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SUMMARY

Helicopter flight control systems are often developed using low order linear 

descriptions of the plant. Unfortunately, unmodelled high order dynamics, such 

as those of the actuators and the main rotor, can have an adverse effect on 

stability and cross couplings when the design is tested on the aircraft. Hence, 

the flight controller may require tuning during commissioning trials in order to 

yield a system with acceptable handling qualities.

As the sophistication of flight control systems is enhanced, the currently used 

trial and error optimization techniques will lo s e  effectiveness. Anticipating the 

difficulties which will arise in the implementation of active control technology to 

helicopters, a study has been made of systematic procedures for adjusting the 

control system gains. The tuning processes which have been developed rely upon 

the signal convolution method to generate sensitivity functions of the state 

variables with respect to control system gains. State variable sensitivities allow 

one to predict what effects changing a controller gain will have on the system 

response. The beauty of the signal convolution method is that the sensitivity 

information is generated without knowledge of the helicopter plant. Therefore, by 

using data collected during flight trials, it is possible to calculate the sensitivity 

functions with respect to the dynamics of the actual system plant, including the 

unmodelled modes.

The sensitivity information is used by an adjustment algorithm which employs 

Newton— Raphson techniques to predict how the system response will change with 

a trial set of perturbations to the controller gains. For each set of perturbations, 

an estimate is made of the modifed response which, in turn, is assigned a figure 

of merit. The set of perturbation values which yields the best figure of merit is 

then used to update the initial values of the control system gains. Since the 

characteristics of the optimized system response are determined by the type of

figure of merit used in the adjustment algorithm, two distinct performance indices 

have been evaluated during the study.

In model reference tuning, the Least Integral Error Square Performance 

Index is calculated to provide the figure of merit for each projected system

response. The controller gains are altered to minimize the difference between 

the response of the actual system and a desirable response which is generated by 

a computer simulation model. However, in using a reference model, care must

be taken to ensure that the desirable response is consistent with a Level 1
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handling qualities rating so that pilots find the tuned system acceptable to fly.

In contrast, the Handling Qualities Performance Index allows system responses 

to be compared explicitly in terms of whether or not they satisfy the handling 

quality requirements. As these requirements form the starting point for many 

control system designs, the use of the Handling Qualities Performance Index 

should guarantee an improvement in system response. This new performance 

index uniquely links the values of control system gains to the helicopter's handling 

quality ratings.

Computer simulation has been used to validate both the application of the 

signal convolution method to multivariable control systems and the ability of the 

two performance indices to tune a helicopter's flight controller. The flight 

control systems considered during these simulations were developed using modal 

control theory and have been used with both linear and nonlinear representations 

of the helicopter plant. The results of a real— time simulation have reinforced 

the notion that the flight controller's structure and parameter values must be 

determined with respect to desirable flight handling qualities rather than purely on 

the basis of mathematical control system design techniques.



CHAPTER 1: INTRODUCTION

1.1 ) Helicopter Operations

The helicopter's unique ability to hover efficiently has made it an invaluable 

component of modern military operations and of civil tasks such as medical 

evacuation, public transport, and search and rescue. While civil operators are 

looking for increased safety, the military is primarily concerned with increased 

performance and ease of operations. NATO countries are placing greater 

emphasis on helicopters because of their mobility and fire—power [1]. Future 

land battles will see battlefield helicopters used to engage armoured vehicles in 

both the front line and rearward areas, with weapons ranging from missiles to 

light cannons. Current senarios envisage three distinct phases in a typical 

anti—armour operation [2]. High speed contour flight to and from the combat 

zone will involve the aircraft flying at a fairly constant speed at a prescribed 

height above ground level to avoid obstacles. Upon reaching the combat zone, 

where concealment is of prime importance, pilots will use 'nap o f  the earth' 

(NOE) flight to minimize exposure to enemy forces. Since the use of armour 

for protection on helicopters limits their usable payloads, the main defensive tactic 

employed must be to use trees, buildings and terrain features for concealment 

[2],[3]. The third phase of the anti—armour mission is the hover which is 

extensively used for target acquisition and weapons firing. Battlefield helicopters 

are forced to fly as low as possible during all operations because of the lethality 

of modern air defense systems.

The performance demands of military operations are most severe during 

NOE flight and the emerging realm of air to air combat between opposing 

helicopters. Although air to air combat tactics are still being developed [4], 

standard NOE manoeuvres are currently being used to compare different 

helicopters, and handling quality criteria are being developed with reference to 

NOE manoeuvres. These standard manoeuvres are designed to test the aircraft's 

ability to minimize exposure to threats when moving between two or more 

concealed positions [5]. The 'slalom' involves moving laterally during forward 

flight to take advantage of objects lining the intended flight path (Figure 1.1), 

while the 'dolphin' involves changing height to minimize the time spent above 

objects blocking the flight path (Figure 1.2). Three manoeuvres which are 

initiated and terminated in a hover are: the 'bob up! bob down', the 'sidestep
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Figure 1.1: An idealized representation of the slalom manoeuvre.

Figure 1.2: An idealized representation of the dolphin manoeuvre.
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unmask! remask', and the 'dash! quickstop'. The bob up/bob down is used for 

weapons firing while the sidestep and dash are used to change the hover position 

in a lateral and longitudinal sense with regard to the fuselage heading.

To maximize the effectiveness of NOE tactics, and hence the survivability of 

the vehicle, the pilot must have tight control over the helicopter's motions. 

Agility is the term used to describe how easily a helicopter makes the rapid and 

precise changes of velocity necessary in aggressive manoeuvres [5]. Agility is 

improved by increasing the amount of thrust available for manoeuvres and by 

easing the control of this excess thrust for the pilot. Although agility depends on 

the availability of excess rotor thrust, studies have shown that the authority which 

a pilot has over the excess rotor thrust will have a far greater influence on the 

precision of NOE manoeuvres [5]. Aggressive manoeuvring will require large and 

rapid pilot inputs and thus the flight control system must have a bandwidth which 

is commensurate with these inputs. Hence, NOE flight is motivating a drive 

towards high bandwidth flight controllers.

1.2 ) Handling Qualities

Handling qualities describe the ease or difficulty with which a pilot can 

perform manoeuvres and are of primary concern in the development of flight 

control systems. To simply increase the thrust available for manoeuvring without 

providing adequate means of controlling the excess power can increase the pilot's 

workload. Indeed, one of the main objectives of flight controller design is to 

yield a vehicle which is easier to fly. Improved handling qualities (control over 

the excess rotor thrust) will reduce the pilot's workload in terms of flying the 

aircraft, leading to greater mission effectiveness [2]. By improving the handling, 

manoeuvres are flown at higher speeds, and closer to the ground and obstacles: 

all of which results in a greater degree of concealment and increased survivability 

[6].

If handling qualities are improved such that NOE flight can be carried out 

at the minimum power speed (well above the currently used hover and taxi 

speeds) many operational benefits will arise [2]. At the minimum power speed, 

fuel consumption is reduced and power management is simplified because the 

energy expended in keeping the aircraft airborne is at a minimum. Thus, the 

excess thrust available for manoeuvring is at a maximum resulting in maximum 

absolute agility. Handling qualities determine the usable agility — that which the 

pilot will make use of during flight. Ideally, the ratio of usable to absolute
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agility will be increased to 1.0 which will yield a helicopter with 'carefree 

manoeuvring'. Carefree manoeuvring exists when a pilot can fly the vehicle to 

the edge of the flight envelope without losing control and without causing 

excessive fatique damage to the aircraft [5]. The flight envelope is bounded by 

the flight conditions beyond which the helicopter cannot remain airborne. 

Therefore a helicopter possessing good handling qualities as measured by useable 

agility will allow the safe use of more of the vehicle's performance in terms of 

flight near to the edge of the flight envelope.

1.3 ) Active Control Technology

Modern flight control systems make use of 'active control technology' (ACT) 

for several reasons. By having a computer dynamically involved in flight control, 

ACT systems promise to improve both the usable and absolute agility of 

helicopters [5]. The use of a computer allows raw dynamics of helicopters to be 

modified such that the pilot is less aware of nonlinearities and cross— couplings. 

Examples of helicopter nonlinearities are the hysteresis present in hydraulic 

actuators and mechanical linkages and the rate limits on the motion of the 

actuators. Although ACT will allow the removal of many mechanical parts used 

for flight control, actuators will continue to be used to change the pitch on 

individual rotor blades and hence the magnitude and direction of the main rotor's 

thrust vector. Cross— couplings between longitudinal and lateral dynamics are 

more severe on helicopters with hingeless as opposed to articulated rotors. While 

increasing the absolute agility of helicopters, the dynamics of hingeless rotors can 

increase the pilot's workload in manoeuvring the aircraft. Modern control 

theories and techniques are required to design flight controllers which decouple 

system dynamics from the pilot's point of view. By implementing these control 

laws with onboard computers, the vehicle is made easier to fly. Therefore, ACT 

allows an increase in usable agility by improving the system's handling qualities.

On battlefield helicopters, one aim is to develop single pilot crewstations in 

order to reduce training time, weight and costs. Present handling qualities are 

such that the workload of flying, navigation, launching weapons, and keeping a 

lookout for threats is excessive, even for a two man crew. Training time is 

reduced with a single pilot crewstation because the need to develop teamwork 

between the pilot and a copilot/gunner is eliminated.

Active control technology is being used in two closely related areas to 

achieve the single person crewstation objective. As noted previously, computers
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allow a tailoring of the raw vehicle dynamics to make the aircraft easier to fly. 

At the' same time, ACT allows a complete redesign of the man— machine 

interface in the cockpit. It is no longer necessary to have a collective lever 

controlling the total rotor thrust and a large cyclic stick to provide the leverage 

needed to tilt the rotor's thrust vector. Because pilot inputs are being fed 

directly into a computer, it is possible to have small sidearm inceptors rather 

than conventional controls [7]. Since these inceptors can be smaller, valuable

cockpit space is saved for other uses. In addition, displacements of these 

inceptors can be interpreted in several ways. For example, with a traditional 

cyclic stick the position of the stick specifies the position of the longitudinal and 

lateral cyclic rotor blade actuators. The positions of these actuators, in turn, 

determine the direction of the thrust vector and hence the steady state flight 

condition. In contrast to this attitude demand system, sidearm controller 

displacement can be interpreted as a demand for rates of change of aircraft 

motion. In a rate demand system, the lateral position of a sidearm inceptor 

might be proportional to a demanded roll rate. The flight computer will then 

move the rotor blade actuators in order to achieve this roll rate demand. In this 

way the pilot's inputs are related more directly to aircraft states of motion than 

has been possible in the past. These inceptor characteristics can have a large

bearing on how pilots judge a helicopter's handling qualities on the 

Cooper—Harper scale [7]. Other improvements to the man—machine interface 

can be made by increasing the information displayed to the pilot on 'Head Up 

Displays' (HUD). A HUD is a projection of the flight path/vehicle attitude 

information on to either the glass canopy of the cockpit or on to the visor of

the pilot's helmet and allows the pilot to perform various functions while 

continuing to look at the outside world.

In terms of absolute agility, the use of ACT can be of benefit because the 

speed of the natural modes of motion of the system can be increased. These 

natural modes determine the stability of the helicopter and how quickly it will 

respond to pilot inputs and disturbances, such as wind gusts.

In summary, ACT can be used to expand the usable flight envelope by

reducing cross— couplings, improving the man— machine interface, and increasing 

agility. These advantages of ACT systems can be recorded as improved flight 

handling qualities. Although the cost and weight motives behind the introduction 

of ACT to helicopters are not as important as for fixed wing aircraft [5], full 

authority manoeuvre demand flight control systems are essential for NOE 

operations and the survivability of the battlefield helicopter.
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1.4 ) The Tuning Requirement

The need to tune fly by wire flight control systems on new helicopters 

persists despite ACT due to current design techniques. Computer simulation of 

the aircraft dynamics through the use of mathematical models is the basis of most 

flight control system designs. Since the simulation models do not incorporate all

of the dynamics of the helicopter to be controlled, errors are introduced into the

design of the flight controller from a very early stage. Such errors are important 

as they appear during real— time piloted flight simulations and test flights as 

handling quality deficiencies.

Flight control systems are traditionally designed around eighth order, six

degree of freedom models of the helicopter fuselage dynamics. Models of this 

type use the quasi— static rotor approximation in which the dynamics of the tip 

path plane of the rotor blades are ignored [8]. Essentially, the blades are treated 

collectively as a lifting disc, rather than looking at the flapping, lagging, and 

feathering motions of the blades as they revolve about the rotor shaft axis. Since

the pitch on each blade is varied sinusoidally about a constant value during each

revolution for stability and control purposes on the actual aircraft, various 

secondary blade motions tend to be excited. In addition to neglecting the 

complex rotor motions, low order linear models also ignore actuator dynamics 

which are responsible for considerable delays in system response.

When developing the high bandwidth flight controllers needed for NOE

operations, the natural resonances of the fuselage in flight are moved closer to 

those of the main rotor. The interactions which result lead to compromises in 

the system's static and dynamic stability. In a comprehensive study of the effects 

of high order system dynamics on the bandwidth of helicopter flight controllers, 

Chen and Hinuson [9j showed that increasing roll rate and roil attitude feedback 

caused the regressing flapping rotor mode of a CH47 helicopter to migrate 

towards a right half plane zero. As system bandwidth is extended by the 

increasing feedback, the stability of the regressing flapping mode decreases.

The dynamics of the rotor, sensors, filters, and actuators have traditionally

been referred to as high order dynamics because the poles characterizing their 

motion were well separated from the slower dynamics of the fuselage. Since high 

order dynamics place restrictions on the gains which can be used in controllers, 

they should be considered in all designs of high bandwidth flight systems. 

Unfortunately, rotor models are notoriously inaccurate, particularly during 

manoeuvres. In addition, the nonlinear actuator dynamics are commonly

represented by simple first order linear lags. The control engineer is presently
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faced with making a decision between using a simple, understandable model of 

the fuselage dynamics, or a much more complex description which he knows to

be flawed. The danger in using the simpler model is that by neglecting high

order dynamics, the controller may cause instabilities when used with the actual 

system thereby creating the need for tuning. Even if new flight control systems

are developed with the currently inaccurate descriptions of the rotor dynamics,

they will need to be optimized with regard to the actual system.

Although inaccuracies in mathematical descriptions of the helicopter are

responsible for most of the need for tuning, fixed wing experience indicates that

flying quality deficiencies will persist even with accurate models. Despite the use

of advanced control system design methods allowed by ACT, fixed wing aircraft

prototypes continue to suffer from problems with control sensitivity, pilot induced 

oscillations, and sluggish responses. These continuing handling deficiencies have 

been attributed to an over reliance on piloted flight simulation and a 

communication gap which exists between handling quality engineers and control 

system engineers [10]. Contrary to previously held beliefs that advances in flight 

control would eliminate deficient handling qualities, there is evidence to indicate 

that hardware and software capabilities are not being properly utilized because 

handling quality criteria have not matured at a rate which will give direction to 

control system design. As in most aspects of development, it is expected that

the helicopter community will follow its fixed wing counterpart in this respect, 

and will suffer from similar problems in the future. If this is the case, the need 

for tuning will be reinforced by the development of helicopters which have 

handling quality deficiencies.

Tuning will be needed for ACT systems for two reasons. First, the presence 

of unmodelled dynamics can be responsible for the instability of a system 

employing a controller designed on the basis of low order linear descriptions. 

The design of high bandwidth systems requires the use of accurate high bandwidth 

models which are presently not available. Second, it is expected that control 

concepts will continue to be developed without adequate regard to the handling 

quality requirements. As the complexity of ACT flight controllers increases, the 

use of trial and error tuning techniques will cease to be a viable proposition. In 

the future, even the engineer responsible for the controller's design will find it 

difficult to say with any accuracy that increasing or decreasing particular gains 

will remove an undesirable response characteristic.

To clarify when and how the tuning process will be used, it is necessary to 

consider the steps involved in the design and commissioning of a new flight 

control system. Given the desired handling quality specifications for the design
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and a representation of the helicopter's plant in terms of force and moment 

equations, the first task is to decide on a control strategy or control law which is 

to be used to design the flight control system. Following the procedures which 

are prescribed by the chosen control theory, a controller is developed and tested 

on computer simulation models, both linear and nonlinear. These computer 

simulations are used to validate the control theory implementation in terms of 

very simple pre— programmed test inputs, such as pulses, steps, and doublets. 

Once the performance is satisfactory in response to these inputs, the controller 

will be used in a real— time piloted flight simulation which will test its 

performance with regard to the pilot demands which it is likely to encounter on

the real aircraft. Real— time flight simulation allows an investigation of how the

pilot reacts with the controller. The results of testing at this stage will indicate 

if there are inadequacies in terms of handling quality specifications, that is, 

whether the pilot finds the dynamics of the controlled system easy or difficult to 

use. It may be the case that the controller needs tuning at this stage just to

take into account the adaptive nature of the control inputs which a pilot will use. 

It should be remembered that up to this stage, the controller is essentially having 

to cope with the same plant dynamics which were modelled for the design. 

Additional dynamics of the real— time simulation facility should be well above the 

controller's bandwidth in order to prevent problems. Once difficulties with the 

pilot— flight control system interfacing have been rectified, the controller will be

implemented on a test aircraft for flight trials. At this stage, handling quality 

deficiencies which are attributable to unmodelled high order dynamics will become 

apparent. A tuning process promises the most, in terms of improving a 

controller's performance, at this jump from simulation models to the actual plant.

In the following, the word 'tuning' will be used in preference to 

'optimization ' since the latter tends to be associated with procedures used during 

controller design with simulation models. In contrast, the techniques which are 

presented herein are directed at optimizing controller gains once the flight control 

system is actually flying.

In developing tuning procedures for ACT systems, there are several attributes 

which the method should possess. The first is that the tuning process should be 

quantitative. It must be possible to show that increasing a particular controller 

gain, cq, by the amount Acq will lead to an improvement in system response. 

Furthermore, it must be possible to judge that one response is better than 

another in precise terms, and this implies using a quantitative performance 

measure to rate the relative merit of particular system responses. Trial and error 

techniques suffer because controller parameters are being altered without prior



knowledge of the effects of the changes on the system's response. With the 

large number of adjustable gains in ACT systems, the costs of trial and error 

tuning during inflight trials would be prohibitive. A systematic and quantitative 

tuning algorithm will minimize the amount of inflight testing which is needed to

optimize controller settings.

The second aspect of the tuning process which must be considered is the 

fact that precise knowledge of the dynamics of the actual plant will not be 

available. This lack of knowledge creates the need for tuning in the first place, 

and forces the tuning algorithm to base its optimization on information provided 

by the response of the actual controlled system. If one considers the objective of 

the tuning process to be that of nullifying the adverse effects of unmodelled high 

order dynamics, then information concerning these effects must be available.

However, the only valid source of information concerning unmodelled dynamics is 

the system response to pilot inputs. In other words, the tuning process must 

work with the response of the actual system in order to gain the information 

needed to decide how the controller's parameters should be adjusted.

Other desirable attributes are for the tuning process to work on nonlinear 

systems and for the process to be capable of real— time implementation. 

However, the tuning algorithm which has been developed relies upon sensitivity 

functions to show how each control system parameter affects the system response. 

With the constraints that inflight testing is to be minimized, and that knowledge

of the system plant is inaccurate, one is forced to use signal convolution 

techniques to generate the sensitivities. Unfortunately, the multivariable 

application of the signal convolution technique precludes a real— time 

implementation and hard nonlinearities, such as actuator rate limits, must be 

avoided.

The remaining seven chapters of this thesis present the theoretical basis for

the techniques which have been developed and the results which were obtained. 

Although the tuning processes are generally applicable, they are presented with 

regard to flight path controllers developed using modal control theory. The 

design techniques used for these flight control systems are presented in Chapter 2. 

Chapter 3 details the signal convolution method of calculating sensitivity functions 

which provide the quantitative information lacking in trial and error tuning 

methods. Apart from the collection of flight trials data, the tuning process 

consists of a parameter adjustment algorithm which projects how the controller's 

gains should be changed in order to improve system performance. Chapter 4 

presents the adjustment algorithm theory which makes use of either of the two 

performance index measures of Chapter 5 and 6. Model reference tuning uses
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the Least Integral Error Square Performance Index (Chapter 5), while the 

handling qualities tuning algorithm uses a performance index which is based on 

quantitative handling quality requirements (Chapter 6). The results of a 

real— time simulation of one of the flight path controllers of Chapter 2 are 

presented in Chapter 7, helping to show how complex and important the 

man— machine interface is to good handling qualities. The conclusions of Chapter 

8 summarize the results which have been obtained during the current study and 

propose future areas of research.
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CHAPTER 2: HELICOPTER DYNAMICS AND FLIGHT CONTROL SYSTEM

DESIGN

2.1 ) Helicopter Dynamics

The equations of motion of the single rotor helicopter are derived by 

summing the force and moment contributions of various structural components of 

the helicopter system. The most important of these components are the main 

rotor, the tail rotor, and the fuselage. The difficulties encountered in attempting 

to model helicopters arise in two areas. First, the dynamics of the main rotor 

are complex, particularly during transient manoeuvres, and in addition, 

aerodynamic coupling is considerably more pronounced for helicopters than for 

fixed wing aircraft. This increased level of coupling is a result of using the rotor 

to generate both lift and control moments.

The coordinate system used to describe the single rotor helicopter system

throughout this thesis will be the body fixed axes of Padfield [11]. Figure 2.1

shows the x, y, and z axes of this coordinate system along with the X, Y, and Z

components of total force and the L, M, and N components of the total

moment. The derivation of forces and moments is given by Padfield [11] along 

with the nonlinear equations of motion of the fuselage at the centre of gravity 

(Equations 2.1).

u = -  ( wq - v r  ) + — -  g s i n 0m °
Z

w = -  ( v p - u q )  + — + g c o s 0  c o s <p

q = i i -  i
ZZ XX

] rp + [ r 2 -  P 2  I + Mx z
yy

q c o s  0 -  r siny?

v  =  -  ( u r - w p )  + — + g c o s 0  siny?

XX

I - I  q r + I  r + p q + Ly y  z z  J x z  1 1[ r  + pq ]

y? = P + q sinyj  t a n 0  + r cosy? t a n 0

r =
z z

( ‘ x x  -  ‘ y y  ] Pq + ' x z  [ P ~ qr  1 + N

= q siny? se c 0  + r cosy? se c i E q u a tio n s 2 .1
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Figure 2.

C e n l r G  o f  G.^cwi\-\j

1: Helicopter Force and Moment Vectors in Body Axes
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u = f o r w a r d  v e l o c i t y
w = v e r t i c a l  v e l o c i t y
q = p i t c h  r a t e
6 = p i t c h  a n g l e
V = l a t e r a l  v e l o c i t y
P = r o l l  r a t e
<P = r o l l  a n g l e
r = yaw r a t e
0 = yaw a n g l e
m = t h e  a i r c r a f t  mass
g = t h e  g r a v i t a t i o n a l  c o n s t a n t
IXX = t h e  moment o f  i n e r t i a  a bo ut  t h e  x a x i s
1 y y = t h e  moment o f  i n e r t i a  a bo ut  t h e  y a x i s
IAz z = t h e  moment o f  i n e r t i a  ab ou t  t h e  z a x i s
*xz = t h e  p r o d u c t  o f  i n e r t i a  a bo ut  t h e  x: and z  a x e s

For flight control system design, it is a common and useful practice to use 

linearized equations of motion to describe the vehicle's dynamics near a prescribed 

operating point in the flight envelope. This representation of the aircraft lends

itself readily to physical interpretation. The need to reduce the equations of 

motion into a form which is more easily interpreted is fully explained by Houston 

and Horton [12]. The standard method of linearizing the equations of motion is 

through the use of stability and control derivatives [13]. The nonlinear force and 

moment equations are described as a Taylor series expansion about the desired

operating point in terms of the degrees of freedom of the aircraft. By truncating 

each series to first order terms, a linear model of the system is derived. The 

stability and control derivatives are the coefficients of the linear terms of this 

Taylor series expansion. The truncated series of this linear representation can be

arranged into state space canonical form.

x ( t )  = [ A ] x ( t )  + [ B ] u ( t )  Equa t i o n  2 . 2

z ( t )  = [ C ] x ( t )  Equa t i o n  2 . 3

The stability and control derivatives are used to derive the elements of the 

system matrix, [A], and the input distribution matrix, [B], respectively. Since the 

development of a control law was not the primary objective of the project, the 

helicopter plant used for design work did not include rotor dynamics and was 

represented as a six degree of freedom, eighth order system.

The state vector, x(t), is made up of the eight rigid body states of the 

fuselage.
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x ( t )  =

u( t )
w ( t )
q ( t )
0 ( t )  
v ( t )  
P( t )  
p( t )  
r ( t )

E q u a t i o n  2 . 4

Following standard practice, the yaw angle is not included as a state variable 

because the heading on which an aircraft is flying does not affect its stability or 

control. This can be deduced from the nonlinear equations of motion in which 

heading or yaw angle, ip, does not appear in the equations for the other states. 

However, as will be shown, heading feedback may be necessary in terms of 

providing decoupled spiral mode stability.

For single main rotor helicopters, the control input vector, u(t), is made up 

of the four actuator blade angles.

main r o t o r  c o l l e c t i v e  b l a d e  a n g l e  

l o n g i t u d i n a l  c y c l i c  b l a d e  a n g l e  

l a t e r a l  c y c l i c  b l a d e  a n g l e  

t a i l  r o t o r  c o l l e c t i v e  b l a d e  a n g l e

E q u a t i o n  2 . 5

Traditionally, the pilot's collective lever is mechanically linked to the 

collective actuator controlling total thrust, while his centre stick is linked to the 

cyclic actuators controlling the direction of the thrust. The pedals are linked to 

the tail rotor actuator which controls the tail rotor thrust used to counter the

torque of the main rotor. ACT is used to eliminate these traditional control 

channels and replace them with with pilot inceptor demands for angular rates of 

motion and linear velocities. This fundamental change in the man— machine 

interface is the driving force behind current helicopter flight control research.

Equation 2.3 defines the system output vector, z(t), and the output matrix,

[C] for a general system. For the design of control laws in Section 2.2, it has

been assumed that the states of the helicopter are observable and hence the 

output vector, z(t), is equivalenced to the state vector, x(t), by making the output 

matrix, [C], equal to the eighth order identity matrix.

Representations of the helicopter plant have been supplied by the Royal

Aerospace Establishment (Bedford). The HELISTAB software package [11],[14] 

generates a system matrix, [A], and an input distribution matrix, [B], given an
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initial flight condition. These matrices are used in Equation 2.2 to represent the 

helicopter plant for all of the control system design work described herein. The 

stability and control derivatives calculated by HELISTAB are valid for limited 

manoeuvres which do not require large and rapid movements [11]. Although the 

HELISTAB package has been correlated with flight test data, it has been shown 

that discrepancies exist at both ends of the flight envelope: at speeds below 50

knots, the impingement of the rotor down wash on the fuselage becomes

increasingly important; above 120 knots speed,, stall begins to appear on the 

retreating blades. As neither of these phenomena are mathematically modelled by 

HELISTAB, its use for design purposes is essentially restricted to the range of

speeds between 50 knots and 120 knots. Other anomalies which occur within this

range have been reported in the literature [11],[12]. Furthermore, the system 

matrix, [A], and input distribution matrix, [B], are only valid over a limited

portion of the flight envelope because the elements of these matrices change with 

flight condition — with forward speed, for example. This is a consequence of

the nonlinearity of the equations of motion. Because [A] and [B] are only locally 

valid, the linearized model is a perturbation model and the nominal, unperturbed 

values of the states and actuator blade angles will be zero.

In contrast, the HELISIM3 software package is a full envelope nonlinear 

helicopter plant model. As such, the plant is described by the nonlinear 

equations of motion (Equations 2.1). Although the nonlinear plant model 

simulates the vehicle's dynamics with greater fidelity, it too suffers from

deficiencies because both models (HELISTAB and HELISIM3) were developed

from the same theoretical basis.

2.2 ) Flight Control Systems

An unaugmented helicopter presents the pilot with certain open loop modes. 

In manoeuvring a helicopter, a pilot will input signals to his inceptors which will 

excite these natural modes of motion. Through experience, the pilot will learn

how to excite these modes such that the aircraft responds in a desirable manner.

Since the raw plant dynamics of single rotor helicopters are highly coupled, flight 

control systems attempt to change the nature of these open loop modes.

The helicopter which is being used as a basis in this study has six rigid

body modes. Because of the asymmetry of the single rotor helicopter, it is not

as easy to separate these rigid body modes into longitudinal and lateral modes as 

is done for fixed wing aircraft. Nevertheless, the helicopter community classifies
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the raw dynamics in a form consistent with fixed wing nomenclature. The 

traditional longitudinal modes are the pitching mode and the phugoid mode. On 

the helicopter of interest, the pitching motion is actually characterized by a fast 

pitch and a slow pitch mode. These pitching modes describe the natural motions 

of the helicopter in response to a perturbation in pitch from the trimmed value. 

If these modes are stable, any deviations in pitch will decay. The phugoid is 

a different type of motion which involves a periodic exchange of the kinetic

energy of forward flight and the potential energy of aircraft altitude. The three 

classical lateral modes are referred to as: the roll; the spiral; and the Dutch roll 

mode. The tendency of the helicopter to return to a level flight condition with 

a perturbation in roll angle is described as the roll mode. The spiral mode is

an indication of the helicopter's predisposition to wander off its course (essentially 

in a horizontal plane). The Dutch roll motion can be described as a complicated 

interchange of sideslip and rolling energy. If the aircraft is given an initial 

sideslip as a result of a wind gust, for example, aerodynamic forces will be such 

as to turn the aircraft into the flight path producing a differential lift across the 

lifting surface whether it be a wing or a rotor. This differential lift will then 

roll the aircraft towards the change in heading caused by the reduction in 

sideslip, thus establishing an oscillation. These descriptions are only superficial 

and the the modes vary from aircraft to aircraft. There are a number of texts 

on the subject [15],[16],[17] which provide more in depth discussions of flight 

dynamics.

In the past, the modes of helicopters were determined through the 

aerodynamic and structural design. Following trends in the fixed wing 

community, current practice is to design the raw plant for greater performance 

and then to use flight control systems to tailor the system modes such that the 

aircraft is stable. Present helicopters are difficult enough to fly: greater

performance without flight control systems would only serve to exhaust pilots at a 

faster rate. The objective of all flight control systems is then to modify the

natural modes in order that they are more managable for the pilot. Flight

controllers attempt to improve the raw dynamics by relocating closed loop system 

poles and zeros to desirable locations. Different control theories position these 

poles and zeros according to different criteria, and at present, the most 

commonly used theories are modal control, optimal control, and model following 

techniques.

Of these three linear control theories, modal control theory can be seen as 

the most direct and visible method of pole— zero placement. This control 

strategy has been used for flight control systems both in isolation [18] and as part
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of a more sophisticated design criteria [19],[20],[21]. Modal control will be 

described in detail in the following sections.

Optimal control or Linear Quadratic Gaussian (LQG) control involves the 

formulation of a performance index, J, which, when minimized, yields a fairly 

robust, if somewhat conservative, control system. The simplest form of optimal 

control involves finding a control function u(t) (the plant input signal) which 

minimizes the following performance index [22].

't
xT ( t )  [Q] x ( t )  + uT( t )  [R] u ( t )J = dt

v0
E q u a tio n  2 .6

Both control input activity as specified by u(t) and large system transients as 

given by x(t) are penalized by minimizing the performance index in Equation 2.6. 

The weighting matrices [Q] and [R] are generally diagonal and their nonzero 

elements are assigned by the designer on the basis of his experience. This leads 

to an iterative design process. The feedback matrix to be used to provide the 

controlling action is then determined from the solution of a matrix Riccati 

equation.

The main difficulty in the application of optimal control is that the use of 

the performance index of Equation 2.6 obscures what is happening to the system's 

poles and zeros. Although it may be argued that pole— zero locations are chosen 

with regard to a control theory working at a higher level of abstraction, it must 

be remembered that handling quality specifications (Chapter 6) are described 

directly in terms of damping ratios and natural frequencies, which can be related 

to pole positions with relative ease. Nevertheless, optimal control has been used 

by Murphy and Narendra [23] to design a stability augmentation system for a 

Sikorsky SH— 3D Sea King in hover and by Miyajima [24] in a full envelope 

stability and control augmentation system.

Model following controllers make use of a model of the helicopter's plant 

dynamics as part of the control system. The essence of the method is that the 

inputs of the helicopter plant are excited by the outputs of an inverse plant 

model. The desired state vector which is input to the inverse model should be 

reproduced by the aircraft state vector. Pilot inputs to the inverse model are 

augmented by control signals derived from differences in the desired and actual 

state vectors. The method has been used on a Bell UH— 1H [25] and a MBB 

B O - 105 [21].
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Other, less commonly used control techniques include H—« control and 

adaptive control. The motivation behind H—« control is that stability margins

can be guaranteed for the design model. The techniques used are designed to

provide a robust controller design. Adaptive control schemes, on the other hand, 

modify control system parameters with respect to the flight condition [26] ,[27].

2.2.1 ) Modal Control Design Philosophy

The objective of modal control is to provide a means of controlling the 

transient modes of a system. Modal control theory has rapidly evolved from 

being a procedure for the placement of the eigenvalues of controllable system 

modes to a design process which allows extensive tailoring of the system's

pole— zero locations. By allowing the designer some flexibility in the location of 

the response zeros, it is possible to decouple the modes in terms of their

distribution among the state variables of the system. This fact makes modal 

control particularly attractive for use in helicopter flight control systems where 

coupling between the axes of motion can be severe. The argument for the use 

of modal control theory in the helicopter context is further strengthened when 

one considers the flight handling quality specifications for helicopters (see Chapter 

6 ). As previously mentioned, the flight handling quality criteria dealing with 

system transients are largely specified in terms of natural frequencies, damping 

ratios and time constants which can be readily transformed into eigenvalues.

Thus, modal control theory will allow handling quality specifications to be an

integral component of the design process [18].

There are four concepts which are central to modal control theory. The 

first of these is that state feedback or output feedback can be used to move plant 

eigenvalues so that the closed loop system has a desirable rate of transient 

response to perturbations [28]. Secondly, since the use of a feedback matrix in a 

closed loop system gives the designer more degrees of freedom than he needs to 

reassign the system eigenvalues, it is possible to use the feedback matrix to 

partially assign system eigenvectors [29],[30],[31]. Third, by assigning a desirable 

closed loop eigenvalue, the designer defines an assignable subspace in which the

closed loop eigenvectors must lie [32]. The fourth concept is that the difference

between desirable closed loop eigenvectors and those which are assignable can be 

minimized in a least squares sense through the use of principal angles [33],[18]. 

These ideas will be explained in the following section which shows how modal 

control theory has been applied to the single rotor helicopter by Parry and
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Murray—Smith [18].

2 .2 .2  ) Modal Control Design Methods

As explained, the equations of motion for helicopters are linearized for 

design purposes. Recall Equations 2.2 and 2.3 which give the state space 

representation of the helicopter plant in terms of: the state vector, x; the control 

vector, u; the output vector, z; the system matrix, [A]; the input distribution 

matrix, [B]; and the output matrix, [C].

x = [A]x + [B]u E q u a tio n  2 .2

z  = [C]x Equat i on  2 . 3

In the above equations it is assumed that the rank of all three system 

matrices: [A], [B], and [C], is full. That is, r([A])= n, r([B])= m, and r([C])= k.

When the output signal, z, is fed back through an mxk matrix [K] to 

provide control, the control signal, u, is given by,

u = r. -  [K]z Equat i on  2 . 7

Where r is a reference control input. Substitution of Equations 2.3 and 2.7 

into Equation 2.2 gives,

k  = ( [A] -  [B][K][C]  ] x + [B]r  Equa t i o n  2 . 8

If,

[Ac ] = [A] -  [B] [K] [C]  Equat i on  2 . 9

Then Equation 2.8 reduces to,

x = [Ac ]x + [B]r  Equat i on  2 . 1 0

The location of the poles are given by the eigenvalues of [A] for the open

loop system and by the eigenvalues of [A J  for the closed loop system. The

eigenvalues of the closed loop system matrix, [Ac], are a function of the feedback

matrix, [K]. Since the location of the poles determines the stability and rise

times of the system in response to perturbations, the use of the feedback matrix,
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[K], allows the elimination of undesirable slower dynamics in the closed loop 

system [31], thereby improving the vehicle's agility.

In their discussion of output feedback, Andry et. al. [33] have shown for the 

system being considered, that with the states both controllable and observable, it 

is possible to assign max(m,k) closed loop eigenvalues. Furthermore, max(m,k) 

closed loop eigenvectors can be partially assigned with min(m,k) degrees of 

freedom. This is a result of the mxk degrees of freedom provided by the 

feedback matrix, [K].

If it is advantageous for the system to have the desired 

eigenvalue/eigenvector pair (Xj,^), then the modal control problem can be 

expressed as the need to find a real feedback matrix, [K], such that,

[A] -  [B] [K] [C]  i  = X i  Equat i on  2 . 11

When the closed loop eigenvalues are distinct from the open loop

eigenvalues, it is possible to rearrange Equation 2.11 into the form,

i ,  -  ( [A] -  X . [ I ] 1 [ B ] [ K ] [ C ] i  Equat i on  2 . 1 2

If the two sets of eigenvalues were not distinct, it would not be possible to 

invert ([A]— X}[I]) since it would be singular.

One of the major contributions to modal control theory was made by 

Sinswat and Fallside [32] by defining an m dimensional vector mj as,

m. = [K] [C]£.. Equat i on  2 . 1 3

For a nonzero eigenvector, v_], it is possible to consider the vector mj as 

arbitrary in m—space. Therefore, rewriting Equation 2.12 as,

[A] -  X . [ I ]  ̂ [B]mj Equat i on  2 . 1 4

It becomes clear that the closed loop system eigenvector must lie in an m 

dimensional subspace of the n dimensional system space. Parry and 

Murray—Smith [18] state that the closed loop eigenvectors must be contained in 

the subspace UXj,[A],[B]) spanned by the columns of ([A]— Xj)-  *[B]. Hence, the 

assignable subspace for each eigenvector, v̂ , is a function of the input distribution 

matrix, [B], the system matrix, [A], and the eigenvalue, Xj, for that particular 

eigenvector.
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Assuming that the closed loop eigenvalues have been chosen (on the basis of 

handling quality criteria), it is necessary to select an assignable eigenvector for 

each of the system modes. While the eigenvalues determine the location of a 

system's poles, the eigenvectors determine the locations of response zeros and 

hence the response shape [33]. The amplitudes of the elements in an eigenvector

determine the strength of that particular mode on each of the system states. If

it is desirable to eliminate a mode on particular states, the elements of the 

eigenvector corresponding to those states should then have amplitudes which are 

much smaller than the amplitudes for the elements corresponding to the states on 

which the mode is to be present. Ideally, the small amplitudes on the unwanted

states will be zero. It is therefore necessary to have a clear idea about how the

rigid body modes of the helicopter are to be distributed among the states before 

system eigenvectors can be assigned.

In order to ease the pilot's workload, it is beneficial to decouple the 

longitudinal and lateral dynamics as much as possible. To this end, desirable 

subspaces are defined for each particular mode. For the helicopter flight control 

systems discussed in the following sections the desirable subspaces are defined by 

the basis vectors shown in Table 2.1 [18].

Table 2.1: The state distribution of the system modes.

Mode Su b sp a ce  E i g e n v e c t o r  E l e m e n t s

U w q e V p <p r

F a s t  P i t c h II

hb
pH 0 1 0 0 0 0 0 0

Sl ow  P i t c h l 0 0 0 0 0 0 0
Z

0 0 1 0 0 0 0 0

0 0 0 l 0 0 0 0

Phugo i d 1 0 0 0 0 0 0 0
J

0 0 1 0 0 0 0 0

0 0 0 l 0 0 0 0

R o l l II 0 0 0 0 0 1 0 0

Spi  r a l
4 -

0 0 0 0 0 0 1 0

Dutch  R o l 1 0 0 0 0 1 0 0 0
D

0 0 0 0 0 0 0 1
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The choice of basis vectors for each subspace is not arbitrary since the 

modes must be associated with their relevant rigid body states. Table 2.1 shows

that the fast pitch mode would ideally be confined to the vertical velocity state, 

w, while the slow pitch and phugoid modes would be present on the forward 

velocity, u, pitch rate, q, and pitch angle, 8, states. The desired roll mode

would be found solely on the roll rate, p. The roll angle state, p, is the only 

channel excited by the desired spiral mode. The Dutch roll mode would ideally 

be found on the lateral velocity, v, and the yaw rate, r. Any eigenvectors which 

are spanned by the above desirable subspaces, Uj, would eliminate coupling 

between longitudinal and lateral states for that particular mode.

On the actual closed loop system, it is not possible to achieve the complete

decoupling of longitudinal and lateral states. It is therefore necessary to assign

the feedback gain elements so as to minimize the difference between the 

assignable eigenvectors and those which are desired, thereby minimizing the 

coupling between states. Principal angles measure the amount by which two

subspaces are inclined to each other [34]. The desired subspaces, Uj, are as

decoupled as ideal helicopter plant dynamics would allow. The assignable 

subspaces, Tj, define the subspace over which the system eigenvectors, .̂j, may

reside. By choosing the eigenvector, in the assignable subspace, T j ,  such that 

the first principal angle, , between and the desired subspace, Uj, is 

minimized, the amount of coupling in the system is also minimized. Parry and 

Murray—Smith [18] demonstrate that the use of principal angles allows one to 

measure the amount of mode coupling between states in addition to providing a 

means of minimizing the coupling.

For the problem at hand, let the two subspaces, Tj and Uj, have dimensions 

such that,

n ^ p = dim ( Tj ) ^ dim ( Uj ) = q ^ 1 Equat i on  2 . 1 5

By defining Tj and Uj as subspaces of the n dimensional unitary space En, 

the q principal angles, 9 ^ , between Tj and Uj are defined by Bjorck and Golub 

[35] to be,

H
c o s  9 . ,  = max max u .  v .  

lk  i| i iu.  e r .  v .  eU.- i  l “ l l

l k =  1 , ~ i k
=  1

H
u -i ¥ - i~ lk  lk E q u a t i o n  2 . 1 6

Equati on  2 . 1 7
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Where the u^ and vj  ̂ are constrained by,

The set of vectors uj^ and v ^  are defined as the q principal vectors of the 

pair of subspaces Tj and Up The subset of principal vectors, u^> is the set of 

assignable eigenvectors, £j, which will minimize the coupling in the system.

An alternate approach to understanding the above is presented by Andry et. 

al. [33]. If the desired subspace, Up is of one dimension, then the projection of 

the desired eigenvector, Uj, onto the assignable subspace Tp finds the assignable 

eigenvector, jy, which will minimize the coupling in the system. Consider Figure

2 . 2  which shows a two dimensional assignable subspace, Tp and a one 

dimensional desired subspace, Up

Figure 2.2: The projection of a desirable one dimensional subspace, Up onto an

The principal vector, up is simply the projection of the desired subspace, Up 

onto Tp Although principal angles give a direct measure of the inclination 

between subspaces, the solution of the problem from the viewpoint of projections 

allows one to see that this method of eigenvector assignment reduces coupling in 

a least squares sense. This follows from the fact that minimizing the first

principal angle between the assignable and desired eigenvectors brings these 

vectors as close to each other as possible for a least squares solution [33].

The calculation of principal angles, 0 ^ , and principal vectors, uj^, is most

accurately accomplished using singular values. Bjorck and Golub [35] give the

following theorem relating the singular value decomposition (SVD) of a matrix to

x

7 ^
assignable two dimensional subspace, Fp
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the principal angles and principal vectors of the two subspaces used to form the 

matrix.

Assume that the columns o f  [ Q a n d  [Q \)i] form  unitary bases fo r  two 

subspaces o f  a unitary space En . Put

[Mi l  -  [Qr i ] H[ 0 \ J i ] , 

and let the SVD o f  this pxq matrix be

[ M i l  -  [ Y , ] [ C t ] [ Z t ] H , [ C j J  -  d i a g  ( a j V  <r[ 2 ............ a  J

where [ Y ^ f Y i ]  =  [ Z ^ f Z i J  =  /Z;7/Z;7H =  [Iq]. I f  we assume that 

ai l - a i2 - " ‘- (Tiq> t îen t îe principal angles and principal vectors associated 

with this pair o f  subspaces are given by

c o s  9 /k  " (r, k ( [ H d ) ’ I u i ] = f v iJ ~

For the applications discussed here, [Qpj] is a unitary basis for Tj and [Q y]

is a unitary basis for Up Klema and Laub [36] show that the singular values of 

the matrix, [Mj], are the positive square roots of the eigenvalues of the matrix, 

[Mj]T[Mj]. The assignable eigenvectors, jij, of the system are given by the 

orthonormal eigenvector of corresponding to the largest singular value

for each of the i pairs of desirable and assignable subspaces.

At this stage, the eigenvalues have been chosen on the grounds of giving the 

system acceptable rates of transient response and the eigenvectors have been

selected in order to minimize the coupling in the system. The only task 

remaining in the design of the modal controller is the calculation of the feedback 

gains which will yield the designed eigenvalue/eigenvector pair (Xpjij). Recall 

Equation 2.11,

[A] -  [B] [K] [C] |  £.. = X. 21 . E q u a t i o n  2 . 1 1

Restating Equation 2.11 in terms of the kxk diagonal eigenvalue matrix, [A],

and the nxk eigenvector matrix, [V], one derives Equation 2.19. Modified Jordan 

canonical form is used for [A] and [V] when there are multiple eigenvalues.
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[A] -  [BJ[K][C]  [V] -  [V][A] E q u a t i o n  2 . 1 9

Rearrangement gives,

[ B ] [ K ] [ C ] [ V ]  -  ( [A][V]  -  [V][A]

Solving for the feedback matrix, [K], yields,

E q u a t i o n  2 . 2 0

[K] -  [ B3f ( [A][V]  -  [V][A]  ] ( [C][V]  ] 1  E q u a t i o n  2 . 2 1

The psuedo—inverse of the input distribution matrix, [B]^, is found from 

calculating the matrix product,

B1 = B l V w E q u a t i o n  2 . 2 2

Modal control techniques have been used in the design of two flight control 

systems which will be discussed in the following sections.

2.2.3 ) The Parry Modal Controller

A flight control system using modal control theory as discussed above has 

been developed by Parry and Murray—Smith [18]. The structure of the controller 

consists of a feedback matrix which provides the desired eigenstructure assignment 

and an input precompensator matrix which is designed to decouple the pilot 

inputs as much as possible. The flight control system is shown in Figure 2.3 for 

a linear time invariant sysiem plant.

R( s )
+ A

[A]

► X ( s )

Figure 2.3: The structure of the Parry Modal Controller.
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The equations governing the above system are a straightforward extension of 

the modal control equations (Equations 2.2 and 2.7).

x = [A]x  + [B]u E q u a t i o n  2 . 2

u = [ P ] r  -
P

E q u a t i o n  2 . 2 3

An implicit assumption concerning the structure of the controller in Figure

2.3 is that all states are observable. Since full state feedback is used, there is 

no need for an output matrix in the above system since it would merely be the 

identity matrix. From the theory presented by Andry et. al. [33], it will be 

possible to arbitarily reassign all 8  eigenvalues and 4 degrees of freedom for each 

of the 8  eigenvectors using full state feedback. The closed loop equation 

governing the system is,

The design of the controller was carried out for a flight condition of 80.0 

knots forward speed. This speed was chosen because future military helicopters

will need to perform NOE manoeuvres at relatively high velocities. In addition,

it was hoped that selecting a design point in the middle of the forward flight

envelope would minimize the amount of gain scheduling which would be 

necessary. As the elements of [A] and [B] migrate, the gains of the feedback 

matrix, [K], will need to change if the system eigenvalues and eigenvectors are to 

remain constant.

At 80.0 knots level flight, the open loop eigenvalues and eigenvectors for an 

eighth order representation of the helicopter are given in Table 2.2. The

uncontrolled aircraft has several undesirable characteristics. Examination of the 

open loop eigenvalues shows that the phugoid mode is unstable with a time to 

double amplitude of 5.2 seconds and a frequency of 0.060 Hz. [18]. The second 

adverse characteristic is the light damping of the Dutch roll mode. Although 

stable, Dutch roll oscillations do not decay rapidly. In terms of the eigenvectors, 

mode coupling between longitudinal and lateral states is high. The fast pitch 

mode is strong on the vertical velocity, w, and the lateral velocity, v. The 

phugoid mode is spread out across the three linear velocities, u, w, and v. The 

roll mode shows coupling between lateral velocity, v, roll rate, p, and vertical 

velocity, w. The spiral mode is present on u, v, and <p. The open loop 

eigenvectors show a considerable degree of coupling between the longitudinal and 

lateral dynamics.

x ( [A] -  [B] [K ] ] x + [B] [P] r E q u a t i o n  2 . 2 4
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Table 2.2: The open loop system eigenvalues and eigenvectors.

Mode F a s t  
Pi t c h

S low  
Pi t c h

P h u g io d Rol 1 Spi  r a l Dutch  
Rol 1

E i g e n v a l u e - 3 . 1 9 9 - 0 . 0 4 0 6 0 . 1 3 4  
±jO.376

- 1 0 . 5 4 - 0 . 0 3 1 - 0 . 6 5 4  
± j 2 .255

E i g e n v e c t o r

u 0 . 0 3 8 2 - . 5 8 3 7 0 . 80 7 0  
±jO.0000

0 . 0 1 3 8 - . 3 9 1 7 -.0 0 0 2  
+ j .0046

w 0 . 9 5 9 1 0 . 8 0 8 8 0 . 2 6 1 7  
+j O.495

0 . 3 0 1 5 - . 0 0 5 7 - . 0 1 0 9  
+ j .0166

q - . 0 1 6 8 0 . 0 0 2 5 0 . 0 0 3 3  
+j O.0028

- . 0 1 7 7 - .0 0 1 0 0 . 0003  
+ j .0002

e 0 . 00 5 2 - . 0 0 5 9 - . 0 0 3 9
+j 0 . 0 1 0 0

0 . 00 1 5 0 . 0 0 0 0 - . 0 0 0 4  
+ j .0001

V 0 . 2 7 9 7 0 . 0 7 0 3 0 . 1 0 7 6  
+j O.1518

0 . 8 8 7 9 0 . 9 1 0 6 0. 9996  
± j .0000

p 0 . 01 1 8 0 . 0 0 5 6 - .0 0 0 2  
+j O.0021

0 . 3 3 9 4 - . 0 0 4 6 - . 0 0 4 9  
± j .0015

<p - 0 . 0 0 4 - . 0 1 3 7 - . 0 0 5 1
+ j 0 . 0011

- . 0 3 2 3 0 . 12 8 3 0 .0 0 1 1  
± j .0018

r 0 . 0 0 5 7 - . 0 0 3 1 - . 0 0 1 9  
+j O.0003

0 . 0 6 3 0 0 . 02 9 9 0. 0039  
+ j .0164

The choice of eigenvalues for the closed loop system is often a compromise 

between decreasing coupling and increasing the rate of response [18]. By plotting 

the variation of the first principal angle, ©jj, for each mode versus the 

corresponding eigenvalue, \j, it is possible to choose the eigenvalues, Xj, with 

relative ease. Once the eigenvalues, Xj, have been assigned, the closed loop 

eigenvectors which yield minimal coupling are calculated. The results of this 

procedure are displayed in Table 2.3. The closed loop eigenstructure is much 

better behaved than its open loop counterpart. All of the eigenvalues, except the 

spiral mode, are stable and the oscillations of the phugoid and Dutch roll modes 

are much more heavily damped. The spiral mode eigenvalue was placed at 0.00 

in order to minimize coupling. Coupling on the spiral mode is particularly strong 

because the heading angle, ip, is not used for stability augmentation. Tests have 

shown that spiral mode coupling can be greatly decreased if \[/ is fed back to 

provide stability. However, the use of ^ for stability augmentation causes 

difficulties when a pilot wishes to execute a turn. The most efficient means of
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turning a helicopter is by rolling the aircraft into a turn and flight controllers are 

designed acknowledging this fact. Because the pilot's roll command affects

heading indirectly, a sophisticated turn coordination controller would be required if 

heading angle, \P, is part of the feedback signal. Since the spiral mode 

divergence is slow, it is well within a pilot's ability to control. Therefore, the 

spiral mode eigenvalue of 0.00 was deemed acceptable. The closed loop 

eigenvectors show a great improvement in the decoupling of longitudinal and 

lateral dynamics. The modes are confined to the desired states. This is borne 

out by the first principal angle for each mode — the values are small.

Table 2.3: The closed loop system eigenvalues, eigenvectors and principal angles.

Mode F a s t  
Pi  t c h

S 1 ow 
Pi t c h

P h u g o i d Rol  1 S p i  r a l D u t c h  
Rol  1

Ei g e n v a l u e - 4 . 0 0 0 - 2 . 0 0 0 - 3 . 0 0 0  
± j l •732

- 1 1 . 0 0 0 . 0 0 0 0 - 6 . 0 0 0  
±j 3 . 4 6 5

E i g e n v e c t o r

u - . 0 0 3 1 0 . 9 9 6 3 0 . 9 8 2 5
♦jO.OOOO

- . 0 0 0 5 - .0 0 0 0 - .0 0 0 1  
+ j . 0001

w 0 . 9 9 9 9 - .0 0 0 0 0 . 0 0 0 0

± j 0 . 0 0 0 0
0 . 0 0 0 0 0 .0 0 0 1 - .0 0 0 0

♦jO.OOO

q - .0 0 0 1 - . 0 7 6 8 - . 1 4 0 5  
± j O . 1108

0 . 0 0 0 7 - . 0 0 7 6 - . 0 0 0 4
+ j 0 . 0 0 0

6 0 . 0 0 3 6 0 . 0 3 8 4 0 . 0 5 1 1  
+j O . 0 0 7 4

0 . 0 0 0 0 0 . 0 0 0 8 - .0 0 0 0  
± j . 0 0 0 0

V - .0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0  

+j O . 0 0 0 0
0 . 0 0 3 4 0 .0 0 0 1 0 . 9 9 8 6  

+j . 0001

P 0 . 0 0 0 0 - .0 0 0 1 - .0 0 0 1  
±j O. 0 0 0 0

0 . 9 9 5 2 - . 0 0 5 0 - .0 0 0 0  
± j . 0000

<P - .0 0 0 0 0 .0 0 0 1 0 .0 0 0 1
+ j 0 . 0 0 0 1

- . 0 9 0 4 0 . 9 7 2 8 - .0 0 0 0  
± j . 0 0 0 0

r 0 .0 0 0 1 - . 0 0 2 4 - . 0 0 4 2  
±j O. 0 0 4 0

- . 0 3 8 2 0 . 2 3 1 6 0 . 0 4 5 1  
+j O . 287

P r i n c i p a l
A n g l e s

0 . 8 8 1 3 ° 0 . 1 3 5 5 ° 0 . 3 3 3 2 ° 5 . 6 3 4 ° 1 3 . 4 0 ° 0 . 0 2 8 4 °
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The feedback matrix, [Kp], is then calculated using Equation 2.21 

The design of the precompensator matrix, [P], shown in Figure 2.3, is based 

on the rows of the input distribution matrix, [B], corresponding to the 4 states 

which are to be controlled directly from the pilot's inceptors. The philosophy 

behind the distribution of the pilot inputs was: the collective lever would

command changes in vertical velocity, the longitudinal inceptor would command 

changes in forward velocity, the lateral inceptor would command roll rates, and 

the pedals would command changes in lateral velocity.

The first step in the design of the precompensator, [P], was the creation of 

a matrix, [Bj], containing the appropriate rows of the input distribution matrix,

[B], as given by Equation 2.25.

1 J

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

Equat i on  2 . 2 5

By defining the precompensator matrix, [P], as the inverse of [Bj] (Equation 

2.26), the rows of the pilot—controlled states of the modified input distribution 

matrix, [Bc], (Equation 2.27) approximate the identity matrix [18].

[P] = Equat i on  2 . 2 6

[Bc ] = [B] [P]  Equat i on  2 . 2 7

With this precompensator design, the pilot inputs are fed through the system 

to the outputs of the input distribution matrix, [B], where they act as a reference 

signal for the system plant loop of the integrators and system matrix, [A]. Since 

the precompensator matrix, [P], is external to the feedback loop, its design has 

no effect on the system eigenstructure.

For implementation as a computer simulation model, an important change 

was made to the structure as shown in Figure 2.3. The inputs to the input 

distribution matrix correspond to the outputs of the swash plate actuators. These 

actuators have dynamics of their own which are conveniently modelled as first 

order delays with time constant r. Thus, the simulation model of the modal 

controller of Parry and Murray-Smith has the structure shown in Figure 2.4.
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X ( s )

r s

[A]

Figure 2.4: The structure of the Parry Modal Controller as implemented for 

computer simulation.

The simulated state responses to a step input of full amplitude 1.0 (standard 

test amplitude) on the vertical inceptor are shown in Figure 2.5. This input will 

be used to move between two steady state vertical velocities. The 0.25 ft/s 

change in vertical velocity, w, is made rapidly with a small amount of overshoot. 

Although the amplitudes of the responses are small, it can be seen that coupling 

is minimal in terms of pitch, roll and yaw. The pitching response, 8, is less 

than 0.005 radians, while the longitudinal and lateral velocities change by 0.07 

ft/s and 0.03 ft/s respectively.

Figure 2.6 shows the simulated state responses to a step input of amplitude 

1.0 on the longitudinal inceptor. The resulting change in forward velocity, u, 

only begins to occur after a delay of 0.5 seconds from the application of the 

input. The nature of this response is due to the slower phugoid and slow pitch 

modes which are excited during the manoeuvre. Transients in vertical velocity, 

w, are approximately half the amplitude of the forward velocity, u, change. 

However, coupling to the lateral states is minimal.

A doublet input with pulses of standard 1.0 second duration on the lateral 

(roll) inceptor generates the simulated responses of Figure 2.7. The input is 

tracked successfully by the system roll rate, p, as expected by the roll eigenvalue 

of —11.00. However, the yaw rate, r, is far from smooth, with the higher 

harmonics of the input showing through in the response.

A step input on the pedals (lateral velocity inceptor) generates a sideslip as 

shown in Figure 2.8. The system response is confined to the forward velocity, u, 

the lateral velociy, v, and the yaw rate, r, channels. Once again, it can be seen 

that coupling is minimal.

The Parry Modal Controller has also been used to control a nonlinear 

HELISIM3 plant. The system responses to vertical, longitudinal, roll, and lateral 

(pedal) inceptor inputs are shown in Figures 2.9 to 2.12 respectively. In
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response to steps on the vertical and longitudinal inceptors (Figures 2.9 and 2.10),  

the system shows a lightly damped oscillation. The combination of rotor and 

actuator dynamics moves the phugoid eigenvalue from — 3.0±jl .7 to — 1.7±j5.5.  

The delay in forward velocity response is again in evidence in Figure 2.10. 

Figure 2.11 shows once more that the yaw rate in response to a roll command

doublet is not consistent with a steady turn. Another problem which arises with 

the inclusion of rotor dynamics concerns the stability of the spiral mode which 

has migrated to 0.001. The roll angle, and yaw rate, r, in Figure 2.12 show 

that the spiral mode is unstable.

The responses of the Parry Modal Controller as shown by Figures 2.5—2.12 

are encouraging. Although problems exist, coupling between longitudinal and 

lateral states is minimal. Stability has been enhanced, but as reported by other

authors [9], high order dynamics can adversely affect stability: the phugoid and 

spiral modes in this example. Vertical, roll, and lateral responses are quick, but 

the delay in the longitudinal response will probably be unacceptable for pilots. 

In addition the yaw rate response to roll inputs is far from desirable. For these 

reasons, it is concluded that although the Parry Modal Controller is effective in 

stabilizing the system, some sort of command augmentation would greatly facilitate 

control. Command augmentation could also be designed to yield desirable levels

of response; the Parry Modal Controller, as presented here, does not have

enough input authority due to a lack of scaling of the precompensator matrix.

2.2.4 ) An Acceleration Dem and Flight Path Controller

In an attempt to provide the command augmentation lacking with the Parry

Modal Controller, an acceleration demand flight path controller was developed

during preparations for a real-tim e flight simulation trial (Chapter 7). There

were three constraints which were imposed on the structure of the new Flight 

Path Controller. First, the flight control system was to be based on 

eigenstructure assignment in a similar manner to the original Parry Modal 

Controller design. Second, the pilot inputs were required to pass through an 

integrator before they were input to the actuators. By passing the inputs through 

an integrator, it would be possible for the pilot to employ a pulse width 

modulation control strategy. Changes in steady state velocities would be 

proportional to the amplitude of inceptor displacements and the length of time

that the displacement was present. It was hoped that this control strategy would 

allow sidearm controllers to be used on all input channels since these inceptors
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have advantages over conventional helicopter controls [37]. Finally, the Flight 

Path Controller should regulate the quantities demanded by the pilot. In this 

case, the pilot input demands are for: vertical acceleration, w; forward

acceleration, u; roll rate, p; and lateral acceleration, v, in earth fixed axes. As 

will be demonstrated in the following, the structure was built up in a rather

heuristic manner. Nevertheless, the results of computer simulation tests are good.

2 .2 .4 .1  ) Acceleration Dem and Flight Path Controller Theory

The structure of the Acceleration Demand Flight Path Controller results from 

the pilot input strategy which is to be employed during flight. Since one of the 

design aims was to regulate the linear accelerations and the roll rate, it was

apparent that a feedback loop in addition to the stability augmentation loop of 

the Parry Modal Controller would be required. This command augmentation

feedback loop would allow a regulator structure to be applied to the acceleration 

demands and, at the same time, allow the integration of pilot inputs to be 

carried out as part of a closed loop. Open loop integrators are undesirable for 

aircraft flight controllers because they are more prone to saturation and must be 

zeroed before the aircraft takes off. Prior to the summing junction of the 

command regulator, the pilot inputs would be converted from inceptor 

displacements to earth axis acceleration demands by the diagonal pilot input gain 

matrix, [G], and then into body axis demands by the conversion matrix, [rj]. 

The following diagram shows the control structure which was implemented as the 

Flight Path Controller.

R( s )

X(s )

[A]
E( s )k>r[G]

Figure 2.13: The Structure of the Flight Path Controller.
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In the above, the feedback distribution matrix, [£], is used to select the 

particular quantities from the acceleration vector, Y(s), which are to be compared 

with the pilot inputs in the body axes coordinate system.

[«]  =

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0

E q u a t i o n  2 . 2 8

The conversion matrix, [ 17], is a matrix containing the appropriate Euler 

angle relationships to map the pilot's earth axes demands onto the body axes of 

the vehicle. If the earth axes demand vector is,

*E
E a r t h  a x i s v e r t  i c a l a c c e l e r a t i o n

UE E a r t h  a x i s fo r w a r d a c c e l e r a t  i o n

PE
R o l l  r a t e

^E E a r t h  a x i s l a t e r a l a c c e l e r a t  i o n

E q u a t i o n  2 . 2 9

Then, with the body axis demand vector defined as,

*B Body a x i s v e r t  i c a l a c c e l e r a t  i o n

Body a x i s fo r w a r d a c c e l e r a t  i o n

PB R o l l r a t e

^B
Body a x i s l a t e r a l a c c e l e r a t  i o n

E q u a t i o n  2 . 3 0

The conversion matrix is defined by,

“ b *E

PB
-

. 11 ]
UE

PE

*E

be,

E q u a t i o n  2 . 3 1

The elements of the conversion matrix, [rj], are given by Tomlinson [38] to

-  4 1  -



I D  =

COS0 COSlJf

siny? s i n 0 cos\p 
-  c o s p sin\(/

0

co s  0 s ini /

s i n^  s i n 0 s inip 
+ c o s p  COSl/'

0

- s i n l

sin<p c o s  0

c o s<p s i n 0 cosip c o s p  s i n 0 sirup 0  cos^> c o s 0
+ s in<p sin\^ -  s i n ^  c o s /

Equ a t i o n  2 . 3 2

Where 0 = p i t c h  a t t i t u d e  

p  =* r o l  1 a n g l e  

\p — h ea d in g  ang l e

The equations governing the Flight Path Controller of Figure 2.13 are,

E ( s )  = [ 17] [G] R( s )  -  [£] Y(s )  Equ a t i o n  2 . 3 3

Y(S)  -  [A] X( s )  + [ B] i [ P]  E( s )  -  [B][K] X ( s )

Equ a t i o n  2 . 3 4

X ( s )  =  ̂ Y( s )  Equ a t i o n  2 . 3 5

Rearranging Equation 2.35 and substituting Equations 2.33 and 2.34 for E(s) 

and Y(s), the resulting equation for the velocity state vector, X(s), is,

X( s )  -  { s [ I ] -  [A] + [B] [K] + [B] [P] [£ ] I " 1 [ B ] | [ P ]  [ij] [G] R(s )

Equa t i o n  2 . 3 6

The closed loop transfer function matrix for the Flight Path Controller is 

given by,

[W(s) ]  -  { s [ I ]  -  [A] + [B][K] + [ B ] [ P ] m  j ' 1  [ B } | [ P ]  [ij] [C]

Equa t i o n  2 . 3 7
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At this point, it is worth considering the characteristic equation for the 

Flight Path Controller, which is given by,

e ( s )  = s [ I ] -  [A] + [B][K] + [ B ] [ P ] [£]  E q u a t i o n  2 . 3 8

By equating the Flight Path Controller's characteristic polynomial to the 

characteristic polynomial for the Parry Modal Controller, it is possible to ensure 

that the Flight Path Controller retains the same eigenstructure assignment.

s [ I ]  -  [A] + [B][K]  + [ B ] [ P ] [ { ]  = s [ I ] -  [A] + [B ] [ K p ]

E q u a t i o n  2 . 3 9

Equation 2.39 can be simplified to yield,

[Kp ] = [K] + [ P ] [ £ ]  E q u a t i o n  2 . 4 0

To solve Equation 2.40, a second expression for the feedback matrix, [K], 

and the precompensator matrix, [P], must be found. This second equation can 

be deduced by using the final value theorem to define the desired steady state

accelerations of the system to the pilot inputs.

The final value theorem is,

lira [ y ( t > ]  = l im  s [Y ( s ) ] E q u a t i o n  2 . 4 1
t-*» s -»0

It should be noted that [y(t)] is the 8x4 matrix made up of the four

acceleration vectors, y(t), which result from each of the four pilot inceptors being

individually excited by a unit step input. Using Equations 2.35 and 2.36 from

above, the following simplifications can be made,

l i m [ y ( t ) ]  = s ^ [ X ( s ) ]  E q u a t i o n  2 . 4 2
t-*» s -»0

H m  [ y ( t ) ]  _  l im  s 2  [ s [ I ] -  [A] + [B] [K] + [ B ] [ P ] [ £ ]  [
t-*» s -»0

x [B]  ̂[P] [ 17] [G] [ R ( s )  ] E q u a t i o n  2 . 4 3

As stated, the pilot input matrix, [R(s)], is a diagonal matrix representing a 

unit step on each of the four pilot inceptors,
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[ R( s ) ]  -  -  [ I ]  Equat i on  2 . 4 4

Where [I] is the identity matrix. Further simplification of Equation 2.43 gives,

lim  [ y ( t ) ] = lim  s 2  j s [ I ]  _ [A] + [B] [K] + [ B ] [ P ] [ £ ]  } - 1  
t-*» s^O L J

X [B]^[P]  [ rj] [G]  ̂ Equa t i o n  2 . 4 5

l l m  [ y ( t ) l  -  H "> { s [ I ]  -  [A] + [B] [K] + [B] [P] [£ ] }'
t-*» S -»0 1 J

1 S  | 1  | -  I A  | +  I t s  I I K  I +  I t f l l t ' l l t l
s-»0

x  [B] [P] [ 17] [G] Equa t i o n  2 . 4 6

Hm [ y ( t ) ]  _  f _ [A] + [B][K] + [B] [P] [£ ] I ' 1 [B] [P] [r,] [G] 
t-*» L J

Equa t i o n  2 . 47

Remembering that the desired steady state accelerations are given by the 

diagonal pilot input gain matrix, [G], in steady state,

* *m [ £ ] [ y ( 0 ]  = [G] Equ a t i o n  2 . 4 8
t-*»

And therefore,

[G] - [ £ ] { -  [A] + [B][K]  + [ B ] [ P ] [ £ ]  } 1 [B] [P] [77] [G]

Equat i o n  2 . 4 9

Rearranging gives,

b l ' V r 1 - [ ? ] { -  [A] + [B][K] + [ B ] [ P ] [ £ ]  } _1 [B]

Equat i on 2 . 5 0

And,

[P ] " 1 -  [rj] [£ ] { -  [A] + [B](K] + [ B ] [ P ] [ | ]  j ' 1 [B]

Equat i o n  2 . 5 1

Recalling Equation 2.40, it is possible to solve for the elements of the 

precompensator matrix, [P], in terms of the elements of the feedback matrix of
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the Parry Modal Controller, [Kp].

[P] 1 = [ y ] [ Z ]  { -  [A] + [B][Kp] ] 1 [B] E qu ation  2 . 5 2

Substitution of the resulting precompensator matrix into Equation 2.40, allows 

the feedback matrix for the Flight Path Controller, [K], to be determined.

[K] = [Kp] -  [ P ] [ £ ]  E q u ation  2 . 5 3

As stated above, the pilot input gain matrix, [G], is diagonal. The gains

are chosen to yield reasonable rates of acceleration. The lateral inceptor gain

controlling roll rate amplitude had to be set through trial and error because of a

poor transmittance of roll command inputs to the lateral cyclic actuator. Part of 

the problem is that the command augmentation loop feedback signal is based on

roll angle, p, rather than on roll rate, p. Since the lateral cyclic actuator has a

weak authority over roll angle, <p, in comparison to roll rate, p, the energy of

the pilot's roll comand is ineffective in terms of generating a roll rate.

Although the eigenstructure of the Parry Modal Controller was used as a 

basis for the design of the Flight Path Controller, two of the deficiencies of the 

former were rectified by relocating the closed loop phugoid and spiral mode 

eigenvalues. Phugoid oscillations were controlled by reducing the gain such that 

the phugoid eigenvalue was designed as — 1.0±j0.58. As will be seen in the 

results of the following section, phugoid oscillations are absent. Indeed, the 

inclusion of rotor and actuator dynamics only pushes the location of this pole to 

— 1.0±j0.57. Spiral mode divergence was eliminated by relocating the designed,

closed loop pole from 0.0 to —0.25.

The values for all elements of the control matrices of the Flight Path 

Controller, for a design point of 80.0 knots level flight are listed in Appendix 1.

2 .2 .4 .2  ) Acceleration Demand Flight Path Controller Simulation Results

The Flight Path Controller has been tested using both linear and nonlinear 

representations of the helicopter plant in a computer simulation study. The plots 

of Figures 2.14 through 2.17 show the simulated body axes responses of the 

system with an eighth order linear plant. Figure 2.14 shows the response with 

respect to a 1.0 second full amplitude pulse on the vertical inceptor. Within a 

second, the vertical velocity has changed by 10 feet per second. The response is
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acceptable because the overshoot is negligible and the amount of coupling to 

other states for the input is small. The transient in forward velocity has an

amplitude of less than 0.7 feet per second, which is acceptable. The responses 

of Figure 2.15 for a 1.0 second pulse on the longitudinal inceptor show that 

slower modes are present on the forward velocity channel. Whereas the change 

in vertical velocity to the vertical inceptor input reaches its steady state value in 

approximately 1 second, the rise time for forward velocity is greater than 3

seconds. Although the delay in the forward velocity response is still a cause for

concern, the change in velocity is monotonically smooth. Figure 2.16 shows the 

system response to a doublet of 10% amplitude on the lateral inceptor. Coupling 

to the longitudinal states with a roll inceptor input is small, and the yaw rate 

response, r, is more indicative of a smooth turn than was the yaw response of 

the Parry Modal Controller. The lateral velocity, v, follows the input quite well, 

showing very little steady state offset, as desired for a doublet input. The roll 

rate, p, and roll angle, <p, responses of Figure 2.16 show undesirable features. 

At the end of the positive roll acceleration demand at 1.5 seconds, the vehicle's 

roll rate begins to decay. This decay results from the feedback in the command 

augmentation loop. Since the doublet input has amplitude 0.0 between 1.5 

seconds and 2.5 seconds, the finite, nonzero roll rate feedback will try to drive 

the system to zero roll rate. When the negative pulse of the doublet is applied 

at 2.5 seconds the roll rate, p, has decreased. Unfortunately, because of the

decay in roll rate between 1.5 and 2.5 seconds, the negative pulse of the input 

drives the system to a negative roll rate, rather than to a zero roll rate. At the 

end of the negative doublet pulse, at 3.5 seconds, the command loop feedback 

again starts to drive the roll rate back to zero. The roll rate feedback in the 

command augmentation loop is responsible for the undesirable roll characteristics. 

The amount of decay in roll rate will be dependent on the length of the 

deadband between the positive and negative pulses of the doublet. If the doublet 

deadband were zero, the decay would not be noticeable to a pilot, but it is clear 

that further work remains to be done in terms of developing a command 

augmentation system to complement the Parry Modal Controller. The system 

response to a pulse input on the pedals is almost ideal (Figure 2.17). The step 

change in lateral velocity, v, of over 9 feet per second is accomplished rapidly 

and without overshoot. In addition, coupling is almost nonexistent, except for a 

vertical velocity change of less than 0.35 feet per second.

When the same controller is used with the HELISIM3 plant, the adverse 

effects of rotor dynamics become clear. Figures 2.18 to 2.21 are the HELISIM3 

equivalents of Figures 2.14 to 2.17. Figure 2.18 shows the closed loop system
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response (nonlinear HELISIM3 plant) to a 1.0 second pulse on the vertical 

inceptor. The lateral states are not only coupled to the longitudinal states to a 

much higher degree, but the responses of the nonlinear system also differ from 

those of the linear system 2 seconds after the input has been initiated. This 

indicates that the nonlinear system is moving away from the controller's design 

point.

Figure 2.19 is the nonlinear response to a longitudinal inceptor pulse (1.0 

second duration). Once again coupling is more pronounced when the Flight Path 

Controller is used with a nonlinear plant than with a linear plant. Figure 2.19 

also shows the higher order rotor dynamics coming through on the longitudinal 

state responses (compared with the linear system responses shown in Figure 2.15).

The effects of system nonlinearities are clearly in evidence if one compares 

the linear roll command responses of Figure 2.16 with their nonlinear counterparts 

in Figure 2.20. The most striking difference is that the rotor dynamics and 

nonlinearities have coupled the roll command energy into the forward velocity 

channel, u. The vertical velocity also has a transient of 1.5 feet per second. 

Although the roll rate, p, roll angle, <p, and yaw rate, r, responses are similar 

for nonlinear and linear plants, the lateral velocity, v, is more oscillatory using 

the HELISIM3 nonlinear plant model.

The response of the nonlinear HELISIM3 plant — Flight Path Controller 

system to a pulse input on the pedals is shown in Figure 2.21. The responses 

show increased levels of coupling to the longitudinal states, particularly on forward 

velocity, u, and the divergence of the spiral mode which is evident on the roll 

angle, <p, and yaw rate, r, responses. The command is designed to produce a 

step change in lateral velocity, v, and the controller accomplishes this for both 

linear and nonlinear plants.

The time domain responses of the Flight Path Controlled system show that 

improvements can be made to the original Parry Modal Controller. The vertical 

velocity response is improved through the elimination of overshoot. The 

improvement in forward velocity response is questionable since, although the 

change in forward velocity is effected monotonically (without acceleration reversals) 

with the Flight Path Controller, the change is made much more slowly and with 

larger pitch attitude transients. The Flight Path Controller has helped to reduce 

coupling from the longitudinal inceptor to lateral velocity, v, for this input. The 

command augmentation loop has helped to improve the turning abilities of the 

aircraft but it is clear that further work needs to be carried out on the 

development of the command augmentation strategy and structure. Another 

adverse characteristic of the Flight Path Controller is that the pedal inceptors are
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coupled to vertical velocity.

Since the closed loop dynamics of the two systems (Parry Modal Controller 

versus Flight Path Controller) are equivalent, the differences in coupling between 

the two is due to the pilot command strategy/command augmentation loop. The 

pilot command strategy affects the structure of the command augmentation of the 

controller in an intimate way. Movement of the pilot's inceptors feeds energy to 

the system in different ways for the two controller structures and hence coupling 

between states will be different, as has been shown. Assuming that the controller 

requires both stability and command augmentation, if a decision is made to use 

two feedback loops in the controller, it might then be profitable to use the 

stability loop to ensure plant stability, and to use the command loop to give 

decoupled responses. The stability augmentation loop would yield stable

eigenvalues and decoupled eigenvectors, while the command augmentation loop 

could be used to decouple pilot input energy such that individual closed loop 

modes were excited by each inceptor. Modal control could be used in a two 

tiered approach; first to provide plant stability, and second to provide command

decoupling. One of the problems with the Flight Path Controller is that the 

structure is designed in such a way that plant stability and decoupling are the 

sole criteria for the eigenstructure assignment. This led to weak authority over 

roll and some undesirable couplings between inceptors and states. The design of 

command augmentation might be improved if the system eigenstructure could be 

described in terms of a static stability eigenstructure and a dynamic (or command) 

stability eigenstructure.

One of the distinguishing features of the HELISIM3 results with the Flight 

Path Controller is the increased level of coupling in the system. Although a 

portion of this coupling will be due to high order dynamics and nonlinearities,

part may be a result of the fact that the nonlinear system is moving away from

its design point and hence the eigenvectors may not have optimal orientation. 

Study of the movement of eigenvalues and eigenvectors would be an appropriate 

starting point for work on an adaptive controller. Such work was considered 

beyond the scope of the current project.

The frequency responses of the nonlinear HELISIM3 plant controlled by the 

Flight Path Controller are shown in Figures 2.22 to 2.29. The responses were 

obtained by exciting the system with a step input of amplitude 0.025 so as not to 

drive the system too far away from a linear region about the design point. The 

magnitude plots are in decibels while the phase plots are in units of degrees. 

Frequency is plotted on a logarithmic scale in Hertz. Each of the figures shows 

the frequency responses of a state with respect to the four pilot inceptors. The
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forward velocity, u, is responsive to both longitudinal and roll inceptor inputs as 

shown by positive magnitudes in Figure 2.22. This confirms the results of the 

time history analysis. Figure 2.23 shows that the vertical velocity, w, is affected 

by the vertical inceptor and the roll inceptor. The most important inceptor in 

terms of the pitch rate, q, (Figure 2.24) and the pitch angle, 6, (Figure 2.25) is 

the roll inceptor. The importance of the roll inceptor to these states is a result 

of the fact that the input gain on the roll inceptor was increased in relation to 

the other gains of the pilot input gain matrix, [G], in an attempt to yield a 

system with reasonable authority over roll. The frequency responses of the lateral 

states (Figures 2.26 to 2.29) all demonstrate large roll inceptor authority. Not

surprisingly, Figures 2.27 and 2.29 showing the roll rate response and the yaw 

rate response to roll inceptor, respectively, have smaller magnitudes than other 

channels linking a command inceptor with the output state it is attempting to

control. This underlines the problems with the roll command channel authority 

and confirms the need for more work on the command augmentation issues

involved in implementing a modal controller. Figure 2.26 illustrating the lateral 

velocity responses indicates a good response to the pedal inceptors as designed. 

The response is relatively flat in comparison with the forward velocity response to 

the longitudinal inceptor and the vertical velocity response to the vertical inceptor. 

Figures 2.27 and 2.28 show that the roll response to the roll inceptor is poor

with a cutoff frequency of less than 0.5 Hz. The yaw rate response of Figure 

2.29 exhibits very low levels of coupling from the vertical, longitudinal and pedal 

inceptors, but once again the bandwidth of the response is less than 0.5 Hz.
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CHAPTER 3: SENSITIVITY FUNCTIONS

Sensitivity functions provide the quantitative information necessary for 

systematic tuning of helicopter flight control systems. Sensitivities measure the 

rate of change of system output responses in the time and frequency domains

with changes in system parameters. For the purposes of tuning flight controllers, 

only the sensitivity functions of the output responses with respect to the flight 

control system parameters are needed.

The methods used to calculate sensitivity functions are discussed in this 

chapter, while Chapters 4,5 and 6  describe the use of sensitivity functions. 

Section 3.1 reviews the standard methods of generating sensitivity functions. The 

signal convolution method is described in detail in section 3.2. Both the time 

and frequency domain implementations of the signal convolution method are 

explained. Theory governing the use of transfer function sensitivities in the 

selection of which control system parameters are to be adjusted is outlined in

section 3.3, while section 3.4 discusses eigenstructure sensitivities.

3.1 ) Methods of Generating Sensitivity Functions

Of the traditional approaches to generating the sensitivity functions of state 

variables with respect to controller parameters, there are drawbacks to both a 

sensitivity cosystem approach [39] and parameter perturbation techniques. To use 

a sensitivity cosystem, one must have accurate knowledge of both the structure

and parameters of the plant, but such knowledge is not available for helicopters. 

As previously stated, one of the reasons why tuning is of such importance in the 

development of helicopter flight control systems is that the controllers must cope 

with unmodelled high order dynamics, such as those of the rotor. An accurate 

model of rotor dynamics is not available and hence precludes the use of the 

sensitivity cosystem approach. In parameter perturbation methods, on the other

hand, the sensitivity functions are approximated through calculations of differences 

between system responses before and after a small change in a control system

parameter. Although a detailed plant model is not necessary in this case, the

calculations can be critically affected by the amplitude of the perturbations, and

for a system with many parameters, the generation of all of the sensitivity

functions can require a large number of tests on the system. In helicopter
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applications, it is beneficial to minimize the amount of inflight testing which must 

be performed, which argues against the use of parameter perturbation techniques. 

In addition, signals measured during flight tests on helicopters are significantly 

corrupted by noise, which could lead to instabilities in the calculation of 

sensitivity functions using parameter perturbation techniques.

3.2 ) The Signal Convolution Method

An alternative approach which generates the sensitivity functions has been 

developed for the special case of controller parameters in closed— loop systems 

[40],[41],[42],[43],[44]. Research involving the signal convolution (direct 

assessment) method with single— input single— output system applications has 

already been reported [40],[41],[43] but multivariable applications have remained 

largely unexplored. The sensitivity functions are generated in a three part 

process. First, the closed loop impulse response function matrix, [w(t)], is 

identified; second, the sensitivity signals, z ^ t ) ,  are generated; and third, a matrix 

convolution is performed.

Because the signal convolution method does not rely on knowledge of the 

plant and since it does not require a large number of tests on the system, this

technique for generating state variable sensitivity functions is ideally suited for use 

in the proposed adjustment algorithm for helicopter flight controllers. In 

addition, the effects of measurement noise are diminished by the presence of a 

convolution integral in the procedure. Signal convolution techniques can be used 

to generate sensitivities in the time domain (Section 3.2.1) and the frequency 

domain (Section 3.2.2).

The theory governing the signal convolution method is described in the next 

few sections of this chapter. Although the theory is developed with respect to

the Flight Path Controller described in Chapter 2, the signal convolution method

can be applied to other controllers designed with other control strategies. The

signal convolution method of generating sensitivity functions is in no way linked 

to the control strategy, however, it will be seen that the structure of the flight 

controller will affect the implementation of the signal convolution theory.
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3.2.1 ) State Variable Sensitivity Functions

State variable sensitivity functions give the rate of change of the state

responses to parameter variations. The signal convolution method is being used 

to calculate the state variable sensitivity functions with respect to parameters in

the control matrices. The signals to be convolved in this direct assessment

method of parameter sensitivity analysis are obtained directly from the system and 

hence it is possible to use sensitivity information to optimize controller parameters 

in the presence of unmodelled dynamics. This section describes the theory of the 

signal convolution method as applied to a linear helicopter simulation model and 

presents the results which have been obtained in simulation studies.

Since the theory behind the signal convolution method is best explained with 

reference to a particular controller, the following shows how state variable 

sensitivity functions are calculated with respect to the Flight Path Controller of

Section 2.3.4,  Figure 2.13. The equations governing sensitivity functions for the 

Parry Modal Controller (Section 2.3.3) are given in Appendix 2.

Recall Equation 2.36 which governs the the flight path control system,

X ( s )  -  ( s [ I ] - [ A ]  + [B] [K] + [B] [P]  [« ] } _ 1  [ B ] j [ P ] b ] [ C ]  R( s )

E q u ation  3 .1

The closed loop transfer function matrix is,

[ W( s )  ] -  {s [  I ] - [ A ]  + [B] [K] + [B]  [P]  ] } _1 [ B ] | [ P ]  [17] [G]

Equat io n  3 .2

Equation 2.35 will also be useful in this section and is given here as 

Equation 3.3

Y( s )  = s X( s )  Equat i on  3 . 3

The equations which describe the sensitivity functions are found by successive 

implicit differentiations of Equation 3.1. In order to perform these 

differentiations easily, it is beneficial to rearrange Equation 3.1 into the form 

given by Equation 3.4.
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Equat i on 3 . 4

3.2.1.1 ) First Order State Variable Sensitivities

3.2.1.1.1 ) First Order Sensitivity Function Theory

The first order sensitivity functions of the state variables with respect to the 

flight control system parameter, aj, can be found by implicitly differentiating 

Equation 3.4. The result is Equation 3.5.

Since the feedback distribution matrix, [£], is defined to allow a comparison 

of the system response with the pilot's commands, it will not be involved in the 

tuning process and therefore it is not necessary to calculate sensitivities with 

respect to parameters in this matrix. Similarly, it will not be necessary to 

calculate sensitivities with respect to parameters in the axes conversion matrix, 

[ 17], and the pilot input gain matrix, [G], because they do not affect the dynamics 

of the flight control system. Therefore, set the partial derivatives of these 

matrices with respect to the control system parameter, c ,̂ to be zero.

£ 1 1 1  = 0  E q u a t io n  3 . 6

E q u a t io n  3 . 5

i M -  0 E q u a t io n  3 .7

E q u a t io n  3 .8

It  i s  n o w  p o s s ib le  t o  s im p l i fy  E q u a t io n  3 . 5  t o  E q u a t io n  3 . 9 .
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{ fB] 3 5 r + } s o  +

{ s [ I ]  -  [A] + [B] [K] + [ B ] [ P ] [ { ]  } M i l

= [BIS 5 5 p " ^ H G ] R ( s )  Equat i on  3 . 9

Rearranging to solve for the first order sensitivity functions gives,

l l j p -  -  {s [ I ] - [ A]  + [B] [K] + [B] [P] [£ ] ] _1 [B] X

{ -  I f 1 s o  '  1s t  <«1 + ;  3 5 T  1,1 [G! E(s )  1

Equat i on  3 . 1 0

Since the precompensator matrix, the axes transformation matrix, and the 

pilot input gain matrix are invertible, Equation 3.10 can be simplified using 

Equation 3.2.

-  [ W ( s ) ] [ G ] ' 1 [ i j ] ' 1 [ P ] _1 X

{ " s t f 1 *<•> - s 3 3 T  t$1 E(s )  + 5 3 T  O  [G] * ( s )  1

Equat i on  3 . 11

At this point, it is convenient to consider the sensitivity function equation as 

the product of the closed loop transfer function matrix, [W(s)], and a sensitivity 

signal vector, Z ^ ^ s).

= [W(s)]  Z1 ( s )  Equat i on  3 . 1 2
Ocq L o; j

Where,

Z ^ ( s )  -  [G ]- 1 !^] _ 1 [ P ] _1 X{ - s l̂1 SO - s §5T [£1 *(s) + 53T t,] [GI E(s> 1
Equat i on  3 . 1 3
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The appearance of the Laplace transform variable, s, in the equation for the 

sensitivity signal, Z^Qj(s), implies that during the processing of measured data 

(namely X(s)) it will be necessary to find the time derivative of the helicopter's 

output states. As these states will be corrupted by noise when measured 

experimentally, numerical errors will be introduced in the calculation of the 

sensitivity functions. However, realizing that the expression for the sensitivity 

signal vector is linear, and recalling equation 3.3, it is possible to use Equation 

3.14 to find the sensitivity signal vector without the need for differentiation of 

measured signals.

z l  ( S ) -  [ G j ^ b r V r 1 x~ot

{ -  S5r - ( s ) '  [ t l  I ( s )  + 1,1 [G] E ( s )  1

Equat i on  3 . 1 4

Implicit in this step is the belief that it is possible to measure the rates of 

change of the helicopter states, Y(s). The above shows that the sensitivity signals 

are generated by applying signals taken directly from the system (Y(s) and R(s) in 

this example) to a filter which has a form depending only upon the controller.

The structure of the sensitivity filter is dependent on the structure of the system 

under investigation. The most important aspect of the sensitivity filters, [F ^ s)] ,  

is that they are independent of the system plant matrices, [A] and [B]. Since 

the control matrices will be known quantities, if one is able to estimate the

closed loop transfer function matrix, [W(s)], then the sensitivity functions can be 

generated without precise knowledge of the system plant. This result will hold

for any linear system independent of the plant structure, however, dynamic 

elements in the control system can complicate the form of the sensitivity filters.

The theory, so far, has been developed in terms of the Laplace transform

variable, s. Sensitivity functions are most often generated and used in the time 

domain. Assuming that the closed loop impulse response function matrix, [w(t)],

has been identified, the sensitivity signal is found by exciting the system with a

desired input and recording z ^ t )  which is the output from the sensitivity filter.

The time domain equivalent of Equation 3.12 is then given by,

3 x ( t )  
da  j

=  I [ w ( t ) 1  z 1  ( t - r )  dr Equat i on  3 . 15
Jn 1 - « i
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Thus, the sensitivity functions in the time domain are found by convolving 

signals which are directly obtained from the system. In practice, it can be easier 

to generate the sensitivity signals in software rather than in hardware. In the 

simulation trials which have been performed, observable system signals have been 

recorded and subsequently fed through software representations of the sensitivity 

filters, thereby generating the sensitivity signals, z ^ t ) .

The convolution of the data sequences representing the time histories can be 

carried out efficiently using Fast Fourier Transform (FFT) techniques [45]. The 

time sequences representing [w(t)] and ^ ^ ( t )  are padded with zeros, transformed 

into the frequency domain, and multiplied together. The inverse transform of 

this product yields the convolution of the two signals. The padding of the data 

sequences with zeros is necessary because of the periodic nature of the FFT 

operation.

Implicit in the use of the FFT convolution technique is the premise that the 

signals to be convolved are generated by a stable system. The signal convolution 

method makes use of the FFT to calculate the product of a matrix, [W(s)], and 

a vector, Z ^ ^ s) , in the Laplace transform domain. In order for the inverse 

Laplace transform to be equivalent to an Inverse Fast Fourier Transform (IFFT), 

the contour integral used to calculate the inverse Laplace transform must enclose 

the right half plane with a boundary along the imaginary axis in the Laplace

transform space. However, this contour integral is completely integrable if, and 

only if, it is to the right of any system poles — the contour cannot encircle 

singularities. Therefore, from a theoretical standpoint, all of the closed loop 

system poles must be in the left half plane which forces the system to be stable. 

However, it was found during tests that a slightly divergent spiral mode with an 

eigenvalue of 0 . 0 0 1  did not seriously affect the calculations of the sensitivity

functions.

3.2.1.1.2 ) First Order Sensitivity Function Computer Simulation Results

The signal convolution method of calculating first order state variable 

sensitivity functions has been successfully implemented in the Sensitivity

Adjustment Module (SAM) software package [46] for the two control structures 

presented in Sections 2.2.3, and 2.2.4. For a given system, the state variable

sensitivities are a function of: the pilot input, the control system parameter of 

interest, and time. The amount of information contained in the sensitivity 

functions will depend on the pilot input used. The time dependency of the state
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sensitivities shows up quite clearly in the results: most graphs show both transient 

and steady state components in the sensitivity functions. Consequently, it is 

difficult to analyze the results of the simulation study into the state sensitivities. 

Both of the flight control systems being studied have 32 gains in the feedback 

matrix and 16 gains in the precompensator matrix. These 48 controller 

parameters will affect each of the fuselage states which were modelled. An 

example of a set of first order sensitivities with respect to the parameter, P3 1 . of 

the precompensator matrix, [P], is given in Figure 3.1 for the Flight Path 

Controller of Section 2.2.4 controlling a linear HELISTAB plant. The input for 

this set of results was a pulse on the vertical inceptor.

The parameter, P3 1 , feeds vertical acceleration demands through to the 

lateral cyclic actuator and will be significant in terms of coupling in the system. 

Indeed, Figure 3.1 shows that the lateral velocity, v, and roll angle, <p, 

sensitivities to the parameter have larger amplitudes than the sensitivities of any

of the longitudinal states for the pulse on vertical inceptor. In order to become 

acquainted with how the sensitivity functions are to be used, assume that P31  is 

to be increased from — 3.0x10“  3 to — 2.0x10 —3. The effects of this change on 

the state responses can be deduced from the sensitivity functions. For the 

forward velocity, u, the negative transient (see Figure 2.14) will be decreased in 

amplitude and a steady state offset of approximately 0 . 1  will be added onto the 

state response. The vertical velocity, w, will show a greater degree of overshoot 

with the increase in P3 1 . The change in P31  will tend to accentuate the

transients on the pitch rate, q, and the pitch angle, 6, possibly leading to 

divergent tendencies on these states. In a manner similar to the forward velocity 

state, u, the lateral velocity, v, and roll rate, p, will develop a more pronouced 

steady state offset for changes in P3 1 . The divergence of the sensitivities of roll 

angle, <p, and yaw rate, r, to P31 indicate that this parameter couid be significant 

in controlling the stability of the spiral mode. For a smaller order system with a 

small set of adjustable controller parameters, this sort of qualitative analysis is 

probably of greater benefit than for the systems being considered in the present 

work.

A simulation study of the sensitivity functions of the Parry Modal Controller 

-  HELISTAB system [18] is documented in Reference [47]. The results from

this simulation study, using the signal convolution method, were checked with 

those generated using parameter perturbation techniques. The study [47] revealed 

that the signal convolution method, because of the smoothing nature of the 

convolution involved, was less sensitive to noise in the time sequences than was

the parameter perturbation technique. Because the simulation model of the Parry
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U ( P t / s e c )  v e rs u s  T irC  ( n c ) V ( P t ' s e c )  versus  TIME (s e c )

V < F t/* e c >  v e rs u s  TIME ( se c ) P ( r a d /s e c )  v e rsu s  T IttE  ( s e e )

:>0  ( r t d / a t e ; PH I < r o d s >  v t r t u s TIME < se e >

R ( r e d /s e c )  ve rsu s  TIME ( t e c )
THETA ( r o d s )  ve rsu s  TIME (s e e )

F ig u r e  3 . 1 :  F ir s t  O r d e r  S ta te  V a r ia b le  S e n s i t iv i t i e s  to  F l ig h t  P a th  C o n t r o l le r

P a r a m e t e r  P 3 1 , L in e a r  P la n t ,  V e r t ic a l  I n c e p t o r  P u ls e  I n p u t .
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Modal Controlled helicopter system is linear, it is possible to narrow the choice 

of test inputs to a relatively small number. The principle of superposition holds

for linear systems and this allows the formation of sensitivities to complicated

pilot inputs from sensitivities generated by the excitation of individual pilot 

inceptors. The linearity of the model also means that step excitations do not 

yield sensitivity functions with additional information over those generated using

pulse inputs. However, it must be stressed that for a helicopter, nonlinearities 

will always be present. This, in turn, will mean that superposition of state 

sensitivities will not hold and neither will the premise that the step and pulse

input sensitivities contain equivalent information. On a helicopter, the state 

sensitivities will be truly input dependent. Even with the limited number of

pilot inputs used in the simulation tests, the amount of information provided by 

the sensitivity functions to a small set of control system parameters was 

overwhelming. It was difficult to interpret the data in a concise manner and

therefore the analysis was limited to the identification of general trends.

The superficial analysis of the state sensitivities of the Parry Modal 

Controller has shown that some parameters will affect the amplitudes of the state 

responses, while others will affect the response structure. If the shape of the

sensitivity function of a particular parameter matches the shape of the state 

response, then that parameter will only affect the amplitude of the response. If 

the shapes of the state responses and the sensitivity functions are different, the 

structure of the state response will be affected by changing the parameter of 

interest.

Some states oscillate in response to certain inputs. If the corresponding

parameter sensitivities of these states also oscillate, then adjusting the parameter 

will either increase or decrease the severity of the oscillations depending on the

frequency content of the two signals.

Figure 3.2 shows the state variable sensitivities of the Flight Path Controller 

with respect to the precompensator gain, P3 1 , for a nonlinear HELISIM3 plant. 

At a first glance, the sensitivities of Figure 3.2 bear little resemblance to their

linear counterparts in Figure 3.1. However, closer examination reveals that the

nonlinear sensitivities are essentially correct for the first 2 seconds. After 2 

seconds, the nonlinear sensitivities diverge rapidly. This divergence is caused by 

the system no longer operating near the design point of 80.0 knots and hence the 

plant's [A] and [B] matrices will have changed. The pilot input used to generate 

these sensitivity functions was a 1 . 0  second full amplitude pulse on the vertical 

inceptor, which changes the vehicle's forward velocity by 1 0  feet per second.

Since this change in forward velocity is accomplished in 2 seconds (Figure 2.14),
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U ( P t ' s e c )  v e rs u s  TIME ( s e c ) V ( P t 's e c )  v e rs u s  TIME (s e c )

V ( F t 's e c )  v e rs u s  T lfC  ( s e c ) P ( ro d s s e c )  v e rsu s  TIRE (s e c )

TIME (s e c )Q <r o d /s e c : PHI ( r o d s )

R ( r o d /s e c )  v e rsu s  TIME ( s e c )TMETA ( r o d s )  v e rsu s  TIME (s e c )
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it is unreasonable to expect the response to behave in a linear fashion for the

whole 10 seconds. The sensitivity functions will only be valid for nonlinear 

systems if the excitiation input is chosen so that the system does not move away 

from a linear region about the trimmed operating point. In practice, it was

found that doublet inputs were useful since they tended to bring the system back 

to its initial condition during the collection of data, thereby avoiding large 

excursions from the test's initial flight condition.

3.2.1.2 ) Second Order State Variable Sensitivities

3.2.1.2.1 ) Second Order Sensitivity Function Theory

The second order sensitivity functions are calculated using the same 

techniques as those used to calculate the first order sensitivity functions. Once

again, it is assumed that the feedback distribution matrix, [£], the pilot input gain

matrix, [G], and the axes conversion matrix, [17], do not contain parameters of 

interest. The second order sensitivities are found from implicitly differentiating 

Equation 3.9 with respect to a second control system parameter, aj.

Since all of the control matrices are first order in the control system 

parameters, several simplifications in Equation 3.16 can be made. All terms 

containing second order partial derivatives of the control system matrices will be 

zero, as shown by Equations 3.17 and 3.18.

{ s [ I ]  -  [A] + [B] [K] + [ B ] [ P ] [ £ ]  }

E q u ation  3 . 1 6
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a V ]  = o
a a j a a j  Equat i on  3 . 17

* V ]  _  0
a a j a a j  Equat i on  3 . 1 8

Therefore,

{ ' B> l s r + [ < ? [ « ]  } ^ f 1  +

{ + } ! i f 1  +

{ s  [ I ] -  [A] + [ B] [ K]  + [ B ] [ P ] [ { ]  }  1 ^ = 5 ^ -  -  0

Equat i on  3 . 1 9

Rearranging and simplifying with the aid of Equation 3.2, the second order 

sensitivity functions of the state variables of the flight path controller are,

3 2 X ( s )  

ac^ac^

*[K]

= -  [ W( s ) ] [ C]

a [P]

~lr  , “ 1
[V]

- 1

.  aaj  acq ■[?

x

s) d[K]_ 
da i

+ a[p;
3 a : ■[« 1 !S£®J 

J acq

Equat i on  3 . 2 0

The appearance of the Laplace transform variable, s, in Equation 3.20 in

the term corresponding to the sensitivity filter does not create a problem to the

same extent as was the case for the first order sensitivities. This is because the

sensitivity filters are excited by the first order sensitivity functions which will be 

relatively smooth due to the use of signal convolution techniques for their 

generation. The convolution integral which forms part of the signal convolution 

technique will help to reject noise from the sensitivity functions.

As a special case, if aj is the same parameter as aj then Equation 3.20

simplifies to,

E q u a t i o n  3 . 2 1

a x ( s )  
3a j
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The second order sensitivity functions of Equations 3.20 and 3.21 are 

calculated in the same manner as the first order sensitivity functions. That is, a

convolution integral is calculated as shown in Equation 3.22.

d 2 x ( t ) t 2
[ w ( r ) ]  z  ( t - r )  d r  

0  « i « j Equat i on  3 . 2 2dcujda j

Where, the Laplace transform of the second order sensitivity signal is given by,

v a . ( s )  = xa  j Q j

i i i £ I  + i i z i r f
d a j  3 a  {

^X(s)  
3 a ;

d[K]
da

K] , S [ p ] r f , ] a x ( s )
r  + a 3 - ' ^  J S S T

Equat i on  3 . 2 3

In practice, the second order sensitivity signals are generated using software 

since their sensitivity filters are excited by the first order sensitivity functions. 

Because the first order sensitivities must be calculated in an off— line manner with 

multivariable systems, it is not possible to generate the second order sensitivities 

by directly filtering system signals in hardware.

3.2.1.2.1 ) Second Order Sensitivity Function Computer Simulation Results

The second order sensitivities of the output states of the Flight Path 

Controlled helicopter to the precompensator parameters, P31  and P3 3 , are shown 

in Figures 3.3, 3.4 and 3.5 for a vertical inceptor pulse. Difficulties arise in

visual analysis of the second order sensitivities to a degree that it is virtually 

impossible to make qualitative predictions concerning the effects on the system 

response, to second order, for changes in the controller parameters for all but 

the simplest of the second order sensitivity functions. However, the importance 

of the second order sensitivities will become apparent in Chapter 5 which 

discusses the results of tuning a system using model reference techniques. Figure 

3.6 shows the nonlinear equivalent of Figure 3.3 and the divergence of the

second order sensitivities for the nonlinear system is worse than for the first

order senstivities. The use of nonlinear second order sensitivities in the 

adjustment algorithm must be done with care in order that the results of the

tuning are valid. This translates into a statement that test inputs must be of low
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p  <1

Figure 3 4i Second Order State Variable Sensitivities to Flight Path Controller 

Parameters P31 and P3 3 , Linear Plant, Vertical Inceptor Pulse

Input.
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amplitude, such as 1 0 % of the inceptor authority, so that system nonlinearities 
are avoided.

3.2.1.3) Identification of the Closed Loop Transfer Function Matrix

Because of the possibility of each input coupling into each output state in an

unknown multivariable plant, [W(s)] cannot be identified simultaneously with the

sensitivity signals. This may be seen by re-  expressing the state variable

responses, x^(t), in terms of individual elements of the transfer function matrix, 

Wjj(s), and the input signal vector, Rj(s).

4
X j ( s )  = ]£ WH ( s )  R j ( s )  E q u a t i o n  3 . 2 4

j = l  J J

Rearranging Equation 3.24 to isolate the transfer function of interest gives,

x i O )  " I  Wi h ( s )  Rh ( s )  
h* j

W j j ( s )  = -----------------  ---------------------  E q u a t i o n  3 . 2 5
J j ' s '

Clearly, if we wish to identify Wjj(s) solely from the input and output vectors,

only one element of the input vector should be excited at a time. This will

reduce Equation 3.25 to,

Wf i ( s )  =
X i ( s )

' R j ( s )
a l 1 Rh( s )  = 0 f o r  h ^ j E q u a t i o n  3 . 2 6

Since all of the elements of [W(s)] are needed, the signal convolution method 

cannot be applied in real— time with multivariable systems.

In practice, [W(s)], or more precisely, its time domain equivalent, the

impulse response function matrix, [w(t)], is determined by recording samples from 

time histories for each input. For a system with m inputs and n controller 

parameters, the generation of sensitivity functions to a particular pilot test input 

by the signal convolution method requires m-+-1 time periods. This can be

accomplished by using, in parallel, a sensitivity filter for each parameter of 

interest to generate all of the sensitivity signals simultaneously. In a helicopter 

with the four conventional pilot inceptors, all of the necessary data can be

collected in five time periods.
In contrast, the parameter perturbation technique would require n+ 1 time 

periods. For the flight control systems discussed in Chapter 2 with 48 adjustable
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parameters, 49 time periods would be required to collect the data. The 4 9^  

time period is needed to determine the standard system response to the test 

input. For most ACT systems, there will be more controller parameters than 

inputs so the signal convolution method can be far more efficient than 

perturbation methods. Although less efficient than the sensitivity cosystem 

technique, the signal convolution method has the advantage that it does not 

require knowledge of the system plant. Therefore, directly assessing sensitivity 

functions from sensitivity signals is the method best suited for use in the 

adjustment of flight controllers.

The drawbacks of the signal convolution method are that the system should 

be linear and that in a multivariable system, [W(s)j cannot be determined 

simultaneously with the sensitivity signals for the reasons previously mentioned. 

Both of these adverse characteristics of the method centre around the 

identification of [W(s)j. If the system is nonlinear, then the closed loop impulse 

response function matrix, [W(s)j, does not strictly exist. The helicopter system is 

nonlinear, but in practice, it has been shown that the linearity constraint can be 

relaxed to allow one to use the method at operating points in the flight envelope

which are locally linear. For this reason the choice of test inputs must be made

with care.

Three types of test inputs have been studied with regards to the 

identification of [w(t)j. If a pulse input is used on the j th input of Equation 

3.26 then, since Rj(s) =  1 for a pulse, we obtain,

wj j ( s ) = = X i ( s )  Equat i on  3 . 2 7

In the time domain, Equation 3.27 corresponds to,

W i j ( t )  = X i ( t )  Equat i on  3 . 2 8

Although the use of a pulse allows direct measurement of the elements of 

[w(t)], care must be exercised to ensure that the system is operating in a linear 

fashion. If the amplitude of the pulse is too large it may excite nonlinear 

system dynamics. The results of the simulation study have suggested that the 

sensitivity functions may still be valid if the nonlinearities are of a continuous

form, described perhaps by a square law or other polynomial relationship, but

exciting hard nonlinearities such as deadbands or rate— limits will lead to 

erroneous results.
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If a step input is used then Rj(s) =  ! / s and,

X* ( s )
W j j ( s )  = y  = S * i ( s ) Equat i on  3 . 29

Giving,

W i j ( t )  = ^ i ( t )  Equat i on 3 . 3 0

Thus, if a step is used to identify [w(t)], the output signals must be

differentiated — an operation which can introduce noise to the results. In 

applications, the signals will be recorded as discrete samples. Initially, four of 

these sample points were used to approximate the derivatives of the time histories 

of each data sample [43]. This four point algorithm was tested against eight 

others. The five point method of Hildebrand [48] proved to be far more robust 

in the face of sharp discontinuities and required only a marginal increase in

execution time. For the m^ 1 sample of the data sequence, x(n), (sampling period

T), the derivative of the sequence is given as,

dx(m) _ -  8 x (m - l )  + 8x(m+l) -  x ( m + 2 )  + x(m-2)
~dt ~ I2T

Equat io n  3 . 3 1

Pseudo— random binary signal testing techniques [49] are used to identify 

[w(t)] in many systems. At present, application of these techniques in a 

helicopter system is not considered viable because test inputs must be injected 

manually by the pilot which would be very difficult with a practical 

pseudo— random binary sequence.

3.2.2 ) Transfer Function Sensitivities

Increasing emphasis is being placed on the use of frequency domain design 

techniques and the specification of desirable flight handling qualities in the 

frequency domain. This trend has motivated a study of the transfer function 

sensitivities with respect to the controller parameters. Signal convolution 

techniques are being used to generate the transfer function sensitivities.
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3.2.2.1 ) Theory of Transfer Function Sensitivities

The theory needed to generate the transfer function sensitivities using signal 

convolution techniques is largely analogous to that describing the generation of 

state variable sensitivities.

Equation 3.32 shows Equation 3.2 rearranged into a form which is easier to 

differentiate. The reader will note that this is the equation governing the transfer 

functions of the Flight Path Controller (Section 2.2.4).

{ s [ I ] - [ A ] + [ B ] [ K ] + [ B ] [ P ] [ £ ] } [ W ( s ) ]  -  [ B] | [ P ]  [ij] [G]

Equat i on  3 . 3 2

Implicitly differentiating Equation 3.32 with respect to the controller 

parameters, cq, yields Equation 3.33 which describes the transfer function 

sensitivities.

{ [b ] § 5 T + [B15 3 T [£I + [ B , [ P 15 5 r }  [ W ( S ) 1

{ s [ I ] - [ A ] + [ B ] [ K ] + [ B ] [ P ] [ £ ] }  3 [ ^ )]  -

B 1 ;  5 5 T  + [B 1  s ' P1 3 5 T  [C1 + [B 1  ;  1 s t

Equat i on  3 . 3 3

If the control parameters of interest are again limited to being in either the 

feedback matrix, [K], or the precompensator matrix, [P], then Equation 3.33 can 

be simplified with Equation 3.2 in order to solve for the sensitivities of the 

transfer functions,

3 [ W( s ) ]  _  [ w( s ) ]  [C] [q] [P]~ X
o a j

3[K] + d [ P ] [;
. d o t doq

s [W(s) ] + [B] [ ^ ] [ G]

Equat i on 3 . 3 4

Once again, it is preferable to work with the acceleration vector, Y(s), than 

with the state vector, X(s), in order to eliminate the Laplace transform variable
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from Equation 3.34. Therefore, define the transfer function matrix between the 

pilot inputs, R(s), and the acceleration vector, Y(s), to be [Wa(s)] where,

Y ( s )  = [ W^(s ) ]  R ( s )  = s [W(s)j  R( s )  E q u a t i o n  3 . 3 5

The acceleration transfer function matrix, [Wa(s)j can be experimentally 

determined in the same manner as the closed loop transfer function matrix, 

[W(s)]. The techniques for performing this operation were discussed in Section

3.2.1.3.  Thus, Equation 3.34 can be rewritten in a form which does not imply

differentiation of experimentally determined signals.

a [ w ( s ) ]  -  [ w ( s ) i  t c r h i j i ' V r 1 xda j

d[K] ^ d[P] 3[p;
3 5 f + 3 5 T ^  J ' V s ) l + 1B> 5 5 T  [,?1[G1

Equat i on  3 . 3 5

In analogy with calculations of the state variable sensitivities, the transfer 

function sensitivities are then given by the multiplication of the closed loop 

transfer function matrix and a sensitivity signal matrix.

-  [WO)]  [Z ( s ) ]  E q u ation  3 . 3 6

The sensitivity signal matrix is given by Equation 3.37.

- 1

d[K]_
daj

[Wa ( s )J  + [B] [ V]  [G]

Equat i on  3 . 3 7

When one considers the above equations, it becomes clear that the 

computation of transfer function sensitivities can be carried out with a minimum 

of system experimentation. Since the control matrices are known, the only data 

which must be experimentally determined are the elements of the closed loop 

transfer function matrix, [W(s)], and of the acceleration transfer function matrix, 

[w a(s)]- Therefore, not only does the method work without knowledge of the



plant, it can also help to minimize inflight experimentation since the data needed

to calculate [W(s)] and [Wa(s)] can be found simultaneously.

The four stage computations which are used in practice, minimize the 

amount of data which must be recorded from the system, at the expense of 

computer processing time. As was the case for state variable sensitivities, the 

first step in the calculation of transfer function sensitivities is the inflight

identification of the closed loop impulse response function matrix, [w(t)], and the 

acceleration impulse response function matrix, [wa(t)J. The second step is the 

offline generation of the sensitivity signal matrix in the time domain, [z ^ t) ] .  

The third step is a convolution of [w(t)j with [z ^ t)]  to form the impulse

response function sensitivity matrix, 3[w(t)]/do“1, given by,

Finally, the impulse response function sensitivities are transformed into the 

frequency domain.

As previously mentioned, the convolution of the data sequences representing 

the time histories can be carried out efficiently using Fast Fourier Transform 

(FFT) techniques [45]. Realizing that FFT's are used to perform the convolution 

in Equation 3.38, the question of why the convolution and transform of the third 

and fourth steps of the calculations are not replaced by a multiplication of the 

FFT's of [w(t)] and [z ^ t)]  arises. The answer to this concerns the periodic 

nature of the FFT — a multiplication of the FFT's of [w(t)] and [z ^ t) ]  would 

lead to an incorrect result. Attempting to linearize the FFT by adding zeros to 

the data sequences, as is done to produce linear convolutions, also distorts the 

frequency domain spectra. Without attempting to develop an algorithm to 

reconstruct the proper frequency domain product of [W(s)J and [Z ^ s)]  from a 

distorted sequence, it was concluded that the most efficient procedure was, indeed, 

the one which is being used.

3.2.2.2 ) Transfer Function Sensitivities Computer Simulation Results

The signal convolution method of calculating transfer function sensitivities has 

been successfully implemented in a simulation study. The calculations of the 

transfer function sensitivities are performed by the Sensitivity Adjustment Module 

computer routines [46]. The results from the simulation study using the signal 

convolution method were compared with those generated using parameter

3[ w( t ) ]  
dot j Equat i on  3 . 3 8
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perturbation techniques. A further check on the results was made by

transforming the state variable sensitivity functions: in analogy with the use of

pulse inputs for the determination of [w(t)], a pulse can be used to generate state

sensitivities which when transformed give a column of d[W(s)]/aap

For the systems being studied, the generation of the transfer function 

sensitivity matrix with respect to one parameter requires 128 convolutions (the 

state sensitivities to the same parameter would require 32 convolutions). Four

convolutions are needed for each of the 32 transfer function sensitivities. The 

computational overhead of generating transfer function sensitivities is high and, at 

the present time, argues against their use.

The frequency responses (transfer functions) of the system can be displayed 

using magnitude and phase plots. Figures 2.22 to 2.29 contain the magnitude 

and phase plots for the transfer functions of the Flight Path Control system 

(Section 2.2.4) between each of the four pilot inceptors and the eight fuselage 

states. The magnitudes are plotted in decibels, while the phase angles are plotted 

in degrees. The helicopter system's transfer functions can be loosely categorized 

as being either low— pass or band— pass in nature. The high frequency cut— off 

is less than 1 Hz. for the fuselage states being examined.

The transfer function sensitivities show how a change in the value of a 

controller parameter will affect the system response. The transfer functions are 

displayed in terms of magnitude and phase and it would be convenient to be able 

to predict magnitude and phase changes that would result from a parameter 

change. For this reason, the transfer function sensitivities have been normalized.

Consider Equation 3.39 which is a first order approximation to the modified 

system transfer function matrix, [Wm(s)], which will result from perturbations of 

the set of n controller parameters,

In the single— input single— output case in which there is only one controller 

parameter, Equation 3.39 simplifies to,

[Wm( s ) ]  * [ W ( s ) ] + ^
d a  i

Equat i on  3 . 39

Equat i on  3 . 4 0

which can be rewritten as,

Equ at ion  3 .41
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The expression in the brackets on the right hand side gives the relative change in 
the transfer function W(s).

For small Aq, the magnitude and phase changes to W(s) which result from

changing q  are approximately shown by the magnitude and phase plots of,

1 aw(s)
W(s) dcq

If one further normalizes the transfer function sensitivities with respect to the 

amplitude of the parameter, then it is possible to compare the sensitivities with 

respect to different parameters. This has been done to allow checks to be made 

on the relative importance of the controller parameters.

The normalized sensitivities were examined in an effort to determine which 

parameters significantly affect the system response. The first point to consider 

was the magnitude of the normalized transfer function sensitivities. The larger 

the magnitude for a parameter, the larger the effect of changing that parmeter. 

The phase of the sensitivities is not important for those parameters with small

sensitivity magnitudes, since changes to these parameters will have little influence 

on the system's dynamics. The adjustment algorithm will be restricting the 

amount by which parameters may be changed. Assume that the changes in the 

controller parameters are restricted to being less than 10% (—20 dB) of their 

nominal values. For this amount of parameter shift, they might be considered as 

being significant if the resulting change in the transfer function magnitude is also 

10% (—20 dB). Adopting this criterion, parameters will be significant if their

normalized transfer function sensitivities have magnitudes greater than 0 dB.

The transfer function sensitivities to variations in the precompensator matrix 

parameter P31  of the Flight Path Controller with the linear HELISTAB plant are 

shown in Figures 3.7 through 3.14. Assuming that the only sensitivities which 

are of interest are those with large magnitudes (greater than OdB), increasing P31  

will increase the bandwidth of the following transfer functions:

W |4 (s) — Forward velocity due to pedal inceptor 
W5 1 (s) -  Lateral velocity due to vertical inceptor 
W5 2 (s) -  Lateral velocity due to longitudinal inceptor 
W6 1 (s) -  Roll rate due to vertical inceptor
w 62(s) “  Ro11 rate due t0  longitudinal incePtor 
W6 4 (s) -  Roll rate due to pedal inceptor
W7 1 (s) -  Roll angle due to vertical inceptor
W?2 (s) -  Roll angle due to longitudinal inceptor
W7 4 (s) -  Roll angle due to pedal inceptor
W gi(s) -  Yaw rate due to vertical inceptor
Wg2 (s) -  Yaw rate due to longitudinal inceptor
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From the above list it is clear that P31 plays a significant role in

determining the amount of coupling in the system since most of the entries are

the responses of lateral states to longitudinal inputs.

Another effect of any increase in P31 would be to encourage resonances on 
the following responses:

Wn (s) -  Forward velocity due to vertical inceptor 
W3 j(s) -  Pitch rate due to vertical inceptor 
w 3 4 (s) -  pitch rate due t0  pedal inceptor 
W4 4 (s) -  Pitch angle due to pedal inceptor 
w 5 l( s) “  Lateral velocity due to vertical inceptor 
W£4 (s) — Roll rate due to pedal inceptor 
WgiOO — Yaw rate due to vertical inceptor

It is concluded that resonances would be encouraged because all of these 

transfer function sensitivities show large amplitude peaks at certain frequencies,

particularly at high frequencies. In contrast, W6 i(s) which is the transfer

function from the vertical inceptor to the roll rate, p, shows a band— reject 

quality at about 1.8 Hertz.

An initial study of transfer function sensitivities was made for the Parry

Modal Controller [50]. These tests have shown that transfer functions are visibly 

changed by parameters whose normalized sensitivity functions have amplitudes

greater than 0 dB for a 10% parameter change. Even if the sensitivity

amplitude is of the order of 0 dB, the relative phase of the change can have a 

large bearing on the amount of change in the response. A second point which 

was considered in the analysis was the question of whether a parameter affects

the structure of the response or whether it can be interpreted simply as a gain in 

the system.

The first deduction which can be made from the results is that some transfer 

functions are far more sensitive than others to parameter variations. For

example, the sensitivities of W7 2 (s) (Parry Modal Controller) with respect to 24

parameters have magnitudes greater than 0 dB. In contrast, Wg3 (s) (Parry Modal 

Controller) is insensitive to parameter changes, as shown by the lack of any

sensitivities with amplitudes above 0 dB.

The second observation was that changing parameters generally changes the

structure of a transfer function, not just its amplitude. A parameter can be

considered as a pure g&in if the normalized transfer function sensitivity magnitude 

is flat over most of the frequency bandwidth of interest. Some parameters come 

close to acting purely as a gain in terms of the magnitude plots but the phase

plots vary in a nonlinear fashion. Therefore, it is concluded a change in any
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parameter will affect the structure of the system's response.

If one considers the problem of adjusting the system's dynamics, the transfer 

function sensitivities are both encouraging and cause for concern. Some of the 

sensitivities have amplitudes of over 30 dB which may be useful for minimizing 

the amplitude of parameter adjustments. If one makes use of parameters which 

give large transfer function sensitivity magnitudes, then the necessary amount of 

change in parameters can be kept to a minimum. A 30 dB sensitivity means 

that for every 1 % change in a parameter, there will be a 31% change in the 

transfer function. In this way, it may be possible to significantly improve system 

dynamics and handling qualities without major excursions from the theory used to 

design the controller. At the same time, the large sensitivities are alarming if 

they are an indication of the deviations which can be expected from errors in the 

implementation of the controller. When the controller is built, it will not be 

identical to its paper counterpart since there may be slight variations in parameter 

settings resulting from finite word—length considerations. Furthermore, if one 

also considers that the sensitivity magnitudes can vary over a range of 30 dB 

between 0 Hz. and 2 Hz., it becomes apparent that changing a parameter can 

introduce resonances to the system.

Transfer function sensitivities can be calculated without knowledge of the 

helicopter plant using signal convolution techniques. Normalized sensitivities show 

that altering parameters will affect the structure in addition to the amplitude of 

the system's response, with some transfer functions being more affected than 

others. However, the large sensitivity amplitudes with respect to some parameters 

may be either beneficial or detrimental in terms of adjusting the system's 

response. The computational cost of generating the transfer function sensitivities 

is high, but the information that they provide for the small amount of inflight 

testing needed is important to the adjustment algorithm as will be seen in the 

next section.

3.3 ) The Identification of Adjustment Parameters

A modern ACT flight control system will contain many parameters. At 

times, it will not be practical to try to optimize the setting of each parameter at 

every flight condition. It was felt that if adjustments to the system were to be

minimized, then those parameters which significantly affect the system's

performance should be used. Hence, one of the major problems involved in the

development of the tuning process has been the identification of parameters which
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will be useful in terms of altering the system's dynamics and performance.

Originally, it was hoped that the state sensitivity functions would give an 

indication of those parameters which would be useful in the adjustment algorithm 

— the adjustment parameters. Unfortunately, the state sensitivity functions have 

various forms, making it difficult to compare two sets of sensitivities for two 

different parameters and decide conclusively that one parameter has more of an

influence on system dynamics than another.

The controller which is being used in the study was designed using modal 

control techniques. It was a logical extension to the ideas present in this design 

technique to the consideration of how the eigenstructure parameters (the 

eigenvalues, eigenvectors, and principal angles) are affected by shifts in the 

controller parameters. The theory and results of this study are presented in 

Section 3.4. Unfortunately, because the eigenstructure sensitivities require 

knowledge of the system plant, they are unsuitable for use with a tuning 

algorithm which relies solely on information extracted from system outputs.

Transfer function sensitivities measure the rate of change of transfer functions 

between the four pilot inceptors and the output states with respect to parameter 

changes in the controller. Since the magnitude of the transfer function 

sensitivities can be normalized by dividing through by the magnitude of the

transfer functions, it is a relatively straightforward task to compare several system 

transfer function sensitivities. If a normalized transfer function sensitivity 

magnitude to a particular parameter is large, then it can be said that changes in 

that parameter will have a large effect on the system's dynamics. A simplistic 

search for peak frequency domain sensitivity amplitudes can be made much more 

successfully than a search for peak amplitudes in the time domain due to the 

success of the frequency domain normalization. Time domain normalization was 

not helpful because the normalized state variable sensitivities were dominated by 

zeros in the state response. The peak transfer function sensitivity amplitudes can 

be ordered in terms of either the transfer functions or the output states to 

provide a ranking of the adjustment parameters.

As stated previously, it is possible to calculate the transfer function

sensitivities without knowledge of the system plant through the use of signal 

convolution techniques. Therefore, unlike eigenstructure sensitivities, the transfer 

function sensitivities can be used with actual helicopters.

To normalize the transfer function sensitivities, the individual elements of

3[W (s)]/aq are divided by their respective transfer functions and multiplied by the 

value of the parameter oev
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For the purposes of identifying the adjustment parameters, the maximum 

amplitude, (Wjjcj)max, of each normalized transfer function sensitivity to each 

parameter across the frequency range of interest is catalogued.

The various (Wjid)max are then sorted into decreasing order and the highest 

valued entries, (Wjjca)max, in each list are used to identify the adjustment 

parameters o^.

The sorting of the (Wjjcj)max can be used to choose adjustment parameters 

based on either individual transfer functions or groups of transfer functions which 

are related by having the same output state. Depending on how many

adjustment parameters are to be used, the top one, two, or three parameters 

from each sorted list of (Wjjcj)max values are identified for use.

When the most significant parameters for each of the eight states are 

identified from transfer function sensitivities, six parameters are chosen. This

means that some parameters are significant in terms of more than one output 

state. The six parameters with greatest influence on the output states of the 

Flight Path Controller are P ^ , P2 2 > ^23* P31» p32» and p 33- ^ comforting

to note that the eigenstructure sensitivities for the same helicopter computer

model also identified P ^ , P2 2 . p23> p32> and p33 as beinS important. These 

consistent results can be used as justification for the hypothesis that parameters

which greatly affect the magnitudes of system transfer functions will also affect 

the system eigenvalues to a large degree. Hence, the system dynamics are 

greatly affected by parameters with large transfer function sensitivity magnitudes.

It should be noted that all of the above theory ignores how the phase of

the system will respond to parameter changes. It was considered beyond the 

scope of the current study to attempt to analyse and use phase sensitivity

information for the purposes of choosing which parameters to adjust. This is 

largely because of a lack of knowledge about how a pilot in the flight control 

loop will react to different phase margins. Pilot induced oscillations are a

common undesirable flight handling quality on high performance aircraft, both 

fixed and rotary winged and are the result of insufficient phase margins. The

crux of the problem is that the pilot is an adaptive controller and as such will

E q u a t i o n  3 . 4 3j k i ' m a x
n o r m a l i z e d  max s
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have various phase characteristics.

3.4 ) Eigenstructure Sensitivities

This section briefly describes the motivation behind looking at the 

eigenstructure sensitivities of helicopter simulation models and the results which

were obtained from the study. Eigenstructure will be used to collectively refer to 

the system's eigenvalues, eigenvectors, and principal angles. The term, 

eigenstructure sensitivity will be defined as the first partial derivative of an

eigenstructure parameter (an eigenvalue, eigenvector, or principal angle) with

respect to one of the controller or compensator parameters.

3.4.1 ) Eigenstructure Sensitivities Motivation and Theory

As previously stated, the large number of adjustable gains in modern flight

control systems generates a need for an algorithm which will identify the 

parameters which are to be used to adjust system dynamics. The design of the 

flight control systems being studied is based on modal control theory. Since the 

flight controller design is based on eigenvalue and eigenvector placement it made 

sense to base the adjustment procedure in some way on the structure of the

response — its eigenvalues, eigenvectors, and principal angles. Those controller 

parameters which signficantly affect the eigenstructure parameters will have a large 

influence on the system's performance. It was for these reasons that the 

eigenstructure sensitivities of the helicopter model were examined as a means of

identifying those parameters which would prove useful in the adjustment

algorithm.

Although it is possible to generate the state sensitivity functions without 

knowledge of the system plant, this is not so for the eigenstructure sensitivities. 

The eigenvalues and eigenvectors for the Flight Path Controller (Section 2.2.4) 

are defined by Equation 3.44.

( [A] -  [B][K ] -  [B ][P ][£ ]  ) [V] = [V] [A]

E quation  3 .4 4
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Rearranging equation 3.44 gives,

[A] -  [B] [K] -  [ B ] [ P ] [ { ]  -  [V] [A] [V] " 1

E q u a t i o n  3 . 4 5

If this equation is differentiated with respect to the control system parameters 
it can be shown that,

Equation 3.46 shows that the eigenvalue and eigenvector sensitivities with

respect to the control system parameters cannot be determined without knowledge 

of the input distribution matrix, [B] and the system's eigenstructure. For this 

reason it is impossible to consider using these eigenstructure sensitivities in the

same way as the state sensitivity functions and the transfer function sensitivities. 

Eigenstructure sensitivities can only be used in support of a state sensitivity

function based optimization algorithm.

Assuming that the derivatives of the feedback distribution matrix, 3[£]/dcq, 

are zero (Equation 3.6), then the state sensitivities of Equation 3.10 can be

described by,

Equation 3.47 clearly shows how the state sensitivity functions are influenced 

by the eigenstructure sensitivities. Not only do the eigenstructure sensitivities 

show how the fundamental modes of the system will change with adjustments of

E q u a t i o n  3 . 4 6

- 1
X ( s )  +

[ ® ] :  l ^ 1 [ « ] [G1 E(s )

E q u a t i o n  3 . 4 7
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the control system gams, they are also much simpler to work with than state 

sensitivity functions because they are time invariant for the simulation models.

3 .4 .2  ) Eigenstructure Sensitivity Observations and Results

A comprehensive study of the eigenstructure sensitivities for the parameters 

of the feedback matrix has been made for the Parry Modal Controller [51]. The 

eigenstructure sensitivities were calculated using the SAM computer module. The 

sensitivities are approximated by performing a difference quotient between a 

standard set of values and a perturbed set of values. Further documentation 

concerning these routines can be found in Reference [46].

It was found that a perturbation ratio of 0.0001 gave the best results with 

these routines. Larger pertubations caused the method to loose accuracy and a 

smaller pertubation was seen to cause no change in the sensitivities. The one 

area of concern with the use of parameter perturbation techniques for the 

calculation of eigenstructure sensitivities centres around the generation of 

eigenvector sensitivities. The sensitivity calculations are extremely sensitive to 

inaccuracies in the smaller elements of the eigenvector. Two NAG computer 

routines [52] using different algorithms returned differing values of the 

eigenvectors [51]. Eventually it was decided that the eigen value/eigenvector 

routine used in the design would be used for the sake of consistency. As will be 

seen, this also led to a self— consistent set of results.

The slight differences in eigenvectors from the two NAG routines resulted in 

a significant change in the eigenstructure sensitivities. The major contribution to 

this difference came from the smaller elements of the eigenvectors which although 

they might be shifted by a small amount in terms of the length of the vector, 

their change was large in terms of the value of the element. If the eigenvector 

sensitivities are sensitive to changes in the smaller elements of the eigenvectors, 

then it might also be the case that any event or influence which shifts the 

smaller elements of the eigenvector by any amount, which is large in relation to 

that element, will have a significant bearing on the dynamics of the system. The 

control systems currently under study are design using a linear eighth order 

HELISTAB model. It has been shown that a controller designed with this model 

and subsequently used with a simulation model (or indeed a system) of higher 

order, such as HELISIM3, will exhibit a degraded level of performance. This 

deterioration might be seen as a result of shifts in the smaller elements of the

eigenvectors which would change their orientation.

-  106 -



In order to discuss which parameters are important for which modes, it was 

beneficial to set up a classification scheme for the parameters. A parameter was 

classified as having strong cross coupling tendencies if the eigenstructure 

derivatives with respect to that parameter are present for more than one mode at 

a discernable amplitude. A discernable sensitivity amplitude is one which is large 

enough to be seen on the plots of the modulus of the eigenstructure sensitivities. 

The following table shows five categories which were used to classify feedback 

parameters from their eigenstructure sensitivities.

T ab le  3 .1 :  C a te g o r ie s  fo r  Adjustment Param eter I d e n t i f i c a t i o n

Ei g e n s t  ru e tu re  
Sens i t i v i  ty  
A m plit ude

Parameter a f f e c t s  
o n ly  one mode

Param eter has s tr o n g  
c r o s s  c o u p lin g  
te n d e n c ie s

A m p litu d e g r e a te r  
th an  50% o f  the  
maximum s e n s i t i v i t y  
a m p lit  ude

A B

A m plit ude o f  
d is c e r n a b le  s i z e

C D

N e g l ig ib le  am plitude E

The eigenstructure sensitivity data for the control system parameters of the 

Flight Path Controller -  HELISTAB plant model system are displayed in Figures

3.15 through 3.26. Figure 3.15 shows the modulus of normalized eigenvalue 

sensitivities with respect to the feedback gains. The sensitivity of each mode's 

eigenvalue to the feedback parameters is plotted as a histogram. This two 

dimensional representation of the data is useful for showing which parameters 

affect which modes. For example, the fast pitch mode is sensitive to Kj2  and 

K13. The data presented in Figure 3.15 is grouped together to form the three 

dimensional histogram of Figure 3.16 which plots the modulus of normalized 

eigenvalue sensitivity above a grid of mode numbers and feedback gains. Figure

3.16 shows that the slow pitch and phugoid modes are more sensitive than the
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MODE NUMBERS
1 -  FAST P ITC H  MODE ( EIGENVALUE = - 4 .0 0  + / -  j  0 .0 0  )
2  -  SLOW P ITC H  MODE ( EIGENVALUE = - 2 .0 0  + / -  j  0 .0 0  )
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fast pitch and lateral modes with respect to feedback parameter variations. 

Figure 3.17 shows the eigenvector sensitivities of the Flight Path Controlled system 

with respect to the feedback gains. The eigenvector sensitivity histograms for 

each mode are identical to the eigenvalue sensitivity histograms (Figure 3.15). 

The scales on the histograms may be different but both sets of plots show the 

modes being affected by a consistent set of parameters. The self-consistency of 

the eigenstructure sensitivity results even holds for the principal angle sensitivities 

shown in Figure 3.19. The eigenstructure sensitivities uniquely identify which 

feedback parameters are important in terms of each system mode, its stability and 

coupling. The three dimensional histograms of eigenstructure sensitivities to 

feedback parameters (Figures 3.16, 3.18 and 3.20) show similar trends but they 

are not identical. All of these graphs show that the slow pitch mode is the most 

sensitive followed by the phugoid mode and the Dutch roll mode, for feedback 

parameters. However, Figures 3.16, 3.18, and 3.20 show differences in the 

relative sensitivity of each mode. The eigenvector sensitivity plot in Figure 3.18 

shows the slow pitch mode to be much more sensitive in relation to the other 

modes than either the eigenvalue sensitivities or the principal angle sensitivities. 

In contrast, the eigenvalue sensitivities in Figure 3.16 show the Dutch roll mode 

to be more sensitive to K4 g than is shown in Figures 3.18 or 3.20 in a relative 

sense.

The eigenvalue sensitivities to precompensator gains are shown in Figures 

3.21 and 3.22. As was the case for the feedback gains, the histograms of 

eigenvalue sensitivity versus precompensator gains can be used to idenfi-fy easily 

which parameters influence each of the modes. The eigenstructure sensitivities 

with respect to precompensator gains are self-consistent for a given mode. The 

eigenvector and principal angle sensitivities plotted in Figures 3.23 and 3.25 show 

the same precompensator parameters affecting each mode. Ignoring the scaling 

factor, the graphs are identical. The reason why the eigenstructure sensitivities 

are self— consistent for each mode becomes clear once one remembers that it is 

the eigenvalues in conjunction with the principal angles which govern the choice 

in eigenvectors. Therefore, one would expect that a control system gain which 

strongly affects the eigenvalues will also have a strong influence on the 

eigenvectors and principal angles. The consistency of the sensitivity results 

between modes breaks down again for the precompensator parameters as shown in 

Figures 3.22, 3.24, and 3.26. In relation to other modes, the Dutch roll mode 

eigenvalue is more sensitive to precompensator changes than is the Dutch roll 

eigenvector or principal angle, while the slow pitch mode s principal angle appears 

more sensitive than the mode's eigenvalue or eigenvector in comparison with the
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spiral mode sensitivities. The spiral mode appears to be influenced to the 

greatest extent by the precompensator parameters.

The following table shows how the parameters have been classified for each 

of the modes.

Table 3.2: Classification of Flight Path Controller Parameters

Mode C ategory

A B C D

F a st P it c h  Mode pl l -  p 2 1 *13 * 1 2 > * 2 2 * 14 .
* 24 .
p13

*23> 
p 1 2  >

Slow  P it c h  Mode *13, 
p 1 2  >

*23-
p 2 2

*14 . 
*24 . 
*34 . 
p2 3 .

* 2 1 , 
*33. 
P1 3 , 
p24

P hugoid  Mode *13.
*23.
p24

*23- 
p 1 2  >

* 14 , 
* 33 . 
P1 3 , 
p32

* 2 1 . 
*34 , 
p2 3 ,

R o ll Mode *36.
p33

P13 * *16 . 
*27- 
*37- 
* 46 . 
*48 . 
p2 4 » 
p43

*26 . 
*33. 
*38. 
*47- 
p2 3 » 
P3 4 ,

S p ir a l  Mode *36. 
*38. 
p13 >

*37.
*47.
p33

*18. *28 *13-
*17 .
*24 .
*27>
* 34 .
*48 .
p43

*16. 
*23. 
*26. 
*33. 
*46. 
p2 3 .

Dutch R o ll Mode p44 *48>
p34

p24 > *35.
p14

*45. *38

Considering the set of adustment parameters as chosen using transfer function 

sensitivities; P „ ,  P22, and P3 3  strongly affect the eigenstructure, P2 3  and P3 2  

weakly affect the eigenstructure, and P3i is not seen to influence the 

eigenstructure greatly. The results of the two identification procedures are similar
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in spite of the different sensitivity measures used to classify the parameters. 

Although eigenstructure sensitivities cannot be used in the adjustment algorithm, 

the results of this section support the procedures which are being used in the 

selection of parameters to adjust.
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CHAPTER 4: CONTROLLER OPTIMIZATION THEORY

4.1 ) Present Optimization Techniques

The need to adjust the flight systems of helicopters is not a new problem.

However, the trial and error techniques which are presently being used will

undoubtedly be inadequate for full-authority fly -b y-w ire flight controllers. The 

trial and error approach involves making a series of test flights with slightly 

different parameter settings and then choosing the best set of controller values. 

For flight controllers which have been developed using classical techniques in a

loop by loop analysis, this approach can give good results because of the

relatively small set of controller parameters which can be adjusted. However, the 

fundamental difficulty with this approach is that it suffers from a lack of 

quantitative information concerning how parameters should be adjusted. Trial and 

error tuning can be highly iterative in consequence. Modern, fully integrated 

controllers will have many parameters, and it will be difficult to know which of 

these parameters will significantly affect the system's response and the manner in 

which they will do so. The tuning procedure must address these two related 

problems.

4.2 ) The Use of Sensitivity Functions for Tuning Flight Controllers

Sensitivity functions provide information concerning the two aspects of the 

tuning problem. First, sensitivity functions can be used to provide a measure of 

the extent to which the system response will be altered by changing control 

system parameter values. As previously stated (Section 3.3), transfer function 

sensitivities can be normalized to yield valuable information concerning the 

significance of various parameters. A parameter which shows dominance with 

regard to a particular transfer function will also be important in terms of the 

time domain response of the corresponding output state to the appropriate input. 

Thus, transfer function sensitivities help to answer the question of which 

parameters to use in the tuning process. The second aspect of the tuning 

problem, that of knowing how parameters will affect system response, is also 

answerable through the use of information from the sensitivity functions. If one 

is performing a time domain optimization, then the state variable sensitivities show
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how the state responses will be affected by control system parameter shifts. In 

the frequency domain, equivalent information is contained in the transfer function 
sensitivities.

Since the state variable sensitivities and the transfer function sensitivities 

provide equivalent information, tuning can be completely carried out in the time 

domain. That is, all adjustments to controller parameters will be based on state 

variable sensitivities and transfer function sensitivities will only be used to select 

which parameters to adjust. The decision to work in the time domain is based 

on the fact that state variable sensitivities can be generated with fewer 

calculations than transfer function sensitivities.

The adjustment algorithm is based on the idea that from the sensitivity 

functions, it is possible to predict the changes which will occur to the system 

response, as a result of changing the parameter values in the flight control 

system. The prediction of what the modified state response will be is generated 

using Newton— Raphson techniques. The predicted system response after 

parameter shifts, to second order accuracy, is given by,

, 2  , '
dxa ( t ) d xa ( 0

da AÂ  + do3|3

E quation  4 .1

Where xm( t )  i s  the  p r e d i c t e d  or modif ied system respon se
x a ( t )  i s  the  measured or actual  system respon se
[3 x a ( t ) / d a ]  i s  the matrix o f  f i r s t  order s e n s i t i v i t y  fu n t i o n s  

o f  the  act ua l  system response  
[d 2 x a ( t ) / d a a 0 ] i s  the matrix o f  second order s e n s i t i v i t y

f u n c t i o n s  o f  the actual  system respon se
AA]_ =  [ A cq Ao!2 • • • Aan
AAo =  [ A a iA a q  AoqAa^ • • • AanAan ^

The modified response can be predicted using both first and second order 

sensitivity functions or solely from first order sensitivities. The first order 

equivalent of Equation 4.1 can be obtained simply by setting [3 Xa(t)/dQ;d0] to 

equal zero. As will be seen in Chapter 5, the use of second order sensitivities

can enhance the convergence properties of the tuning process by allowing a more

accurate prediction of the effects of various parameter changes.
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4.3 ) Performance Indices

In order to systematically tune a flight control system, there must be a 

criterion by which improvements in system response can be measured. Sensitivity 

functions allow the prediction of what the structure of the modified system 

response will be, but this information is virtually useless if it is not possible to 

say quanf;fafve/y that one response is better than another. For each set of 

possible control system parameter values, a figure of merit must be assigned to 

the system response. By comparing the figures of merit associated with various 

sets of parameter perturbations, it is possible to identify a set of changes to make 

to the existing values which will lead to the greatest improvement in system 

response.

The figures of merit used to compare the possible sets of parameter values 

can take many forms. Each figure of merit will be calculated using a 

performance index, J, which in general will simply be a function of the modified 

state response, xm(t),

J = J 2£m( t )  Equation 4 . 2

Since any performance index can be described such that the best solution 

yields a minimum, the tuning problem reduces to using the sensitivity functions to 

predict a new set of controller parameter values which will minimize the given 

performance index, J.

Two distinct performance indices have been considered in the present study. 

The first is the Least Integral Error Square Performance Index, JMR> described 

in Chapter 5 , which attempts to tune the system response towards an ideal system 

response. It is a model reference technique. The second performance index is 

the Handling Qualities Performance Index, JhQ> which attempts to improve

system handling qualities directly (Chapter 6 ). As will be seen, both of these 

performance indices rely for their calculation on information which is not 

provided by the system to be tuned. In the model reference case, J m r re^es on 

a description of the 1ideal' system response. The handling qualities index, J h q .  

on the other hand, makes use of specifications of desirable handling qualities. 

Therefore, although the structure of the tuning process is equivalent in the two

cases, the nature of the tuning can be completely different if the 'ideal' response

does not possess desirable handling qualities.
It was decided at an early stage in the development of the adjustment

algorithm that perturbations to the designed controller parameter values should be
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kept to a minimum. This led to the decision to restrict the range over which 

parameter values could migrate, motivated by the fact that during the tuning 

process, attempts were to be made to maintain the underlying control strategy as 

much as possible. There seems little point in letting the tuning process move the 

controller's dynamics significantly away from those which it was designed to have. 

The easiest method of accomplishing this objective was to restrict control system 

parameter movement. The optimization methods which are used allow bounds to 

be placed on the range over which controller parameters may be adjusted.

4.3.1 ) Minimization Routine Theory

The search for the set of control system parameter values which minimize 

the chosen performance index is performed on the computer using the routine 

E04JAF of the Numerical Algorithm Group (NAG) Libraries [53]. This algorithm 

calculates values of the performance index with various parameter sets subject to 

bounds on the parameters. Quasi— Newton methods are used by the algorithm to

select the control system parameter sets for which the performance index is 

evaluated. The theoretical basis for the quasi— Newton algorithm which is 

employed is given by Gill and Murray [54].

Let the Hessian matrix of the performance index be [H] where the elements 

of [H] are the second order partial derivatives of the performance index with 

respect to the adjustable controller parameters.

a 2  iH = Equ a t io n  4 . 3
i j  3 a . d a .  

i J

The feature which distinguishes quasi— Newton methods from Newton— type 

methods is in how the Hessian matrix, [H], is updated from iteration to iteration 

in the optimization algorithm. In Newton— type methods, [H] is explicitly 

calculated during each iteration, while in quasi— Newton methods, [H] is an 

updated version of the previous estimate of [H] [54]. Since the Hessian matrix, 

[H], cannot be calculated in closed form in the present application, the 

adjustment algorithm was forced to use quasi-Newton techniques. Similarly, the 

gradient of the performance index, h, must also be approximated by finite 

differences at each iteration since it cannot be calculated in closed form. The 

data used in the finite difference calculations for h are the previous estimates of 

the performance index, J, for the various parameter sets. The elements of the
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g r a d ie n t ,  h ,  a r e  g iv e n  b y ,

_  dJ _  AJ
i da  ~ Aa E qu at ion 4 . 4

i i

Five distinct steps are involved in each iteration of the optimization

algorithm. In the first step, any variables which are on their bounds are tested 

using gradient information (from h) to decide if they should be held at their 

current positions or allowed to move away. A search direction for the minimum 

in terms of parameter changes is made during the second step on the basis of 

the gradient, h, and the Hessian, [H]. The third step is to determine how far 

to move the evaluation point for J in the search direction. The evaluation of

the performance index is implicit at this stage of the calculations. Next is a 

calculation of the new control system parameter perturbations. The problem of 

tuning flight contol systems has been formatted such that the NAG optimization

algorithm works with perturbations to the starting set of controller parameter

values rather than their absolute values. The last step, during an iteration,

involves finding the matrix elements of the Cholesky decompostion of the Hessian,

[H]. These factors of [H] are then available for the next iteration. The search

terminates when the norm of the gradient, h, is sufficiently small and the 

Lagrange multipliers used by the algorithm are larger than a prescribed tolerance. 

A more in depth discussion of the calculations and their theoretical basis is

provided by Gill and Murray [54].
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CHAPTER 5: MODEL REFERENCE TUNING

5.1 ) Least Integral Error Square Performance Index

The objective of the Least Integral Error Square Performance Index is to

make the system responses as similar as possible to desired or 'ideal' system 

responses. These 'ideal' responses can be generated by any means, but are in 

general just the responses which one generates from the simulation model used

for the design of the control system [55]. When the simulation model and the 

actual system are excited by the same inputs, there will be differences in the 

responses which one observes from the two systems. With the Least Integral 

Error Square Performance Index, the difference between the two signals is 

squared and integrated to yield a measure of the difference between the two

responses. The difference between the two signals is squared in order to avoid

positive and negative excursions of the difference signal cancelling each other.

In the past, single— input single— output systems have been successfully tuned 

using a Least Integral Error Square Performance Index. For these systems, the 

time domain adjustment algorithm is given by Winning et.al. [41]. The necessary 

changes to the controller parameters, cq, can be determined if the actual system 

response, xa(t), the desired system response, xd(t), and the system's sensitivity 

functions, 3xa(t)/3cq, are known. The first order adjustment equation used by 

Winning et.al. [41] is given by,

x d ( t )  = x a ( t )  + I  aX| ^ l  Acq + Re ( t )  E quation  5 .1
i 1

Where Re(t) is a residual error
Acq is the required change in parameter cq

Equation 5.1 can be rearranged to solve for the residual error Rg(t). 

Winning et.al. [41] then proceed to substitute for Re(t) into the integral least

square error given as,

T
J = Re ( t )

- 0

dt E quation  5 .2

n . . . .  ^ c o it k nn«ible to find the set of controllerBy minimizing Equation 5.2, it is possioie
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parameters ct{ which is optimal in terms of minimizing the difference between the 

desired response and the actual system response. In practice, the process 

required a small number of iterations to obtain the closest fit to the desired

The primary constraint on the expansion of the single— input single— output 

tuning theory [41] towards multivariable systems is in the generation of sensitivity 

functions. For single-  input single-  output systems, sensitivity functions can be 

generated by either a sensitivity cosystem or the signal convolution method in real 

time. For multivariable systems, only a sensitivity cosystem can yield the state 

variable sensitivity functions without offline signal processing. The possibility of 

using a sensitivity cosystem with a Least Integral Error Square Performance Index 

to tune an Advanced Boiling Water Reactor with multivariable controller has been 

successfully explored by Winkelman [55]. Unfortunately, dynamic modelling of 

helicopters is not sufficiently accurate for a sensitivity cosystem to be employed to 

tune flight control systems. Indeed, lack of information concerning the helicopter 

plant produces the need for tuning in the first place and one of the fundamental 

constraints on the project is that the plant must be treated as a 1black box'. 

The decision to use signal convolution techniques is based on this fact and forces 

one to accept that tuning will not be performed in real time.

The multivariable nature of helicopter flight control also forces changes in 

the manner in which the Least Integral Error Square Performance Index is 

calculated. The second order, multivariable equivalent of Equation 5.1 is,

Adopting the notation of Equation 4.1 for the modified system response, 

y t ) ,  it is possible to express Equation 5.3 in terms of the projected residual 

error vector, R ^t).

In analogy with Equation 5.2, the performance index to be minimized 

becomes the time integral of the inner product of the residual error vector.

response.

XdCO = XaCO + . aXa ^ ~ . ^ 1  +

E q u a t io n  5 . 3

E q u a t io n  5 . 4

J ( Re ( t ) .  B e d )  J dt
E q u a t i o n  5 . 5

0
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For helicopter applications, it is necessary to tune with regard to dynamics 

which are excited by all four pilot inceptors. Therefore, the performance index 

must be capable of optimizing with regard to more than one input signal. For 

example, if the actual aircraft system has undesirable phugoid and fast pitch 

characteristics, it is beneficial to be able to tune the controller with respect to 

these two modes simultaneously to avoid improving one mode at the possible 

expense of the other. If the phugoid dynamics are excited by an input confined 

to the longitudinal inceptor and the fast pitch dynamics are excited by an input 

on the vertical inceptor, it makes sense to stimulate the system with separate 

inputs on each of these inceptors. The response to each of these separate inputs 

is then to be used as data for the tuning process. It is beneficial to take the 

data in two distinct test sequences rather than using the two inputs in close 

succession in a single test. The problem with performing a single data run in 

which the longitudinal inceptor is excited followed by the vertical inceptor is that 

the fast pitch mode excitation would occur at a time when the phugoid was 

already excited. The phugoid mode would then add dynamics to the fast pitch 

section of the measured time history and this would create a bias towards phugoid 

tuning at the expense of fast pitch tuning. Therefore, the Least Integral Error 

Square Performance Index, Jmr* ls the sum over 0  distinct time histories.

j  = y  
“  0

T

- 0

E e ( t ) .  Ee(t> dt Eq u at ion  5 . 6

When one remembers that the residual error vector is a function of the 

control system parameters, aj, Equation 5.6 helps to make it clear that the cq's 

must be optimized in a three dimensional sense: changes in parameters, Acq,

must not only be chosen to minimize the relative error on a state with time, but 

also to minimize error across the various output states and with respect to the fi 

time histories as well. This is particularly true in a highly coupled system such 

as a helicopter because each control parameter may influence each state in a

fully integrated, multivariable flight control system.

Although JMR allows tuning of parameters with respect to time, across all of 

the output states, and across several inputs, there are problems associated with 

model reference tuning for flight control systems. One of the fundamental

concerns regarding the use of this performance index is the question of how one 

ensures that the 'ideal' response is in fact ideal. By using the design model to

generate the 'ideal' signal, one is probably coming as close to ideal as possible,
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provided that care has been taken to ensure that the response of the design 

model with controller satisfies the performance specifications for the design. In 

the case of helicopters, these performance specifications are found in Reference 

[56]. One of the motivating factors in the development of the Handling Qualities 

Performance Index, J j-j q , is the fact that the design process of using computer 

simulation models does not preclude a design from having poor handling qualities. 

If a control system is tuned towards a design model with unsatisfactory handling 

qualities, then the result will be a helicopter flight controller which yields poor 

handling characteristics. The second concern over the use of a Least Integral 

Error Square Performance Index is that the system response may only be tuned 

for the input sequences used during the tuning process. In helicopter

applications, it will be impossible to tune the controller with regard to the infinite 

set of pilot inputs which may be used throughout the flight envelope. It is,

therefore, important that tuning on helicopters relies on input signals which are

representative of as many manouevres as possible. Chapter 3 showed that 

sensitivity functions for nonlinear systems can be inaccurate when .generated using 

signal convolution techniques. In light of such results,, it will not be possible to 

use the algorithm to tune some manoeuvres because, the pilot inputs which are

used will lead to erroneous calculations of the sensitivity functions.

5.2 ) Linear System Results

Square
In order to test the Least Integral Error Performance Index, Jjvir, using 

simulation models, it was necessary to have a system which yields a desirable 

response and one which yields the actual response. The desirable response, is, 

provided by the design model with the designed set of controller values, while the. 

actual response is also provided by the design model, but with, a perturbed set of 

controller parameters. The task for the tuning process, is then to retrieve the 

original design parameters working only with the' outputs, of the desirable system  

and the actual system (perturbed parameters).

Preliminary trials were conducted using the Parry Modal Controller of Section. 

2.2.3. The feedback parameter K13 was perturbed by over 9% in the actual, 

system to yield a perturbed feedback matrix, [KpJ. The teste, demonstrated that 

the output responses of the actual system, could be effectively tuned,. The actual 

system's feedback matrix, [Kp], did converge towards the desired feedback matrix, 

[Kpj, with successive passes o f the tuning process.
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During these initial tests, three rules of thumb were identified which, when 

employed, help to improve the performance of the adjustment algorithm. First, 

the system should be tuned with respect to the response to pilot input signals 

which involve all four of the pilot inceptors. By using all of the inceptors to 

excite the system, the system responses provide more information to the

adjustment algorithm than that gained if the tuning was based on system

responses to pilot inputs on a single inceptor, such as the vertical velocity

inceptor. In all of the tests which are reported, four time histories of the system 

response were collected as data — one for each of the pilot inceptors.

Secondly, it is advantageous to use as many parameters as possible during 

the adjustment. Allowing a large number of parameters to move helps decrease 

the size of the parameter perturbations which are made. It was found that

improvements could be made by changing a few parameters by a large amount or 

alternatively by moving a large number of parameters by a small amount. As 

perturbations to parameter values are to be kept to a minimum, as many

parameters as possible should be used. Due to limited space on the VAX

11—750 computer which was used for the work, the number o f adjustment

parameters which can be used is restricted to eight.

Finally, a sampling rate of at least 8  Hz. and preferably 32 Hz. or more 

should be used. The accuracy of the calculations of the performance index

improves with higher sampling rates. This is undoubtedly due to the increased 

accuracy of the time histories which are used to provide information concerning 

the system's dynamics. Increasing the sampling frequency above 32 Hz. does not 

significantly improve the tuning and this would seem to indicate that most of the 

dynamics of the system have been adequately represented by sampling at 32 Hz.

Two tests of model reference tuning were performed using linear models to 

show the difference between the use of first and second order sensitivity 

information. The Flight Path Controller -  eighth order HELISTAB plant system 

was used both as the desired and the actual system. In order to test the 

convergence properties of model reference tuning, three of the precompensator 

parameters of the Flight Path Controller were perturbed in the simulation model 

representing the actual system.

Figures 5.1 through 5.4 show the improvements which are made to the 

system response with one pass of the model reference tuning algorithm using only 

first order sensitivity functions. The desired responses on these plots, as in all of 

the following plots, is shown as a solid line. The original response of the actual 

system is shown by asterisks and the tuned response is shown by the dashed 

lines. The four figures show the responses to: a 0.5 second pulse on the vertical

-  132 -



U ( P t - 's e c )  v e rs u s  TIME ( s e e ) V ( P t ' s e c )  v e rs u s  TIME ( s e c )

V ( F t 's e c )  v e rs u s  TIKE ( s e c )

TTtT
Q ( r a d / s s e )  v e r s u s  TIME ( s e c )

 oS-------- fftB------
TWETA ( r o d s )  v e rs u s  TIME ( s e c )

0. 2  575 ETT5 O '
P < r a d 's e c )  v e rs u s  TIME ( s e c )

tJS JS -JF r ‘“ ’* g- - I 'i  ~------ cr. z~ o . * 5 7 6
PHI <r t i a s )  versu s  TIME (s e c )

R ( r a d / s e c )  v e rs u s  TIME ( s e c )

F ig u r e  5 . 1 :  F l i g h t  P a t h  C o n t r o l l e d  L in e a r  S y s t e m  T u n i n g ,  F ir s t  O r d e r  S e n s i t i v i t i e s ,

V e r t i c a l  I n c e p t o r  P u l s e  I n p u t ,  -------  D e s i r e d  R e s p o n s e ,

*  * U n t u n e d  R e s p o n s e ,  -  — T u n e d  R e s p o n s e ,  I n i t i a l l y  P e r t u r b e d

Parameters: P ^ ,  P2 2 * p33- 

-  133 -



U CPt'SeOv e rs u s  TIME < s e c )

V ( P ts s e c )  v e rs u s  TIH6 ( s e c )

tf3 t

0 ( r a d / f te :

:>THETA ( f f t d f )  v e rs u s

0|,

■ /  0.075

*’0*039 r

v  t i P f c - ' s e e )  e i e r * w s  T t t f l £

■jy w - K f  * f «  »  *  M M  I

m m  Cmntta# imranm ITEME « »

1 , 1 1  "cTCî  * * 3L̂"
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inceptor (Figure 5.1); a 0.5 second pulse on the longitudinal inceptor (Figure

5.2); a doublet of 1.0 second period (no deadband) on the roll inceptor (Figure

5.3); and a 0.5 second pulse on the lateral velocity inceptor (Figure 5.4). In 

response to the vertical inceptor pulse, the differences between the dynamics of 

the untuned system and the desired system are primarily evident in the lateral 

velocity, v, response (Figure 5.1). The lateral velocity responses are also 

different for the two systems excited by a longitudinal inceptor pulse and a roll 

inceptor doublet (Figures 5.2 and 5.3 respectively). The responses of the two 

systems differ the most for the doublet input on the roll inceptor and differ the 

least for the pulse input on the lateral velocity inceptor (Figure 5.4). The large 

differences on the lateral velocity channel and for responses to the roll inceptor 

are most likely due to the previously described deficiencies of the Flight Path 

Controller in terms of roll authority. Since roll authority is weak for the desired 

system, any changes to the controller values are likely to further aggravate the 

coupling of energy into other states, thereby illuminating the differing dynamics of 

the untuned system. One fact which is clear from the results shown in Figures

5.1 to 5.4 is that the responses of the states are all improved at each instant of 

time and for each pilot input. Indeed, the dashed lines indicating the tuned 

response are, in general, indistinguishable from the desired response, with the

lateral velocity response to vertical inceptor (Figure 5.1) as the only noticable

exception. The value of the model reference performance index, J m r > confirms 

this result since it has been reduced from the initial value of 0.30 to 1.0X10“  3. 

After a second iteration of the adjustment algorithm, JjyfR is further reduced to 

4.3X10“  6 .

Table 5.1 shows the desired set of adjustment parameter values, the untuned 

values, and the tuned values after each iteration of the tuning process. By an 

iteration of the tuning process, it is meant that the adjustment algorithm is 

applied to new, updated system responses generated with the improved parameter 

values of the previous iteration. The precompensator parameters P3 3 , P-q, and 

P2 2  were all perturbed by 1 0 % initially while P2 3 , P3 1 , P32» and P 4 4  were set 

to their desired values. During the first pass of the tuning process, all three of

the perturbed parameters are moved closer to their designed values, P3 1  and P3 2

are held at their correct values, and P2 3  and P4 4  are shifted by — 0.25% and 

0.05% respectively. The adjustment algorithm is correctly identifying those 

parameters which require changing and those which are at their proper values. 

The very small deviations in parameters which remain after the second pass of 

the tuning process shows that the sensitivity functions are accurately predicting the 

changes which will be made to system dynamics and that the parameters converge
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rapidly to their proper values.

Table 5.1: The Improvement in Tuned System Response with First Order

Sensitivities

P a r a m e t e r D e s i r e d
V a l u e s

Untuned
V a l u e s

Tuned  
V a l u e s  
P a s s  1

Tuned  
V a l u e s  
P a s s  2

F i n a 1 % 
D e v i a t  i o n

P33 - . 0 1 7 2 8 - . 0 1 5 5 5 - . 0 1 7 1 9 - . 0 1 7 2 7 - . 0 5 6

P 1 1
- . 0 1 1 4 0 - . 0 1 0 2 6 - . 0 1 1 2 4 - . 0 1 1 3 9 - . 0 8 8

P 23 - . 0 0 4 0 5 - . 0 0 4 0 5 - . 0 0 4 0 4 - . 0 0 4 0 5 . 0 0 0

P 2 2
- . 0 0 3 1 6 - . 0 0 3 4 8 - . 0 0 3 1 9 - . 0 0 3 1 6 . 0 0 0

P 31
- . 0 0 3 0 1 - . 0 0 3 0 1 - . 0 0 3 0 1 - . 0 0 3 0 1 . 0 0 0

P32
.0 0 0 6 9 .0 0 0 6 9 . 0 0 0 6 9 . 0 0 0 6 9 . 0 0 0

P4 4 .0 1 9 8 9 .0 1 9 8 9 . 0 1 9 9 0 . 0 1 9 9 0 . 0 5 0

The improved results of using both first and second order sensitivities is 

shown in Figures 5.5 to 5.8, which are the second order counterparts of Figures

5.1 to 5.4. The use of second order sensitivities results in a faster convergence 

to the designed controller values. After one iteration of the tuning process the 

performance index is reduced from 0.30 to 6.5X10~^. The second iteration 

reduces the performance index to 1.8X10-  6 . In general, the reduction in 

performance index per iteration is greater when using second order sensitivites in 

addition to usiAg solely first order sensitivities since the use of the former allows 

a better prediction of the value of the performance index for a given set of

parameter variations. For the first order optimization (Figures 5.1 to 5 .4), the

ratio between the actual performance index for the tuned system and the 

projected final performance index, as estimated by the algorithm, was 1 1 : 1  for 

the first iteration and 13:1 for the second iteration. In contrast, the ratio of

actual to projected performance index for second order sensitivities was 8 .0 :1  for 

the first iteration and 9.3:1 for the second iteration. In terms of the parameter 

variations during this test, the individual parameter values also converge to their 

proper (designed) values at a faster rate with the use of second order sensitivities.

An argument against the use of second order sensitivities is that the
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improvement in the convergence properties of the adjustment algorithm might not 

be significant enough to compensate for the extra computations involved in 

generating the second order sensitivities. However, having considered the costs of 

inflight testing, the extra computational overhead of using second order sensitivities 

becomes less significant. Inflight testing must be kept to a minimum, and for 

this reason alone, one should take advantage of any improvements in the tuning 

process offered by second order sensitivities.

5.3 ) Nonlinear System Results

The results of Chapter 3 indicated that using signal convolution techniques to 

generate the sensitivity functions of nonlinear systems can lead to erroneous 

results. However, if the test inputs are such that the system operates in a linear 

region about the initial flight condition for the test, then improvements in 

response can be made. Figures 5.9 through 5.12 show the responses of two 

nonlinear systems. The solid lines on the graphs depict the desired system

response generated from a system using the Flight Path Controller and a 

HELISIM3 plant without rotor dynamics. The asterisks represent the response of 

the same system with rotor dynamics included in the plant model. The task for 

the adjustment algorithm was to find a new set of controller values which would 

decrease the differences between the dynamics of the two systems as caused by the 

rotor dynamics. A sampling period of 64 Hz. was used in this test to ensure 

that all high order dynamics were adequately sampled. The input signal for each 

of the four inceptors was a doublet of 1 0 % amplitude and a period of 1 . 0  

seconds with no deadband. The doublet on the vertical inceptor and the lateral 

velocity inceptor produces responses which are virtually identical for the two 

systems (Figures 5.9 and 5.12 respectively). The effects of the rotor dynamics 

are more in evidence on the vertical velocity, w, and lateral velocity, v, 

responses to the longitudinal inceptor input (Figure 5.10) and on most state

responses to the doublet input on the roll inceptor (Figure 5.11). The tuned

response of the actual system shown by dashed lines is largely hidden on the 

graphs by the untuned response. The improvements in response are most in 

evidence on the lateral velocity, v, and roll rate, p, states of the response to a 

roll inceptor doublet (Figure 5.11). For the roll rate response, p, the tuned 

system is closer to the desired system from 0.6 seconds onwards. Between 0.4 

and 0 . 6  seconds the tuned response is marginally worse than the untuned

response. The lateral velocity, v, shows a similar trend: the tuned response is
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worse than the untuned response between 0 . 6  and 0 . 8  seconds and better than 

the untuned response after 0.8 seconds. The marginal improvement in the 

response of the system with rotor dynamics is recorded by the performance index 

as a decrease from 1.2X10-  3 to 1.0X10-  3 for the responses shown. A second 

iteration of the optimization reduced J ^ R  to 0.96x10“  3. Although the tuning 

process does not seem to cope well with the problem of optimizing the controller 

in the presence of rotor dynamics in a nonlinear system, it is highly probable

that the results could be improved by adjusting more control system parameters.

Because of the memory restrictions of the Vax 11—750 computer, it was not 

possible to test this hypothesis. However, the fact that the performance index 

was consistently reduced by the adjustment algorithm is significant. Even if the 

improvements in performance were marginal, the method could be applied to 

nonlinear systems.

When used in earnest, the model reference adjustment algorithm will attempt

to move the dynamics of one system towards those of a desired system. The

closest representation of this task allowable within the size constraints of the 

computer was an attempt to tune a nonlinear system with rotor dynamics towards 

the linear design model. In order to ease the problem slightly, the design model 

was altered such that the actuator dynamics of the nonlinear system were used in 

the linear simulation. The results of this test are presented in Figures 5.13 to 

5.16. The input on each inceptor is again a doublet of 10% amplitude, a period 

of 1.0 seconds and no deadband. For the state responses to a vertical velocity 

inceptor input, tuning appears successful for the vertical velocity, w, and lateral 

velocity, v, over portions of the time history (Figure 5.13). In the case of the 

responses to the longitudinal inceptor doublet (Figure 5.14), the tuned response is 

marginally worse than the untuned response on the vertical velocity channel. 

Marginal improvements in the tuned responses to the roil inceptor (Figure 5.15)  

and the lateral velocity inceptor (Figure 5.16) can also be seen. The 

improvement in performance index is a slight decrease from 1.1X10“  2 to 

0.72X10-  2 .

In both of the tests involving nonlinear systems, improvements in system 

response during part of the time history were made at the expense of detuning 

the response at other times. This fact, combined with the knowledge that the 

performance index was decreased, means that the sensitivity functions were valid 

for the nonlinear systems. In the tests with linear systems the improvement in 

the tuned response was universal because the algorithm was moving the perturbed 

parameters back to their designed positions. Similarly contrived tuning problems 

with nonlinear systems also show universal improvement in the system response of
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the actual system. If it were possible to simultaneously adjust a larger number of 

control system parameters, the algorithm might then find a set of changes which 

would yield a universal improvement in the actual system's response. The use of 

a greater number of parameters would, at the least, give the adjustment algorithm 

more degrees of freedom in terms of using the effects of more parameters on the 

response. Each control system parameter has a unique influence on the system 

dynamics. Although it is possible that the dynamics might not be universally 

improved by using a greater number of parameters, it is concluded that the 

model reference tuning process works in simulation studies, since the adjustment 

algorithm minimizes the performance index, and pilot inputs can be chosen to 

yield valid sensitivity functions even in the presence of nonlinearities. One aspect 

of helicopter applications which will need to be addressed in the future is whether 

or not low amplitude test signals can be used in the presence of measurement 

noise. With nonlinear systems the adjustment algorithm only made slight changes 

to the performance index. Any system noise in the measurements could seriously 

affect the calculation of the performance index and turn marginal improvements 

of the controller into degradations.
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CHAPTER 6: FLIGHT HANDLING QUALITIES TUNING

6.1 ) Flight Handling Quality Specifications

The flight handling quality specifications of aircraft provide a means of 

describing how easily the vehicle can be piloted. During the commissioning trials 

of new designs, test pilots will judge the performance of the aircraft during 

particular manoeuvres and assign a rating in terms of the Cooper— Harper scale 

(Section 6.1.1). The handling characteristics of aircraft depend on several factors 

in addition to the aircraft dynamics. Secondary characteristics include: the control 

sensitivity, the cockpit environment (man—machine interface), the pilot's view of 

the outside world, and the pilot's workload [57]. Although handling quality

specifications attempt to cover all aspects of aircraft design, for the purposes of 

tuning flight controllers it will only be necessary to consider those relating to the 

aircraft's dynamic response. This chapter aims to demonstrate which handling

quality criteria are applicable and how they can be used to tune flight control 

systems.

As previously stated, the application of active control technology to

helicopters promises to improve handling qualities and increase mission

effectiveness. However, fixed wing experience has shown that the introduction of 

active control technology does not guarantee an improvement in handling qualities 

if the criteria are not accounted for during the design of the flight control 

systems [1 0 ].

Traditionally, handling quality specifications have been seen as more

important during the preliminary design of aircraft than at any other time [58]. 

It is, however, the author's opinion that the criteria should be used as a check at 

every stage of the development of new aircraft from the initial paper design

concepts through computer simulation and even onto the commissioning trials

stage. The use of ACT for implementing the flight control system allows

alterations to the controller at late stages of development and this flexibility

should be used to its full in attempting to improve the vehicle's handling

qualities. These ideas led to a study of handling quality specifications in the

hope that parts of the requirements could be incorporated into the tuning process 

for helicopter flight control systems. As previously stated, the purpose of the

tuning process is to improve the performance of the flight control system in the 

presence of dynamics which were not modelled during the design. It was hoped
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that handling quality specifications could be used in some way as a measure of 

the improvement in the settings of the controller parameters. Ideally, the 

controller parameters would be chosen to provide a Level 1 rating on the 

Cooper— Harper scale. In this way, it might also be possible to overcome 

performance deficiencies of flight controllers which were designed on the basis of 

control theory without adequate reference to the specifications.

The report which has been used as the source for the flight handling quality 

specifications is the May 1988 draft of the NASA—Technical Memorandum, 

USAAVSCOM Technical Report 8 7 - A - 4 "PROPOSED SPECIFICATION FOR 

HANDLING QUALITIES OF MILITARY ROTORCRAFT, Volume I -  

Requirements" [56]. A few points concerning the current state of the flight 

handling quality specifications are in order. The specifications are derived from 

experimental measurements which are correlated to pilot opinions in order to 

determine what range of handling quality parameters is acceptable for each 

particular aspect of the aircraft performance. Since flight trials are continually 

being conducted, the data base for the handling quality specifications is constantly 

in flux. This is particularly true at present because a major revision of the 

specifications is being carried out in the United States, Great Britain, and 

Canada. The aim of the work is to develop a systematic database for the 

handling quality specifications. This task has a two— fold nature. First, past 

specifications have lacked structure [59] and the next generation of specifications 

will be related to 'Mission Task Elements' (MTE's). These mission oriented 

criteria should cover the tasks which a helicopter performs during a mission, 

which for military rotorcraft include: ta k e -o ff  and landing, ground manoeuvres,

low level contour flight, NOE flight, precision hover, air— to— air combat 

manoeuvres, night flight, and adverse weather flight [2]. Each particular 

manoeuvre and subtask performed will be assigned its own handling quality 

specifications and will be individually rated by pilots as possessing a particular 

handling qualities level. The second aspect of the current updating exercise is 

the collection of experimental results for the database. Helicopter idiosyncracies 

such as cross—coupling, nonlinearities, and high—order dynamics mean that the 

fixed wing handling quality criteria (including VSTOL specifications) cannot, in 

general, be used for rotorcraft [58]. It has been necessary to collect data from

which helicopter handling quality criteria can be developed. The state of the 

present criteria can be judged by the fact that static and dynamic stability criteria 

are still subject to controversy. For example, recent work at the Royal 

Aerospace Establishment (Bedford) [12] has shown that pilot handling quality 

ratings for an Aerospatiale Puma do not correlate with the level which one would
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expect from previous specifications of handling quality requirements. Other work 

that has recently been undertaken has expanded the database in the areas of 

rotor system design parameters [60] ,[61], and sid e-arm  pilot inceptors 

[37] ,[62] ,[63]. Helicopter handling qualities are still maturing and hence the 

tuning process will need to be updated to keep pace with improvements in the 

specifications.

6.1.1 ) Handling Quality Levels and Ratings

The trend towards mission oriented handling quality specifications has led to 

ideas concerning levels of helicopter response. Key [58] explains that the level 

concept is designed to achieve:

1) High probability o f  good f ly in g  qualities under conditions in
which the helicopter is expected to be used.

2) Acceptable f ly ing  qualities in reasonably likely yet infrequently
expected conditions.

3) A performance floor to ensure, to the greatest extent possible, at
least a flyable helicopter, no matter what failures occur.

4) A process to ensure that all the ramifications o f  reliance on
powered controls, stability augmentation, etc., receive proper
attention.

A Level 1 rating means that the aircraft is satisfactory for the task being

tested. If a test pilot returns a rating of Level 2 or Level 3 then the aircraft is 

unsatisfactory or unacceptable respectively. In the context of tuning aircraft flight 

control systems, the objective is to give the aircraft Level 1 flight handling 

characteristics. An implicit assumption in this work on tuning is that the flight 

controller is not experiencing any failures.

When a pilot performs a series of test manoeuvres he will give more

feedback on the vehicle's response than merely classifying it as satisfactory, 

unsatisfactory, or unacceptable. The Cooper— Harper scale attempts to take into 

account pilot opinions with greater precision than just a three level classification. 

Figure 6.1 is taken directly from the flight handling quality specifications report 

[56] and shows the logic used by a pilot in assigning a rating to a particular 

aircraft for each task. The vehicle will be rated in the range 1 to 10 depending 

on how well it performs. A rating of 1 means that the task is performed easily

without taxing the pilot. On the other hand a redesign is in order if a rating of

10 is returned for any of the tasks. It should be remembered that rating a 

helicopter's handling qualities is a subjective problem and pilots will have different
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opinions depending on several factors, not least of which are past experience and 

familiarity with the configuration being tested.

One of the difficult tasks in establishing quantitative criteria is that qualitative 

pilot assessments must be correlated with design parameters. An example of the 

assignment of a handling qualities level in terms of aircraft parameters is given by 

Baillie and Morgan [64]. For Level 1, helicopters should have a thrust to weight 

ratio of at least 1.08 while the Level 2 limit is 1.04. In addition the minimum 

heave damping is —0.20 sec- 1 for Level 1. Values such as these are found by 

systematically adjusting the parameters of interest on variable stability helicopters 

or on ground— based simulators. Pilot opinions for each configuration are used to 

position the boundaries of the handling levels. It is important to note that the 

description of handling quality levels in terms of aircraft parameters is given by 

minimum boundaries. The levels are defined in terms of response characteristics 

such as damping ratios and natural frequencies, in addition to design constants, 

such as the thrust to weight ratio. The term, handling quality parameter , will 

be used to refer to any quantity which is used to define the boundaries of 

handling quality levels.

6.2 ) Review of Applicable Flight Handling Quality Specifications

There are several factors which influence the applicability of the flight 

handling quality specifications for use in a tuning process. Since the tuning 

process is quantitative, those handling quality specifications which are qualitative 

will prove difficult to describe in the software. Furthermore, the relatively simple 

computer simulation models will also place restrictions on the quantitative 

requirements which can be used effectively. In the following discussion, 

references to sections in the flight handling quality specifications report [56] will 

be given in italics to avoid confusion with the section numbers of this thesis.

The computer simulation models currently in use provide information dealing 

with the output state responses to pilot inputs. Other information, such as load 

factors, control stick charactersitics, limits of the Operational Flight Envelope 

(OFE) (see section 1.6.1), and performance with failures is not available. Any 

requirements in [56] which make use of this information cannot be readily used 

in the tuning process. Therefore, as a first step, it will only be necessary to 

consider those specifications that give limits on the output response to pilot 

inputs.

The next area of concern with the models is that of accuracy. Since the
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generation of sensitivity functions (Chapter 3) relies on the helicopter plant being 

linear, it was decided to limit the handling qualities analysis to dealing with a 

perturbation type of analysis rather than one based on complex flight manoeuvers.

The 'Mission Task Elements' (MTE) described in the report [56] (section 1.4.1)

are relatively complex subtasks which a pilot must perform to successfully 

complete a mission. These MTE's can be further broken up into a series of 

discrete pilot inputs. With the simulation models currently available it is a great 

deal easier to study the vehicle response to a lateral cyclic pulse input, for 

example, than it is to study a slalom manoeuver which could excite system 

nonlinearities. In addition, it is assumed that the errors in the simulation of the

lateral cyclic input will be less due to the shorter length of the simulation.

Simulation errors may be significant for complex manoeuvers such as the slalom.

Another constraint imposed on the work by the accuracy of the simulation 

models occurs at low speeds. The values of plant parameters at low speeds are 

suspect (Chapter 2) and this is can lead to errors in simulated responses. 

Because of this weakness of the model, only those handling quality requirements

relevant to the forward flight regime will be considered. Forward flight is 

defined by section 1.4.6.3 of the handling criteria report [56] as,

1.4.6.3 Forward Flight. Forward Flight is def in ed  as all
operations with a ground speed greater than 45 knots (23 m f sec).

A large part of the specifications are related to the 'Response—Type' (section 

3.2) being used and some requirements even dictate a particular response—type. 

The simulation models describe a single rotor helicopter with rate demand

structures for the flight control systems and hence the number of relevant 

specifications is further reduced. Specifications concerning attitude or altitude

hold functions may be difficult to test with the simulation models. Of the two 

flight controllers discussed in Chapter 2, only the Parry Modal Controller has a 

pilot input strategy which is appropriate for use with the specifications.

6.2.1 ) The Structure of the Handling Quality Specifications Report

The report [56] is divided into four sections. The first section 'Scope and 

Definitions’ gives purely background information and does not contain specific 

requirements. Similarly, the next section, ’Applicable Documents’ is again aimed 

at providing background information in the form of referencing the 'Background
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Information and User's Guide' [65]. Most of the relevant handling qualities are 

given in section 3 which is titled 'Requirements'. The final section discusses

'Flight Test Manoeuvers' and lists the desired minimum performance for each

manoeuver. Unfortunately, the information in section 4 is more readily applicable

to flight tests or piloted real— time simulations than to the models with which we 

are working. Therefore, the search for relevant handling quality data can be 

restricted to section 3.

In the report [56], section 3 'Requirements' is broken down into several 

subsections. The following table lists the subsections which are included and 

indicates if the information in each subsection is relevant (i.e. those subsections

with limits on system parameters).

Table 6.1: The Subsections of Requirements of the Handling Quality Specifications

S u b sec t io n R e le v a n t In fo rm a tio n

3 . 1  G e n e ra l -  g e n e r a l l y  q u a l i t a t i v e  in  n a tu re
-  3 . 1 . 1 1  l i m i t s  r e s i d u a l  o s c i l l a t i o n s

3 . 2  R e q u i r e d  R e sp o n se -T y p e -  q u a l i t a t i v e  background  i n f o r m a t i o n

3 . 3  H over  and Low S peed -  due t o  s i m u l a t i o n  i n a c c u r a c i e s ,  no 
d i r e c t l y  r e l e v a n t  d a t a

3 . 4  Forward  F l i g h t -  a l l  s u b s e c t i o n s  r e l e v a n t  but some 
r e q u i r e  i n f o r m a t i o n  not  a v a i l a b l e  
from th e  s i m u l a t i o n  model

3 . 5  T r a n s i t i o n  o f  a V a r ia b l e  
C o n f i g u r a t i o n  R o t o r c r a f t  
B etw een  R o to r -B o r n e  and  
W ing-B orne F l ig h t

- not r e l e v a n t

3 . 6  C o n t r o l l e r
C h a r a c t e r i s t i c s

-  d e a l s  w i t h  th e  m an-m achine
i n t e r f a c e  which  i s  not s i m u l a t e d  
w i t h  enough d e t a i l  t o  i n c l u d e  
the  d a t a

3 . 7 S p e c i f i c  F a i I u r e s -  th e  c u r r e n t  model d o es n ot s i m u l a t e  
s y s t e m  f a i l u r e s

3 . 8  T r a n s f e r  B etw een  
R e s p o n s e -T y p e s

-  not r e l e v a n t  w i t h  th e  cu r r e n t  
f l i g h t  c o n t r o l  s y s t e m

3 . 9  Ground Hand I i n g  and
D i t c h i n g  C h a r a c te r  i s  i t i c s

-  not r e l e v a n t
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From Table 6.1 it is clear that much of the handling qualities report [56] 

can be put aside. Section 3.4 'Forward Flight' contains the parameters which 

can be used with our present helicopter models.

6.2.2 ) The Forward Flight Handling Quality Specifications

The 'Forward Flight' section of the handling qualities report [56] contains 32 

individual requirements. Each of these sections has been reviewed to determine 

its usefulness to a tuning process for flight controllers. A requirement is

considered applicable to the present study of tuning if it contains parameter limits

which can be used to classify the handling qualities on the basis of the state

response of the system with respect to pilot inputs. It is hoped that simple pilot 

inputs can be used to show compliance with as many of the requirements as

possible. Information of this type allows the use of sensitivity functions for the 

purpose of optimizing the controller. The results of the review of 'Forward 

Flight' handling qualities is presented in Appendix 3. Many of the requirements 

can be disregarded in the context of the tuning process because they are either 

qualitative or the simulation models are lacking in sophistication.

Three of the requirements (3.4.3, 3.4.4.1.1, and 3.4.4.1.2) involve testing 

with step inputs on the vertical velocity inceptor. Requirement 3.4.3  places 

restrictions on the shape of the vertical response. Requirements 3.4.4.1.1  and

3.4.4.1.2  give bounds for the allowable levels of collective to pitch attitude 

coupling.

There are two requirements (3.4.1.1 and 3.4.4.2) which involve the 

longitudinal pilot inceptor. In order to comply with 3.4.1.1, which classifies the 

pitch attitude response to the longitudinal inceptor, it will need to be assumed, or 

preferably shown, that the longitudinal cyclic needed to yield ±5° of pitch is 

within the limits imposed by load factors and the OFE. Requirement 3.4.4.2  is 

concerned with the pitch to roll coupling.

The roll inceptor response is classified by seven requirements (3.4.4.2, 

3.4.5.1, 3 .4 .5 2 ,  3.4.S.3, 3.4.6.1, 3 .4 .6 2 ,  and 3 .4 .8 2 ) .  Coupling to pitch from 

commands on the roll inceptor is assigned a handling qualities level according to 

the information presented in requirement 3 .4 .4 2 .  Requirements 3.4.5.1, 3 .4 .5 2 ,  

and 3.4.5.3  are concerned with ensuring that the roll response of the aircraft is 

adequate. Roll-sideslip  coupling is considered in requirements 3.4.6.1  and 3 .4 .6 2  

while the degree of spiral stability is assigned to a Cooper— Harper level in 

3 .4 .8 2 .
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The system response to the yaw control is classified by three specifications 

(3.4.7.1, 3 .4 .7 .2 , and 3.4.8.1). Requirements 3.4.7.1  and 3.4.7.2  are designed to 

ensure that the aircraft's yaw inceptor has adequate authority and that the 

response has acceptable dynamics. System oscillations to yaw inceptor inputs are 

specifically considered by requiremenet 3.4.8.1.

Simple pilot inputs can be used with the simulation models to show 

compliance with several handling quality requirements. There are 14 requirements 

which are in a form suitable for use with a tuning process.

6.3 ) The Handling Qualities Performance Index

It is desirable that the tuned helicopter display Level 1 handling qualities for 

all MTE's and therefore beneficial to have Level 1 handling quality requirements 

embedded in the adjustment algorithm. Hence, the question becomes one of how 

best to incorporate the requirements in the adjustment scheme. Examination of

the handling quality requirements [56] has shown that the parameters which could 

be used in a tuning process (those relying on output responses) are related to 

parameters common in classical linear control theory. These requirement 

parameters are a mix of time domain characteristics, such as response peaks and 

damping ratios, and frequency domain characteristics, such as bandwidth and 

phase delay (Appendix 3). The time/frequency domain mix of the relevant

parameters led to the conclusion that attempting to incorporate the handling

quality requirements in a model reference algorithm would be inappropriate.

In model reference tuning, the controller parameters are adjusted on the 

premise that; given the present and desired system responses, and a set of 

sensitivity functions, it is possible to predict an improved set of control system 

parameter values. Controller parameters are changed to minimize the difference 

between the responses, hence the Integral Error Squared Performance Index. If 

it is necessary to improve the handling qualities of the vehicle, then it seems

appropriate to use a performance index which is based on handling quality

parameters rather than strictly on time responses. Given a set of desirable

handling quality parameters and the present set of handling quality parameters for 

the system, the objective of the tuning could be to reduce the error between the 

two sets. However, the handling quality criteria do not give desirable handling

quality parameters, instead the levels are described by parameter regions.

The following theory shows how system parameters are being adjusted 

towards a handling qualities level. If a handling qualities level is defined by n
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parameters in the space T over all handling quality parameters, then define it to 

be an n dimensional handling qualities level. Let B n  be the boundary for Level

1 handling qualities in the n dimensional handling qualities parameter space. 

Similarly, By 7  will define the Level 2 boundaries.

Systems are tested to provide estimates of the relevant handling quality

parameters and the response is assigned to a particular level on the basis o f these 

estim ates. Let 7 est be the estimated position of the current system in the 

handling qualities space T. The value of 7 est will be determ ined as a function,

FH q , o f the state responses, both time domain x(t) and frequency dom ain X(to)-

As parameters are changed, x(t) and X(to) will change and hence 7 est will 

also migrate in T. Sensitivity functions can predict the change in x(t) and X(o>) 

resulting from parameter changes, and from the perturbed responses, it will be

possible to use Fj^q to predict a change in 7 est. This will allow  a prediction of 

the effects of changing a controller parameter on handling qualities.

Assume that the aim of the optimization is to minim ize the distance between

Test and ^Ll (the reg i°n bounded by B n ) .  D efine to he the point on the

Level 1 boundary, B n » which is closest to 7 est. By studying the effects of

changing controller parameters on 7 est, it will be possible to find a set of 

controller parameters which minimizes the performance index of Equation 6 .2 .

If the distance measurement from 7 est to the boundary, B n >  is minimized  

according to the performance index in Equation 6 .2 , then the handling quality 

parameters will migrate towards the Level 1 boundary, B n -  If 7est is initially 

inside the boundary, B n> then the use of the performance index in Equation 6.2  

will cause 7 est to move towards the Level 1 boundary, B n >  and the Level 2 

region, T n *  which will possibly lead to a deterioration of the vehicle's handling 

qualities. Therefore, if 7 est is initially an elem ent o f T n ,  the performance 

index should be such that 7 est is pushed even farther into the Level 1 region, 

r Li . O ne solution might be to minimize the following perform ance index whose 

description depends on whether 7 est is interior to the Level 1 region, r Li .

E q u a t io n  6 .1

J 2
T e st  TLl E q u a t io n  6 .2
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T e s t -  TL1
2

» T e s t *■ r L l

- T e s t -  TL1
2

» T e s t * r L l

E quat io n  6 .3

Assuming that there are several handling quality requirements, i, then it will 

be necessary to minimize with respect to all of these requirements simultaneously. 

Thus the performance index would become,

7 e s t  7 L1 ]

7 e s t  7 L1

1 * n 1
7 e s t  A LI

1 n 1
7 e s t  e LI

E q u a t io n  6 .4

There is one problem with Equation 6.4 which is readily apparent. Suppose 

that the j^ 1 requirement is described by a handling qualities space which is

much larger in absolute terms than any of the other spaces. In this case 7 eSfi

could be pushed deeply into at the expense of other handling qualities.

Therefore, it is proposed that the distances are normalized before being used in

the performance index of Equation 6.4.

Define y j  ? to be the point on the Level 2 boundary, Bj 9 , which intersects

with the line drawn through the points Yest and YL1 • The proposed factor of

normalization to be used with Equation 6.4 is the distance be ween the points y lI 

and 7L2- The performance index in Equation 6.5 will measure the relative

distance of each of the system's handling qualities (given as 7 ^ )  from their

respective Level 1 boundaries, B n*, and will attempt to drive the 7 est* into their

associated Level 1 regions, f n 1-

j  - 1
i

7 e s t -  7 L1
i i

7 L2 -  7 L1

i i

7 e s t

1

r

i 1

CM -  7 L1 .

1 ,  n 1
7 e s t  A LI

1 ,  r - 1 1

7 e s t  LI

E q u a t i o n  6 . 5
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In addition, there may be physical justification for placing greater emphasis 

on certain handling qualities than on others. The importance of various handling 

qualities may be taken into account in the optimization of controller parameters 

by including a weighting factor, Wj, for each handling quality in the performance 

index. Therefore, the proposed performance index to be used in the adjustment 

algorithm to tune the helicopter handling qualities is given by Equation 6 .6 .

HQ

7 e s t
i

" 7 L1
i i

. 7 L2 " 7 L1

i i
7 e s t " 7 L1

i i
. 7 L2 '  7 L1 .

r e s t a r.Ll

r e s t e r Ll

E q u a t i o n  6 . 6

The performance index J jjq  can be used to tone  directly the helicopter 

flight controller with respect to several handling qualities simultaneously. There 

are a total of 19 tests which can be conducted on the simulation models in an 

attempt to show compliance with the 14 handling quality requirements discussed in 

Section 6.2.2.

6.4 ) Results for Linear Systems

The development of the Handling Qualities Performance Index is still at an 

early stage due to implementation difficulties. The problems which have been

encountered in attempts to use the 19 tests as part of the handling qualities 

adjustment algorithm have largely been attributable to the nature of the simulated 

system responses. As mentioned previously, the requirements are only applicable 

to the input strategy employed with the Parry Modal Controlled system. Because 

of the deficiencies of this controller in terms of command authority (response 

amplitude) and turn coordination/roll control, the system responses differed greatly 

from the responses on which the handling quality criteria are based. In some

cases, such as requirements 3.4.6.1 and 3.4.6.2, the responses from the simulation 

model were inconsistent with the specifications. In another instance, the low

response levels of the Parry Modal Controlled system were responsible for failures 

of the algorithms checking the degree of pitch attitude response to the

longitudinal inceptor (3.4.1.1 and 3.4.1.2), and the roll attitude response to roll
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inceptor (3.4.5.2).  Algorithms used to evaluate F jjq  (Equation 6.1) in the 

calculation of the Handling Qualities Performance Index should be developed with 

error checking in order to allow the system response to be compared with an 

expected response type so as to ensure that the test for compliance with a

requirement is valid. The computer code must be robust to different system

responses.

The implementation of the Handling Qualities Performance Index was also

hampered by the constraint of available memory on the VAX 11—750. In order 

to use frequency domain criteria, it is necessary to calculate transfer function 

sensitivities so that the changes in frequency response with control system

parameter shifts can be calculated. Transfer function sensitivities require a 

considerable amount of storage space when they are to be held in program 

arrays. They must be stored internally so that the computer processing time

needed to perform the tuning process is reasonable (a few hours rather than a 

number of days). It was, therefore, impossible to obtain sufficient resolution of 

the frequency responses for an accurate assessment of the frequency domain 

criteria (3.4.4.1, 3.4.5.1, and 3.4.7.1).

In spite of these difficulties, the Handling Qualities Performance Index has 

been used successfully for a limited number of criteria. The two criteria which 

have been used during the tuning exercise depicted by Figures 6.2 and 6.3 are

requirements 3.4.1.1 — Pitch Attitude Response to Longitudinal Controller,

S hort-T erm  Response and 3.4.5.1 — Roll Attitude Response to Lateral

Controller, Small—Amplitude Roll Attitude Response to Control Inputs. Figure

6.2 shows the response of the Parry Modal controlled system to an impulse on 

the longitudinal inceptor. The dashed line indicates the untuned response and the 

solid line indicates the tuned response. The impulse on the longitudinal inceptor 

is used to exite the system in an attempt to determine effective damping ratios

for the system. For Level 1, the system must have effective damping ratios of

at least 0.35 while the Level 2 limit is 0.25. The tuning algorithm has increased 

the system damping to this input from a Level 3 value of 0.20 to 0.344 which is 

probably within experimental error of the Level 1 boundary (Figure 6.4). Figure

6 . 3  shows the response of the same system to an impulse on the roll inceptor, 

with the dashed and solid lines again indicating untuned and tuned responses 

respectively. The impulse on the roll inceptor is also used to excite natural 

oscillations in the system which are classified according to the graphical criteria 

shown in Figure 6.5. As demonstrated, the untuned response was Level 2 and 

the tuned response is an improved Level 1. In terms of the performance index, 

J h q ,  the value has been reduced from 2.59 to - 0 . 3 5 .
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These initial tuning results are informative in several ways. First, it is 

possible to tune  Simultaneously the system with respect to more than one handling 

qualities requirement. In addition, the test is illustrative of the varied nature of 

the criteria and the fact that the Handling Qualities Performance Index, JhQ> 1S 

universally applicable to requirements linking system response to pilot inputs. The 

improvement in handling qualities was effectively recorded by JhQ - However, 

Figure 6.2 shows an increased level of coupling of the longitudinal inceptor input 

to roll angle, which is undesirable. It will clearly be necessary to use as many

of the handling quality criteria in the calculation of J h Q as possible, in order to

avoid the situation in which one facet of the system response is improved at the 

expense of another.

6.5 ) Future Improvements in Flight Handling Qualities Tuning

The use of the Handling Qualities Performance Index, Jh q . is a tuning

technique for the future. Advances in the processing power and memory capacity 

of computers will eliminate a large stumbling block which is currently preventing 

a more successful application of J h q  tuning problems. It should also be 

possible to develop efficient and robust algorithms to determine the estimated 

handling quality parameters, 7 est. The robustness problem will also be reduced if 

the controlled systems which are being optimized are more in tune with the

handling specifications.

The use of Jh q  allows a system's handling qualities to be enhanced in a 

much more direct manner than is possible with the model reference performance 

index, Jm r . Indeed, it is conceivable that the Handling Qualities Performance 

Index could be used as part of a design technique rather than just as a tool for 

eliminating the problems caused by other control theories. Issues concerning the 

implementation and use of the Handling Qualities Performance Index, J h q > 

deserve much closer scrutiny than has been possible in the current study.
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CHAPTER 7: FLIGHT SIMULATION RESULTS

7.1 ) Objective of Flight Simulation Trials

The Advanced Flight Simulator (AFS) at the Royal Aerospace Establishment 

(Bedford) was made available for a trial of the Flight Path Controller and the 

tuning procedures which have been previously discussed. The AFS is a real— time 

facility which allows control laws to be flown from a moving base cockpit or by 

using joysticks at the control desk. Because of modifications which were being 

carried out to both the cockpit and the visual systems of the AFS, the trial was 

somewhat restricted. The control law was flown using the joysticks at the control 

desk with a Head Up Display (HUD) (Figure 7.1) as the only visual cue 

available.

The use of the AFS allows a validation of contol laws in an environment 

which is much closer to a real helicopter than is possible during computer 

simulation. During real-tim e simulations on the AFS, it is possible to study a 

pilot's interface with the controlled aircraft system. This interface is both explicit 

in terms of the pilot moving inceptors to manoeuvre the vehicle and implicit in 

terms of the strategy used by the pilot for control. The fact that the control 

strategy used for ACT systems is intimately related to the type of inceptors which 

the pilot must use cannot be overstressed. The change from the traditional 

collective lever and cyclic stick to sidearm controllers has repercussions in terms 

of control system design. It is only with real— time simulation that deficiencies in 

this critical area of flight control will become apparent.

The results of the real— time simulation trial are both limited and mixed. 

Much of the time allocated for the simulation slot was used to convert the 

control law from HELISIM3 format to a form which linked into the Rationalized 

Helicopter Model (RHM) on the Gould Concept— 32 processors. In consequence, 

useful data was only collected during four sorties, each lasting approximately one 

hour. This data highlighted several problems with the structure .of the controller 

and particularly the pilot input command strategy used. Qualitative results 

pertaining to modal control theory are inconclusive, yet they are promising. The 

tuning procedures were only used once and hence it is premature to draw 

conclusions.

The problems with the acceleration demand strategy used by the Flight Path 

Controller which were very much in evidence during real— time simulation had
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only been hinted at previously. Because of these problems, the lack of a moving 

base cockpit and television system was inconsequential. A need exists for a 

real— time facility somewhere between the extensive capabilities of the real— time 

AFS and the computer simulations used for design. A real— time system with a 

simple HUD for visual cueing and joysticks for pilot control inputs, could allow 

the input strategy to be tested before a control law is thrown against other 

problems presented by the AFS. The AFS is an excellent facility for evaluating 

the performance (handling qualities) of controllers in specific manoeuvres common 

to NOE flying such as the dolphin or slalom, but before moving onto the AFS, 

tests should be conducted to ensure that the controller will 'f l y ' in the first 

place.

7 .2  ) Trimming the Controlled System

In any simulation consisting of a nonlinear element such as a helicopter 

plant, an equilibrium operating point is needed to properly initialize the 

simulation. For flight simulation, this translates into a steady state flight 

condition which was chosen to be the same as the design point of the controller 

— 80 knots level flight. A considerable amount of effort was expended during 

attempts to achieve a trim of the Flight Path Controller — RHM system using 

the TSIM trimming utility. TSIM is the simulation language which has been used 

to generate time histories of the controlled helicopter system during the computer 

simulations on the VAX 11—750 computer. Unfortunately, when these trim values 

for the actuator blade angles and states were used to initialize a simulation on 

either the VAX using TSIM or the Gould Concept— 32 processors, the system was 

given a push which drove the controller's integrators to a new trim condition.

Using TSIM, the problem on the VAX was traced to the values of the 

linear accelerations of the helicopter's centre of gravity. During the trim, the 

values of the X, Y, and Z components of linear acceleration in earth axes 

(including gravity) were as shown below:

- 6  f t= - 5 . 8 8 5 X 1 0  ^
s

-  1 . 9 6 1 X 1 0 ' 6

A z e  -  - 3 . 8 1 5 X 1 0 - 6  “
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However, when a time response was initiated these same variables were seen 

to be reassigned to:

A ^ -  0 .3 6 9 6  “  
s

\ e -  ° - 0 4 n
S

a z e -  1 - 6608  T- is

Since the Flight Path Controller of Section 2.2.4 relies on acceleration 

feedback, there is little wonder that the system was given an initial 'kick'. The 

controller will integrate these errant accelerations and drive the system to a new  

trim.

Three independent pieces of evidence indicate that the problem is related to 

the RHM. First, the transient is present both on the VAX using TSIM and on 

the Gould Concept— 32 processor. Thus, it can be assumed that the problem is 

not a TSIM bug nor a hardware problem. In addition to this, a different 

controller designed at the Royal Aerospace Establishment (Bedford) using Linear 

Quadratic Gaussian (LQG) theory shows a similar initial transient at the start of 

a time history simulation. The LQG controller does not use acceleration

feedback so the control stategy can be ruled out as a cause for the transient. 

Finally, the only part of the simulations common to both machines is the RHM 

and SESAME [38]. SESAME is a 'System of Equations for the Simulation of 

Aircraft in a Modular Environment'. It has been developed in order to facilitate 

the modelling of various aircraft during real— time simulations and contains 

modules which are common to all aircraft models. The AFS user must write

modules which are specific to his aircraft and contol system design and 

subsequently link these modules into SESAME in order to build the full 

real— time simulation model. SESAME is unlikely to be the cause of the nonzero

accelerations because it is used by HELISIM3 and the transients are not present

in a HELISIM3 generated time history. Another piece of evidence relating to the 

trim problem is that when the system is flown back to the desired trim state, the 

values of the actuator blade angles are equal to the trim values used to initialize 

the system. This leads to the conclusion that the TSIM trim utility does 

correctly locate the equilibrium flight condition.

In fairness to the RHM, it must be stated that the Flight Path Controller of 

Section 2.2.4 was difficult to retrim at an arbitrary flight condition. The use of
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acceleration feedback complicates the pilot input strategy which must be used. At 

a trimmed forward flight state, the roll rate, vertical velocity and lateral velocity 

will ideally be zero and the actuator blade angles will have constant values. In 

order to trim a flight path controller with acceleration feedback, the pilot must 

ensure that all accelerations are zero and that all velocities other than the 

forward speed are also zero. There are, implicitly, two levels of integration 

between the pilot's acceleration demands and the actuator blade angles.

It was relatively easy to zero system accelerations by zeroing the pilot 

inceptors. However, the pilot would have to plan ahead as to when to zero his 

inputs such that the resulting helicopter velocities were those desired for trim. 

With the imperfect decoupling of modes, this retrimming task was a highly 

iterative procedure. The input strategy of the Flight Path Controller does not 

provide for a tight control of speed, height, and heading which is necesary in 

NOE manouevres.

An alternative input strategy (employed on the LQG system), which was easy 

to trim, was to have the pilot inceptors controlling the three linear velocities and 

roll rate. The forward speed inceptor was of a position hold type in contrast to 

the other three inceptors which were sprung loaded. For this configuration, it is 

assumed that nonzero vertical and lateral velocities, as well as roll rates, will only 

be used for transient manoeuvres between one level flight condition and another. 

The position hold nature of the forward velocity inceptor allows the pilot to 

choose a speed by positioning the inceptor accordingly and then to forget about 

that inceptor until a change in speed is required.

The real— time simulation demonstrated the importance of the ability to 

retrim the aircraft quickly in terms of control input strategy. If the vehicle will 

not retrim easily, the pilot will then need to execute a much more complicated 

set of inputs in performing manoeuvres. Because the input strategy is intimately 

related to the structure of the controller, it can be concluded that the Flight Path 

Controller should be restructured to allow the pilot direct control of velocities 

rather than accelerations. These results essentially confirm the conclusions of 

Chapter 2, showing that the command augmentation of the Flight Path Controlled 

system was inadequate.

7.3 ) Flight Path — Fuselage Attitude Decoupling

Although the HUD was used primarily as a means of identifying a trim 

state, it also showed that the helicopter fuselage attitude was significantly
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decoupled from the flight path. The HUD symbology shows both the attitude of

the vehicle and a velocity vector indicator. During the simulations, the velocity

vector indicator rarely had a conventional position in relation to the body 

attitude. Even in a level flight trimmed condition, as indicated by the velocity

vector, the aircraft often had significant sideslip and bank angle indicating that 

the fuselage was not aligned with the flight path. Any steady— state wind acting 

on the aircraft would further complicate the fuselage attitude — flight path 

relation. Pilots would undoubtedly find this decoupling unacceptable.

The decoupling was also present in a dynamic sense because commands for 

an increase in forward speed led to an upward pitching of the nose. This 

non— minimum phase behavior was particularly noticable when operating at any 

speeds greater than 1 0  knots away from the design point of the controller. 

Depending on the distance of the operating point from the design point, the 

non— minimum phase pitching moment resulted in between 5 0 and 1 0 0 of nose 

up attitude.

It is assumed that the fuselage attitude — flight path coupling would be 

improved by having the pilot control velocities as he would be one stage closer to 

controlling the attitude. With acceleration commands, the pilot is essentially two 

integrations removed from controlling the fuselage attitude. Because the 

decoupling of lateral and longitudinal states is not perfect, part of the energy 

which is input to the system will be used to push the vehicle into unconventional 

attitudes.

7.4 ) Pilot Command Effectiveness

The problems with trimming the aircraft and the decoupling of fuselage 

attitude from flight path can largely be attributed to the acceleration demand 

structure. Unfortunately, these deficiencies eclipsed the fact that the controller 

performed reasonably well in terms of regulating the three linear accelerations 

which were designed to be controlled by the pilot inputs. The velocity vector 

indicator on the HUD showed that precise control of vertical and lateral velocity 

was being achieved. Moving the vertical or pedal inceptor caused the indicator 

to move in the desired direction at a rate which appeared to be linearly related 

to input amplitude. In addition, vertical and lateral movements of the velocity 

vector were nicely decoupled near the design point in the flight envelope. Away 

from the design point, the decoupling was not as good and this will be due, in 

part, to the invariant axes transformation matrix [rj].
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While vertical and lateral acceleration was quick and precise with no 

discernable velocity overshoots, forward acceleration was slow and often less than 

precise as discussed above. The difference is undoubtedly a result of the slower 

phugoid and slow pitch modes which are present on the forward velocity channel. 

Moving the inceptor to demand forward acceleration was often followed by a 

considerable time delay before the HUD started to show an appreciable increase 

in speed. Release of the inceptor was followed by a period in which the forward 

speed continued to build up before stabilizing.

Roll control was poor as a result of basing part of the acceleration feedback 

signal on bank angle rather than roll rate. Lateral cyclic authority is much 

greater for roll rate than for bank angle as shown by the elements of the input 

distribution matrix, [B], in Appendix 1. Because the roll command effectiveness 

(lateral cyclic to bank angle authority) was low, much of the input energy was 

coupled into other modes, with the result that roll commands produced both 

sideslip and pitching moments. It is possible that the deficiencies encountered in 

the command effectiveness over roll are largely responsible for the difficulties in 

retrimming the aircraft.

From the point of view of evaluating modal control theory as applied to 

helicopters, it is difficult to draw conclusions. There is insufficient data to say 

that the problems experienced by the controller were wholly a consequence of its 

structure. The vertical and lateral responsiveness of the system is cause for some 

degree of optimism about the effectiveness of modal control, but the forward 

speed and roll responses show that implementation issues will have a strong 

influence on the controller's performance.
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CHAPTER 8 : CONCLUSIONS AND RECOMMENDATIONS

The ACT flight control systems which are being developed to meet the 

demands of NOE flight will undoubtedly require tuning to eliminate, as far as 

possible, adverse response characteristics on the controlled helicopter. The tuning 

requirement arises because of two problems inherent in the use of computer 

simulation for flight controller design. The practice of using a mathematical 

model of the helicopter plant introduces errors into the design since descriptions 

of high order dynamics, particularly those of the rotor, are inaccurate. The 

effects of these dynamics will be noticeable to the pilot in terms of a decrease in 

system stability and undesirable cross— couplings. The other aspect of current 

design techniques which might generate a need for tuning is the use of control 

laws which are based on control system performance measures, rather than on the 

flight handling quality specifications. It is unlikely that control system design 

techniques, such as modal control or optimal control, can yield systems which 

satisfy the handling requirements without some modifications which are application 

specific.

8.1 ) Tuning Process Conclusions and Recommendations

The preferred means of addressing the tuning requirement of ACT 

helicopter flight controllers is through a sensitivity analysis of the system's 

response with respect to control system gains. Sensitivity functions provide the 

partial derivatives which are used in a Newton— Raphson extrapolation scheme to 

predict the changes in system response arising from variations in the values of 

controller parameters. The advantage of using sensitivity functions in the tuning 

process lies in the fact that they provide information concerning the way in which 

controller parameters affect the amplitude and frequency content of the system's 

responses. Trial and error tuning techniques are highly iterative and inefficient 

because they lack this quantitative information.

The signal convolution method has been shown to be an efficient and 

accurate technique for the generation of sensitivity functions for multivariable 

closed—loop control systems. Of the two methods of generating the sensitivity 

functions of controller parameters in systems with unknown plants, the amount of 

inflight testing required by the signal convolution method is an order of
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magnitude smaller than that involved in the use of parameter perturbation 

techniques. This difference in the necessary amount of inflight testing will only 

increase as the sophistication of flight controllers is enhanced. In terms of 

accuracy, signal convolution techniques help to filter the noise which can seriously 

degrade the results obtained with parameter perturbation methods. Although the 

theory is only valid for linear systems, signal convolution techniques have been 

successfully used to generate sensitivities with nonlinear systems, in limited

circumstances.

A further testament to the accuracy of the signal convolution method is the

rapid convergence of perturbed parameters to their designed values in tuning tests

with the Least Integral Error Square Performance Index. Systems are optimised

with two passes of the tuning process as the performance index is decreased by a

factor of up to 10^. Tuning of linear systems with the Least Integral Error

Square Performance Index has been highly effective as a consequence of the

availability of accurate sensitivities. The work reported herein has demonstrated 

the feasibility of tuning helicopter flight control systems and should prove to be a 

useful starting point for future investigations.

Unfortunately, there are a few aspects of the tuning problem which still

remain to be solved. The main difficulty, at present, is that plant nonlinearities 

severely limit the circumstances under which the algorithms discussed in this thesis 

can be applied. Nonlinearities affect the validity of the signal convolution method 

of generating sensitivity functions and, without accurate sensitivity measures, the 

optimization procedures cannot guarantee an improvement in the system's 

response. It is anticipated that this problem will remain as the primary obstacle 

to the implementation of the technique, since the success or failure will depend 

on the availability of sensitivity information for nonlinear systems. Thus, further 

work on nonlinear sensitivity analysis in the helicopter context is needed.

Knowing which control system parameters should be used in the adjustment 

algorithm is also an area of concern. The method of using normalized transfer 

function sensitivities to choose the adjustment parameters does isolate those 

parameters with large sensitivity magnitudes, but, it is not necessarily these 

parameters which will have the greatest effect in terms of controlling instabilities 

caused by the high order system dynamics. The tests conducted on linear systems 

with the Least Integral Error Square Performance Index demonstrated that the 

adjustment algorithm correctly identified those parameters requiring alterations in 

systems with perturbed controller gains. If one also recalls the result that 

allowing a greater number of parameters to be moved will improve the outcome 

of the optimization, it can be concluded that it is best to use all of the flight
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control system parameters when trying to optimize in the presence of unknown 

dynamics.

In the contrived tests in which the model reference tuning process was 

presented with the task of retrieving the designed controller matrices from an 

initially perturbed set, the improvement in system response was universal. That 

is, when perturbed parameters are moved closer to their desired values, the tuned 

response is closer than the untuned response to the desired response at all 

instants of time, for each state, and for all of the test inputs. In tests 

attempting to optimize the controller gains in the face of unmodelled dynamics, 

the improvement in response was not universal, as the tuned response would be 

closer to the desired response for limited times and for a subset of the system's 

states, but, at other times and on other states the tuned response was worse than 

the untuned response. These two results lead to the conclusion that the 

algorithm might have been working with the wrong parameters in the unmodelled 

dynamics optimization tests, and strengthens the argument that all of the 

controller's parameters must be available for use in the adjustment algorithm.

If the controller parameters are all allowed to change, the quasi—Newton 

methods of the adjustment algorithm can be relied upon to alter only those gains 

which will improve the value of the performance index being used. Controller 

gains which do not need to be changed will be ignored during the tuning process 

if the sensitivity functions are valid. In this way, the gains which will be used to 

counter adverse dynamics will be those having the biggest influence in terms of 

the required system changes. Unfortunately, the computer used in the study 

restricted the algorithm to working with only a few parameters and it would be 

beneficial to use the adjustment algorithm on a larger machine to validate the 

methods further. However, this is not a fundamental problem and advances in 

the capabilities of computer hardware will eliminate this barrier. Furthermore, it 

is conceivable that an optimization could be performed and validated during a 

single test flight using portable equipment onboard the aircraft.

A fundamental flaw of trial and error tuning is that improvements in system 

performance with changing control system parameter values are subjectively 

measured by the pilot. Since different test pilots will have different opinions on 

what constitutes an ideal response, a system which is tuned for one pilot may not 

be suitable for another. Improvements in system response must be clearly defined 

and this implies quantifying the desirability of responses through the use of 

performance indices. However, the problem is not entirely resolved because in 

the same way as different pilots have differing opinions, different performance 

indices will also yield different optimized system characteristics. In terms of flight
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control systems work, the ultimate criteria by which performance should be 

measured is the flight handling quality requirements and this tends to justify the 

use of the Handling Qualities Performance Index, Jh q * in preference to the 

Model Reference Performance Index, J^R -

In model reference tuning, the figure of merit assigned to a particular set of 

controller gains is calculated by the integral of the error squared, the error being 

defined as the difference between the actual system response and a model 

response. Although tuning is carried out with respect to several pilot inputs, 

across all of the system's output states, and with regard to time, there are

problems arising from the helicopter application. The optimization of a system 

with this technique will only be as good as the reference model. In consequence, 

it is recommended that model reference tuning be used only when it has been 

demonstrated that the ideal response satisfies the handling quality requirements.

In terms of finding pilot inputs which will expose the system dynamics 

without unduly exciting nonlinearities, research is currently under way into test

input design methods from a system identification point of view [6 6 ], and the

results of this work will undoubtedly be of benefit to model reference tuning.

The possibility of optimizing the pilot's test inputs gives model reference tuning a 

distinct advantage, in terms of applicability, over handling qualities tuning because 

the latter requires accurate measures of the sensitivity functions with respect to 

large amplitude inputs.

Although the robustness problem encountered in attempts to develop the 

Handling Qualities Performance Index will be solved by developing sophisticated 

computer algorithms with error checking, the nonlinearities of helicopter flight will 

severely restrict the use of JpjQ f°r the purposes of tuning. Consequently, at

present, it would appear that model reference tuning with specially designed test 

inputs is most applicable to flight tests. Since this method is best suited to

making small changes in the control system gains, large amplitude deficiencies in 

system dynamics may prove untunable using sensitivity analysis at present.

However, with advances in system identification leading to an improvement of the 

simulation models used in design, the gap between the available tuning authority 

and the dynamics needing optimization will decrease. The applicability of the 

tuning procedures will also be enhanced if the robustness of the sensitivity

calculations to nonlinearities can be strengthened.
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8.2 ) Flight Control System Conclusions and Recommend anions

Athough the aim of the research being reported in this thesis was to develop 

a tuning algorithm for flight controllers, the development of the Flight Path 

Controller has illustrated several aspects of the control system design process. 

The Flight Path Controller was developed in an attempt to enhance the command 

augmentation features of the controlled system. The acceleration demand 

structure of the Flight Path Controller was adopted because it allowed a direct 

transfer of the eigenstructure of the Parry Modal Controller. This structure is 

not recommended for further development since the pilot is too far removed from 

control over the vehicle's attitude and because the acceleration feedback signals 

will be more heavily corrupted by sensor noise than velocity feedback signals.

Active control allows extensive tailoring of the helicopter's stability and 

control dynamics, but while stability issues can largely be resolved with many

control techniques which are becoming standard, the best choice of control

dynamics linking the pilot's inceptors to the aircraft's response is not clear. 

Indeed, the possibilities offered by ACT systems are far more extensive than the

present knowledge concerning desirable pilot control strategies. Although the

handling quality specifications deal with desired 'response—types' for different 

manoeuvres and with pilot inceptor characteristics, such as force gradients, the 

success of command augmentation strategies will largely depend on how these two 

areas come together in terms of the structure of the flight control system. Of 

particular importance is the distribution of inceptor energy on to the various 

modes of the system. This is shown by the different coupling of input signals

into the stability loops of the Parry Modal Controller and the Flight Path 

Controller, which resulted in different degrees of coupling of the states in 

response to pilot commands. When one speaks of decoupling system modes, it 

must be remembered that simply decoupling the plant is not sufficient; one also 

wants to decouple the control channels linking output states to the pilot's 

inceptors.

If the state vector of the system plant is extended to include any control 

system states, the modal control theory of Parry and Murray—Smith [18] could 

then be used to achieve 'system decoupling', rather than just 'plant decoupling'. 

For full flight envelope, rate demand systems, it is necessary to have at least 

four integrations prior to the actuator inputs. These integrators will hold the 

actuator blade angles at nonzero steady state values even when the rate demand 

inputs are zero, thereby maintaining the direction and magnitude of the main and 

tail rotor thrust vectors which is necessary for trimmed flight. In addition, if one
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is looking for system decoupling, the work has confirmed the fact that rotor and 

actuator states should also be included in the analysis because these high order 

dynamics can have a strong influence on stability and couplings. Therefore, it is 

proposed that, in the future, the state vector, x(t), should be extended to the 

form given in Equation 8.1 which will have upwards of 23 elements.

fo r w a r d  v e l o c i t y  
v e r t i c a l  v e l o c i t y  
p i t c h  r a t e  
p i t c h  a n g l e  
l a t e r a l  v e l o c i t y  
r o l l  r a t e  
r o l l  a n g l e  
yaw r a t e  
yaw a n g l e
main r o t o r  c o n i n g  a n g l e  
main r o t o r  l o n g i t u d i n a l  f l a p p i n g  a n g l e  
main r o t o r  l a t e r a l  f l a p p i n g  a n g l e  
main r o t o r  c o n i n g  r a t e  
main r o t o r  l o n g i t u d i n a l  f l a p p i n g  r a t e  
main r o t o r  l a t e r a l  f l a p p i n g  r a t e  
c o l l e c t i v e  a c t u a t o r  b l a d e  a n g l e

l o n g i t u d i n a l  c y c l i c  a c t u a t o r  b l a d e  a n g l e

l a t e r a l  c y c l i c  a c t u a t o r  b l a d e  a n g l e

t a i l  r o t o r  c o l l e c t i v e  a c t u a t o r  b l a d e  a n g l e

-  f l i g h t  c o n t r o l  s y s t e m  s t a t e s  ( ^ 4 )

E q u a t i o n  8 . 1

In addition to illustrating the importance of command augmentation issues, 

the development of the Flight Path Controller for real— time simulation trials on 

the Advanced Flight Simulator (AFS) also revealed that simulation facilities are 

lacking. When attempting to produce a flight controller, it is necessary to build 

up the system in a step by step manner rather than by making large jumps, such 

as that made in transferring from TSIM computer simulation to the AFS. A 

real— time simulator with simple visual cueing and joysticks for use as pilot 

inceptors would allow a much more gradual development of the control law. A 

designer wishes to address problem areas such as real— time excitation of the 

system and pilot inceptor dynamics in isolation, rather than collectively. The
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increase in simulation hardware capabilities should be gradual in a similar vein to 

the use of the candidate controller on simulation models of increasing complexity. 

The availability of HELISIM3, modelling nonlinearities, does not eliminate the 

need for HELISTAB which provides linear descriptions of the same helicopter 

plant, and the use of the latter will remain as a fundamental component in the 

initiation of new controller designs. In the future, it is hoped that HELISTAB 

and HELISIM3 trials will be followed by real— time simulation and then by full 

moving— base, piloted flight simulation.

As an example of the fundamental problems which the piloted real— time 

flight simulation results showed, which were not apparent in the computer 

simulation results of Chapter 2, the AFS illuminated the importance of easily 

trimming the aircraft which essentially precludes an acceleration demand control 

strategy. In addition, the undesirable decoupling of the flight path from body 

attitude of the Flight Path Controller did not appear in the computer simulation 

results because simple pilot inputs were initiated from a trimmed state. Both of 

these problems should have been detected well before attempts were made to fly 

the controller on the AFS.

8.3 ) Handling Qualities Performance Index Conclusions and Recommendations

Although the Handling Qualities Performance Index, J h q > does not appear 

suitable for implementation in a tuning algorithm for helicopters at the present 

time, it has considerable potential from a control system design standpoint. One 

application might be that of tuning control system parameters at the computer 

simulation stage using Jh q  on a design developed using a control theory, such as 

modal control. Alternatively, consider the facts that J h q  allows a continuous 

measurement of the desirability of a system's handling qualities, and that through 

the minimization of Jh Q> a system's handling qualities are optimized. Since 

requirements on a system's handling quality parameters can often be transformed 

into eigenvalue requirements, it may be possible to use a form of the Handling 

Qualities Performance Index to give a measure of the desirability of particular 

eigenvalues or pole positions. Thus, it seems possible that eigenstructure 

assignment for decoupling as espoused by Parry and Murray—Smith [18] might be 

transformed into eigenstructure assignment for Level 1 flight handling qualities. 

Instead of plotting principal angles versus eigenvalues, the relevant handling 

qualities as measured by Jh q  could be plotted against eigenvalues. The desired 

eigenvalues would be those which minimized Jh q > their associated eigenvectors
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being those which would minimize the system's principal angles and hence 

coupling. Although these ideas are tenuous at present, the ability of Jh q  to 

continuously measure handling qualities should at least allow a greater insight into 

eigenstructure assignment in terms of desirable pole positions. With suitable 

development, the Handling Qualities Performance Index might bridge the gap 

between the fields of flight control system development and research into handling 

qualities. Indeed, the unification of these two areas of expertise is of paramount 

importance for the production of helicopters which will meet today's demands.
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APPENDIX 1: THE PLANT AND CONTROL SYSTEM MATRICES USED IN

THE SIMULATION STUDY

The plant of the single rotor helicopter which formed the basis of the 

computer simulations was represented by the stability and control derivatives 

generated by HELISTAB. The values of these derivatives are presented in the 

[A] and [B] matrices shown below for the 80.0 knots level flight condition which 

was used as the design point.

[A] =

- 0 . 0 3 2 2 1
- 0 . 0 0 9 5 4

0 .0 0 8 2 5
0 . 0 0 0 0 0

0 .0 0 4 3 3
- 0 . 0 1 1 3 6

0 . 0 0 0 0 0

- 0 . 0 0 7 8 6

- 0 .0 0 2 1 1
- 0 . 0 1 9 4 1

0 .0 0 3 1 6
0 . 0 0 0 0 0

- 0 . 1 6 6 7 1
- 0 . 0 4 9 7 1

0 . 0 0 0 0 0
0 .0 3 0 9 5

0 .0 4 0 3 8
- 0 . 8 0 2 7 2

0 .0 0 8 7 8
0 . 0 0 0 0 0

0 . 0 1 4 3 0
0 .0 7 1 4 8
0 . 0 0 0 0 0

0 .0 0 0 7 5

- 0 . 3 5 6 6 8
- 1 . 4 8 1 8 0

0 .4 1 0 6 7
0 . 0 0 0 0 0
0 .6 4 6 0 6

- 1 0 . 5 2 8 3 9
1.00000

- 1 . 7 9 1 9 0

- 0 . 7 3 6 6 3  
1 3 4 .8 1 4 7 7  

- 2 . 3 3 9 7 6  
0 . 9 9 9 4 6  

- 0 . 4 2 1 7 8  
- 1 . 9 9 8 8 8  
- 0 . 0 0 0 7 1  
- 0 . 0 8 9 4 6

0 . 0 0 0 0 0

1 .0 5 7 8 1
0 . 0 0 0 0 0

0 .0 0 0 0 0
3 2 .1 6 1 7 6

0.00000
0 . 0 0 0 0 0

0 . 0 0 0 0 0

- 3 2 . 1 7 9 1 5
- 0 . 6 9 1 5 9

0 . 0 0 0 0 0

0 . 0 0 0 0 0

0 . 0 2 2 7 5
0 . 0 0 0 0 0

0 . 0 0 0 0 0

0 . 0 0 0 0 0

0 . 0 0 0 0 0

0 . 0 0 0 0 0

0 . 0 0 0 0 0

0 . 0 3 2 8 7
- 1 3 3 . 4 8 4 0 4

- 0 . 2 8 6 6 8
0 . 0 2 1 4 9

- 1 . 3 5 0 1 3

[B] =

14 .2 9 2 7 9
■386.93283

14 .0 7 6 0 9
0 . 0 0 0 0 0

4 .9 2 1 2 5
32 .0 9 7 6 3

0 . 0 0 0 0 0

1 3 . 9 5 2 9 5

-2 5 .03464
-99 .8266 7
2 8 .5 3 8 7 8

0 . 0 0 0 0 0

- 5 . 0 0 9 3 3
-25.003 69

0 . 0 0 0 0 0

- 5 . 9 4 8 9 4

6 .7 4 7 2 7
0 . 0 0 0 0 0

- 5 . 8 5 1 1 2
0 . 0 0 0 0 0

- 3 0 . 5 8 0 0 6
- 1 5 3 . 2 2 5 2 0

0 . 0 0 0 0 0

- 2 6 . 8 0 7 5 8

0 . 0 0 0 0 0  

0 . 0 0 0 0 0  

0 . 0 0 0 0 0  

0 . 0 0 0 0 0

2 2 . 0 4 1 0 2
- 1 . 3 4 3 5 3

0 . 0 0 0 0 0

- 1 8 . 0 9 5 4 5
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T h e  m a t r i c e s  o f  t h e  P a r r y  M o d a l  C o n t r o l l e r  a r e  g i v e n  b y  R e f e r e n c e  [ 1 8 ]  a s ,

[P] -

-0 . 00224
-0 .00134
-0.000 25
-0.0001 5

0 .0 0 8 5 5
- 0 . 0 3 3 1 3

0 .0 0 7 1 9
0 . 0 0 0 5 4

0 . 0 0 0 3 7
- 0 . 0 0 1 4 4
- 0 . 0 0 6 1 4
- 0 . 0 0 8 9 2

0 .0 0002
- 0 . 0 0 0 0 9
- 0 . 0 0 0 3 7

0 . 0 4 4 8 3

[Kp] -

0 .0 0 7 0 8
- 0 . 0 2 7 3 3

0 .0 0 5 9 1
0 .0 0 7 0 1

- 0 . 0 0 0 0 5
0 .0 0 0 3 8
0 .00010
0 .0 1 7 1 1

- 0 . 0 0 8 7 6
0 .0 0191

- 0 . 0 0 2 5 9
- 0 . 0 0 3 2 7

0 .0 0 0 4 7
0 .0 1 3 0 3

- 0 . 0 0 6 1 6
0 .1 1 6 9 0

- 0 . 4 4 0 7 8
0 . 3 5 8 0 0

- 0 . 1 3 5 3 7
- 0 . 2 4 1 2 4

- 0 . 0 0 3 3 0
0.00221

- 0 . 0 0 2 7 5
0 . 1 5 1 6 6

- 0 . 2 8 4 3 1
1 . 1 0 8 9 4

- 0 . 2 3 6 8 3
- 0 . 2 6 6 6 0

- 0 . 0 0 0 3 5
0 . 0 0 1 3 5
0 . 0 0 6 5 7

- 0 . 5 6 8 8 4

Using the theory presented in Section 2.2.4, the following matrices were 

developed for the Flight Path Controlled system at 80.0 knots.

[G] =

10.000
0 . 0 0 0

0 . 0 0 0

0 . 0 0 0

0 . 0 0 0

10.000
0 . 0 0 0
0 . 0 0 0

0 . 0 0 0

0 . 0 0 0

1 9 .2 9 3
0 . 0 0 0

0 . 0 0 0

0 . 0 0 0

0 . 0 0 0
10 .0 00

[*?]. =

0 .9 9 9 2 3
- 0.021 50
0 . 0 0 0 0 0

-0 .03286

0 .0 2 1 4 9
0 .9 9 9 7 7
0 . 0 0 0 0 0

- 0 . 0 0 0 7 1

0 . 0 0 0 0 0

0 . 0 0 0 0 0
1 . 0 0 0 0 0

0 . 0 0 0 0 0

0 . 0 3 2 8 7
0 . 0 0 0 0 0

0 . 0 0 0 0 0

0 . 9 9 9 4 6

0 ..000 1 ,.000 0 ..000 0 ..000
1 ..000 0 ..000 0 ..000 0 ..000
0 ,.000 0 ,.000 0 ,.000 0 ..000
0 ,.000 0 ,.000 0 ..000 0 ,.000

0 ,,000 0 .,000 0 .,000 0 ,.000
0 ..000 0 ..000 0 ..000 0 ,.000
0 ..000 0 ,.000 1 ,.000 0 ..000
1 ,.000 0 ,.000 0 ..000 0 ,.000
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- 0 . 0 1 1 4 0  0.
0 .0 0 4 1 2  - 0 .

- 0 .0 0 3 0 1  0.
- 0 . 0 0 5 2 3  0.

- 0.00010  0 .
0 .0 0 0 4 8  - 0 .

- 0 . 0 0 0 0 3  0.
0 .0 0 0 2 4  0.

0.00001  0 .
0 .0 0 0 1 6  0 .
0 .0 0 0 3 2  - 0 .

- 0 . 0 0 2 7 4  0.

0 . 0 0 1 0 5  - 0 . 0 0 0 0 1
- 0 . 0 0 4 0 5  0 . 0 0 0 0 4
- 0 . 0 1 7 2 8  - 0 . 0 0 0 1 9

0 . 0 2 4 6 7  0 . 0 1 9 8 9

- 0 . 4 0 8 6 7  - 0 . 0 5 5 2 2
0 . 2 3 3 5 2  0 . 2 2 0 9 6

- 0 . 1 0 8 6 7  - 0 . 0 4 7 3 5
- 0 . 2 1 1 3 6  - 0 . 0 5 0 1 8

- 0 . 0 0 3 3 2  - 0 . 0 0 0 0 2
0 . 0 0 2 2 8  0 . 0 0 0 0 9

- 0 . 0 0 2 7 7  0 . 0 0 6 8 3
0 . 1 5 1 6 5  - 0 . 5 6 8 5 2

00815
00316
00069
00072

00226
00070
00011
00160

00054
012177
00776
11912
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APPENDIX 2: THE EQUATIONS GOVERNING THE SIGNAL CONVOLUTION 

METHOD AS APPLIED TO THE PARRY MODAL CONTROLLER

The following theory presents the application of signal convolution techniques 

to the Parry Modal Controller. While it is not necessary to repeat the steps 

involved in the generation of sensitivity functions using the signal convolution 

method (Section 3.2.1),  this appendix will demonstrate that the form of the 

sensitivity signals differs from Equations 3.13 and 3.23 which are specific to the 

Flight Path Controller.

Recall Equation 2.24 which governs the Parry Modal Controller.

x ( t )  -  { [A] -  [B][K ] x ( t )  + [B ][ P]  r ( t )  E q u a t i o n  2 . 2 4

After rearrangement in the Laplace transform domain, this equation becomes,

X ( s )  = s [ I ]  -  [A] + [B][Kp ]
- 1 [B ][ P]  R ( s )

Equat i on A2.1

The closed loop transfer function matrix of the Parry Modal Controlled system is 

given by,

[ W(s) ] = s [ I ]  -  [A] + [B][Kp ]
- 1 [B ][ P]  E q u a t i o n  A2.2

Equation A2.1 can be rearranged into,

s [ I ] -  [A] + [B][Kp ] X (s )  = [B ][P]  R ( s )  E q u a t i o n  A2 .3

The sensitivity functions are given by implicit differentiation of Equation 

A2.3 with respect to the control system parameter, oq.

3 [ K p l  '

W  3 c .  1
X ( s )  + S [ I ]  -  [A] +

E q u a t i o n  A 2 . 4
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Simplification gives,

d X ( s )
d a .

1
( s [ I ] -  [A] + [ B ] [ K p ] j ' 1 [B]

i i

Equat i o n  A 2 .5

Equation A2.5 can be put into the standard form of a multiplication of the 

closed loop transfer function matrix and a sensitivity signal if the latter is given

The theory concerning the generation of the sensitivities follows that presented in 

Section 3.2.1 from this point onwards.

In terms of the second order sensitivity signal of the Parry Modal Controller, 

if one differentiates Equation A2.4 with respect to a second control system 

parameter, aj, it is possible to generate Equation A2.7.

Since the control system matrices are both first order in terms of their elements, 

their second order differentials are zero (Equations 3.17 and 3.18). Equation 

A2.7 can be simplified to Equation A2.8.

by,

Equat  i o n  A 2 . 6

J i
E q u a t i o n  A 2 .7

j i

a[Kp] ax(s) + a[Kp] ax(s)
d a .  d a .  d a .  d a .

1 J J 1

Equat ion  A2.8
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T h u s ,  t h e  s e c o n d  o r d e r  s e n s i t i v i t y  s ig n a l  f o r  t h e  P a r r y  M o d a l  C o n t r o l l e r  i s ,

2 -1 Zz ( s )  = -  [P]—a  . a .
J i

afIV  ax(s) + a[KpJ ax(S)
d a . d a . d a . d a .

i J J 1

Equat i o n  A 2 .9
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APPENDIX 3: THE FORWARD FLIGHT HANDLING QUALITY

SPECIFICATIONS

In the following table each of the subsections of section 3.4  of the flight 

handling quality specifications report [56] is examined for parameters which can 

be used in the tuning process. A subsection is considered applicable to the 

present work if it contains quantitative parameter limits which can be used to 

classify the handling qualities on the basis of the state response of the system 

with respect to pilot inputs.

Table A 3 .1: The Applicability of the Forward Flight Handling Qualities for 
the Tuning of Flight Control Systems

S e c t  i o n  Data

3 . 4 . 2  T i t l e :  P i t c h  A t t i t u d e  R e s p o n s e  t o  L o n g i t u d i n a l  C o n t r o l  I e r

3 . A . 1 . 1  T i t l e :  S h o r t - T e r m  R e s p o n s e

A p p l i c a b i l i t y :  A p p l i c a b l e
R e l e v a n t  P a r a m e t e r s :  cogyj -  b a n d w i d t h

Tp0 -  p i t c h  p h a s e  d e l a y  
f  -  e f f e c t i v e  da mp in g r a t i o  

I n p u t s :  l o n g i t u d i n a l  i n c e p t o r  t o  y i e l d  ±5° o f  p i t c h  o r  
l i m i t e d  by  t h e  l o a d  f a c t o r s  and t h e  OFE

3 . 4-. 1 . 2  T i t l e :  M i d - T e r m  R e s p o n s e  —  M a n e u v e r i n g  S t a b i l i t y

A p p l i c a b i l i t y :  Not a p p l i c a b l e
Comments: T h i s  r e q u i r e m e n t  i s  no t  a p p l i c a b l e  b e c a u s e  i t

d e p e n d s  on k n o w l e d g e  o f  t h e  i n c e p t o r  f o r c e s  and  
t he OFE.

3 . A . 2  T i t l e :  P i t c h  C o n t r o l  P o w e r

A p p l i c a b i l i t y :  Not a p p l i c a b l e
Comments: T h i s  r e q u i r e m e n t  i s  n o t  a p p l i c a b l e  b e c a u s e  i t  

d e p e n d s  on k n o w l e d g e  o f  t h e  l o a d  f a c t o r s  and  
t h e  OFE.
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3 . 4 . 3  T i t l e :  F l i g h t  P a t h  C o n t r o l

A p p l i c a b i l i t y :  A p p l i c a b l e
R e l e v a n t  P a r a m e t e r s :  w -  v e r t i c a l  v e l o c i t y

Tfieq ~ r e s p o n s e  t i m e  c o n s t a n t  
Tfjeq ~ r e s p o n s e  t i m e  c o n s t a n t

r^ -  c o e f f i c i e n t  o f  d e t e r m i n a t i o n  
I n p u t s :  s t e p  i n p u t  on  t h e  v e r t i c a l  i n c e p t o r

3 . 4 . 4  T i t l e :  I n t e r a x i s  C o u p l i n g

A p p l i c a b i l i t y :  P a r t s  a r e  a p p l i c a b l e
Comments: T h i s  p a r a g r a p h  o u t l i n e s  t h e  s i t u a t i o n s  i n  w h i c h  

t h e  s u b s e q u e n t  p a r a g r a p h s  i n  s e c t i o n  3 . 4 . 4  a r e  
a p p l i c a b l e .

3 . 4 . 4 . 1 T i t l e :  C o l l e c t  i v e - t o - A t t i t u d e  C o u p l i n g

3 . 4 . 4 . 1 . 2  T i t l e :  S m a l l  C o l l e c t i v e  I n p u t s  ( L e s s  T h a n  20% o f  F u l l
C o n t r o l )

A p p l i c a b i l i t y :  A p p l i c a b l e
R e l e v a n t  P a r a m e t e r s :  0p6 ak " Pe a ^ c h a n g e  i n  p i t c h

a t t  i t u d e
n2 p e a k  " p e a k  normal  a c c e l e r a t i o n
t -  t i me

I n p u t s :  s t e p  in p u t  on t h e  v e r t i c a l  i n c e p t o r  o f  l e s s  t h a n  
2 0 % o f  f u l l  c o n t r o l

Comments: I t  w i l l  be n e c e s s a r y  t o  know t h e  f u l l  c o n t r o l  
a u t h o r i t y  o f  t h e  c o l l e c t i v e  i n  o r d e r  t o  u s e  
t h i s  r e q u i r e m e n t .

3 . 4 . 4 . 2 . 2  T i t l e :  L a r g e  C o l l e c t  i v e  I n p u t s  ( G r e a t e r  T h a n  o r  E q u a l  t o
20% o f  F u l l  C o n t r o l )

A p p l i c a b i l i t y :  A p p l i c a b l e
R e l e v a n t  P a r a m e t e r s :  0pe a k -  p e a k  c h a n g e  i n  p i t c h

a t  t i t u d e
nz p e a k  " Pe a k normal  a c c e l e r a t i o n  
t -  t i m e

I n p u t s :  s t e p  in p u t  on t h e  v e r t i c a l  i n c e p t o r  o f  g r e a t e r  
t h a n  2 0 % o f  f u l l  c o n t r o l

Comments: I t  w i l l  be n e c e s s a r y  t o  e s t i m a t e  t h e  f u l l
c o n t r o l  a u t h o r i t y  o f  t h e  c o l l e c t i v e  i n  o r d e r  t o  
u s e  t h i s  r e q u i r e m e n t .  P a r t s  o f  t h i s  
r e q u i r e m e n t  d e a l i n g  w i t h  a u t o r o t a t i o n  and t h e  
OFE c a n n o t  be u s e d .
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3 . 4 . 4 . 2  T i t l e :  P i t c h - t o - R o l I  a n d  R o l I  - t o - P  i t c h  C o u p l i n g  D u r i n g
A g g r e s s  i v e  M a n e u v e r i n g

A p p l i c a b i l i t y :  A p p l i c a b l e
R e l e v a n t  P a r a m e t e r s :  qpe a k -  p e a k  p i t c h  r a t e

P s t e p  “ s t e P c h a n g e  i n  r o l l  r a t e
Ppeak " Pe a k  r o 1 1  r a t e
qs t e p ~ s t e p  c h a n g e  i n  p i t c h  r a t e

I n p u t s :  s t e p  on t h e  l o n g i t u d i n a l  i n c e p t o r  f o r  r a t e  
r e s p o n s e - t y p e s  

s t e p  on t h e  r o l l  i n c e p t o r  f o r  r a t e  r e s p o n s e - t y p e s

3 . 4 . 5  T i t l e :  R o l l  A t t i t u d e  R e s p o n s e  t o  L a t e r a l  C o n t r o l l e r

3 . A - . 5 . 1  T i t l e :  S m a l l - A m p l i t u d e  R o l l  A t t i t u d e  R e s p o n s e  t o  C o n t r o l
I n p u t s

A p p l i c a b i l i t y :  A p p l i c a b l e
R e l e v a n t  P a r a m e t e r s :  o)gyj -  b a n d w i d t h

t p p  -  r o l l  p h a s e  d e l a y
f  -  damping r a t i o
o)n -  f r e q u e n c y

-  r o l l  a t t i t u d e  
I n p u t s :  r o l l  i n c e p t o r  t o  y i e l d  ±10° o f  r o l l

3 . 4 . 5 . 2  T i t l e :  M o d e r a t e - A m p l i  t u d e  A t t i t u d e  C h a n g e s

A p p l i c a b i l i t y :  P o s s i b l y
R e l e v a n t  P a r a m e t e r s :  Pp e ak ~ p e a k  r o l l  r a t e

-  c h a n g e  i n  ban k a n g l e  
I n p u t s :  r o l l  i n c e p t o r  t o  y i e l d  b e t w e e n  10°  and 4 0 °  o f  

r o l l  b o t h  p o s i t i v e  and n e g a t i v e  
Comments: T h i s  r e q u i r e m e n t  s h o u l d  be r e l a t e d  t o  an  MTE.

3 . 4 . 5 . 3  T i t l e :  L a r g e  A m p l i t u d e  R o l l  A t t i t u d e  C h a n g e s

A p p l i c a b i l i t y :  A p p l i c a b l e  
R e l e v a n t  P a r a m e t e r :  p -  r o l l  r a t e
I n p u t s :  a f u l l  a m p l i t u d e  s t e p  on t h e  r o l l  i n c e p t o r  
Comments: I t  may n ot  be p o s s i b l e  t o  u s e  t h i s  t e s t  w i t h  

n o n l i n e a r  s i m u l a t i o n  m o d e l s  s i n c e  t h e  
s e n s i t i v i t y  f u n c t i o n s  may n o t  be  v a l i d .

3 . 4 . 5 . 4  T i t l e :  L i n e a r i t y  o f  R o l l  R e s p o n s e  

A p p l i c a b i l i t y :  Not a p p l i c a b l e
Comments: T h i s  r e q u i r e m e n t  i s  p u r e l y  q u a l i t a t i v e .
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3 . 4 . 6 T i t l e :  Ro11- Si  d e s l i p  C o u p l i n g

3 . 4 . 6 . 1  T i t l e :  Ba n k  A n g l e  O s c i  l l a t  i o n s

A p p l i c a b i l i t y :  A p p l i c a b l e
R e l e v a n t  P a r a m e t e r s :  tf’oSC ~ a bank a n g l e  p a r a m e t e r

<I>AV " a bank a n g l e  p a r a m e t e r  
<£ -  c h a n g e  i n  bank a n g l e
p -  r o l l  r a t e  
(3 -  s i d e s l i p
5as  ~ l a t e r a l  c o n t r o l  p o s i t i o n  from  

t r i m  
t -  t i me

I n p u t s :  a p u l s e  r o l l  c o n t r o l  command f o r  r a t e  
r e s p o n s e - t y p e s

3 . 4 . 6 . 2  T i t l e :  T u r n  C o o r d i n a t  i o n  

A p p l i c a b i l i t y :  A p p l i c a b l e
R e l e v a n t  P a r a m e t e r s :  A/3 -  maximum c h a n g e  i n  s i d e s l i p

t A/3 -  a t i m e  c o n s t a n t
<i>l -  a f e a t u r e  on t h e  r o l l

a t t i t u d e  r e s p o n s e  
-  t h e  r o l l  a t t i t u d e  r e s p o n s e

l * / 0 l d  "
t -  t i m e

I n p u t s :  an a br up t  p u l s e  r o l l  c o n t r o l  command f o r  r a t e  
r e s p o n s e - t y p e s .

3 . 4 . 7  T i t l e :  Yaw R e s p o n s e  t o  Yaw C o n t r o l  I n p u t

3 . 4 . 7 . 1  T i t l e :  S m a l l  Amp I i t u d e  Yaw R e s p o n s e  f o r  A i r  Co mb a t

A p p l i c a b i l i t y :  A p p l i c a b l e
R e l e v a n t  P a r a m e t e r s :  a)g^ -  b a n d w i d t h

7pip ~ y aw p h a s e  d e l a y  
ip -  h e a d i n g  a n g l e

I n p u t s :  p e d a l  i n c e p t o r  t o  p r o d u c e  ±10° i n  yaw.

3 . 4 . 1 . 2  T i t l e :  L a r g e  A m p l i t u d e  H e a d i n g  C h a n g e s

A p p l i c a b i 1 i t y : A p p l i c a b l e
R e l e v a n t  P a r a m e t e r s :  'k -  t h e  h e a d i n g

t -  t ime
I n p u t s :  an a br up t  s t e p  d i s p l a c e m e n t  o f  t h e  yaw c o n t r o l  
Comments: In o r d e r  t o  u s e  t h i s  r e q u i r e m e n t  i t  must  be  

as su me d t h a t  t h e  s i d e s l i p  l i m i t s  o f  t h e  OFE 
a r e  not  e x c e e d e d .

3 . 4 . 7 . 3  T i t l e :  L i n e a r i t y  o f  R e s p o n s e  

A p p l i c a b i l i t y :  Not a p p l i c a b l e
Comments: T h i s  r e q u i r e m e n t  i s  p u r e l y  q u a l i t a t i v e .

3 . 4 . 7 . 4  T i t l e :  Yaw C o n t r o l  w i t h  S p e e d  C h a n g e s

A p p l i c a b i l i t y :  Not a p p l i c a b l e
Comments: T h i s  r e q u i r e m e n t  s h o u l d  be t e s t e d  w i t h  a 

r e a l - t i m e  s i m u l a t i o n  f a c i l i t y .
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3 . 4 . 8  

3 . 4 . 8 . 1

3 . 4 . 8 . 2

3 . 4 . 9

3 . 4 . 9 . 1

3 . 4 . 9  . 2

3 . 4 . 9  .3

3 . 4 . 9 . 3 .

3 . 4 . 1 0

T i t l e :  L a t e r a l  D i r e c t i o n a l  S t a b i l i t y

T i t l e :  L a t e r a l - D i r e c t i o n a l  O s c i l l a t i o n s

A p p l i c a b i l i t y :  A p p l i c a b l e  
R e l e v a n t  P a r a m e t e r s :  con -  f r e q u e n c y

f  -  damping r a t i o  
I n p u t s :  a d o u b l e t  on t h e  yaw c o n t r o l l e r

T i t l e :  S p i r a l  S t a b i l i t y

A p p l i c a b i l i t y :  A p p l i c a b l e  
R e l e v a n t  P a r a m e t e r :  <p -  bank a n g l e  
I n p u t s :  a p u l s e  on t h e  r o l l  i n c e p t o r

T i t l e :  L a t e r a l - D i r e c t  i o n a l  C h a r a c t e r i s t  i c s  i n  S t e a d y  
S i d e s  I i p s

A p p l i c a b i l i t y :  Not a p p l i c a b l e
Comments: The r e q u i r e m e n t  c a l l s  f o r  t e s t i n g  t o  t h e  l i m i t s  

o f  t h e  OFE.

T i t l e :  Yaw C o n t r o l  i n  S t e a d y  S i d e s l i p s  

A p p l i c a b i l i t y :  Not a p p l i c a b l e
Comments: The r e q u i r e m e n t  d e p e n d s  on k n o w l e d g e  o f  t h e  

c o n t r o l  f o r c e s .

T i t l e :  B a n k  A n g l e  i n  S t e a d y  S i d e s l i p s  

A p p l i c a b i l i t y :  Not a p p l i c a b l e
Comments: The r e q u i r e m e n t  i s  p u r e l y  q u a l i t a t i v e .

T i t l e :  L a t e r a l  C o n t r o l  i n  S t e a d y  S i d e s l i p s  

A p p l i c a b i l i t y :  Not a p p l i c a b l e
Comments: The r e q u i r e m e n t  d e p e n d s  on k n o w l e d g e  o f  t h e  

c o n t r o l  f o r c e s .

I T i t l e :  P o s i t i v e  E f f e c t  i v e  D i h e d r a l  L i m i t  

A p p l i c a b i l i t y :  Not a p p l i c a b l e
Comments: The r e q u i r e m e n t  d e p e n d s  on k n o w l e d g e  o f  t h e  

c o n t r o l  f o r c e s .

T i t l e :  P i t c h ,  R o l l  a n d  Yaw R e s p o n s e  t o  D i s t u r b a n c e  I n p u t s  

A p p l i c a b i l i t y :  Not a p p l i c a b l e
Comments: T h i s  r e q u i r e m e n t  c a l l s  f o r  d i r e c t  e x c i t a t i o n  

o f  t h e  c o n t r o l  a c t u a t o r s .
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