IMMERSION 
FLUORESCENCE OBJECTIVE

SPECIMEN

Figure 47: F luorescence m icroscope

General procedure :

The following steps were Carried out in all experiments on 

biological tissue :

- Autofluorescence of the specim en was measured before 

loading and a record was kept for both readings at 350nM (F I) 

and 380nm (F2).

-All experiments were carried out at room temperature. 

-A fter loading  the specim en was focused under the
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m icroscope to obtain the best view of loaded vascular smooth

m uscle cells (Figure 48). It was noticed that most loaded cells 

tended to be at the outer part of the smooth muscle coat.

- Solutions were always changed by two different syringes 

(one for sucking bath content and the other for introducing the 

new solution), this took 30-50 seconds to be completed.

- Each solution was kept in place for at least 5 m inutes.

Propionate and L -lactate were washed out for 5 m inutes and

N H 4 CI for 10 minutes.

- E xperim ental solutions were not introduced follow ing

control ones until two successive ratios of F1/F2 were almost the 

same to ensure steadiness.

Depending on how long it took to change solutions in the 

bath, the firs t reading was taken w ithin 30-50 seconds of 

introducing a new solution, then subsequent readings were taken 

every m inute from the start of solution application. L ight was 

com pletely blocked by black filter between readings to minimize 

the rate of dye bleaching.

- As the energy incident on the specimen was much weaker 

at 350 than 380nM, photometer sensitivity was always set at lOx 

for FI readings and turned down to lx  for all F2 measurements.
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Figure  48: Fura-2  loaded rat tail prepara t ions .  A: Un loaded  ring
prepara tion.  B: The same prepara tion as A, but af ter incubat ion wi th fura- 
2, note the brighter  areas in the outer  part o f  the muscle tunica.  C: Loaded 
ring prepara t ion  wi thout  control ,  note the increase  in br ightness  towards  
the ou ter  mus cle  coat.  In all three prepara t ions  the z ig  zag br ight  area 
towards  the lumen (L) represent  the internal e las tic lamina.  D & E: Two 
di f f e rent  long i tu d inal  p repa ra t i ons  (vesse ls  on h y p o d e r m ic )  loaded  wi th 
fura-2,  note  the h ighly  br ight  spind le  shaped s t reakes  which are most

probably smooth muscle cells loaded with fura-2.
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Fura-2 acid Calibration:

The resultant of the hydrolysis of fura-2 AM is the calcium 

sensitive fluorescent dye fura-2 acid. Being inside the cells its 

fluorescence changes would indicate  correspondent changes in

in trace llu lar calcium . To quantify  these arb itrary  readings, a

calibration of fura-2 acid fluorescence (R) against known calcium 

concentrations were carried out on a constan t volum e of all 

so lu tions.

A scratch was made on a slide. Sufficient quantity  to

imm erse lens-front was placed on this slide, and the upper cut, 

indicated by top edges of the scratch, was focused under the 

m icroscope. The slide and the objective lens were washed and

dried three times with the new experim ental solution, to make 

sure that no fura - 2  or calcium  had been left on the glass after 

previous solution.

Analysis o f  the results:

All readings at 350nM are designated F I , and those of 

380nM  are called F2. The ratio F1/F2 (R) was calculated and 

recorded following every available pair of readings. The computer 

p rogram  was so w ritten  as to su b trac t the ap p ro p ria te  

autofluorescence readings before giving values of F I , F2, and R 

from all biological preparations.
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Relative ratios:

All plots represent changes in relative ratios against time. 

The ratios of readings in each experim ental solution at different 

times are com pared to controls which are taken as 1. The control 

ratio is the steady F1/F2 in normal Ringer's ju s t before applying 

the experim ental solution.

Calculation of  free intracellular Calcium rCa2+lj:

The form ula  [Ca2  + ] = K d ( R - R min / Rmax-R)(Sf2 /Sb2) 

(Grynkiewicz et al., 1985 ), was used to calculate [Ca^+ ]p w here  

R= ratio at the unknown calcium level

Rmin-  ratio at nominally 0 -calcium 

R max= ratio at saturation level 

S f2 = free dye measured at wavelength 380nM 

S b2= Calcium-bound dye at 380nM.

K d= dissociation constant.

Calculations have been made for control solution and for the 

most extrem e displacement of R from control values, produced by 

a given experim en tal solution. In p rop ionate  and L -lac ta te  

solutions extrem e displacem ents (upwards) were usually achieved 

by the third minute of application, and NH 4 CI w ashout usually  

achieved the greatest R within 2  minutes. On NH 4 CI application 

the lowest R was obtained within the first minute.
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R e s u l t s :

In the firs t few  experim ents preparations were studied 

directly after the fura-2 AM had been rinsed away: fluorescence, 

however, was too weak for cleaf  results. Then, follow ing other 

people who have worked with vascular sm ooth m uscle tissue 

(Reynolds & Dubyak, 1986, Berk et al., 1987) I adopted the 

procedure of continued incubation of my preparations at body 

tem perature, for a tim e equal to approxim ately half the initial 

period of loading, after removal of the fura-2 AM solution. The 

tissues were loaded well by ' this method and vascular smooth 

muscle cells could be visualized as streaks of spindle shaped cells 

with green fluorescence (as shown in figure 48). As the post 

loading w arm  incubation  seem s only to have been found 

necessary by a few workers (though all of them were using 

vascular smooth muscle), it seemed wise to make sure that the 

improved loading with fura - 2  was not due to different batches of 

fura - 2  or possibly different animals, so two further checks were 

carried out. First, the preparation was taken straight after fura-2 

AM loading to the fluorescent microscope (with no post-loading 

warm ing), where no fura-2 -loaded vascular smooth m uscle cells 

could be visualized, however taking the same preparation quickly 

back to the warm bath for post-loading warming produced the



view of fura-2 loaded vascular smooth muscle cells. Second, two 

preparations from the same animal were loaded with the same

fura-2 AM batch, then one of them was kept at 37°C for post­

loading warming and the other was kept for the same period at

room  tem perature; fluorescence m icroscopic exam ination of both 

p reparations revealed  that only the firs t (w ith post-load ing  

w arm ing) showed the streaks of fura-2 AM loaded vascular 

smooth muscle cells while the other had no sign of them.

Fura-2 acid Calibration curve:

Fluorescence of IjiM  fura - 2  acid was measured against six 

known calcium  concentrations. Figure 49 shows the shape of the 

resultant curve obtained by plotting pCa against R for the six 

concentrations applied. From the curve, fura-2 acid in the first 

part, up to lOOnM calcium , was of low sensitivity to calcium . It 

was most sensitive to changes in calcium  concentrations in the 

region  100-600nM  (the steep part o f the curve), then its

sensitivity went down between 600nM and 30pM . Above 30 |iM  

the response was almost saturated.

The values obtained  from  the p lo t o f the d iffe ren t 

param eters in the formula used to calculate calcium  (page 178) 

are obtained from the plot, kd=200nM , Rmin= *57, Sf2 /S b 2 = 5 -7 8 ,

Rmax=6.15.
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Figure 49 : Fura-2 calibration curve, fluorescence ratio (R) of lp.M 
fura-2 acid plotted against pCa. Virtual saturation was reached after 0.03mM 
Calcium.

Sequence of  work:

Experiments were designed in the following order :

1- The sensitivity of the method utilized was first checked 

by m easuring the fluorescence changes produced by applying 

d ifferen t concentra tions of noradrenalin  (NA ). Separate tone 

experiments were carried out on more distal preparations of the 

same artery to provide comparison between tone changes and R 

read in g s.

2- After passing the previous test, our set up deserved to be 

used to provide, for the first time, results on the effect of pHj on
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[ C a + 2 ] j .  Three salts were used to change [ p H ] j ,  namely propionate, 

L-lactate, and NH 4 CI. All salts were applied in both 0 and 2jiM NA 

m edia. Tone resu lts could  only be ob tained  for activated  

p re p a ra tio n s .

3- Calculations of intracellular calcium  concentrations in all 

previous procedures are provided at the end of this section.

Descriptions of these stages follow.

Noradrenal in  concentration resp onse :

N oradrenalin  was applied in three concentrations, 2.10"7, 

2.1 O'6, and 2.10 '5. All produced an elevation of R. The increase in 

ratio was in m onotonic relation with the range of noradrenalin 

concentration used (figure 50a), however the difference between 

ratios at 2.1 O' 6  and those at 2.1 O' 5 was not as great as that 

betw een 2.1 O' 7  and 2 .10 '6. Tone increased in the same direction 

as fluorescence ratios (figure 50b). The maximum ratio at each 

concentration  was reached before the end of the 5 m inutes 

application, often within 2  m inutes, and thereafter ratios went 

down gradually  over the subsequent three m inutes. Sometimes 

biphasic ratio changes took place, where the first peak occurred 

within the first minute then ratio went down by the next minute, 

follow ed by the second peak at the subsequent m inute (third 

minute), and the ratio went down thereafter.
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Figure 50A and B: Pooled results for the rat tail artery. A: Peak 
fluorescence plotted, represented relative to fluorescence with 0-NA, 
plotted against noradrenalin concentration. B: Control tone results for A. 
All displacements from unity are highly significant (p<0.01), unity is tone 
or fluorescence with 0-NA.

Organic salts and NH^CI with 0-NA throughout:

The tone of the rat tail artery was not responsive to NH4 C I, 

propionate, and L-lactate, w ithout NA activation, therefore in this 

section no tone results can be shown.
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30mM N H i Cl:

A pplica tion  of 30m M  N H 4 CI produced obvious and 

significant decrease in fluorescence ratios in the first minute, then 

ratios recovered, during application, back towards baseline ratio, 

and occasionally  overshoot occurred. Subsequent w ashout of 

N H 4 CI produced great increase in ratios occurring within the first 

two minutes of washout, then ratios went down toward control 

ones over the next 8  minutes, though they often rem ained 

somewhat elevated even by the end of the ten minutes washout 

(figure 51a). In one pulse (not shown) transient elevation of ratio, 

within the first 30 seconds, was produced by NH 4 CI application, 

then the ratio behaved as described above over the whole of the 

remaining application and washout period.

(n=3)1.2 -

«o 30-NH4CI
<->co
0C
©> 1.0 -

©
©QC

0.8
2 0 2 4 6 8 10 12 14 16

Time (mins)

Figure 51a: Pooled results of the fluorescence ratio displacements due 
to 30mM NH4 CI application and washout with 0-NA. *=p<0.1, **=p<0.05.
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AflinM L - lacta te :

L-lactate applied in 0-NA produced obvious elevation of 

fluorescence ratios starting within the first minute and peaking on 

the third minute. Nevertheless L-lactate produced the least ratio 

elevation of the three salt applications/withdrawals. Washout of 

the L-lactate solution with normal R in g e r 's  took the ratios down 

towards the baseline value (unity), however the ratio stayed well 

above this baseline even at the end of the five minutes washout 

period (figure 51b).

(n=4)

CO
o
CO

1.0 -o>
«;
oCC 0.9-
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0.8
122 4 6 8 102 0

Time (mins)

Figure 51b: Fluorescence ratio changes produced by L-lactate
treatment in 0-NA media. **=p<0.01.
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40mM propionate:

40mM propionate behaved much like the L-lactate, except 

that peak ratios were attained on the average at the fifth minute 

(figure 51c). In the absence of- NA activation application of 

propionate produced the second highest elevation of ratios, after 

N H 4 CI washout.

(n=4)

COo
«0k .

0>
♦*JB
0CC 1.0 -

40-PROPIONATE
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4 8 122 6 102 0

Tim e (m ins)

Figure 51c: Pooled results o f the effect o f  40mm propionate on 
fluorescence ratios. **=p<0 .0 1 .
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O rgan ic  salts  and N H 4 CI with 2 p M  NA a c t iv a t io n  

throughout :

The effect of the three treatments was qualitatively the 

same as those reported in the previous section (0-NA) ; however 

all changes were enhanced by the N A -ac tivation . For all 

treatments control tone experiments were carried out on some of 

the vessels.

40mM propionate:

P ro p io n a te  now p roduced  the la rg e s t  e leva tio n  of 

fluorescence ratios among the three salts. On its application the 

ratios went up steeply within the first minute and peaked usually 

by the third. W ashout of propionate took the ratios down; 

however, as in 0-NA, ratios stayed above baseline ones even by 

the end of the 5 minutes washout (figure 52a).

Control tone results were qualitatively  the same as the 

results obtained in the previous part (chapter 3). The maximum 

rela tive  pressure attained was much higher than the average 

maximum relative fluorescence ratio reached, however both peaks 

occurred at the same minute (minute 3) (figure 52b). The effect of 

washout of propionate was also in the same direction for both 

fluorescence ratios and tone ; however the tone undershot the 

pre-propionate level by the fifth minute o f washout, unlike the
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fluorescence ratios (figures 52a & b).

* *

1.5-1 (n=7)

COo 1. 0 -

aV.

©> 40-propionate
a
©

DC

0.5-

0.0
2 20 4 6 8 10 12

Time (mins)

Figure 52a : Effect of 40mM propionate on fluorescence ratios of the 
fura-2-2 loaded rat tail artery, under continuous activation with 2p.M NA.
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Figure 52b : Control tone results for above plot with the same NA 
activation (2p.M). Both plots are similar in shape; but note the undershoot
by the end of washout period in the tone plot.
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M m M  L-lactate:

L-lactate application produced the next highest elevation of 

fluorescence ratios amongst the three salts. Ratios went up steeply 

in the first minute of salt application, and continued to go up less 

rapidly over the next two minutes, then unlike the propionate

ratios, went up faster over the last two minutes of application.

Subsequent washout of L-lactate decreased the relative ratios fast 

in the first two minutes, and much slower over the remaining 

three minutes of washout, however the fluorescence ratios stayed 

well above baseline ones even by the end of washout period 

(figure 53a).

Tone results obtained with L-lactate were on the whole in 

the same direction as the fluorescence ones. H ow ever two 

discrepancies occurred. First the tone peaked at the third minute

of application. Second, the washout of the salt produced clear

undershoot of the tone by the fifth minute (figure 53b).
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Figure 53a: Pooled results o f the effect o f 40mM L-lactate on
fluorescence ratios with 2p.M NA activation. Compare to tone results below.
**=p<0 .0 1 , *=p<0 .1 .
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Figure 53b: Control tone results for figure 53a.
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3QmM NH/jCl:

N H 4 CI application produced a fast decrease in fluorescence 

ratios, usually minimum value was attained within the first 30 

seconds and never after the first minute. The decrease in ratios 

here was more than the one attained with NH 4 CI in 0-NA. Ratios 

recovered back towards baseline ones over the subsequent 4 

minutes of NH 4 CI application, but, unlike 0-NA results, overshoot 

never occurred. Washout of NH 4 CI produced a rapid increase in 

ratios, peaking within 1 - 2  minutes and thereafter ratios went 

down to be almost on the baseline by the tenth minute of washout 

(figure 54a).

Control tone results were in the same direction as the 

fluorescence ratio ones, however the magnitudes of both the 

decrease in tone on application and increase of it on washout 

were larger than those of the ratios (figures 54a&b). In addition, 

the tone changes were slower than the ratio ones, minimum tone 

was never reached w ithin  30 seconds, as minim um  ratio  

sometimes was, rather usually by the first 2 minutes. As well, 

maximum washout tones were not attained until two minutes 

elapsed. Because ratio measurements could not always be taken 

before one minute these differences are not shown in the average 

plot results, but are illustrated in one example of original traces
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(figures 55a&b).
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Figure 54a: Effect of 30mM NH4 CI on the fluorescence ratios o f the
rat tail artery loaded with fura-2 and activated with 2pM NA. Compare with 
tone results below. **p<0 .0 1 . >
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Figure 54b : Control tone results for figure 7a. **=p<0.01.
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Figure 55a: Plot of original fluorescence ratios produced by one
NH4C1 pulse. Minimum ratio on application was reached within 30 seconds, 
and maximum washout ratio was attained by the first one minute. Compare 
to original tone trace below.
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Figure 55b: Original trace of control tone results for figure 54a. Note 
that minimum tone on application was reached after one minute while the 
maximum washout tone was attained by three minutes.
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Calculated intracellular Calcium TCa2 + Iji

Calculations were carried out using the formula described in 

the methods (page 174).

The dissociation  constant (K d) o b t a i n e d  from the fura-2 

calibration curve presented in a previous subsection, was 200nM. 

This value is not in close agreement with the value of 135nM 

reported by the discoverers of the dye (Grynkiewicz et al., 1985), 

I therefore made calculations of intracellular free calcium [Ca^+ ]j 

using both values for k^. Table 17 shows the different [Ca^+ ]j 

estimates compared to the relative tone and fluorescence ratios 

(R) ob ta ined  by applying the various treatments in my work. 

Clearly , for the three salts, propionate applied to NA activated 

vessels produced the highest elevation in calculated [Ca^+ ]j a n d  

fluorescence ratios as well as in relative tone, followed by L- 

lactate and then by NH4C1 washout. Baseline [Ca^+ ]j was found to 

be on the average between 82-121 nM. All three salts produced 

qualitatively the same changes in [Ca^ + ]j with and without NA 

activation, though quantitatively with NA activation [Ca^+jj was 

altered much more (i.e proportionately as well as arithmetically 

greater) than with no activation.
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TREATMENT R
CALCIUM (nM)  

K d = 2 0 0

C A LC IU M (n M )  

K d = 1 3 5

RELATIVE
TONE

0-NA  
2.10-7 NA

1.1
1 . 7 8

121
3 2 0

8 2
2 1 6

1.0
1 . 5 3

2.10-6 NA
2.10-5 NA

1 . 9 5

2 . 0 5

3 7 9 . /

4 1 7

2 5 7

282

3 . 2 3

4.53

0-NA 1.1 121 8 2 1.00

NH4CL/0NA
APPLICATION 1 . 0 8 1 1 6 7 9 1.00

NH4CL/0-NA
WASHOUT 1 . 3 9 1 9 9 1 3 4 1.00

PROPIONATE/
0-NA 1 . 2 8 1 6 9 1 1 4 1.00

L-LACTATE/
0-NA

1 . 1 3 1 2 9 8 7 1.00

2.10-6 NA 1 . 9 5 3 7 9 2 5 7 3 . 2 3 .

NH4CL/2 UM-NA 
APPLICATION

1 . 5 8 2 5 5 1 7 2 2 . 5 2

NH4CL/2 UM-NA 
WASHOUT

2.11 4 4 0 2 9 7 4 . 9 4

PROPIONATE/ 
2 UM NA

2 . 9 7 8 7 2 5 8 9 6 . 5 6

L-LACTATE/ 
2 UM-NA

2.8 7 7 0 5 1 9 5 . 5 6

Table 17: First part of the data represents NA effect on nonactivated vessels. 
The second part concerns the effect of the three experimental salts shown on 
nonactivated vessels. The last part (lowest in the table) data is on the effect of the 
same salts on NA activated preparations. All tone are expressed relative to 
unactivated value, not just to prepulse value.
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D i s c u s s i o n

P ost- load ing  w ar m in g :

Post loading warming was essential to obtain appreciable 

fluorescence readings from fura-2 loaded preparations. This 

method was used by several researchers on vascular smooth 

muscle (v.s.m), working with fura-2 AM (Berk et al., 1987, 

Reynolds & Dubyak, 1986), and with quin-2 AM (Reynolds & 

Dubyak, 1985). However, this post-loading warming seems to be 

unnecessary in other tissues, e.g. skeletal muscle (Iaizzo et al., 

1989), and nervous tissue (Drapeau & Nachshen, 1988). Possibly 

it is because of its lower metabolic rate that v.s.m requires be 

kept longer at warm temperature after removal from the dye- 

bath to achieve complete hydrolysis of membrane-permeant ester 

to the impermeant acid.

Values of  fCa2 +1;:

Saturation of fura-2 with calcium was achieved at the 

concentration of 0.03mM. This is consistent with the original 

results obtained by the discoverers of this dye (Grynkiewicz et al., 

1985). Calculations of in tracellu lar calcium  depend on the 

assumption that fura- 2  K j  intracellularly will be equal to the one 

obtained from the calibration curve. This assumption is not 100%
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true because the types and concentrations of cations inside the

cells are different from the ones used in my calibration solution

and these have been found to affect fura - 2  value to some 

extent (G rynkiew icz et al., 1985). However, most probably the

magnitude by which would vary lies between the two values 

used for [Ca^+ ]j calculation in my results.

Baseline  [C a^+ ]j was found to be around lOOnM in the rat 

tail arterial smooth muscle, which is the same figure found in 

other vascular smooth muscle cells; e.g. cultured rat aortic cells 

(Smith et al., 1989).

NA increased the measured value of cytosolic free calcium in 

a c o n c e n tra t io n  dependent manner, which indicates that the 

m etho d  u sed  is responding to calcium changes in the right 

d irec tion .

F u n d a m e n ta l  f in d in g s :

The results clearly show that in trace llu lar acidification 

achieved by NH 4 CI washout, propionate and L-lactate applications 

produced elevation in intracellular calcium. On the other hand, 

intracellular alkalinity produced by NH 4 CI application lowered 

c y to p la sm ic  ca lc ium . Evidence for this conclusion could be 

summarized in the following points:

1 - All three procedures (propionate, L-lactate, and NH 4 C I
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w ashout) p roduced  e levation  of R, and the only common

consequence of these interventions is intracellular acidification.

2-The fluorescence changes are in close agreement with tone 

measurements in my results, which in turn were- found to be in

close relation to pHj changes measured by NMR in rabbit ear 

artery (Spurway and Wray, 1987), and by pH fluorescent dye

(BCECF) in rat mesenteric artery (Aalkjaer & Mulvany 1988).

3- The sequence of R elevation produced by the three 

procedures is the same as that in tone increment (i.e: propionate> 

L-lactate> N H 4 CI washout, in both tone and R measurements on 

N A -activated preparations), which is easily explicable by the

greater effect on p H j  by the s a l t ,o f  the weaker acid (propionate) 

[see discussion of chapter 3].

Displacements in R produced by the three salts were in the 

same direction in all preparations, whether NA -activated or 

nonactivated, which points to the activation-independence of the 

fundam enta l p H j  effect on calcium. The results are compatible 

with the proposed theory that H +  and C a^+ share  com m on  

buffering sites (Meech & Thomas, 1977; Bers & Ellis, 1982; 

Ighoroje, 1987). If that is true, then higher [ H + ] j  would produce 

greater [C a^+ ]j and so greater R. A detail compatible with this was 

that propionate, in both 0- & 2pM-NA, produced greater R than L-
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lactate which is a salt of a stronger acid and would therefore be 

expected to penetrate the cells less readily (Bamosa & Spurway, 

1987).

The corre la tion  between [Ca^ + ]j changes and tone was 

c le a re s t  w ith  N H 4 CI trea tm en ts  b ecau se  changes w ere  

bidirectional. In addition, in many pulses, fluorescence ratios were 

changing faster than tone; since a cause must precede an effect, 

this could be seen as further evidence that pHj is affecting tone 

via  ca lc ium . H ow ever, this in te rp re ta tion  should be taken 

cautiously, because it is possible that the preparation used for 

calcium measurements was more like rings -i.e more responsive 

to the membrane potential effect of NH4 + . In this case it would, as 

argued earlier, be expected to respond to NH 4 CI application and 

washout faster than the perfused preparation (see results and 

discussion of chapter two).

C alm odul in  threshold?

Calculated levels o f[C a^+ ]j show that, though significant 

changes from baseline calcium were produced by all treatments in 

0-NA, tone did not change (table 17). This suggests a threshold 

which calcium had to reach before tone could be affected. Possibly 

calmodulin requires a certain level of calcium to be activated. It 

has been proposed that this level is > 10'^M  (Webb & Bohr 1981);
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from my results it could be deduced that this threshold is 

>200nM.

Indications of  N H ^ + effect on E m :

Several parts of the results could be treated together, as 

giving further clues to an additional effect of NH 4 CI on vascular 

tone other than pH one. The NH 4 CI pulse in 0-NA, which in one 

instance produced an elevation of R within the first 30 seconds of 

application without any preceding decrease in R, "the early 

transient upswing", could be well correlated to the tone results 

ob ta ined  from  low or nonac tiva ted  r ing s  and perfusion  

preparations (chapter 2). With 0-NA, NH 4 CI washout produced the 

greatest R amongst the three salts used in my experiments; in 

addition recovery of R during NH 4 CI application was faster than 

that of NA activated preparations and the "later, sustained 

overshoot" occurred more such non-activated preparations. These 

observations are consistent with previous tone results. Together 

they help to support the concept that NH 4 CI has an effect on 

calcium and consequently on tone, which is additional to its pH} 

effect and becomes more evident with weakly or nonactivated 

preparations - namely a membrane potential effect.

Results of NH4 CI on activated preparations show less sign of 

such complications. On the other hand, it is encouraging to note
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that they are sim ilar to previously  reported  ones on sheep 

Purkinje fibers (Bers & Ellis, 1982).

M is m a tc h e s  b e tw e e n  tone  and TCa2 + 1} in activated  

p r e p a r a t i o n s :

Fluorescence ratios continued to go up from the third to the 

fifth minute of L-lactate application while tone did not. The reason 

for this mismatch between tone and ratios is not clear, however 

two causes could be thought of. First, it is biologically possible that 

L-lactate (being a physiological metabolite) could enter any of the 

calcium sequestrating sites, dissociate there and release protons 

which would then displace' calcium inside the store; if the calcium 

stayed there, the fluorescence effect would be independent of 

tone. However, both the implications - that fura-2 could enter 

stores, and that C a^+ ions would not leave them - might be less 

than  p ro b a b le .  S econ d , and perhaps m ore feas ib le , is 

desensitization of the myofilament to [Ca^+ ]j, which is reported to 

occur more in the rat tail artery than in other vessels ( McGrath et 

al., 1987). The question arises, how ever, what m echanism  

underlies desensitization?

The desensitization reported by McGrath et al. (1987) was 

thought to be due to calcium overload, as they have found that 

using low calcium in their solutions would delay very much the
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occurrence of this phenomenon. However, in my solutions I was 

using 1.5mM calcium; a concentration intermediate between those 

investigated by them; and, if there was overload, fura - 2  should 

show it. Another possible cause for the decreased sensitivity of 

myofilaments to [Ca^+ ]j is increase in cAMP (Bulbring and Tomita, 

1987).

A nother mismatch between tone and fluorescence ratios 

which occurred in many treatments, but most with L-lactate, was 

the still-elevated ratio by the end of washout period while tone 

was on the baseline or below it. Amongst possible causes for this 

are , e i th e r  ano ther  in s tance  of dec reased  sens it iv i ty  of 

m yofilam ents, or as these mismatches were occurring in the 

washout period and more towards the ends of experiments, they 

could be due to a delay in the movement of the salts out of the 

cells. Delay in the salt efflux could be due to the preparation used. 

The vessel was fitted tight to the hypoderm ic so very few 

substances could go through the normal direction (from the lumen 

to the vessel wall) rather most of them will inter the cells through 

the adventitia. L-lactate transport, being carrier mediated (see 

chapter three), could be affected more than the movement of the 

other two diffusible salts; and this might explain why both 

m ism atches, application and w ashout, occurred  more with 

L-lactate.
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Chapter five

General Discussion

Generality of pH  ̂ effect on vascular tone:

N H 4 CI application produced dilatation and its washout 

produced constriction in representative specimens of each of 19 

vessels, belonging to three species of mammal, studied in different 

preparations and modes of activation. From this it could be 

deduced that in tracellu lar alkalin ity  produces d ila ta tion  and 

intracellular acidity produces constriction in mammalian vascular 

tissue. However, this generalization would be incomplete if pHj 

variations were produced only by one substance, as it is possible 

that tone changes were due to NH4 CI per-se. The results with 9-10 

organic salts applied to the rabbit ear and rat tail preparations as 

well as those applied to internal vessels show that, in keeping 

with the effect of intracellular acidity produced by NH 4 C 1 

washout, all weak organic salts in all preparations tested produced 

constrictions. Earlier experiments using CO 2 / H C O 3 " systems 

(quoted in introduction) a lso 'poin ted  the same way.

W hen studying the effect o f  any phenom enon (e.g. 

intracellular acidity) on vascular tone; the substance used to
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achieve this purpose should be carefully chosen. When this 

substance possesses another effect on cells that could affect tone, 

the result will look complicated and might be masked. From the 

results and discussion of chapter two it seems clear that NH 4 CI 

produces, in addition to its pHj effects, a membrane depolarization 

phenomenon. Two examples in the literature m ight serve to 

emphasize this point. The first of these is on the use of NH 4 CI to 

vary pHj.* Danthuluri and Deth (1989) found that NH 4 C I  

applica tion  with no activa tion  to the ra t  aorta  produced 

contraction but when the vessel was precontracted it produced 

transient relaxation. The second example is the report by Aalkjaer 

and M ulvany (1988) that ra t m esenteric resistance  vessels, 

activated with 125K, dilated when the cytoplasm was acidified by 

altering CO2  concentration. This too could be an example of a tone 

response which is not due to the phenomenon which it was the 

intention to investigate; because CO2  has been reported to possess 

a significant hyperpolarizing influence on the cell membrane of 

the rat middle cerebral artery (Harder, 1982a).
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Physio log ica l  and pathophysio log ica l  s ign if ican ce  of  the 

w ork:

The basic physiological significance of my work is that it 

clearly shows that intracellular pH changes are affecting tone in 

the opposite direction to extracellular ones in many vascular 

preparations. My work could be considered of relevance to any 

situation that will lead to changes in acid/base status in the blood.

T he  m ost ab u n d an t p h y s io lo g ic a l  s i tu a t io n  w here  

d isturbance of acid-base balance occurs is exercise. From the 

result and discussion of chapter 3, it could be recalled here that 

lactate  was the only salt which gave less constriction when 

applied at lower pH than its control NLR solution. Blood lactate can 

rise to lOmM during exercise (e.g. Freund et al., 1986), from 

which it may be deduced that lactate concentrations in the intra­

m uscular tissue fluids which bathe the adventitia l side of

muscular arterioles may attain peak values of at least 15mM

(Freund et al., 1989, and personal communication). If  these high 

concentration of lactate were to act more vasoconstrictory at acid 

pH than at neutral, it would tend to impair blood flow to

exercising tissue (by opposing the several d ila tor influences)

which is disadvantageous. Furthermore, if  it actually produces
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vasoconstriction, which it might do by remaining present within 

the v.s.m. when other (vasodilator) agents had dispersed, lactate 

could be the cause of muscle cramps occurring after the cessation 

of an intense exercise.

Not only is lactate increased during exercise but also 

ammonium. The appearance of ammonia during exercise is due to 

the deamination of adinosine 5’-monophosphate to inosine 5'- 

monophosphate and ammonia in muscle (Lowenstein, 1972). All 

ammonia will combine to protons in the blood to form ammonium 

ions. The level of human blood ammonium after exercise is 

reported to be 0.24mM in certain individuals (Dudley et al., 1983). 

Though this level is lower than the least concentration of 

ammonium studied in this thesis (2mM in the rabbit basilar and 

ear arteries), it presence still operates in the direction of 

producing dilatation.

It has been proposed that one adaptive advantage of the pHj 

effect described in this thesis is that of avoiding negative 

feedback of v.s.m.'s own metabolism on its ability to generate 

tone. In particular, intense constriction, e.g. of skin vessels during 

severe cold or hemorrhage, could not be m aintained if  pHj 

decrease caused dilatation (S.M.Jennett: personal communication 

to N.C.Spurway)
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Certain clinical and pathological findings in the literature

might have some correlation to the work reported in this thesis; 

and would certainly be worth investigating. Intracellular p H  of 

human erythrocytes was significantly lower in hypertensive than 

in norm otensive  sub jects , and when the same group of 

hypertensive patients were treated with antihypertensive drugs 

p H i  went back up to a value indistinguishable from normotensives 

(Resnick et al., 1987). The same authors also found that pHj was 

inversely related to experimental hypertension in rats. It is well 

documented in this thesis that lower p H j  induces vasoconstriction,

so the above finding could point to the possibility of a pHj

contribution to the pathophysiology of hypertension.

Interaction between pHj and hypertension could also be 

dem onstra ted  by the increase  incidence of hypertension  in 

diabetic subjects. Since insulin directly raises p H j  (Moore, 1979), it 

is thought that decreased insulin or insulin  resistance might 

predispose to a lowering of p H j  and therefore to an increased

[C a^+ ]j and vasoconstriction (Moore, 1986).

Mechanism of p H  ̂ effect on tone:

Results in the last chapter of this thesis showed clearly that 

p H j  affects intracellular calcium. Application of N H 4 C I ,  which is
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expected to raise pHj, lowered in trace llu la r  calcium ; while 

procedures expected to lower pHj (N H 4 CI washout and organic salt 

a p p l i c a t io n )  raised in tracellu lar calcium. The finding that an 

increase in intracellular calcium parallels the constriction induced 

by in trace llu la r  acid ity  is co ns is ten t  w ith the fac t that

pharmacologically induced contraction is always secondary to a

rise in [Ca^+ ]j (Bolton, 1979; Jones, 1981). On the other hand, the 

l itera ture  consensus is that relaxation can occur either by

reducing intracellular calcium or, in some cases, by interfering 

with the linkage between calcium and the contractile machinery 

(Rang and Dale, 1987). , My own results  also indicate that 

intracellular alkalinity produces relaxation of v.s.m principally, 

but perhaps not entirely, by decreasing its [Ca^+ ]j. However, two

questions have to be answered before we can conclude that the 

p H i  effect on tone is totally attributable to its effect on calcium; 

first, how is this calcium effect of pHj brought about?; and second,

is the pHj effect on tone purely [Ca^+ ]j -mediated?

How is the change in rCa^ + T[ brought about?

It has been shown that pHj effect is not controlled by neural

or endothelium  dependent mechanism s (Ighoroje, 1987). My
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results support the previous conclusion as to the non-involvement 

of nerves, as I have obtained basically the same results in various 

activators (physiological and otherwise) as well as in some non­

activated preparations; these findings, particularly the occurrence 

of the same fundam ental phenom ena in K -activated as in 

p h a rm aco lo g ica lly -ac t iv a ted  p repa ra tions , also  exclude  any 

possib ility  that p H j  effect might be on receptors. The non­

involvement of endothelium is supported by the finding, in the 

second chapter (results, section 1 ), that one basilar artery ring 

preparation was not responsive to ACh while it showed, like other 

preparations, dilatation on N H 4 C I  application.

p H  j effect on [Ca^ + ] j  is also unlikely to be mediated via 

membrane permeability and membrane potential. NH 4 CI effect 

was in the same direction in a wide range of substances that 

would be expected to m odify m em brane perm eability  and 

potential, e.g: K (different concentrations) and choline; sucrose, 

where over 90% of the total ions were displaced; permeant 

s tro ng ly  'ly o tro p ic ' (C am eron  and Spurw ay , 1985) and 

im perm eant very weakly lyotropic (PhS C ^) anions (Ighoroje, 

1987). P £ a is also unlikely to be part of the mechanism of pHj 

effect on tone because ^ C a  efflux was not measurably affected 

by p H j  (Ighoroje, 1987) and the basic response to p H j  was
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maintained in O-Ca solutions (Ighoroje, 1987; Furtado, personal 

com m unica tion).

Thus we can propose that perturbations of calcium are 

entirely  due to pHj effects upon in t r a c e l lu la r  sources and 

mechanisms. There are two known mechanisms by which calcium 

is released from stores; first phosphatidylinositol (PI) breakdown 

products (Michell, 1975; Berridge et al., 1983; Putney et al., 1983) 

and second, calcium induced calcium release. The first mechanism 

is receptor dependent so it is unlikely to be the mechanism of 

[C a ^  + ]j m a n ip u la t io n  by pHj. Previous workers have obtained 

differences in their preparation responses to NH 4 CI in K compared 

to N A -activation  (Aalkjaer and M ulvany, 1988), which they 

a ttr ibu ted  to some process ' coupled to inositide  hydrolysis. 

However, as mentioned before (discussion in chapter 2) their 

results were most probably due to the membrane potential effect 

of NH 4 + in their electrically active preparation. Calcium induced 

calcium release might be part of the underlying mechanism for 

the increase in [Ca^ + ]j when the cy top lasm  is turned acidic; 

however it can not explain the whole phase of [Ca^+ ]j response to 

p H j  changes. Relaxation to N H 4 CI app lica tion  ( in trace llu lar 

alkalinity) could be due to release of cyclic AMP. However, cAMP
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increase is known to be receptor dependent (Rang and Dale, 

1987), which makes it unlikely to be part of the mechanism by

which pH| increase relaxes vascular smooth muscle.

A more satisfactory alternative to the ideas collected above 

arises from the observation that C a ^ + uptake into S.R. intact 

vesicles is accompanied by ejection of protons (Mandeira, 1978). 

This was found to take place through a C a^+ /H + exchange directly 

m ediated  by the membrane-bound Ca-ATPase in the S.R. A 

theory could be proposed to explain the effect of pHj on [Ca^+ lj, if 

the above exchanger is assumed to function as a buffer for

protons, in such a way that calcium is released into the cytoplasm

when protons are high and calcium  uptake increases when 

protons are low. Therefore myosin light chain kinase (MLCK) 

would be activated, when protons are high, by increase in [Ca^+ ]| 

and hence in Ca-calmodulin; the kinase would then phosphorylate 

myosin and initiate cross-bridge turnover. Cross-bridge cycling 

will continue as long as Ca^+ is present, and tone will be elevated. 

When the protons are reduced, calcium level drops; then MLCK 

becomes inactive, and MLC phosphatase dephosphorylates myosin; 

therefore relaxation of the muscle follows (c.f. Hartshorne, 1982).
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The H+/C a^+ competition model:

A related, but sim pler and m ore com prehensive mechanism 

by which pHj could affect [Ca^ + ]- and m uscle tone has been 

suggested before (Spurw ay, personal com m unication; Ighoroje, 

1987). A schem atic representation  of this theory is shown in

figure 56; H+ could tend to displace calcium  from all intracellular 

b in d in g  s ite s  by s im p le  p h y s ic o -c h e m ic a l su b s titu tio n . 

D isplacem ent from calmodulin (in smooth m uscle) or troponin (in 

striated muscle) would ultim ately in both cases tend to decrease 

tone (number 1 in the figure); on the other hand, displacem ent ( 2  

in  the figure) from  in trace llu la r  sto res (e .g . m itochondria , 

sarcop lasm ic  reticu lum  (S .R .) and inner su rface  of p lasm a

membrane) would tend (3 in figure) to raise tone. Depending on

w hich of these two ca tegories of calc ium  d isp lacem ent is

dom inating, the effect of pHj decrease would be to weaken or

enhance force-output, respectively . As in trace llu lar acidification 

r e d u c e s  the force of contraction generated by in tact skeletal 

(Pannier et al., 1970; Curtin and Raw linson, 1984) and cardiac

(Pannier and Leusen, 1968; Allen and Orchard, 1983) fibers, the 

predom inant displacem ent of [C a^+ ]j in striated muscle would be 

considered to be from the troponin . The requirem ent for an

opposite effect to occur in v.s.m  is that one or both of the
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follow ing quantitative differences should apply:

a) That Ca^+ is less readily  displaced from  calm odulin than 

from  troponin in the pH -range concerned (or that sim ilar

displacem ent has less effect on force-production).

b) That Ca2+ is more readily displaced from the intracellular 

storage sites of v.s.m than from those of striated muscles.

My results with fura-2 indicate that [Ca^ + ]j is e levated  

during acidification of the v.s.m cytoplasm , implying that process 

1 in the diagram  is large, and perhaps predom inating , and 

th e re fo re  vascu lar tone i n c r e m e n t s  could be ju s t as fully

exp la ined  by this sim ple ^concept as s tria ted -m u sc le  force 

decrements. Completing the model, raising pHj would be predicted 

to act in the converse direction 'to  that just described. My results 

with fura-2 show that intracellular alkalinity produced by NH 4 CI 

application decreased [Ca^+ ]j.

A very recent finding by Allen, Lee and W esterblad (1989) 

re in fo rce  the point that the d ifference  betw een stria ted  and 

sm ooth m uscles are quantitative, not qualitative; they observed 

stronger A equorin signals '(im p ly ing  h igher [Ca^ + ]j) in toad

skeletal m uscle fibers in ternally  acid ified  by CO 2 . Thus the 

direction of [C a^+ ]j change was the same as in v.s.m., yet, as it
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regularly is in striated m uscle, force production was impaired.

Membrane

C y to p la s m

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

A c t i v a t i n g  
pr o te in  
( C a l m o d ­

ul in  or  
Troponin)

i / c  s t o r e s  (SR, m i t o c h o n d r i a  &c)

Figure 56: Schem atic rep resen ta tion  o f our m odel for

competition between intracellular (i/c) H+ and Ca^+ .

Our proposal is that: In striated  m uscles, process (1)

predominates, so acidification weakens contraction.

In smooth muscles, process (2) predom inates, so (3) exceeds 

( 1 ) and acidification enhances tone.
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Finally, therefore, let me sum m arize our group’s view of the 

p H j/C a ^ 4* interaction (and therefore the predom inant, if not sole, 

m echanism  of pH j/tone in teraction) in v.s.m .. The concise term 

"affinity" is now substituted for "tendency to bind/displace". The 

proposal is that H+ decrease the affinity of the stores as well as 

the calm odulin  for [Ca^ + ] j ,  but their effect in v.s.m. is always 

greater on the stores. Therefore when [H+ ]j is high [Ca^+ ]j w ill  

increase sufficiently  that [Ca-calm odulin] is also increased and 

tone is raised. On the other hand, when [H+ ]j is low the Ca^ + - 

affinity of both the stores and calmodulin will rise, but the effect 

on stores is stronger. T h e ' resultant change would be a decrease in 

[C a^+ ]j sufficient to produce relaxation.

Is the pHj effect purely rCa^ + l j -m ed ia ted?

In an attempt to answer this question a graph was plotted of

tone against log [Ca^ + ]j for both NA and organic salts and 

am m onium  results (figure 57).

Figure 57 shows that NH4 CI washout as well as p ro p io n a te  

and L-lactate application produced tone and calcium levels greater 

than did the highest NA concentration used (2.10"^M ). It would 

have been very desirable to obtain higher values for the NA plot
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to enable more comparison between pHj and NA -induced calcium 

and tone changes. The difficulty in obtaining such readings was 

due to the rapid decline in fura—2  fluorescence during the series of 

readings with higher NA concentrations. The available tim e did 

not allow to crack that problem . How ever, some clues to the 

m echanism  of pHj effect on tone could be drawn at least from the 

values of NH4 CI application compared to those of NA. At the same 

value of [Ca^+ ]*, N H 4 CI application has greater tone than expected 

from  the NA plot. This could be explained by e ither o f the 

follow ing:

1- In tracellu lar alkalinity  increases C a-affinity  of calm odulin. 

This possib ility  fits the theory proposed  in the previous 

subsec tion .

2- The increase in pHj produced by NH 4 CI application does not 

interfere with the level of DAG already present by the 2.10” ^- 

M NA activation. By contrast [DAG] falls and its enhancing 

effect on the binding of Ca^+ to calmodulin is diminished, when 

[NA] activation is reduced.

So the gap existing betw een the tone level of NH 4 C I  

application and that of the NA plot could be either due to higher 

affinity of calmodulin to calcium or inability of pHj to affect DAG 

or a combination of the two.
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The above argum ent supports our theory of pHj effect on 

tone. However, the other possibilities can not be ruled out and 

further research is required to clarify the mechanism of p H j  effect 

on tone. As a first step it will no doubt be possible, with more 

sensitive equipment and a stable light source, to extend the plot of 

receptor-activated  tone fu rther to the top right corner of the 

figure 57 plot, and see whether the acid-shifted points are below 

the pharm acological curve, in the same way as the alkali—shifted 

point is above it.

A  Propionate

L-lactateNH4C1 washout

4  -

NH4C1 ap p lica tio n

2.2 2 .4 2.6 3 .02.8

Log [Ca]

Figure 57: Log [Ca^ + J ..plotted against relative tone induced by NA
( □ , ■ )  and procedures to modify pHj (A ) in the rat tail artery. All values 
for pHj results were obtained with 2 jjlM NA activation - the equivalent point 
for unperturbed pHj is the filled square. Figures from table 17 of Chapter 
three Results.
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Future research:

Many question arise from the work presented in this thesis 

which deserve investigation in the future. My own interest, when 

I have the opportunity for further research, is likely to be in how 

far the basic description of pH j-sensitivity, given for norm al blood

vessels by Ighoroje (1987) and m yself, applies to vessels in 

various pathological conditions.

How ever, the discussion above w ould not be com pleted 

w ithout my listing some of the obvious further questions which 

present them selves concerning the m echanism s of the effects in 

normal vessels. Amongst these:

1- The proposed effect of NH4 CI on the membrane potential

should be confirm ed by m icroelectrode m easurem ent o f E m 

during NH4 CI pulses.

2- Absence of significant effect on E m during organic-salt 

pulses is assumed in the above account of how [Ca^+ ]- rises - this 

absence of Em should also be checked.

3- The theory proposed for pHj effect on tone needs further

investigations. One would be to check whether calmodulin affinity 

for calcium is affected by p H j  by measuring the release of calcium
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from isolated Ca-calmodulin as pH is decreased from 7.2 to 6.4.

4- Another would be to clarify the effect of pHj on other

intracellular messengers by measuring the changes in the levels of 

[D A G ]j, [cA M P]j, ...e tc . brought about in intact v.s.m . cells by

alkalinising and acidifying pulses.

5- If second-m essenger changes of this type are found it 

w o u ld  be n ecessa ry  to ch eck  w h e th e r  they  accoun ted  

quantitatively  for most or little  o f the difference between the 

pharm acolog ical tone/C a^+ curve and the pH-m odified one. Such 

checks w ould probab ly  be best c a rried  out using v.s.m . 

preparations perm eabilized by such agents as bee venom, which 

enable the sm all-m olecule constitution of the cytoplasm  to be 

controlled yet retain the contractile apparatus intact.

6 - The above experim ents are all fairly  sophisticated. No 

doubt all should, in the end, be done. There is, however, one 

sim ple group of experiments which I did not do, but consideration 

of Fig. 57 now reveals would have been worthwhile. It is to have 

repeated the organic-salt tone experim ents using K + -a c t iv a te d  

in stead  of N A -activated p reparations - and then run fura-2 

experim ents with the same solutions. Since the accepted view is 

that K + activation occurs w ithout sign ifican t second-m essenger 

changes, getting  q u a n t i t a t i v e l y  sim ila r tone changes and
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to n e /[C a ^ + ]j relations, in both K+ and NA activated preparations,

would strongly point to H+/C a ^ + competition on calmodulin as the 

im portan t cause of d ifference betw een the to n e /C a^ + curve at 

norm al pHj and the pHj-m odified one.

Perhaps the student who takes my place should start his 

work with that!

220



R e f e r e n c e s

A alkjaer, C. & M ulvany, M.J. (1988). E ffect o f changes in 
in tracellu lar pH on the con tractility  of rat resistance vessels. 
Prog. Biochem. Pharm acol. 23, 150-8.

A ick in , C.C. & Thom as, R.C. (1977). M icro-electrode
m easurem ent of the in tracellu lar pH and buffering pow er of 
mouse solues muscle fibers. J. Physiol. 267 , 791-810.

Allen, D. G., Lee, J. A.& W esterblad, H.I. (1989). Intracellular 
calcium  & tension during fatigue in isolated single muscle fiber 
from Xenopus laevis. J. Physiol. 4 15 , 433-458.

Allen, D.G.& Orchard, C.H. (1983). Effects of changes of pH on 
in tra c e llu la r  C a ^ + transients in m am m alian cardiac m uscle. 
J. Physiol. 335. 5 5 5 -5 6 7 .

A lphern , J.R . (1985). M echanishi of baso lateral m em brane 
H + / 0 H "/H C 0 3 '  transport d a  the rat proximal convoluted tubule. 

A sodium -coupled electrogenic process. J. Gen. Physiol. 8 6 , 
6 1 3 -6 3 6 .

Andersson, K., Brandt, L., H indfelt, B. & Ljunggren, B. (1981). 
C erebrovascular effects of am m onia in vitro. A cta. Physiol. 
Scand. 113 , 349-353.

Arkle, S., Gillespie, J.I. & Greenwell, J.R. (1988). Interactions 
betw een in tracellu lar pH and calcium  in single iso lated  acini 
from  rat paro tid  and m ouse subm andibu lar sa livary  gland. 
J. Physiol. 400, 31P.

Bamosa, A.O & Spurway, N.'C. (1988). Neutral salts of organic 
acids constrict blood vessels. Med. Sci. Res. 16, 469-470.

Bamosa, A.O, Ighoroje, A.D. & Spurway, N.C. (1987). Tone 
overshoot during recovery of isolated (rabbit and rat) vascular

2 2  1



preparations from am m onium -induced dilations. J. Physiol. 
3 9 2 , 47P.

Berk, B.C., Brock, T .A ., G im brone, M.A. & Alexander, R.W.
(1987). E arly agonist-m ediated  ionic events in cultured
vascular smooth muscle cells. J. Biol. Chem. 262 , 5065-5072.

Berridge, M.J., Dawson, R.M., Downes, C.P., Heslop, J.P. & Irvine, 
R.F. (1983). Changes in the levels of inositol phosphates after 
agonist-dependent hydrolysis of m em brane phosphoinositides. 
Biochem. J. 212 , 473-82.

Bers, D. & Ellis, D. (1982). Intracellular calcium and sodium
activity in sheep heart Purkinje fibers: effects of changes of 
external sodium  and in tracellu lar pH. Pflugers. Arch.
Eur.J.Physiol. 393 , 171-178.

Bolton, T.B. (1979). Mechanisms of action of neurotransmitters 
and other substances on smooth muscle. Physiol. Rev. 5 9 ,
6 0 6 -7 1 8 .

Boron, W.F. & Boulpaep, E.L. (1980). Intracellular pH in
iso la ted , perfused  proxim al tubu les of am phibian kidney. 
Federation Proc. 39 , 713.

Boron, W .F. & Boulpaep, E.L. (1983). In tracellu lar pH
regulation in the renal proxim al tubule of the salam ander. 
Basolateral HCO 3 '  transport. J. Gen. Physiol. 81, 53-91.

Boron, W.F. & De Weer, P. (1976). Intracellular pH transients 
in squid giant axons caused by CO 2 , NH 3  and m etabo lic
inhibitors. J. Gen. Physiol. 67, 91-112.

Boron, W .F. (1977). In tracellu lar pH transients in giant
barnacle muscle fibers. Am.J.Physiol. 233, C61-C73.

2 2 2



Bulbring, E., Tomita, T. (1987). Catecholam ines action on
smooth muscle. Phamacol. Rev. 39 , (1), 49-96.

Cameron, E. & Spurway, N.C. (1985). Effects of foreign anions 
upon vascu lar responses o f the iso lated  rabb it ear to pH 
changes. J. Physiol. 367 , 45P.

Case, R.B. & Greenberg, H .(1976). The response of canine 
coronary vascular resistance to local alteration in coronary
arterial P C 0 2 - Circulation. Res. 39, 558-566.

Casteels, R ,(1981). M em brane potential in smooth muscle 
cells. In: Smooth muscle; an assessment of current knowledge.
(Eds. Bulbring, E., Brading, A.F., Jones, A.W .,& Tomita, T.). 
London, Edward Arnold: pp. 105-126.

Casteels, R., Kitamura, K., Kruiyama, H. & Suzuki, H. (1977). 
The membrane properties of the smooth muscle cells of rabbit 
main pulmonary artery. J. JPhysiol. London. 271 , 41-61.

Cohen, R.D., Illes, R.A., Barnett, D., Howell, M.E.D & Strunin, J.M. 
(1971). The effect of changes in lactate uptake upon the
intracellular pH of the perfused rat liver. Clin. Sci. 4 1 ,
1 5 9 -1 7 0 .

Curtin, N.A. & Rawlinson, S.R. (1984). Effects of carbon dioxide 
on force during shortening of isolated m uscle from  frog. 
J. Physiol. 354, 70P.

Danthuluri, N. R. & Deth, R. C.(1989). Effect of intracellular 
a lka lin iza tion  on resting & agonist-induced  vascu lar tone. 
Am. J. Physiol.256 , 867-875.

D anthuluri, N.R., Deth, R.C. (1984). Phorbol ester-induced 
con trac tion  of arteria l sm ooth m uscle and inh ib ition  of 
a-adrenergic response. Biochem. Biophys. Res. Commun. 125, 
1 1 0 3 -9 .

2 2 3



De Hemptinne, A., M arrannes, R. & Vanheel, B. (1983). The 
influence of organic acids on intracellular pH. Am. J. Physiol. 
245, C178-C183.

Deuticke, B., Rickert, I. & Beyer (1978). Stereospecific, SH- 
dependent tran sfe r o f lac ta te  in m am m alian ery throcy tes. 
Biochim. Biophys. Acta. 507 , 137-155.

Dietmer, J.W. & Schlue, W .R. (1989). An inwardly directed 
e lectrogenic  sod ium -b icarbonate  co -tran spo rt in leech glial 
cells. J. Physiol. 411 , 179-194.

Drapeau, P. & Nachshen, D.A. (1988). Effects of lowering
extracellu lar and cytosolic pH on calcium  fluxes, cytosolic 
calcium  levels, and transm itter release  in presynaptic nerve 
term inals isolated from rat brain. J. Gen. Physiol. 9 1 ,
3 0 5 -3 1 5 .

Dudley, G.A., Staron, R.S., M urray, M .F., Hagerman, F.C. &
Luginbuhl, A. (1983). M uscle fiber composition and blood 
ammonia levels after intense exercise in humans. J. Appl. 
Physiol. 54 (2), 582-586.

Duling, B. R.(1977). Oxygen, carbon dioxide, and hhdrogen ion 
as local factors causing vasodilatation. In:  M echanism s of 
vasodilatation . (Eds. V anhoutte, P .M .,&  Leusen, I.). B asel, 
Karger: pp. 193-199.

Freud, H., et al. (1989)... Poster at the fifth international 
conference on m echanism s of vasod ila ta tion . S trasbourg, 
France. July 6 -8 , 1989.

Freund, H., Oyono-Enguelle, S., Heitz, A., Marbach, J., Ott, C., 
Zouloumain, P. & Lampert, E. (1986). W ork rate-dependent

2 2 4



lactate kinetics after exercise in humans. J. Appl. Physiol. 61  
(3), 932-939.

Furtado, M.R. (1987). Effects of NH 4 CI on the contractility of 
isolated vascular smooth muscle. Life Sciences 41 , 95-102.

Garnier, D. & Roulet, M.J. (1986). M echanical effects of 
changing pH in the smooth muscle o f ductus arteriosus. J. 
Physiol. 377 , 121P.

Gaskell, W. H.(1880). On the tonicity o f heart and blood 
vessels. J. Physiol. 3, 48-75.

Gillespie, J.I. & Greenwell, J.R. (1988). Changes in intracellular
pH and pH regulating mechanisms in somitic cells of the early 
chick embryo: A study using fluorescent pH -sensitive dye. J. 
Physiol. 405 , 385-395.

Gillespie, J.I., Greenwell, J,R , & Scratcherd, T. (1988). The 
actions of H+ on in tracellu lar calcium  [Ca^ + ]j in isolated rat

p a n c re a tic  ac in ar ce lls  du ring  p ro lo n g ed  ex p o su re  to 
acetylcholine (ACh). J. Physiok 401, 90P.

Grynkiewicz, G., Poenie, M. & Tsien, R.Y. (1985). A new 
g en era tio n  of C a^ + in d ica to rs  w ith  g re a tly  im proved  
fluorescence properties. J. Biol. Chem. 260 , 3440-3450.

Guggenheim, S.J, Bourgoignie, J. & Klahr, S. (1971). Inhibition
by am m onium  of sodium  transport across iso la ted  toad
bladder. Am. J. Physiol. 220, 1651-1659.

Hachinski, V.C., Norris, Vilaghy, Rudelli & Cooper (1981). 
Noted from conference proceedings by Dr. Spurway; publication 
not traced.

2 2 5



Haeusler, G., Richard, J.D. & Thorens, S. (1981). Noradrenalin 
co n trac tio n s  in rab b it m esen teric  a rte rie s  sk inned  w ith 
saponin. J. Physiol. 3 21 , 537-556.

Halestrap, A. P.(1976). Transport of pyruvate & lactate in to
hum an ery throcy tes. E vidence for the involvem ent of the 
chloride carrier & a chloride independent carrier. Bioch. J.
1 5 6 , 193-207.

Halestrap, A.P. & Denton, R.M. (1974). Specific inhibition of 
py ruvate  tran sp o rt in ra t liv e r m itochon ria  and hum an 
erythrocytes by a-cyano-4-hydroxycinnam ate. Biochem . J.
1 3 8 , 313-316.

Hamm, L.l, Gillespie, C. & Klahr, S. (1985). NH 4 CI inhibition of 
transport in the rabbit cortical collecting tubule. Am. J. 
Physiol. 248 , F631-F637.

Harder, D.R. (1982a). Effect of H+ and elevated P C O 2  on

m em brane e le c trica l p ro p e rtie s  o f ra t  cereb ra l a rte rie s . 
Pflugers Arch. Europ. J. Physiol. 394, 182-185.

Harder, D.R. (1982b). M em brane electrical activation of
arterial sm ooth m uscle. In :  V ascu la r sm ooth m uscle:
M etabolic, ionic, and con trac tile  m echanism s. (Eds. Crass, 
M.F.III & Barnes, C.D.). Academic press, New York, pp.71-97.

Harris, P. D., Longnecker, D. E., M iller, F. N.& W iegman, D. 
L.(1976). Sensitivity of small subcutaneous vessels to altered 
respiratory gases & local pH. Am. J. Physiol. 231, 244-251.

Hartshorne, J.D. (1982). .T he  contractile apparatus of smooth 
muscle and its regulation by calcium. In  : Vascular smooth 
m uscle: M etabolic, ionic, an f con tractile  m echanism s. (Eds. 
Crass, M .F.III & Barnes, C.D). Academic press, New York, 
pp. 135-161 .

2 2 6



Hoang, N. D .(1988). Intracellular pH changes induced by 
propionate and ammonium ions on the tone of porcine coronary 
arteries. Pflugers Archiv. Europ. J. Physiol.411, R203.

Hochachka, P.W. & Mommsen, P. T. (1983). Protons and 
anaerobiosis. Science 219 , 1391-1397.

Iaizzo, P.A., Seewald, M., Oakes, S.G. & Lehmann-Horn, F. (1989). 
The use of fura-2 to estim ate m yoplasm ic [Ca^+J in human 
skeletal muscle. Cell Calcium 10, 151-158.

Ighoroje, A.D. & Spurway, N.C. (1984). Procedures to acidify 
cytoplasm raise the tone of isolated (rabbit ear) blood vessels. 
J. Physiol. 3 5 7 ,1 0 5 P .

Ighoroje, A.D. & Spurway, N.C. (1985). How does vascular 
smooth m uscle in the isolated rabbit ear adapt its tone after 
alkaline or acid loads? J..Physiol. 367 , 46P.

Ighoroje, A.D. (1987). pH and vascular tone. PhD Thesis, 
University of Glasgow.

Jacobs, M.H. (1940). Some aspects of cell perm eability to
weak electrolytes. Cold Spring Harbor Symp. Quant. Biol. 8 , 
3 0 -3 9 .

Jentsch, T.J., Schill, B.S., Schwartz, P., Matthes, H., Keller, S.K. & 
W iederholt, M. (1985). Kidney epithelial cells o f monkey 
orig in  (B SC -1) express a sodium  bicarbonate  co transport. 
J.Biol. Chem. 260, 15554-15560.

Jones, A.W . (1981). V ascular smooth m uscle a lte ra tio n s
during hypertension. In: Sm ooth m uscle; an assesm ent of 
current knowledge. (Eds. Bulbring, E., Brading, A.F., Jones, A.W., 
and Tomita, T.). Edward Arnold, London, pp.397-429.

2 2 7



Keifer, D.W & Roos, A. (1980). Membrane permeability to the 
m olecu lar and ionic form s of DMO in barnacle  m uscle. 
Am .J.Physiol. 240, C73-C79.

Kontos, H.A. (1981). Regulation of the cerebral circulation. 
Ann. Rev. Phyiol. 43, 397-407.

Kontos, H.A., Wei, E.P., Raper, A.J.,and Patterson, J.L. (1977). 
Local m echanism of CO 2  action on pial arterioles. Stroke 2 ,
2 2 6 -2 2 9 .

Leeks, D. R. & Halestrap, A. P.(1978). Chloride-independent 
tran spo rt o f pyruvate and lac ta te  across the e ry th rocy te  
membrane. Biochemical Society Transactions. 6 ,1363-1366 .

Leo, A., Hausch, C. & Elkins, D. (1971). Partition coefficeint 
and their uses. Chem. Rev. 71, 525-616.

Little, P. J., W eissberg, P.L., Cragoe, E.J. & Bobik, A. (1988).
Dependence of Na+ /H + antiport activation in cultured rat aortic
smooth muscle on calmodulin, calcium,and ATP. J. Biol.
Chem. 263 , 16780-16786.

Lowenstein, J.M. (1972). Ammonia production in muscle and
other tissues: the purine nucleotide cycle. Physiol. Rev. 52 ,
3 8 2 -4 1 4 .

MacLellan, D. G., Pickard, J.D. & Spurway, N.C. (1974). A 
contribution by anions to the pH -dependence of tone in a 
perfused artery preparation. J. Physiol. 2 4 2 , 97-98P.

M adeira, V. M. C.(1978). Proton gradient form ation during 
transpot of Ca^+ by sarcoplasmic reticulum. Arch. Biochem.
Biophys. 185, 316-325.

2 2 8



Mason, M.J. & Thomas, R.C. (1988). A microelectrode study of 
the mechanism  of L -lactate entry into and release from frog 
sartorius muscle. J.Physiol. 4 0 0 , 459-479.

M cGrath, J.C., M iller, D.J. & Ugwu, A.C. (1987). Factors 
affecting calcium -sensitiv ity  and the desensitized responses in 
the rat tail artery. J. Physiol. 3 9 2 , 45P.

Meech, R.W. & Thomas, R.C. (1977). The effect of calcium 
injection on the intracellular sodium and pH of snail neurones. 
J.Physiol. 265 , 867-879.

M ichell, R.H. (1975) Inositol phospholipids and cell surface 
receptor function. Biochem. Biophys. Acta. 415, 81-147.

Miller,D.J., Smith,G.I. (1984). EGTA purity and the buffering of 
calcium  ion in physiological solutions. Am.J. Physiol.
2 4 6 , c l 60 - 6  , ,

Milligan, C.L. & Wood, C.M. (1986). Tissue intracellular acid- 
base status and the fate of lactate after exhaustive exercise in 
the rainbow trout. J. Exp. Biol. 123, 123-144.

Moll, W., Girard, H. & Gross, G. (1980). Evidence for facilitated 
diffusion of L-lactate across frog skeletal m uscle membranes. 
J. Phsiol. 361 , 23P.

Moore, R.D. (1979). Elevation of intracellular pH by insulin
in frog skeletal muscle. Biochem. Biophys. Res. Comm.
9 1 ,9 0 0 -9 0 4 .

Moore, R.D. (1986). The role of intracellular pH in insulin
action and in diabetes mellitus. Curr. Top. Membr. Transp.
26 , 263-290.

2 2 9



Nemoto, E.M. & Severinghaus, J.W. (1971). The stereospecific
influx perm eability of rat blood-brain barrier (BBB) to lactic 
acid (LA). Clin. Res. 19, 146.

Oldendorf, W.H. (1972). Blood brain barrier perm eability to 
lactate. Eur. J. Neurol. 6 , 49-55.

Pannier, J. L., Weyne, J. & Leusen, I. (1970). Effects of P c0 2 >
bicarbonate and lactate on the isom etric contraction of isolated 
soleus muscle of the rat. Pflugers. Arch. 3 2 0 , 120-132.

Pannier, J.L.& Leusen, 1.(1968). Contraction characteristics of 
papillary muscle and acid-base changes of the bathing fluid. 
Arch. Int. Physiol. Biochem. 76 , 624-634.

Pickard, J.D., Simeone, F.A. & Vinall, P. (1976). H+ , CO2 ,

prostaglandins and cerebrovascular smooth muscle. In: Io n ic
actions on vascular smooth muscle. (Ed. Betz, E.), Springer- 
Verlag, Berlin, pp. 101-104. ,

Pieper, U., Ehl, M., Johnson, U. & Laven, R. (1976). Force 
velocity relations in vascular smooth muscle: The influence of 
pH, P £ a and noradrenalin. Pflugers Arch. 3 64 , 135-141.

Putney, J.W. Jr, Burges, G.M., Halenda, S.P., M cKinney, J.S. & 
Rubin,  R.P. (1983). E ffect of secretapopues on [32P] 
p h o sp h a tid y lin o s ito l 4 ,5 -b isp h o sp h a te  m etab o lism  in the 
exocrine pancrease. Biochem. J. 212, 483-8.

Rang, H.P. & Dale, M.M. (1987). Pharmacology. Publisher: 
Churchill Livingstone, Edinburgh.

Resnick, M.R., Gupta, R.K, Susa, R.E., Corbett, M.L. & Laragh, J.H. 
(1987). In tracellu la r pH in human and experim ental
hypertension. Proc. Natl. Acad. Sci. 84, 7663-7667.

2 3 0



Reynolds, E.E. & Dubyak, G.R. (1985). Activation of calcium 
m obilization and calcium  influx by alpha 1-adrenergic receptors 
in a smooth muscle cell line. Biochem. Biochys. Res. Comm. 
1 3 0 , 627-632.

Reynolds, E.E. & Dubyak, G.R. (1986). Agonist-induced calcium 
transients in cultured smooth m uscle cells: m easurem ents with 
fura-2 loaded monolayers. Biochem. Biophys. Res. Comm.
136,  927-934.

Roos, A. (1975). Intracellular pH and distribution of weak acids 
across cell membranes. A study of D- and L-lactate and of DMO 
in rat diaphragm. J.Physiol. 2 4 9 ,1 -2 5 .

Roos, A. & Boron, W.F. (1981). Intracellular pH.
Physiological Reviews 61, 296-434.

Seibens, A.W. & Boron, W.F. (1987). Effects of electroneutral 
lum inal and basolateral lactate tranport on in tracellu lar pH in 
salamander proximal tubules. J. Gen. Physiol. 90, 799-831.

Severinghaus, J.W .(1968). O utline of H+ /b lo o d  flow
relationships in brain scand. Scand. J. Lab. Clin. Invest., Suppl. 
102, VIII: K.

Shaw, J. (1966). The absorption of sodium  ions by the 
crayfish Astacus phallipes lereboullet. III. The effect of other 
cations in the external solution. J. Exp. Biol. 37 , 548-556.

Sjodin, R. A. & Beauge, L. A. (1968). Coupling and selectivity 
of Na and K transport in squid giant axons . J. Gen. Physiol. 51, 
152s.

231



Smith, J.B., Zeng, T. & Lyu, R.-M. (1989). Ionomycin releases 
calc ium  from  the sarcop lasm ic  re ticu lu m  and activa tes 
N a + /C a2+ exchange in vascular smooth muscle cells.
Cell Calcium 10, 125-134.

Sparks, H.V. jr. G. & Belloni, F.L. .(1978). The peripheral 
circulation: local regulation. Ann. Rev. Physiol. 40 , 67-92.

Spencer, T.L. & Lehninger, A.L. (1976). L-lactate transport in 
Ehrlich ascites-tumour cells. Biochem. J. 249 , 1-25.

Spurway, N.C. & Wray, S. A phosphorus nuclear magnetic 
resonance study of m etabolites and in tracellu lar pH in rabbit 
vascular smooth muscle. J.Physiol. 393 , 57-71.

Storelli, C., Corcelli, A., Cassano, G., Hildmann, B., Murer, H. & 
Lippe, C. Polar distribution of sodium -independent transport 
system  for L -lac ta te  in the p lasm a m em brane of ra t 
enterocytes. Pflugers Arch. Europ. J. Physiol. 388 , 11-16.

Taggart, M.J. (1986). The effect of pH changes on tone in a 
variety of blood vessels. B.Sc. Thesis, University of Glasgow.

Thom as, R. C .(1974). In tracellu lar pH of snail neurons
m easured w ith a new pH -sensitive  glass m icro-elec trode. 
J. Physiol. Lond. 238, 159-180.

T hom as, R.C. (1984). E xperim en tal d isp lacem en t of
intracellular pH and the mechanism of its subsequent recovery. 
J. Physiol. 354 , 3P-22P.

Thomas, R.C. (1989). Biocarbonate and pHj response. Nature 

3 3 7 , 601.

T sien , R.Y. (1983). In tracellu la r m easurem ents o f ion 
activities. Am. Rev. Biophys. Bioeng. 12, 91-116.

2 3 2



Ullrich, K.J., Rumich, G. & Kloss, S. (1982). Reabsorption of 
m onocarboxylic acids in the proximal tubule of the rat kidney 
I. T ransport kinetics of D -lactate, N a+ -d e p e n d e n c e , pH - 
dependence and effect of inhibitors. Pflugers Arch. 3 9 5 ,
2 1 2 -2 1 9 .

Vanheel, B.& De Hemptinne, A.(1986). Facilitated diffusion of
L-Lactate across red and white skeletal m uscle cell membranes 
of the mouse. Archives internationales de Physiologie et de 
biochimie 94, P72.

W ebb, R.C., Bohr, D.F. (1981) Recent advances in the 
pa thogenesis of hypertension : considera tion  of s truc tu ra l,
fuctional, and m etabolic vascular abnorm alities resu lting  in 
elevated arterial resistance. Am. Heart. J. 102 , 251-64.

W right, E.M. (1985). Transport of carboxylic acids by renal
membrane vesicles. Ann. Rev. Physiol. 47 , 127-141.

Zeiske, W. & Van Driesche, W. (1983). The interaction of "K+ 
like" cations with the apical K + channels in frog skin. 
J. Membr. Biol. 76, 57-72.

G l a sg o w  >
UNIVERSITY i 
HRRARY j

2 3 3


