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SUMMARY

This thesis reports experimental and theoretical investigations into the in— plane 

behaviour of reinforced concrete transfer girders designed by the direct design 

method. The girders tested were either continuous over two spans or single span. 

The direct design technique investigated used an elastic stress field obtained from a 

linear— elastic finite element analysis using the uncracked properties of concrete in 

conjunction with Nielson's yield criterion given by:—

(ax* -  ax) (ay* -  ay)  -  rx y 2 = 0

where ax, ay and rxy are the applied stresses at the ultimate load, and ax* and 

ay* are the ultimate capacities of the section. An averaging procedure was used to 

smear out reinforcement requirements and select final bar sizes. This proved more 

satisfactory than selecting bars based on maximum stresses.

A finite element procedure for obtaining an elasto— plastic stress field was developed 

in order to design the reinforcement. This approach may be better in producing 

more economical distributions for design the reinforcement. However, this was not 

adequately evaluated in this research.

The experimental study consisted of testing eleven large scale girders. The major 

parameters studied for the two span continuous girders were; span to depth (L/D) 

ratio, the influence of the web reinforcement, the effect of using skew reinforcement 

and the main reinforcement distributions according to either CIRIA Guide 2 or the 

direct design technique. For the single span girders, the main purpose was to 

examine the direct design technique for girders with web openings which interrupt 

the load path. Also, to find the best location of the opening in the girder. One 

solid single span girder was tested with the aim of justifying the theoretical



calculated amount of steel at each point, so that structure must yield simultaneously. 

Also, to justify the maximum and averaging envelope procedures.

The theoretical study consisted of using a nonlinear plane stress finite element 

analysis. The material properites of reinforced concrete were represented by fixed 

crack smeared cracking model in conjunction with steel yielding behaviour etc. The 

experimental measured behaviour and the behaviour predicted by finite element 

model showed good agreement and allowed a greater insight into the behaviour of 

the girders.

The test results indicate that the direct design approach is satisfactory in both 

ultimate strength and serviceability behaviour as given by 0.3mm crack width.
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NOTATIONS

Major symbols used in the text are listed below, others are defined as they first 

appear. Some symbols have different meanings in different contexts, these are clearly 

defined.

General Sumbols

{ }, { }T Curly brackets denote column and rows vectors

[ ], [ ]T Square brackets denote rectangular matrices

In both cases T over the brackets denotes the transpose;

— 1 over square matrices denotes the inverse 

| | Straight brackets denote the determinant of square matrices

det | | Denotes the determinant of a square matrix

Subscripts and Superscripts 

e Pertains to element

i Pertains to nodes

q Pertains to integrating points

s Pertains to steel

T Pertains to tangential values

1 Pertains to transformed directions

* Pertains to crack direction

o Pertains to initial values

Scalers

A Area of individual bars crossing the diagonal crack

joining the support and loading point, including main and 

shear reinforcement bars (Kong et al)

Ac Area of concrete (BSCP8110)

Ah Area of horizontal web steel bars (ACI Code)

As Area of main reinforcement bars

Asc Area of compressive reinforcement



Area of vertical web steel bars (ACI Code) 

Reinforcement areas per unit thickness in the x and 

directions.

Shear span

Shear span below the opening 

Shear span above the opening 

Shear retention factor

Coefficient of shear strength (Ramakrishnan et al)

Breadth (thickness) of the beam

Compressive force of concrete

Empirical coefficient in Kong et al's equation

for normal weight concrete Cl = 1 .4

for light weight concrete Cl =1 .35

Empirical coefficient in Kong et al's equation

for normal weight concrete C2= 300N/mm^

for light weight concrete C2= 130N/mm^

Cohesive force of concrete (Varghese et al)

Overall depth of beam

elementary area

elementary volume

Effective depth of beam

Young's modulii

Young's modulus of steel

Strain hardening modulus of steel

Characteristic compressive strength of concrete

Equal biaxial strength of concrete

Characteristic cube strength of concrete

Normal force on inclined crack in deep beams

Specified yield strength of tension and compression

reinforcement respectively

Characteristic tensile strength of concrete



fy

fx,fy

G,Go,Gx

H

HF

HS

ha

hL

hu

hl

h2

Il.l2 .l3

J2

k

kl ,k2

K,Ko,Kx

L'

L

lc

In

M

MFL

mCR

Mu

Mi ,M2 M3 M4

Nx,Ny,Nxy

n

V

XV

Characteristic yield strength of steel

reinforcement stresses in direction x and y respectively

Shear modulii

Horizontal force induced around a web opening in the model 

Value of H corresponding to rotational failure of the model 

Value of H corresponding to shear failure in the region 

between the beam end and the web opening 

Effective height of the beam

Depth of the beam web below an opening (Fig. 2.14—a)

Depth of the beam web above an opening (Fig. 2.14—b)

Depth of the beam web above an opening (Fig. 2.14—c)

Depth of an opening

Coefficient defining the position of an opening

1st, 2nd and 3rd invariants

Secant deviatoric stress invariant

Splitting coefficient (Ramakrishnan et al

Coefficient defining the position of an opening (Kong et al)

Bulk modulii

Overall length of beam span

Simple span of the beam, generally refer to a distance 

between centre lines of supports.

Characteristic length of a crack

Clear span measured from face to face of the support (Crist) 

Design moment at ultimate limit state 

Flexural capacity of a beam (Rangan)

Shear strength of a deep beam (Rangan)

Ultimate moment at the section (ACI Code)

Hinge moments (Kong and Kubik)

Applied inplane forces 

Number of bars (Kong et al)

(Qb )s/(q b )f



Pc Calculated ultimate load

PI Predicted ultimate load (by Ramakrishnan et al's equation)

P2 Predicted ultimate load (by de Paiva and Siess's formula)

P3 Predicted ultimate load (by ACI Code’s formulae)

P4 Predicted ultimate load (by Kong et al method)

P5 Predicted ultimate load (by CIRIA Guide 2 method)

Ps Serviceability load (kN) based on 0.3mm crack width

Pu,Pum Measured ultimate load (kN)

p,pt (As/b.d)

px,py Reinforcement ratios in directions of x and y.

Puc Calculated load (Ramakrishnan et al)

Q Shear force

Q g Shear transmitted below a web opening

(Qb )F Value of Q g corresponding to rotational failure of the

load path below the opening 

(Qb )s Value of Q g corresponding to shear failure of the load

path below the web opening 

Qx  Shear transmitted above a web opening

(QX)F Value of Qx  corresponding to rotational failure of the

load path above the opening 

(Qt )s Value of Qx  corresponding to shear failure of the load

path above the web opening 

(Qt )s1 Value of Qx  corresponding to shear failure of the beam in

the region above the web opening 

(Qt )S2 Value of Qx  corresponding to shear failure of the beam in

the region between the beam end and the web opening 

Qult Ultimate shear strength in kN

Ri* Norm of applied load

S Shear fractional force along inclined crack (ACI Code)

S' Spacing of the web reinforcement Figure (2.6)

Sh Spacing of horozontal web reinforcement (ACI Code)
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Sv Spacing of vertical web reinforcement (ACI Code)

T Total tensile force resisted by As

t ' Distance between web opening and beam end (Kubik)

fi Ratio of shear strength to flexural strength of the load path

over the to of the opening (Qt )s /(Q t )f  

Vc Shear capacity of concrete (ACI Code)

Vs Shear capacity of web reinforcement (ACI Code)

V Design shear force at a critical section

vc Shear stress carried by concrete

vn Nominal shear stress carried by concrete (ACI Code)

vu Limiting concrete shear stress (ACI Code)

W Design load (kN)

o) Reduction factor (cj=0.85, ACI Code)

X Clear shear span

X I Clear shear span below a web opening

Xq Length of a web opening (Kubik)

Xu Clear shear span above a web opening

X | Length of web opening (Kubik)

X2  Coefficient defining the position of an opening

y The depth at which a typical bar intersects the potential

critical diagonal crack in a deep beam which is approximately

the line joining the loading and reaction points.

yL,yu»yt These are used in Kubik's equation (2.22) to (2.24) and

are given in Figure (2.14) 

z Lever arm

a  Acute angle between a typical bar and critical diagonal

crack described in definition of y. 

a l ,OL,at ,au These symbols are used in equation (2.22) to (2.24) in

conjunction with Figure (2.14) 

ac Direction of crack

ym  Partial safety factor for material
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ex,ey,Txy,ez Strain components in global direction

et*,en*,1f* Strain in cracked direction

ecr Cracking strain

cfl^2>a3 Principal concrete stresses

<jx,(jy,Txy In— plane direct and shear stresses

ax*, ay* Steel forces in x and y directions respectively

ax,ay,rxy,az Stress components in global direction

at* ,an* ,7 * Stress in cracked direction

^ax,^ay,^Txy,^(jz Incremental stress components in global directions

^ox,^oy,^Txy,^az Incremental strain components in global directions

aoct roct Octahedral stresses

am Mean stress

Toct Octahedral strain

v , vo, t>T Poisson's ratio

8 Orientation of major principal concrete stress to y—axis

Vectors and Matrices

[B ] Strain matrix

[ D ][ D j  ][ D r  ]* Elasticity matrix

{F)e Nodal forces at nodes of an element

{F)e fo Nodal forces vector due to initial strains

{^}e |TO Nodal forces vector due to initial stresses

{F}p Nodal forces vector due to distributed load per unit volume

{F> Nodal force vector due to external load

[ J ] Jacobian matrix

H I  [ r ] Distortion matrix

[ k M k t  M k ]q Overall stiffness matrix

1 
■ 1 Element stiffness matrix

[M ] Modular matrix

[N ] Matrix of shape functions

{R } Vector of total imposed loads
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[T ] Transformation matrix

Nodal displacements

{«>* Nodal displacements associated with element e

« Vector of residual nodal forces

{*> Total stress vector

M o Initial stress vector

M p Principal stress vector

b<1 Incremental stress vector

M * Stress vector in crack direction

M } Elastic stresses stress vector

( 0 Total strain vector

M o Initial strain vector

(Op Principal strain vector

H O Incremental strain vector

( 0 * Strain tensor



CHAPTER ONE 

INTRODUCTION

1.1 Preamble

This thesis is primarily concerned with the application of the direct design approach 

to in— plane structures, focusing on deep beams in general and on continuous 

transfer girders in particular. The research had three phases. Firstly the direct design 

approach was developed for the design of deep beams and continuous transfer 

girders. Secondly, the behaviour of designed beams was studied by testing them 

experimentally to destruction. Thirdly, designed beams were analysed by nonlinear 

finite element methods, in order to compare experimental and theoretical results, and 

to provide further in— depth information about behaviour. This strategy would enable 

conclusions to be drawn regarding the efficiency and rationality of the direct design 

approach for transfer girder design.

Deep beams have a common practical importance, they are characterized as being 

relatively short and deep, having thicknesses that are small relative to their span or 

depth, and are loaded in the plane of the member. They are "two dimensional"

members in a state of biaxial plane stress, in which shear is a dominant feature.

The internal stresses cannot be determined by simple bending theory, and shallow 

beam theory is not applicable for determining strength. Deep beams appear 

frequently in complex structures in the form of transfer girders, brackets, pilecaps, 

foundation walls, tanks, bins, folded plate roof structures, shearwalls and retaining 

walls. Figure. (1.1) shows a typical situation where deep beams are used as load 

bearing walls, whereas Figure (1.2) illustrates a situation where a deep beam spreads 

column loads into a continuous foundation.

In modern construction, high— rise buildings are fashionable and have been 

constructed on a large scale. It is fairly common practice to use heavy column

construction to take the entire load of the building. In such buildings it is often an
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architectural requirement that the ground floor should be free of columns as much

as possible to accommodate departmental stores, hotel foyers, car parks, etc. This

can be made possible by using deep beams in the form of transfer girders to 

provide large spans across the column free spaces, and to carry the rest of the 

building above it as shown in Figure (1.3).

Another typical example, encountered in practice is a framing plan for tall buildings 

which uses interior walls as story high structural members spanning the width of the 

structure. The wall members are staggered on alternative floors. This framing system 

provides large column free spaces as shown in Fig. (1.4). Hence, the slabs carry the 

floor loads to the walls and act as beam flanges, while the wall acts as a beam

web.

Access from one part of a building to another frequently entails the provision of 

openings in the webs of deep reinforced concrete beams. A wall separating two 

rooms and designed as a deep beam may require openings for the passage of 

ventilating ducts, heating pipes or other essential services. Openings are often 

required to provide a central doorway between compartments. If the structure is to

be designed safely and efficiently it is important to understand the effect of web 

openings on the behaviour of deep beams under service and ultimate loads.

It has been reported by various researchers that the type of loading and the shear 

span to depth ratios are important parameters which effect deep beam behaviour, 

i.e. when a beam is subjected to a direct point load acting on the top edge, the 

shear capacity of the beam increases as it becomes deeper and deeper, and arching 

behaviour becomes significant. In such beams diagonal tension cracks can appear 

suddenly along a line joining the support and the loading point, when the tensile 

stresses perpendicular to the compressive concrete strut joining the loading point and 

support exceeds the tensile strength of concrete. Hence, shear or diagonal splitting is
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a likely cause of failure in such beams. For uniformly distributed loads, the 

tied— arch behaviour would be different and the strength would change. Furthermore, 

in the vicinity of point loads, irregular and often severe stress distributions occur 

which do not exist with uniformly distributed loads. Deep beams, either in 

continuous foundations or as shearwalls, often carry columns which provide direct 

point loads acting on the top edge, and it is this type of loading which was 

investigated in this study. Figure (1.5) illustrates this loading schematically.

In the last 30 years, many experimental and analytical studies have been conducted 

on deep beams. However, most of these studies are markedly different from one 

another in geometry, reinforcement ratios, reinforcement distributions, loading 

conditions, as well as the methods of analysis. Authors have typically developed and 

validated empirical formulae for their own test results, irrespective of its applicability 

to other situations. In addition, there has been far less attention devoted to their 

design. Consequently design of deep continuous girders is one of the most undefined 

in codes of practice. It appears that most of current practical design procedures use 

elastic stress fields. There are no design procedures which takes into account other 

stress field such as elasto— plastic stress fields. Designs based on current design 

methods give a very high difference between the design load and the measured 

ultimate load which implies' there is wastage of material.

Neither the British Code of Practice CPI 10 (1972)H], nor its updated version 

BSCP8110 (1985)[2], contain recommendations for deep reinforced concrete beams. 

The CEB—FIP (1970)[3] model code did include some design recommendations for 

simple and continuous deep beams based on Leonhardt and Walther’s(^) findings in 

Germany. This Code does not provide precisely for shear reinforcement design and 

there is no provision for deep beams with web openings. The design criteria for 

multi— span deep beams have been developed from semi— empirical formulae based 

on limited data of simply supported deep beam studies. Continuous deep beam



behaviour and analysis is more complex in comparison to a simply supported deep 

beam due to the effects of the extra supports.

The ACI Code (1971)[5] and its new updated version ACI Code (1983)[6] included

recommendations only for the shear design of deep beams and was based on Crist's

findings at New Mexico(^). These provisions evolved from simply supported deep

beam studies and are not directly applicable to continuous deep beams. As a result,

the ACI Code equations "blow up" for continuous deep beams, when the critical

section for shear is near or at the point of contra— flexure, which happens

frequently, since the design equation requires division by zero. Secondly the ACI

Code equation for ultimate capacity includes a negligible contribution from the steel,

which means that the estimated total load is provided only by the concrete which

may not be true. The Code recommends that the Portland Cement Association

(PCA) Pamphlet (1946)1^] should be consulted if flexural reinforcement is required.

This was an extension of earlier work by Dischinger (1932)[9] who considered
e.

reinforced concrete as an isotropic, homogenous and elastic material, which is not 

very realistic, once concrete has cracked.

The Construction Industry Research Information Association (CIRIA) Guide 2 

(1977)t10] is a comprehensive guide for deep beam design and has a similar 

procedure to the CEB—FIP (1970)[^1 model code. However, its recommendations 

seem to be conservative for both main and shear reinforcement. It does not provide 

specific criteria for shear reinforcement calculation, only an ad hoc procedure. The 

CIRIA Guide does cover web opening design, but only if the openings are placed in 

a dead zone area, which is called, in its own terminology, an "admissible" opening. 

In practice, openings often interrupt load paths, and can cause a serious problem. 

Thus the CIRIA Guide lacks information for "inadmissible" web opening design. Also 

the CIRIA Guide provisions for web openings are based on elastic theory.
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During the last two decades study of plasticity in reinforced concrete has grown 

extensively. Limit analysis techniques have been used to predict both upper and 

lower bound capacities of slabs, panels and beams under bending, shear, torsion and 

combined actions. These techniques are based on the basic theorems of plasticity,

which demand that at collapse two of three conditions, i.e. the equilibrium condition, 

the yield criterion and the mechanism condition, are satisfied. Also the material must 

possess sufficient ductility so that areas which yield before collapse, can deform 

plastically without loss of strength until ultimate conditions are reached.

In lower bound methods for reinforced concrete, the applied to««As are less or

equal to the combined internal resistance offered by the concrete and steel. In upper

bound systems, sufficient hinges or yield zones are formed in the structure which 

transform it into a mechanism. Upper bound methods are unsafe if the wrong 

mechanism is assumed, whereas lower bound methods are safe although they may be 

uneconomical.

In recent years various proposals have been made for the design of reinforcement

for both bending and in— plane forces, based on the lower bound limit state 

approach, in which a stress field in equilibrium with the design ultimate load is used 

in conjunction with an appropriate yield criterion. This approach is termed the direct 

design method in this thesis. Such a stress field can be obtained by any suitable 

procedure such as a linear elastic finite element analysis or by an elasto— plastic 

finite element analysis. Reinforcement is then provided so that the combined 

resistance of steel and concrete at each point is equal to or greater than the applied 

stresses.

An elastic stress field will produce steel reinforcement ratios which may vary 

continuously throughout the continuum, and is likely to give ultimate loads which are 

higher than the design loads. Also, when taken in conjunction with the objective of



6

simultaneous yielding throughout the continuum, excessive deformations and cracking 

are unlikely at working loads and therefore they should not result in poor

serviceability behaviour. On the other hand, an elasto— plastic stress field might 

provide more uniform and efficient flow of forces producing uniform reinforcement 

fields which would be more convenient for selecting bar sizes and spacing. However, 

such fields are likely to produce less satisfactory serviceability behaviour.

In theory, by satisfying equilibrium and the yield criterion at every point 

simultaneously, the entire structure will become a mechanism at ultimate load. 

Practical considerations, such as the provision of reinforcement as discrete bars, make 

it impossible to achieve this idealised behaviour. Nevertheless, in general, direct

design has been proved satisfactory in ultimate and serviceability behaviour, although 

the theory gives no guarantee that serviceability behaviour will be satisfactory.

Recent research has demonstrated that the direct design approach using an elastic 

stress field is satisfactory for both bending and in—plane a c tio n s^  >12,13,14] for 

certain classes of structures at serviceability and ultimate conditions. In these studies 

the yield criterion and associated design equations given by Wood and Armer[15,16] 

were used to design reinforcement for bending actions, whilst for in— plane actions, 

N ielsen's!^] yield criterion was used with the design equations proposed by 

Clarkt18].

The studies by Lin [*3] on solid deep beams and by M em ont^] on perforated deep 

beams were on relatively small scale models so that practical bar sizes were difficult 

to select. Also, because continuously varying reinforcement fields were produced

throughout the continuum, difficulties were encountered in choosing practical

distribution of reinforcement. These factors indicate that there is a need to test 

large— scale models which could simulate practical situations more closely.
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These studies have also indicated that measured ultimate loads were always higher 

than the designed ultimate loads. This can be explained by the following points:

(a) The reinforcement provided was always higher than the calculated amount of 

reinforcement.

(b) hardening in the steel is ignored in the design equations. This could play

an important role, particularly for high tensile strength steel.

(c) The effect of dowel action and shear transfer across cracks is ignored in the 

design process. These can have an important influence in deep beam behaviour.

(d) The tensile strength of concrete is assumed zero in the design process.

There are still several other aspects of the direct design method which requires 

further investigation and development. These include the following.

(i) As implemented currently the direct design technique is semi— automatic.
Ike

However, it has the potential to be fully automated from ^ initial design

conception to the final working drawings. Automatic procedures have been produced 

for calculating the elastic stress field, the steel ratios and the steel areas required, 

which can then be plotted by computer directly to assist in the subsequent design 

stages. Discrete bars are then selected manually, based either on maximum or 

average value procedures in conjunction with the rules for spacing and concrete 

cover as specified in codes of practice and other design guides. Once these rules for 

bar selection have been established experimentally and theoretically, it also could be 

made automatic.

(ii) Multi load cases have not yet been studied experimentally or theoretically. It is 

often the case that deep beams or other structures are subjected to such loading. 

Clearly it is impossible to produce a single practical reinforcement arrangement which 

will simultaneously satisfy the idealised basic conditions for two or more independent 

load cases. It is still necessary to work out practical procedures for detailing in this 

situation
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(iii) The use of skew reinforcement is not covered by any code of practice. 

However, Leonhardt and Walthert^l and L in te l have studied skew reinforcement as 

main reinforcement in deep beams and have concluded that it is better than 

orthogonal reinforcement in increasing ultimate capacities of beams, reducing 

deflections and giving a better control on crack widths. Skew reinforcement is 

conveniently handled by the direct design equations and thus it would be useful to 

further investigate the efficiency of this type of reinforcement using the direct design 

approach.

(iv) The direct design of deep beams in which web openings interrupt the load path, 

has not yet been studied. This is an important practical situation which needs further 

investigation, especially as no code of practice or design procedure includes this 

situation.

Since deep beams can develop arch action, attempts have been made to develop 

Plastic Truss Models^ 9,20,21,22] for analysis and design. However, these do not 

strictly duplicate the true behaviour of deep beams, they are not straightforward to 

use and they only • predict ultimate loads. An iterative process is required which 

rebuilds the geometry, changes support dimensions, and adjusts the material 

properties. The reliability of solutions appears to be dependent on the choice of an 

approximate effective concrete strength, fc*, using a so-called  concrete effectiveness 

factor, v.

The plastic truss model also assumes that any horizontal web reinforcement is 

ineffective, which might not be the case in reality; also since shear failure in deep 

beams is dominant, the top and bottom cords of steel, in the plastic truss model 

may not reach its ultimate capacity as is assumed. To the author's knowledge, the 

plastic truss model does not appear to have been used, to actually design either
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simple or continuous deep beams, which have then been tested experimentally to 

confirm its applicability. For example, two series of deep beams tested by Rogowsky 

and M a c G r e g o r [ ^ 9 ] > and Ricketts and MacGregort2^] were analysed, but not 

designed, by the plastic truss model. Although good agreement was obtained, it was 

only possible by making adjustments to material properties, such as the characteristic 

cylindrical compressive strength of concrete.

As indicated earlier, current codes of practice and design methods rely heavily on 

empirical or semi— empirical formulae derived from large amounts of experimental 

data. This is mainly because of the complexities associated with the development of 

rational analytical approaches. Neveretheless, it is difficult and expensive to conduct 

exhaustive experimental studies on each topic, in order to develop empirical 

methods. In such situations, numerical techniques offer alternative approximate 

solutions if material behaviour is properly modelled.

Nowadays a number of such techniques are available for analysing a given structure, 

all based on the basic principles of continuum mechanics, that is equilibrium, 

compatibility and the constitutive relationships of the material. They transform a 

body of an infinite number of variables into one with a finite number of variables, 

governed by a set of simultaneous equations, the solution of which provides an 

approximation to the real situation. The most powerful general technique is the 

Finite Element Method (FEM). It is an engineering tool of wide applicability for the 

solution of partial differential equation systems, subject to known boundary and 

loading conditions, and has been d e s c r i b e d [ 2 3 > 2 4 , 2 5 ]  v e r y  widely. Its development is 

still continuing, particularly in nonlinear analysis, and it is being applied in the 

development of rational approaches for structural design in computer aided design 

(CAD) techniques.

In the finite element analysis of reinforced concrete structures, many nonlinearties
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can be approximately modelled, these include the cracking of concrete, tension 

stiffening, shear transfer across cracks, nonlinear multiaxial material behaviour, and 

complex steel— concrete interface behaviour. Thus, in principle, the FEM can

estimate the most important aspects of behaviour throughout the entire loading 

range.

However, understanding of concrete behaviour is still incomplete despite the

significant advances made in the last two decades. Disparities in experimental results 

are commonplace due to the difficulties in obtaining consistent test procedures and

test specimens, as well as in the natural variability of concrete itself. This makes it 

difficult to model concrete behaviour exactly, therefore approximate theories have to 

suffice. The behaviour of steel is more straightforward and can be modelled more 

easily, particularly as reinforcement provides a predominantly axial force.

However, composite action of concrete and steel as reinforced concrete, especially 

when the concrete is cracked, is much more complex. Factors such as bond— slip 

phenomenon between steel and concrete, dowel action of reinforcement under shear 

deformation, etc. can significantly influence reinforced concrete behaviour. These 

phenomena are still under investigation in order to provide better understanding and 

information, which are essential for theoretical modelling.

In testing the reliability of a FEM model, it is important to understand the

numerical and material parameters which influence a solution and ensure that 

predicted behaviour is compared with quantities which have practical engineering 

significance. However, once the integrity of a finite element analysis for a particular 

problem is confirmed against experimental evidence, then a numerical parametric 

study can be employed to investigate various factors in that field more economically 

than by experimental means. Also, a wider range of parameters can be studied when 

a FE model is used in conjunction with carefully selected laboratory models. Such



11

an approach may be better for developing rational design approaches for codes of 

practice.

Nonlinear finite element models have been applied by various researchers, for 

exam ple!^, 27 ,28,29] ? on single span solid and perforated deep beams. Also, the 

ASCE State— of— the— Art R eport!^] reviews the various finite element models 

developed by researchers for the analysis of reinforced concrete. Reasonable 

comparisons between predicted behaviour and experimental behaviour have been 

reported. However, no finite element studies appear to have been conducted on 

continuous deep girders, although in principle there should be little extra difficulty.

1.2 Scope and purpose of this study

The main objectives and scopes of this study were:

1:— To test the applicability of the direct design approach as a rational design 

procedure for in— plane structures, in particular deep beams and continuous transfer 

girders. Such beams would contain a range of features such as perforations and skew 

reinforcement. This was achieved by:—

(i) Developing a linear— elastic finite element model which incorporated the direct 

design equations for both orthogonal and skew reinforcement design.

(ii) Carrying out experimental tests on large-scale and full-scale models to 

destruction.

(iii) Carrying out nonlinear finite element analysis.

2:— To test the validity of the nonlinear FEM model by comparing strains, 

displacements, crack patterns, ultimate loads and failure mechanisms with 

experimental evidence.

3:— To compare the direct design technique at serviceability and ultimate conditions 

with other design methods recommended by various codes of practice, and also with
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the plastic truss models.

4:— To draw some general conclusions regarding the design recommendations of the 

British Code of Practice for deep beams and transfer girders.

e
1.3 Genral Layout of the thesis

Chapter Two reviews and critically assesses the historical background of experimental 

and theoretical work carried out on reinforced concrete deep beams relevant to this 

study. It also reviews four main design methods and the direct design method, in 

order to compare these methods*

Chapter Three is concerned with a brief review of the finite element method and its 

use in the design program for obtaining an elastic stress field. This program also 

contains the equations for reinforcement design and gives three dimensional views of 

stress behaviour in the continuum.

Chapter Four presents a review of the nonlinear finite element method. The 

mathematical material models describing the behaviour of concrete and steel are 

discussed. These include cracking and post— cracking behaviour of concrete, two 

dimensional strain— stress laws and crushing of concrete, and steel stress— strain 

behaviour. Also elasto— plastic analysis is described in relation to obtaining other 

stress fields for use in the direct design procedure. An assessment of the models is 

made with respect to boundary conditions, mesh convergence, nonlinear numerical 

parameters etc.

Chapter Five describes in detail the direct design methodology with its limitations 

and applications to continuous girders. The complete step by step design of several 

beams is included. These use the linear elastic model for obtaining elastic stress 

fields and N ie lsen 's^ ] yield criterion in conjunction with Clark'st^^] design equations
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to design the reinforcement.

Chapter Six describes the test—rig which was designed to carry out the experimental 

investigation on large and full scale models of transfer girders, and describes the 

experimental procedures and instrumentation.

Chapter Seven presents the experimental results. General experimental behaviour is 

reported and results are discussed.

Chapter Eight presents the nonlinear finite element assessment of the tested girders, 

and examines the various material and numerical parameters which have an influence 

on general behaviour of the transfer girders and offers practical guidance in its use. 

In addition, comparisons of experimental behaviour with the predicted behaviour of 

the FE model are presented. It also describes in detail a comparison of other

methods of designing and analysing for deep beams. The discussion leads to an

attempt to suggest improvements in codes of practice such as CEB— FIP, ACI Code 

and CIRIA Guide 2, and suggests that the British code of practice might also

include these recommendations.

Finally, Chapter Nine offers general comments and conclusions regarding the 

applicability of the direct design approach for the design of transfer girders and

makes suggestions for further research in this area.
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Fig. (1.3) The use of transfer girder and frame supported shearwalls 

in high— rise buildings

Fig. (1.4) The staggered wall beam framing system.
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CHAPTER TWO

LITERATURE REVIEW OF STUDIES ON TRANSFER GIRDERS

2.1 Introduction.

Transfer girders are found in the form of simply supported or continuous deep beams 

of various types. A detailed description with the form of loadings they take, and 

where they appear in practical applications, was given in Chapter One. A fair amount 

of experimental and theoretical work has been reported on simply supported solid and 

perforated deep beams, but the amount of work is small compared to that made on 

shallow reinforced concrete beams. Little experimental work has been reported on 

continuous deep beams.

Analysis of continuous deep beams is more complex in comparison to simply 

supported ones because of the increased number of boundary conditions to be 

satisfied. Although much of the literature on simply supported deep beam studies has 

little direct relevance to this study, such information gives an approximate guide to 

the behaviour of transfer girders and continuous deep beams. Hence a review of

single span deep beams has been undertaken to provide a basic foundation.

The aim of this chapter is to select a representative sample of the most recent

investigations in order to give a brief summary of general deep beam behaviour. Also

the different experimental and analytical approaches which are directly or indirectly

related to the present investigation are reviewed. The publication list is too long to 

give here but an early comprehensive review was given by Albrittont^J which has been 

followed by more recent rev iew s!^-  5], Finally, some of the current design methods 

specified by various codes of practice and guides are reviewed.

2.2 Basic behaviour and definition of deep beams.

In simply supported beams with span to depth (L/D) ratios greater than approximately 

2.0, and in continuous beams with ratios greater than about 2.5, the stress and strain 

distributions can be satisfactorily predicted by simple bending theory. This implies that



the basic assumption of Navier Bernoulli's hypothesis (plane sections remain plane 

before and after loading) is approximately valid. It then follows that the flexural stress 

and strain distribution is linear and that the shear stress distribution is parabolic across 

a vertical section. However, the stress distributions over a cross— section deviates 

increasingly from these as the span to depth (L/D) ratio decreases as shown in Figure 

(2 .1).

In the case of small (L/D) ratios, stresses based on a straight line distribution may be 

seriously in error. The simple theory of flexure takes no account of normal pressures 

on the top and bottom edges of the beams, caused by the load and reaction points. 

The effect of these normal pressures is such that the distribution of bending stresses 

on a vertical section is not linear, and consequently a section which is plane before 

bending does not remain even approximately plane after bending. The neutral axis will 

not necessarily lie at the mid— depth of the beam, and its position may vary along 

the span. There may even be more than one neutral axis.

As the beam becomes deeper and deeper, the lever arm increases. This increase 

produces flexural stress which is less significant in deep beams than in shallow beams, 

and the shear stresses become significant. The vertical and shear strains in deep

beams are of the same magnitude as the bending strains and therefore make a more 

significant contribution to the total deformations than in shallow beams.

The applied loads on the top surface give rise to vertical compressive stresses and a 

concrete strut forms along a line joining the support and the loading point. This is 

the plane where a diagonal shear crack may appear and the beam transforms

immediately into a tied— arch. Therefore, the concepts of lever arm in shallow beams

and strut action in deep beams are introduced to give a simplified representation of

the internal stress flow and deformations within the beam.
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2.3 Deep beam studies based on linear elastic behaviour.

2.3.1 Theoretical investigations.

The era of deep beam research was started by Franz Dischingert^]. He presented a 

Fourier series solution for beams of decreasing span to depth ratios, resting on a 

series of supports. He assumed reinforced concrete was elastic, homogeneous and 

isotropic. He showed that plane sections do not remain plane after loading. He 

emphasized that a knowledge of the lever arm in deep beams is of great importance. 

Although his work was concerned with continuous deep beams, he suggested that the 

lever arm for simply supported girders could be twice as great as that of continuous 

girders.

Later, the Portland Cement Association (PCA) 171 published the pamphlet "Design of 

deep girders" based on Dischinger's findings. This pamphlet covered all possible cases 

of loadings, although it lacked a design procedure for continuous girders with 

concentrated loads on the top surface at the centre of the spans. The ACI Codet^l 

still refers to this pamphlet for the design of flexural reinforcement. This is explained 

in detail in section (2.6) on the review of design methods.

Other approximate linear elastic methods of analysis have been given Conway, Chow 

and Morgant^l, Chow, Conway and W intert^l and U h l m a n n t H ]  using finite difference 

techniques. Archer and K i t c h e n ! ^ ]  have presented a solution for stresses in deep 

beams using strain energy methods. Some linear finite element analysis has also been 

applied in earlier studies, for example CIRIA Guide 2 has incorporated elastic stress 

distributions for deep beams and has indicated that the distribution is not linear as in 

shallow beams.

All these methods only apply to elastic homogeneous materials, whereas the behaviour 

of reinforced concrete beams involves cracking and nonhomogeneous nonlinear material 

behaviour. Nevertheless, these studies have revealed that the behaviour of deep beams 

is quite different than that of shallow beams and have laid the foundations for



recommendations for the design of reinforced concrete deep beams. However such 

recommendations have not been supported by experimental tests, therefore there is 

some doubt about their validity.

2.3.2 Experimental investigations.

Although Kaar[13]'s work was not on reinforced concrete deep beams, it appears that 

he might be the first researcher who experimentally investigated stresses in deep 

beams. Kaar carried out his tests on homogeneous, isotropic and elastic materials, one 

series of six aluminium beams and another series of six steel beams. He discovered 

that when the span to depth (L/D) ratio was less than 1.5 the use of flexural formula 

for measuring the stresses was seriously in error.

Archer and K i t c h e n t ^ ]  studied stress distributions on three deep steel plates using 

eight different loading conditions in order to verify their proposed strain energy 

method. Experiment and analysis were in agreement for the case where the span to 

depth (L/D) ratio was 1. At all points along the lower edge of the beam the stresses 

were markedly different from those given by simple theory. For the cases where the 

(L/D) ratio was 1.5 and 2.0 the experimental values were approximately midway 

between values obtained by strain energy method and those given by simple theory.

The experimental work described above reveals that stress analysis based on elastic 

theory gives reasonable predictions when specimens were made from materials which 

closely obey Hooke's law. Nevertheless, this experimental research indicated that the 

simple bending theory was not applicable to deep beams. Thus there was a need to 

test reinforced concrete deep beams themselves in order to develop appropriate design 

methods.

2.4 Reinforced concrete deep beam studies.

Various theoretical studies have been carried out which are based on experimental 

behaviour, resulting in semi— empirical formulae. A selected sample of representative



theoretical studies proposed over last three decades is presented in this section.

2.4.1 Theoretical investigations.

Varghese and Krishnamoorthv.

Varghese and K r i s h n a m o o r t h y f l S ]  developed a theory for ultimate load of deep beams

based on published experimental data, including their own. Their theory was based on

the shear type failure under various types of loading. They believed that only shear

failure occurs due to diagonal cracking along the line joining the support to the

nearest loading point, as shown in Figure (2.2). A formula was derived based on the

equilibrium of the segment of the beam, and by assuming that failure occurs by shear

along the line joining the loading point and support, and by yielding of the steel.

Their formula is applicable for single span deep beams subjected to a centrally

concentrated load on the top edge, loads at third points and uniformly distributed

loads. They applied this formula to a small number of tests and achieved reasonable

agreement with experimental values.

The ultimate load of the beam is then calculated by

2 .c .b .D  2 . F s ( ta n a . tan</?-l)
Pu =----------------------------------------  + ------------------  2.1

sinQ .coso(tano+tan(/?) (tanaf+tan^)

where a  is the angle of the diagonal crack, Fs is the force in the longitudinal steel

as illustrated in Figure (2.3— a) based on the yield stress fy of steel, b is the breadth

of the beam and D is the overall depth of the beam. The term and c are

obtained from the compressive and tensile strength of the material by using Mohr's

theory, illustrated in Figure (2.3—b). Thus (feu— fc')/2./(fc\ft) and c= (7fc'.ft)/2.

Moreover, they proposed a design procedure for main reinforcement based on the

assumption of a shear failure mode. The amount of reinforcement is calculated by 

assuming that the depth of the compression zone is 0.1 D. The proposed formula is 

then

As = M /fy(d- (0 .1D /2 )) 2 .2

where M is the design bending moment and d is the effective depth.



Ragan

Ragan[*6] described a theoretical approach for predicting the ultimate strength of 

reinforced concrete deep beams which was similar to that applied by Sundara Raja 

Iyengar and Rangant^] for shallow beams. He derived two formulae, one for beams 

failing in flexure and one for beams failing in shear:

Flexure f a i l u r e This assumes a nonlinear stress block for concrete in the 

compression zone at failure, a triangular distribution for the tensile zone of concrete, 

and that the main steel yields at failure.

The formula for beams failing in flexure then follows as:

MFL/ b d 2 = [ ( p t f y / f c 1) . j+  0 . 1 5  X] 2 . 3

where j and X are  e m p i r i c a l  c o n s t a n t s  d e f i n e d  as :  

j = [1  -  0 . 4 8  k ]

X = [ ( 1  -  1 . 4  k) ( 2 . 0  - 0 . 3  k ) ] /  6 . 0

and k = [ ( p f y / f c ' )  + 0 . 0 7 5  ],

where p t=  As/bd

Shear failure :— This assumes that the contribution of shear carried by the 

longitudinal tension steel and the shear resisted by the concrete in the tension zone is 

negligible. A rectangular distribution was assumed for the shear stress in the 

compression zone of concrete and a nonlinear stress block was considered for the 

compressive stresses in the concrete.

The formula for beams failing in shear then follows as:

Mc r  = ( 2k i . k 3 . b c . f c ' .  j d ) / ( l + y i + ( 2 j k ^ k 3 ) / a i )2 2 . 4

where k i . k 3=0.8  and k2=0 .4 2  were used  t o  e s t i m a t e  u l t i m a t e  shear  

and M£R/Vd  

c = d / k 2 ( l - d )

where is the shear failure capacity and V is the shear force at the critical

section. Ragan presented two graphs of equations (2.3) and (2.4) from which the 

ultimate strength can be estimated. Comparing formulae with published data, the 

flexural strength was predicted in the range 0.75 to 1.28 and shear strength in the



range 0.75 to 1.45 of measured ultimate strengths.

Shaikh, de Paiva and Nevillet^] described an iterative method for estimating the 

flexure— shear strength of reinforced concrete deep beams similar to one they derived 

for ordinary beamst* 9]. The flexure— shear strength calculations were derived mainly 

from the properties of the compression zone of the beam, and the deformation and 

equilibrium conditions. An iteration process was used to find the correct stress block.

The method was compared with experimental results published in the literature. The 

average of predicted to observed ultimate strengths was 1.06. It was proposed that the 

strain hardening of steel is important in permitting deep beams to attain their high 

strengths and this characteristic must be available in order to use this method 

effectively. This resulted in inevitable restrictions on the use of the available published 

data, which rarely includes information regarding the strain hardening behaviour of 

steel in tested deep beams.

Kumar

Kumart2^] presented a rigorous truss model for estimating the collapse load of deep 

beams. This was based on the assumption that deep beam behaviour is like an arch 

or truss, and so it was thought that a truss model could predict ultimate strength 

more accurately. The analysis carried out by Kumar on published data indicated that 

estimated values were not close to measured values, the average ratio of measured to 

estimated values being 1.3. However, its use was still recommended.

Marti

Martit2!] also developed a truss analogy based on the lower bound principles of the 

theory of plasticity. This method is intended for design of reinforced concrete 

members such as shearwalls and deep beams. Admissible stress fields are obtained by 

defining a truss composed of concrete struts and reinforcement ties which meet at 

nodal zones. Nodal zones are the biaxially or triaxially stressed regions of concrete



which mainly exist in regions close to load or support points. Nodal zones are

assumed to be pin connections in the analogous truss. The geometry is revised and 

rebuilt iteratively in order to come close to measured ultimate loads. However, these 

methods do not appear to have been used for deep beam design, so that its validity 

is not assured.

Collins and Mitchel

Collins and Mitchelt22] have also developed a truss model for deep beam design 

called" A rational approach to shear design—The 1984 Canadian concrete code 

provisions". Their proposal is based on the flow of forces in the beam and locations 

of nodal zones. The nodal zones must be chosen large enough to ensure that the 

nodal zone stresses are less than the limiting stresses given by the Canadian Code. 

The limiting stress for upper and lower nodal zones are given 0.85.<^c.fc' and

0.75.yjc.fc' respectively, where <fC is the the resistance factor for concrete (^ = 0 .6 )  

The geometry of the truss is determined by locating the nodes of the truss at the 

points of intersection of the forces meeting at the nodal zones (Figure 2.4).

From these, the forces in the strut and ties of the truss can be determined by statics. 

Once the forces are determined, the required area of tension tie reinforcement is 

chosen. The tensile reinforcement must be effectively anchored to transfer the required 

tension to the nodal zone of the truss and reinforcement should be distributed over 

the lower nodal zone depth. A formula was also proposed to check the crushing of 

the strut.

For the design of shear reinforcement, the minimum criteria of the Canadian Code is 

recommended. According to this, the transverse and longitudinal reinforcement must be

provided with a minimum volumetric ratio of 0.002 in each direction to control crack

widths and to ensure ductility.

The authors did not analyse any deep beam, but they outlined the design procedure
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by designing a deep beam. The also re— designed this beam using the empirical 

equations of ACI Code to examine the capability of their method.

Kotsovos

Recently Kotsovost2^] proposed a design method for both simply supported and 

continuous deep beams based on modelling behaviour by a "tied frame with inclined 

legs". He concluded that the load carrying capacity of reinforced concrete deep beams 

is associated with the strength of concrete in the region of the path along which the 

compressive forces are transmitted to the supports. He believed that experimental 

evidence indicated that the force in the tension reinforcement within the length of the 

horizontal projection of the inclined portion of the path was constant, so that the 

compressive force acting along the inclined portion of the path was also constant. 

Referring to Figure (2.5), moment equilibrium is given by:

Cz=Pa 2.5

where z= (d— x/2) is a reasonably assumed value. This will yield the depth of the 

compression zone x, from which the compressive force, C, can be obtained. Since 

from equilibrium C =T, the required amount of steel can be calculated as:

As= T /fy  2.6

This method was applied to published experimental data and it appears that it only 

predicted reasonable values for simply supported beams with two point loads. For 

single span centrally loaded and continuous deep beams the results were less accurate.

Thus the method is not yet sufficiently developed for use in design. However, this 

method will be compared with the direct design technique in Chapter Eight.

2.4.2 Experimental investigations.

Some of the most extensive investigations on reinforced concrete deep beams to date 

have been conducted at the University of Illinois, Stuttgart University, Coimbatore 

College India, New Mexico, Nottingham University, University of Cambridge, 

University of Glasgow, University of Alberta, and the University of Dundee.
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de Paiva and Siess

de Pavia and Siess[24] tested a series of 19 moderately deep beams with L/D ratios 

varying from 2 to 4.0. The aim was to study beam behaviour in the transition 

between shallow and deep beams. The main variables were the percentage of 

reinforcement, concrete strength, the amount of web reinforcement, the span to depth 

(L/D) ratios and two types of web reinforcements (i.e vertical and bent—up bars). All 

beams were loaded at the third points. Anchorage was obtained by welding tension 

reinforcement at each end of the beam to 1/2 inch steel end bearing plates.

Behaviour was observed as follows:

1 Three different modes of failure were observed from the tests as explained in 

Appendix A. Nine beams failed in flexure, five failed in flexure— shear and five failed 

in shear failure. Shear failures were attributed either to diagonal tension failure or to 

diagonal compression failure.

2:— The increase in concrete strength had little effect on beams failing in flexure, 

but increased the strength of those beams failing in shear. The increase of shear 

strength with increase of concrete strength was more noticeable with lower span to 

depth (L/D) ratios beams

3:— The addition of 1.42% of shear reinforcement had no effect on the inclined
u

cracks, but seemed to prodce a slight increase in the ultimate strength. There was 

also decrease in the ultimate mid— span deflection. Whereas vertical stirrups did not 

increase the ultimate load at all.

4:— The effectiveness of bent— up bars increased as inclination increased up to a 

value of an=62.70.

The ultimate flexural strengths for moderately deep beams were reasonably predicted 

using ultimate strength theory for shallow beams. In addition there was an increased 

value of the uniaxial compressive concrete strain at failure to 0.008in/in which 

confirmed the findings of earlier work carried out at the University of IllinoisC^  ̂ 28]



The inclined cracking load was reasonably predicted by Diaz de C o s s i o ' s [ 2 9 ]  equation 

V /b .d  -  2 .1 4 y fc ’ + 4 600 .p .V.d/M 2.7

(It should be noted that this equation is intended for use with U.S. customary units 

i.e lbf).

For beams failing in shear, the ultimate strength was reasonably predicted using a 

formula derived by Laupa et alt^O] for moderately deep beams and T— beams, when a 

correction factor was included to take into account the clear shear span to depth 

(X/D) ratio. Both these results and those of Laupa et alt^O] indicated that a transition 

occurs at X/D equal to 1.0 (i.e at the transition from deep to shallow beams). Thus, 

the shear capacity of beams for X/D ratios less or equal 1 was given by:

Q ult= 0 .8 (1 - 0 .6 (X /D )).(2 0 0 + 0 .1 8 8 fc ’+21300pt) . bD 2.8

where the quantity pt= As(l+sina)/bD is the total steel area crossing a vertical section 

between the loading point and the support, and a is the angle of inclination of bent 

up bars to the horizontal axis of the beam.

Ramakrishnan and Ananthanaravana et al

Ramakrishnan, Ananthanarayana and Oblit^l] tested 12 single span deep reinforced 

concrete beams at P.S.G. College Coimbatore, India, under two point loading acting 

on the top edge. The aim was to study the modes of failure, the strengths and the 

load deformation behaviour and to compare the results with shallow beams. The major 

parameters were span to depth (L/D) ratio, percentage of tension reinforcement and 

the presence of a nominal amount of web reinforcement.

A linear relationship was developed between the ratio of measured ultimate load (Pu) 

to calculated ultimate load according to Whitney's theory (Pcu) and the depth to span 

(D/L) ratio for values between 0.94 and 2.0 i.e.

Pu = Puc (1+ (1 /L /D )) 2 .9

This study concluded that design procedures were not adequate for predicting the



ultimate strength of deep reinforced concrete beams, and although Whitney's theory, 

with some modification, could serve immediate design needs, there was a need to 

explore a rational method for analysis and design which could fully explain the 

strength of deep beams.

Ramakrishnan and Ananthanarayana[32] extended this work by testing another 26 

simply supported deep beams. The major variables studied were (L/D) ratio varying 

from 0.55 to 1.11 and different types of loading (i.e central point load, two point

loads and uniformly distributed load). The beams were reinforced longitudinally with 

plain mild steel bars, and had little or no web reinforcement.

The major observations from these test results«ve summarized as follows:

1 The majority of the beams failed in diagonal tension failure whereas 5 beams 

failed in flexure, 4 beams failed in flexure— shear and 3 beams failed in

diagonal— compression failure. The various failure modes are summarized in Appendix 

A.

2:— The stiffnesses of the beams increased as the (L/D) ratio decreased, and

concentrated loads produced relatively more deflection than the uniformly distributed 

loads.

3:— As the depth of a beam increased, the load was transmitted more directly to the 

support with a consequent reduction in bending stresses, thus forcing the beam to 

behave essentially as a tied arch.

4:— After the formation of inclined cracks, the beams still carried a considerable

load. Hence the load corresponding to the ultimate stage was taken as the collapse 

load due to the splitting failure in the concrete struts formed by the diagonal tension 

crack.

From their test results, the following general formula for estimating the ultimate shear 

strength was developed i.e.



Pu= (3' .k . f t ' . b. D 2.10

where /3' is a shear span coefficient ((3,= 2 for a single span deep beam with two 

symetrical third point loads, single point or uniform loadings) and an empirical 

constant k is the splitting coefficient.

Leohardt and Walther's tests

Leonhardt and W a l t h e r [ 3 3 ]  have carried out considerable research at the University of 

Stuttgart on the shear strength of simply supported and continuous deep beams and 

indirectly supported and loaded deep beams. Most of their work was reported in

German and had not been translated into other languages, so up to 1970 it had not 

found its way into design codes. These tests covered deep beams having span to depth

(L/D) ratios equal to 1 different arrangements of reinforcement including bent— up

bars and inclined shear reinforcement, and bottom loadings. These results were 

included in the compilation of the CEB—FIP model in 1970 which proposed design 

recommendations for deep beams.

In some beams, the main reinforcement was concentrated over the bottom portion in 

the region of positive bending moment. Steel resulting from negative bending moment 

was divided into two halves, one was distributed over 0.2D to 0.8D from the bottom 

with bars being curtailed at 0.4L from the centre of intermediate support in both 

directions, the remaining reinforcement was distributed over a depth of 0.2D from top 

extending from the one end of the beam to the other. They concluded that the

tension steel resulting from negative or positive bending moment should be calculated 

on the basis of the following lever arms:

Z = 0.6D fo r  L/D > 1

Z = 0.6L fo r  L/D < 1  2.11

Leonhardt and Walther found that elastic solutions provide a good description of 

behaviour before cracking, but stresses measured after cracking differed significantly 

from the elastic stresses predicted by classical theory. In particular, actual stresses in 

the reinforcement of the bottom tensile chord were much smaller at the centre than



those predicted by elastic theory. Also the stresses in the tension reinforcement were 

approximately constant from one end of the beam to the other. Hence it was 

recommended that the main flexural reinforcement must be carried to the end 

supports without cutoff, and adequately anchored there. They suggested that this could 

be best accomplished with 180 degree hooks lying in the horizontal plane because 

vertical hooks appeared to cause some premature failure problems.

Crist's tests

C r i s t [ 3 4 ]  tested 9 beams with span to depth (L/D) ratios varying from 1.6 to 3.8 

under uniformly distributed loads. The common observed mode of failure was shear 

failure. Equations were derived based on his results and results of other researchers. 

These equations, slightly modified, then became the basis for the ACI Code 13] 

recommendations for estimating the shear capacity of deep beams.

He stated that the ultimate shear capacity of a deep beam was the sum of 

contributions from the concrete and steel, as follows

Pu = Vc + Vs 2.12

where Vc is the shear capacity of the concrete and Vs is the shear capacity of the

web reinforcement.

The shear capacity of concrete was empirically derived as

(V c/b .d )=  [3 .5 -4 /3 (M /V )c .(L n /d )][1 .9 7 f^ '+ 2 5 0 0 (V /M )cp .d ]  2.13

(It should be noted that this equation is intended for use with U.S. customary units

i.e lbf).

The second term in this equation represents the inclined cracking load. The critical 

section Xc is assumed to occur midway between the support and loading point for a 

concentrated load. For a uniformly distributed load, it is assumed to occur at:

Xc = 0.2L when L/D <5 2 .14

The shear capacity of the web reinforcement was developed considering shear friction

along the inclined crack as illustrated in Figure (2.6). The shear analogy gives:



V s=fy. d.<p '[ (A v /sv ).1 /1 2 ( l+ (L n /d ) )] + [ (A h /sh ) .1 /1 2 (1 1 -(L n /d )] 2.15 

where Ln is the clear span of the beam, Av is the area of the vertical web bars, Ah 

is the area of horizontal web bars, sv is the spacing of vertical web bars and sh is 

the spacing of horizontal web bars.

This equation was used by Cristl^S] to calculate the shear carried by web

reinforcement using the coefficient of friction ^ '= 1 .5 .

Kong et al tests.

Extensive research on solid and perforated deep beams made of normal and 

lightweight concrete has been carried out by Kong et al at Nottingham

University{35“  40]

They tested 1 4 6  solid beams whose (L/D) ratios varied from 1  to 3  and whose clear 

shear span to depth (X/D) ratio varied from 0 . 2 3  to 0 . 7 .  One hundred beams were

made from normal weight concrete and the remainder from lightweight concrete. The

other main parameters were the influence and effectiveness of the type and amount of 

web reinforcement on ultimate strength. The ultimate aim of this exhaustive study was 

to develop an ultimate shear strength formula for deep beams. Kong and

R o b i n s [ 3 5 , 3 6 ]  reviewed existing literature, and concluded that existing methods had

shortcomings in that the influence and effectiveness of shear reinforcement had not 

been properly investigated, and that ultimate shear strength formulae were based on

concrete properties irrespective of L/D or X/D ratios.

Their major observations for solid deep beams were as follows:

1:— The effectiveness of vertical and horizontal web reinforcement was dependent on 

the L/D and X/D ratios. For very deep beams vertical web reinforcement had no

major influence on the strength, but horizontal web reinforcement, if closely spaced

near the beam soffit, did effect the ultimate strength. For moderately deep beams
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with the L/D ratios greater than 1.5, vertical web reinforcement was found to be 

more effective than horizontal reinforcement.

2:— In all the beams, inclined web reinforcement increased the ultimate strength and 

improved serviceability behaviour. The deflection in such beams was also smaller than 

for other types of web reinforced beams.

3 The deflections of beams with no web reinforcement was higher than for beams 

with web reinforcement.

4:— The diagonal cracking loads and the ultimate shear strengths of lightweight 

concrete beams were lower than those for normal weight concrete beams of 

comparable concrete strengths. Therefore a formula for normal weight concrete cannot 

be applied to lightweight concrete deep beams.

5:— It was observed that the clear shear span to depth (X/D) ratio was a more 

important parameter than span to depth (L/D) ratio for all beams.

They put forward several formulae as their research progressed. The final form of 

their formula for simply supported deep beams, and calibrated on all their test results,

is made up of a contribution from the concrete and steel as follows:

71
Q uit = [C l (1 -  0 .3 5 (X /D )) .f t .b .D  + C£ £A (y /D )sin2a ]1 0 " 3 2.16 

where

Q uit = is  th e  u lt im a te  shear s t r e n g th  o f  th e  beam in  kN.

Cl — is  an em p irica l c o e f f i c ie n t ;

=*1.4  fo r  normal weight co n c re te  

= 1 . 0  fo r  lig h tw e ig h t co n c re te  

C2 = is  an em p irica l c o e f f i c ie n t ;

= 130N/mm2 fo r  normal w eight c o n c re te  

= 300N/mm2 fo r  lig h tw e ig h t c o n c re te  

b = b read th  or th ic k n e ss  o f beam in  mm.

D = o v e ra l l  depth  o f beam in  mm

A = a re a  o f  the  in d iv id u a l web b a r s ; f o r  th e  purpose o f th i s



e q u a tio n  main lo n g itu d in a l b a rs  a re  a lso  co n sid e red  as 

web b a rs  (mm2) .

y = is  th e  dep th  measured from the  top  o f the  beam to  the

p o in t o f in te r s e c t io n  o f an in d iv id u a l web bar and 

the  l in e  jo in in g  the  in s id e  edge o f the  b e a rin g  block  at 

th e  suppo rt to  the o u ts id e  edge o f the  load ing  p o in t (mm). 

a = is  th e  ang le  between the web bar being  c o n s id e re d  and

th e  l in e  d e sc r ib e d  above, as shown in  F i gu r e ( 2 . 7 )  wi th i n

the range ir/2 > a  > 0 

n — t o t a l  number o f ba r s ,  i nc lud ing  the main l o n g i t ud i na l

b a rs  t h a t  c ros s  the l i ne  d e s c r i be d  in d e f i n i t i o n  of  y.

The q u a n t i t y  A(y/D)s in2a: i s  summed fo r  a l l  n ba r s .

Manual et al

Manual et alt^l ,42] tested 24 reinforced concrete deep beams. The major objectives 

were to isolate the more influential parameters of span to depth (L/D) ratio, clear 

span to depth (X/D) ratio and the effectiveness of the web reinforcement in 

controlling the inclined crack. From this study, it was concluded that the ultimate 

strength of deep beams was controlled by the X/D ratio and the diagonal crack width 

was controlled by placing vertical or inclined stirrups midway between the loading and 

support point. In addition Manual proposed a method for simply supported deep beam 

analysis based on the truss a n a l o g y ^ ] .

Lin's tests

Lint2] tested 11 simply supported reinforced concrete deep beams under central 

concentrated top loads, with L/D ratios of 1.8 and 0.9. Other variables were the 

concrete strength and the orientation of the main reinforcement. The main object of 

this study was to test the applicability of the direct design technique for deep beam



The observed behaviour was as follows:

1:— The strain distribution was found to be approximately linear when the L/D ratio 

was 1.8, and not linear when L/D was 0.9.

2:— Ultimate strength was found to be dependent on the concrete strength. An 

increase of 16N/mm2 in the concrete strength caused a 37% increase in ultimate 

strength for beams whose L/D ratio was 1.8. An increase of 31N/mm2 in the concrete 

strength increased the ultimate strength of beams whose L/D was 0.9 by 37% also.

3:— Skew reinforcement was found to be more effective than orthogonal reinforcement 

in controlling the crack width, reducing deflections and increasing the serviceability 

and ultimate strengths.

4:— Four of the beams failed by splitting of the concrete near the support and seven 

failed in shear. The main cause of such splitting failure was probably the high 

compression force in the support region and the lack of confinement of concrete 

beyond the region where the reinforcement was terminated.

Smith et al

52 single span reinfored concrete deep beams under two point loads were tested by

Smith et al and Smith and Vantsiotis[44]. The major objectives were to study the

effect of vertical and horizontal web reinforcement, shear span to depth (X/D) ratio 

on inclined cracks, ultimate shear strengths etc. The results indicated that web

reinforcement produced no effect on the formation of inclined cracks and that vertical 

web reinforcement moderately improved the ultimate shear strength, but the addition 

of horizontal web reinforcement had no influence. They concluded that web

reinforcement would not increase the ultimate shear strength by more than 30%.

MacGregor et al

MacGregor et al[45— 47] tested altogether 28 beams, 6 of them were simple and 22 

were two span continuous deep beams. Four different span to depth (L/D) ratios were 

studied, i.e. 2.1, 3.5, 4.2 and 5.25. Other main parameters studied were a/d ratio,



web reinforcement arrangements, continuity conditions and the effect of the concrete 

strength on the ultimate strength.

Each shear span was reinforced with a different arrangement of web reinforcement, 

■fô r different arrangements were studied for two span continuous beams. The lengths 

of the beam were kept constant and depth and size of the loading column was varied 

to meet the desired shear span to depth (a/d) ratios.

When the first failure of any shear span of the beam occurred, the beams were the-̂  

retested until the other shear span failed. In this process of retesting, beams were 

externally reinforced by steel stirrups consisting of a yoke above and below the beam 

with 12 tie rods of 3/4 in. diameter acting as stirrups, running from one yoke to the 

other.

The major observations for all the beams were as follows:

1 :— The influence of vertical web reinforcement was significant in increasing the 

ultimate strength and improving the ductility. The beams which were reinforced with

heavy vertical stirrups exhibited ductile failure behaviour, whereas all the other beams

which were reinforced with other types of web reinforcement failed in a brittle

manner.

2:— In very deep beams the steel strains in the bottom flexural reinforcement were 

approximately uniform throughout the entire length of the beam. The top steel was 

always in tension except when a/d was equal to 2.5 (i.e L/D was equal to 5.25).



Since flexural cracks over the intermediate support did not appear first, it would 

appear that positive bending moments were always higher than the negative bending 

moments.

3:— The beams which were reinforced with horizontal web reinforcement showed 

earlier cracking and wider cracks in comparison to beams having vertical stirrups of 

similar shear span to depth (a/d) ratios.

4:— The final failure was in a shear mode. After the formation of inclined cracks, 

the beams behaved as a "truss" and "tied arch", and took considerably higher loads 

before failure. This is due to the reserve strength of steel and the contribution of 

dowel action and aggregate interlocking in transfering shear.

5:— Simple spans were stronger than continuous beams for lower ,^/d ratios, whereas 

the reverse was true for high a/d ratios.

6 :— The strength of the beam having a/d equal to 1.83 (i.e L/D equal to 4.2) 

dropped close to suggesting that the transition from shallow beam to deep

beam behaviour occurs at or near a/d equal to 1.83.

The primary aim of these bench mark tests on continuous deep beams was to develop 

a physical model which could be used for deep beam analysis and design. In order to 

do so a plastic truss model was developed which was based on Thurlimant^^l, 

M a rtia l,  Jensont^l, and N ie ls o n !^ ] 's  work on the plasticity of concrete. This model 

was used to analyse the tested beams. However, the success of the model depended 

on the concrete effectiveness factor, v \  which was left to the analyst to choose so 

that the experimental and theoretical results were more closely matched. How this was 

achieved was not fully explained.

Nevertheless, compared with the ultimate shear strengths predicted by the ACI Code 

(using the upper bound equation), the plastic truss model was in closer agreement to 

experimental values.
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Subedi et al

Subedi et a l t^ l tested 19 single span deep beams with span to depth (L/D) ratios 

varying from 1 to 3. He concluded from these test results that the CIRIA Guide 2 

ought to cover deep beams whose L/D ratios are greater than 2.0. Subedi 1̂ 2] also 

proposed a method for the analysis of deep beams which is based on equilibrium and 

compatibility considerations. However, factors such as shear transfer across diagonal 

cracks and dowel action in the reinforcing bars were omitted from the main equation, 

which could explain why it did not adequately predict his own or other experimental 

results.

2.5 Reinforced concrete perforated deep beam studies.

Openings in the beams are generally provided for utilities such as ducts and pipes as 

well as other essential requirements. A knowledge of the behaviour of beams with web 

openings is therefore essential for design. However deep beams with web openings is 

not yet covered by major codes of practice, such as the ACI Codet^l, CEB— FIP 

Model Code[53]s or the British Code of practice BSCP8110t^^]. Although the CIRIA 

Guide 2 made provisions for openings, these must not interrupt the load path.

2.5.1 Theoretical investigations.

Uhlmannt^] used an elastic finite difference method to study the state of stress 

around a rectangular opening. Refering to Figure (2.8), if ox and oy are the average 

directions of the maximum and minimum principal stresses respectively in the region 

of the opening when the member is regarded as unperforated, Uhlmann showed that 

the effect of an opening on the unperforated stress distribution is as follows:

(i) The intercepted load path deviates around the opening on each side, but produces 

a stress rise along those edges of the opening which are approximately tangential to 

the unperforated lines of stress (near corners A and A').

(ii) A force of the opposite sign is induced along the edge of the opening 

approximately perpendicular to the unperforated lines of stress (near corners B and

B’)-



Uhlmann was then able to determine the design tensile force from which the required 

amount of the reinforcement could be calculated. This was achieved by considering 

the values of increased force parallel to the original stress direction, and the induced 

force perpendicular to the original stress direction, in terms of total force intercepted 

by the opening. He suggested that reinforcement should be proportioned according to 

the predicted tensile force but gave no limit to the size of the opening and imposed 

no restriction on its location!^>H].

The provision made in the CIRIA Guided] for openings is also based on elastic 

analysis and is a similar to the one proposed by Uhlmann. However the effect of the 

size and location of the opening on the stress distribution is considered. The design 

rules only allow admissible openings, i.e openings which to a large extent do not 

interrupt the load path. The dimensions of the opening must not be greater than 0.2 

times the width of the band in which stress is locally concentrated.

If the opening satisfies the criterion of admissibility, then reinforcement calculations 

are made by considering the opening to be surrounded by four simply supported deep 

beams subjected to the resolved forces set up within the primary deep beam. An 

appendix is given in CIRIA Guide 2 containing principal stress diagrams from which 

loads can be calculated.

No guidance appears to exist for design of openings which severely interrupt the load 

path.

2.5.2 Experimental investigations.

Kong and Sharp et al tests

Kong and Sharpt^-  59] tested 73 simply supported beams with openings, 56 were 

lightweight concrete beams and 17 normal weight beams. The beams had spans of 

1500mm, 1125mm and 750mm, an overall depth of 750mm and a thickness of 

100mm. A wide range of sizes and locations of openings were studied with several



arrangements of web reinforcement. The L/D ratios were 1.0, 1.5 and 2.0, and the

X/D ratios were 0.20, 0.25, 0.3 and 0.4.

The major observations were as follows:

1:— Beam behaviour was found to depend on the extent to which the opening 

interrupted the load path. Strength reduction was dependent on the size of the

opening and its location in the beam, the greater the interception of the load path,

the greater the reduction in shear strength.

2:— Three different modes of failure were observed and these were also related to 

the extent to which the web opening interrupted the load path as illustrated in Figure 

(2.9).

(a) When the web opening was clear of the load path, failure mode 1 occurred and 

the strength of the beam was similar to that in solid deep beams.

(b) When the opening interrupted the load path between the loading and the

supporting points, either failure mode 2 or 3 occurred, as illustrated in Figure (2.9).

3:— The order of the crack development was found to depend on the size and

location of the opening. Crack widths increased the more the web opening intercepted 

the load path.

4:— Web reinforcement was found to be significant in controlling crack widths and in 

protecting both the diagonal regions above and below the opening. Inclined web 

reinforcement had significantly more influence than vertical and horizontal web 

reinforcement, and was particularly effective for crack width control and increasing 

ultimate strength.

A structural idealization using a truss model was proposed based on the observed

behaviour as shown in Figure (2.10). According to this idealization, the load is mainly 

transmitted along ABC and partly along an upper path AEC. In the absence of the 

web opening the upper and lower paths become one, being the natural path joining 

the loading and reaction points. A formula developed by Kong et al for solid deep



beams was extended to estimate the ultimate shear strength of deep beams with web 

openings as:
/ V I

Q ult= C l[1 - 0 .35(k 1 X/k2 D ) ] f t . b .k 2 . D + 5>.C2.A. (y/D) . s i n 2 c* 2.17 

where

k ^ ,k 2  =* c o e f f i c ie n t s  d e f in in g  the  p o s i t io n  o f an opening.

X = is  the  em p irica l c o e f f ic ie n t  equal to  1 .5  fo r  web bars

and 1 . 0  fo r  main b a rs , 

y = is  the  dep th  a t which a ty p ic a l  b a r in t e r s e c t s  a

ty p ic a l  d iagonal c rack  -  e i t h e r  AE o f  the  upper pa th  or 

BC o f the  lower p a th , 

a  =■ is  the  angle o f  in te r s e c t io n  betw een th e  r e in fo rc in g  bar

and the  s t r u t  AE or BC.

All other symbols are the same as in equation (2.16).

Kubik’s tests

Kubik[59*f>0] tested 8  large scale simply supported deep beams at the University of 

Cambridge. The aim was to support the previous tests of Kong and Sharpt^-  56] by 

testing more practically sized beams in order to develop a model for predicting the 

ultimate strengths of deep beams with web openings. The beams were 

4000*1800*250mm with a clear span of 3500mm. The specimens were therefore 

approximately 2 ^ 2  times the size of beams tested by Kong and Sharp. The volume of 

the reinforcement was approximately scaled up from the small scale specimens. Four 

2 0 mm deformed bars were used as flexural reinforcement, and were anchored at the 

ends by 90° bends. In the small specimens one 20mm diameter deformed bar was 

used as main longitudinal steel and was anchored to external blocks at the ends. A 

single size of web opening in two different locations in the shear span was studied.

The major observations were as follows:



1:— The cracks and modes of failure were fairly similar to those reported by Kong 

and Sharp and depended on the location of the web opening. New crack types tB, ^ 

and k which formed within the web of the beam as shown in Figure (2.11) had 

important influence on the failure of the beam. These crack types were not 

indentified by Kong and Sharp. These cracks were widest at points close to their mid 

length, reducing to zero at both ends and were referred to as splitting cracks.

2:— Inclined web reinforcement was found to be more effective than orthogonal 

reinforcement mesh of horizontal and vertical bars. Using inclined reinforcement in 

the web of the beam the splitting cracks above and below the opening were more 

effectively restrained. This observation agrees reasonably well with Kong and Sharp's

conclusion regarding the contribution of web reinforcement in the region above and

below the opening.

3:— Different failure modes observed in the tests are shown in Figure (2.9) and 

(2.12). Figure (2.9) shows that for openings outside the load path failure occurred by 

separation along the planes above and below the opening (failure mode 1 ) which is

similar to shearing failure of a deep beam without an opening. The other failure

modes shown in Figure (2.9) were observed when the opening intercepted the load

path. Another special type of failure occurred as shown in Figure (2.12—a), made up

from a crack from the top inside corner of the opening to the loading point, a crack 

from the top outside corner to the beam end and either a crack running from the

beam soffit towards the inside bottom corner of the opening, or a crack running 

between the inside face of the support and inside bottom corner of the opening 

(Figure (2.12—b)).

Kubik proposed an idealised deformation model at failure, based on the same ideas as 

Kong and Sharp t^-  58]> which is only applicable to deep beams in which openings 

intercept the load path. The proposed model was based on the rotation of three

distinct blocks A, B, C with a fourth block D moving downwards as illustrated in 

Figure (2.13). The force interaction between the blocks was replaced by one moment 

and two forces at each of the hinges 1 to 4. From equilibrium requirements the
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horizontal force H is same at all hinges; the sum of the vertical forces Q j  and Qg

acting at the hinges are equal to the applied load Q. In essence, Q j  represents the

portion of the applied load carried by the beam above the opening and load path,

whereas Qg represents the load carried below the opening. Q j  and Q g were then

derived in terms of the hinge moments M^, M2 , M3  and M4 , and the geometrical

properties of the beam, by:

q-t MjChg + hL) + M2 h + M3 2.18
au ^ o  + -  h u (aL- xo)

_ M3 + M4  h ,..Mi (a, _ xn) + M? .a  + M3 .a u 2  lg
B aLa u (h0  + hL) -  hu (aL_x0)

H - Ml f aL - xo) + M2 a + M^.au 2  2Q
au (h 0  + -  h ‘ ( a L -  x0 )

The hinge moments are determined by considering the regions around the opening as

shown in Figure (2.14). The ultimate moment of the hinge is assumed to occur when

the strain perpendicular to the hinge at the far end of the region from the hinge

reaches the yield strain of the reinforcement. The total hinge moment is assumed to

be equal to the sum of the moments exerted by all reinforcing bars in that block,

i.e.

^  A . f y . y 2 . s i n 2c« 2 n
z  hsinfl

The ultimate strength can therefore be found once the hinge moments have been

determined at incipient collapse.

If the hinge areas are under— reinforced in flexure, then the moments M |— M4  will 

reach their ultimate values at failure, and the above equations will produce the 

ultimate strength of the beam.

However, it is possible that premature shearing failure may occur in any of the 

regions shown in Figure (2.14) before the ultimate moments at the hinges have been 

reached. Kubik proposed the following formulae to check for premature shear failures.

Above the opening it was assumed that failure occurred along the plane shown in
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Figure (2.14—a) when Q j  exceeds (QqOsi* given by

(Qt) S1"c1[ 1 -0 .35  (xu/ h u) ] f t . b . hu+C2.1 . A(yu/h u) . s in 2 c«u 2.22
n

In the region between the end of the beam and the web opening failure occurs along

the plane shown in Figure (2.14—b) when the horizontal force H exceeds the shear

strength Hg, given by

HS=C1[1 - 0 . 35(h 0 / t ) ] f t . b .t+C2 £ . A(yt / t ) . s in^o!t 2.23
n

Failure below the opening was assumed to occur along the plane shown in Figure

(2 .1^ —c) when the load Qg exceeds (Qb)s

(QB) S2 - C l[ l - 0 .3 5 ( x L/h L) ] f t . b . h L+C22A(yL/ h L) .s in 2 « L 2 .24
n

Kubik then described a procedure for checking the cause of the failure due to either 

flexural or premature shearing failure by comparing the predicted strengths from 

equations (2.18) to (2.20) with (2.22) to (2.24).

Comparisons made with other published data and Kubik's own data indicated that his

model produced results which were fairly conservative. Also a clear design procedure

was not presented and it would appear that reinforcement was provided in a fairly
£

arbitrary way in order to study the reslting behaviour.

Memon's tests

Memon[4] tested seven deep beams, six of them perforated and one solid. The beams 

were designed by the direct design technique. The main variables were X/D ratios of 

0.47, 0.35 and 0.32, concrete strength, and size and location of openings.

The major observed behaviour were as follows:

1 When the shear span to depth (X/D) ratio was 0.2 to 0.32 the influence of 

horizontal reinforcement was more noticeable than for vertical reinforcement.

2:— Ultimate strength increased with increasing concrete strength.



3:— Openings nearer the beam soffit had less influence on the ultimate strength

because they less interrupted the load path, the strength of such beams being similar 

to solid beams. Hence, he recommended the best location for openings was near the 

beam soffit.

4:— High steel strains were observed in the bottom main reinforcement within the 

regions of the shear spans. High compressive forces in the region of supports

probab-ly resulted in an increased horizontal tension due to the Poisson's effect thus 

causing these higher strains.

5:— Four beams failed due to shear failure, two due to bearing failure, and one due 

to splitting and spalling failure. Those beams which failed in bearing was probably due 

the fact that high forces developed in the compression strut causing severe cracking 

and crushing at the support points, suggesting that direct design procedure adopted by

Memon had led to an over provision of reinforcement elsewhere in the beam.

2.6 Design guides for deep beams.

2.6.1 Portland cement association (PCA1 method.

This method for deep girder design is based on the elastic analysis of Franz 

Dischinger[6 ] and it is applicable for a height to lewgtfc ratio of 2/5 or more for 

continuous girders and 4/5 or more for single span girders. It contains detailed 

recommendations for most loadings. Design is carried out using a number of charts. 

The design method is briefly explained as follows:

Step 1 : Calculation o f Characteristic ratios eR and (3R 

eR=(C/L)

/3R=(D/L) 2.25

where eR and 0R are the characteristic ratio of support to the span of the beam and 

overall depth to the span of the beam respectively.

For single span girder, with a concentrated load at the centre of span ratios 

eR=(C/2L)

|3R=(D/2L) 2.26

Step 2 : Calculation o f mid—span longitudinal reinforcement



Knowing eR and (3R, a tension coefficient is obtained from an appropriate design 

curve (reported in Figure 2.15) so that the tensile force to be resisted by longitudinal 

reinforcement can be calclated. Thus

T = C oeffic ien t x Load a t c e n tre  o f span

As= T /fs  2.27

where fs  is  the  a llo w ab le  s t r e s s  o f s te e l  

The PCA pamphlet states that vertical stirrups have no function and that therefore do 

not need to be provided.

Step 3 : Calculation o f reinforcement over the centre o f interior support.

Before calculating the tension reinforcement over the intermediate support the tensile 

stresses are to checked from Figure (2.16), if the outcome is higher than the tensile 

strength than reinforcement is required. In a similar way reinforcement is calculated 

from the appropriate curves of Figure (2.15).

Step 4: Check o f shear force with beam width condition

It is recommended that the shear force is checked to ensure that the cross section has

an adequate width. The shear in flexural members is calculated by conventional 

procedures using a unit stress defined as:

The unit stress is computed as

8  . V/7 . b. D > (v (l+ 5W /3  2.28

where v is the allowable shear stress for the shallow beams. When (3R is greater than 

2/5 then the value of v, allowable shear stress, must be adjusted to 2v for (3R= 1 

accordingly.

2.6.2 CEB— FIP design recommendations.

CEB— F lP t^ l put forward design procedures for both simple and continuous deep

beams in 1970. According to this, a beam is categorized as a deep beam when its

span to depth (L/D) ratio is less than 2 if simply supported and 2.5 if continuous.

For simplicity only the multi— span deep beam design procedure is given here.

Step 1 Calculation o f principal longitudinal reinforcement

This method also uses the lever arm criterion for principal longitudinal reinforcement
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calculations similar to Leonhardt and Walther as follows:

z= 0 .2 (L + l. 5D) fo r  1 < L/D < 2 . 5

z= 0.5L fo r  L/D<1 2.29

where L is the effective length and D is the total depth of the beam 

It is clear from these equations that when the height is greater than the length, then 

the lever arm is dependent on the length of the beam. Alternatively, when the span 

to depth (L/D) ratio is between 1 and 2.5, the lever arm is dependent on the depth 

and length of the beam. CEB— FIP indicates that the moment over the interior 

support is always smaller than that in a comparable beam of normal dimensions.

The principal longitudinal reinforcement for positive and negative bending moment is 

then determined by the equation:

where 7 m is the material partial safety factor (i.e 7111= 1.15 for steel)

Step 2: Positioning o f the principal longitudinal reinforcement

Principal tension reinforcement should not be curtailed and must be anchored at end 

supports. The positive principal tension reinforcement should be uniformly distributed 

over a depth equal to 0.25D— 0.05L, measured from the beam soffit (in this

expression the maximum value of D is limited to L). One half of the principal

tension reinforcement resulting from the negative bending moment over the interior 

support should be extended over the full length of the spans and uniformly distributed 

over a depth of 0.2D from the beam top. The other half may be stopped at either

0.4D or 0.4L and is uniformly distributed over a depth of 0.6D in between 0.2D

from the bottom to 0.2D to top. It also recommends the use of smaller diameter bars 

which give better cracking control.

Step 3: Check on shear

CEB— FIP does not give any direct method for calculating shear reinforcement, but it 

states that the shear due to permanent and imposed loads should be determined as for 

normal beams. In addition the design shear force should not exceed:

As=(M.7 m )/( f y . Z) 2.30

V = 0 . 1 0 . b . D . f c 2.31



When the height is greater than the span length, then L replaces D.

Step 4: Shear reinforcement calculations

For top loaded beams it is recommended that an orthogonal reinforcement mesh be 

provided as web reinforcement. The amount is expressed in terms of the percentages 

of cross sectional area, 0.25% in each direction for mild steel and 0.20% for high 

yield strength steel. It is also suggested that horizontal shear reinforcement in the 

orthogonal mesh be at a smaller spacing near the supports.

2.6.3 ACI Code design recommendations.

In 1971 the ACI Codet^l for the first time provided special provisions for the shear 

design of deep beams. It recommended that the Portland Cement Association's 

pamphlet be consulted if flexural design was required. The ACI procedure emphasises 

that the shear capacity provided by both the concrete and web reinforcement can 

resist the shear force. The provisions apply to deep beams whose span to depth ratios 

are less than 5, and which are loaded on the top or compression face. The 

calculations are based on critical sections, which are defined differently for 

concentrated and uniformly distributed loaded beams. For concentrated loads, the 

critical sections are taken mid— way between the load and support face, whereas for 

uniformly distributed loaded beams they are assumed to be at 0.15Ln from the 

support, where Ln is the clear span distance to the face of the support.

The nominal shear stress vn is determined from the design shear force V by

where o> is the capacity reduction factor and is taken as 0.85, b is the width of the 

beam and d is the effective depth of the beam. To ensure that the beam dimensions 

are satisfactory, the following checks are made:

vn =(V /o).b.d) 2.32

vr\^8J¥c'

vn}2/3 (10+(U /d)) .  J f c '  .b .d fo r  2<Ln/d<5

fo r  Ln/d <2

2.33

where fc' is the characteristic concrete cylindrical compressive strength.

The nominal shear stress vc carried by concrete is given by



vc=[ 3 .5 -2 .5 (M /V )l/d ) ] [ 1 .9 / f c T+2500p(V.d/M) ]

> 2 .5 [1 .9 7 f7 , -i-2500(V.d/M) ] 2 .34

where M is the design bending moment at the critical section, p is the ratio of the 

main steel area As to the area of concrete (b.d).

The use of shear reinforcement is obligatory irrespective of the values of vn and vc 

as calculated above. It recommends an area of vertical reinforcement Av which must 

not be less than 0.0015b.Sv, where Sv> d/5, nor 18in. The area of horizontal web 

reinforcement Ah must not be less than 0.0025b.Sh, where Sh > d/3 nor 18in. 

Alternatively if vn exceeds vc then web reinforcement must be provided to satisfy the 

following equation:

[ Av/Sv ] [ (1 (Lm/d) )/1 2  ]+[ Ah/Sh ][ ( l l - (L y d ) /1 2  ] =( (vn-vc) . b ) / f c  2.35

2.6.4 CIRIA Guide 2 design recommendations.

These recommendations owe much to the work of Leonhardt and W a l t h e r [ 3 3 ]  and 

Kong et alt^^ 40,55 60]_ design procedure is similar to CEB—FIP as explained 

earlier.

Step 1: Calculation o f Longitudinal Reinforcement 

Longitudinal reinforcement is calculated from

As=(M/0.8 7 . f y . Z) 2.36

where M is the design moment and Z is the lever arm which is equal to 0.2L-+- 0.3D 

for continuous deep beams. D is the effective height of the beam.

Step 2: Distribution o f Longitudinal Reinforcement (Sagging Moment)

It is recommended that the reinforcement be extended from end to end of a beam 

and be distributed over one fifth of the beam depth from the beam soffit. The bars 

must be anchored beyond the face of the support to develop 80% of the maximum

ultimate force beyond the face of the support and at or beyond a point 0.20L from

the face of the support to develop 2 0 % of the maximum force.

Step 3 Distribution o f Longitudinal reinforcement (Hogging Moment)

Half of the reinforcement calculated from the hogging moment should be extended 

over the full length of the adjacent spans and may be counted as part of the



minimum web reinforcement. This is distributed over a depth of 0.20t> from the 

beam top. The remaining reinforcement must be curtailed at a distance 0.4L from the 

face of the support. The distribution is given in Figure (2.18).

Step 4: Shear Reinforcement Calculations

The CIRIA Guide does not given any criteria for shear reinforcement, but refers to 

Clauses 3.11 and 5.5 of BSCP8110[54]. The amount of web reinforcement should not 

exceed the recommendations of the British Code.

2.6.5 General conclusion.

In the light of this review of design methods, the following general conclusions may 

be drawn:

1:— It appears that the majority of design methods are based on elastic analysis using 

a factor of safety on the material's performance, which leads to the measured 

ultimate loads being higher than the design ultimate loads. This is because the reserve 

strength of steel, and the contributions of dowel action of main reinforcing bars and 

aggregate interlocking in shear transfer are ignored.

2:— Design procedures for continuous deep beams are extrapolated from simply 

supported deep beam studies and earlier elastic design methods. Tests have shown that 

in a continuous deep beam the bottom and top chord always take tensile forces but 

the force in the top chord is less than the bottom one. Therefore, the proportions of 

reinforcement based on elastic methods is not quite accurate for continuous deep beam 

design.

3:— In deep beams, a neutral axis appears more than once. Hence there is no clear 

idea of a moment arm with which to calculate the principal tension reinforcement.

4:— Shear reinforcement is mostly provided on ad hoc basis and there is no formulae 

to calculate its value except by the direct design method.

5:— The design of deep beams with web openings has not yet been covered by the 

majority of codes. CIRIA Guide 2 does cover the design of deep beams with web 

openings, but when an opening interrupts the load path the CIRIA Guide is not valid.



6 :— Recent applications of plastic truss models suggest that they are better design 

tools, although shear reinforcement is still provided on an ad hoc basis. Moreover, it 

is not yet known whether these techniques have actually been used to design any deep 

beams. Thus, there is no clear idea how well these methods would behave in practice 

at serviceability or ultimate limit state.

2.7 Direct design technique.

In recent years the direct design technique has been examined for the design of a

large variety of structures i.e slab column connection, beams under torsion and
oyyd.

bending, deep beams k reinforced concrete slabs etc. The technique has a sound 

theoretical framework based on the theory of plasticity and so far has proved 

satisfactory in both serviceability and ultimate stages. The application of the direct 

design technique to deep beams has been undertaken by Lintel and Memonl^] who 

have demonstrated its potential as a useful design tool because of this potential, it is 

being further examined in this thesis will be fully explained and reviewed in Chapter 

Five. However, some of its other advantages learned from the previous studies are 

listed as follows:

a: It designs both web and main reinforcement automatically, It includes a procedure 

for skew reinforcement. It distributes reinforcement in a natural way according to the 

flow of applied stresses existing in structure, rather than on arbitrary basis, 

b: It has good cracking control in addition to satisfactory behaviour at serviceability 

and ultimate limit states.

c: Any geometrical shape can be handled easily, for example beams with web 

openings, providing extra reinforcement is used in zones of high stress concentration.
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Figure(2.1) Theoretical stress distribution for varying L/D ratios.
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Figure(2.2) Typical crack pattern in deep reinforced concrete beams.
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Figure(2.3) Derivation of Varghese and Krishnanmoorthy's ultimate 
load equation.



nodal zone

0 .7 5 A .tl

effective
an chorage

a rea
tension tie

develop tension 
tie force over 
this length

(a] Flow of forces (b) End view

truss node

tension tie

strut
com pression

force

Cc] Truss model

Figure(2.4) Strut and tie truss model for a deep beam.

C rb xtc

Figure(2.5) Proposed method for designing the RC deep beams.

X
|(M



(a) Forces on Inclined Crack Plane

Web Reinforcement

DT

DT

DT
DTLongitudinal

Reinforcement

(b) Forces in Stirrups Along Inclined Crack Plane

Figure(2.6) Derivation of equations for web reinforcement in 
deep beams.
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Figure(2.7) Symbols definitions (Kong et al)
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(a)

(b)

1

r

(C)

Figure(2.9) Different failure modes observed by Sharp.

Figure(2.10) The structural idealization (Truss model)
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Figure(2.11) Typical crack pattern in deep beams with web 
with web opening
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(b)

F igure(2 .12 )  Failure *odes for deep beam with opening-
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Figure(2.l3) Idealization for deformation of "beams with web opening
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Figure(2.14) Typical planes of shear failure.
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Fig.(2.16) Moment stresses at centre-line of support of girders having 
concentrated loading at top edge.
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CHAPTER THREE 

FINITE ELEMENT MODELLING

3.1 Introduction

The finite element method (FEM) is now firmly established and accepted as the 

most powerful general numerical technique for structural analysis. It has provided 

engineers with a tool of very wide applicability, including the realistic analysis of 

reinforced concrete members and structures. The application of the finite element 

technique can provide new insights into the behaviour of ordinary reinforced concrete 

structures, such as beams, columns, slabs, shearwalls, transfer girders and panels. But 

it is also an essential tool for the analysis and design of complex structures like 

offshore oil platforms, hyperbolic cooling towers and nuclear containment structures.

Scientists and engineers are often faced with practical physical problems whose 

solution by conventional methods is either too difficult or even impossible in one 

operation. The process of subdividing systems into their individual components or 

'elements', whose behaviour is readily understood, and then rebuilding the original 

system from such components to study its behaviour, is a natural way in which

scientists, engineers, or even economists proceed!^ >2,3,4] -phis process is often 

referred to as discretization.

In any continuum the actual number of degrees of freedom are infinite and unless a 

close form solution is available an exact analysis (within the assumptions made) is 

impossible. However, numerical techniques can provide an approximate solution by 

assuming that the behaviour of the continuum can be represented by a finite number

of unknowns. The finite element method is one such method, and is an extension of

the matrix analysis of skeletal structures. However, unlike skeletal structures, there 

are no well defined joints in a continuum where equilibrium of forces can be

established.



In the finite element method a continuous body is divided into small finite 

subregions called elements, each element possessing a finite number of unknown 

parameters. The elements are interconnected to each other by a finite number of 

common points existing on their boundaries, a process independent of the linear or 

non—linear nature of the problem. These common points are termed 'nodes'. A set 

of functions are chosen to define the variation of the required field variables within 

each element in terms of its unknown values at the nodes. These functions are also 

subject to certain constraints to ensure inter— element compatibility and correct 

convergence characteristics.

In continuum mechanics problems, the unknown variables can be displacements, 

stresses or both. This gives rise to the displacement (stiffness) method, the force 

(flexibility) method or the hybrid method respectively. Because of the ease of 

formulation, the displacement method is widely used, and has also been developed in 

this research.

Nowadays there are numerous texts, for examplet* *2,3,4,5,6 ], which describe finite 

element methods and their applications, so no attempt will be made to describe it in 

great detail. The elastic design program developed in this research was based on 

Owen and Hinton'st^.S] work and full details are given in their texts. But in order 

to define basic terms, a brief resume of two dimensional finite element theory using 

isoparametric elements is presented in the following sections, however only those 

aspects which are relevant to the needs of this research will be described. Although 

the representation of steel reinforcement is not necessary in the design program, it is 

necessary in the nonlinear analysis and so its formulation is also briefly described in 

this chapter.

The linear elastic finite element program was modified and extended to include the 

Direct Design equations. These equations used the elastic stress field produced by the



analysis to determine design reinforcement ratios, and is described in this chapter. 

All the transfer girders studied in this research were designed using this program and 

will be described in detail in Chapter Five.

The nonlinear finite element modelling is based on the program of Phillips^] for 

reinforced concrete, and this is described in Chapter Four.

The use of the finite element method to obtain the elastic stress field was chosen 

because:

(i) Any shape of continuum including bodies with holes such as deep beams with

openings, can be simulated without difficulty.

(ii) The finite element analysis is now well tested and proved as a reliable tool for

analysis. Also, nowadays, it is cheap in terms of cost and time to obtain an internal

elastic stress field of a continuous body.

(iii) A finite element analysis can produce a realistic elastic stress field throughout 

the continuum.

(iv) Variable material and geometrical representation can be made according to the 

real behaviour of the structure, such as different properties for support and loading 

points which are reinforced by steel load cages.

(v) Boundary conditions can be dealt with easily.

3.2 General procedures and discretization by finite elements

For structural applications, the governing equilibrium equations can be obtained by 

minimising the total potential energy of the system!1 ,2,4,5] -phe total potential

energy, IT, can be expressed as:

n = 1 /2 0 } T{ E}dV -
V

{ 6 }T{p}dV - {a}T{q}dS (3 .1 )
S

where a and e are the stress and strain vectors respectively, <5 is the displacements
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at any point, p is the body force per unit volume and q is the applied surface 

tractions. Integrations are taken over the volume, V, of the structure and loaded 

surface areas S.

The first term on the right hand side of equation (3.1) represents the internal strain 

energy and the second and third terms are the work contributions of the body forces 

and distributed surface loads respectively.

In the displacement method, the displacements are assumed to have unknown values 

at the nodal points so that the variation within any element is described in terms of 

the nodal values by means of interpolation functions. Thus

(5>= [ N ] .{ 5e> (3.2)

where N is the interpolation functions often termed shape functions, and 5e is the 

vector of the nodal displacements of the element. The strains within the elements 

can be expressed in terms of the element nodal displacements,

{e}= [ B ]. {<5e } (3 .3)

where B is the strain matrix generally composed of derivatives of the shape 

functions. The stresses may be related to the strains by making use of elasticity 

matrix, D, as follows:

M -  [D]{«} (3.4) tA
Ensuring that the element shape functions have been chosen so that no singularties 

exist in the integrands of the function, the total potential energy of the continuum 

will be the sum of the energy contributions of the individual elements. Thus:

n = in e  (3 .5 )
e

where FTe is the potential energy of element e, by using equation (3.1) we get

rie= 1/2 { 5 e } T[ B ] T[ D ] T[ B ] { 5 e }dV
Ve
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{ 5e } T[ N ] T{p}dV -  { 6®>T[N]T{q}dS ( 3 . 6 )
Ve Se

where Ve is the element volume and Se is the loaded surface area of the element.

The performance of minimisation for element, e, with respect to the nodal

displacements, 5e, of the element results in:

dlI/dSe = [ B ] T[ D ] [ B ] { 5 e }dV -  
Ve

=[Ke ] { 5e > -  { Fe }

[N]T{p}dV -  
Ve

[ N ] T . { q }d S
se

where

(Fe }= [ N ]T{p}dV + 
Ve

[N]T{q}dS
Se

( 3 . 7 )

(3 .8 )

are the equivalent nodal forces for the element and

[Xe h [ B ] T[D][B]dV
Ve

(3 .9 )

is termed the stiffness matrix. The summation of terms in equation (3.7) over all 

the elements, when equated to zero, results in a system of equilibrium equations for 

the complete continuum, i.e,

' {FH KK*} (3-10>
where (F ) is the equivalent nodal forces for the continuum, [K ] is the stiffness 

matrix of the continuum and {5} is the nodal displacements of the continuum.

After the insertion of the necessary boundary equations, these equations are then 

solved by any standard technique to yield the nodal displacements. Once the 

displacements are determined, the strains and thereafter the stresses in each element 

can be evaluated by using equations (3.3) and (3.4) respectively.

3 . 3  8 —Noded parabolic isoparametric element

In the development of any finite element model, the first step is to decide the type



of element. The efficiency of any particular element depends on how well the 

defined shape functions are capable of representing the true displacement field.

In the last two decades many elements have been investigated and tested by various 

researchers; from simple ones to complex, for example [1 >2,4,5] o f  these, the

isoparametric family of elements has appeared to be greatly beneficial. These are a 

group of elements in which the shape functions are used to define the geometry as 

well as displacement field. Isoparametric elements are known for their better 

accuracy, versatility and efficiency over simpler types of elements. Savings in

computer effort is obtained, because, even though complex elements require more 

time to formulate, fewer elements are required. In this study, a two dimensional 

version of the parabolic isoparametric element, shown in Figure (3.1), has been used 

throughout, and further description will be limited to this.

3 .3.1 S h a p e  functions

As mentioned earlier a shape function defines the variation of the field variables and

its derivatives, through an element in terms of its values at the nodes. Therefore,

the shape functions are closely related to the number of nodes and the type of 

element. Hence, in the displacement finite element approach 

n
5 =  E Nj Si ( 3 . 11 )

i = l

where Nj is the interpolation functions termed as shape functions and 5} is the 

vector of the nodal displacements.

In the distorted and curved isoparametric elements, the shape functions Nj define the 

geometry and finite element analysis, i.e the unknown values at the nodal points. 

The shape functions are dependent on the local coordinate directions £ and 17. In 

the distorted elements, a given point is defined by coordinate £ and r) by means of 

two intersecting curves, called curvilinear coordinates. Moreover, these coordinates
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represent better shape functions of isoparametric elements. Such curvilinear 

coordinates are so chosen, that on the faces of an isoparametric element the values 

of £ and 77 are + 1  and — 1 .

For two dimensional applications, the displacement field at a particular point with 

local coordinates (£ ,77) are u(£,17), v(£,77) and at each nodal point the displacement 

degrees of freedom are ui, vi. For the quadratic interpolation scheme used with 

parabolic isoparametric elements, there are eight nodes, i.e. n = 8 .

Therefore, for the displacements u(£, 17) and v(£ , 77) at any point within the element, 

we make use of the expressions

u(£ ,y)  = I  Ni (£ , 77) .u i 
i= l

v(£ , 77) = I  Ni (£ , 77) . vi (3.12)
i=l

Global coordinate values x ( £ , tj)  and y(£,77) make use of the isoparametric concept 

and at any point within the element are defined in a similar manner:

8
x(£ , 77) = I  N*(£ , 77) xj 

i=l

y(£ ,V) = I  N j( £  ,77) y i  ( 3 . 13 )
i = l

w h ere  (x j,y j) ,  a re  th e  global coord ina tes  o f  n o d e  i, a n d  N j(£, 77) a re  th e  quadra tic  

sh a p e  functions  fo r  th e  8— n oded  isoparam etr ic  e lem e n t ,  g iven byt^]

N l (£ , 77) = - 1/ 4 ( l - £ ) (I-77)  (1+£+t7)

N2 (£ , 77) =  l / 2 ( l - £ 2 ) (I-77)

N3 (£ ,77) =  1/ 4 ( l + £ ) (I-77)  (£ -7 7 -1 )

N4 (£ , 77) =  1 / 2 ( 1 + £ ) ( 1 - t 7 2 )

N5 (£ , 77) =  1/ 4 ( l + £ ) (I+77) (£+77-1)

N 6 (£ , 77) =  l / 2 ( l - £ 2 ) (I+77)



N7 ( £ , t j )  =  l / 4 ( l - 0 ( l + r ? ) ( - ^ + r j - l )

N8 a , V) = 1/ 2 ( 1 - 0 ( 1  -r}2 ) ( 3 . 14 )

The functions require that the node numbering is anticlockwise as shown in Figure 

(3.2). Each of these shape functions has a value of unity at the node to which it is 

related. They also have the property that their sum at any point within an element 

is also equal to unity, which satisfies the requirement that rigid body displacements 

of the element results in no element straining.

3.3.2 Strain matrix

Once the shape functions are evaluated the strain within the element can be 

expressed in terms of displacements or their derivatives. In plane stress and plane 

strain situations the strain is expressed as: 

ex = 3u/3x 

cy = dv/dy

Yxy= du/dy + dv/dx (3 .15)

in which ex, ey are normal strain components and yxy is the shear strain 

component. Equation (3.15) can be written in matrix form as follows:

au/ax a /ax  o

av /ay ■ = o a /a y

au/ay+av/ax a /a y  a /ax

Substituting for u and v from equation (3.15) 

dNj/ax 0  

0  aNi/dy 

aNj/ay aNi/ax
M - £ 1=1

- E [Bi ]{*!>
1=1

(3.16)

(3.17)

where [Bj] is 3x2 strain matrix which contains the cartesian derivatives of the shape 

functions.
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Since the shape functions, Nj, are defined in terms of local coordinates, £,17 of the 

element, transformation from local to global coordinates is required to obtain the B 

matrix in equation (3.17) . This is done through the well known Jacobian matrix 

which is written as:

Bx/B£ dy/d£
J =

. Bx/Br) By/Byj

8 (dNi/dS) .xj O N i / a o . y j
= I (3.18)

i=l (dNj/arj) .xj (aNi/arj) .yj

The inverse of the Jacobian matrix can be readily obtained using standard matrix

inversion techniques

B!j/Bx By/Bx d y / dy -dy/a£
[ j ] - 1  - = (1 /d e t J) (3.19)

3£/dy Brj/By - Bx/B tj Bx/Bt]

3.3.3 Stress— strain relationships

From basic theory of elasticity for elastic materials, the stress— strain relationship is 

given by:

{<r} = [D] {e> (3.20)

where [ D ] is the elasticity matrix. For a two dimensional isotropic material this 

takes the form for plane stress situations

[°] ( l - „ 2 )

1  0  

p 1  0

0  0  ( l - v ) / 2

(3.21)

whereas for plane strain situations

1 ( f / U - O

( f / < 1 - 0 ) 1

E ( l -v )
[D]

( l + O d - 2 v)
0 0

0

0

( 1- 2 0 / ( 2 0 - 0 )

(3.22)

where E is Young's modulus of elasticity and v is Poisson's ratio. The change in 

material properties due to concrete nonlinearity are entered through the material
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property matrix [D ] but this will be discussed in the next chapter. Here, we will 

limit ourselves to linear behaviour.

3.3.4 Element stiffness matrix

We now have all the information necessary to evaluate the element stiffness matrix 

,Ke, from equation (3.9), i.e

Ke = [ B ]T[ D ][ B ]dv (3.23)

A typical submatrix Keij linking nodes i and j may be evaluated from the expression

Kei j  - [ Bi ]T[ D ][ B j ] t . det  . J . d£ . di7 (3.24)

where t is element thickness and

dv = d e t . J .d£ .drj.t (3.25)

and the limits of integration becomes — 1 to 1 in each one of the two directions.

3.3.5 Numerical integration

It is difficult or perhaps impossible to perform the closed form integrations required 

in evaluating the element matrix and thus numerical integration is essential. This 

choice of numerical integration will replace the exact integral by evaluating the 

integrand at various sampling points and then by making a weighted summation of 

these values. In this study Gauss— Legendre quadrature values have been used 

because of their higher accuracy over other forms of quadrature and the ease with 

which these can be implemented. They can integrate a polynomial f(£) of 

degree(2n— 1)[1 >4,5]

In general, the one dimensional Gaussian quadrature formula is written as

I  ̂ ^
4>(£)d£ = L (£ i)  (3 .26)

- i  i_1

where aj is a weighting factor, is the coordinate of the ith integration point and
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n is the total number of integration points. In two dimensions where a double 

integral exists, then

+ 1 + 1 + 1 + 1
In , n = $($ , T7)d£ .dr) = * t t , r ) )  d$

- 1 . - 1 - 1 - 1

The inner integral is evaluated first keeping rj constant and then the outer integral 

is evaluated.

These Gaussian Legendre rules are particularly suitable for isoparametric elements 

since the limits of integration are + 1  to — 1 which coincide with the local 

coordinate system +1 to —1 on element boundaries. Table 3.1 shows the 

symmetrical positions of Gauss points £i and the corresponding weighting factors aj 

for n= 1,2,3, and 4t^]. However in this work the 3x3 Gauss rule has always been 

used for designing the reinforcement.

3.4 Steel representation

Since steel reinforcement is comparatively thin, it is generally assumed to be capable 

of transmitting axial force only; thus steel stress— strain behaviour is assumed to be 

uniaxial and therefore it is not necessary to introduce the complexities of multiaxial 

constitutive relationships.

In the finite element modelling there are at least three different representations 

which have been used[7>8>9,10,ll] These are:

(a) Distributed representation

(b) Embedded representation

(c) Discrete representation

fal Distributed representation

In distributed steel representation, steel is assumed to be distributed (i.e as a



membrane) over the concrete element with a particular orientation 6 as shown in 

Figure (3.3). Composite concrete and reinforcement constitutive relations are required 

in this case. In order to derive such a relation, perfect bond between steel and 

concrete has to be assumed. Although this approach is easy to implement, it is 

unrealistic in the sense that reinforcing bars are no longer discrete uniaxial members 

embedded in the concrete [9,10,11], additionally, dowel action mechanisms cannot be 

modelled adequately^ 0 ,1 1 ].

(b) Embedded representation

Embedded representation is shown in Figure (3.4) and is often used in connection 

with higher order isoparametric concrete elements. The reinforcing bars are 

considered as axial members built into the isoparametric concrete element, such that, 

its displacements are consistent with those of the element. Again in this type of 

representation perfect bond has to be assumed!^ >9].

(c) Discrete representation

A discrete representation of reinforcement using a one dimensional element as shown 

in Figure (3.5), has been widely used by various researchers, for e x a m p l e ! ^ ] .  Axial 

force members are effectively pin connected with two degrees of freedom at nodal 

points for two dimensional problems and are simply superimposed onto a two 

dimensional finite element mesh representing concrete. This approach is simple and 

has a significant advantage, that it can take into account possible relative 

displacements of reinforcement with respect to the surrounding concrete. However, a 

serious drawback is that the location of steel often dictates the concrete mesh. This 

may result in slender elements, when the reinforcing bars are close together, 

violating the ideal of aspect ratios being as close to unity as possible t8*9]. This 

representation can be particularly unsatisfactory when used with the higher order 

isoparametric elements often used to represent concrete.
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3.4.1 Method of steel representation used in this study

Embedded representation of steel was considered to be a reasonable approach to 

take in this work. This approach takes a proper account of dowel action and can be 

incorporated without any difficulty into a finite element model, regardless of the type 

of nonlinear material models used. In order to take into account skew steel, skew 

elements can be used to represent the actual line of the steel. Although, in general 

the reinforcing steel can be placed along any constant local coordinate line in an 

element, here for ease of data input, the choice was restricted so that the bars can 

be positioned on the boundaries of the element and or along a line joining the 

midside nodes as shown in Figure (3.6).

4.5 Embedded bar element derivation

Consider a bar lying along a direction parallel to the local coordinate £ as shown in 

Figure (3.7) i.e lying along the line of constant n= rjc. Bars along constant £ will 

obviously follow a similar derivation. It is further assumed that the bars are capable 

of transmitting in— plane forces only. The line of the bar is defined by using the 

same shape functions as the main element. Thus the cartesian coordinate of any 

point, P, are given by:

8
x =  I N i (£ )x i (3.28)

i=l

Full compatibility between the bars and basic element is assumed, therefore, the 

displacements of the bar are obtainable from the displacement field of the basic

element[7>8>9].

{f> - - [ N ( S ) ] { 5 e } (3.29)

For bars only one component of strain contributes to the strain energy and is 

defined locally by:

ep = 3 u '/3 x ' (3.30)



where x', y' are a local coordinate system at point, P, with y' being normal to the 

line of the bar, and u \  v' are the corresponding displacements.

Now at any point it is possible to define a distortion matrix [ j ]  as:

[ j ]
3 u /3 x  3 v /3 x  

3 u /3 y  3 v /3 y

3 N j /3 x  3 N j /3 x  3Nm/3x. 

3 N j /3 y  3 N j /3 y  3Nm/3y.

u i  V I

u j  v j  
um vm

(3 .3 1 )

and, as mentioned earlier, a Jacobian matrix given by:

3x /3£  3y/3£  

3 x / 3 rj d y / d r j

3 N i/3 £  3 N j/3 $  3Nm/3£, 

3Nj/3i7 3N j/3 t]  3Nm/3r7

x i  y i
XJ yj
xm ym

(3 .3 2 )

Therefore from the relation

3N i/3$  3N j/3£ 3Nm/3£, 

3N j/3 rj  3N j/3rj 3Nm/3r7,

it follows that

3 N j /3 x  3 N j /3 x  3Nm/3x. 

3 N j /3 y  3 N j /3 y  3Nm/3y,
( 3 .3 3 )

[ J h  [ J ] ' 1

aNi/a$ dNj/aj aNm/aj 
3Nj/3i7 3N j/3r/  3Nm/3rj

u i  V I

u j  v j  
um vm

( 3 .3 4 )

As [ j ]  is a second order tensor, it transforms on co-ordinate rotation from x, y to 

x ', y' according to

3u'/^x ' dv'/^x '
[J]’ [*] [J] [*F ( 3 .3 5 )

L3u’/ 3 y '  3 v ' / 3 y '

where [R ]  is the rotation matrix of direction cosines at point P, given by



[R] - (3.36)
3x /3x ' 3y /3x '

.3x/3y* ay /3y '

and by noting that x' and £ coincide, and differ only in magnitude, it can be 

shown by:

3x /3£  3y/3£
[R] -  l /7 (dx /d{ ) i+ (ay /a | )2

. -3 y /3 £  3x/3£

Finally from equation (3.30), (3.35) and (3.37), it follows that

( 3 . 3 7 )

3 u / 3 x ' =  1 / h 2 [ { c i a N i / a x + C 2 3 N i /3 y } { C 2 3 N i /a x + C 3 3 N i /3 y }  ]

ui
v i
uj
vj

( 3 . 3 8 )

where

h -  y"(<>xA>0 2 +<ay/a£ ) 2

c i -  ( ax /a j )2 , C2- (dx/aj.dy/a?) ,  C3- (ay/ a j ) 2 (3.39)

The stiffness matrix [K* p  of the bar can be calculated by using equation (3.9).

[ K ’ ]e = [B'  ]t[D' ][B* ] d ( v o l ) ( 3 . 4 0 )

where [ B ' ]  is strain matrix obtained from equation (3.38). For plane stress and 

strain case [D '}= Es, where Es is the modulus of elasticity of steel and the 

elemental volume is given by

d ( v o l )  = As .d x '  = As.h.d£ ( 3 . 4 1 )

where As is the cross-sectional area of the bar and h is to be taken from equation
(3.39).

Clearly numerical integration must be used again, but now applied in one dimension 

only.

The value of the stress which will be induced in the bar will be

a p 1 = ep 1 . Es ( 3 . 4 2 )



The equivalent nodal loads contributed by the steel bar will be:

( P1 }sTEEL= [ B' ]T{<xp' } d ( v ° l ) (3.43)

where (op ')are the bar stresses.

3.6 Evaluation of loads

In the displacement method, the only permissible form of loading, other than initial 

stressing, is by the prescription of concentrated loads at the nodal points.

Consequently, forms of loading such as gravity action and pressure applied to the 

element surfaces, must be reduced to equivalent nodal forces before a solution can 

proceed!^].

It would be very difficult in general to calculate manually the equivalent nodal forces 

using the isoparametric element principle, since area or volume integrations over 

arbitrary shaped regions are generally involved. Therefore, a subroutine for doing 

this function is used and is explained in detail in the referenced textl^] only a 

summary is given here.

3.6.1 Point loads

Consider a point load, P, acting on an edge of the element as shown in Figure 

(3.8). Applying virtual displacements, 5*, in the x and y directions to each node in 

turn, so that for node i we have virtual displacement components u* and v* 

respectively then,

px i u* “ px Ni ( S p - ’) >u*

Py lv* -  PyNj (£p ,5) ) V *  (3.43)

where Pxi and Pyi are the corresponding forces in the x and y directions, Px and 

Py are the components of load, P, acting in the x and y directions respectively and 

£0 is the £ coordinate of the point and r\ is the constant value of r? at the edge
r

in question i.e r) = — 1 or + 1.



By invoking the arbitrary nature of the virtual displacement then

X I

yi
Ni(£p>*7 ) ( 3 . 4 5 )

This is the equation from which the equivalent nodal forces can be calculated as 

soon as the load component Px and Py and its points of application, as defined by 

(£p>*f )> are specified.

If the x and y coordinate of the point of application are specified as Xp and yp 

respectively, and the nodal point coordinates are (x^,yj) along the element edge then 

using the isoparametric concept

xp 3 x i

yp .
= ZNi($p ,^ ) 

1 = 1  r
y i

The shape functions, N|, are in this case quadratic expressions in £ and r\ and 

therefore equation (3.46) is quadratic in £ and can be solved to yield £p. The 

equivalent nodal forces can then be determined from (3.45) (This, of course implies 

that the point of application of the load is known to coincide with a particular mesh 

line).

Point loads which act on a node are handled more conveniently by inputting directly 

their values at the appropriate nodal points!^].

3.6.2 Body forces

Gravity forces are equivalent to the body force per unit volume acting within the 

solid in the direction of the gravity axis. It is not necessary that gravity loading 

should coincide with either of the coordinate axes. Gravity force components may 

act in both the x and y directions. The direction of the gravity force is defined by 

the angle which it makes with the y axis.
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In order to obtain the equivalent nodal forces similar procedures are followed as in 

the previous section. Referring to Figure (3.8) once again, if g is the gravitational 

acceleration and the material mass density is p then the gravity force dG acting on 

an elemental volume dV is

dG = pg-dV (3.47)

The components acting in the x and y directions will be 

dGx = p g . dV.sin0

dGy = -pg.dV.cos0 (3.48)

Applying the principle of virtual displacements, the equivalent nodal force in the x 

and y directions are

P -u* = r x i u

yi

NjU pg .sin0 .dV 
Ve

N jV * p g .c os0 . dV 
Ve

(3.49)

where Nj are the shape functions, and the integration is taken over the volume of 

the element. Noting the arbitrary nature of the virtual displacements these equations 

can be replaced in matrix form as

Pxi s in 0
= NiPg

13 Ve -COS0
dV (3.50)

Finally, this equation requires the Gaussian numerical quadrature to perform the 

integration over the volume, i.e

Pxi NGAUS NGAUS s i n 0

' = I £  pg

p y i .
n=l m=l -cos 0

^ i (£n> ^ m ^ n - am-1 • ^e t  ^ (3 .51)

where t is the thickness of the element and J is the Jacobian matrix and an> am 

are the Gaussian weighting functions.



3.6.3 Normal and tangential distributed edge loads

In some cases, element edges will have distributed loading per unit length in either 

the normal or tangential directions. In the parabolic isoparametric element shown in 

Figure (3.9), an edge of an element is represented by three nodes listed in an 

anticlockwise direction with respect to the loaded element.

The intensity of distributed load at any point along the loaded edge is given by

Pn n (Pn ) i
= (3.52)

Pt . i=l
.<Pt ) i .

where pn and pt are the normal and tangential distributed loads and Nj are the 

shape functions as defined before.

By applying the principle of virtual work to each nodal point of the element in 

turn, the equivalent nodal forces can be calculated. The components of forces acting 

in the x and y directions respectively, on an incremental length dS are

dPx = (p t .dS.cosa - pn .dS .s ina )  = (pt .dx -  pn .dy)

dPy = (pn .dS.cosa + pt .dS .s ina )  = (pn .dx + p^.dy) (3.53)

By using the following relations in equation (3.53) 

dx = (3x/d£) .  d£

dy = ( d y / 3 £ ) ( 3. 54)  

and integrating along the element edge in terms of the curvilinear variable £ then 

finally the expressions for equivalent nodal forces become

Pxi  =

pyi "

Ni ( p t ( ax/ a£ ) -p n (ay / aS) ) •
Se

Ni (P n (ax/ a£) " P t ( ay / a£ ) ) • a£ (3.55)
Se

where integration is taken along the loaded element edge Se and is again carried out 

using numerical integration.
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3.6.4 Temperature loading

Sometimes stresses can be induced in a solid by temperature change. As thermal 

effects are only a particular case of initial straining, they are easily accommodated. 

In this situation, first the initial stresses, o°, corresponding to the initial thermal 

strains, eo, are calculated using oo = Deo and then converted to equivalent nodal 

forces. Later on, these stresses are added to stresses from other sources such as 

applied loads etc.

For the plane stress situation the initial strains are

where a  is the coefficient of thermal expansion and T is the temperature increase 

from an arbitrary datum.

For plane strain, the initial strains are 

exo = ( - vcrzo/E) + aT

eyo = ( - vazo/E ) + aT

Yxyo= 0

exo = aT

eyo = aT

Yxyo= 0 (3.56)

ezo = (azo/E ) + aT = 0 

By eliminating crzo in the above equation (3.57) we get

(3.57)

exo = (!+»') aT

eyo = (1+r) aT

yxy  = 0 (3.57)

and (J'zo = -EaT (3.58)

3.7 The equation solution technique

There are various equation solution techniques which can be used to solve a given 

set of linear simultaneous equations. In this study direct Gaussian elimination
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algorithims have been used in conjunction with the frontal method of equation 

assembly and reduction,!^] and is applicable here only for symmetric systems of 

linear equations. The main features of this technique are:

1 It assembles the equations and eliminates the variables at the same time, hence 

the complete structural stiffness is never formed, only the upper triangle of a square 

matrix containing parts of the equations which are being assembled at a particular 

time.

2:— The frontal solver does not store as many zero coefficients as a banded solver 

does. Once an equation has been completely assembled and eliminated, it reduces 

space which can be used for subsequent equations.

3:— The storage allocation in a banded solver is determined by the order in which 

the nodes are presented for assembly. But, in front solver the storage is determined 

by the order, in which the elements are presented. It can handle any order of node 

numberings. Hence, at any stage, if a mesh of a problem is found to be too coarse 

in some regions, its modification does not require extensive nodal point renumbering. 

In this sense, the frontal solver is easier to use than banded solvers.

4:— The frontal solver tends to be more economical than banded solvers, especially 

for higher order elements with midside nodes.

3.8 Brief description of the developed model for design

The finite element model described in this chapter was basically developed from the 

work of Owen and Hintont^] and was used to obtain the elastic admissible stress 

field for in— plane structures. The program was modified and extended by

incorporating the Direct Design equations. The working order of the program is

presented in Figure (3.10).

The Direct Design equations, originally presented by Nielsont12] and later extended

by Clarkt1^], were programmed in two subroutines called Orthogonal and Skew to



carry out each particular type of reinforcement design. In order to design 

reinforcement for a particular beam, first an elastic stress field was obtained using 

the assumed material properties of cracked concrete. Secondly, this elastic stress field 

was transfered to the Design Module and, according to the type of reinforcement 

required i.e orthogonal or skew, the reinforcement was calculated.

Reinforcement ratios in each direction were obtained at the 9 Gaussian integration 

points of a 3x3 rule. As the stresses throughout the continuum were continuously 

varying, the resulting steel ratios also varied from point to point in both directions. 

To assist in the selection of discrete bars, the first step was to average steel ratios 

in each direction in each element. Then, steel areas were calculated from these steel 

ratios through some simple mathematical manipulations.

Once the steel areas for each element were determined for a particular load, the

program calls the Plotting Module.

The Plotting Module was built into the finite element program to present the 

designed reinforcement as three dimensional and contour plots, and also in tabular 

form. This allows the designer to visualise the designed reinforcement profile of the 

structure, so that at any stage, decisions are more easily made about whether to 

change material properties or the geometry, if they do not satisfy intended design 

aims. This Plotting Module also helps in checking the mesh boundary conditions and 

loading points, which is also important in avoiding errors in the analysis. Three

subroutines MESHPL, STEELP, BCPLOT carry out these functions as follows:

MESHPL— Plots the finite element mesh used in the analysis with nodal point 

and element numbers.

STEELP- Plots the finite element mesh with the average steel areas required

in both directions in each element. It also plots a three dimensional view of 

the main and shear reinforcement ratios and also plots contours of both



reinforcements ratios.

BCPLOT— Plots boundary conditions on the finite element mesh and the 

nodal loads as arrows in the appropriate direction.

A demonstration of the use of this Program can be seen in the Chapter Five when 

designing the transfer girders.



TABLE 3.1

Weighting factors and Gaussian sampling point positions

n i $ i a i

1 I 0 2

I +i / 7 + 1
2 _

11 -1J  3 + 1

I 0 8/9

3 11 + /  0 . 6 5/9

I I I - /  0 . 6 5/9

I p + J  4 .8 i  yA o

J  1 2 36

A + / 4 .8 i  / T o
II ~ _  -  -------

J  1 2 36
4

! l - J  4 .8 1 7*30
II I / -  + -------

J  1 2 36

! z - J  4 . 8 1 / 3 0
IV ~ -  + ------------------J  7 2 36



9 4

G E N E R A L  NODE i —

PARABOLIC S H A P E  AND  
D IS P L A C E M E N T  VARIATION

x

Figure (3.1) Typical two dimensional parabolic isoparametric element.

GAUSS POINT 
POSITION

O R D E R  OF N U M B E R IN G -  
OF E L E M E N T  NODAL  
CONNECTIONS

Figure (3.2) Orientation of local axes rj, and order of Gauss point 
for two dimensional parabolic isoparamatric elements



Figure (3.3) Distributed representation of steel.

R e in fo rc em e n ts

Figure (3.4) Embedded representation of steel.

\

Axial E le m e n ts

F lexu ra l  E le m en ts

Figure (3.5) Discrete representation of steel



y

Bar no. 6
Bar no. 2

Bar no. 4

Figure (3.6) Bar element positions on the isoparametric element.

y v

Figure (3.7) Bar element.
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VOLUME , d v

DIRECTION IN 
W HICH GRAVITY  
ACTS

Figure (3.8) Application of point loads to two dimensional parabolic 
isoparametric elements.
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NUMBERING
SEQ UENCE

Pn Pn

27

X

Figure (3.9) Normal and tanential load per unit length applied to a 
parabolic isoparametric element.
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Figure (3.10) Flow chart of developed model
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CHAPTER FOUR 

NONLINEAR MODELLING OF REINFORCED CONCRETE

4.1 Introduction

The challenges in designing complex concrete structures has prompted analysts to 

acquire a sound understanding of reinforced concrete structural behaviour. In mcFy 

cases conventional and code prescribed methods cannot be relied upon to provide 

realistic information, such as load deformation response, crack patterns, strength* 

distorted shapes of structural elements, and failure mechanisms. This is primarily 

because of the complex behaviour of reinforced concrete under short term loadings.

Concrete is much weaker in tension than in compression. Hence, even at relatively 

low loads in many problems of practical consequence, concrete starts cracking and 

linearity is no longer preserved. Material nonlinearity is also caused by the yielding 

of steel and the "plasticity" of concrete in compression. Other nonlinearities arise 

from the complex action of the individual constituents of reinforced concrete e.g 

bond— slip between steel and concrete, aggregate interlock of a cracked concrete, 

tension stiffening between cracks and dowel action of reinforcement. Time— dependent 

effects such as creep, shrinkage, and temperature change also contribute to the 

nonlinear response. However, the major material nonlinear response is caused by 

cracking of the concrete, plasticity of reinforcement and the inelastic compressive 

response of concrete and any nonlinear procedure should include these as a 

minimum.

A structure may also exhibit nonlinear behaviour due to geometric nonlinearities; 

however, these tend to be associated only with certain special structural elements and 

systems in which the effects of displacements on internal forces must be considered 

in the analysis. Reinforced concrete transfer girders have small deflections, thus 

geometric nonlinearities have not been considered in this study. In order to study
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more accurately the behaviour of such structures throughout the entire load range, it 

is important to extend the numerical process described in the previous chapter to 

include the nonlinearties described above.

A nonlinear finite element solution is obtained by a sequence of linear 

approximations using some iterative process which produces an overall response at 

any stage that satisfies the constitutive laws, compatibility and equilibrium conditions 

to some degree of tolerance. The obtained solution then represents the approximate 

nonlinear behaviour of reinforced concrete .

The progress made in the field of nonlinear analysis over the last two decades with 

the finite element technique has provided a reasonable method of prediction of the 

overall behaviour of a structure. In particular a variety of models have been 

proposed for predicting the nonlinear response of reinforced concrete. The ASCE

Task Committee's state—of—the—art report^] provides a useful summary of the

various models up to 1982, whilst Client] has provided a broad review of the

various nonlinear material modelling techniques. A recent text edited by Hinton and 

Owent^] also describes various models and their applications. For completeness, in

this chapter the mathematical modelling of the material and nonlinear solution 

methods will be briefly explained and is based on earlier work and programs

developed by Phillipst^].

It has been customary to consider the two constituents, concrete and steel

reinforcement, as separate contributors to the overall stiffness and strength of the 

structure and this approach is also adopted here. Isoparametric elements have been 

used to model the concrete whilst a reinforcing element embedded in the main

element is used to simulate the reinforcement. In this embedded reinforcement

representation, full bond is assumed between steel and concrete. An advantage of
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this representation is that bars can be more or less placed in positions corresponding 

to those in the real structure, leading to a more accurate analysis.

4.2 Numerical techniques for nonlinear analysis

The general basis of each method of nonlinear analysis is similar. For problems 

where only material behaviour is nonlinear, as considered in this study, the 

relationship between stress and strain is assumed to be of the form:

The external forces {R} are related to nodal displacements {5} through the 

stiffnesses of the element and can be expressed by:

This derivation illustrates the basic nonlinear relationship between {5} and (R ) due 

to the influence of the material laws on [ K ].

The solutions of nonlinear problems by the finite element method are usually 

attempted by one of the following three basic techniques:

f(cr, e) = 0 ( 4 . 1 )

The element stiffness matrix [ K ] is a function of the material properties and can be 

written as:

[K] = k((T, e) ( 4 . 2 )

{R} = [K]{5> ( 4 . 3 )

Which on i n v e r s i o n  becomes:

P u t t i n g  v a l u e s  o f  [K]  from e q u a t i o n  ( 4 . 2 )  i n t o  ( 4 . 4 )  we get

( 4 . 4 )

{ 5 }  -  [ k  ( f f . c)]-1 {R> (4 .5 )

(i) Incremental (Step by Step)

(ii) Iterative (Newton Method)

(iii) Incremental— Iterative (Mixed Method)
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These three methods will be briefly explained, but detailed discussion is presented by 

the state—of—art report^], Chent^], Al—Manaseert^], Owen and Hintont^] and 

Al— Mahadit^].

4.2.1 Incremental method

In this method the intended or assumed total load on the structure is divided into 

small divisions called load increments. During each load increment, equation (4.3) is 

assumed to be linear i.e a fixed value of the new structural stiffness [ K ] is assumed 

using material data existing at the end of the previous increment in the updated 

material matrix [ D ]. Nodal displacements resulting from the loading of each 

increment are then added to the previously accumulated displacements. This process 

is repeated until the total load is reached^ >6 ,7,8 ,9]

The accuracy of this procedure depends on the increment size, the smaller the 

increments the better the accuracy, but at the same time more computational effort 

is needed. A modified version of this scheme is the "mid point Runge— Kutta" 

method[6’7]. in this, the first step is to apply half of the load increment and to 

evaluate new stiffnesses corresponding to the total stresses at this value. These 

stiffnesses are utilized to compute an approximation for the full load.

The increment method in its original and modified form do not take into account 

the force redistribution during the application of the incremental load (i.e no 

iteration process exists to restore equilibrium).

4.2.2 Iterative m ethod^  >H]

In this method, the full load is applied in one increment. The resulting internal 

stresses are evaluated at that load according to the given material law. This gives 

equivalent nodal forces which may not be equal to the external applied loads i.e
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equilibrium is not necessarily satisfied. The portion of the total loading which is not 

balanced is called "unbalanced nodal forces". These unbalanced forces are then used 

to compute an additional increment of the displacements, and hence new stresses, 

which give a new set of equivalent nodal forces. This process is repeated until

equilibrium is approximated to a certain degree of tolerance. At this stage the total 

displacement is taken as the sum of the accumulated displacements from each

iteration.

There are several variations of this basic process and a solution depends in many

ways on the method used for computation of the stiffness matrix [K ]  and the 

unbalanced nodal forces {Fu}.

(fi Computation of unbalanced nodal forces

In general, the linear constitutive law can be written in the form:

{ c r }  -  [D ] ({e> -  { to}) + {cro> (4 .6 )

where [D ]  is the rigidity matrix, and {cro} and { to }  are the initial stress and

strain vectors. Equation (4.6) is in essence a linear approximation of the nonlinear 

relation between stress and strain, i.e.

f(<7,e) - 0 (4 . 7 )

Adjustments to any of the quantities [ D  ], (o r ) ,  or { eo} in e q u a tio n  (4.6) c a n  be 

made to approximate equation (4.7). Adjustments to { t o }  a n d  {<jo} are c a lle d  th e  

"initial strain" method and "initial stress" method.

In this study an extension of the initial stress method w a s  u s e d , h e n c e  o n ly  th is  w ill  

be explained. Equation (4.6) will become:

{<r} -  [D ] ( e )  + {cro} ( 4 .8 )

Assuming {cro} =  0 initially, equation (4.8) is solved with an approximate [D  ] 

matrix and strain { c^} to obtain a certain level of stress {o A ll w*iere
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The s t r e s s  which s hould  have occurred  i s

(4 .9 )

{°A2> = [ D ]  1 O a ) (4 .10)

The d i f f e r e n c e  between the  s t r e s s e s

(4 .11)

can be introduced as an initial stress in equation (4.8). Thus equivalent unbalanced 

nodal forces (Fu) can be calculated from

which are then removed by applying them to the structure to obtain a correction to 

(5 ). This process is repeated until {0 0 } or (Fu) becomes negligible. The steps in 

the initial strain method are very similar.

fii) Method for computing s t i f f n e s J 6 > 7 > 9 , 1 0 , 1 1 ]

The stiffness can be either constant or variable throughout the solution. In the 

constant stiffness method, the linear stiffness as given in equation (4.8) is used at 

every stage in the analysis.

Although this method has an advantage of calculating the stiffness only once, it still 

requires a high number of iterations to achieve the desired accuracy, especially when 

nonlinearity occurs due to the cracking of concrete and yielding of steel. This is due 

to the sudden large changes that are caused in the stiffness. Accelerator processes 

could be employed but improvement cannot be guaranteed, and in general there has 

been a poor rate of success.

(Fu)  = -  [ B ] T{<ro}.dV
V

(4 .12)

In the variable stiffness method, a linear solution is performed but the material 

matrix [D ] is adjusted during each iteration. The adjustments can be done by using 

either a tangential or secant modulus approach.
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This method is a form of the well known "Newton-  Raphson" method and requires 

considerably less iterations than the constant stiffness method, although a full solution 

is much more expensive than a resolution with constant stiffness.

A cheaper version of the variable stiffness approach can be obtained by using the 

modified "Newton— Raphson" method, where the stiffnesses are updated only at

certain iterations. Figure (4.1a) shows the different methods used for the iteration 

procedure.

4.2.3 Incremental— iterative (Mixed method^! *3*5,6,11]

In this method a combination of incremental and iterative schemes are used. The 

load is applied in small increments and a solution at each increment is obtained 

iteratively until equilibrium is obtained to a certain degree of tolerance. This method

combines the advantages of both the incremental and iterative methods, hence it

tends to minimize the disadvantages of each, and so nowadays is used very widely. 

Figure (4.1b) shows the different methods of the mixed procedure.

4.3 Method used in this study

There have been significant improvements in nonlinear solution techniques in recent 

years leading to a wide choice of solution strategies, including modified 

Newton— Raphson techniques, quasi- Newton techniques, arc— length methods etc. 

These techniques can be applied in conjunction with line search algorithms, 

accelerators, self adaptive techniques which automatically adjust load steps and so on. 

To date, many of these techniques have been applied successfully to concrete

structures; however, the modified Newton-Raphson technique still seems to be the 

most popular.
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In this study basically the mixed method is used in conjunction with the modified 

Newton— Raphson" approach to evaluate the stiffness, using a tangential elasticity 

material property matrix. Four different algorithms were available for updating the

stiffness, which could be selected as options within the program!^], as follows:—

(a) KTO; the "initial stiffness" process

(b) KT1; where [K ] j  is recalculated at the start of each load increment only

(c) KT2; where [K}p is recalculated at the start of the first iteration only

(d) KTA; the general "variable stiffness" process.

In order to calculate the unbalanced nodal forces, a modification of the initial stress 

method is used. The basic aim is to check the applied loading system against the 

equivalent forces caused by the total stress level rather than calculating initial

stresses. The difference between these two will give a set of residuals which are a 

measure of any lack of equilibrium. The residuals are then applied to the structure 

to restore equilibrium. The process is repeated until the residuals are sufficiently 

small. Thus, for equilibrium, it is required that

{Fu}= [B ]T{cr}.dV - {R} = 0 (4 .13 )
■ V

where {cr} are the actual stresses depending on the constitutive law being used, {R}

lists all forces due to the external loads, initial stress etc, and {Fu} are the residual

forces which are a function of the displacements.

4.4 Convergence criterion

In order to identify the elimination of the "out of balance forces" and to terminate 

the iterative process, a reliable convergence criterion is required. The user specifies 

the accuracy by giving quantitative values known as convergence tolerances. The 

convergence tolerance must be realistic; if generally too loose, inaccuracy may result, 

if too tight, much expensive effort may be spent in obtaining needless accuracy.
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A convergence criterion can be based on checking the residual decay of every 

degree of freedom, but this process is expensive. Therefore an overall check based 

on some norm is preferable and in this study convergence was assumed when the 

relation

F ui* /R i*  < C (4 .14)

was satisfied, where Fui*= J  (Fu}i^{Fu}i is the norm of residuals, Ri*= y(R}i^{R}i 

is the norm of applied loads and C is the preselected convergence factor usually 

about 0 .0 1  to 0.05.

4.5. Brief review of reinforced concrete behaviour

4.5.1 Behaviour of concrete

A reliable prediction of the response of a reinforced concrete structure requires a 

knowledge of the behaviour of concrete in its elastic and nonlinear ranges under 

various combinations of stress. Despite widespread use of structural concrete over a 

considerable length of time, this knowledge is still incomplete. For instance, there is 

no universally accepted triaxial failure criterion under combinations of tensile and 

compressive stresses. Until recently most tests on biaxial and triaxial stress behaviour, 

have concentrated on strength characteristics rather than obtaining stress— strain 

relationships. However the availability of data regarding deformational characteristics 

for biaxial stress states is now beginning to improve whereas there has been a 

respectable body of experimental data pertaining to deformations for concrete under 

uniaxial conditions for a number of years.

In this section the work done on the stress- strain behaviour and strength of 

concrete under short term loading will be described for uniaxial and biaxial stress 

states. This will give sufficient background for the constitutive models for concrete 

which will be described in this chapter.
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4.5.1.1 Uniaxial stress behaviour

A typical stress strain curve of concrete subjected to a monotonically increasing 

uniaxial compressive state of stress, is given in Figure (4.2) and illustrates that:

(i) There is an almost linear relationship to about 30% of its ultimate load. 

Microcracks exist in the concrete at this stage, primarily due to stress and strain 

concentrations resulting from its heterogeneous nature, however, these cracks are

stable and have little tendency to propagate. Prior to loading, microcracks can exist 

at the aggregate paste interface, due to phenomena, such as settlement of fresh 

cement, hydration of cement paste, differential volume changes due to shrinkage or 

thermal movements.

(ii) Up to 30—50% of ultimate load, micro—cracks begin to propagate, but at a 

very slow rate. Bond cracks around the aggregate start to extend due to stress 

concentrations at crack tips. Mortar cracks remain negligible until a later stage. For 

this stress range, the available internal energy is approximately balanced by the 

required crack release energy. The stress— strain curve begins to show increasing

curvature.

(iii) At 50— 75% of ultimate load, some cracks near aggregate surfaces start to

bridge in the form of mortar cracks and a much more extensive and continuous 

crack system then propagates into the matrix. If the load is kept constant, the 

cracks continue to propagate with a decreasing rate to their final lengths.

(iv) For compressive stresses above 75%, the largest cracks reach their critical

lengths. The available internal energy is now larger than the required crack release 

energy and crack growth becomes unstable and the stress strain curve becomes 

increasingly nonlinear towards ultimate stress and will begin to strain softent^>4,12]

The uniaxial compressive strength of concrete is the most common measure for
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assessing the quality of concrete. It is suggested that the cylindrical compressive 

strength of concrete is more meaningful than cube strength, since the ratio of the 

height to width of a cylinder is higher than the height to width ratio of a

cubet1 >3 >5].

The uniaxial tensile stress— strain curve of concrete is much more linear than the 

uniaxial compressive stress— strain curve. Up to approximately 60% of the ultimate 

stress, the microcracks have negligible effect on the curve. This stress level 

corresponds to the limit of elasticity, above this level microcracks starts to grow. As 

the uniaxial tension stress tends to arrest the cracks much less frequently than the 

compressive stress, one can expect the interval of stable crack propagation to be

relatively short. A reasonable value for the onset of unstable crack propagation will 

therefore be about 75% of ft*!

4.5.1.2 Biaxial stress behaviour

A biaxial stress condition occurs when the principal stresses are acting in only two 

directions and the third principal stress is zero. Under different combinations of 

biaxial loading, concrete exhibits strength and stress— strain behaviour somewhat

different from that under uniaxial conditions.

Typical stress- strain curves for concrete under biaxial stress in compression-

compression, tension— compression and tension— tension states are shown in Figure 

(4.3) to (4.5). These curves were obtained from the classical experimental study by 

Kupfer et alt12]. The uniaxial compressive stress-strain curve is shown in these

figures for comparison.

The figures show that the curves are mostly linear up to about 40% of the ultimate

stress. There is also a small permanent deformation which might be due to



1 1 1

microcracking; this limit is called the "initial discontinuity point" or the "elastic 

limit". In two dimensional principal stress space this elastic limit is represented by 

envelope 1 in Figure (4.6). Beyond this stress state larger cracks form, internal 

disruption of the material takes place and substantial permanent deformations are 

produced. Figure (4.6) also illustrates the envelopes 2, 3,4 for other important points 

in the stress— strain relationship.

A detailed discussion of the experimental data given by Kupfer et al and that of 

other workers has been given by Phillips^], Chent2], and Hinton and Owent2]. for 

example, and only the main points relevant to this study are summarized here:—

(i) The behaviour can be broadly classified into two categories conveniently defined 

by its mode of failure, brittle or cleavage— type failures caused by biaxial tensile 

stresses, and "ductile" or shear— type failures under biaxial compressive stress.

(ii) The ultimate strength of concrete under biaxial compression is greater than that 

under uniaxial compression, mainly due to the confinement of the microcracks.

(iii) The ultimate strength increase in biaxial compression, fcb, is dependent on the 

ratio of principal stresses. The biaxial compressive strength, fcb, is 1.1 to 1.4 times 

the uniaxial compressive strength, fc'. The greatest increase in strength is given by a 

stress ratio &1/&2 of about 0.5; this diminishes somewhat as the ratio is increased to 

unity.

(iv) The variation in Poisson's ratio is small until the start of stable crack 

propagation at "critical load". The value of v typically varies between 0.18 for 

biaxial tension to 0 .2  for biaxial compression, this difference being negligible for 

practical purpose.

(v) In biaxial compression the volume decreases linearly up to 30-50%  of the 

ultimate load, after which the rate of reduction slowly increases. A point of 

inflection is reached at about the "critical load" level and a minimum value follows
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shortly afterwards close to the maximum load (at 95% according to Kupfer). The 

volume then expands very rapidly and often becomes greater than the original 

unloaded volume. The volumetric concrete strain corresponding to maximum stress 

varies from 0.0008 (uniaxial compressive stress) to 0.0025 (biaxial compressive stress) 

as shown in Figure (4 .7 ).

(vi) Biaxial and uniaxial tensile stress— strain curves are similar in shape.

(vii) The uniaxial tensile strength of concrete is slightly higher than the strength

under biaxial tension.

4.5.2 Behaviour of steel

Since steel reinforcement is predominantly uniaxial, it is generally not necessary to

introduce the complexities of multiaxial constitutive relationships. A typical uniaxial 

stress—strain diagram for steel is shown in Figure (4.8). It is clear that the 

relationship is linear and elastic until the "proportional limit" P is reached. For a

further small range of stress increase the strain is still elastic but no longer linear. 

The "yield point" Y is then reached and this marks the start of plastic deformation. 

The difference between P and Y is small for most steels and is usually neglected 

in practical applications. Beyond the yield point, plastic flow occurs with strain

increasing at a much greater rate.

Generally, stress must be increased to cause further deformation, a condition termed 

strain hardening. Finally, a maximum stress is reached at point V, after

which a descending tail occurs to fracture at P.

For some steels, the yield point is poorly defined so that it is arbitrarily taken to be 

at some fixed value of permanent strain, as 0 .0 0 1  or 0 .0 0 2 , where the corresponding 

stress is known as "proof strength". The value of strain at the yield point is usually 

of the order 0 .0 0 1 .
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Some steels, like mild steel, exhibit a small but sharp drop in load after the yield

point to a lower yield level. Strain then increases plastically at more or less constant 

load to about ten times the yield strain. At this point material begins to work 

harden. Clearly the lower yield point should be used for calculation purposes. It is 

noted that strains are now large at the ultimate strengths, but that the stress is 

usually referred to the ov^rvvt area. This point is well above any strain which can be 

developed in concrete structure, so we shall be concerned mainly with values at

yield.

Similar behaviour is generally assumed for both tension and compression. Figure

(4.9) shows four different finite element idealizations which are commonly used for 

reinforced steel behaviour. For each case it is necessary to define, experimentally, 

the value of the stresses and strains at the onset of yield, and the strain hardening

modulus after yield up to the ultimate tensile strength as well as the elastic modulus.

4.5.3 Cracking and post—cracking behaviour of reinforced concrete 

The tension failure of concrete is characterized by a gradual growth of cracks, which 

join together and eventually separate parts of the structure. It is a usual assumption 

that the forming of cracks is a brittle process.

Two main mechanisms develop after cracking through which shear is transferred 

across the cracked section. These are aggregate interlocking on the two adjacent 

surfaces of the crack and dowel action of any reinforcing bars crossing the cracks.

If the surface of the crack is rough, it is possible that the opposite faces of the 

crack will interlock when subjected to differential movement as shown in Figure

(4.10). This depends on the texture of the cracked surface as well as any
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restraining force that can keep the cracked surfaces from moving apart, allowing 

forces to transmit across the crack. The frictional resistance depends on the 

properties of aggregate and mortar, the condition of the crack surface, and the 

width of crack. If the cracked surface is smooth, frictional resistance would be small 

and if the crack width becomes large the surface would completely separate and 

interlocking would cease. The important effect of this phenomenon is that shear 

stress along the crack will not be zero.

This factor plays an important role in post— cracking behaviour of reinforced 

concrete. For example, in reinforced concrete beams after the initiation of inclined 

cracking, at least 40% to 60% of the shear force is carried by aggregate 

interlocking.

Reinforced bars also act as dowels as shown in Figure (4.11), where major shear
K

deformation has occured after the development of the tension cracking and the 

reinforced bar will also resist the concentrated shear force!2 *6 ]. There are various 

factors which effect the dowel action, such as the number of bars crossing the 

cracked concrete zone, diameters of the bars, the orientation of bars with respect to 

crack direction, specimen geometry, length of the reinforcement bars and its 

arrangements, and concrete cover to the bars.

Although a considerable amount of experimental research has been carried out to 

quantify the dowel action contribution to shear transfer, it is still very difficult to 

take into account dowel effect precisely for a particular problem. Much still remains 

to be done before any definitive formulae can be used in finite element analysis. In 

order to take into account shear transfer across cracks in the finite element analysis 

due to aggregate interlocking and dowel action of reinforcing bars, in this study a 

parameter known as shear retention factor to take equivalent shear stiffness and
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strength of cracked concrete is used, and will be discussed in section 4 .7 .

In practice, the material between discrete cracks can exhibits a state of strain which

sometimes causes the crack to close. The movement required to close the crack

would be less than that needed for initial crack formation and it is also possible that 

the crack may not be able to close perfectly. In order to take account of crack

closing, a formulation is incorporated in the finite element model, assuming as crack 

has closed perfectly and the shear is considered as like a uncraked concrete, 

although the plane would be weaker in reality, this will be discussed in this chapter 

later.

In plane stress situation, once a primary crack has occured, on the further loading a 

secondary crack could develop in the non— orthogonal direction to the first crack. 

This plays an impotant role in the nonlinear finite element analysis and have been

taken into account in this study and will be discussed later in this chapter.

4.5.4 Bond—slip phenomenon between steel and concrete

Bonding between concrete and steel is created by chemical adhesion, friction and

mechanical interlock between these two materials. Loads are very rarely applied 

directly to the reinforcement, steel receiving its share of the load from the

surrounding concrete. Bond stress is a name given to shear stress at the 

steel— concrete interface, which, by transferring load between the bar and the 

surrounding concrete, modifies the steel stresses. It can be measured by the rate of 

change of force or stress in the reinforcing barst2^].

In simplified analysis of reinforced concrete structures, it is assumed that a perfect 

bond exists between the concrete and steel. But this assumption is not valid in those 

regions of the structure where considerable stresses are transferred between the
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concrete and steel. Slip between concrete and steel occurs when cracks appear along 

the concrete— steel interface.

In finite element analysis, the bond— slip phenomenon can be accounted for by using 

linkage elements, or interface elements connecting the nodes of steel and concrete 

finite elements. The linkage element is composed of two orthogonal springs which 

connect and transmit shear and normal forces between separate nodes. Each spring 

must be given a certain value of interface shear stiffness obtained from experimental 

pull out tests. A very high stiffness is given to the spring, perpendicular to the bar, 

to prevent any separation between the bar and concrete. It is difficult to give 

realistic values for the stiffness of springs perpendicular to the bar. Details of this 

method are presented elsewhere! 1 >21  >22,23]

The advantage of using linkage elements is that there are no physical dimensions, i.e 

two different deformations are allowed to occur at a common node. But it has the 

disadvantage of being an expensive process, especially when there are a high number 

of bars used at different layers.

An alternative method of taking into account the concrete— steel bond in the finite 

element analysis is to use a "tension stiffening" approach in which a gradual 

softening curve for concrete after cracking is defined. This approach is based on the 

fact that, as a crack occurs, the bond fails, causing some movement between the bar 

and concrete. This will then cause the shear force at the contact surface between 

the cracks to feed tension stresses into the concrete. The concrete attached to the 

bar will contribute to the overall stiffness of the system, and this is accounted for 

by the gradual stiffening curve.

The bond-slip phenomenon can only be modelled through linkage elements when



1 1 7

the reinforcement is represented by discrete elements. In this study embedded 

reinforcement representation is used, and as a result the use of linkage elements is 

not possible. Nevertheless, with embedded bar representation, the tension stiffening 

method has proved helpful in accounting for the bond— slip activity.

4.6 Development of material modelling

4.6.1 Cracking of concrete

Two fracture criterion are most commonly used: the maximum principal stress

criterion and the maximum principal strain criterion. These state that when a 

principal stress or strain exceeds its limiting value a crack occurs in a plane normal

to the crack direction of the offending principal stress or strain and the crack

direction is fixed for all subsequent loading. The maximum stress criterion is more 

commonly used than the maximum strain criterion, although it has been reported 

that the maximum strain criterion can predict stiffer behaviour than the maximum 

stress criterion!^].

In finite element analysis three different approaches have been most commonly used 

for representation of the cracks. These are classified as follows:

(i) Smeared— cracking Model

The cracked concrete is assumed to remain a continuum i.e the cracks are smeared 

out in a continuous fashion. A crack is not discrete but is represented by an infinite 

number of parallel fissures across the applicable part of the element, as shown in 

Figure (4.12). Once concrete is cracked, the material is assumed to change from

isotropic to an orthotropic with one of the material axes being oriented along the 

direction of the crack. The element stiffness matrix will be modified. Thus, the 

stiffness across the crack will not reduce to zero and cracked concrete will continue 

to carry tensile stresses. The stiffness and stresses will depend on many factors such
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as the amount of reinforcement crossing a crack, local bond characteristics and the 

strain softening behaviour of concrete after fracture. Such a formulation easily allows 

a gradual drop of strength in direction perpendicular to the crack and any reserve 

shear strength due to aggregate interlocking can be taken into account by retaining a 

positive shear modulus.

The smeared— cracking model was used in this study, since it is capable of 

predicting load deflection behaviour and general stress— strain distribution. In addition 

the problem of continuously altering the topology of the structure as cracking 

progresses was avoided. Moreover the initiation, orientation and propagation of cracks 

at sampling points are automatically generated resulting in a general solution.

(ii) Discrete— cracking Model

In discrete— cracking models, the nodes of the adjacent elements are assumed to be 

separated when a crack occurs, as shown in Figure (4.13). The most obvious 

difficulty in this approach is that knowledge of the location and orientation of cracks 

are not known in advance. Thus, geometrical restrictions imposed by the preselected 

finite element mesh can hardly be avoided. The model also requires, the ability to 

redefine the element nodes, making this technique extremely complex and time 

consuming.

(iii) Fracture mechnaics Model

The success of fracture mechanics theory in solving various types of cracking 

problems in metals, ceramics, and rocks has lead to its use in finite element analysis 

of reinforced concrete structures. By assuming concrete is a notch— sensitive material, 

a cracking criterion based on tensile strength may be dangerously unconservative, and 

the use of this method will provide a more rational approach to concrete 

cracking!2]. However, in its current state of development, the use of this model in
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reinforced concrete is still questionable and much remains to be done.

4.6.2 Crack simulation by fixed crack model 

4.6 .2.1 Opening of cracks

As mentioned earlier the cracking of concrete is generally modelled by linear 

elastic—fracture relationships as shown in Figure (4.14). The comparison of the most 

commonly used maximum principal stress and strain in the biaxial state of stress is 

shown in Figure (4.15). It is clear that both these theories are similar, in particular 

when v=0, they became identical. According to the basic hypothesis of the fracture 

model, when a principal stress or strain exceeds its limiting value, a crack is 

assumed to occur perpendicular to the stress or strain and the crack direction, oc, is 

fixed for all subsequent loading! 1 >2 > 4 , 5 ]  j s  known as a "fixed crack model".

Thus for cracking:— 

cri > f t '
o r ei > ecr i = l ,2 , (4 .1 5 )

T
where oi is the pricipal stress in both directions, ft is tensile strength of concrete, 

ei is the principal strains in both directions, and ecr is the cracking strain of 

concrete.

It is assumed that material parallel to the crack is capable of carrying stresses 

according to the uniaxial condition prevailing parallel to the crack. On further 

increase in loading, cracks may occur at some angle to the first crack. For 

simplicity, it is commonly assumed that the second crack will be orthogonal to the 

first crack and is also predicted by tensile stress or strain parallel to the plane of 

the initial crack. This is known as the fixed, orthotropic smeared crack model.

Thus for a second crack:—

<rt* > f t '

o r  e t 1 > ecr  ( 4 . 1 6 )
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4.6.2.2 Closing of cracks

A crack is assumed to close perfectly if the normal strain across the crack is 

compressive, and then the full compressive stress can again be transmitted across the 

crack.

i . e (nr* < 0  (4 .17 )

The initial modulus of elasticity is then assumed and stress is calculated accordingly. 

The shear resistance on this closed, weakened plane will now depend on a number 

of factors similar to shear transfer on an open crack e.g normal compressive stress 

and interface characteristics. The shear stress can be calculated as:

r*  = j3'G 7 * (4 .18 )

where (S’ is a preselected constant or given by another function such that 0</3'<l. In 

this study /E3* was assumed equal to 1, implying a perfect "healing" of the crack.

The procedure for the reopening a crack is similar to the initial formation, except 

that instead of a limiting tensile stress or strain, any tensile strain will cause 

reopening.

i . e  en* ^ 0 (4 .19 )

where en* is the stress perpendicular to the crack.

4.7 Modelling of post— cracking behaviour using quasi— material parameters 

There are various numerical parameters involved in nonlinear finite element analysis. 

Two important parameters used frequently nowaday are the shear retention and 

tension stiffening factors. These parameters can be considered as material properties, 

since they try to represent actual physical phenomena but, in fact they tend to be 

used more as numerical parameters which are adjusted in sensitivity studies prior to 

a final solution. Therefore, they are not material parameters in the actual sense and 

hence, we call them quasi— material parameters here.
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4.7.1 Shear retention

A considerable amount of work has been carried out on this activity experimentally, 

and various analytical expressions have been suggested. However, these equations 

cannot be used directly in finite element methods which use smeared crack models

because of crack width measurements etc. To account for shear transfer across the 

cracks in finite element analysis, the shear retention factor, (3, was introduced by

Phillips! 4] and Schnobrich!2^]. This parameter can be defined as an assumed

numerical factor (0 .0 —1 .0 ), which is used in the theoretical cracking model to take 

into account the reduction in the shear modulus after the development of a crack. 

In the smeared—cracking model, shear transfer is modelled as:—

(3 = G'/G (4.20)

where G ' is the reduced shear modulus for cracked concrete and G is the shear 

modulus of concrete.

There are two main methods using the shear retention factor, these are the

constant shear retention factor method, where (3 is chosen rather arbitrarily and kept 

constant!^^3], and the variable shear retention factor method, where (3 is assumed 

to vary as a function of the strain normal to the crack!^»14] Recent studies carried 

out by Al—Manaseer and P hillips!15] and Phillips and M o h a m ed !1^] have shown that 

the variable shear retention factor method predicts the behaviour in deep beams 

more accurately than the constant shear retention factor method.

The use of |3 has provided satisfactory results in most cases and values greater than 

0 were found necessary in order to prevent numerical difficulties. Unfortunately the 

shear retention factor would appear to be dependent on the type of structure being 

studied and its failure m echanism  This is reflected in the different recommended 

values resulting from other research carried out on post— cracking behaviour activity.



Nevertheless, in this study, three different shear retention factor models have been 

incorporated into the program. These shear retention models are presented in Figure 

(4.15). and are given by:

(3 = C' /C (4.21)

(3 = 0 . 4 . G/( e / e t ' ) (4.22)

For e < e t ' < l  (3=1.0

For l<e<et '<(33 (3=(31-(34[ (1-2(33)+2(33 ( e / e t ' ) - (  e / e t  • ) 2  ]

where

(34 = ((31-(32)/(l-(33)2 and d(3/de = 0 a t  e / e t '  = (33 

For e > e t’>(336^ 0=|32 (4.23)

where et'= ft/Ec, ft is the uniaxial tensile strength of concrete and Ec is Young's 

modulus of concrete and e is the current strain at a particular load level normal to 

the crack.

The (31, (32, and (33 are the shear retention factor parameters defining the shape of 

the law!11!. (31 represents the sudden loss of stiffness at the crack formation; (32 

represents a reserve of shear stiffness due to dowel action of any steel, (33 

represents the rate of decay of stiffness as the crack widens and the crack surface 

deteriorates. It is difficult, experimentally, to obtain values for (31, (32 and (33, 

however, the values suggested by Mohamed!^] have been used in the program. From 

a study on deep beams, it was concluded that the value of (31 could range from 0.4 

to 0.5, the value of (32 a could be 0.2 and for et.(33 a value of 0.003 to 0.0035.

4.7.2 Tension stiffening

Tension stiffening is a method of retaining some stress when a crack occurs. This 

phenomenon was first introduced into finite element analysis by Scanlon and 

Murray!12] who assumed that when concrete reaches its ultimate strength in tension, 

a primary crack will form, but that the cracked concrete will carry some tensile
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stresses perpendicular to the crack direction. Since then, this method has been used 

by many researchers, who have shown that it can have a significant effect on load 

deflection behaviour of a structure.

Many approaches have been tried by many researchers for approximating tension 

stiffening, e.g a descending branch beyond the cracking point and the use of coarse 

tolerances!^] etc. Currently, the descending branch approach is most commonly used 

and that of Al—Manaseer and Phillips!1 ̂ ] was used in this study. The model is 

shown in Figure (4.17) and assumes that:

For e / e t '<1 ET = E (4.24)

For e / e t ' > l <a 2  0 7  = [ a l . f t  ( a2- (  e / e t 1)) ] / ( a 2 - l )

Et  = (Tj/e (4.25)

For e/et>a2 a = 0

ET = 0 (4.26)

The value of E j  is evaluated from the above equation (4.25) at any iteration during 

the loading process and is used in the material property matrix [ D ]* depending on 

whether the crack is caused by principal stress <jl or o2 .

a l and o2  are difficult to select in practice because of the lack of experimental

data. An increasingly accepted trend is that they should be related to fracture energy

of the concrete, Gp, which is associated with strain softening behaviour of cracking 

concrete. This is also reduces the dependency of the model on element size. It can 

be done by relating fracture energy of an opening crack to a characteristic length lc

of the crack which is in turn related to the volume represented by sampling

point!1 5]. Thus, the relationship given by equation (4.25) can be presented in 

fracture energy form as:

Gp = 0 . 5 a l a 2 f t e t  ( 4 . 2 7 )
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from which al and a2 can be evaluated. Al—Manaseer and P h il l ip s !^ ]  suggested a 

first approximation for lc as where V is the volume of concrete represented by

the sampling point. For a normal concrete Gp varies from 50 to 200N/m. However, 

the concept of fracture energy is only applicable to a single crack in plain concrete 

and therefore it does not account for tension stiffening effects between cracks, nor 

the presence of reinforcement, nor the fact that a sampling point represents the 

overall effect of a number of cracks.

Indeed it is difficult in practice to select appropriate values of al and o2, because 

there are no specifically accepted values for al and a2 ; studies, completed by 

various researchers, have shown that the values depend on the type of structure and 

the type of failure experienced, for example in flexural failure these factors have a 

greater influence. However, the use of tension stiffening appear to offer a reduction 

in computational effort and stabilizes the solution.

4.8 Constitutive relations

The material property matrix for uncracked isotropic concrete in the plane stress 

situation was given in the previous chapter. The incremental form in global 

directions is given by the relationship, for plane stress

^crx 1 p 0 ^  ex

E*cry ( 1 - 2 * 0
v 1  0 *ey

atx y 0 0 G/ E( l -  v2) *7xy

and ^<rz = -j'/E(^<7x+<£><jy)

(4.28)

(4.29)

where E, v and G may be tangential values according to the compressive 

constitutive relationships.

Thus = [ Dj ]  (4.30)

where [ Dj ] is  the  t a n g e n t i a l  e l a s t i c i t y  ma t r ix .



1 2 5

Once the crack has occurred, the form of the elasticity matrix is modified according 

to the given tension stiffening law and preserved. The shear term is retained to take 

account of shear transfer. The constitutive relationship in crack directions are then 

given by

fo r  p lane s t r e s s

■̂ Gm* ET1 0 0

' = 0 ET2 0 (4.31)

0 0 0 G

and =- v/E (^ a t* )

Thus ^{cr}* = [Dj ]*  ^{e}*

where [D t  ]* is the tangent elasticity matrix in 

reduced modulus of elasticity due to the crack and 

detail is discussed in section 4.7.

In plane stress, the values of the normal strain ez* are affected when a crack

occurs, therefore, after crack formation the normal strains are adjusted to.

ez* = ez + v /E.an  (4.34)

where an is  th e  s t r e s s  across  the c rack  p r i o r  to  format ion

When using [Dt ]* f°r new stiffness calculations, it is essential, for numerical

reasons, to avoid zero values on the diagonal terms, and so these are set to 

comparatively small positive values if no tension stiffening is in use, causing the

stiffness normal to the cracked plane to effectively vanish. The value of the diagonal 

terms will be determined from the descending branch of the uniaxial stress— strain

curve if tension stiffening is used.

As [ D j  ]* is constructed in a local co— ordinate system coinciding with the angle of

crack, it is necessary to transform it back into the global co— ordinate system for

(4.32)

(4.33)

the crack direction, E-ris the 

0  is the shear retention factor,
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stiffness calculations.

The constitutive law in the global co-ordinate system is given by equation 4.30.

- M  -  [&r]  * { «> ( 4 . 3 5 )

and in  l o c a l  c r a ck  d i r e c t i o n s  by e q u a t i o n

(4 .36 )

The two sets of strains are related by transformation rules as follows (where ac is 

defined in Figure (4.18)).

k^ e x

k*ey

*yxy*

cos^ ac

. osin^-ac

s in^ac

c o s t a e

s i n a c . co s a c

- s i n a c . c o s a c  

- 2 s i n a c . c o s a c  2 s i n a c . c o a c  ( c o s ^ a c - s i n ^ a c )

AfX

^ey

^7xy 
(4 .37 )

where ^7 xy , ^ y x y  are  e n g i n e e r i n g  shear s t r a i n s

i . e  = [T ] ^{e} (4 .38 )

Assuming that work done must be independent of the co - ordinate system, then 

e}*T̂ {cr}* = ^{e}T (4 .39 )

Substituting equation (4.35), (4.36) and (4.38) into (4.39) 

it follows tha*n

[D r] -  [T ]T [Dt ]*[T} (4 .40 )

Calculation of angle of crack

The method of solution adapted in this model allows more that one crack to occur 

during the same increment. Also the calculated stress which is used to check against 

the tensile strength criteria could be well in excess of the tensile strength itself. 

Thus, the resulting angle of crack could be significantly different from that if the 

sufficient incremental quantities had been added, a discrepancy which might increase 

for larger increments. In order to minimise the effect of increment size, a more 

correct angle is calculated!^].



For maximum stress criterion, the calculation of the angle of crack is given by

are the proportion of incremental stresses sufficient to cause cracking, {o'} are the 

previous total stresses, and

compression model is used which is based on deviatoric and hydrostatic components

relationship exists between hydrostatic stress am and volumetric eo strain, and

between deviatoric stress and strain until close to ultimate conditions. Thus the

deformational response can be simulated incrementally by assuming the tangent bulk

modulus, K j, and tangent shear modulus, G-p, to be functions of first and second

stress invariants Ij and J 2  respectively.

This implies that concrete remains isotropic under multiaxial compressive stress.

(crx+^ax1 1) -  (cry+^ay ' 1)
( 4 . 4 1 )

where

*{&}'  ' = F. ^{o-} ( 4 . 4 2 )

F = -(3 + /  @2 -  4 a c . X ( 4 . 4 3 )2ac

a = (^ x y ^  -  4 .^ 0‘x.^a'y)

( 3 = 2  {7xy^xy+2(ft-o'y)<=>o’x + 2 ( f t - o ' x )^ o y }  

x = {Yxy 2 -  4 ( f t -o -x )  ( f t - o - y ) }

( 4 . 4 4 )

( 4 . 4 5 )

( 4 . 4 6 )

4.9 Concrete constitutive laws in compression zone

There have been various proposed concrete constitutive models^ >2»4]. in this study a

of stress and strain. The examination of the work done by Kupfer et alH^] and 

Weigler and Beckert^] and Richart et a ll^ l showed that an approximately unique

Kt = fl(Ii) 

CT = f2(J2) ( 4 . 4 7 )

Plotting Kt , against, I1} and, GT, against, J 21/2, demonstrated that the curves were
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clustered fairly close together. Finally, a particular relationship was obtained between 

the ratio of to fc', and the ratio of Gp to Go for the case where Ko was

constant which was satisfactory except for the weakest mix. This relationship is 

shown in Figure (4.19).

In order to obtain the distortional relationships, a uniaxial stress— strain curve was 

used and K was kept constant

r oot  = J2/3  a l \

7 oct  = 72/3 ( 3 el -  <rl/3K) (4 .48 )

This procedure was assumed to give sufficient approximation for many practical 

purposes.

In the implementation of the law it is required that at the beginning of a load 

increment, values of Kp and Gp are evaluated from a knowledge of Ij and 

Values of Ep and pp are then obtained by using the following expressions 

Ep = ( 9Kp. Gp)/ ( 3Kp+Gp)

pp = ( 3Kp-2Gp)/( 6Kp+2Gp) ( 4 .4 9 )

from which the  curren t  t a n g e n t i a l  e l a s t i c i t y  m a tr ix  [Dp] i s  e v a l u a t e d .  

The estimation of incremental stress will be found by

*  {* }  =  {d >T *  ( e> <4 - 5 ° )

Therefore, the total stress will be calculated by adding the incremental stress to the

previous level of stress.

{a } = {<7)0 + ^  {cr} (4 .51 )

This procedure alone will lead to divergence of the calculated stresses and strains

from specified law and a corrective procedure is necessary. Using the updated values

of {cr}, temporary values of Gp and Kp are evaluated. Final values of G p and Kp

are then calculated using the weighted mean of the original values and the newly

calculated ones, i.e
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Gj-ei — Gj+ c 1 (Go -  Gp) 

= Kj + c '  (Ko -  Kp) ( 4 . 5 2 )

where Ko, Go are the initial values at the start of the increments, Kj and Gj are 

the intermediate values and Gj+ \ and Kj+ 1  are the final values. <=» {cr} is 

recalculated by means of G j  and Kj+ 1 , from which new values of total stress 

can be obtained. A value of c '=0.6 has proved satisfactory.

4.10 Compressive failure theories

There have been a number of compressive failure theories proposed and used by 

various investigators over recent years. It appears that all theories deviate from each 

other and there is not one single failure theory which seems applicable to all cases. 

In the last decade, however, a great deal has been learned, and studies have been 

made towards developing a consistent failure theory for concretely »3]

In this study the octahedral shearing stress theory was used. Studies carried out by 

Phillips!4] showed that satisfactory agreement could be obtained between experimental 

and theoretical results, for practical applications, where compressive failure did not 

significantly control the response of the structure.

The Octahedral shear stress theory is based on the assumption that octahedral 

shearing stress is a function of the octahedral normal stress!1 >2>4] at failure, i.e

and satisfactory fits have been obtained by assuming a linear relationship. Assuming 

the law to be applicable only in pure compressive zones, then the linear form of 

equation (4.53) is written as

The values of n and c can be obtained from plots of roct against croct, available 

from test data. Alternatively, n and c can be obtained by substituting known

r o c t )  f (croct) (4 .53 )

r o c t +  n<roct+ c ) 0,  (ToctC-fc ' /S (4 .54 )
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compressive strength data in equation (4.53). From Figure (4.20), for uniaxial

compressive tests.

a l  = 0-2 = 0 , o-3 = - f c \  f c 1 >0 ( 4 . 5 5 )

f o r  b i a x i a l  co m press ive  t e s t s

o"l = 0 , o"2 = o"3 = -mfc'  , m>0 ( 4 . 5 6 )

which g i v e

r o c t +  J2 (m -l )o "oc t / (2 m - l)  -72 . m. f c / ( 2 m - l )  ) ) 0 ,  o - o c t < - f c ' / 3  ( 4 . 5 7 )

In principal stress space this equation represents a circular cone with axis 

o"l= 0"2= cr3 and truncated at the plane crl+ <r2*+- 0-3= — fc' as shown in Figure (4.21).

The cone intersects the biaxial plane to give an ellipse, which passes through the 

uniaxial and equal biaxial compressive strength points, as shown in Figure (4.22). It 

is seen that the ellipse is a reasonable fit to the actual failure envelope.

The major objections to the use of this theory are that it does not take into

account large changes in the third principal stress, which can have a significant

influence on the mode of failure, and that the relationships are different for biaxial

stress states and triaxial compression stress states. However, this theory is based on 

the concept of a type of shear being exceeded, and can be thought of as a natural 

extension of Mohr's theory[l ,2,4]. However it gives a better biaxial approximation.

In addition, the octahedral quantities are related to the stress invariants, and thus 

the criterion is a particular case of the general invariant law

f ( I i . I 2 - I 3 ) > 0 ( 4 ‘58)

4.11 Steel—reinforcement constitutive laws

The steel behaviour is modelled by a uniaxial, bilinear stress— strain curve with strain 

hardening effects and elastic unloading and reloading as shown in Figure (4.23).

Thus,

(i) Elastic-perfect plastic behaviour is given by the hardening angle Ew= 0

(ii) When the magnitude of stress in the steel is less than the yield stress, the stress
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is given by:

f s =  E s . e i ( 4 . 5 9 )

(iii) When the steel stress reachs the yield, stress is given by.

fs=  fy  + (E w /E s(fs ' - f y ) ) (4 .60 )

where Es is Young's modulus of steel, Ew is the Work hardening angle of steel, fy

is the yield stress of steel, fs' is the stress value if no yielding is assumed fy, and

fs is the uniaxial stress of steel at strain es

(iv) For stiffness calculations, Es is used when steel has not yielded or is unloading

or by Ew if the steel is on the failure surface.
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Figure (4.1) Basic procedure for nonlinear solution.
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Figure (4.23) Mathematical uniaxial stress— strain curve for steel.
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CHAPTER FIVE

DIRECT DESIGN METHODOLOGY FOR A CONTINUUM STRUCTURE

5.1 Introduction

In the United Kingdom, the design of reinforced concrete is largely based on the 

British Standards and BS Codes of Practice. Three basic methods are at present 

permitted, namely limit— state analysis, the load— factor method and elastic theory.

Both the elastic theory and the load—factor method are permitted by CP 1 1 1 ;  all

design to BSCP 8110t^] is undertaken on the basis of limit—state principles. All

three methods employ certain basic common assumptions, e.g. that the distribution of 

strain across a normal beam section is linear and the strength of concrete in tension 

is neglected. Apart from assumptions of this nature, the methods differ traditionally 

from each other.

In order to choose a suitable design method for reinforced concrete structures, the 

following points must be considered:—

(a) The designed structure or part of it should not become unfit for the use for 

which it was designed during its intended life span. This is defined when it reaches 

a limit state beyond which it ceases to satisfy the function and conditions for its 

existence. Consequently, the structure should be designed to safely resist all loads 

likely to occur during construction and use, limit deformations and also have 

adequate durability.

(b) The designed structure must perform adequately all the intended functions in 

serviceability (i.e under normal working conditions).

(c) The designed structure should possess an appropriate factor of safety against

collapse.

(d) The design procedure should be capable of handling any geometry and boundary 

conditions of the structure without any difficulty.

This chapter describes the proposed direct design methods for the ultimate limit state 

design of deep beams in general, and for two span continuous transfer girders in 

particular, using either orthogonal or skew reinforcement.
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5.2 Limit state design

The current recommendations in British Practice for reinforced concrete are based on 

limit state design and are given in British Code of Practice BSCP 81 lo t2]. There are 

various limit states, but the two basic categories are summarized as follows:—

(a) Ultimate limit state : This state is primarly associated with the maximum load 

carrying capacity of the structure. Collapse of a structure, as a whole or as a part, 

may arise from the rupture of one or more critical sections, from buckling due to 

elastic or plastic instability (including the effects of sway), or from the loss of static 

equilibrium (e.g due to the transformation into a mechanism or due to loss of 

stability by overall tilting)[3»4],

(b) Serviceability limit state: This limit state requires that the structure should not 

suffer from excessive deflections, cracking or vibration under service loads.

The usual practice in the design of reinforced concrete structure is to design a 

structure for the ultimate limit state and check for the serviceability limit state.

5.3 Application of limit state design

During the last two decades, studies of plasticity in reinforced concrete have grown 

extensively. Limit analysis has been used to predict both upper and lower bound 

capacities of slabs, panels, beams etc under bending, shear, torsion and combined 

a c t i o n s ^  .6,7,8] These techniques are based on the theorems of plasticity which 

demand that at collapse two of three conditions, i.e the equilibrium conditions, the 

yield criterion or the mechanism condition must be satisfied. Also it is required that 

the material should possess sufficient ductility so that areas which yield before 

collapse can deform plastically without loss of strength until ultimate conditions are 

reached. However, reinforced concrete structures generally exhibit limited plastic 

behaviour. Consequently, there is always a danger of unloading taking place in some 

parts of the structure whilst others are undergoing plastic deformation. One way of
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overcoming this is to reduce ductility demands and to ensure a minimum 

redistribution of stress such that most of the critical sections of the structure yield 

simultaneously.

In the lower bound methods for reinforced concrete, the applied stresses are less, or 

equal to, the combined internal resistance offered by the concrete and steel. In 

upper bound systems, sufficient hinges or yield zones are formed in the structure 

which transform it into a mechanism. Upper bound methods are unsafe for design if 

the wrong mechanism is assumed, but are generally best suited for analysing an 

existing design. On the other hand, lower bound methods are safe and more suitable 

for design, but may be uneconomical.

5.4 Proposed direct design method

Recent computer developments have diverted the attention from design of reinforced 

concrete structures using conventional design methods in conjunction with code 

prescribed rules to more highly sophisticated computer aided design (CAD) 

procedures, using advanced analytical techniques such as the finite element method in 

conjunction with interactive graphic facilities. These developments have emphasized a 

need for the design procedures to be well supported by experimental verification 

both at service and ultimate behaviour. Equal emphasis is also required on 

automating the design procedures, so that a structure can be designed and redesigned 

with minimum intervention by the designer, its details automatically produced in a 

final drawing form.

Direct design is one of the more natural design— oriented procedures for the design 

of reinforcement because of the way it combines analysis and design into a single 

continuous operation. It uses a lower bound limit state approach in which a stress 

field in equilibrium with the ultimate load is used in conjunction with an appropriate

yield criterion. The resultant design equations are based on the minimization of steel

and provides reinforcement which theoretically satisfies equilibrium and yield at each 

point and causes simultaneous yielding throughout the structure at ultimate load.
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Thus, this technique satisfies theoretically all four basic conditions of the theory of 

plasticity, since equilibrium, yield criterion, mechanism and ductility.

5.4.1 Equilibrium criterion

In classical approaches, the distribution of forces in reinforced concrete structures are 

found by elastic theory and the internal stresses are predicted by elastic theory until 

cracks are formed. This technique uses elastic stress field, obtained from a 

linear— elastic finite element analysis. In fact, any other stress field in equilibrium

with the applied loads could be used. However, if the stress field departs 

significantly from linear— elastic stress field, then it is possible that the behaviour of 

the structure may not be satisfactory at working loads.

The elastic stress field for a structure is conveniently obtained by a linear— elastic

finite element analysis of the unreinforced concrete structure, using the uncracked 

elastic material properties of concrete. The basic principals of finite element analysis 

and its modelling is presented in Chapter Three. This, incidentically, satisfies not 

only equilibrium but also compatability conditions.

5.4.2 Yield criterion

In reinforced concrete the resistance provided by concrete and steel at each point

must be equal to, or greater than, the applied stresses. For reinforced concrete

continuous structures, the resistance can vary quite widely by using different 

reinforcement arrangements. In the direct design technique, the combined resistance

of steel and concrete at each point is matched as closely and as practically as

possible with the applied stresses. Thus, for a particular ultimate load, the theoretical 

objective is for all parts of the structure to yield simultaneously. This will be

discussed in detail in section (5.5).

5.4.3 Mechanism

The resistance offered by concrete and steel to take applied stresses at ultimate loads 

can be obtained by satisfying the conditions of equilibrium and yield. At the ultimate



1 5  1
stage, with minimum possible redistribution all the sections will yield simultaneously, 

thus, converting structure into a mechnasim.

5.4.4 Ductility

In classical plasticity theory, it is assumed that the material possesses unlimited 

ductility. This means that the early yielded regions in the structure will continue to 

deform plastically without any reduction in their strength.

For reinforced concrete this assumption must be treated with caution, since concrete 

is not a perfectly plastic material. However, this requirement can be sidestepped if 

the difference between the load at first yielding and the ultimate load is as small as 

possible, so that the regions which yield early can deform at constant stress before 

strain softening behaviour of the concrete has the opportunity to develop. If the 

ideal situation of simultaneous yielding occurs at all points, then this requirement is 

automatically satisfied. In practice, it is impossible to achieve this ideal situation, 

since there are constraints on bar sizes, bar spacing and steel provided for 

non— structural reasons etc. Nevertheless this departure from the requirement of 

simultaneous yielding is unlikely to be excessive and therefore the load range 

between first yielding and the final collapse should be sufficient to avoid violating 

the ductility requirements.

Although it seems to be a bit paradoxical in first instance, that elastic stress field 

should be used for ultimate limit state, but it is not expected that at ultimate load, 

the stress should necessarily be similar to the elastic stress. However, the strength 

determined by yield criterion and equilibrium at each point is tailored to elastic 

stress at that point, then minimum redistribution of stress takes place allowing ideally 

simultaneous yielding at all the points of the structure. In addition to that, since 

there is minimum redistribution of the stresses, therefore a further consequence of 

simultaneous yielding is that excessive deformation and cracking are unlikely at 

working loads, especially when taken in conjunction with the fact that the initial 

stress field is linear-elastic. So although the method gives no information about
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behaviour at serviceability loads, there is an intrinsic safeguard against undesirable

serviceability behaviour.

5.5 Direct design procedure equations

A number of design procedures have been developed for determining optimum

arrangements of reinforcement in a concrete structure subjected to certain loading 

types[H 15] Thg criterion for in—plane actions using known orthogonal

isotropic or orthotropic reinforcement which can carry tension and is placed 

symmeterically with respect to the middle surface was originally presented by

NielsenfH >12] j^e assumed that the provision of concrete of sufficient strength can 

preclude the use of compression reinforcement if both in— plane forces are 

compression. Later, S u b e d it^ ]  presented a graphical approach to design compression 

reinforcement when the compression forces in the structure are greater than the 

allowable compressive strength of concrete. Also M o r l e y [ 1 4 , 1 5 ]  presented design 

equations for skew reinforcement and highlighted its suitability on economical

grounds. It was Clark[16] who finally extended the idea of Nielsen, Subedi and 

Morley by using Nielsen's yield criterion. He presented nine different cases for 

orthogonal and skew reinforcement. The designed reinforcement can be either tension

or compression reinforcement for a given in— plane forces triad.

In order to establish the design equations, the following assumptions are adopted:

(i) A typical element cut from a deep beam shows the sign convention for in -  plane

direct and shear forces per unit length as shown in Figure (5.1). All the tensile 

forces are taken to be positive and compressive forces are considered negative.

(ii) The reinforcement is placed symmetrically about the middle surface of the 

section, as shown in Figure (5.2), and is in two non orthogonal directions, as shown 

in Figure (5.3). It only carries uniaxial stress in the original bar directions so 

kinking and dowel actions are neglected.

(iii) The reinforcement exhibits perfect elastic— plastic behaviour with a yield stress 

of fs in tension and fs' in compression as shown in Figure (5.4). The bar spacing is



small in comparison to the overall structure dimensions so that reinforcement can be 

considered in terms of area per unit length rather than individual bars.

(iv) Concrete has zero tensile strength, exhibits the square yield criterion shown in 

Figure (5.5), and is perfectly plastic.

(v) Instability failure and bond failure are assumed to be prevented by proper

detailing and choice of section.

5.5.1 Yield criterion derivation

In Figure (5.6—b), the principal stresses in the concrete are a\ and (72 with the 

major principal stress a\ making an angle 0 to the x—axis. In Figure (5.6—c) the

original reinforcement directions coincide with the x and y directions. Let Ax and 

Ay be the areas per unit lemgth and fx and fy the associated yield stresses. Thus, 

the combined resistance of steel and concrete in the coordinate directions is given by 

<7X = (7^. cos ̂ 0 + o ^ . s i n ^  + ax* 5.1

ay  = (7^.sin20 + (72.cos20 + ay* 5 .2

rxy= in0 . cos 0 + (72sin0.cos0 5.3

where ox*= pxfx and ay* = pyfy are the steel resistances. The reinforcement ratios in 

x and y directions are given by px= Ax/t and py= Ay/t respectively. Now if a\ is

tensile, the concrete will crack and a\ — 0. Hence, equations (5.1) to (5.3) become

ax  = (72. s i n2 0 + ax* 5 .4

ay  = 0 2 . co s20 + ay* 5 .5

rxy= (72 . s in 0 . cos0 5.6

Now eliminating (72 and 0 from these equations we obtain

(ax* -  ax ) ,  (ay* -ay) -  7xy2= 0 5.7

This is the yield criterion for an in - plane forces triad derived origionally by

Nielsont11*12!. He also assumed that concrete had sufficient compressive strength so 

that there was no need to provide compression reinforcement, he developed design

equations for four cases of reinforcement design where either one or both stresses

were tensile.

However Clarkt^] later extended these four cases to nine cases to both orthogonal
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and skew reinforcement and compression reinforcement also. Table 5.1 shows the 

nine possible combinations of reinforcement. It can be seen that a direct solution is 

available for all cases except 1 and 4 where four unknowns have to be determined 

from three equations of equilibrium. This can be solved by minimizing the total 

reinforcement in both directions of the section. The major principal stress a i= 0

when tension reinforcement is required, and a2 = fc ' when compression reinforcement 

is provided. The derivation of these nine different cases for orthogonal reinforcement 

design is now explained.

5.5.2 Derivation of design equations for orthogonal reinforcement 

CASE No. 1 :

Both x and y direct applied stresses are tensile so that tension reinforcement will be 

required in both directions to carry tensile stress i.e Ax?*0.0 and Ay;4).0. He also

assumed that fx= fy= fs, and 0> 0 2 > fc', then the number of unknowns are greater

than the number of available equations and cannot be solved directly. In order to

obtain a solution, the total steel voulme (Ax+ Ay) must be minimised.

From equations (5.1) to (5.3) then

ax = a 2  • s i n2 6 + ax* 5 . 8

ay = (72. co s2 0 + ay* 5 .9

rxy= (72 . s in 0 . cos0 5 .10

Noting that ax*+ ay* is equal to (Ax+ Ay)fs/t and eliminating a 2  from equation 

(5.8) and (5.9) using equation (5.10) then

(ax*  + ay*) = ax + ay + rxy  (tan0  + ( l / t a n 0 ) )  5.11

Using the minimization condition:

(d.(ax* + ay*))/(d.(tan0)) = 0

Then

ta n 2 0 = 1 and tan0 = ±1 

Thus from equation (5.10) 

rxy  = ±<T2 / 2  

Now because a2 < 0, a2 = -2 |rx y |

Now eliminating a2  and 0 from equations (5.8) and (5.9) then
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ax*= ax + |Txy| 

o r

i . e  px = ( i / f *  ax + |r x y | ] 5.12

and similarly;

py - ( l / f $ o r y  + |rx y | ] 5.13

NielsentH 2] suggested that if (72>fc' then the section should be redesigned. Note

also for a2 >fc'  then - 2 |r x y |> f c ' i.e |rx y |< fc '/2 .

CASE No. 2

When the direct applied stress in y direction is tensile and direct applied stress in x

direction is compressive, but the compressive stress is smaller than the uniaxial

compressive strength of concrete. Therefore only tension reinforcement is required in 

y direction to carry tensile stresses i.e Ay;4).0 and Ax= 0.0. This also assumes 

fy=fs, (Ti=0.0 and 0>(72>fc'.

Thus from equations (5.1) to (5.3) we obtain

ax — (72. s i n2 6 5 .14

ay  = (72-cos20 + (A y .fy ) /t  5.15

rxy= (72 . s i n0 . cos 0 5.16

Now eliminating 0 2  and 0 then 

ay*= ay  - rxy^ /a x  

i . e  py = ( l / f ^ [ ay - Txy~/ax] 5 .17

CASE No. 3

When the direct applied stress in x direction is tensile and direct applied stress in y

direction is compressive, but the compressive stress is smaller than the uniaxial

compressive strength of concrete. Therefore, only tension reinforcement is required in 

x direction to carry tensile stress i.e Ax?4).0 and Ay= 0.0. This also assumes fx= fs, 

(7i=0.0 and 0>(72>fc'.

Thus from equations (5.1) to (5.3) we obtain

ax = a 2 •s i n2 0 + ax* 5.18



1 5  6

cry = 0 2 . cos2 0 

rxy= o"2 . s in 0 . c o s0

5 . 1 9

5.20

Now eliminating o^nd  0 then

(tx* =  a x  -  ( r x y /c r y )

i . e  p x  =  ( l / f ^ [ c r x  -  ( r x y /c r y )  ] 5.21

CASE No. 4:

Both applied direct stresses are compressive in x and y directions and are higher 

than the uniaxial compressive strength of concrete, fc', therefore compression 

reinforcement is required in both directions to carry the compressive stresses. 

Assuming that fx=fy=fs', 0^= fc', then the unknown equations are greater than the 

number of available equations and cannnot be solved directly. In order to obtain a 

solution, the total steel volume (Ax+ Ay) must be minimized.

Thus from equations (5.1) to (5.3) we obtain

crx = < ti.cos20 + f c ' . s i n 20 + ax* 5.22

cry = c r^ .s in 20 + f c ' . c o s 2  ̂ + cry* 5.23

7xy= -c ri. s in 0 . cos0 + f c '.s in 0 .c o s 0  5 . 24

Adding equations (5.22) to (5.23) and using (5.24) then

(ax* + ay*) = ax + ay + ( rx y /s in 0 .c o s0 )  5.25

Minimization with respect to tan0 then

(d.(crx* + cry*))/(d . ( tan 0 )) = 0 

Therefore;

ta n 2 0 = 1 and tan0 = ±1 

Thus, from equation (5.24) 

a i  =* 2 |rx y | + f c '

Now eliminating a\ and 0 from equations (5.22) and (5.23) we obtain

crx*= crxf - |rx y |

i .e  px = 4 / f s X (7xf “ Irxy|  ] 5 .26

and similarly;

p y  = ( l / f s ) [ c r y f  -  | r x y |  ] 5.27

where crxf= ax— fc' and cryf— cry fc'
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CASE No. 5

Both direct applied stresses in x and y directions are compressive, but the 

compressive stress in the x direction is smaller than the uniaxial compressive strength 

of concrete, while in the y direction the compressive stress is higher. Therefore, 

only compressive reinforcement is required in the y direction and there is no need 

for reinforcement in the x direction. Assuming Ax=0, Ay?*0.0, C72=fc' and fy=fs\

Thus, from equation (5.1) to (5.3), we obtain

<tx = <j^.cos2 0 + f c ' . s i n 2 0 5.28

ay = 0" i . s in 2 0 + f c 1 .co s20 + ay* 5.29

txy= -<7 2 . s i n 0 .c o s 0 + f c ' . s i n 0 .c o s 0 5 .30

Adding equation (5.28) and (5.28) and using (5.30) them 

ta n 0 = r x y / c r x f

knowing the value of tan0 from equation (5.28) and inserting in (5.30), we obtain 

<72= ax— r x y 2/ ( 7 x f  

Now eliminating the a\ and 0 from equation (5.29) we obtain 

cry* = a y f  -  ( r x y 2 / ( 7 x f )  

i . e  px = ( l / f s j ) [ cryf-  ( r x y ^ /a x f )  ] 5.31

CASE No. 6

Both the direct applied stresses are compressive in x and y directions, but the

compressive stress in the x direction is higher than the uniaxial compressive strength

of concrete, while the compressive stress in the y direction is smaller. In such a 

case, compressive reinforcement is required in the x direction only and there is no 

need for reinforcement in the y direction i.e Ay= 0, (72= fc' and fx= fs\

Thus from equation (5.1) to (5.3), we obtain

ax = (7 2 .c o s 2 0 + fc ' . s in 20 + ax* 5 .32

oy = o"2 . s i n 2 0 + f c ' . c o s 20 5.33

rxy= —(72 . s in0  . cos0 + fc ' .s in 0 .c o s0  5.34

Adding equation (5.32) and (5.33) and using (5.34) then 

t a n 0 = o y f/rx y

Knowing the value of tan0 and using in equations (5.33) and (5.34) then
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Thus from equation (5.1) to (5.3) we obtain 

<rx = f  c 1 . s i n2 0 + ax* 

ay  = f c ' . cos2 0 + ay*

7xy=  f c ' . co s0 .s in 0

5.41

5.42

5.43

Adding equations (5.41) and (5.42) and using (5.43) then 

t a n 0 = - ( 2 r x y / f c ' ( 1 -/3 ) 

where 0  = y i - ( 2 r x y / f c ' ) 2

Now eliminating 0 from equation (5.41) and (5.42) we obtain 

ax* = ax -  f c ’/ 2 (l+ |3 ) 

i . e  px = ( V f s )  [ ax - f c ' / 2[ l+(3]] 5 .44

and similarly;

py = ( l / f s  [ ay -  f c '/ 2 [ l - |3 ] ]  5.45

CASE No. 9:

Nielsen[H»l2] and Clarkt^] have assumed that when the both principal stresses are

compressive i.e, a \. <fc' and <J2 <fc,, there is no need for reinforcement ( i.e Ax=0.0

and Ay=0.0). However, it was suggested to know the principal stresses in the

concrete. Therefore, in this case the derivation regarding a\, 0 2  and 0 is presented. 

Thus from equations (5.1) to (5.3) we obtain.

ax = a i .  cos2  0 + (7 2 . s i n 2 0 5 .46

cry = (T i.s in 2 0 + o"2 .co s 2 0 5 .47

rxy= ( -a i  + 0 2 ) . s in 0 .co s0  5.48

Adding equations (5.46) and (5.47) together we get: 

ax + ay = a\ +

Now multiplying equations (5.46) by cos2 0 and (5.47) by sin2 0 and subtracting (5.47) 

from (5.46) and using (5.48) then

tan0 = ((ax  - ay) - f ( a x  - ay)'1 + 4 . 7 xy2 ) / 2 .rx y

Now eliminating 0 from equations (5.46) and (5.47) and solving simulaneously, we

obtain

a i  = ( ( crx + cry) + J (vx -a y )2+ 4 .rx y 2) /2 5.49

a2 = ( (ax + ay) -  /  (ax -a y )2+ 4 .rx y 2) /2 5.50
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° 1  =  W  +  ( r x y 2 / o - y f )

Now eliminating a\ and 0 from equation (5.32) we obtain 

e x *  = crxf -  ( T x y 2 /< j x f )  

i . e  p x  =  ( l / f s ] ) [ n x f  -  ( r x y 2 /(7 x y )  ] 5.35

CASE No. 7

When the direct applied stress in the x direction is tensile, and the direct applied 

stress in y direction is compressive and higher than the uniaxial compressive strength 

of concrete. In this situation, tensile reinforcement is required in x direction to take 

tension stress and compression reinforcement is required in y direction to take 

compressive stress. Assuming Ax;4).0 and Ay?*0/0, a\= 0, (72= fc', fx= fs, and

fy= fs'.

Thus from equations (5.1) to (5.3), we obtain

crx = f c 1 . s in 2 0 + nx* 5.36

(7y = f c ' .c o s20 + ay* 5.37

rxy= f c '.c o s 0 .s in 0  5.38

Adding equation (5.36) and (5.37) and using (5.38) then 

tan0 = - ( 2 r x y / f c ' (1+|3) 

where (3 = y i - ( 2 r x y / f c ' ) 2

Now eliminating 0 from equations (5.36) and (5.37) ) we obtain

ax* = ax -  f c ' / 2 ( l -(3)

CASE No. 8:

When the direct applied stress in x direction is compressive and higher than the 

uniaxial compressive strength of concrete, while direct applied stress in y direction is 

tensile. Therefore, compression reinforcement is required in x direction to take 

compressive stress and tensile reinforcement is required in the y direction to take 

tensile stress, assuming <7|=0, Ax?*0, Ay?*0, fx=fs', fy= fs and <7 2= fc'.

i . e  px = ( l / f s ) [ ( rx  -  f c '/ 2 [ l - |3 ] ] 5.39

and similarly;

py = ( l / f s [ ay - f c ' / 2[ l+ 0 ] ] 5.40
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The above nine cases of reinforcement designs for orthogonal reinforcement are in 

graphically form in Figure (5.7). Table 5.2 summarizes the design equations for 

calculating steel ratios, principal concrete stresses and 6 for each case. The following 

symbols are introduced in this Table, 

crxf = ax - f c 1

cryf = cry - fc '

|3 = J  ( l - ( 2 7 x y / f c '  ) 2

5.5.3 Derivation of boundary curves for orthogonal reinforcement.

It is also necessary to establish a means of determining which set of equations 

should be used for a particular stress triad. This can be achieved by deriving the 

surfaces in stress space which form boundaries to regions pertaining to each case. 

Graphs of the boundaries have been plotted in Figure (5.8), using a reference frame 

where the vertical axis is ay/1 rxy | and horizontal axis is ax/ \ rxy | .

All these boundaries curves were derived by comparing the design equations of the 

two particular cases for a border line which separates them, for example, curve 4 is 

separating case 6 and 4, so the derivation will be:

1 / f s ' (crxf-| rxy | ) = 1 / f s 1 (crxf-(7xy2 /cryf) )

I rxy | = ( 7 xy2 /cjyf)

I rxy  | = 7xy2[ ( l / o y ) - ( l / f c ' ) ]

oy /1 rxy | = [ ( f c ' / 1 rxy | +1 ] 5.51

In this way all the boundary curve equations were derived and are given in Table

5.3 to 5.4.

In similar way, the design reinforcement equations for skew reinforcement can be 

derived. The summary of these design equations is given in Table 5.5. Figure (5.9) 

to (5.12) shows the graphs for skew reinforcement. Table 5.6 to 5.7 summarize the 

equations for boundary curves.
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5.6 Design of transfer girders

5.6.1 Application of design program

In order to obtain an admissible stress field, a linear— elastic finite element model 

with isoparametric parabolic elements was developed, this model has been described 

in more detail in Chapter Three. The stress field was obtained for the the design 

ultimate load using elastic material data for the unreinforced concrete beam. The 

design equations for orthogonal and skew reinforcement of Clarkt^l were codified 

and introduced into the program. Steel ratios were automatically calculated in two 

non— orthogonal directions. Before carrying out the final analysis, which was used for 

the designing of the reinforcement, a mesh convergence study was carried out to 

ascertain the most effective discretization. While designing the test girders in this 

study, a mesh convergence study was carried out each time when any change
yfk

occured in the geometry of the girders.

5.6.2 Selection of reinforcing bars

Numerical analysis gives steel ratios which vary from point to point and from 

element to element. In order to simplify this, all the steel ratios for each element 

were averaged in each direction. Even doing this, steel ratios were varying from 

element to element continuously throughout the structure, since the test girders were 

small (i.e. (2.0x0.9x0.lm), (3.0x0.9x0.lm), (3.0x2.0x0.lm)) in comparison to usual 

practical dimensions, there was little possibility of varying the steel area (by 

curtailing the steel bars) to match the theoretical steel requirements. There are two 

possibilities to overcome these shortcomings:—

(a) To choose the maximum steel ratios at each level and place the required steel 

bar through this level.

(b) To take the average of all steel ratios at each level in both directions and 

placing the steel bars accordingly.

In the comparison between the two methods it was found that, method (a) appeared 

to be uneconomical but it provided a safe design, since it used higher steel areas in
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some regions of the structure than the required theoretical steel areas. While the 

averaging procedure though more economical, might give an unsafe design, since 

some areas of the structure would be under— reinforced. At this stage a 

comprehensive study of steel behaviour and concrete behaviour was again revised to 

justify one of the above mentioned procedures. Finally, the average procedure with 

some constraints imposed on its use as described below was adopted:

(i) When high tensile strength steel is used in the structure, and the structural 

design is based on 0.2 percent of proof stress strength, by ignoring the 

work— hardening effect of steel. It is seen that steel can carry 30% to 40% of the 

ultimate strength after first yielding i.e the yield strength at 0.2% proof stress.

(ii) When the contribution of dowel action, kinking of bars and aggregate 

interlocking are ignored in the design process, since some researchers have found 

that they contribute a significant shear force to the strength of deep beamst2].

(iii) When the tensile strength of concrete is ignored in the design process.

(iv) When the variation between the maximum steel area in an element, at each 

level, in both directions is not higher than 20% of the average value at each level. 

When the difference between the maximum value of the steel area in an element 

and the average at the same level is higher than 20%. In such situation, other 

assumptions were made averaging the area over a certain length rather than the full 

length. This criteria was employed in all the test girders except girder TRGRAS11 

which was reinforced with exact required steel areas as much as practically possible.

Aditionally, there are some other constraints concerning the bar spacing, bond 

anchorage and concrete cover, since all the codes of practiced .2,23,24,25] jn this 

respect are not fully aware of the experimental results on a deep beam subject,

Some limitations are proposed following the various codes of practice and 

experimental results on deep members.

(i) The diameter of the bar used in a deep member, in particular deep beams 

should not be greater than one tenth of the thickness of the member.
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(ii) The concrete cover should be at least 15 mm to the main reinforcement in the 

member.

(iii) The space between the two bars of a layer along the beam thickness should not 

be less than 4 times the diameter of the bars.

(iv) The concrete cover to the bottom steel from the beam soffit should not be 

greater than 40 mm.

(v) The spacing between two layers of steel bars along the beam depth should not 

be less than 40mm, to allow concrete compaction between the bar layers.

(vi) The thickness of the beam should not be less than 100mm to provide adequate 

side concrete cover and space for reinforcing bars.

(vii) The main reinforcement will be extended from one end of the beam to the 

other without curtailing since there is a point of contraflexure. This is currently 

recieving some attention from reaserches and codes of practice

A selection of transfer girder design is presented and described in this section. This

includes finite element mesh, required steel ratios in a tabular form, three 

dimensional views of steel ratios, contours of steel ratios and the final reinforcement 

calculations based on the averaging procedure from the steel ratio envelopes in both 

directions for each girder. The selected design examples for girders TRGRAS1, 

TRGRAS4, TRGRAS7, TRGRAS9, TRGRAS10 and TRGRAS11 are given in Figures 

(5.13) to (5.42).

All the girders were designed for orthogonal reinforcement except TRGRAS7, which 

was designed with skew reinforcement; with the exception of reinforcement girder 

TRGRAS1 shared similar variables with TRGRAS7. For the skew reinforcement five 

different angles were studied i.e 5°, 10°, 15°, 20° and 25°. In comparison it was 

found that angles 10° and 15° were the best choice, producing 9% and 8% less 

volumetric reinforcement ratios compared to that orthogonal reinforcement. The 

comparison of volumetric ratios by excluding one fifth from bottom and top

produced 11% reduction for 10° and 15% for 15°. Figure (5.43) shows the 

reduction trend of percentage of volumetric ratio of steel versus the various skew
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angles. However, it was found that angles 10° and 15° were the most economical in 

both main and shear reinforcement. For girder TRGRAS7 the reinforcement was 

inclined at an angle of 15° to the x-axis.

The final details of reinforcement in the all transfer girders, which includes the 

selected sample, are shown in Figures (5.44) to (5.54).

5.7 Design of support bearing

Various authors have reported that local failure due to point load is the most 

common example of premature failure in deep beams. This is because, under the 

point load, a considerable force is transmitted to the support directly through the 

compression strut. Due to this phenomenon, a biaxial state of stress develops at the 

joint of the support and the compression strut, and at the loading point and two

compression struts. The concentration of stresses may become higher than the

permissible allowable bearing stress at the contact area. As a result, all the Codes of

practiced »2,23,24,25] an£j guides have proposed a criteria for checking bearing 

capacity.

In clause 5.2.5.4 of BSCP 8110!21, it states that the compressive stress in the 

contact area should not normally exceed 0.4fcu under ultimate loads. Stresses in

excess of 0.8fcu of ultimate loads should only be used in laboratory conditions with 

proper provision of reinforcement.

A short column design (e.g a steel cage at support and loading point) was employed 

to ensure that there would be no premature failure due to bearing failure using 

clause 3.3.3 in BSCP 81 lo!2], that is

N =* 0 . 4 . feu.Ac + 0 .6 7 .A sc .fy  5.52

where N is the applied force (i.e for support it is the reaction of the applied load 

and for the loading point it is the design load), feu is the characteristic cube 

strength of concrete, Ac is the area of concrete (i.e bearing area), Asc is the 

required area of compression steel in the bearing area Ac and fy is the



characteristic strength of the compression reinforcement.
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In a continuous beam, the distribution of the reactions is chosen according to BSCP 

81 lo!2] for continuous beams based on elastic theory. The area, Asc, of

reinforcement starts from the bearing plate and extends such that forces may be 

transmitted from the bearing area into the inner concrete zone. The required 

developed length can be calculated from the required anchorage length.

La = o . 18 . f y . ^j/fba 5.53

where fba is the ultimate anchorage bond stress and <p is the diameter of the bar.

Additionally, links of minimum diameter size bars are also be provided to avoid

buckling of the load or support cage, causing premature failure.

It is reported in previous studies by Lin!!2] and Memonl^l that at the bearing 

point, bearing failure can also be caused by the effect of Poisson's ratio. Poisson's 

ratio effects results in a lateral force of one sixth in magnitude of the vertical force 

in the vicinity of the loading zone. In a real structure, sufficient concrete cover and 

reinforcement should also be provided to prevent this. In these tests to avoid 

congestion of reinforcement in the bearing area, the expansion force was resisted by 

using external plates clamped to the beam. A beam with such plates is shown in 

Figure (5.56).

5.8 Bond And Anchorage

Bond stress is the shear stress acting parallel to the reinforcement bars on the

interface between the bars and the concrete. It is directly related to the change of 

stress in the reinforcement bars; there can be no bond stress unless the bar stress 

changes and conversely there can be no change in bar stress without bond 

stress!4>261. When an effective bond stress exists, the strain in reinforcement, for 

design purposes, may be assumed to be equal to that in the adjacent concrete.

Bond strength is a more serious problem when only plain reinforcing bars are used.
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Bars with a deformed surface provide an extra element of bond strength and safety. 

However, the designer must be aware of the bond stress and anchorage that 

critically effect the structural behaviour.

In this respect, clause 3.11.6.2, 3.11.6.7 and 8 of BSCP 811()[2] are followed. While 

considering the tied— arch behaviour in deep beams, the main reinforcement, which 

may reach its yield stress near the support due to the diagonal crack, should be 

securely anchored. It is suggested that full positive anchorage should be provided 

beyond the face of the support. There is some suggestion that bars should not be 

bent up within a region of 1/8 to 1/5 of the beam depth from the centre of 

support.

The local bond stress at a given section of a bar is the bond stress due to the rate 

of change of steel stress at that location. In fact only longitudinal bars in tension 

need to be checked for local bond stresses. The direct design technique assumes that 

bond and anchorage are perfect, and consequently in these examples the bond was 

assumed to be perfect. However, an additional anchorage was provided by using 

180° hooks at the ends of the main bars. When these hooks were again fastened to 

the steel cages at the supports, they provided an additional positive anchorage. 

Hence bond stress does not necessarily have to be checked.
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TABLE 5.1

Summary of various possible nine different cases of reinforcement design.

Case R einforcem ent 
d e s c r ip t  ion

Known values Method o f so lu tio n

1 Both te n s io n fx=fy= fs, px?*0, py?*0, ol=0 M inim ization  of 
(px+py)

2
No X

Y te n s io n
fy= fs , px=0, py?*0, <rl=0 D irec t s o lu tio n

3
X te n s io n  

No Y
fx = fs, px?*0, py=0, <j 1=0 D irec t s o lu tio n

4 Both com pression fx= fy= fs ' , px?*0, py?*0, a2=fc' M inim ization  o f 
(px+py)

5
No X

Y Compression
fy = fs ' , px=0, py?*0, <r2=fc' D irec t s o lu tio n

6
X com pression 

No y
fx = f s ',  px?*0, py=0, cr2=fc' D irec t s o lu tio n

7
X te n s io n  

Y com pression

fx= fs, fy = f s ',  px?*0, py^O 

and o ^ f c '
D irec t s o lu tio n

8
X com pression 

Y te n s io n

f x = f s ' , fy= fs, px?*0, py^O, 

and 0’2 = fc '
D irec t s o lu tio n

9 No re in fo rcem en t px=py=0 D irec t s o lu tio n
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TABLE 5.3

Boundary curves for orthogonal reinforcement

Curve Equat ion

oy _

10

11

12

Irxyl =  -f co

oy 1 fc'
Irxyl 2 1 rxy |

oy
Irxyl = - 1

oy _ f c 1 + 1
Irxyl Irxyl

oy 1 fc'
Irxyl 2 1 rxy |

oy
Irxyl =  —  C O

crx _ 1 f f C 'Irxyl 2 L |rxy|

crx
Irxyl -  - 1

crxf oyf _ i

Irxyl Irxyl

crx oy -  1

-  4 ]Irxyl

- /(_ £ £ !_ ) 2  _ 4  Irxyl

Irxyl |rxy| 

fc'crx
Irxyl + 1

crx
Irxyl

Irxyl

1  f  +  j O E I T i T I  1
2 I Irxyl Irxyl J
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TABLE 5.4

Modified boundary curves for orthogonal reinforcement

Curve Equat ion

El

e2

e 3

e4

E5

oy
I rx y  |

oy
Irxyl

oy _

=  +  00

fc'
Irxyl -  4 ]I rxy |  J

Irxyl

qy

=  -  1

f c ' + 1
Irxyl  Irxy |

= ay = t
Irxyl 2

fc
LIrxy|

' .  7 ( ^ ) 2  _ 4
Irxyl

E6 =

E7 =

qy
Irxyl

crx
Irxyl

f c ' 
Irxyl - / ( - r ^ j ) 2 -~4 1 Irxyl J

10

11

12

e8 -
ox

Irxyl =  -  1

e 9X =
f c 1 + | r x y |

Irxyl cryf
and

E10X = 112̂ 1 and

E ll  =

e 12 =

ax f c
Irxyl  Irxyl

E10y

+ 1

f c '  , Irxyl  
gy  = Irxyl  crxf

Irxyl
ax

ax
Irxyl

fc'
Irxyl

y ( f £ ^ ) 2 . 4 ]
I rxy |  J
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TABLE 5.6 

Boundary curves for skew reinforcement

Curve

10

11

12

13

14

Equat ion

fry =
I rxy  | 

fry

± ta n a  - fc  *
2 Irxyl ( 1 - I s e c a |)

|r x y |

q~y _
I rxy

fc
|r x y | Irxyl -4 ]

= -  (coseca  ± c o ta ) “l

f c 'fry
Irxy l

fry
Irxyl

fry
Irxyl 

ax
Irxyl 

ax
Irxy l Irxyl

-(-c o se c a ± c o ta )“lI rxy  |

1 [ f c ' -  ./( f c ' )2 /, '
2 L l r x y l  I r x y l '

± t ana -

xyl 

f c 1
2 | r x y | (1 + |s e c a |)

-  f c ' *2cota,i / (  f c ' 1Irxyl Irxy | |r x y | |r x y | J

fry c o ta (c o ta  ± coseca) - coseca ± 2co ta

a x f  ay f _ ^
Irxy l |r x y | ”

ax ay
Irxy l |rx y | = 1

f  c 1——  = —  co ta(-co ta± co seca)+ co seca± 2 co ta—;----- coseca(-coseca±cotc&
r x y |  | r x y |  I r x y l

ax fry fc
|r x y | |r x y |

ax fry
|r x y | Irxyl

cota(cota±coseca)-coseca±2cota+-r  coseca (coseca±cot a)I r x y l

co ta ( - co ta  ± coseca) + coseca ± 2co ta

ax
Irxyl

f c '  /,  f c ' s9 , / frycotax1 . /.fryfcota.T N
-  2- 4 (^ 7 T t l > ( T ^ t l )

Note: A l t e r n a t i v e  s ign  is the same as tha t  of  rxy.
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TABLE 5.7

Modified boundary curves for skew reinforcement

Curve

10

11

12

13

14

Equat ion

El

e2

± tan a  - f c 1 

2 Irxyl ( 1 - | s e c a | )

fci _  + y< _££i,)2
Irxyl Irxyl

E3  = -  (coseca  ± c o ta ) “ l

E4

E 5

E 6

e 7

E 8

fc '
Irxyl -(-co seca± co ta )

xsi- - y<_£Ei_>2 -4rx y | Irxy |

± ta n a  - fc
2  |rx y | ( 1  + | s e c a |)

.  f g ^ ±2co t c * y £ l£ l - ) 2 - 4 ( g £ ° i ° ± i )  1Irxyl Irxy | Irxyl Irxyl J

fry
Irxyl c o ta (c o ta  ± coseca) - cosec ± 2 co ta

|rx y | , f c ' ^ Irxyl , f c '
9x _  ~ S y T  TTxyl ax f |rx y |

ElOX^
rxy |
fry

and ElOy"
Irxyl
ax

Ei t ^ —  co ta(-co ta± coseca)+ coseca± 2 cota-~r——, coseca(-coseca±cotc)
1 1  | r xy |  Irxyl

E1 0  = ———  co ta(co ta± coseca)+ coseca± 2 cota+-  coseca(coseca± co ta)
iZ | r xy |  Irxyl

E i t  = —^ —  cota(  - cot a  ± coseca) + coseca ± 2 co t a  
1:5 Irxyl

e 14 = - 9
fc' ĉotcv k -f— >2-/.(gy£gigowg£gg“»ti;> Irxyl Irxyl I rxy | | rxy |

Note: A l t e r n a t i v e  s ign  is  the same as tha t  of  rxy.



Nxy

fxy

1

1

Figure (5.1) Sign convention for in—plane direct and shear stresses

Figure (5.2) The symmetrical position of both reinforcement layers
w.r.t the middle surface of the section.

Aa, fa

Y
Figure (5.3) Principal concrete stresses and directions of reinforcement.
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fs --

tension

compressio:

Figure (5.4) Yield criterion for steel in—plane stress.
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experimental

F igu re  (5 .5 ) Y ield c rite rio n  fo r concrete  in p lane  stress.

ox

Applied stresses Stresses resisted by 
concrete

a., cos 0+aosin 9

CM
+

CM
•H

Stresses resisted fc 
steel

F igu re  (5 .6 ) C om bined  resistance of concrete  and  steel aga inst ap p lied  stresses.
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Figure (5.7) Boundary equation graph for orthogonal reinforcement design.

rxy

Figure (5.8) Conditions for chosen cases of boundary curves for orthogonal
reinforcement design.
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Figure (5.10) Conditions for chosen cases of boundary curves for skew
reinforcement design when rxy is positive.
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700"
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Figure(5.13) Finite element mesh of transfer girder TRGRAS1
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3

Figure(5.14) Theoretical required steel ratios for girder TRGRAS1
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Figure(5.15) Isometric view of steel ratios for girder TRGRAS1
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Fig. (5.17) Design of reinforcement of Transfer Girder TRGRAS1
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Figure(5.18) Finite element mesh of transfer girder TRGRAS4
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Figure(5.19) Theoretical required steel ratios for girder TRGRAS4
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Figure(5.20) Isometric view of steel ratios for girder TRGRAS4
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Figure(5.21) Contours of steel ratios for girder TRGRAS4
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Figure(5.23) Finite element mesh of transfer girder TRGRAS7
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Figure(5.24) Theoretical required steel ratios for girder TRGRAS7
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Figure(5.25) Isometric view of steel ratios for girder TRGRAS7
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Figure(5.26) Contours of steel ratios for girder TRGRAS7
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Figure(5.55) Typical test arrangem ents showing the use of steel 
plates clamped at bearing points.
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CHAPTER SIX 

EXPERIMENTAL INVESTIGATION

6.1 Introduction

Although considerable experimental research has been carried out on deep beam 

behaviour, research is still needed on large scale models which are close to actual 

practical situations, particularly in the provision of realistic reinforcement 

arrangements. Also, more experimental tests are needed to assess the applicability of 

the direct design technique for deep beams and continuous deep girders since little 

work has been done on this. The object of this experimental investigation was to 

meet these conditions by studying the ultimate strength, and general behaviour 

characteristics of a variety of two span continuous reinforced concrete transfer girders 

and simply supported girders, with and without openings, subjected to in— plane 

loads.

A total of eleven beams were tested of which eight were two span continuous deep 

beams, two were simply supported with openings, and one was a solid simply 

supported deep beam reinforced with steel areas as close as practically possible to 

that calculated by the direct design equations. The geometric details of all the 

girders and the concrete properties are given in Table 6.1, steel properties are given 

in Table 6.2, Figure (6.1) and Figure (6.2). The reinforcing details have already 

been given in a previous chapter.

The actual design of all the test girders has been described in the previous chapter, 

and the purpose of the next section in this chapter is to explain the reasons and 

objectives for studying these girders.

The loading arrangement for the two span deep girders were point loads acting at 

the top edge of the girder at the centre of each span. For the simple span girders
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two point loads were applied on the top edge of the girder at the third points. The 

following characteristics were monitored in all tests:

1 Load deflection relationships

2 Strain distributions in the concrete and steel

3 Crack propagation and crack patterns

4 Failure mechanisms

6.2 Experimental programme

6.2.1 Description of experimental parameters

The tested girders were subdivided into five series and are explained in more detail 

below:

SERIES 1 : This series consisted of four test girders, denoted TRGRAS1, TRGRAS2, 

TRGRAS3 and TRGRAS6. The aim of this series was to check the applicability of 

direct design for continuous deep beams, the effect of shear reinforcement and

different distribution of reinforcement, other than those resulting from the direct 

design technique, on ultimate and serviceability behaviour. The geometry of all the 

girders in this series was kept constant. Discrete reinforcing bars were selected by 

taking arbitrary levels across and along the beams and calculating the average

reinforcement ratios at each level. Reinforcement bars were selected and distributed 

using specified bar diameters, and limits and spacing.

The difference between the first girder, TRGRAS1, and the second girder, 

TRGRAS2, was in the provision of shear reinforcement, the main reinforcement and

beam dimensions were same. This was because the shear reinforcement calculated

according to the direct design equations was very small in comparison with even the 

minimum bar size recommended by C PlloH ] and BS CP8110t^]. Thus, the provided 

shear reinforcement in girder TRGRAS1 was higher than the calculated shear



reinforcement according to the direct design procedure. In order to match theoretical 

and practical requirements closely, the provided shear reinforcement in girder 

TRGRAS2 was closer to (but higher than the) calculated value. Thus, the amount of 

shear reinforcement in girder TRGRAS1 was higher than TRGRAS2, this was to

evaluate the effect of shear reinforcement on ultimate load.

The difference between girders, TRGRAS2 and TRGRAS3, was in the main 

reinforcement, while the shear reinforcement was kept constant. The aim of this

comparison was to meet the minimum diameter size of shear reinforcement as

required by BSCP 8110t^], which meant that the design ultimate load had to be 

increased and so consequently increased the amount of main reinforcement required. 

Hence, the design ultimate load of the girder TRGRAS3 was higher than that of

TRGRAS2.

The design load for girders TRGRAS3 and TRGRAS6 was the same, but the 

calculated reinforcement for girder TRGRAS6 was distributed according to CIRIA 

Guide 2[3] and CEB— FlPt^l. The aim of this comparison was to evaluate the effect 

of different steel distribution on both ultimate and serviceability behaviour.

SERTES 2: This series consisted of two girders denoted TRGRAS4 and TRGRAS5. 

The general aim of this series was to check the applicability of the direct design 

procedure for continuous deep beams with increased span to depth ratio LID, and 

clear shear span to depth ratio X/D, compared to the first series. These ratios are 

believed to be important parameters affecting the general behaviour of deep girders.

The difference between these two girders was in the steel distribution. In girder 

TRGRAS4, the steel was provided according to averaging procedure at each level, 

and so can be directly compared with girder TRGRAS2, thus deducing the effect of 

L/D and X/D ratios. In Girder TRGRAS5 the steel was distributed according to the



CIRIA Guide 2P], CEB— FIP Model Codt^l and Leonhardt and Walther'sl^] 

recommendations and so can be compared with girder TRGRAS^-

SERIES 3: This series consisted of two deep continuous girders TRGRAS7 and 

TRGRAS8, reinforced with skew reinforcement.. The purpose of this study was to 

investigate the general behaviour of girders with skew reinforcement in terms of 

cracking control, ultimate and service loads. It has been reported in literature, that 

skew reinforcement can be highly beneficial despite its complexities in p r a c t i c e ^  >6), 

(i.e. laborious work in bending and fabrication, etc). Two angles of skew 15° and 

10° degrees to the horizontal were chosen for TRGRAS7 and TRGRAS8 respectively, 

in all other aspects they were identical. The behaviour of these two girders can be 

compared with girder TRGRAS2, an identical girder but reinforced with orthogonal 

reinforcement.

SERIES 4 : This series consisted of two large scale single span girders with web 

openings. The aim of this series was to check the applicability of the direct design 

procedure in designing deep beams, when web openings interrupt the load path in 

the shear spans. The CIRIA Guide 2[3] only covers the design of beams with 

openings which do not interrupt the load path and suggests that the regions top and 

bottom of an opening are designed as deep beams. Another aim of this series was 

to assess the location of the opening in the shear spans of the deep beams.

The first girder, TRGRAS9, had two openings both 500*500mm in size. One was 

located above the mid-  depth of the beam in one shear span, and the other was 

located below the mid-  depth of the girder in the other shear span. The second 

girder, TRGRAS10, had two openings of dimensions 500*400mm in one shear span, 

one above mid— depth and the other below the mid— depth of the beam. It also had 

a third opening of dimensions 500*500mm in the other shear span of the beam, 

located at mid— depth of the beam. Figure (6.2) shows the general view of these
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two beams.

SERIES 5: This series consisted of testing of a very large scale simply supported 

girder denoted TRGRAS11. It was tested to examine the accuracy of the direct 

design equations in detail. The direct design procedure produces a continuously 

varying reinforcement field as calculated at each Gauss point in the finite element 

analysis, but in practice the bars have to be provided either by using maximum steel 

ratios at a particular level, or by averaging steel areas. This leads to over and 

under— reinforced zones in the structure, and final design which has departed 

significantly from the original design assumptions.

In this beam, steel areas were provided as close as possible to those required by the 

theoretical calculations. This was achieved by reducing the bar diameters at selected 

points throughout the structure.

The direct design equations do not take into account the work— hardening effect. 

Hence, in this test, mild steel was used which has a small work— hardening effect as 

compared to high tensile strength steel. This test was designed to see that the 

simultaneous yielding of steel occurs at the ultimate load stage as theory provides, if 

theoretical steel areas are provided.

6.2.2 Beam notation

The letters TRGRAS' stands for Transfer Girder with Averaged Steel. The girders

are numbered sequentially from the start of the investigation. For example,
e

TRGRAS1 represents a Transfer Girder with Average! Steel ratio Number 

'TRGRAS1'. This notation is used for all the girders studied in this investigation.

6.3 Formwork

Since the geometries of all girders were not the same, it was necessary to design



and make several different form works. However, only the construction of the
is

form work for girder, TRGRAS1, is described here, since it ̂ essentially the same.

The form work was made from 20mm thick plywood panels. To maintain the stability 

and strength of the mould during casting, 50mm*50mm timber battens were nailed at 

close spacing along the length of the mould. Battens were also nailed along the 

vertical walls of the mould (i.e soldiers) to make it more stable and some were 

nailed as stiffeners as shown in Figure (6.3). Prior to casting, the mould was oil 

coated in order to prevent the concrete sticking to the mould.

6.4 Test— rig

The test—rig was set up as shown in from Figure (6.4) to Figure (6.6). Figure (6.7) 

shows a photograph of one of the girders being tested. The test— rig was designed to 

be accommodated in a 10,000kN Losenhausen Universal Testing Machine and was 

capable of accommodating a girder of up to 3 metres long and up to 2.5 metres in

height. It was designed for a total loading capacity of 2000kN. The main

components of the test—rig are:

1:— Base Beam

2:— Support Girders

3:— Loading Girders

4:— Supporting Bearings

5:— Losenhausen Machine Platen

6.^.1 Base beam

This beam is made of two 356*406*287kg/m I-sections welded together to provide a

firm base of up to 5000kN capacity. This beam was placed on the bottom platen of

the Losenhausen Machine. Steel columns were bolted to this beam so that the girder 

could be positioned and placed accurately in the machine. During testing, these



columns were either dismounted or slackened and kept at least 20mm away from the 

beam plane, in order to avoid interference with the load transmission.

6.4.2 Support girders

Support girders of 250*250*16kg/m hollow square box cross section were used. The

girders were designed as simply supported cross beams spanning the I— sections of 

the base beam and loaded at the centre by a maximum reaction of 2000kN from 

the test girder. Three girders were used for the two span continuous girders and two 

for the single span girders.

6.4.3 Loading girders

This loading girder was designed and used only for the two span continuous girders 

of 3 metre lengths because direct transmission of the load from the machine platen 

to the specified loading point locations on the top of beam was not possible. The

loading girder was a 305*305*158kg/m I—section. To strengthen the girder at the

loading points, extra steel web stiffeners were welded to the girder. BS449I71 was

used to design this strengthening. Angle sections of 120*120*18.5kg/m were also 

designed to attach the loading girder to the machine platen safely. The bolts 

connecting the loading girder to the machine platen were also checked and designed 

accordingly.

6.4.4 Support bearings

All the support bearings were made of mild steel. Both exterior supports in the two 

span continuous girders were provided with rollers to allow free horizontal 

translation, and the mid—support was restrained horizontally and vertically. Under 

the loads, one bearing was roller supported and the other was fixed. The roller 

supports at the bottom and top of the girder were provided with two roller rods to 

avoid perman nt deformation of the bearing block which would restrict the horizontal 

translation.



The support bearing dimensions for the two span continuous girders of two meters 

length were 80*100*50mm at each exterior support, 160*100*50mm for the 

intermediate support and 150*100*50mm for the load bearings. In the case of the 

two span continuous girders of three meters length, the exterior support bearing 

dimensions were 100*100*50mm, the interior support bearing dimensions were 

200*100*50mm and the load bearing dimensions were 150*100*50mm. For the simply 

supported girders the dimensions for the support bearing and load bearing were both 

200*100*50mm.

6.4.5 Losehausen machine platen

The detachable Losenhausen machine platens were used at the bottom for holding 

the base beam, and at the top to transmit the loads either directly onto the beam 

from the machine head, or for providing a uniformly distributed load on the loading 

girder for the beams of 3 metre length. In addition steel plates 50mm thick and of 

area 400*400mm were used in between the machine platen and the top of the 

loading support bearing block, to spread the load more effectively.

6 .5  Material properties

6.5.1 Concrete

The same concrete mix was used for all specimens. It consisted of Rapid Hardening

Portland Cement (RHPC), 10mm Hyndford uncrushed gravel of grading zone 2 and

Hyndford sand obtained from Lanarkshire. A mix proportion of 1:1.5:3 and with

0.48 water/cement ratio was designed for an intended average cube strength of 45
*

N/mm2 at 7 days. The weighed quantities of cement, sand, 10 mm gravel and water 

were mixed thoroughly in a 3 cu.ft capacity pan mixer. A minimum slump of 100 

mm was specified.

All the girders were cast horizontally. The concrete was placed in the mould with 

shovels. The compacting of the mix during casting was achieved by using a 12mm



diameter poker vibrator. The vibration continued until a reasonably good compaction 

was achieved.

In addition to the main specimen, six 100*100mm cubes and at least four 

150*300mm cylinders were cast as control specimens from all the different batches of 

material used for constructing the main specimen. These were compacted by using a 

vibrating table.

All the control specimens and the main specimen were cured under damp hessian 

for the first 24 hours. After that, the control specimens were taken out of the 

moulds and a few control specimens were cured in the water tank. All the 

remaining control specimens and the main specimen were kept under wet sacking for 

the first three days and then were cured dry under laboratory conditions.

The cubes were used to determine the cube strength of concrete, two cylinders were 

used to determine the splitting tensile strength, ft', and two for the concrete 

compressive strength, fc'. The remaining two cylinders were used to obtain the 

stress— strain curve and modulus of elasticity. All the control specimens were tested 

on the same day the transfer girder was tested. A typical compressive stress— strain 

curve for the concrete (girder TRGRAS3) is shown in Figure (6.8).

6.5.2 Reinforcing steel

High yield deformed bars of 6, 8 and 10mm diameter made by British Steel 

Corporation were used for the longitudinal and transverse reinforcement in all 

girders, except transfer girder TRGRAS11. Mild steel bars of 8, 10 and 12mm 

diameter were used for girder TRGRAS11. The yield stress of all different bar sizes 

were measured on samples cut from different batches of steel bars using a Tinus 

Olsen Universal Class A testing machine, fitted with a S -  type electronic 

extensometer, and procedure laid down by British Standard BSI 8 was followed.



Since high yield deformed bars have no definite yield point, the yield stress was 

assumed to be that at the 0.2 percent proof strain. Typical stress strain curves for 

all high tensile strength bars are shown in Figure (6.9) to (6.11) and for mild steel 

bars are shown in Figure (6.12) to (6.14).

When the bending of steel and cementing of strain gauges on the steel was 

completed, the fabrication of the steel commenced by placing the main and 

transverse steel at their required locations. All the reinforcement were then tied 

together by wires. Before casting, plastic spacers were attached to the longitudinal 

bars and the transverse steel, at certain intervals to ensure adequate cover to the 

reinforcement on both sides of the beam. In all the models, a 15mm concrete cover 

was provided to the reinforcement.

6.6 Instrumentation

All girders were connected to instruments to measure the load, the deflections, steel 

and concrete strains, and crack widths.

6.6.1 Loads

The intermediate support in two span continuous girders takes more than 60% of 

the total load. Therefore, the available Davy Limited K500 load cells were not 

suitable for the intermediate support because their maximum capacity is 500kN. 

Thus, for the two span continuous girders, only the exterior reactions and the 

applied loads at the top of each span were recorded by load cells. The total load 

was directly recorded by the machine. In the case of simply supported girders, all 

the reactions and loads were measured by load cells. It was found, that if the beam 

was positioned satisfactorily (i.e levelled horizontal) the reactions were within 

2%— 4% of each other. The load cells were connected to an Orion 3530 type data
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The loads were applied by the Losenhausan Universal Testing Machine, at the centre 

of the two spans in the case of the two span continuous girders and at third point 

for the simply supported girders. Figure (6.15) shows the loading arrangements for 

one of the two span continuous test girders. Figure (6.16) shows the loading 

arrangement for a simple supported test girder.

6.6.2 Deflections

Net deflection measurements in deep girders is a challenging parameter. This is 

because these members take a very high load and failure is likely to be in shear, so 

that deflections are very small. The test floor is susceptible to vibrations and the 

plaster between the supports and the beam is subjected to a high load causing extra 

deflection. Thus, it was decided to try and isolate these effects by measuring the 

deflections using displacement transducers fixed to a frame, which could be mounted 

on the girder itself. The frame was thus constructed from handy angles.

The vertical deflections of two span continuous deep girders were measured by 

means of Nova tech R101 type transducers located at the mid—span of the beam and 

at 200mm from the exterior and interior supports for each span on both sides of 

the girder as shown in Figure (6.17). For single span girders, vertical deflections 

were measured by means of transducers located at the mid— span of the beam and 

at 200mm from the each support of the girder on both sides of the girders as 

shown in Figure (6.18).

All the transducers were connected to the data logger and the deflections were 

recorded automatically at each load increment. These Novatech R101 type transducers 

were able to measure the deflection to an accuracy of 0.0001mm.

6.6.3 Steel strain gauges

EA— 06— 240LZ—120 Student type strain gauges were cemented to the longitudinal



and transverse steel at critical sections to record the strain history. Prior to fixing 

the strain gauges, the surface of steel was prepared by filling and then smoothning it 

with sand paper. During this process, care was taken not to remove a considerable

area of steel which would weaken the steel bars. The surface was then treated with

M— Prep conditioner A and M— Prep neutralizer 5 to remove any dirt and grease.

Each strain gauge was checked with a voltmeter before cementing, and its proper 

position was located by making a very thin line on the steel bar. The strain gauge 

and terminal strip were cemented to the bar using M— Bond 200 adhesive. To 

protect the gauge from moisture and mechanical damage during fabrication and 

casting, an air drying protective coating type M— Coat D and expoy resin was 

applied to the gauge and terminal. Finally, a check using the voltmeter was carried 

out for each strain gauge after cementing.

At most positions on a bar, a pair of strain gauges were fixed on the opposite

sides. Figure (5.19) to (6.29) shows the location and positions of the strain gauges in 

the all girders.

6.6.4 Concrete strains

To record the concrete surface strains, stainless steel demec gauges were used at 

critical sections. A gauge length of 100 mm was used as a sufficient length through 

which cracks could propagate. The points on the surface where demec gauges were 

to be fixed, were cleaned of dust and grease, and the points were correctly located 

using a standard setting bar provided for this purpose. The gauges were fixed with 

Araldite. The location and positions of the demec gauges in all girders are given in 

Figure (6.30) to (6.40). An average value of concrete surface strain of two demec 

gauges at the same point on either sides of the girder at each location was used in 

subsequent analysis of the results
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6.6.5 Crack propagations and crack widths

Crack propagation and crack widths were monitored and measured throughout the 

loading history. The crack widths were measured by means of a microscope of 

accuracy up to 0.02mm. A few predominant cracks were selected and their crack 

widths were measured at each load level. The average of the crack width on two 

faces of the specimen were used as crack width.

6.7 Testing procedure

When each model was fully cured, it was manoeuvered on to wooden tressels and 

whitewashed with paint. A rectangular grid of 100*100mm lines was drawn in order 

to facilitate marking and locating crack propagation. After this process the demec 

gauges were fixed.

Using slings, placed through lifting hooks attached to the reinforcement, the girders 

were then taken to the test— rig by crane. 3mm of quick setting plaster was used 

between the bearing blocks and the beam, and in other critical places, so that any 

unevenness in the surface could be avoided.

Once the test girder was installed the various transducers were mounted on to a 

handy angle frame. The strain gauges, load cells, displacement transducer and a 

displacement transducer recording the overall displacement between the two machine 

platens, were connected to a 3530 Orion data logger for automatic recording. All 

the instruments were checked one day before starting the actual test. Additional steel 

plates were clamped to the loading and support points on the girders, in order to 

constrain local failure due to high bursting stresses.

The Losenhausen Universal Testing Machine was operated in displacement control 

mode using LVDT (Linear Variable Displacement Transducer). Loads were applied in 

small increments of about 50 kN up to the failure without unloading. It was
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observed that in some girders that at small loads, there was a variation in loads and 

reactions of up to 4%, but as the load increased this became insignificant. This

might be due to the unevenness in plaster thickness etc.

At each increment the displacements and strain in the steel and concrete demec

gauges readings were recorded. Crack propagation and crack widths were marked and 

measured respectively. The duration of each load increment stage was usually about 

15 minutes. In some cases when any major crack has occuiCd during the test, load 

was considerably dropped. In such situations, prior to increasing the load according 

to intended increment, a set of readings was always taken. In some cases, beams 

were unloaded and reloaded, and similar procedures were adopted during reloading.

For a few tests, photographs were taken at various loading levels when any major

failure cracks or any new phenomenon occurred. For each test, photographs were 

taken of the crack pattern and failure type after the testing was over.

\ .
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TABLE 6.2
Steel properties of reinforcement used in this study.

Bar s i z e  
mm

Area
mm̂

Es
kN/mm^ N/mm^

ey
mm/mm

0 .2% p ro o f s t r e s s  
N/mm^

6 28 . 0 199 . 0 ----- 513 . 0

8 50 . 0 1 95 . 0 ----- 5 2 0 . 0

10 7 9 . 0 200.0 ----- 4 7 1 . 0

8 5 0 . 0 210.0 290 . 0 0 . 0014

10 7 9 . 0 212.0 318 . 0 0 . 0015

12 113 . 0 198 . 0 336 . 0 0 . 0017
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Figure (6.2) Geometric details of web opening girders
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Figure (6.8) Typical stress—strain curve for concrete (TRGRAS3) 

P KN

0.2 5 0.5 0.75

Figure (6.9) Typical stress-strain curve for 10mm dia. steel bar.
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Figure (6.10) Typical stress—strain curve for 8mm dia. steel bar.
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Figure (6.11) Typical stress—strain curve for 6mm dia. steel bar.
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Figure (6.12) Typical stress—strain curve for 12mm dia. mild steel bar.
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Figure (6.13) Typical stress—strain curve for 10mm dia. mild steel bar.
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Figure (6.14) Typical stress—strain curve for 8mm dia. mild steel bar.
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Figure (6.15) The arrangements of loading in a two span continuous girder
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Figure (6.16) The arrangements of loading in a simply supported girder.
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Figure (6.17) Transducer location and position in a continuous girder.
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Figure (6.1g) Transducer location and position in a single span girder.
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Figure (6.20) The location and position of steel strain gauges in transfer girder TRGRAS2
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675 150 ►f-*- 675

c r  

c i

c i

c .

k -

e~*i
-H-

5<C 32

' 3  >5 -

S 8

3?-3? 37_  39 
38“  4#

,<«2
*<<<

9 _ 1‘

Joomv !>o©v

1450
-Jr

500
850

7 0 0 - -

500

325 -  

175 --

40 ■-
0

2Y6I *

2Y69 4

216 » •

2YE• a

2YE

SECTION

ELEVATION

Figure (6.22) The location and position of steel strain gauges in transfer girder TRGRAS4
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Figure (6.24) The location and position of steel strain gauges in transfer girder TRGRAS6
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Figure (6.26) The location and position of steel strain gauges in transfer girder TRGRAS8
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Figure (6.32) The location and position of demec gauges in transfer girder TRGRAS3
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Figure (6.33) The location and position of demec gauges in transfer girder TRGRAS4



Figure (6.34) The location and position of demec gauges in transfer girder TRGRAS5
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Figure (6.36) The location and position of demec gauges in transfer girder TRGRAS7

Figure (6.37) The location and position of demec gauges in transfer girder TRGRAS8
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CHAPTER SEVEN 

PRESENTATION OF EXPERIMENTAL RESULTS

7.1 Introduction

This chapter presents the results of the experimental tests on the transfer girders 

described in the previous chapter. The purpose of the experimental investigation was:

1. To validate the direct design procedures for designing deep beams in general, and 

continuous deep girders in particular, for serviceability and ultimate conditions.

2. For two span continuous girders, to study:

(i) the effect of shear reinforcement

(ii) the effect of the span to depth (L/D) ratio on the ultimate strength and the 

failure mechanism. Two span to depth ratios (L/D) were examined, 1.07 and 1.61.

(iii) the effect of placing the main reinforcement according to the CIRIA Guide 2[1] 

distribution (similar to the CEB— FIP Model Codet^]).

(iv) the effect of using skew reinforcement.

3. For single span girders with L/D ratio of 1.4, to study:

(i) the validity of the direct design approach when the web openings intercept the 

load path.

(ii) the behaviour of a very large scale solid deep girder with reinforcement which 

satisfies the design theory as close as possible, by reducing the bar size diameters to 

the required value.

A summary of all the results is presented in Table 7.1. The tests are classified into 

five series depending on the geometry, reinforcement type (i.e orthogonal or skew), 

reinforcement distribution or the continuity conditions. In all the tests the loads were 

applied under displacement control in small increments, average value of 50kN, up 

to failure. Each series will be discussed separately in the following sections.

7.2. Experimental observations

7.2.1 Series 1

This series was designed to test the validity of the direct design approach using
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orthogonal reinforcement for two span continuous deep girders, whose span to depth 

(L/D) ratio was 1.07.

Four girders denoted TRGRAS1, TRGRAS2, TRGRAS3 and TRGRAS6 were tested 

and had similar cross— sections, span lengths and thicknesses, as shown in Figure

(7.1). Girder TRGRAS1 and TRGRAS2 had the same amount and distribution of 

main reinforcement, but girder TRGRAS1 had twice the shear reinforcement in the 

interior shear spans. Test girders TRGRAS2 and TRGRAS3 had similar amounts of 

shear reinforcement, but TRGRAS3 had a higher amount of main reinforcement. 

Girders TRGRAS3 and TRGRAS6 were designed for the same design ultimate load, 

but the distribution of steel in girder TRGRAS6 was placed according to the rules of 

CIRIA Guide 2P], which is the same as that suggested by the CEB—FIP Model 

Code!2] and Leonhardt and Waltherl^]. The steel properties of girder TRGRAS3

were different from those of TRGRAS6, consequently the amount of steel provided 

was not exactly the same, otherwise a direct comparison in terms of steel area could 

have been made.

Transfer Girder TRGRAS1

Girder TRGRAS1 was designed for an ultimate design load of 850kN, but for

practical reasons was reinforced with more shear reinforcement in the interior shear 

span than required by the direct design technique.

The first visible crack appeared at the bottom of the beam soffit at a load of

200kN. On further increase in loading, more cracks spread in the flexural zone of 

the beam and started propagating towards the loading points. Before cracking, steel 

strains were very small. As cracking progressed the steel strains started to increase 

and the displacements became considerably higher than the pre— cracking values. On 

a further increase in the load, cracks became wider and at 986kN inclined cracks 

appeared in both internal shear spans of the beam with a loud "thud" and the load 

suddenly dropped. The steel strains were also high, at some points the steel had 

yielded. The girder continued to take more load after the formation of the diagonal
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cracks. The steel strains show that, at some points, forces in bars which originally 

took compression began to reduce and even became tensile.

The girder finally failed in a clear shear failure mode as shown in Figure (7.2).

Failure occurred in one of the interior shear spans with a diagonal crack running 

from the inside edge of the support towards the outside edge of the loading point. 

The other span was severely cracked and looked as if it had also lost its stiffness

and strength. Some crushing and spalling of concrete at the loading point was 

noticed as well. At failure all the steel except the stirrups had yielded at the

measured points and was well above the yield stress.

Figure (7.3) illustrates the load deflection curve, and shows that the behaviour was 

linear up to the cracking of the concrete. This confirms that reinforced concrete 

beams behave much like plane concrete beams up to the concrete cracking or the 

yielding of the steel, whichever is first. The plots of longitudinal and transverse steel 

strains, shown in Figures (7.4) to (7.7), indicate that the bars carried relatively small 

strains before cracking. The steel strain in the bottom bars, along the span length, 

are plotted in Figure (7.8). This shows that the strains were more or less uniform 

along the beam length and did not behave according to the ordinary bending 

moment diagram of the beam.

The maximum crack width was monitored as shown in Figure (7.9). From this the

0.3mm crack width serviceability load was determined to be 900kN. Figure (7.10) 

shows the variation of concrete surface strains for increasing load. These tend to 

show a marked increase after the shear crack appeared at load 900kN.

It is worth noting that the beam was able to take a considerable increase in load 

after the diagonal crack formed. This is due to the development of arching action in 

conjunction with dowel action of the main reinforcing bars and interface shear 

transfer across the shear cracks. The ratio of the serviceability load to design 

ultimate load was 1.06 and the ratio of ultimate load to design ultimate load was



1.56. This confirms that serviceability behaviour of the design technique is good, 

whilst the measured ultimate load indicates a fair safeguard against collapse. The 

overall behaviour confirms the validity of the direct design technique.

Transfer Girder TRGRAS2

This girder was also designed for an ultimate load of 850kN. It was reinforced with 

the same amount of main reinforcement as TRGRAS1, but with half the shear 

reinforcement in the interior shear spans.

The first visible crack appeared at the bottom of the beam soffit at 250kN. As the 

load increased, the cracks started propagating and extending towards the loading 

point. Steel strains were very small before cracking, but as cracking progressed the 

steel strains increased. At 1050kN a diagonal crack occurred with a loud "thud", 

immediately reaching a width of 1,3mm and causing the deflections to increase 

drastically. At this load the steel started yielding at the centre of the girder span in 

the bottom bars, and the steel strains increased to almost twice the total at the 

previous increment. On further loading, cracks widened and the beam continued to 

take load. Finally, at a load of 1216kN the beam failed in a shear failure mode 

with some crushing of the concrete at the load and supporting points. At failure, all 

steel was carrying tensile forces and the strains in all steel bars were well above the 

yield value, except the top bars. The crack pattern at failure is shown in Figure 

(7.11).

The load deflection curve is shown in Figure (7.12). It illustrates that after the 

formation of the inclined crack, the stiffness of the girder reduced considerably. The 

steel strain in all bars at the centre of the span is shown in Figure (7.13), these 

demonstrate similar behaviour to the load deformation behaviour. The steel strains in 

the top bar, 200mm from the centre of the intermediate support, are illustrated in 

Figure (7.14). The distribution of strain along the bottom bar is shown in Figure 

(7.15) and is different from ordinary beam behaviour.



Crack widths were monitored at various points and are illustrated in Figure (7.16). 

From these, the 0.3mm crack width serviceability load was determined to be 1050kN. 

Finally, Figure (7.17) shows the variation of concrete surface strains for increasing 

load, these show a marked increase after the shear crack at load 1050kN.

Since concrete strength was higher in this girder, the shear crack appeared at a 

higher load, therefore, the 0.3mm crack width for serviceability also occurred at a 

higher load. The smaller amount of shear reinforcement, however, reduced the 

ultimate load, therefore, the ratio of serviceability load to design ultimate load (1.24) 

is higher than for girder TRGRAS1, and the ratio of ultimate load to design 

ultimate load (1.43) is smaller. However, the overall behaviour in serviceability and 

the ultimate stage is still satisfactory, indicating the suitability of the direct design 

technique. The comparison between TRGRAS1 and TRGRAS2 indicates that when 

the amount of reinforcement is closer to that required by the direct design 

equations, the range between serviceability limit state and ultimate limit state is 

smaller. This tends to confirm that the concept of simultaneous yielding is 

reasonable.

Transfer girder TRGRAS3

In the previous two girders, the required shear reinforcement was very small, but 

using the minimum bar size of 6 mm, the amount of shear reinforcement provided 

was substantially greater than this. In this girder an attempt was made to avoid this 

problem. The girder was designed to provide shear reinforcement which was closer 

to that required by the direct design equations. The idea was to provide the same 

minimum shear reinforcement as in girder TRGRAS2 and to calculate the design 

load which corresponds to this amount. It was not possible to calculate this precisely 

because of geometrical constraints and some other consequences relating to the 

test-rig. However, a design load of llOOkN was adopted. This higher design load 

obviously required a substantial increase in the amount of main reinforcement, but 

the shear reinforcement was the same as girder TRGRAS2.



The first visible crack occurred at 300kN at the centre of the beam span near the 

soffit. Some flexural cracks occurred in the central span region and propagated 

towards the loading points as the load was increased. When the load reached 

lOOOkN, it dropped suddenly to 890kN but then started to increase again until, at 

920kN, a shear crack suddenly appeared with a loud "thud" in one of the internal 

shear spans. At 1050kN, the steel started to yield in the centre of the span and the 

beam finally failed at 1500kN in a clear shear failure. At failure, some crushing of 

concrete was noticed at the load and support points. It was also observed that there 

had been about 7mm of relative displacement along the shear planes of the shear 

cracks, indicating that dowel action must have come into play. Also all the steel had 

yielded except in some of the top bars. The crack pattern at failure is shown in 

Figure (7.18).

The load deflection curve, in Figure (7.19), shows that behaviour was linear before 

cracking and that the girder exhibited a little ductility after diagonal cracking. 

Figures (7.20) to (7.23) illustrate the steel strain curves and show that some of the 

main bars started to depart from linear behaviour at about 600kN, whilst others did 

not start to behave nonlinearly until the shear cracks occurred at about 920kN. Steel 

strains along the bottom bars are presented in Figure (7.24), these show a different 

distribution from ordinary beam behaviour.

Crack widths were monitored at four crack points, as shown in Figure (7.25). From 

these the 0.3mm crack width serviceability load was determined to be 970kN. 

Finally, Figure (7.26) shows the variation of concrete surface strains for increasing 

load. These also tend to show a marked increase after the shear crack at about 

920kN.

It is worth noting that the beam was able to take a considerable increase in load 

after the diagonal shear cracks formed. This is due to the development of arching 

action in conjunction with dowel action from the main reinforcement and interface 

shear transfer across the shear cracks.
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The ratios of the serviceability load to design ultimate load (0.88) and measured 

ultimate load to the design ultimate load (1.36) are smaller than for girder 

TRGRAS2 (1.24 and 1.43 respectively). The comparison of TRGRAS2 and TRGRAS3 

indicates that when the amount of reinforcement is closer to that required by the 

direct design equations, the ultimate load is closer to the design load. The overall 

behaviour in serviceability and ultimate stage is still satisfactory.

Transfer girder TRGRAS6

This girder was designed for the same load as the previous girder i.e HOOkN. The 

main difference was the placement of main steel. The amount of main steel 

calculated according to direct design was distributed following the procedure given by 

CIRIA Guide 2 t1].

The first visible crack occurred at 150kN at the centre of the span near the soffit.

As the load was increased, more flexural cracks occurred in the central span region 

and propagated towards the loading points. Although cracks were spreading, the steel 

strains and deflections were approximately linear until 700kN. At llOOkN, shear

cracks suddenly appeared with a loud "thud" in both shear spans of the beam,

running from the loading point to the inside face of the support in both interior 

and exterior shear spans. After the shear cracks appeared, the steel strains showed 

an increase, but the steel did not yield. At 1300kN, the steel started to yield in the 

centre of the span and finally the beam failed at 1486kN in a clear shear failure

mode. At failure, some crushing of concrete was noticed at the load and supporting

points. All the steel had yielded at failure, except the top bars and stirrups and the 

top bars over the intermediate support. The crack pattern at failure is shown in 

Figure (7.27).

The . load deflection curve is shown in Figure (7.28), and illustrates that the 

behaviour was linear before cracking. Figures (7.29) to (7.32) illustrate the steel 

strain curves and show that they started to depart from linear behaviour at about 

700kN. The steel strain along the bottom bars, at various points, is shown in Figure



(7.33). These show a different distribution from ordinary beam behaviour.
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Crack widths monitored at various points are illustrated in Figure (7.34). From these 

the 0.3mm crack width serviceability load was determined to be 900kN. Figure

(7.35) show the variation of concrete surface strains for increasing load. These tend 

to show a marked increase after HOOkN.

Again the beam was able to take considerable increase in load after the formation 

of diagonal shear cracks due to the arching action, dowel action of reinforcing bars, 

and interface shear transfer across the shear cracks.

The ratio of serviceability to design ultimate load (0.8) is slightly smaller than for

girder TRGRAS3 (0.88), whereas the ratio of ultimate load to design ultimate load

(1.35) is practically equal. It would appear that when the reinforcement is distributed 

according to CIRIA Guide 2, behaviour is marginally worse than the direct design

distribution.

7.2.2 Series 2

This series consisted of two continuous girders denoted TRGRAS4 and TRGRAS5, 

whose span to depth (L/D) ratio was 1.61.

Both girders had similar cross sections, span lengths, thicknesses, amount of shear

and main reinforcements, loading conditions, but different distributions of the main 

reinforcement. Girder TRGRAS4 was reinforced according to the averaging procedure 

used in the direct design technique, while girder TRGRAS5 was reinforced using the 

distribution given by CIRIA Guide 2^].

Transfer girder TRGRAS4

This girder was designed for an ultimate load of 850kN. Apart from the (L/D) ratio 

and the amount of reinforcement this girder was identical to girder TRGRAS2. The 

aim of this test was to ascertain the effect of the span to depth (L/D) ratio on the



ultimate and serviceability behaviour, and the failure mechanism.
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The first visible crack occurred at lOOkN in the beam soffit in the maximum tensile 

zone. On a further increase in the load, more flexural cracks occurred in the 

central span region and propagated towards the loading points. At 600kN, cracks 

started to appear over the top of the intermediate support in the tensile zone. A 

further load increase caused more cracks to appear in this region and extend towards 

the support. Up to 749kN the deflections and the steel strains were very small and 

were approximately linear. Steel started yielding at the centre of the girder span at 

a load of 789kN. At 900kN a shear crack appeared with a loud "thud" in one of 

the internal shear spans. Final failure of the beam was at 1143kN in a shear mode. 

All the steel had yielded except the stirrups and the top bars. The final crack 

pattern at failure is shown in Figure (7.36).

The crack pattern indicates that the cracks over the intermediate support are similar 

to those at the mid— span of the girder. This crack pattern was different to the 

pattern found in the girders of series 1 and confirms that as the span length of a 

girder increases, the behaviour changes from deep beams towards ordinary beams.

However, the behaviour is still in the range of deep beams, because the flexural

cracks appeared first in a positive bending moment region rather than in a region of 

negative bending moment existing over the intermediate support.

The load deflection curve in Figure (7.37) exhibited a different behaviour in 

comparison to the previous series. The deflections were higher which was according 

to expectations, but the shape of the curve suggests much greater ductility. The

behaviour was linear before cracking, Figures (7.38) to (7.41) show that the steel

strain curves were approximately linear up to 600kN. The steel strain in the bottom 

bars at various points along the beam length are shown in Figure (7.42). Although 

this beam has a larger length than the previous series, this strain distribution is still 

different from ordinary beam behaviour.



Crack widths were monitored at several points and are illustrated in Figure (7.43). 

From these, the 0.3mm crack width serviceability load was determined to be 800kN. 

Figure (7.44) shows the variation of concrete surface strains for increasing load, 

these tend to show a marked increase after about 600kN.

The ultimate load was closer to the design ultimate load than in the previous series, 

but as before the beam still took a considerable increase in load after the formation 

of inclined crack and behaved with an arching action.

The ratios of serviceability load to design ultimate load (0.90) and measured ultimate

load to design ultimate load (1.27) indicate satisfactory serviceability and ultimate 

behaviour. Although the amount of reinforcement provided was higher than in girder 

TRGRAS2, the serviceability and ultimate strength are smaller. This can in part be

attributed to different material properties. However, the trend of load deflection,

steel strain curves and crack pattern indicate a different behaviour than girder 

TRGRAS2. In particular, the cracking over the intermediate support is much more 

extensive and the load deflection and steel strain curves suggest that ductility was 

considerably higher in TRGRAS4 than TRGRAS2.

Transfer girder TRGRAS5

This girder was also designed for an ultimate load of 850kN. It was reinforced with 

the same amount of reinforcement as TRGRAS4, but the reinforcement was placed 

according to CIRIA Guide 2.

The first visible crack occurred at lOOkN, at the centre of the span near the soffit. 

As the load increased the cracks propagated and extended towards the loading 

points. The deflections and steel strains were very small before cracking. At a load 

of 650kN cracking started above the intermediate support. With a further increase in 

load, more cracks in this region spread and extended towards the intermediate 

support. At 800kN, a shear crack appeared with a loud "thud" in one of the 

internal shear spans. On the next load increment, another shear crack appeared in



the other internal shear span again with a loud "thud", along a line joining the 

support and loading point. However, the girder was able to sustain further increases 

in load and at an increment before failure, the flexural cracks over the intermediate 

support became approximately 8mm wide and extended to the intermediate support 

indicating that flexural failure was about to occur. The crack pattern indicates that 

the cracks over the intermediate support are severe and are responsible for the 

failure in the girder Finally, the beam failed at 1243kN in a flexure-shear failure 

mode. All the steel had yielded except the top bars at the centre of the beam span 

and the stirrups. The crack pattern at failure is shown in Figure (7.45).

The crack pattern is different from the crack patterns of girders in series 1, and 

suggests that the behaviour is changing from deep beam towards ordinary beam 

behaviour.

The load deflection curve in Figure (7.46) illustrates that the behaviour was linear 

up to cracking but after cracking there was a fair amount of ductility. The steel 

strain curves for all bars are shown in Figures (7.47) to (7.50). These demonstrate 

that the strains were very high in the steel over the top of the intermediate support 

as in ordinary beams, but the distribution was not the same as the ordinary beams. 

The steel strain in the bottom bars at various points along the span length is shown 

in Figure (7.51).

Crack widths were monitored at several points and are illustrated in Figure (7.52). 

From these, the 0.3mm crack width serviceability load was determined to be 650kN. 

Figure (7.53) shows the variation of concrete surface strains for increasing load, 

these show a marked increase after about 650kN.

The ratio of serviceability to design ultimate load (0.76) is smaller than for girder 

TRGRAS4 (0.90), whilst the ratio of measured ultimate load to design ultimate load 

is higher (1.38 to 1.27). This might be attributed to the higher concrete material 

properties of girder TRGRAS5. The comparison of these two girders indicates that



CIRIA Guide 2 distribution does not give as satisfactory a serviceability behaviour as 

that obtained by the direct design technique. Better crack control is achieved because 

the reinforcement is placed throughout the beam depth. In addition to that the 

failure mode changes from shear to flexural mode.

7.2.3 Series 3

This series was designed to test the validity of the direct design approach for skew 

reinforcement in two span continuous deep girders. It was expected that skew 

reinforcement would give better ultimate and serviceability behaviour.

Two girders, TRGRAS7 and TRGRAS8, were tested and had identical geometry, 

loading conditions, amount and distribution of main and shear reinforcement as 

girder TRGRAS2 but skew reinforcement was used instead. The skew reinforcement 

in girder TRGRAS7 had an angle of 15° with the x—axis and 10° in girder 

TRGRAS8.

Transfer girder TRGRAS7

This girder was designed for an ultimate load of 850kN. The required amount of 

reinforcement was smaller than for transfer girder TRGRAS2, but in order to make 

a direct comparison the same amount was provided as girder TRGRAS2. Each span 

had a different configuration of the skew angle. In one span a sharp bend was 

introduced at the centre of the span. In the other span a flat transition was 

introduced between the bends, the length of this transition being equal to the length 

of the load bearing block.

The first visible crack occurred at 250kN at the centre of the span near the soffit. 

As the load increased, more flexural cracks occurred in the central span region and 

propagated towards the loading point. It was observed that the cracking was more 

severe in the span which was reinforced with the sharp skew angle. Also, the 

deflections in this span were higher than the other. At 857kN, yielding started in 

the span which was reinforced with the sharp skew angle, and at 1050kN a shear
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crack occurred in the same internal shear span. At 1250kN a shear crack appeared

with a loud "thud” in the other internal shear span. When the load reached 1346kN

the span with the sharp angle failed in a clear shear mode. From the crack pattern 

it was clear that the other span could take more load. Hence the load was released 

and the other span of the girder was tested on its own. The retesting was carried

out in order to obtain the ultimate strength only, since the girder was already 

cracked and with repositioning the whole set-up, the load deflection behaviour 

would be different than the original. This span of the girder failed in shear at a 

load of 720kN (i.e overall beam load of 1440kN). At failure all the steel was well 

above the steel yield point except the top bars and stirrups. The crack pattern at 

failure is shown in Figure (7.54).

The load deflection behaviour of both spans of the girder was approximately similar.

The load deflection curve in Figure (7.55) indicates that behaviour was linear before 

cracking. The steel strain curves are shown in Figures (7.56) to (7.58), and show 

that steel strain behaviour was linear up to 700kN. The comparison of the steel 

strains in the bottom bars at the centre of each girder span are given in Figures

(7.59) and (7.60), which shows that behaviour is more or less identical. The steel 

strain in the bottom bars at various points along the span length (Figure (7.61)) 

indicates that for up to 60% of the ultimate load, the strain in the bottom bar was 

fairly constant.

Crack widths were monitored at several points and are illustrated in Figure (7.62).

From these, the 0.3mm crack width serviceability load was determined to be 810kN. 

Figure (7.63) shows the variation of concrete surface strains for increasing load, 

these show a marked increase after about 1050kN.

The ratio of serviceability load to design ultimate load (0.95) is smaller in 

comparison to girder TRGRAS2 (1.23) this might be due to the higher material 

properties of TRGRAS2. However, the ratio of measured to design ultimate load 

(1.67) compared to girder TRGRAS2 (1.43) indicates that skew reinforcement allows



a higher load. The load deformation behaviour also indicates that even after the 

formation of diagonal cracks, the girder took considerably more load in comparison 

TRGRAS2. This suggests that skew reinforcement, which is approximately 

perpendicular to the load path joining the load bearing block to the support points, 

is more efficient than horizontal reinforcement. Finally, it would appear that 

reinforcement which is gradually bent, is better than that with a sharp change in 

skew angle.

Transfer girder TRGRAS8

This girder was also designed for an ultimate load of 850kN and was reinforced with 

the same amount of reinforcement as the previous girder. The angle of skew, 

however, was 10° to the x—axis. In a similar fashion to girder TRGRAS7, this 

girder was reinforced with two different configurations of steel, i.e one span was 

reinforced with a sharp skew angle whilst the other span was reinforced with a 

gradual change of angle by introducing a flat transition length, equal in dimension to 

that of the load bearing block, at the centre of the beam span.

Prior to the test starting properly, a sudden load of 500kN was accidentally applied, 

which caused precracking of the beam and some permanent deformation in the 

girder. Because of this, there was no precise idea of the correct serviceability load 

and crack widths. Therefore crack widths were not recorded.

At 950kN the steel started yielding at the centre of the span which was reinforced

with the sharp skew angle. This span finally failed at a load of 1300kN. After the

failure of one span, the other span was retested alone, but it did not take a higher 

load. The yielding history of the steel showed that all the steel had yielded except 

for the top bars. The crack pattern at failure is shown in Figure (7.64).

The load deflection behaviour of both spans of the girder were approximately

similar. The load deflection curve is shown in Figure (7.65) and the steel strain 

curves in Figures (7.66) to (7.68). Though the beam was initially cracked, the curves



still indicate that nonlinearity started after 900kN. Comparison of the strains in the 

bottom and top bars in both spans is presented in Figures (7.69) and (7.70) and 

show quite similar behaviour. The strain distribution in the bottom bar (Figure 

(7.71)) indicates that strain in the steel bar is fairly constant up to 80% of the 

ultimate strength.

Figure (7.72) shows the variation of concrete surface strains for increasing loading, a 

marked change is evident after 900kN.

The ratio of serviceability load to design ultimate load (0.36) is poor in comparison 

to girder TRGRAS2 (1.23); however this is not a true reflection of behaviour 

because of the accidental cracking before the test, so that there was no precise idea 

of the serviceability load. However, the ratio of measured ultimate load to design 

ultimate load (1.54) indicates that skew reinforcement takes higher loads than the 

orthogonal reinforcement. In addition, the comparison of this girder with TRGRAS7 

indicates that the 15° angle of skew is better than 10° when considering the 

ultimate strength.

7.2.4 Series 4

This series consisted of single span deep girders with web openings, namely 

TRGRAS9 and TRGRAS10. Girder TRGRAS9 was designed with two openings. One 

opening (500*500mm) was placed in the upper mid— depth of the beam in one shear 

span and the other (500*500mm) was placed in the lower mid— depth of the beam 

in the other shear span. Girder TRGRAS10 was designed with three openings, two 

(400*500mm) were placed in one shear span in the upper and lower half, and one 

(500*500mm) was placed in the other shear span at the mid—depth. The aim of 

this series was to test the direct design technique when the load path is intercepted 

by perforations and to study the behaviour of such beams. Both beams were 

designed for a load of lOOOkN.

Transfer girder TRGRAS9



The first visible crack occurred at 200kN at the beam soffit and the corners of the 

openings. The cracks mostly propagated around and widened at the corners of the 

openings. On further increase of load the concrete surface strains became higher at 

the corners of the upper opening. This opening, which interrupted the load path to 

a larger extent than the bottom one, was severely cracked. As the new cracks 

formed the load dropped considerably. However, attempts were made to continuously 

increase the load either from the dropped point to the next intended increment or 

by unloading to zero load and then increasing again. Several times the load was 

reduced to zero and applied again as cracking progressed around the openings.

At 437kN cracking became more severe in areas away from the holes, and steel 

strains started to increase more rapidly. At 796kN, yielding occurred at the centre of 

the span in the bottom bars and also in the bars underneath and above the top 

opening. Before failure shear cracks occurred in both shear spans over the top and 

bottom of the openings, indicating that the structure was converting into a 

mechanism at ultimate load by the rotation of the block between the shear crack at 

the exterior bottom corner of the top opening and the shear crack running from the 

load bearing block to the top corner of the opening (Figure 7.73). Finally the beam 

failed in a clear shear mode with a shear crack running from the loading point to 

the exterior corner of the top opening. Most of the steel had yielded except the 

transverse steel which took compressive stresses throughout the loading history. The 

crack pattern at failure is shown in Figure (7.74)

The load deflection curve showing the load drops is illustrated in Figure (7.75). The 

steel strains in longitudinal and transverse steel are shown in Figures (7.76) to 

(7.79), these show that most of the steel started nonlinear behaviour from 450kN. 

The strain distribution in the bottom bars is shown in Figure (7.80) which 

demonstrates that the behaviour is quite different from ordinary beams.

Crack widths were monitored at several points and are illustrated in Figure (7.81). 

From these, the 0.3mm crack width serviceability load was determined to be 400kN.
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Figure (7.82) shows the variation of concrete surface strains for increasing load.

These show a marked increase after about 300kN.

It should be noted that the serviceability load was based on a crack width which 

occurred in local zones around the openings. This may not represent true 

serviceability behaviour because stress concentrations at the corners of openings cause 

severe cracking, and normally such zones would be strengthened with extra diagonal 

reinforcement, provided on an ad hoc basis. Hence, the ratio of the serviceability 

load to the design ultimate load (0.40) is not satisfactory.

However the ratio of the measured ultimate load to the design ultimate load (1.05) 

is satisfactory. It would appear from the results that the opening in the upper part 

of the beam interrupted the load path to a greater extent, and so was more severely 

cracked.

Transfer girder TRGRAS10

The first visible crack occurred at 250kN near the top corner of the opening, in the 

shear span with the two openings. After that, the majority of crack propagation 

occurred around the top opening. At 550kN, a diagonal crack running from the 

outside edge of the loading point to the exterior corner of the top opening 

appeared, accompanied by a diagonal crack running between the inside corner edge 

of the top opening to the far side edge of the bottom opening. During the 

progression of these cracks, the load continuously dropped. Attempts were made to 

increase the load either from a dropped point to a new intended increment level or 

by unloading to zero and then loading in small increments until new cracks 

developed or failure occurred. Steel strains showed linear behaviour until the load 

reached 600kN. The failure mechanism was the rotation of the block in between the 

shear cracks above and below the top opening and a diagonal crack from the nearer 

corner of the bottom opening towards the support (Figure 7.83). Steel at the top of 

the upper opening started yielding at a load of 891 kN, after which the load dropped 

to 600kN. After this the beam did not attain the higher load again. At failure the
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bottom bars and the bars at the bottom and top of the upper opening had yielded, 

the remainder had not yielded. The crack pattern at failure is shown in Figure 

(7.84).

The load deflection curve including the load drops is shown in Figure (7.85). It

illustrates that the behaviour was more flexible in comparison to the solid girders, 

due to the earlier severe cracking around the opening. The steel strains in the 

longitudinal and transverse steel are shown in Figures (7.86) to (7.90), these show 

that the curves are approximately linear up to 600kN.

Crack widths were monitored at several points and are illustrated in Figure (7.91).

From these, the 0.3mm crack width serviceability load was determined to be 500kN.

Figure (7.92) shows the variation of concrete surface strains for increasing load.

These tend to show a marked increase after about 500kN except at points near the 

corners of the openings, which showed a slightly earlier increase.

The ratios of serviceability to design ultimate load (0.5) and ultimate to design 

ultimate load (0.89) are not satisfactory. This suggests that when the load path is

severely intercepted, reinforcement design based on the averaging procedure is unsafe 

unless special precautions are taken around the openings. Both this and girder 

TRGRAS9 exhibited poor serviceability behaviour and although the ultimate behaviour 

of girder TRGRAS9 was just satisfactory but girder TRGRAS10 was not, which deals 

the greater extent of interception of the load path by opening, the less satisfactory 

the behaviour when the openings are not additionally strengthened over and above 

that required by the design procedure used here.

7.2.5 Series 5

This series consisted of one large scale solid deep girder, namely TRGRAS11. This

girder was reinforced as close as possible to the amount required by the direct 

design theory by reducing bar diameters at selected points throughout the girder. The 

aim was to test the theoretical assumptions and to compare the behaviour of this
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reinforcement field with those using the average or maximum stress envelopes. The 

girder was designed for a load of lOOOkN.

Transfer girder TRGRAS11

The first visible crack occurred at a load of 250kN near the beam soffit. With 

increasing load, more cracks appeared in the maximum tensile zone at points where

steel bar diameters were reduced to the required values. Initially cracks propagated

vertically upwards from the beam soffit. At about the design load, some major 

cracks appeared along the line joining the support and the loading point. As 

cracking progressed the steel started taking more stress. At 1153kN, the steel started 

yielding in the bottom bars and the beam finally failed at a load of 1750kN in a 

clear shear failure. All the main and shear reinforcement had yielded throughout the 

structure and were well above the yield strain at failure except at points in the

stirrups which were carrying compressive stresses. The crack pattern at failure is 

shown in Figure (7.93).

The load deflection curve of the girder in Figure (7.94) illustrates that, before 

cracking, behaviour was linear. The strain in steel is shown in Figures (7.95) to

(7.96) and illustrates that nonlinearity starts after 500kN. The distribution of steel 

strain in various bars along the length of the girder is shown in Figures (7.97) to 

(7.103), these clearly show that the distribution is different from ordinary beams.

Crack widths were monitored at several points and are illustrated in Figure (7.104).

From these, the 0.3mm crack width serviceability load was determined to be 1050kN.

Figure (7.105) shows the variation of concrete surface strains for increasing load.

These show a marked increase after the shear crack at a load of 1050kN.

The ratio of the serviceability to design load (1.05) is satisfactory, whereas the ratio 

of ultimate load to design load (1.75) is higher than expected. Some of this can be 

attributed to the contribution of the dowel action of main reinforcing bars and 

aggregate interlocking in transferring shear. However, the reinforcement reduction at



selected points throughout the girder means that at no point was the steel less than 

that required, and in some places it was much higher than required. The averaging 

procedure used elsewhere in this work produced ultimate loads on average 45% 

higher than the design load. This is less, because some regions are underreinforced 

and others are over-reinforced, producing less favourable load paths. Lint4] used 

maximum stress envelopes and observed 100% higher ultimate loads than design 

ultimate loads.

7.3 General discussion of experimental results

The detailed discussion of experimental behaviour of individual girders was given in 

section 7.2. This section summarizes the results under the following headings.

(i) Deflections

(ii) Strains

(iii) Crack propagation and crack widths

(iv) Mode of failure

(v) Limit state behaviour

7.3.1 Deflections

The measurement of net deflections in deep beams is a challenging task because the 

deflections are always small and the isolation of effects due to the squeezing of 

plaster or support settlements are difficult to quantify. Neverthless Figures (7.106) 

and (7.107) attempt to compare the load deflection curves of groups of girders 

tested in this study.

In all two span continuous girders, prior to the initiation of cracks, very small 

deflections were observed and the load deflection relationships were approximately 

linear. After the initial flexural cracking, subsequent load increases caused increases 

in crack lengths and widths and accordingly the flexural stiffness of the section 

progressively deteriorated. After the occurrence of diagonal cracks, deflections 

increased rapidly and the final failure was imminent except for the girders with skew
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reinforcement, in which case the final failure was considerably later. The deflections 

were larger in girders having span to depth (L/D) ratio equal to 1.61 (TRGRAS4 

and TRGRAS5) than those girders having span to depth (L/D) ratio equal to 1.07.

In general, deflections were small in all continuous girders and were of the order of 

1.0mm at 80% of the measured ultimate load. The serviceability limit state criterion, 

based on BSCP8110t^], was not attained in those girders whose span to depth ratio 

was 1.07, whereas girders having span to depth (L/D) ratio equal to 1.61 attained 

serviceability behaviour at about ultimate load stage. Thus, the serviceability limit

state, with respect to deflection, is not a problem.

The load deflection curves of girders with perforations indicate that behaviour was 

linear up to 200kN, after which cracking started and the curves became nonlinear.

The load deflection curves of both girders are more or less similar. The stiffness of 

girder TRGRAS10 in the post—cracking range is less than girder TRGRAS9, which 

is to be expected because it had a greater area of openings interrupting the load 

path.

The load deflection curve of girder TRGRAS11 has a similar form to two span 

continuous girders, but the deflections are smaller than the perforated girders. 

However the curve indicates a unique behaviour in that there is no sharp increase in

deflection at the occurence of a diagonal shear crack. The deflection criterion for

serviceability limit state was not attained in this case.

7.3.2 Strains

The concrete surface strains were not consistent and at some critical points, cracks 

appeared and the demec gauges came off. Hence a comprehensive comparison from 

girder to girder cannot be made and only the steel strain will be discussed.

In general, the behaviour of steel strain was similar to the load deflection behaviour.



In all continuous girders, before cracking the behaviour was linear and relatively 

small strains existed. As cracking started a gradual increase of strain was observed in 

all bars including the stirrups. After the formation of a diagonal crack the steel 

started to yield, the stress rapidly increasing well into the work— hardening range.

For loads up to 75% of ultimate strength, the strain distribution along the length for 

girders having span to depth (L/D) ratio of 1.07, is approximately constant on

average. For girders having span to depth ratio equal to 1.61, the strain distribution

is constant up to 52% of the ultimate strength. The distribution becomes more like 

that in the shallow beams as stress redistribution take place.

The data also suggests that the steel strains are larger for higher span to depth 

ratios at all load levels. The yielding in all two span continuous girders on average 

at the load approximately equal to design load.

For girders with perforations early yielding of steel depends on the extent to which 

the load path is intercepted by the openings. Figures (7.76) and (7.84) reveal that in 

girder TRGRAS10 yielding started earlier than girder TRGRAS9. The yielding of 

steel, in the perforated deep girders, occurrred at 80% of the design load on 

average, which is lower than the design load. This might be due to the perforation

interception of the load path.

The strain distribution of girder TRGRAS11 shows evidence of arching action. The 

strain in reinforcement at various heights indicate that the main bars are carrying a 

constant force. The yielding of steel in a single span solid girder occurred at the 

design load

7.3.3 Crack propagation and crack widths

The formations of cracks can be conveniently classified into two major groups for 

two span continuous girders:
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(i) Flexural cracks, which started from the beam soffit and propagated towards the 

loading point, or started at the top above the intermediate support and propagated 

towards this support. It was generally observed that cracks did not occur until a load 

of 0.20 to 0.35 of the design ultimate load had been applied except for girder 

TRGRAS8, which was accidentally cracked before testing. In girders TRGRAS4 and 

TRGRAS5 with span to depth (L/D) ratio of 1.61 these cracks reached 0.3mm crack 

widths before the formation of a diagonal shear crack.

(ii) Shear (i.e diagonal splitting) cracks occurred after about after 68% of the 

measured ultimate load, originating from the inside face of the support to the 

outside edge of the loading point. In some beams parallel cracks formed. The shear 

crack was more severe in the interior shear span than the exterior shear span, as 

was expected, since the interior shear span carries a higher shear load.

Crack width curves (Figure (7.108) show that the maximum crack widths were 

greater in girders having a span to depth (L/D) ratio of 1.61 and consequently the 

serviceability loads, based on the maximim crack width criterion, were lower than for 

girders having a span to depth (L/D) ratio of 1.07.

For the beams with web openings, the initial cracks appeared in the region of the 

maximum tensile strain around the openings, propagating from the corner of the 

opening towards the support and loading points. The shear cracks occurred at about 

0.5 of the ultimate load running from the top exterior corner of the top opening 

towards the loading point. The monitored maximum crack width of TRGRAS9 and 

TRGRAS10 was of similar order. The maximum crack widths (Figure (7.109)) were 

wider than the solid girder, which is clearly due to the web openings.

7.3.4 Modes of failure

It was mentioned in Chapter Two that whatever the initial cracks in deep beams the 

eventual failure will be a type of shear failure, although it has been reported that 

premature failure such as bearing failure or the spalling and splitting of concrete 

near supports can occur. In this investigation all the tested girders exhibited a wide
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range of cracking, but the final collapse was a shear (i.e diagonal splitting) mode,

when the high force in the compression strut caused it to suddenly split. In the two

span continuous deep girders shear failure always occurred in one of the interior 

shear spans.

The modes of failure in perforated girders were also shear type over the top of the 

top opening. The shear cracks always occurred from the exterior corner of the top 

opening to the loading point and from the nearer corner of the opening to the 

support. At failure a block between these two shear cracks rotated and the load

path was destroyed. The summary of all the types of modes of failure is given in

Table 7.2.

7.3.5. Limit state behaviour
lÛj

7.3.5.1 Serviceable behaviour

Serviceability load according to BS 8110[5] is based on the one of the following 

criteria^

(a) Deflection limit of span/250

(b) Maximum crack width of 0.3mm

and normally, the minimum serviceability load of the two criterion is considered as 

the serviceability load for a particular section of the structure. Since deflections are

small in deep beams only the crack width criterion has been used and these are

summarized in Table 7.1. The average serviceability load for a two span continuous

girder is 0.91 of the design ultimate load, for a single span girder with web opening 

it is 0.45, and for single span solid girder it is 1.05.

In order to gain an idea of serviceability load, the ratio of serviceability load to

concrete compressive strength (Ps/fc') against X/D ratio is illustrated in Figure 

(7.110) for all the two span continuous girders. Because of the limited amount of 

data and the effect of other parameters on the data, it was difficult to suggest any 

equation for this relationship. However, the trend indicates that a larger shear span 

to depth (X/D) ratio produces lower serviceability behaviour.
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7.3.5.2 Ultimate limit state

The measured ultimate loads for all the tested girders are presented in Table 7.1. 

The ultimate strengths are different for all girders due to differences in concrete 

strengths, difference of shear reinforcement, main reinforcement, L/D or X/D ratios 

or because of skew reinforcement. The ratio of ultimate strength to concrete 

compressive strength (Pu/fc') against percentage of main reinforcement (pt), 

percentage of shear reinforcement (ps) and shear span to depth ratio (X/D) for all 

continuous girders are illustrated in Figures (7.111) to (7.113). Again, because of the 

limited amount of data and the effect of other parameters on the data, it is difficult 

to suggest any relationship for predicting the ultimate strength of a girder. However, 

the ultimate strength would appear to be affected by the X/D ratio, when the span 

length of girder was increased the ultimate strength decreased considerably (i.e girder 

TRGRAS4 in comparison with girder TRGRAS2).

An examination of ultimate strength of both perforated girders reveals that the 

ultimate strength depends upon the extent to which an opening interrupts the load 

path joining the bearing block and the loading and support points. Serious strength 

reduction occurred in girder TRGRAS10 (which had two opening in one shear span) 

as compared to girder TRGRAS9 (which had one opening in each shear span). Also 

the comparison of the perforated girders with the solid girder indicates significant 

strength reductions, again because the load path is intercepted by the openings.

7.4 Appraisal of direct design method 

Two soan continuous girders

All the two span continuous deep girders designed by the direct design technique in 

conjunction with the proposed averaging procedure, produced satisfactory overall 

behaviour.

(a) The serviceability behaviour based on 0.3mm crack width always occurred at 80% 

to 125% of the design load.

(b) The measured ultimate loads were 25% to 60% higher than the design ultimate
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loads, which gives an intrinsic safety factor against collapse.

(c) First yielding of steel occurred approximately at the design loads or in some 

cases later. Most of the steel had yielded near ultimate conditions. This suggests that

redistribution of stresses was possible as that failure occurring in local regions, and

that the ductility requirements were adequate.

(d) Crack widths were not severe because of the control given by the better

distribution of reinforcement obtained using the direct design technique rather than 

CIRIA Guide 2.

(e) The use of skew reinforcement produced significantly higher ultimate and

serviceability loads than the orthogonal reinforcement.

Perforated girders

When applying the direct design technique to deep girders in which the load path is 

intercepted by web openings the proposed averaging procedures leads to difficulties in 

coping with the corners of the openings, where a high concentration of stress exists.

In these situations the corners should be considered as local zones with additional

diagonal reinforcement being provided. The greater the extent of the load path by 

the web openings interception the less satisfactory the behaviour.

Special girder

The behaviour of the solid single span girder which at selected points was reinforced 

as closely as practically possible to that required by the direct design equations, 

provided an ultimate load 15% higher than the design load. This may be explained

by the dowel action of the reinforcing bars and aggregate interlocking which

contribute the shear transfer. Also the fact that reinforcement was provided higher 

than calculated due to the practical reasons. In comparison to reinforcement provided 

on averaging procedure, the ultimate behaviour is satisfactory.
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TABLE 7.2

Failure modes of tested girders

G irder No. Mode o f  f a i l u r e

TRGRAS1 Shear f a i l u r e

TRGRAS2 Shear f a i l u r e

TRGRAS 3 Shear f a i l u r e

TRGRAS4 Shear f a i l u r e

TRGRAS5 F lex u re -sh e a r  f a i l u r e

TRGRAS6 Shear f a i l u r e

TRGRAS7 Shear f a i l u r e

TRGRAS8 Shear f a i l u r e

TRGRAS9 Shear f a i l u r e

TRGRAS10 Shear f a i l u r e

TRGRAS11 Shear f a i l u r e
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Figure (7.73) Failure mechanism of girder TRGRAS9
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Figure (7.83) Failure mechanism of girder TRGRAS10
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FIG (7. 88) Load vs longitudinal s t e e l  s t ra in s  at  450mm
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CHAPTER EIGHT 

THEORETICAL INVESTIGATION AND DISCUSSION
8.1 Introduction

The aim of this chapter is to provide some perspective on the application of the 

nonlinear finite element method to the tested girders. At present, this is the main 

technique for predicting the complete nonlinear behaviour of existing designs. 

Although in the last three decades, much has been learned about this technique, its 

reliability depends on the ingenuity and skill of the engineer. This is because it is 

an approximate iterative method based on various assumptions and, depending on 

their validity, it may or may not provide a true picture of behaviour. Experience 

gained in nonlinear analysis suggests that some experimental verification is essential 

when complex behaviour is to be analysed to give confidence for conducting 

parametric studies once the reliability of the developed model for a particular 

problem has been validated.

Finite element analysis of reinforced concrete predicts the general behaviour of the 

structure including load— deformation, stress flow, crack patterns, yielding of steel, 

and failure mechanism. It has so far been difficult, if not impossible, to predict 

accurately every aspect of the actual behaviour. Many comparisons have used the 

stiffness and ultimate load, that is the load deformation behaviour. However, a good 

agreement with experimental results is relatively straightforward to achieve, by 

adjusting certain factors, such as quasi— material parameters like the shear retention 

and tension stiffening factors. Other consequences resulting from adjusting these 

parameters on the general structural behaviour, such as crack pattern, yielding of 

steel, stress and strain history in the structure, and the failure mechanism, are not 

always considered thoroughly. For example, Al—Manaseer and Phillips^] have 

recently demonstrated the effect of the quasi- material parameters on load 

deformation behaviour, cracking and failure mechanisms of the structure, which warns 

analysts not to rely solely on just load-deformation behaviour.

In this chapter, the results of the nonlinear finite element analysis are presented and 

verified using load deflection curves, steel strain history, crack patterns, deformational
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behaviour of the structure in the form of distorted finite element mesh, and three 

dimensional views and contours of the maximum shear strains. Results for girder 

TRGRAS1 will be presented in detail, the behaviour of the other two span girders 

was similar and will only be discussed briefly. The comparison of ultimate loads is 

summarized in Table 8.1. A numerical parametric study of two span continuous 

girders was also carried out, and the results of these are presented in section 8.4.

This study supplemented the experimental tests.

In addition, a comparison has been made with other empirical formulae developed 

for predicting the ultimate capacities of deep beams. These are presented in section

8.7.2 and Tables 8.10 to 8.14.

8.2 Sensitivity studies of the nonlinear finite element method 

A sensitivity study was carried out on the following aspects:

(i) The finite element mesh

(ii) The shear retention factor

(iii) The tension stiffening factor

and this will be presented first. Girders TRGRAS1 and TRGRAS5 were used for this 

purpose.

Throughout the analysis a 3*3 Gauss integration rule was used. The element 

stiffnesses were recomputed at the first iteration of each load increment. The 

maximum number of iterations was kept to 10 for the two span continuous girders 

and for the solid single span girder and for perforated girders was kept to 30. The 

convergence tolerance was set to 5%. All the reinforcing bars were embedded as 

close as possible to their positions within the girders themselves.

8.2.1 Mesh sensitivity

Because of symmetry, only one span of the two span continuous girder was 

considered for nonlinear analysis. Five different meshes of 10, 20, 28, 42 and 54
eVevv'trvVs

i(were studied with a lin ea r-e las tic  analysis as shown in Figure(8.1) using the same



boundary conditions and loading application point. The central displacement versus 

the number of degrees of freedom is plotted in Figure(8.2). The displacement 

increased about 8% when the mesh was refined from ten to twenty elements, about

2% from twenty to twenty eight, about 1.5% from twenty eight to forty two and

1% from forty two to fifty four. Thus it was concluded that a mesh containing a

maximum of 42 elements was the best choice. For girder TRGRAS5, 48 elements 

were used in order to better simulate the reinforcing bars.

In the single span perforated girders, openings were placed at different locations in 

each shear span, so it was not possible to use symmetry. In this case, 100 and 108

elements were used, in both the elastic and nonlinear analysis, in order to represent

the reinforcing bars accurately. For these girders, a mesh convergence study was not 

carried out because the number of elements were already high and were considered 

to be sufficient. For girder TRGRAS11 only one half was analysed as it was 

symmetrical and 60 elements were used.

8.2.2 Shear retention factor

A study was carried out to evaluate the effect of the shear retention factor on the 

ultimate strength and overall behaviour. Four different constant values of shear 

retention were used, 0.1, 0.25, 0.5 and 0.75 respectively, for girder TRGRAS1. The

results are presented in Figures (8.3) to (8.5). It is clear from these figures that the

shape of the deflection and steel strain curves are not greatly affected by various

values of the shear retention factor, but the failure load is affected. The summary 

of results in terms of ultimate strengths is presented in Table 8.2. Although several 

researchers have proposed a constant shear retention factor of 0.5[2>3] as well as 

variable values!1’4’5] for deep beams, in this study 0.25 seemed satisfactory and so 

was used in the analysis of all girders.

8.2.3 Tension stiffening study

A study of tension stiffening models was carried out on girder TRGRAS5. Figures 

(8.6) to (8.8) show the comparisons of experimental and theoretical results using
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different models and Table 8.3 summarizes the effect on the ultimate strength. It 

appears that tension stiffening has a tendency to:

(a) increase the ultimate load.

(b) improve the shape of load deformation curve.

(c) give a stiffer response for secondary behaviour i.e steel strains etc.

However an increase in the load would give a worst predictions for some of the 

other girders. Therefore, using tension stiffening parameters for girders designed by 

the direct design method in conjunction with the averaging procedure did not 

improve all aspects of behaviour. Since this was the intention rather than relying 

solely on the load deflection and ultimate strength, it was decided to omit tension 

stiffening from the analysis altogether.

8.3 Comparison of the theoretical and experimental results

Figure (8.9) shows the finite element mesh used for TRGRAS1 and Figure (8.10) 

illustrates the details of the reinforcement used in the analysis. Figure (8.11) shows 

the load deflection curve and demonstrates that general trends and ultimate strength 

were satisfactorily predicted. The ratio of predicted to experimental ultimate strength 

is 0.98. The theoretical curve is more flexible up to 40% of ultimate load, after 

which it is stiffer than the experimental curve. The discrepency between these curves 

might be attributed to the difficulties in measuring the experimental deflection by 

mounting a handy angle frame on the model itself. This is another reason why it is 

not wise to rely solely on the load deflection curve for verifying the analytical 

model. The post— cracking behaviour is predicted with reasonable accuracy.

The steel strain is examined for both longitudinal and transverse reinforcement in 

Figures (8.12) and (8.13). Reasonable agreement can be seen between predicted and 

experimental behaviour. These curves show that neither the longitudinal steel nor the 

stirrups recorded any significant strains prior to concrete cracking. After cracking, 

there is a considerable increase in the strains and this is well predicted. However,



the accuracy of these predictions vary between remarkable to fairly acceptable. The 

comparison of yielding of the main and transverse steel indicates that yielding in the 

finite element model occurred at a later stage than the experimental. This was due 

to the assumption of full bond between reinforcement and concrete in the finite 

element analysis, whereas in the real structure, as the cracking progressed, the bond 

would deteriorate and the steel would take over the load earlier than in the 

theoretical model.

The predicted deformational behaviour and crack progression for all girders tested in 

this study are given in detail in a departmental report . However, a resume' for 

girder TRGRAS1 is shown in Figures (8.14) to (8.16). The deformations are 

exaggerated ten times in these figures.

Cracks started in the local zones (i.e support points) and at the beam soffit at a 

load of 375kN. On a further increase in load, more cracks occurred at the centre of 

the beam span and started propagating towards the loading point (Figure (8.14), and 

continued to do so until 750kN (Figure (8.15)) when a few cracks occurred at the

top of the intermediate support in the tensile zone. At 900kN (Figure (8.16)), shear 

cracks appeared running from the inside face of the support towards the loading 

point. The cracking in the interior shear span was more severe than the exterior 

shear span. Some secondary cracks also appeared at the beam soffit at the bottom 

tip of the shear crack. This illustrates the arching behaviour in both interior and 

exterior shear spans. More cracks occurred at loads of 1125kN and 1275kN and the

formation of the shear crack in the interior shear span was then quite clearly

evident. The final failure was at 1312kN, the crack pattern is not given at this

particular increment, because of the numerical instability in nonlinear analysis which 

occurs at failure. The final crack pattern clearly indicates that the shear failure takes 

place in the interior shear span running through the intermediate support to the 

loading point.

The final predicted crack propagation is in reasonable agreement with experimentally
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observed crack propagation, as shown in Figure (8.17), except in the local regions of

the loading and support points. In the experiments these areas were clamped by
r

external steel plates, as a result either the cracks were prevented from occuring or 

they could not be observed.

At an increment before failure, Figure (8.17) tends to show that the shear 

deformation were larger in the interior shear span suggesting that the beam was

failing in a shear mode.

Maximum shear strains were small as cracking started as shown in Figure (8.18) for 

a load of 600kN. At 825kN, large shear strains were concentrating towards the 

loading points in both shear spans, but by 975kN the shear strains were clearly 

higher in the interior shear span and were concentrated along the line joining the 

support and the loading point. After this, the maximum shear strains became more 

significant in the other shear span, although they were still about half the value of 

the interior span. At 1275kN, the increment before failure, the maximum shear 

strains clearly indicate that the failure of the beam will be by shear along the line 

joining the support and the loading point in the interior shear span as shown in

Figure (8.19). This agrees well with the experimental failure mechanism.

The above results tend to confirm the adequacy of the modelling approximations

with regard to boundary conditions, load increment size, load application, material 

modelling, and the shear retention and tension stiffening parameters. These were 

then used for all other analysis.

The load deflection curves for the specimens in the first series, TRGRAS1, 

TRGRAS2, TRGRAS3 and TRGRAS6, are illustrated in Figure (8.20). The 

pre-cracking and post-cracking behaviour are reasonably predicted for all girders 

except the load-deflection curve for girder TRGRAS2, which might be attributed to 

the difficulties in measuring the experimental deflections by mounting handy angle 

frame on the model istself, although the predicted post-cracking behaviour gives a



3 6  2

slightly stiffer response. The predicted and measured ultimate strengths are within 

4%, with a mean ratio of 0.98 which is very satisfactory.

Figures (8.21) to (8.25) compares steel strains for both longitudinal and transverse 

steel for girders TRGRAS2, TRGRAS3 and TRGRAS6. Again the predictions are 

similar to girder TRGRAS1 and are in reasonable agreement.

The predicted deformed shape and crack progression for girders TRGRAS2, 

TRGRAS3 and TRGRAS6 are similar to girder TRGRAS1 and compare well with 

experimental crack patterns as illustrated in Figures (8.26) to (8.34). Cracks always 

started at the beam soffit, and eventually lead to shear failure in the internal shear 

span. There was less cracking in the external shear span of girder TRGRAS6, due 

to the concentration of reinforcement at the bottom of the beam, and this was well 

predicted.

The maximum shear strains were similar to girder TRGRAS1 and are not presented 

here. However they also confirm that failure was due to shear in the interior shear 

span.

Figures (8.35) to (8.38) show the finite element meshes and reinforcement details for 

girders TRGRAS4 and TRGRAS5. Figure (8.39) shows the load deflection curves.

The finite element model predicted the overall behaviour of TRGRAS4 quite 

reasonably, giving a predicted to measured ultimate strength ratio of 1.0 although the 

stiffness in the final 20% of loading was much higher than the experimental. 

However, for girder TRGRAS5, the ultimate strength was underestimated by 22% 

although the post—cracking stiffness was similar to the experimental value. This 

underestimate might be due to the fact that the reinforcement provided over the 

intermediate support was insufficient to control the severe cracking which occurred in 

this region in the numerical model. This would lead to sperious local mechanism, 

causing premature breakdown of the numerical solution, and hence underestimating 

the ultimate strength.
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Figures (8.40) to (8.43) compare the steel strains curves for longitudinal steel and 

stirrups. These demonstrate that the theoretical response is stiffer than the 

experimental but, with one or two exceptions, general trends are on the whole 

satisfactorily predicted.

The deformed shape and crack progression were similar to girder TRGRAS1 except 

that deformations were larger because of the larger span length. Comparisons of 

experimental and theoretical crack patterns are given in Figures (8.44) to (8.49). 

Again satisfactory agreement is evident, except for local regions.

The maximum shear strains are illustrated in Figures (8.50) and (8.51) for 

TRGRAS4 and demonstrate the shear failure mechanism along the line joining the 

support and the loading point in the interior support.

Figures (8.52) and (8.53) show the finite element mesh and reinforcement details for 

the skew reinforced girder TRGRAS7. Similar details were used for girder TRGRAS8 

except the different angle of skew. Figure (8.54) compares the load deformation 

curves for both girders and demonstrate reasonable predictions in both the 

pre— cracking and post— cracking ranges. The mean of the ratio of predicted to 

measured ultimate strengths is 1.02.

Figures (8.55) to (8.58) compares the steel strains for longitudinal and shear 

reinforcement. Generally speaking, there is reasonable agreement for TRGRAS7. 

However, the experimental behaviour of TRGRAS8 is much more flexible, which is 

probably due to the accidental load applied before starting the test.

The deformed shape and crack progression are illustrated for different load levels in 

Figures (8.59) to (8.64). Again, satisfactory agreement is evident except for local 

regions.



The maximum shear strains are illustrated in Figures (8.65) and (8.66) for

TRGRAS7, and again suggest a shear failure mechanism as observed in the

experimental study.

Figures (8.67) to (8.70) show the finite element meshes and details of reinforcement 

used for the perforated girders TRGRAS9 and TRGRAS10. Figure (8.71) compares 

the load deformation curves. The predictions are reasonably good, except for the

stiffer post-cracking behaviour for TRGRAS9. In the test, failure was initiated 

locally by cracking around the opening which might have caused early bond

deterioration. In the finite element analysis this was not the case and thus a more 

stiff response occurred. However the mean ratio of the predicted to measured 

ultimate strengths is 1.0, which is highly satisfactory.

The comparison of the experimental and theoretical steel strains are presented in

Figures (8.72) to (8.75). The comparsion is generally satisfactory, however some 

strains were poorly predicted, particularly in the stirrups. This is probably due to the 

bond deteriorations which were not properly modelled in the finite element analysis. 

Also the predicted response tended to be stiffer than the experiment in the

post— cracking stages.

Figure (8.76) shows the cracking in TRGRAS9 at 420kN. Cracking started at corner 

2 of opening A at a load of 240kN. With increase in load to 300kN and beyond

more cracks occurred at corner 2 and 4 of both openings, and near the beam soffit,

extending towards the loading point. At a load of 420kN more cracks appeared, in 

particular a horizontal crack appeared from the end of the beam extending towards 

corner 1 of opening B. Figure (8.77) shows how the cracks had extended by 720kN. 

At 480kN, more flexural cracks at the beam soffit occurred, extending vertically, and 

also more cracks propagated around both openings. At 600kN, more cracks appeared 

from the beam soffit and joined the bottom of openings A and B, and propagated 

towards the loading points. The cracks which occurred at the centre of the beam 

were vertical.
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Figure (8.78) shows the extent of cracks at 1020kN. At 800kN severe cracks 

occurred around opening B, and cracks which joined corner 1 and the loading point 

behaved like a shear crack. Similar behaviour was evident from the deformed shapes 

over the top of opening B. Also at this load the horizontal crack extended to corner 

1 of opening B, after which the block above the opening bounded by the diagonal 

shear crack and the horizontal crack started to become more distorted. This indicates 

that the block is trying to rotate and that the diagonal shear crack over the top of

opening B will cause failure, as can be seen in Figure (8.78).

The comparison of experimental and theoretical crack patterns illustrated in Figures 

(8.76) to (8.78) show good agreement and suggests that the finite element model is 

quite capable of handling the perforated deep beam analysis.

The maximum shear strain plots shown in Figures (8.79) and (8.80) show that as 

cracking progresses the maximum shear strains start to increase and concentrate in 

the shear crack zones particularly over the top of opening B, where failure occurred.

Figure (8.81) show the extent of cracking in TRGRAS10 at a load of 420kN. When 

the load was at 180kN, the first numerical cracking occurred at corner 1 and 3 of

openings B and C; in addition some cracks also appeared in the beam soffit. On a

further increment in the load more cracks appeared in the other shear span at 

corners 2 and 4 of opening A. At 360kN, cracks appeared at the beam soffit and 

extended vertically. At this load a horizontal crack also appeared from the end of 

the beam extending towards corner 4 of opening C. On a further increase in load, 

more cracks occurred extending around openings B and C.

Figures (8.82) and (8.83) show the growth of cracks at 720kN and 780kN 

repectively. At 600kN, more cracks appeared around all the openings and started 

extending towards the loading point, forming diagonal shear cracks between corner 4 

of opening C and the loading point, and between corner 4 of opening B and corner



2 of opening C. Also a horizontal crack appeared at the end of the beam extending 

towards corner 3 of opening A. A further increase in load caused more cracks and 

some secondary cracks occurred in the zone between opening B and C close to

corner 4 of opening B, and also at the top of opening C at corner 4. At this load,

the deformed shape also showed the significant appearance of a shear crack over the 

top and at the bottom of opening C. At 840kN, a diagonal crack occurred over the 

top and bottom of opening C as is evident from the deformed meshes.

This description is essentially the same as occurred experimentally as can be seen in

Figures (8.81) to (8.83).

The maximum shear strains (Figures (8.84) and (8.85)) also illustrate the high 

concentration of the shear strains around opening C and B and show that the failure

mechanism is probably due to the diagonal shear crack over the top opening C and

between openings C and B.

Figures (8.86) and (8.87) show the finite element analysis mesh and details of the 

reinforcement used in the analysis of girder TRGRAS11. Details of bar diameters 

were given in Chapter Five. Exact steel areas as used in the actual test were used 

in the nonlinear finite element analysis. Figure (8.88) shows the comparison of the 

experimental and theoretical load deflection curves. The predicted ultimate strength is 

satisfactory but the predicted stiffness is more flexible at low loads and becomes 

more stiffer than the experimental values at higher loads.

Figures (8.89) and (8.90) show the comparison of the steel strains in longitudinal

steel and steel stirrups. The predicted pre- cracking and post— cracking behaviour is 

in reasonable agreement with experimental behaviour.

Figures (8.91) to (8.93) illustrate the crack development at loads of 640kN, 800kN

and 1760kN in the nonlinear analysis. The first crack occurred at 400kN at the 

beam soffit in the tensile zone. On a further increase in load more flexural cracks

occurred in the beam soffit extending in the vertical direction. Cracks already



existing between the loading point and the centre of the girder continued to extend 

in a vertical direction, but cracks in the shear span started to bend round towards 

the loading point, forming diagonal shear cracks. This confirms that failure was a 

flexural-shear type mechanism. Severe cracking occurred at a load 1454kN near the 

support face and extended towards the loading point. Similar behaviour was evident 

from the deformed meshes. The comparison between experimental and predicted

crack patterns is good except in the local regions which were clamped with steel

plates in the experimental tests.

Shear failure is very clear from the maximum shear strain contours shown in Figures 

(8.94) and (8.95). These indicate that failure took place along the plane joining the 

support to the loading point.

The finite element analysis also confirms the much higher ultimate strength compared 

to the design ultimate load.

8.4 Parametric study

Since satisfactory predictions were given by nonlinear finite element analysis in the

previous section, further numerical experiments were conducted on two span 

continuous girders. The object of this exercise was to study the effect of various

other factors on the ultimate strength of a transfer girder designed by the direct

design technique which had not been examined experimentally. These results will be 

combined with experimental results of Chapter Seven in order to extend the 

experimental conclusions.

8.4.1 Parameters chosen for investigation

Table 8.4 shows the details of the numerical models. This includes three specimens

of the experimental programme to aid comparison. The main variables investigated

are given as follows and the results are given in Table 8.5.

(a) The effect of the shear reinforcement on the ultimate strength.

(b) The effect of clear shear span to depth (X/D) ratios on the ultimate strength.



(c) The effect of skew reinforcement on the ultimate strength.

(d) The effect of different reinforcement distribution on the ultimate strength.
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(a) The effect of shear reinforcement on the ultimate strength.

The effect of the shear reinforcement on the ultimate strength was studied by using 

the material properties of girder TRGRAS2 to analyse girder T il (i.e TRGRAS1)

and T12 (i.e TRGRAS2) by nonlinear finite element analysis. The results are given 

in Table 8.5, and indicate that the ultimate strength increases with increase in the 

shear reinforcement. The addition of one extra 6mm diameter bar stirrup in the 

interior shear span increased the ultimate load by 6%.

(b) The effect of clear shear soan to depth (X/Dl ratio on the ultimate strength.

In order to study the effect of clear shear span to depth (X/D) ratio on the

ultimate strength two more continuous girders were designed by the direct design 

technique to cover the ultimate strength ranges of X/D ratios varying from 0.3 to

0.64. The details of these girders are given in Figures (8.96) and (8.97).

These girders were then analysed by nonlinear finite element model. The results are 

given in Table 8.5, which indicates that increse in clear shear span to depth (X/D) 

ratio reduces the ultimate strength. However, a graph has been plotted as shown in 

Figure (8.98), which shows the reduction in ultimate strength with increase in X/D 

ratio. This confirms the earlier findings of Kong et al and other researchers that the

deeper the beam, the higher is the ultimate strength.

(cl The effect of skew reinforcement on the ultimate strength.

To study the effect of skew reinforcement on the ultimate strength four more

continuous girders were designed by the direct design technique with different skew

angles from those covered in the experimental programme. The details of these 

girders are given in Figures (8.99) to (8.102).

Nonlinear finite element analysis was carried out to predict the ultimate strengths.



The results are given in Table 8.5, which indicates that skew reinforcement takes 

higher ultimate strengths. A graph of ultimate strengths versus skew angle is given in 

Figure (8.103) which includes both the experimental and theoretical predictions. It 

clearly shows that strength increases steadily up to skew angle of 10°, after which it

increases more rapidly. It was found that an angle between 15° and 20° was the

best for the girders in this study.

(d) The effect of different reinforcement distribution on the ultimate strength.

Two different reinforcement distribution have been studied experimentally in this

investigation. But because of the variation in the material properties, it was not 

possible to make conclusions about the effectiveness of these distributions on the 

ultimate strength. Therefore, in this section the material properties were kept 

constant in order to study different reinforcement distributions:

(i) Girder TRGRAS3 was identical to girder TRGRAS6 except for the reinforcement 

distribution and material properties. Therefore, girder T41 (i.e TRGRAS6) was 

numerically studied by using the same material properties as girder TRGRAS3. 

Girder T41 produced 30% less strength than girder TRGRAS3.

(ii) Girder TRGRAS4 was identical to girder TRGRAS5 except for the reinforcement 

distribution and material properties. Therefore, girder T42 (i.e TRGRAS5) was 

numerically studied by using the same material properties as girder TRGRAS4. 

Girder T42 produced 8% less strength than girder TRGRAS5 produced numerically.

However, the results have indicated that CIRIA Guide 2 distribution is not so

effective as that of the direct design technique.

8.5 Discussion of finite element analysis

The aim of this study was to assess the general predictions which may be made 

from the nonlinear finite element model. The predictions have confirmed that large 

scale continuous and single span girders with web openings can be satisfactorily 

analysed by nonlinear finite element analysis. The load-deflection behaviour,



cracking, failure mechanism, yielding of steel were found to be in reasonable

agreement with experimental behaviour. This suggests that the model can be used 

confidently for further numerical parametric studies.

Its versatility in predicting most aspects of behaviour allows additional information to 

be obtained which cannot be observed experimentally. For example, the maximum 

shear strains and deformed shapes have provided extra information about the failure 

mechanism rather than relying on crack patterns alone.

The use of a constant shear retention factor of 0.25 for girders designed by direct 

design technique in conjunction with the averaging procedure gave a reasonable

prediction when compared with observed ultimate strengths.

Although the use of tension stiffening for girder TRGRAS5 demonstrated that it 

would improve the ultimate load and load deformations, it also provided much stiffer 

response for steel behaviour. However an increase in the ultimate strength would 

give worse predictions for other girders of this study. Thus, tension stiffening was 

omitted.

8.6 Comparison of the direct design technique with various proposed formulae 

As mentioned in chapter two, a considerable amount of work has been reported on 

the simple supported deep beams, and a lot less on continuous deep beams. Various 

empirical formulae and truss models have been proposed from time to time for both 

design and analysis purposes. This study has verified experimentally and by nonlinear 

analysis that the direct design technique is satisfactory in both serviceability and 

ultimate behaviour, showing that it is a natural design-oriented method. This section

will compare the use of some of these other formulae on the girders tested in this

study in order to highlight the suitability of the direct design method as a design 

tool for producing economic reinforcement.



3 7 1
8.6.1 Design of tested transfer girders

Six formulae, already described in detail in Chapter Two, have been used to design 

the reinforcement for the girders tested in this study. All, except Kotsovos's formula, 

have been used widely either in U.S.A or British practice, or appear in the

European work. These formulae are as follows: Portland Cement Association (PCA) 

methodt6], CEB-FIP Model Codet7], ACI Code!8], CIRIA Guide 2 E9], Kong et all10] 

and Kotsovos'sl11] formulae.

Most of these formulae were developed from single span deep beam studies, but

include design rules for continuous deep beams as well. They give procedures for

obtaining main and shear reinforcement, although some disregard shear reinforcement 

altogether, while some of the other formulae provide shear reinforcement on an ad
itc.iwfovS«.*rv«rVt

hoc basis. Table 8.6 to 8.11 summarizes the ̂ designs given by these formulae and 

compare them with the direct design method. These tables clearly shows that the

direct design technique is generally economical in the use of both main and shear 

reinforcement. Because all the code— prescribed formulae have provided higher 

reinforcement than the direct design technique, however, some formulae were

supplied "with partial factor of safety for steel (yn^l.15). The provision of the

shear reinforcement is on ad hoc basis, also there is no idea how design will behave 

in serviceability and ultimate behaviour whereas direct design is proved to be 

satisfactory in both serviceability and ultimate behaviours.

The development of the plastic truss model by MacGregor et all1^ .^ ]  has been

applied to continuous deep beams and its use has been advocated for designing deep 

beams. The author tried to apply the plastic truss model to the girders tested in this 

study, but it was found that MacGregor et al had used an iterative process of 

rebuilding the geometry of tested beams and using a different concrete effectiveness 

factor for their two different series of beams. For example, in reference 12 they

used effectiveness factor r'=1.0, but they could not get good predictions for some 

beams, and so they varied the effectiveness from 1.0 to 0.5 to get a closer 

prediction without any specific criteria. In reference 13, the effectiveness factor used



was p 1.0. Therefore, rather than analysing the girders of this study, the direct 

design technique was applied to a series of five beams tested by MacGregor et

all13!. The details of this series of five beams is given in Figures (8.104) to (8.108)

and the material properties are given in Tables 8.12 and 8.13. The design ultimate 

load of these beams was not given, but it was assumed to be the actual failure load

of the beams which is on the conservative side.

Beams designed by the direct design technique are illustrated in Figure (8.109) to

(8.113) and a comparison with the plastic truss model is given in Table 8.14. The

results indicate that the direct design technique gives a considerable saving in main

reinforcement, whereas shear reinforcement is higher than that required by the

plastic truss model.

However, it is clear that the overall direct design technique compares favourably with 

the plastic truss model. This study has shown that the measured ultimate loads were 

always 30% to 60% higher than the design ultimate loads. Therefore since 

MacGregor's failure load was taken as the design load, the direct design method is 

even more economical than the table would at first suggest. The difference in the

shear reinforcement between these techniques might be due to the fact that in the

plastic truss model shear reinforcement is provided on an ad hoc basis, whilst the

direct design method has a sound theoretical framework for its calculation.

8.6.2 Analysis of ultimate strength by empirical formulae

There are various formulae for predicting the ultimate strengths of simply supported 

and continuous deep beams and these were discussed in Chapter Two. A sample of 

some prominent formulae are examined in this section. These are, Ramakrishnan and 

Ananthanayranal14], de Paiva and Siessl13], ACI Codel8], Kong et all10] and CIRIA 

Guide 2l°]. These formulae were calibrated on the test data for simply supported 

deep beams which were loaded either at the centre or at the third point. Therefore, 

the estimation of shear strength of a shear span can be multiplied by 2 to get the 

overall shear capacity, because at the ultimate stage both shear spans are assumed to



be failed even if a failure only occurred in one shear span. In a continuous deep 

girder, failure is always in the interior shear span, therefore, the estimation of the 

shear strength based on the same criteria as simply supported may not be correct. It 

is difficult to know the shear strength of the exterior shear span, because it did not

fail in any continuous girder reported in this thesis. In order to accommodate this,

an elastic distribution of shear force was utilized to estimate the shear strength. 

According to the elastic distribution of reaction, 31% shear is taken by the exterior 

shear span and 69% by the interior shear span, if a load is acting at the centre of 

the span.

In addition to that, experimental results have revealed that at the ultimate load stage 

57% of the load was carried by the intermediate supports for girders whose span to 

depth (L/D) ratio was 1.07 and 63% was carried for girders whose span to depth 

(L/D) ratio was 1.61.

The various formulae were modified to take these (i.e elastic and ultimate reaction) 

distribution into account and the summary of the results is presented in Tables 8.15 

to 8.19. These formulae have been applied with and without the modifications to 

demonstrate its effect.

Only the ultimate shear strength of solid girders has been estimated, because there is 

no formulae to predict the ultimate shear strength of perforated deep girders when

the openings are not placed symmetrically in both shear spans.

The estimated results from the empirical formulae are far from the experimental 

measured strengths. However, the modified version of the Ramakrishnan and 

Ananthanayranal14] formula is fairly close to the experimental results.

8,7 Conclusion

The following conclusions can be drawn from the analytical studies made in this 

chapter:



1: (a) Theoretical results indicate the applicability of the nonlinear finite element 

model for analysing the complicated general behaviour of large scale continuous and 

solid span girders. The basic characteristics of the behaviour, namely the 

pre— cracking and post— cracking behaviour, ultimate strengths and crack patterns, 

overall deformations and failure mechanism are predicted with reasonable accuracy 

for the majority of girders examined. The finite element analysis provided additional 

information, such as deformational behaviour and maximum shear strains, which is 

difficult if not impossible to obtain in experiments.

(b) All the girders were analysed using the same material and solution parameters. 

The results demonstrate that for the type of transfer girders tested in this study, 

satisfactory behaviour is obtained if tension stiffening is not used (a2 = 0.0) and a 

constant shear retention factor of 0.25 is selected.

(c) Steel response was found to be stiffer, however, the comparison was generally 

satisfactory. This could have been due to the assumption of full bond between 

concrete and steel in the finite element analysis.

(d) An increase in shear reinforcement increased the ultimate strength.

(e) For the decreasing shear span to depth (X/D) ratios the ultimate strength 

increased.

(f) The use of skew reinforcement produced higher ultimate strengths; however, an 

angle of 15° to 20° were the most efficient.

(g) CIRIA Guide 2 reinforcement distribution produced less satisfactory behaviour and 

lower ultimate strengths than the direct design method.

2. Various other design methods required a higher amount of reinforcement than the 

direct design technique, suggesting that the direct design method is the more 

economical technique.

3. The predicted ultimate strengths by empirical derived formulae by other 

reseavchers greatly overestimated the actual measured strengths. This suggests that 

these empirical formulae cannot be reliably applied to continuous deep beams. 

Nevertheless, the modification to Ramakrishnan and Ananthanayrana sl1 ]̂ formulae 

produced reasonable predictions.
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TABLE 8.1
Comparison of the experimental and predicted ultimate strength of the test girders

Series 
No.

Gi rder  
No.

Experimental  
F a i l u r e  
load kN

Theoret i c a l  
F a i lu r e  
load kN

Tu/Pu Mean S.D

TRGRAS1 1333 1312 0.98

1 TRGRAS2 1216 1237 1.02

TRGRAS 3 1500 1462 0.97

TRGRAS 6 1486 1425 0.96 0 .98 0 .026

2 TRGRAS4 1143 1144 1 .0

TRGRAS5 1243 975 0.78 0 .89 0 .155

3 TRGRAS7 1420 1425 1.02

TRGRAS8 1312 1350 1.03 1 .0 2 0 .019

4 TRGRAS9 1046 1110 1.06

TRGRAS10 891 840 0 .94 1 .0 0 .0 8 4

5 TRGRAS11 1750 1800 1.03 1 .03

TABLE 8.2
The effect of shear retention factor on the ultimate shear strength for girder 
TRGRAS1

Girder Shear r e t e n t i o n  
f a c t o r

Actual  s t r e n g t h  
Pu

P re d ic ted  s t r e n g t h  
Tu

TRGRAS1 0 .0 1 1333 .0 1125kN

0 . 2 5 1333.0 1312kN

0 . 5 0 1333 .0 1388kN

0 . 7 5 1333 .0 1462kN

TABLE 8.3
The effect of tension stiffening factor on the ultimate shear strength for girder 
TRGRAS5

Girder T e n s io n  s t i f f e n i n g  
f a c t o r

Ul t i m ate  s t r e n g t h  
Pu

P re d ic ted  s t r e n g t h  
Tu

TRGRAS5 NTS 1243kN 975kN

o l = 0 . 4  o 2 = 1 0 .0 1243kN 1125kN

0:1=0 . 5 o2=10 . 0 1243kN 1200kN

o l = 0 .6 o 2 = 1 0 .0 1243kN 1350kN



TABLE 8.4
The details of girders analysed in parametric study.

Girder No. Depth
D

Length
L

L/D 
Rat io

X/D 
Rat io

Type o f  Reinforcement

TRGRAS2 900 960 1 .07 0.38 Orthogonal

T i l 900 960 1 .07 0.38 Orthogonal

T12 900 960 1.07 0.38 Orthogonal

T21 900 960 1.07 0.30 Orthogonal

TRGRAS2 900 960 1.07 0.38 Orthogonal

T22 900 1300 1 .4 4 0.50 Orthogonal

TRGRAS4 900 1450 1.61 0 .64 Orthogonal

TRGRAS2 900 960 1.07 0.38 Orthogonal

T31 900 960 1 .07 0.38 Skew 0=5°

T32 900 960 1.07 0.38 Skew 0=9°

TRGRAS8 900 960 1.07 0.38 Skew 0=10°

TRGRAS7 900 960 1 .07 0.38 Skew 0=15°

T33 900 960 1 .07 0.38 Skew 0=20°

T34 900 960 1.07 0 .38 Skew 0=25°

TRGRAS3 900 960 1.07 0 .38 Orthogonal

T41 900 960 1.07 0.38 Orthogonal

TRGRAS4 900 1450 1.61 0 .64 Orthogonal

T42 900 1450 1.61 0 .64 Orthogonal



TABLE 8.5
The summary of ultimate strengths obtaind in parametric study

Girder No. L/D 
Rat io

X/D 
Rat io

Type o f  
reinforcement

U11 imate 
s t r e n g th  kN

TRGRAS 2 1 . 0 7 0 . 3 8 Orthogonal 1216

T i l 1 . 0 7 0 . 3 8 Orthogonal 1237

T12 1 . 0 7 0 . 3 8 Orthogonal 1312

T21 1 . 0 7 0 . 3 0 Orthogonal 1320

TRGRAS2 1 . 0 7 0 . 3 8 Orthogonal 1237

T22 1 . 4 4 0 . 5 0 Orthogonal 1162

TRGRAS4 1 .6 1 0 . 6 4 Orthogonal 1144

TRGRAS2 1 . 0 7 0 . 3 8 Orthogonal 1237

T31 1 . 0 7 0 . 3 8 Skew 0=5° 1312

T32 1 . 0 7 0 .3 8 Skew 0=90 1387

TRGRAS8 1 . 0 7 0 .3 8 Skew 0=10° 1350

TRGRAS7 1 . 0 7 0 .3 8 Skew 0=15° 1425

T33 1 . 0 7 0 .3 8 Skew 0=20° 1662

T34 1 . 0 7 0 .3 8 Skew 0=25° 1462

TRGRAS3 1 . 0 7 0 .3 8 Orthogonal 1500

T41 1 . 0 7 0 .3 8 Orthogonal 1125

TRGRAS4 1 . 6 1 0 . 6 4 Orthogonal 1143

T42 1 .6 1 0 . 6 4 Orthogonal 900



TABLE 8.6
Comparison of Reinforcement design for transfer girders tested in
this study with PC A Method.

Girder No. D i r e c t  D es ign  Method PCA Method Ratio  o f  

PCA/DDMMain Shear Total Main Shear Total

TRGRAS1 329 171 500 935 ----- 935 1 .87

TRGRAS2 329 114 443 935 ----- 935 2 .11

TRGRAS3 373 114 487 1082 ----- 1082 2.22

TRGRAS4 430 285 715 952 ----- 952 1 .33

TRGRAS5 417 285 702 952 ----- 952 1 .36

TRGRAS6 417 114 531 1209 ----- 1209 2 .28

TRGRAS7 329 114 443 935 ----- 935 2.11

TRGRAS8 329 114 443 935 ----- 935 2.11

TABLE 8.7
Comparison of Reinforcement design for transfer girders tested in 
this study with CEB— FIP Method.

Girder No. D i r e c t  Design  Method CEB—FIP Method Ra tio  o f  

CEB-FIP/DDMMain Shear Total Main Shear Total

TRGRAS1 329 171 500 583 370 953 2 .15

TRGRAS2 329 114 443 583 370 953 2.15

TRGRAS3 373 114 487 675 370 1045 2.15

TRGRAS4 430 285 715 789 470 1259 1 .76

TRGRAS5 417 285 702 789 470 1259 1 .79

TRGRAS6 417 114 531 754 370 1124 2 .12

TRGRAS7 329 114 443 583 370 953 2 .15

TRGRAS8 329 114 443 583 370 953 2 .15
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TABLE 8.8
Comparison of Reinforcement design for transfer girders tested in
this study with ACI Code Method.

Girder No. D i r e c t  De sign  Method ACI Code Method Ratio  o f  

ACI/DDMMain Shear Total Main Shear Total

TRGRAS1 329 171 500 935 485 1420 2 .8 4

TRGRAS2 329 114 443 935 485 1420 2 .84

TRGRAS3 373 114 487 1082 485 1567 3.22

TRGRAS4 430 285 715 952 571 1523 2.13

TRGRAS5 417 285 702 952 571 1523 2 .13

TRGRAS6 417 114 531 1209 485 1694 3.19

TRGRAS7 329 114 443 935 485 1420 2 .8 4

TRGRAS8 329 114 443 935 485 1420 2 .8 4

TABLE 8.9
Comparison of Reinforcement design for transfer girders tested in 
this study with CIRIA Guide 2 Method.

Girder No. D i r e c t  Design  Method CIRIA Guide 2 Ra tio  o f  

CIRIA/DDMMain Shear Total Main Shear Total

TRGRAS1 329 171 500 610 475 1085 2 .17

TRGRAS2 329 114 443 610 475 1085 2 .45

TRGRAS3 373 114 487 706 475 1181 2 .42

TRGRAS4 430 285 715 761 588 1349 1.89

TRGRAS5 417 285 702 761 588 1349 1.92

TRGRAS6 417 114 531 789 475 1264 2 .38

TRGRAS7 329 114 443 610 475 1085 2 .45

TRGRAS8 329 114 443 610 475 1085 2 .45
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TABLE 8.1 Q
Comparison of Reinforcement design for transfer girders tested in
this study with Kong et al's proposed Method.

Girder No. D i r e c t  D e s ig n  Method Kong's Method Ra tio  o f  

KONG/DDMMain Shear Tota l Main Shear Total

TRGRAS1 329 171 500 522 ----- 522 1 . 0 4

TRGRAS2 329 114 443 522 ----- 522 1 .1 8

TRGRAS3 373 114 487 604 ----- 604 1 . 2 4

TRGRAS4 430 285 715 789 ----- 789 1 . 1 0

TRGRAS5 417 285 702 789 ----- 789 1 .1 2

TRGRAS6 417 114 531 675 ----- 675 1 .2 7

TRGRAS7 329 114 443 522 ----- 522 1 .1 8

TRGRAS8 329 114 443 522 ----- 522 1 .1 8

TABLE 8.11
Comparison of Reinforcement design for transfer girders tested in 
this study with Kotsovos's proposed Method.

Girder No. D i r e c t  D es ign  Method Kotsovos Method Ratio  o f  

KOTSOV/DDMMain Shear Total Main Shear Total

TRGRAS1 329 171 500 934 ----- 934 1 .89

TRGRAS2 329 114 443 934 ----- 934 2 .1 0

TRGRAS3 373 114 487 1091 ----- 1091 2 . 2 4

TRGRAS4 430 285 715 1448 ----- 1448 2 .0 3

TRGRAS5 417 285 702 1448 ----- 1448 2 .0 6

TRGRAS6 417 114 531 1220 ----- 1220 2 .3 0

TRGRAS7 329 114 443 934 ----- 934 2 .1 0

TRGRAS8 329 114 443 934 ----- 934 2 .1 0



TABLE 8.12
Concrete properties of Ricketts and MacGregor's Beams

Beam No. f c 1 
N/mm^

f t '
N/mm̂

Ec
N/mrn̂

Age
days

1 3 5 . 4 ----- 25600 52

2 3 1 .3 2.7 21700 42

3 3160 ----- 21000 56

4 3160 3 .0 25300 50

5 3160 3.0 23900 48

TABLE 8.13
Reinforcing properties of Ricketts and MacGregor Beams

Bar s i z e  
mm f y  2 N/mm̂

Es
N/mm̂

20 410 219000

*oCM 440 206000

10 435 203000

6 451 190000

N o t e : -  20*mm bar i s  o n ly  used for  beam ^

TABLE 8.14
Comparison of reinforcement calculated by direct design technique and Ricketts and 
Macgregor's

Beam No. R i c k e t t s  6c MacGregor's Direct  d e s ig n  
technique

Di f f e r e n c e
%

Mai n
mm̂

Shear
mm̂

Total
2mm̂

Main
2mm'1

Shear
2mm̂

Total
2mm̂

1 2199 342 2541 1533 1006 2539 —

2 2514 2670 5184 2273 1414 3673 29

3 2199 969 3168 1759 1188 2947 7

4 2199 969 3168 2110 1414 3524 -10

5 2199 969 3168 1758 1188 2946 7



TABLE 8.13
Comparion of ultimate strengths predicted by Ramakrishnan and 
Anathanayrana's formula

Girder
No

Exp. 
Load Pu

P r e d i c t e d
PI'

Pl /Pu Elast  ic  
forpyja

P I ' /Pu Ult im- ate
PI' '

P I 1' /Pu

TRGRAS1 1333 1809 1.35 1327 0.99 1621 1 .22

TRGRAS2 1216 2078 1 .70 1327 1.09 1621 1.22

TRGRAS3 1500 1920 1.28 1295 0.86 1584 1 .06

TRGRAS4 1143 1694 1.48 1211 1.06 1326 1 .16

TRGRAS5 1243 2293 1.85 1311 1.06 1436 1 .16

TRGRAS 6 1486 2395 1.61 1295 0.87 1568 1.06

TRGRAS7 1440 1474 1.02 1262 0.88 1526 1 .06

TRGRAS8 1312 1920 1 .46 1343 1.02 1626 1 .2 4

TRGRAS11 1750 2097 1.20 1815 1 .04

f  TABLE 8.16
Comparion of ultimate strengths predicted by de Paiva and Siess's 
formula

Ci rder  
No

E x p . 
Load Pu

P r e d i c t e d
P2'

P2/Pu E l a s t  i c  
forp^Ja

P l ’ /P u Ult  im- a t e
P 2 1 '

P2 ’ ' / P u

TRGRAS1 1333 208 4 1 . 5 6 1510 1 . 1 3 1828 1 . 3 7

TRGRAS2 1216 2128 1 . 7 5 1540 1 . 2 6 1863 1 . 5 3

TRGRAS3 150 0 2012 1 . 3 4 1588 1 . 0 4 1922 1 . 2 8

TRGRAS4 1143 1460 1 .2 8 1180 1 . 0 3 1292 1 . 1 3

TRGRAS5 1243 1628 1 .3 1 1466 1 . 1 8 1606 1 . 2 9

TRGRAS6 1486 2024 1 . 3 6 1558 1 . 0 5 1821 1 . 2 2

TRGRAS7 14 40 1256 0 . 8 7 910 0 . 6 3 1101 0 . 7 6

TRGRAS8 1312 2140 1 .6 3 1550 1 . 1 8 1877 1 . 4 3

TRGRAS11 175 0 988 0 . 5 6 -----



}  TABLE 8.17
Comparion of ultimate strengths predicted by ACI Code’s formula

Girder
No

Exp . 
Load Pu

P r e d i c t e d
P3'

P3/Pu Elas t  ic  
f o r ^ J a

P3' /Pu Ult imate
P3 1 ’

P3 ' ’ /Pu

TRGRAS1 1333 1212 0 .91 878 0.66 1061 0 . 8 4

TRGRAS2 1216 1176 0 .97 852 0.70 1029 0 .8 0

TRGRAS3 1500 1132 0 .75 820 0.55 992 0 .6 6  |

TRGRAS4 1143 1124 0 .98 814 0.71 891 0 .78

TRGRAS5 1243 1196 0 .96 867 0 .70 949 0 .7 6

TRGRAS6 1486 1132 0 .76 820 0.55 992 0 .6 6

TRGRAS7 1440 1116 0 .78 809 0.56 978 0 .68

TRGRAS8 1312 1180 0 .90 855 0.65 1035 0 .79

TRGRAS11 1750 1222 0 .7 0

s TABLE 8.18
Comparion of ultimate strengths predicted by Kong et al formula

Girder
No

E x p . 
Load Pu

P r e d i c t e d
P4'

P4'/Pu E l a s t  i c
f o r p j j la

P 4 ’ / Pu U11 im-  a t e
P 4 ’ ’

P 4 ’ ' / P u

TRGRAS1 1333 1626 1 . 2 2 1177 0 . 8 8 1425 1 . 0 7

TRGRAS2 1216 1824 1 . 5 7 1322 1 .0 9 1660 1 . 3 1

TRGRAS3 1500 1740 1 . 1 6 1260 0 . 8 4 1524 1 . 0 1

TRGRAS4 1143 1436 1 . 2 6 1041 0 .9 1 1140 1 . 0

TRGRAS5 1243 1868 1 . 5 0 1353 1 . 0 9 1728 1 . 3 9

TRGRAS6 1486 2184 1 . 4 7 1582 1 .0 6 1914 1 . 2 9

TRGRAS7 1440 1380 0 . 9 6 1000 0 . 7 2 1210 0 . 8 4

TRGRAS8 1312 1716 1 . 3 0 1273 0 . 9 7 1540 1 . 1 7

TRGRAS11 1750 2220 1 . 2 7 -----



i  TABLE 8.19
Comparion of ultimate strengths predicted by CIRIA Guide 2's formula

Girder
No

Exp. 
Load Pu

P r e d i c t e d
P5

P5/Pu Elast  ic  
forpjjJa

PS' /Pu Ult im- ate
PS’ '

P 5 ' ' / P u

TRGRAS1 1333 1032 0 .7 7 748 0.56 905 0 .6 8

TRGRAS2 1216 1040 0 .86 754 0.62 912 0 .7 5

TRGRAS3 1500 1032 0 .6 9 748 0 .50 905 0 . 7 4

TRGRAS4 1143 884 0 .77 640 0.56 680 0 . 6 0

TRGRAS5 1243 980 0 .8 6 710 0.57 760 0 .6 1

TRGRAS6 1486 1076 0 .86 780 0.52 944 0 .6 3

TRGRAS7 1440 1000 0 .69 725 0 .50 877 0 . 6 0

TRGRAS8 1312 1048 0 .8 0 759 0 .58 917 0 . 6 9

TRGRAS11 1750 1268 0 . 72 ----- -----
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Experimental crack pattern at 600kN
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Figure(8.14) Predicted  crack pattern  and deformed shape at 600kN (TRGRAS1)



Experimental crack pattern at 75OkN
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^igure(8.15) Predicted  crack pattern  and deformed mesh at load 750kN (TRGRAS1)



Experimental crack pattern at 900kN
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±

Figure(8.16) P red icted  crack pattern  and deformed mesh at load 900kN (TRGRAS1)



4 0 2

Experimental crack pattern at l333kN

i  4 i.

Figure(8.17) P red icted  crack pattern  and deformed mesh at load 1275kN (TRGRAS1)
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Experimental crack pattern at 600kN
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Figure(8.26) Predicted crack pattern and deformed shape at 600kN (TRGRAS2)



Experimental crack pattern at 950kN
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Figure(8.27) Predicted crack pattern  and deformed shape at 950kN (TRGRAS2)
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Experimental crack pattern at 1200kN
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Figure(8.28) Predicted  crack pattern  and deformed shape at 1200kN (TRGRAS2)



Experimental crack pattern at 600kN
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Figure(8.29) P red icted  crack pattern and deformed shape at 600kN (TRGRAS3)



Experimental crank pattern at 900kN
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Figure(8.30) Predicted  crack pattern and deformed shape at 900kN (TRGRAS3)
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Experimental crack pattern at 1500kN
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Figure(8.31) Predicted crack pattern and deformed shape at 1425kN (TRGRAS3)



Experimental crack pattern at 950kN
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Figure(8.32) Predicted crack pattern and deformed shape at 950kN (TRGRAS6)
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Experimental crack pattern at l050kN

;

- ! 1

\ \  '  

\  \

i i 

i i

I 1 

i  \ 

I \

\

\

/

/  / /  /

\  i 

\  i '  

i i \

\

\  N

. I '

i  > 

/  /  /  
i  i i

/  /  ' 

/  /  /

i i '  

i i \

1 'r

V \  ^ 

\  \  \ \  \  \
\  \  Vr  t /

\ i / 
__d

/ ; 1 
/ \ 1 \ I !

1 1 1 
/ 1 \ / < \

t r t  
1 1 11 ! '

i : i i i \ / '
X  ^

/  \
1 /

r.... -.....r :- r-.......

:

:

---- :
i :

Figure(8.33) Predicted crack pattern and deformed shape at 1050kN (TRGRAS6)
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Experimental crack pattern at l350kN
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Figure(8.34) Predicted  crack pattern and deformed shape at 1350kN (TRGRAS6)
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Figure(8.38) R einforcem ent detail in finite elem ent analysis for girder TRGRAS5
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Experim ental crack pattern  a t  450kN
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Figure(8.44) Predicted crack pattern and deformed shape at 450kN (TRGRAS4)



Experimental crack pattern at 600kN

Figure(8.45) Predicted crack pattern and deformed shape at 600kN (TRGRAS4)
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Experim ental crack pattern  a t 1143kN
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Figure(8.46) Predicted crack pattern and deformed shape at 1125kN (TRGRAS4)



Experimental crack pattern at 600kN
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Figure(8.47) Predicted crack pattern and deformed shape at 600kN (TRGRAS5)
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Experimental crack pattern at 750kN
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Figure(8.48) Predicted crack pattern and deformed shape at 750kN (TRGRAS5)



Experimental crack pattern at 975kN
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Figure(8.49) Predicted crack pattern and deformed shape at 975kN (TR.GRAS5)
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Figure(8.50) Predicted maximum shear strain*!0  ̂ at 750kN (TRGRAS4)
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Figure(8.51) Predicted maximum shear strain*!0 5 at 1125kN (TRGRAS4)
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Figure(8.53) R ein fo rcem ent detail in finite elem ent analysis for g irder TRGRAS
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Experimental crack pattern  a t 60GkN

A

Figure(8.59) Predicted crack pattern and deformed shape at 600kN (TRGRAS7)
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Experim ental crack pattern  a t 800kN

a

Figure(8.60) Predicted crack pattern and deformed shape at 825kN (TRGRAS7)
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Experim ental crack pattern  a t l350kN

Figure(8.61) Predicted crack pattern and deformed shape at 1350kN (TRGRAS7)



Experimental crack pattern at 500kN

Figure(8.62) P red ic ted  crack pattern  and deform ed shape at 525kN (TRGRAS8)
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Experimental crack pattern  a t 800kN

Figure(8.63) P red ic ted  crack  pattern  and deform ed shape at 825kN (TRGRAS8)
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Experimental crack pattern  a t  1250kU

Figure(8.64) P red ic ted  crack pattern  and deform ed shape at 1275kN (TRGRAS8)
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Figure(8.65) Predicted maximum shear s t r a in * 1 0 —  ̂ at 6 0 0 k N  (TRGRAS7)
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Figure(8.66) P red ic ted  m axim um  shear strain*10 ^ at 1350kN (TRGRAS7)
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4 6 3

Experimental crack pattern at 400kM

i

Predicted, crack pattern at 420kN

P r e d i c t e d  d e fo rm e d  s h a p e  a t  4-20kN

pigure(8.76) P red ic ted  crack  pa tte rn  and deform ed shape at 420kN (TRGRAS9)



Experimental crack pattern at 700kN

+-+■

Predicted crack pattern at 720kN

P r e d i c t e d  d e fo rm e d  sh a p e  a t  720kN

F>gure(8.77) Pred ic ted  crack  pa tte rn  and deform ed shape at 720kN (TRGRAS9)
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Experimental crack pattern at 1000kN
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Predicted crack pattern at 1020kN

P r e d i c t e d  d e fo rm e d  sh a p e  a t  1020kN

ftgure(8.78) P red ic ted  crack  pattern  and deform ed shape at 1020kN (TRGRAS9)
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Figure (8.79) Predicted maximum shear strain*!0 5 at 1760kN (TRGRAS )



4 6 7

1»15-

1«00

Y AXIS *10
2 AXIS *10 
X AXIS *10

2„a

r \

sH

2H

2»502»001 B 0000

X AXIS *10^ 
Y AXIS *10J

Figure (8.80) Predicted maximum shear
strain*!O'  ̂ at 1080kN (TRGRAS9).
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Experimental crack pattern at 400kN

Predicted crack pattern at 420kN
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Figure(8.81) P red ic ted  crack  pa tte rn  and deform ed shape at 420kN (TRGRAS10)



Experimental crack pattern at 700kN
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.82) P red ic ted  crack  pattern  and deform ed shape at 720kN (TRGRAS10)
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Experimental crack pattern at 800kN

Predicted crack pattern at 780kN
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Figure(8.83) P red ic ted  crack  pattern  and deform ed shape at 780kN (TRGRAS10)
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Figure (8.8^) Predicted maximum shear strain*!0 5 at 480kN (TRGRAS )
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Figure (8.85) P red ic ted  m axim um  shear strain*!0 ^ at 720kN (TRGRAS10).
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CHAPTER NINE 

C O N C L U S I O N S

9.1 From the theoretical and experimental investigations reported in this thesis,

the following conclusions can be drawn.

9.1.1 Direct Design Method

The large scale experimental tests and nonlinear finite element modelling 

have verified that the direct design method, in conjunction with the

averaging procedure used in this study, produces practical designs for a 

range of in— plane structures, and for continuous girders in particular. 

The direct design technique is a natural design— oriented method for

continuum concrete structures because of the way it combines analysis and 

design into one continuous automatic operation. Some of its advantages 

are as follows:

(i) Once the direct design equations are codified in conjunction with any 

numerical technique, such as the finite element technique, into a

computer program, the design of reinforcement can be easily and

conveniently obtained. Once initiated, this does not in general require any 

intervention by the designer. This method provides all the relevent 

information regarding the intended design in a graphical and tabular form. 

This technique can become a core for the development of computer aided 

designs (CAD), which is the demand of current practice.

(ii) It is based on the principles of plasticity, and is a lower bound 

approach. It has an intrinsic safeguard against unsatisfactory serviceability 

and collapse behaviour by aiming for simultaneous yielding throughout the 

structure.

(iii) It uses steel economically, because the design equations are based on
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steel requirements. It can handle any geometrical shape and 

different material properties.

Two scan continuous girders

(i) Service loads were near to the design ultimate load. Additionally, the 

average ultimate loads were found to be 45% and 50% higher than the 

designed and service loads respectively and hence there is an intrinsic 

safety factor against collapse. No girder failed before attaining the design 

ultimate load.

(ii) All the Codes of Practice underestimate the ultimate shear capacity of 

the reinforced concrete deep girders and are uneconomical in 

reinforcement design.

(iii) An increase in shear reinforcement influenced the ultimate strength, 

however, it was not possible, with the limited data in this investigation, 

to offer a relationship.

(iv) Less skew reinforcement than the orthogonal reinforcement was 

required from 0.2 to 0.8 of the depth from the bottom of the beam 

whereas more skew reinforcement was required in the other zones than 

orthogonal reinforcement.

a) Skew reinforcement produced a saving of 17% at an angle of 15 

degree and 12% at an angle of 10 degree to the x—axis.

b) Skew reinforcement produced better cracking control by reducing crack 

widths and consequently producing higher service and ultimate loads.

(v) The strength of concrete influences the ultimate load and serviceability 

behaviour.

(vi) No girder failed prematurely by bearing failure.

Perforated girders

(i) The applicability of the results, from the direct design technique m
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conjunction with the averaging procedure on perforated deep girders, 

showed that the ultimate strength of a girder depends primarily on the 

extent to which it intercepts the "load path" i.e the path joining the load 

bearing blocks at the loading point and the support reaction points, and 

on the location at which this interception occurs. The position of the 

openings are significant only in so far as these affect the extent and 

location of such interception.

(a) When a girder had two perforations the load path was intercepted to 

a lesser extent so that the measured ultimate load was slightly higher than 

the design load, however, serviceable behaviour based on the crack width 

limit was not satisfactory.

(b) When a girder had three perforations the load path was intercepted 

to a larger extent, because of the interception of the load path by two 

openings, the measured ultimate load was smaller than the design load.

Also the serviceable behaviour was not satisfactory based on the crack 

width limit.

(c) The position of the opening in the lower mid—depth zone intercepted 

the load path to a lesser extent than the opening in the upper 

mid— depth zone of the girder. This indicated that if the opening is 

placed in the lower mid—depth zone, the ultimate strength could be 

improved.

(ii) The experimental results has indicated the use of extra diagonal steel 

bars at the corners of the openings (i.e the local zones) as the local 

zones at support and load points are reinforced with steel cages. This is 

because in the high concentration zones direct design procedure might 

have difficulty in coping with.

Special pirder

The behaviour of the single span deep girder, which was reinforced as
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close as possible to that required by the direct design equations behaved 

satisfactorily in ultimate and serviceable behaviour. But it carried an 

ultimate load 75% and 66% higher than the designed and service loads 

respectively. This is because (i) the provided steel areas were higher at 

some points due to practical constraints (ii) the contribution of the dowel 

action and aggregate interlocking in shear transfer. This demonstrates the 

intrinsic safety factor against collapse. An interesting behaviour was 

observed in this model that progressive yielding of steel was very close to 

the simultaneous yielding of the steel throughout the structure, which

confirms the ideal situation of simultaneous yielding of steel which is one 

of the basic assumptions of the direct design technique.

9.1.2 Finite element studv:

(i) The nonlinear finite element analysis proved to be satisfactory in 

predicting general behaviour. The predicted ultimate load and steel strains 

were in reasonable agreement with the measured values, whilst the crack 

pattern predicted by the fixed smeared crack model demonstrates that it

is an adequate approximation to real behaviour.

(ii) A constant shear retention factor of 0.25 was found suitable for the 

girders designed by the direct design method.

(iii) Tension stiffening model was found not to be useful and hence was 

ignored in this study.

(iv) Girders with smaller span to depth (L/D) ratios gave higher ultimate

strength than girders with larger span to depth (L/D) ratios.

(iv) The finite element analysis provided useful additional information, 

such as deformational and maximum shear strain behaviour, this was used 

in order to ascertain the failure mechanism.

9.2 Suggestion for future work
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The following are some suggestions for further research in this area:

(i) The two span continuous girders in this study were tested with top 

point loads at the centre of the span, and the single span girders at the 

third points. There is a need to test the behaviour of transfer girders 

subjected to multiple load cases which frequently occur in practice.

(ii) Since deep beams are frequently used as panels, it would be 

worthwhile to test some beams with supporting frames.

(iii) The use of the deep beams in a shearwall supporting system involves 

slab and floor connections, hence it will be useful to test I—section deep 

girders to simulate this situation.

(iv) In this study the girders were designed using an elastic stress field.

An elasto— plastic model was also developed for the design of transfer 

girders, but was not adequately assessed. It would be worthwhile to design 

some girders using an elasto—plastic stress field to ascertain if a more 

economical distribution of reinforcement resulted.

(v) The design program is currently semi— automatic. It should be 

extended to select reinforcing bars and spacing automatically according to 

the averaging procedure in conjunction with the rules and regulations

prescribed by various codes, so that the final drawings may be directly

obtained from the computer.

(vi) In this study skew reinforcement was handled by the skew elements 

in the nonlinear program which can cause some numerical difficulties. 

Modification of the program is essential to simplify the handling of skew 

reinforcement, so that the orientation of the bar is independent of the 

main mesh.

(vii) The nonlinear program is currently not incorporated into the design 

process. It would be more useful for the design and nonlinear analysis 

program to be joined together, so that the complex structure can then be 

designed and analysed within the same process to check the ultimate load



and other important behaviour, such as failure mechanism, cracking 

concrete, yielding history of steel and deformational behaviour.



APPENDIX A

MODES OF FAILUE INVESTIGATED IN DIFFERENT STUDIES

Shear failure is generally classified as "diagonal tension failure" or "diagonal 

compression failure". The mechanism of this failure was first described by

Laupa et al at University of Illinois. Ramakrishnan and Ananathanayarana 

later extended it under the title of "Ultimate strength of deep beams".
j-*

They described these various modes of failure, which occured throughout 

their experimental investigation, on the deep beam behaviour as:

1 Diagonal tension failure : For a concentrated load, a clear and sudden 

fracture along a line joining the inside face of the support (in continuous 

deep beams inside face of the interior support) with the loading point, 

which is nearest to the support. It is shown in Figure (Ala) that for a

concentrated load and for a uniformly distributed load, a clear fracture 

occurs along the line joining the support to the nearst third span (Figure

1 Ab).

2 Diagonal compression failure : In this type of failure, an inclined crack 

develops first along the line joining the loading point with the support, then 

after a small increase in the load, a second parallel inclined crack appears 

near to the first one. The final failure is due to the destruction of a 

portion of the concrete between these two parallel inclined cracks (Figure 

2Aa).

3 Shear compression failure : If the inclined crack continues to grow as the 

beam carries additional loads, the crack extends into the compression zone 

and concrete starts crushing, this failure is to be called the shear

compression failure (Figure 2Ab).



A  Flexure failure : This failure of the deep beam is due to either failure of 

the "arch rib", where concrete in the arch crushes in the maximum tension 

region at mid- span or "tie" failure where the tie ruptures at flexural 

failure (Figure 3Aa).

5 Flexure-shear failure : In this type of failure, first the flexural cracks 

develope and then a diagonal crack suddenly develop and causes the failure 

of the beam. This type of failure is due to the combmaKem of either

diagonal tension failure and flexure failure or diagonal compression failure

and flexure failure (Figure 3Ab).

6 Splitting failure : In this type of failure, failure occurs by clear vertical

fracture of the compression zone at the top of an inclined crack at one

edge of the loading block under the concentrated load (Figure 4Aa).

7 Splitting spalling failure : It is similar to splitting failure, except that the 

start of the destruction of the beam occurs over the support ?md extends 

vertically upward (Figure 4Ab).
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