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SUMMARY
This thesis reports experimental and theoretical investigations into the in— plane
behaviour of reinforced concrete transfer girders designed by the direct design
method. The girders tested were either continuous over two spans or single span.
The direct design technique investigated used an elastic stress field obtained from a
linear— elastic finite element analysis using the uncracked properties of concrete in
conjunction with Nielson's yield criterion given by:—

* ox) (ay* - gy) - -rxy2 =90

(ox
where ox, oy and rxy are the applied stresses at the ultimate load, and ox* and
ay* are the ultimate capacities of the section. An averaging procedure was used to
smear out reinforcement requirements and select final bar sizes. This proved more

satisfactory than selecting bars based on maximum stresses.

A finite element procedure for obtaining an elasto— plastic stress field was developed
in order to design the reinforcement. This approach may be better in producing
more economical distributions for design the reinforcement. However, this was not

adequately evaluated in this research.

The experimental study consisted of testing eleven large scale girders. The major
parameters studied for the two span continuous girders were; span to depth (L/D)
ratio, the influence of the web reinforcement, the effect of using skew reinforcement
and the main reinforcement distributions according to either CIRIA Guide 2 or the
direct design technique. For the single span girders, the main purpose was to
examine the direct design technique for girders with web openings which interrupt
the load path. Also, to find the best location of the opening in the girder. One

solid single span girder was tested with the aim of justifying the theoretical



calculated amount of steel at each point, so that structure must yield simultaneously.

Also, to justify the maximum and averaging envelope procedures.

The theoretical study consisted of using a nonlinear plane stress finite element
analysis. The material properites of reinforced concrete were represented by fixed
crack smeared cracking model in conjunction with steel yielding behaviour etc. The
experimental measured behaviour and the behaviour predicted by finite element
model showed good agreement and allowed a greater insight into the behaviour of

the girders.

The test results indicate that the direct design approach is satisfactory in both

ultimate strength and serviceability behaviour as given by 0.3mm crack width.
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Major symbols used in the text are listed below, others are defined as they first
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defined.
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Curly brackets denote column and rows vectors
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—1 over square matrices denotes the inverse
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Denotes the determinant of a square matrix
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(2

Scalers
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1
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Pertains to element

Pertains to nodes

Pertains to integrating points
Pertains to steel

Pertains to tangential values
Pertains to transformed directions
Pertains to crack direction

Pertains to initial values

Area of individual bars crossing the diagonal crack
joining the support and loading point, including main and
shear reinforcement bars (Kong et al)

Area of concrete (BSCP8110)

Area of horizontal web steel bars (ACI Code)

Area of main reinforcement bars

Area of compressive reinforcement
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C1

C2

dA

dv

Ec,E,Eo0,ET
Es

Ew

fcb

fcu

Fpr

fs,fs"

ft'

Area of vertical web steel bars (ACI Code)
Reinforcement areas per unit thickness in the x and y
directions.

Shear span

Shear span below the opening

Shear span above the opening

Shear retention factor

Coefficient of shear strength (Ramakrishnan et al)
Breadth (thickness) of the beam

Compressive force of concrete

Empirical coefficient in Kong et al's equation

for normal weight concrete Cl=1.4

for light weight concrete Cl1=1.35

Empirical coefficient in Kong et al's equation

for normal weight concrete C2= 300N/m1ﬁ2

for light weight concrete C2=130N/mm?2
Cohesive force of concrete (Varghese et al)
Overall depth of beam

elementary area

elementary volume

Effective depth of beam

Young's modulii

Young's modulus of steel

Strain hardening modulus of steel

Characteristic compressive strength of concrete
Equal biaxial strength of concrete

Characteristic cube strength of concrete

Normal force on inclined crack in deep beams
Specified yield strength of tension and compression
reinforcement respectively

Characteristic tensile strength of concrete
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Characteristic yield strength of steel

reinforcement stresses in direction x and y respectively

Shear modulii

Horizontal force induced around a web opening in the model
Value of H corresponding to rotational failure of the model
Value of H corresponding to shear failure in the region
between the beam end and the web opening

Effective height of the beam
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Depth of the beam web above an opening (Fig. 2.14—b)
Depth of the beam web above an opening (Fig. 2.14—c)
Depth of an opening

Coefficient defining the position of an opening

1st, 2nd and 3rd invariants
Secant deviatoric stress invariant
Splitting coefficient (Ramakrishnan et al
Coefficient defining the position of an opening (Kong et al)
Bulk modulii

Overall length of beam span

Simple span of the beam, generally refer to a distance
between centre lines of supports.

Characteristic length of a crack

Clear span measured from face to face of the support (Crist)
Design moment at ultimate limit state

Flexural capacity of a beam (Rangan)

Shear strength of a deep beam (Rangan)

Ultimate moment at the section (ACI Code)

Hinge moments (Kong and Kubik)

Applied inplane forces

Number of bars (Kong et al)
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Sh
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Shear force
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CHAPTER ONE

INTRODUCTION
1.1 Preamble
This thesis is primarily concerned with the application of the direct design approach
to in— plane structures, focusing on deep beams in general and on continuous
transfer girders in particular. The research had three phases. Firstly the direct design
approach was developed for the design of deep beams and continuous transfer
girders. Secondly, the behaviour of designed beams was studied by testing them
experimentally to destruction. Thirdly, designed beams were analysed by nonlinear
finite element methods, in order to compare experimental and theoretical results, and
to provide further in— depth information about behaviour. This strategy would enable
conclusions to be drawn regarding the efficiency and rationality of the direct design

approach for transfer girder design.

Deep beams have a common practical importance, they are characterized as being
relatively short and deep, having thicknesses that are small relative to their span or
depth, and are loaded in the plane of the member. They are "two dimensional"
members in a state of biaxial plane stress, in which shear is a dominant feature.
The internal stresses cannot be determined by simple bending theory, and shallow
beam theory is not applicable for determining strength. Deep beams appear
frequently in complex structures in the form of transfer girders, brackets, pilecaps,
foundation walls, tanks, bins, folded plate roof structures, shearwalls and retaining
walls. Figure. (1.1) shows a typical situation where deep beams are used as load
bearing walls, whereas Figure (1.2) illustrates a situation where a deep beam spreads

column loads into a continuous foundation.

In modern construction, high—rise buildings are fashionable and have been
constructed on a large scale. It is fairly common practice to use heavy column

construction to take the entire load of the building. In such buildings it is often an



architectural requirement that the ground floor should be free of columns as much
as possible to accommodate departmental stores, hotel féyers, car parks, etc. This
can be made possible by using deep beams in the form of transfer girders to
provide large spans across the column free spaces, and to carry the rest of the

building above it as shown in Figure (1.3).

Another typical example, encountered in practice is a framing plan for tall buildings
which uses interior walls as story high structural members spanning the width of the
structure. The wall members are staggered on alternative floors. This framing system
provides large column free spaces as shown in Fig. (1.4). Hence, the slabs carry the
floor loads to the walls and act as beam flanges, while the wall acts as a beam

web.

Access from one part of a building to another frequently entails the provision of
openings in the webs of deep reinforced concrete beams. A wall separating two
rooms and designed as a deep beam may require openings for the passage of
ventilating ducts, heating pipes or other  essential sefvices. Openings are often
required to provide a central doorway between compartments. If the structure is to
be designed safely and efficiently it is important to understand the effect of web

openings on the behaviour of deep beams under service and ultimate loads.

It has been reported by various researchers that the type of loading and the shear
span to depth ratios are important parameters which effect deep beam behaviour,
i.e. when a beam is subjected to a direct point load acting on the top edge, the
shear capacity of the beam increases as it becomes deeper and deeper, and arching
behaviour becomes significant. In such beams diagonal tension cracks can appear
suddenly along a line joining the support and the loading point, when the tensile
stresses perpendicular to the compressive concrete strut joining the loading point and

support exceeds the tensile strength of concrete. Hence, shear or diagonal splitting is



a likely cause of failure in such beams. For uniformly distributed loads, the
tied— arch behaviour would be different and the strength would change. Furthermore,
in the vicinity of point loads, irregular and often severe stress distributions occur
which do not exist with uniformly distributed loads. Deep beams, either in
continuous foundations or as shearwalls, often carry columns which provide direct
point loads acting on the top edge, and it is this type of loading which was

investigated in this study. Figure (1.5) illustrates this loading schematically.

In the last 30 years, many experimental and analytical studies have been conducted
on deep beams. However, most of these studies are markedly different from one
another in geometry, reinforcement ratios, reinforcement distributions, loading
conditions, as well as the methods of analysis. Authors have typically developed and
validated empirical formulae for their own test results, irrespective of its applicability
to other situations. In addition, there has been far less attention devoted to their
design. Consequently design of deep continuous girders is one of the most undefined
in codes of practice. It appears that most of current practical design procedures use
elastic stress fields. There are no design procedures which takes into account other
stress field such as elasto— plastic stress fields. Designs based on current design
methods give a very high difference between the design load and the measured

ultimate load which implies there is wastage of material.

Neither the British Code of Practice CP110 (1972)[1], nor its updated version
BSCP8110 (1985)[2], contain recommendations for deep reinforced concrete beams.
The CEB-— FIP (1970)[3] model code did include some design recommendations for
simple and continuous deep beams based on Leonhardt and Walther's(4) findings in
Germany. This Code does not provide precisely for shear reinforcement design and
there is no provision for deep beams with web openings. The design criteria for
multi—~ span deep beams have been developed from semi— empirical formulae based

on limited data of simply supported deep beam studies. Continuous deep beam



behaviour and analysis is more complex in comparison to a simply supported deep

beam due to the effects of the extra supports.

The ACI Code (1971)[3] and its new updated version ACI Code (1983)(6] included
recommendations only for the shear design of deep beams and was based on Crist's
findings at New Mexico(7). These provisions evolved from simply supported deep
beam studies and are not directly applicable to continuous deep beams. As a result,
the ACI Code equations "blow up" for continuous deep beams, when the critical
section for shear is near or at the point of contré—- flexure, which happens
frequently, since the design equation requires division by zero. Secondly the ACI
Code equation for ultimate capacity includes a negligible contribution from the steel,
which means that the estimated total load is provided only by the concrete which
may not be true. The Code recommends that the Portland Cement Association
(PCA) Pamphlet (1946)[8] should be consulted if flexural reinforcement is required.
This was an extension of earlier work by Dischinger (1932)[9] who considered
reinforced concrete as an isotropic, homogen%us and elastic material, which is not

very realistic, once concrete has cracked.

The Construction Industry Research Information Association (CIRIA) Guide 2
(1977)[10] is a comprehensive guide for deep beam design and has a similar
procedure to the CEB—FIP (1970)[3] model code. However, its recommendations
seem to be conservative for both main and shear reinforcement. It does not provide
specific criteria for shear reinforcement calculation, only an ad hoc procedure. vThe
CIRIA Guide does cover web opening design, but only if the openings are placed in
a dead zone area, which is called, in its own terminology, an "admissible" opening.
In practice, openings often interrupt load paths, and can cause a serious problem.
Thus the CIRIA Guide lacks info;mation for "inadmissible" web opening design. Also

the CIRIA Guide provisions for web openings are based on elastic theory.



During the last two decades study of plasticity in reinforced concrete has grown
extensively. Limit analysis techniques have been used to predict both upper and
lower bound capacities of slabs, panels and beams under bending, shear, torsion and
combined actions. These techniques are based on the basic theorems of plasticity,
which demand that at collapse two of three conditions, i.e. the equilibrium condition,
the yield criterion and the mechanism condition, are satisfied. Also the material must
possess sufficient ductility so that areas which yield before collapse, can deform

plastically without loss of strength until ultimate conditions are reached.

In lower bound methods for reinforced concrete, the applied loads are less or
equal to the combined internal resistance offered by the concrete and steel. In upper
bound systems, sufficient hinges or yield zones are formed in the structure which
transform it into a mechanism. Upper bound methods are wunsafe if the wrong
mechanism is assumed, whereas lower bound methods are safe although they may be

uneconomical.

In recent years various proposals have been made for the design of reinforcement
for both bending and in— plane forces, based on the lower bound limit state
approach, in which a stress field in equilibrium with the design ultimate load is used
in conjunction with an appropriate yield criterion. This approach is termed the direct
design method in this thesis. Such a stress field can be obtained by any suitable
procedure such as a linear elastic finite element analysis or by an elasto— plastic
finite element analysis. Reinforcement is then provided so that the combined
resistance of steel and concrete at each point is equal to or greater than the applied

stresses.

An elastic stress field will produce steel reinforcement ratios which may vary
continuously throughout the continuum, and is likely to give ultimate loads which are

higher than the design loads. Also, when taken in conjunction with the objective of



simultaneous yielding throughout the continuum, excessive deformations and cracking
are unlikely at working loads and therefore they should not result in poor
serviceability behaviour. On the other hand, an elasto— plastic stress field might
provide more uniform and efficient flow of forces producing uniform reinforcement
fields which would be more convenient for selecting bar sizes and spacing. However,

such fields are likely to produce less satisfactory serviceability behaviour.

In theory, by satisfying equilibrium and the yield criterion at every point
simultaneously, the entire structure will become a mechanism at ultimate load.
Practical considerations, such as the provision of reinforcement as discrete bars, make
it impossible to achieve this idealised behaviour. Nevertheless,' in general, direct
design has been proved satisfactory in ultimate and serviceability behaviour, although

the theory gives no guarantee that serviceability behaviour will be satisfactory.

Recent research has demonstrated that the direct design approach using an elastic
stress field is satisfactory for both bending and in— pléne actions[11,12,13,14] oy
certain classes of structures at serviceability and ultimate conditions. In these studies
the yield criterion and associated design equations given by Wood and ‘Armer[15»16]
were used to design reinforcement for bending actions, whilst for in— plane actions,

Nielsen's[17] yield criterion was used with the design equations proposed by

Clarkl18],

The studies by Lin [13] on solid deep beams and by Memonl14] on perforated deep
beams were on relatively small scale models so that practical bar sizes were difficult
to select. Also, because continuously varying reinforcement fields were produced
throughout the continuum, difficulties were encountered in choosing practical
distribution of reinforcement. These factors indicate that there is a need to test

large— scale models which could simulate practical situations more closely.



These studies have also indicated that measured ultimate loads were always higher
than the designed ultimate loads. This can be explained by the following points:

(a) The reinforcement provided was always higher than the calculated amount of
reinforcement.

(b) Stva hardening in the steel is ignored in the design equations. This could play
an important role, particularly for high tensile strength steel.

(c) The effect of dowel action and shear transfer across cracks is ignored in the
design process. These can have an important influence in deep beam behaviour.

(d) The tensile strength of concrete is assumed zero in the design process.

There are still several other aspects of the direct design method which requires
further investigation and development. These include the following.

(i) As implemented currently the direct design technique is semi— automatic.
However, it has the potential to be fully automated from ikienitia] design
conception to the final working drawings. Automatic procedures have been produced
for calculating the elastic stress field, the steel ratios and the steel areas required,
which can then be plotted by computer directly to assist in the subsequent design
stages. Discrete bars are then selected manually, based either on maximum or
average value procedures in conjunction with the rules- for spacing and concrete
cover as specified in codes of practice and other design guides. Once these rules for

bar selection have been established experimentally and theoretically, it also could be

made automatic.

(ii) Multi load cases have not yet been studied experimentally or theoretically. It is
often the case that deep beams or other structures are subjected to such loading.
Clearly it is impossible to produce a single practical reinforcement arrangement which
will simultaneously satisfy the idealised basic conditions for two or more independent

load cases. It is still necessary to work out practical procedures for detailing in this

situation



(iii) The wuse of skew reinforcement is not covered by any code of practice.
However, Leonhardt and Waltherl4] and Lin[13] have studied skew reinforcement as
main reinforcement in deep beams and have concluded that it is better than
orthogonal reinforcement in increasing ultimate capacities of beams, reducing
deflections and giving a better control on crack widths. Skew reinforcement is
conveniently handled by the direct design equations and thus it would be useful to
further investigate the efficiency of this type of reinforcement using the direct design

approach.

(iv) The direct design of deep beams in which web openings interrupt the load path,
has not yet been studied. This is an important practical situation which needs further
investigation, especially as no code of practice or design procedure includes this

situation.

Since deep beams can develop arch action, attempts have been made to develop
Plastic Truss Models[19,20,21,22] for analysis and design. However, these do not
strictly duplicate the true behaviour of deep beams, they are not straightforward to
use and they only: predict ultimate loads. An iterative process is required which
rebuilds the geometry, changes support dimensions, and adjusts the material
properties. The reliability of solutions appears to be dependent on the choice of an
approximate effective concrete strength, fc*, using a so—called concrete effectiveness

factor, v.

The plastic truss model also assumes that any horizontal web reinforcement is
ineffective, which might not be the case in reality; also since shear failure in deep
beams is dominant, the top and bottom cords of steel, in the plastic truss model
may not reach its ultimate capacity as is assumed. To the author's knowledge, the

plastic truss model does not appear to have been used, to actually design either



simple or continuous deep beams, which have then been tested experimentally to
confirm its applicability. For example, two series of deep beams tested by Rogowsky
and MacGregor[19], and Ricketts and MacGregor[2O] were analysed, but not
designed, by the plastic truss model. Although good agreément was obtained, it was
only possible by making adjustments to material properties, such as the characteristic

cylindrical compressive strength of concrete.

As indicated earlier, current codes of practice and design methods rely heavily on
empirical or semi— empirical formulae derived from large amounts of experimental
data. This is mainly because of the complexities associated with the development of
rational analytical approaches. Neveretheless, it is difficult and expensive to conduct
exhaustive experimental studies on each topic, in order to develop empirical
methods. In such situations, numerical techniques offer alternative approximate

solutions if material behaviour is properly modelled.

Nowadays a nqmber of such techniques are available for analysing a given structure,
all based on the basic principles of continuum mechanics, that is equilibrium,
compatibility and the constitutive relationships of the material. They transform a
body of an infinite number of variables into one with a finite number of variables,
governed by a set of simultaneous equations, the solution of which provides an
approximation to the real situation. The most powerful general technique is the
Finite Element Method (FEM). It is an engineering tool of wide applicability for the
solution of partial differential equation systems, subject to known boundary and
loading conditions, and has been described[23,24,25] very widely. Its development is
still continuing, particularly in nonlinear analysis, and it is being applied in the
development of rational approaches for structural design in computer aided design

(CAD) techniques.

In the finite element analysis of reinforced concrete structures, many nonlinearties
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can be approximately modelled, these include the cracking of concrete, tension
stiffening, shear transfer across cracks, nonlinear multiaxial material behaviour, and
complex steel— concrete interface behaviour. Thus, in principle, the FEM can
estimate the most important aspects of behaviour throughout the entire loading

range.

However, understanding of concrete behaviour is still incomplete despite the
significant advances made in the last two decades. Disparities in experimental results
are commonplace due to the difficulties in obtaining consistent test procedures and
test specimens, as well as in the natural variability of concrete itself. This makes it
difficult to model concrete behaviour exactly, therefore approximate theories have to
suffice. The behaviour of steel is more straightforward and can be modelled more

easily, particularly as reinforcement provides a predominantly axial force.

However, composite action of concrete and steel as reinforced concrete, especially
when the concrete is cracked, is much more complex. Factors such as bond— slip
phenomenon between steel and concrete, dowel action of reinforcement under shear
deformation, etc. can significantly influence reinforced concrete behaviour. These
phenomena are still under investigation in order to provide better understanding and

information, which are essential for theoretical modelling.

In testing the reliability of a FEM model, it is important to wunderstand the
numerical and material parameters which influence a solution and ensure that
predicted behaviour is compared with quantities which have practical engineering
significance. However, once the integrity of a finite element analysis for a particular
problem is confirmed against experimental evidence, then a numerical parametric
study can be employed to investigate various factors in that field more economically
than by experimental means. Also, a wider range of parameters can be studied when

a FE model is used in conjunction with carefully selected laboratory models. Such
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an approach may be better for developing rational design approaches for codes of

practice.

Nonlinear finite element models have been applied by various researchers, for
examplel26,27,28,29] on single span solid and perforated deep beams. Also, the
ASCE State— of— the— Art Report[30] reviews the various finite element models
developed by researchers for the analysis of reinforced concrete. Reasonable
comparisons between predicted behaviour and experimental behaviour have been
reported. However, no finite element studies appear to have been conducted on

continuous deep girders, although in principle there should be little extra difficulty.

1.2 Scope and purpose of this study

The main objectives and scopes of this study were:

1:— To test the applicability of the direct design approach as a rational design
procedure for in— plane structures, in particular deep beams and continuous transfer
girders. Such beams would contain a range of features such as perforations and skew
reinforcement. This was achieved by:—

(i) Developing a linear— elastic finite element model which incorporated the direct
design equations for both orthogonal and skew reinforcement design.

(ii) Carrying out experimental tests on large—scale and full-scale models to
destruction.

(iii) Carrying out nonlinear finite element analysis.

2:— To test the validity of the nonlinear FEM model by comparing strains,
displacements, crack patterns, ultimate loads and failure mechanisms with

experimental evidence.

3:— To compare the direct design technique at serviceability and ultimate conditions

with other design methods recommended by various codes of practice, and also with
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the plastic truss models.

4:— To draw some general conclusions regarding the design recommendations of the

British Code of Practice for deep beams and transfer girders.

e
1.3 Genftal Layout of the thesis

Chapter Two reviews and critically assesses the historical background of experimental
and theoretical work carried out on reinforced concrete deep beams relevant to this
study. It also reviews four main design methods and the direct design method, in

order to compare these methods.

Chapter Three is concerned with a brief review of the finite element method and its
use in the design program for obtaining an elastic stress field. This program also
contains the equations for reinforcement design and gives three dimensional views of

stress behaviour in the continuum.

Chapter Four presents a review of the nonlinear finite element method. The
mathematical material models describing the behaviour of concrete and steel are
discussed. These include cracking and post— cracking behaviour of concrete, two
dimensional strain— stress laws and crushing of concrete, and steel stress— strain
behaviour. Also elasto— plastic analysis is described in relation to obtaining other
stress fields for use in the direct design procedure. An assessment of the models is
made with respect to boundary conditions, mesh convergence, nonlinear numerical

parameters etc.

Chapter Five describes in detail the direct design methodology with its limitations
and applications‘to continuous girders. The complete step by step design of several
beams is included. These use the linear elastic model for obtaining elastic stress

fields and Nielsen's(17] yield criterion in conjunction with Clark's[18] design equations
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to design the reinforcement.

Chapter Six describes the test—rig which was designed to carry out the experimental
investigation on large and full scale models of transfer girders, and describes the

experimental procedures and instrumentation.

Chapter Seven presents the experimental results. General experimental behaviour is

reported and results are discussed.

Chapter Eight presents the nonlinear finite element assessment of the tested girders,
and examines the various material and numerical parameters which have an influence
on general behaviour of the transfer girders and offers practical guidance in its use.
In addition, comparisons of experimental behaviour with the predicted behaviour of
the FE model are presented. It also describes in detail a comparison of other
methods of designing and analysing for deep beams. The discussion leads to an
attempt to suggest improvements in codes of practice such as CEB— FIP, ACI Code
and CIRIA Guide 2, and suggests that the British code of practice might also

include these recommendations.

Finally, Chapter Nine offers general comments and conclusions regarding the
applicability of the direct design approach for the design of transfer girders and

makes suggestions for further research in this area.
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CHAPTER TWO
LITERATURE REVIEW OF STUDIES ON TRANSFER GIRDERS

2.1 Introduction.

Transfer girders are found in the form of simply supported or continuous deep beams
of various types. A detailed description with the form of loadings they take, and
where they appear in practical applications, was given in Chapter One. A fair amount
of experimental and theoretical work has been reported on simply supported solid and
perforated deep beams, but the amount of work is small compared to that made on
shallow reinforced concrete beams. Little experimental work has been reported on

continuous deep beams.

Analysis of continuous deep beams is more complex in comparison to simply
supported ones because of the increased number of boundary conditions to be
satisfied. Although much of the literature on simply supported deep beam studies has
little direct relevance to this study, such information gives an approximate guide to
the behaviour of transfer girders and continuous deep beams. Hence a review of

single span deep beams has been undertaken to provide a basic foundation.

The aim of this chapter is to select a representative sample of the most recent
investigations in order to give a brief summary of general deep beam behaviour. Also
the different experimental and analytical approaches which are directly or indirectly
related to the present investigation are reviewed. The publication list is too long to
give here but an early comprehensive review was given by Albritton[1] which has been
followed by more recent reviews!2~ 5], Finally, some of the current design methods

specified by various codes of practice and guides are reviewed.

2.2 Basic behaviour and definition of deep beams.

In simply supported beams with span to depth (L/D) ratios greater than approximately
2.0, and in continuous beams with ratios greater than about 2.5, the stress and strain

distributions can be satisfactorily predicted by simple bending theory. This implies that

s



the basic assumption of Navier Bernoulli's hypothesis (plane sections remain plane
before and after loading) is approximately valid. It then follows that the flexural stress
and strain distribution is linear and that the shear stress distribution is parabolic across
a vertical section. However, the stress distributions over a cross— section deviates

increasingly from these as the span to depth (L/D) ratio decreases as shown in Figure

(2.1).

In the case of small (L/D) ratios, stresses based on a straight line distribution may be
seriously in error. The simple theory of flexure takes no account of normal pressures
on the top and bottom edges of the beams, caused by the load and reaction points.
The effect of these normal pressures is such that the distribution of bending stresses
on a vertical section is not linear, and consequently a section which is plane before
bending does not remain even approximately plane after bending. The neutral axis will
not necessarily lie at the mid— depth of the beam, and its position may vary along

the span. There may even be more than one neutral axis.

As the beam becomes deeper and deeper, the lever arm increases. This increase
produces flexural stress which is less significant in deep beams than in shallow beams,
and the shear stresses become significant. The vertical and shear strains in deep
beams are of the same magnitude as the bending strains and therefore make a more

significant contribution to the total deformations than in shallow beams.

The applied loads on the top surface give rise to vertical compressive stresses and a
concrete strut forms along a line joining the support and the loading point. This is
the plane where a diagonal shear crack may appear and the beam transforms
immediately into a tied— arch. Therefore, the concepts of lever arm in shallow beams
and strut action in deep beams are introduced to give a simplified representation of

the internal stress flow and deformations within the beam.
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2.3 Deep beam studies based on linear elastic behaviour.

2.3.1 Theoretical investigations.

The era of deep beam research was started by Franz Dischinger[G]. He presented a
Fourier series solution for beams of decreasing span to depth ratios, resting on a
series of supports. He assumed reinforced concrete was elastic, homogeneous and
isotropic. He showed that plane sections do not remain plane after loading. He
emphasized that a knowledge of the lever arm in deep beams is of great importance.
Although his work was concerned with continuous deep beams, he suggested that the
lever arm for simply supported girders could be twice as great as that of continuous

girders.

Later, the Portland Cement Association (PCA)[7] published the pamphlet "Design of
deep girders" based on Dischinger's findings. This pamphlet covered all possible cases
of loadings, although it lacked a design procedure for continuous girders with
concentrated loads on the top surface at the centre of the spans. The ACI Codel8]
still refers to this pamphlet for the design of flexural reinforcement. This is explained

in detail in section (2.6) on the review of design methods.

Other approximate linear elastic methods of analysis have been given Conway, Chow
and Morgan[gl', Chow, Conway and Winter[10] and Uhlmann(11] using finite difference
techniques. Archer and Kitchenl[12] have presented a solution for stresses in deep
beams using strain energy methods. Some linear finite element analysis has also been
applied in earlier studies, for example CIRIA Guide 2 has incorporated elastic stress
distributions for deep beams and has indicated that the distribution is not linear as in

shallow beams.

All these methods only apply to elastic homogeneous materials, whereas the behaviour
of reinforced concrete beams involves cracking and nonhomogeneous nonlinear material
behaviour. Nevertheless, these studies have revealed that the behaviour of deep beams

is quite different than that of shallow beams and have laid the foundations for
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recommendations for the design of reinforced concrete deep beams. However such
recommendations have not been supported by experimental tests, therefore there is

some doubt about their validity.

2.3.2 Experimental investigations.

Although Kaarl13]'s work was not on reinforced concrete deep beams, it appears that
he might be the first researcher who experimentally investigated stresses in deep
beams. Kaar carried out his tests on homogeneous, isotropic and elastic materials, one
series of six aluminium beams and another series of six steel beams. He discovered
that when the span to depth (L/D) ratio was less than 1.5 the use of flexural formula

for measuring the stresses was seriously in error.

Archer and Kitchen[14] studied stress distributions on three deep steel plates using
eight different loading conditions in order to verify their proposed strain energy
method. Experiment and analysis were in agreement for the case where the span to
depth (L/D) ratio was 1. At all points along the lower edge of the beam the stresses
were markedly different from those given by simple theory. For the cases where the
(L/D) ratio was 1.5 and 2.0 the experimental values were approximately midway

between values obtained by strain energy method and those given by simple theory.

The experimental work described above reveals that stress analysis based on elastic
theory gives reasonable predictions when specimens were made from materials which
closely obey Hooke's law. Nevertheless, this experimental research indicated that the
simple bending theory was not applicable to deep beams. Thus there was a need to
test reinforced concrete deep beams themselves in order to develop appropriate design

methods.

2.4 Reinforced concrete deep beam studies.

Various theoretical studies have been carried out which are based on experimental

behaviour, resulting in semi— empirical formulae. A selected sample of representative
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theoretical studies proposed over last three decades is presented in this section.

2.4.1 Theoretical investigations.
Varghese and Krishnamoorthy.
Varghese and Krishnarnoorthy[15] developed a theory for ultimate load of deep beams
based on published experimental data, including their own. Their theory was based on
the shear type failure under various types of loading. They believed that only shear
failure occurs due to diagonal cracking along the line joining the support to the
nearest loading point, as shown in Figure (2.2). A formula was derived based on the
equilibrium of the segment of the beam, and by assuming that failure occurs by shear
along the line joining the loading point and support, and by yielding of the steel.
Their formula is applicable for single span deep beams subjected to a centrally
concentrated load on the top edge, loads at third points and uniformly distributed
loads. They applied this formula to a small number of tests and achieved reasonable
agreement with experimental values.
The ultimate load of the beam is then calculated by

2.¢c.b.D 2.Fs(tana. tanp-1)

Pu = + 2.1
sina.cosa(tano+tany) (tana+tang)

where o is the angle of the diagonal crack, Fs is the force in the longitudinal steel
as illustrated in Figure (2.3—a) based on the yield stress fy of steel, b is the breadth
of the beam and D is the overall depth of the beam. The term ¢ and ¢ are
obtained from the compressive and tensile strength of the material by using Mohr's

theory, illustrated in Figure (2.3—b). Thus o= (fcu— fc')/2/{fc'.ft) and c=(Jfc".fr)/2.

Moreover, they proposed a design procedure for main reinforcement based on the
assumption of a shear failure mode. The amount of reinforcement is calculated by
assuming that the depth of the compression zone is 0.1D. The proposed formula is
then

As = M/fy(d- (0.1D/2)) 2.2

where M is the design bending moment and d is the effective depth.
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Ragan

Ragan[16] described a theoretical approach for predicting the ultimate strength of
reinforced concrete deep beams which was similar to that applied by Sundara Raja
Iyengar and Rangan[”] for shallow beams. He derived two formulae, one for beams

failing in flexure and one for beams failing in shear:

Flexure failure:— This assumes a nonlinear stress block for concrete in the
compression zone at failure, a triangular distribution for the tensile zone of concrete,
and that the main steel yields at failure.
The formula for beams failing in flexure then follows as:

MpL/bd2 = [ (ptfy/fc').j+ 0.15 \] 2.3

where j and N\ are empirical constants defined as:

j=[1-0.48 k]
A=[(1-1.4Kk (2.0 -0.3 k)] / 6.0
and k = [ (pfy/fc') + 0.075 ],

where pt= As/bd
Shear failure:— This assumes that the contribution of shear carried by the
longitudinal tension steel and the shear resisted by the concrete in the tension zone is
negligible. A rectangular distribution was assumed for the shear stress in the
compression zone of concrete and a nonlinear stress block was considered for the
compressive stresses in the concrete.
The formula for beams failing in shear then follows as:

Mcr = (2Kj.k3.bc.fc'. jd)/(1+A+(2 jky.k3)/a1)2 2.4

where kj.k3=0.8 and k9=0.42 were used to estimate ultimate shear

and o1= Mcg/Vd

c = d/ky(1-d)
where McR is the shear failure capacity and V is the shear force at the critical
section. Ragan presented two graphs of equations (2.3) and (2.4) from which the
ultimate strength can be estimated. Comparing formulae with published data, the

flexural strength was predicted in the range 0.75 to 1.28 and shear strength in the
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range 0.75 to 1.45 of measured ultimate strengths.

Shaikh, de Paiva and Neville[18] described an iterative method for estimating the
flexure— shear strength of reinforced concrete deep beams similar to one they derived
for ordinary beams(19]. The flexure— shear strength calculations were derived mainly
from the properties of the compression zone of the beam, and the deformation and

equilibrium conditions. An iteration process was used to find the correct stress block.

The method was compared with experimental results published in the literature. The
average of predicted to observed ultimate strengths was 1.06. It was proposed that the

strain hardening of steel is important in permitting deep beams to attain their high

strengths and this characteristic must be available in order to wuse this method

effectively. This resulted in inevitable restrictions on the use of the available published
data, which rarely includes information regarding the strain hardening behaviour of

steel in tested deep beams.

Kumar

Kumar(20] presented a rigorous truss model for estimating the collapse load of deep
beams. This was based on the assumption that deep beam behaviour is like an arch
or truss, and so it was thought that a truss model could predict ultimate strength
more accurately. The analysis carried out by Kumar on published data indicated that
estimated values were not close to measured values, the average ratio of measured to

estimated values being 1.3. However, its use was still recommended.

Marti

Martil21] also developed a truss analogy based on the lower bound principles of the
theory of plasticity. This method is intended for design of reinforced concrete
members such as shearwalls and deep beams. Admissible stress fields are obtained by
defining a truss composed of concrete struts and reinforcement ties which meet at

nodal zones. Nodal zones are the biaxially or triaxially stressed regions of concrete
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which mainly exist in regions close to load or support points. Nodal zones are
assumed to be pin connections in the analogous truss. The geometry is revised and
rebuilt iteratively in order to come close to measured ultimate loads. However, these
methods do not appear to have been used for deep beam design, so that its validity

is not assured.

Collins and Mitchel .

Collins and Mitchell22] have also developed a truss model for deep beam design
called" A rational approach to shear design—The 1984 Canadian concrete code
provisions”. Their proposal is based on the flow of forces in the beam and locations
of nodal zones. The nodal zones must be chosen large enough to ensure that the
nodal zone stresses are less than the limiting stresses given by the Canadian Code.
The limiting stress for upper and lower nodal zones are given 0.85.pc.fc' and
0.75.¢c.fc' respectively, where ¢c is the the resistance factor for concrete (pc=0.6)
The geometry of the truss is determined by locating the nodes of the truss at the

points of intersection of the forces meeting at the nodal zones (Figure 2.4).

From these, the forces in the strut and ties of the truss can be determined by statics.
Once the forces are determined, the required area of tension tie reinforcement is
chosen. The tensile reinforcement must be effectively anchored to transfer the required
tension to the nodal zone of the truss and reinforcement should be distributed over
the lower nodal zone depth. A formula was also proposed to check the crushing of

the strut.

For the design of shear reinforcement, the minimum criteria of the Canadian Code is
recommended. According to this, the transverse and longitudinal reinforcement must be
provided with a minimum volumetric ratio of 0.002 in each direction to control crack

widths and to ensure ductility.

The authors did not analyse any deep beam, but they outlined the design procedure



by designing a deep beam. The also re— designed this beam using the empirical

equations of ACI Code to examine the capability of their method.

Kotsovos
Recently Kotsovos[23] proposed a design method for both simply supported and
continuous deep beams based on modelling behaviour by a "tied frame with inclined
legs". He concluded that the load carrying capacity of reinforced concrete deep beams
is associated with the strength of concrete in the region of the path along which the
compressive forces are transmitted to the supports. He believed that experimental
evidence indicated that the force in the tension reinforcement within the length of the
horizontal projection of the inclined portion of the path was constant, so that the
compressive force acting along the inclined portion of the path was also constant.
Referring to Figure (2.5), moment equilibrium is given by:

Cz=Pa 2.5
where z=(d— x/2) is a reasonably assumed value. This will yield the depth of the
compression zone x, from which the compressive force, C, can be obtained. Since
from equilibrium C=T, the required amount of steel can be calculated as:

As= T/fy 2.6
This method was applied to published experimental data and it appears that it only
predicted reasonable values for simply supported beams with two point loads. For
single span centrally loaded and continuous deep beams the results were less accurate.
Thus the method is not yet sufficiently developed for use in design. However, this

method will be compared with the direct design technique in Chapter Eight.

2.4.2 Experimental investigations.

Some of the most extensive investigations on reinforced concrete deep beams to date
have been conducted at the University of Illinois, Stuttgart University, Coimbatore
College India, New Mexico, Nottingham University, University of Cambridge,

University of Glasgow, University of Alberta, and the University of Dundee.
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de Paiva and Siess

de Pavia and Siess[24] tested a series of 19 moderately deep beams with L/D ratios
varying from 2 to 4.0. The aim was to study beam behaviour in the transition
between shallow and deep beams. The main variables were the percentage of
reinforcement, concrete strength, the amount of web reinforcement, the span to depth
(L/D) ratios and two types of web reinforcements (i.e vertical and bent— up bars). All
beams were loaded at the third points. Anchorage was obtained by welding tension

reinforcement at each end of the beam to 1/2 inch steel end bearing plates.
Behaviour was observed as follows:

1:~ Three different modes of failure were observed from the tests as explained in
Appendix A. Nine beams failed in flexure, five failed in flexure— shear and five failed
in shear failure. Shear failures were attributed either to diagonal tension failure or to
diagonal compression failure.

2:— The increase in concrete strength had little effect on beams failing in flexure,
but increased the strength of those beams failing in shear. The increase of shear
strength with increase of concrete strength was more noticeable with lower span to
depth (L/D) ratios beams

3:— The addition of 1.42% of shear reinforcement had no effect on the inclined
cracks, but seemed to prod%e a slight increase in the ultimate strength. There was
also decrease in the ultimate mid—span deflection. Whereas vertical stirrups did not
increase the ultimate load at all.

4:— The effectiveness of bent—up bars increased as inclination increased up to a

value of oq=62.7°.

The ultimate flexural strengths for moderately deep beams were reasonably predicted
using ultimate strength theory for shallow beams. In addition there was an increased
value of the wuniaxial compressive concrete strain at failure to 0.008in/in which

confirmed the findings of earlier work carried out at the University of Hlinois[25— 28],
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The inclined cracking load was reasonably predicted by Diaz de Cossio's[29] equation
V/b.d = 2.14/fc' + 4600.p.V.d/M 2.7
(It should be noted that this equation is intended for use with U.S. customary units

i.e 1bf).

For beams failing in shear, the ultimate strength was reasonably predicted using a
formula derived by Laupa et all30] for moderately deep beams and T— beams, when a
correction factor was included to take into account the clear shear span to depth
(X/D) ratio. Both these results and those of Laupa et all30] indicated that a transition
occurs at X/D equal to 1.0 (i.e at the transition from deep to shallow beams). Thus,
the shear capacity of beams for X/D ratios less or equal 1 was given by:
Qult= 0.8(1-0.6(X/D)).(200+0.188fc'+21300pt).bD 2.8

where the quantity pt= As(1+ sina)/bD is the total steel area crossing a vertical section
between the loading point and the support, and « is the angle of inclination of bent

up bars to the horizontal axis of the beam.

Ramakrishnan and Ananthanarayana et al

Ramakrishnan, Ananthanarayana and Oblil31] tested 12 single span deep reinforced
concrete beams at P.S.G. College Coimbatore, India, under two point loading acting
on the top edge. The aim was to study the modes of failure, the strengths and the
load deformation behaviour and to compare the results with shallow beams. The major
parameters were span to depth (L/D) ratio, percentage of tension reinforcement and

the presence of a nominal amount of web reinforcement.

A linear relationship was developed between the ratio of measured ultimate load (Pu)
to calculated ultimate load according to Whitney's theory (Pcu) and the depth to span
(D/L) ratio for values between 0.94 and 2.0 i.e.

Pu = Puc (1+(1/L/D)) 2.9

This study concluded that design procedures were not adequate for predicting the
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ultimate strength of deep reinforced concrete beams, and although Whitney's theory,
with some modification, could serve immediate design needs, there was a need to
explore a rational method for analysis and design which could fully explain the

strength of deep beams.

Ramakrishnan and Ananthanarayana[32] extended this work by testing another 26
simply supported deep beams. The major variables studied were (L/D) ratio varying
from 0.55 to 1.11 and different types of loading (i.e central point load, two point
loads and uniformly distributed load). The beams were reinforced longitudinally with

plain mild steel bars, and had little or no web reinforcement.

The major observations from these test resultsave summarized as follows:

1:— The majority of the beams failed in diagonal tension failure whereas 5 beams
failed in flexure, 4 beams failed in flexure—shear and 3 beams failed in
diagonal— compression failure. The various failure modes are summarized in Appendix
A.

2:— The stiffnesses of the beams increased as the (L/D) ratio decreased, and
concentrated loads produced relatively more deflection than the uniformly distributed
loads.

3:— As the depth of a beam increased, the load was transmitted more directly to the
support with a consequent reduction in bending stresses, thus forcing the beam to
behave essentially as a tied arch.

4:— After the formation of inclined cracks, the beams still carried a considerable
load. Hence the load corresponding to the ultimate stage was taken as the collapse
load due to the splitting failure in the concrete struts formed by the diagonal tension

crack.

From their test results, the following general formula for estimating the ultimate shear

strength was developed i.e.
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Pu= B'.k.ft'.b.D 2.10
where (' is a shear span coefficient (3'=2 for a single span deep beam with two
symetrical third point loads, single point or uniform loadings) and an empirical

constant k is the splitting coefficient.

Leohardt and Walther's tests

Leonhardt and Walther[33] have carried out considerable research at the University of
Stuttgart on the shear strength of simply supported and continuous deep beams and
indirectly supported and loaded deep beams. Most of their work was reported in
German and had not been translated into other languages, so up to 1970 it had not
found its way into design codes. These tests covered deep beams having span to depth
(L/D) ratios equal to 1 different arrangements of reinforcement including bent— up
bars and inclined shear reinforcement, and bottom loadings. These results were
included in the compilation of the CEB—FIP model in 1970 which proposed design

recommendations for deep beams.

In some beams, the main reinforcement was concentrated over the bottom portion in
the region of positive bending moment. Steel resulting from negative bending moment
was divided into two halves, one was distributed over 0.2D to 0.8D from the bottom
with bars being curtailed at 0.4L from the centre of intermediate support in both
directions, the remaining reinforcement was distributed over a depth of 0.2D from top
extending from the one end of the beam to the other. They concluded that the
tension steel resulting from negative or positive bending moment should be calculated
on the basis of the following lever arms:

Z=0.6D for L/D > 1

Z=0.6L for L/D ¢ 1 2.11
Leonhardt and Walther found that elastic solutions provide a good description of
behaviour before cracking, but stresses measured after cracking differed significantly
from the elastic stresses predicted by classical theory. In particular, actual stresses in

the reinforcement of the bottom tensile chord were much smaller at the centre than
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those predicted by elastic theory. Also the stresses in the tension reinforcement were
approximately constant from one end of the beam to the other. Hence it was
recommended that the main flexural reinforcement must be carried to the end
supports without cutoff, and adequately anchored there. They suggested that this could
be best accomplished with 180 degree hooks lying in the horizontal plane because

vertical hooks appeared to cause some premature failure problems.

Crist's tests

Cristl34] tested 9 beams with span to depth (L/D) ratios varying from 1.6 to 3.8
under uniformly distributed loads. The common observed mode of failure was shear
failure. Equations were derived based on his results and results of other researchers.
These equations, slightly modified, then became the basis for the ACI Codel8]

recommendations for estimating the shear capacity of deep beams.

He stated that the ultimate shear capacity of a deep beam was the sum of
contributions from the concrete and steel, as follows

Pu = Vc + Vs 2.12
where Vc is the shear capacity of the concrete and Vs is the shear capacity of the

web reinforcement.

The shear capacity of concrete was empirically derived as

(Ve/b.d)= [3.5-4/3(M/V).. (Ln/d) ][1.9/f-‘_c_'+2500(V/M)cp.d] 2.13
(It should be noted that this equation is intended for use with U.S. customary units
i.e Ibf).
The second term in this equation represents the inclined cracking load. The critical
section Xc is assumed to occur midway between the support and loading point for a
concentrated load. For a uniformly distributed load, it is assumed to occur at:

Xc = 0.2L when L/D ¢5 2.14
The shear capacity of the web reinforcement was developed considering shear friction

along the inclined crack as illustrated in Figure (2.6). The shear analogy gives:
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Vs=fy.d.p' [(Av/sVv).1/12(1+(Ln/d))]+[(Ah/sh).1/12(11-(Ln/d)] 2.15
where Ln is the clear span of the beam, Av is the area of the vertical web bars, Ah
is the area of horizontal web bars, sv is the spacing of vertical web bars and sh is

the spacing of horizontal web bars.

This equation was wused by Cristt28] to calculate the shear carried by web

reinforcement using the coefficient of friction '=1.5.

Kong et al tests.
Extensive research on solid and perforated deep beams made of normal and

lightweight concrete has been carried out by Kong et al at Nottingham

University[35" 40],

They tested 146 solid beams whose (L/D) ratios varied from 1 to 3 and whose clear
shear span to depth (X/D) ratio varied from 0.23 to 0.7. One hundred beams were
made from normal weight concrete and the remainder from lightweight concrete. The
other main parameters were the influence and effectiveness of the type and amount of
web reinforcement on ultimate strength. The ultimate aim of this exhaustive study was
to develop an ultimate shear strength formula for deep beams. Kong and
Robins[35,36] reviewed existing literature, and concluded that existing methods had
shortcomings in that the influence and effectiveness of shear reinforcement had not
been properly investigated, and that ultimate shear strength formulae were based on

concrete properties irrespective of L/D or X/D ratios.

Their major observations for solid deep beams were as follows:

1:— The effectiveness of vertical and horizontal web reinforcement was dependent on
the L/D and X/D ratios. For very deep beams vertical web reinforcement had no
major influence on the strength, but horizontal web reinforcement, if closely spaced

near the beam soffit, did effect the ultimate strength. For moderately deep beams
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with the L/D ratios greater than 1.5, vertical web reinforcement was found to be
more effective than horizontal reinforcement.

2:— In all the beams, inclined web reinforcement increased the ultimate strength and
improved serviceability behaviour. The deflection in such beams was also smaller than
for other types of web reinforced beams.

3:— The deflections of beams with no web reinforcement was higher than for beams
with web reinforcement.

4:— The diagonal cracking loads and the ultimate shear strengths of lightweight
concrete beams were lower than those for normal weight concrete beams of
comparable concrete strengths. Therefore a formula for normal weight concrete cannot
be applied to lightweight concrete deep beams.

5:— It was observed that the clear shear span to depth (X/D) ratio was a more

important parameter than span to depth (L/D) ratio for all beams.

They put forward several formulae as their research progressed. The final form of
their formula for simply supported deep beams, and calibrated on all their test results,

is made up of a contribution from the concrete and steel as follows:

Qult = [C1 (1 - 0.35(X/D)).ft.b.D + C2 gA(y/D)sinza]10‘3 2.16
where
Qult = is the ultimate shear strength of the beam in kN.
Cl = is an empirical coefficient;
= 1.4 for normal weight concrete
= 1.0 for lightweight concrete
Cc2 = is an empirical coefficient;
= 130N/mm? for normal weight concrete
= 300N/mm2 for lightweight concrete
b = breadth or thickness of beam in mm.
D = overall depth of beam in mm

A = area of the individual web bars;for the purpose of this
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equation main longitudinal bars are also considered as
web bars (mm2).

y = is the depth measured from the top of the beam to the
point of intersection of an individual web bar and
the line joining the inside edge of the bearing block at
the support to the outside edge of the loading point (mm).

a = is the angle between the web bar being considered and
the line described above, as shown in Figure(2.7) within
the range /2 » o 3 O

n = total number of bars, including the main longitudinal
bars that cross the line described in definition of y.

The quantity A(y/D)sinzoz is summed for all n bars.

Manual et al

Manual et all41.42] tested 24 reinforced concrete deep beams. The major objectives
were to isolate the more influential parameters of span to depth (L/D) ratio, clear
span to depth (X/D) ratio and the effectiveness of the web reinforcement in
controilling the inclined crack. From this study, it was concluded that the ultimate
strength of deep beams was controlled by the X/D ratio and the diagonal crack width
was controlled by placing vertical or inclined stirrups midway between the loading and
support point. In addition Manual proposed a method for simply supported deep beam

analysis based on the truss analogy[43].

Lin's tests

Lin[2] tested 11 simply supported reinforced concrete deep beams under central
concentrated top loads, with L/D ratios of 1.8 and 0.9. Other variables were the
concrete strength and the orientation of the main reinforcement. The main object of
this study was to test the applicability of the direct design technique for deep beam

design.
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The observed behaviour was as follows:

1:— The strain distribution was found to be approximately linear when the L/D ratio
was 1.8, and not linear when L/D was 0.9.

2:— Ultimate strength was found to be dependent on the concrete strength. An
increase of 16N/mm2 in the concrete strength caused a 37% increase in ultimate
strength for beams whose L/D ratio was 1.8. An increase of 31N/mm2 in the concrete
strength increased the ultimate strength of beams whose L/D was 0.9 by 37% also.
3:— Skew reinforcement was found to be more effective than orthogonal reinforcement
in controlling the crack width, reducing deflections and increasing the serviceability
and ultimate strengths.

4:— Fourvof the beams failed by splitting of the concrete near the support and seven
failed in shear. The main cause of such splitting failure was probably the high
compression force in the support region and the lack of confinement of concrete

beyond the region where the reinforcement was terminated.

Smith et al

52 single span reinfored concrete deep beams under two point loads were tested by
Smith et al and Smith and Vantsiotis[44]. The major objectives were to study the
effect of vertical and horizontal web reinforcement, shear span to depth (X/D) ratio
on inclined cracks, ultimate shear strengths etc. The results indicated that web
reinforcement produced no effect on the formation of inclined cracks and that vertical
web reinforcement moderately improved the ultimate shear strength, but the addition
of horizontal web reinforcement had no influence. They concluded that web

reinforcement would not increase the ultimate shear strength by more than 30%.

MacGregor et al

MacGregor ©t al[45— 47] tested altogether 28 beams, 6 of them were simple and 22
were two span continuous deep beams. Four different span to depth (L/D) ratios were

studied, i.e. 2.1, 3.5, 4.2 and 5.25. Other main parameters studied were a/d ratio,
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web reinforcement arrangements, continuity conditions and the effect of the concrete

strength on the ultimate strength.

Each shear span was reinforced with a different arrangement of web reinforcement,
{our different arrangements were studied for two span continuous beams. The lengths
of the beam were kept constant and depth and size of the loading column was varied

to meet the desired shear span to depth (a/d) ratios.

When the first failure of any shear span of the beam occurred, the beams were them
retested until the other shear span failed. In this process of retesting, beams were
externally reinforced by steel stirrups consisting of a yoke above and below the beam
with 12 tie rods of 3/4 in. diameter acting as stirrups, running from one yoke to the

other.

The major observations for all the beams were as follows:

1:— The influence of vertical web reinforcement was significant in increasing the
ultimate strength and improving the ductility. The beams which were reinforced with
heavy vertical stirrups exhibited ductile failure behaviour, whereas all the other beams
which were reinforced with other types of web reinforcement failed in a brittle

manner.

2:— In very deep beams the steel strains in the bottom flexural reinforcement were
approximately uniform throughout the entire length of the beam. The top steel was

always in tension except when a/d was equal to 2.5 (i.e L/D was equal to 5.25).
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Since flexural cracks over the intermediate support did not appear first, it would
appear that positive bending moments were always higher than the negative bending
moments.

3:— The beams which were reinforced with horizontal web reinforcement showed
earlier cracking and wider cracks in comparison to beams having vertical stirrups of
similar shear span to depth (a/d) ratios.

4:— The final failure was in a shear mode. After the formation of inclined cracks,
the beams behaved as a "truss" and "tied arch", and took considerably higher loads
before failure. This is due to> the reserve strength of steel and the contribution of
dowel action and aggregate interlocking in transfering shear.

5:— Simple spans were stronger than continuous beams for lower &/d ratios, whereas
the reverse was true for high a/d ratios.

6:— The strength of the beam having a/d equal to 1.83 (i.e L/D equal to 4.2)
dropped close to 0.17/fc" suggesting that the transition from shallow beam to deep

beam behaviour occurs at or near a/d equal to 1.83.

The primary aim of these bench mark tests on continuous deep beams was to develop
a physical model which could be used for deep beam analysis and design. In order to
do so a plastic truss model was developed which was based on Thurliman[48]
Martil21], Jensonl49], and Nielson[50l's work on the plasticity of concrete. This model
was used to analyse the tested beams. However, the success of the model depended
on the concrete effectiveness factor, »', which was left to the analyst to choose so
that the experimental and theoretical results were more closely matched. How this was

achieved was not fully explained.

Nevertheless, compared with the ultimate shear strengths predicted by the ACI Code
(using the upper bound equation), the plastic truss model was in closer agreement to

experimental values.
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Subedi et al

Subedi et all51] tested 19 single span deep beams with span to depth (L/D) ratios
varying from 1 to 3. He concluded from these test results that the CIRIA Guide 2
ought to cover deep beams whose L/D ratios are greater than 2.0. Subedi [52] also
proposed a method for the analysis of deep beams which is based on equilibrium and
compatibility considerations. However, factors such as shear transfer across diagonal
cracks and dowel action in the reinforcing bars were omitted from the main equation,
which could explain why it did not adequately predict his own or other experimental

results.

2.5 Reinforced concrete perforated deep beam studies.

Openings in the beams are generally provided for utilities such as ducts and pipes as
well as other essential requirements. A knowledge of the behaviour of beams with web
openings is therefore essential for design. However deep beams with web openings is
not yet covered by major codes of practice, such as the ACI Code[s], CEB- FIP
Model Codel53], or the British Code of practice BSCP8110[54]. Although the CIRIA
Guide 2 made provisions for openings, these must not interrupt the load path.

2.5.1 Theoretical investigations.

Uhlmannl11] used an elastic finite difference method to study the state of stress
around a rectangular opening. Refering to Figure (2.8), if ox and oy are the average
directions of the maximum and minimum principal stresses respectively in the region
of the opening when the member is regarded as unperforated, Uhlmann showed that

the effect of an opening on the unperforated stress distribution is as follows:

(i) The intercepted load path deviates around the opening on each side, but produces
a stress rise along those edges of the opening which are approximately tangential to
the unperforated lines of stress (near corners A and A').

(ii) A force of the opposite sign is induced along the edge of the opening
approximately perpendicular to the unperforated lines of stress (near corners B and

BY).
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Uhlmann was then able to determine the design tensile force from which the required
amount of the reinforcement could be calculated. This was achieved by considering
the values of increased force parallel to the original stress direction, and the induced
force perpendicular to the original stress direction, in terms of total force intercepted
by the opening. He suggested that reinforcement should be proportioned according to
the predicted tensile force but gave no limit to the size of the opening and imposed

no restriction on its location[4,11].

The provision made in the CIRIA GuidelS] for openings is also based on elastic
analysis and is a similar to the one proposed by Uhlmann. However the effect of the
size and location of the opening on the stress distribution is considered. The design
rules only allow admissible openings, i.e openings which to a large extent do not
interrupt the load path. The dimensions of the opening must not be greater than 0.2

times the width of the band in which stress is locally concentrated.

If the opening satisfies the criterion of admissibility, then reinforcement calculations
are made by considering the opening to be surrounded by four simply supported deep
beams subjected to the resolved forces set up within the primary deep beam. An
appendix is given in CIRIA Guide 2 containing principal stress diagrams from which

loads can be calculated.

No guidance appears to exist for design of openings which severely interrupt the load

path.

2.5.2 Experimental investigations.

Kong and Sharp et al tests

Kong and Sharp[ss— 59] tested 73 simply supported beams with openings, 56 were
lightweight concrete beams and 17 normal weight beams. The beams had spans of
1500mm, 1125mm and 750mm, an overall depth of 750mm and a thickness of

100mm. A wide range of sizes and locations of openings were studied with several
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arrangements of web reinforcement. The L/D ratios were 1.0, 1.5 and 2.0, and the

X/D ratios were 0.20, 0.25, 0.3 and 0.4.

The major observations were as follows:

1:— Beam behaviour was found to depend on the extent to which the opening
interrupted the load path. Strength reduction was dependent on the size of the
opening and its location in the beam, the greater the interception of the load path,
the greater the reduction in shear strength.

2:— Three different modes of failure were observed and these were also related to
the extent to which the web opening interrupted the load path as illustrated in Figure
(2.9).

(a) When the web opening was clear of the load path, failure mode 1 occurred and
the strength of the beam was similar to that in solid deep beams.

(b) When the opening interrupted the load path between the loading and the
supporting points, either failure mode 2 or 3 occurred, as illustrated in Figure (2.9).
3:— The order of the crack development was found to depend on the size and
location of the opening. Crack widths increased the more the web opening intercepted
the load path.

4:— Web reinforcement was found to be significant in controlling crack widths and in
protecting both the diagonal regions above and below the opening. Inclined web
reinforcement had significantly more influence than vertical and horizontal web
reinforcement, and was particularly effective for crack width control and increasing

ultimate strength.

A structural idealization using a truss model was proposed based on the observed
behaviour as shown in Figure (2.10). According to this idealization, the load is mainly
transmitted along ABC and partly along an upper path AEC. In the absence of the
web opening the upper and lower paths become one, being the natural path joining

the loading and reaction points. A formula developed by Kong et al for solid deep



beams was extended to estimate the ultimate shear strength of deep beams with web
openings as:

n
Qult=C1[1-0.35(k1X/koD) Jf{.b.ky.D + SX.C2.A.(y/D).sinZa 2.17

where

ky,kg = coefficients defining the position of an opening.

A = is the empirical coefficient equal to 1.5 for web bars
and 1.0 for main bars.

Yy = is the depth at which a typical bar intersects a
typical diagonal crack - either AE of the upper path or
BC of the lower path.

o = is the angle of intersection between the reinforcing bar

and the strut AE or BC.

All other symbols are the same as in equation (2.16).

Kubik's tests

Kubik[59,60] tested 8 large scale simply supported deep beams at the University of
Cambridge. The aim was to support the previous tests of Kong and Sharpl35— 56] by
testing more practically sized beams in order to develop a model for predicting the
ultimate strengths of deep beams with web openings. The beams were
4000*1800*250mm with a clear span of 3500mm. The specimens were therefore
approximately 21/2 times the size of beams tested by Kong and Sharp. The volume of
the reinforcement was approximately scaled up from the small scale specimens. Four
20mm deformed bars were used as flexural reinforcement, and were anchored at the
ends by 90° bends. In the small specimens one 20mm diameter deformed bar was
used as main longitudinal steel and was anchored to external blocks at the ends. A

single size of web opening in two different locations in the shear span was studied.

The major observations were as follows:
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1:— The cracks and modes of failure were fairly similar to those reported by Kong
and Sharp and depended on the location of the web opening. New crack types §, h
and K which formed within the web of the beam as shown in Figure (2.11) had
important influence on the failure of the beam. These crack types were not
indentified by Kong and Sharp. These cracks were widest at points close to their mid
length, reducing to zero at both ends and were referred to as splitting cracks.

2:— Inclined web reinforcement was found to be more effective than orthogonal
reinforcement mesh of horizontal and vertical bars. Using inclined reinforcement in
the web of the beam the splitting cracks above and below the opening were more
effectively restrained. This observation agrees reasonably well with Kong and Sharp's
conclusion regarding the contribution of web reinforcement in the region above and
below the opening.

3:— Different failure modes observed in the tests are shown in Figure (2.9) and
(2.12). Figure (2.9) shows that for openings outside the load path failure occurred by
separation along the planes above and below the opening (failure mode 1) which is
similar to shearing failure of a deep beam without an opening. The other failure
modes shown in Figure (2.9) were observed when the opening intercepted the load
path. Another special type of failure occurred as shown in Figure (2.12—a), made up
from a crack from the top inside corner of the opening to the loading point, a crack
from the top outside corner to the beam end and either a crack running from the
beam soffit towards the inside bottom corner of the opening, or a crack running
between the inside face of the support and inside bottom corner of the opening

(Figure (2.12—b)).

Kubik proposed an idealised deformation model at failure, based on the same ideas as
Kong and Sharp[55" 58], which is only applicable to deep beams in which openings
intercept the load path. The proposed model was based on the rotation of three
distinct blocks A, B, C with a fourth block D moving downwards as illustrated in
Figure (2.13). The force interaction between the blocks was replaced by one moment

and two forces at each of the hinges 1 to 4. From equilibrium requirements the
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horizontal force H is same at all hinges; the sum of the vertical forces QT and Qp
acting at the hinges are equal to the applied load Q. In essence, QT represents the
portion of the applied load carried by the beam above the opening and load path,
whereas Qp represents the load carried below the opening. Q71 and Qp were then
derived in terms of the hinge moments Mj, Mj, M3 and My, and the geometrical
properties of the beam, by:

Mi(hy + hy) + Myh + M3 pu

- 2.18
or - ay(hg + hy) _ pyulap- xo)
Q Mg + M4_ hp My(ap _ %X5) + My.a + M3y.a, 219
B ag aLag(hg + BL) - hy(aL_Xg)
H Mycap _ x5y + Mz.a + M3.ay 290

ay(hy + hp) - hy(ap - xg)
The hinge moments are determined by considering the regions around the opening as
shown in Figure (2.14). The ultimate moment of the hinge is assumed to occur when
the strain perpendicular to the hinge at the far end of the region from the hinge
reaches the yield strain of the reinforcement. The total hinge moment is assumed to
be equal to the sum of the moments exerted by all reinforcing bars in that block,
i.e.

n 2 ¢in2
M= A.fy.y4.sin‘w

hsiné 2.21

The ultimate strength can therefore be found once the hinge moments have been

determined at incipient collapse.

If the hinge areas are under—reinforced in flexure, then the moments Mj;— My will
reach their ultimate values at failure, and the above equations will produce the

ultimate strength of the beam.
However, it is possible that premature shearing failure may occur in any of the
regions shown in Figure (2.14) before the ultimate moments at the hinges have been

reached. Kubik proposed the following formulae to check for premature shear failures.

Above the opening it was assumed that failure occurred along the plane shown in
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Figure (2.14—a) when QT exceeds (QT)g1, given by

(Qr)§1=C1[1-0.35(xy/hy) Jft.b.hy+C2.5 . A(yy/hy) .sine,  2.22
n

In the region between the end of the beam and the web opening failure occurs along
the plane shown in Figure (2.14—b) when the horizontal force H exceeds the shear
strength Hg, given by

Hg=C1[ 1-0.35(hy/t) ]ft .b.t+C2 3.A(y./t).sinZay 2.23
n

Failure below the opening was assumed to occur along the plane shown in Figure
(2.14—c) when the load Qp exceeds (Qpg)g

(QB)52=C1[ 1-0. 35(XL/hL) ]ft . b.hL+C22A(yL/hL) . sinzo‘L 2.24
n

Kubik then described a procedure for checking the cause of the failure due to either
flexural or premature shearing failure by comparing the predicted strengths from

equations (2.18) to (2.20) with (2.22) to (2.24).

Comparisons made with other published data and Kubik's own data indicated that his
model produced results which were fairly conservative. Also a clear design procedure
was not presented and it would appear that reinforcement was provided in a fairly

[*§
K
arbitrary way in order to study the reslting behaviour.

Memon's tests
Memonl4] tested seven deep beams, six of them perforated and one solid. The beams
were designed by the direct design technique. The main variables were X/D ratios of

0.47, 0.35 and 0.32, concrete strength, and size and location of openings.
The major observed behaviour were as follows:
1:— When the shear span to depth (X/D) ratio was 0.2 to 0.32 the influence of

horizontal reinforcement was more noticeable than for vertical reinforcement.

2:— Ultimate strength increased with increasing concrete strength.
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3:— Openings nearer the beam soffit had less influence on the ultimate strength
because they less interrupted the load path, the strength of such beams being similar
to solid beams. Hence, he recommended the best location for openings was near the
beam soffit.

4:— High steel strains were observed in the bottom main reinforcement within the
regions of the shear spans. High compressive forces in the region of supports
probab-ly resulted in an increased horizontal tension due to the Poisson's effect thus
causing these higher strains.

S:— Four beams failed due to shear failure, two due to bearing failure, and one due
to splitting and spalling failure. Those beams which failed in bearing was probably due
the fact that high forces developed in the compression strut causing severe cracking
and crushing at the support points, suggesting that direct design procedure adopted by

Memon had led to an over provision of reinforcement elsewhere in the beam.

2.6 Design guides for deep beams.
2.6.1 Portland cement association (PCA) method.
This method for deep girder design is based on the elastic analysis of Franz
Dischinger[6] and it is applicable for a height to leng®™ ratio of 2/5 or more for
continuous girders and 4/5 or more for single span girders. It contains detailed
recommendations for most loadings. Design is carried out using a number of charts.
The design method is briefly explained as follows:
Step 1 : Calculation of Characteristic ratios eR and SR
¢R=(C/L)
BR=(D/L) 2.25
where eR and R are the characteristic ratio of support to the span of the beam and
overall depth to the span of the beam respectively.
For single span girder, with a concentrated load at the centre of span ratios
eR=(C/2L)
BR=(D/2L) 2.26

Step 2 : Calculation of mid—span longitudinal reinforcement
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Knowing e¢R and (R, a tension coefficient is obtained from an appropriate design
curve (reported in Figure 2.15) so that the tensile force to be resisted by longitudinal
reinforcement can be calclated. Thus

T=Coefficient x Load at centre of span

As= T/fs 2.27

where fs is the allowable stress of steel
The PCA pamphlet states that vertical stirrups have no function and that therefore do
not need to be provided.
Step 3 : Calculation of reinforcement over the centre of interior support.
Before calculating the tension reinforcement over the intermediate support the tensile
stresses are to checked from Figure (2.16), if the outcome is higher than the tensile
strength than reinforcement is required. In a similar way reinforcement is calculated
from the appropriate curves of Figure (2.15).
Step 4: Check of shear force with beam width condition
It is recommended that the shear force is checked to ensure that the cross section has
an adequate width. The shear in flexural members is calculated by conventional
procedures using a unit stress defined as:
The unit stress is computed as

8.V/7.b.D 3 (v(1+58R)/3 2.28
where v is the allowable shear stress for the shallow beams. When (R is greater than
2/S then the value of v, allowable shear stress, must be adjusted to 2v for GR=1

accordingly.

2.6.2 CEB—FIP design recommendations.

CEB- F1p[53] put forward design procedures for both simple and continuous deep
beams in 1970. According to this, a beam is categorized as a deep beam when its
span to depth (L/D) ratio is less than 2 if simply supported and 2.5 if continuous.
For simplicity only the multi—span deep beam design procedure is given here.

Step 1 Calculation of principal longitudinal reinforcement

This method also uses the lever arm criterion for principal longitudinal reinforcement
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calculations similar to Leonhardt and Walther as follows:

z= 0.2(L+1.5D) for 1 < L/D< 2.5

z= 0.5L for L/D1 2.29
where L is the effective length and D is the total depth of the beam
It is clear from these equations that when the height is greater than the length, then
the lever arm is dependent on the length of the beam. Alternatively, when the span
to depth (L/D) ratio is between 1 and 2.5, the lever arm is dependent on the depth
and length of the beam. CEB-— FIP indicates that the moment over the interior

support is always smaller than that in a comparable beam of normal dimensions.

The principal longitudinal reinforcement for positive and negative bending moment is
then determined by the equation:

As=(M.ym) /(fy.Z) 2.30
where 4m is the material partial safety factor (i.e ym=1.15 for steel)
Step 2: Positioning of the principal longitudinal reinforcement
Principal tension reinforcement should not be curtailed and must be anchored at end
supports. The positive principal tension reinforcement should be uniformly distributed
over a depth equal to 0.25D—0.05L, measured from the beam soffit (in this
expression the maximum value of D is limited to L). One half of the principal
tension reinforcement resulting from the negative bending moment over the interior
support should be extended over the full length of the spans and uniformly distributed
over a depth of 0.2D from the beam top. The other half may be stopped at either
0.4D or 0.4L and is uniformly distributed over a depth of 0.6D in between 0.2D
from the bottom to 0.2D to top. It also recommends the use of smaller diameter bars
which give better cracking control.
Step 3: Check on shear
CEB—FIP does not give any direct method for calculating shear reinforcement, but it
states that the shear due to permanent and imposed loads should be determined as for
normal beams. In addition the design shear force should not exceed:

V-0.10.b.D.fc' 2.31
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When the height is greater than the span length, then L replaces D.

Step 4: Shear reinforcement calculations

For top loaded beams it is recommended that an orthogonal reinforcement mesh be
provided as web reinforcement. The amount is expressed in terms of the percentages
of cross sectional area, 0.25% in each direction for mild steel and 0.20% for high
yield strength steel. It is also suggested that horizontal shear reinforcement in the

orthogonal mesh be at a smaller spacing near the supports.

2.6.3 ACI Code design recommendations.

In 1971 the ACI Codel8] for the first time provided special provisions for the shear
design of deep beams. It recommended that the Portland Cement Association's
pamphlet be consulted if flexural design was required. The ACI procedure emphasises
that the shear capacity provided by both the concrete and web reinforcement can
resist the shear force. The provisions apply to deep beams whose span to depth ratios
are less than 5, and which are loaded on the top or compression face. The
calculations are based on critical sections, which are defined differently for
concentrated and uniformly distributed loaded beams. For concentrated loads, the
critical sections are taken mid— way between the load and support face, whereas for
uniformly distributed loaded beams they are assumed to be at 0.15Ln from the

support, where Ln is the clear span distance to the face of the support.

The nominal shear stress vn is determined from the design shear force V by

vn =(V/u.b.d) 2.32
where « is the capacity reduction factor and is taken as 0.85, b is the width of the
beam and d is the effective depth of the beam. To ensure that the beam dimensions

are satisfactory, the following checks are made:

vn}8/Fc' for Ln/d <2
vn}$2/3(10+@n/d))./Fc' .b.d for 2<Ln/d(5 2.33

where fc' is the characteristic concrete cylindrical compressive strength.

The nominal shear stress vc carried by concrete is given by



ve=[3.5-2.5(M/V)1/d) ][1.9/Fc +2500p(V.d/M) ]

$2.5[1.9/Fc' +2500(V.d/M) ] 2.34
where M is the design bending moment at the critical section, p is the ratio of the
main steel area As to the area of concrete (b.d).
The use of shear reinforcement is obligatory irrespective of the values of vn and vc
as calculated above. It recommends an area of vertical reinforcement Av which must
not be less than 0.0015b.Sv, where Sv) d/5, nor 18in. The area of horizontal web
reinforcement Ah must not be less than 0.0025b.Sh, where Sh ) d/3 nor 18in.
Alternatively if vn exceeds vc then web reinforcement must be provided to satisfy the
following equation:

[Av/Sv ][ (1(tn/d)) /12 #[Ah/Sh ][ (11-(ky/d) /12 ] =((vn-ve).b)/fc  2.35

2.6.4 CIRTA Guide 2 design recommendations.

These recommendations owe much to the work of Leonhardt and Walther[33] and
Kong et all35—40,55—60] 1ts design procedure is similar to CEB—FIP as explained
earlier.
Step 1: Calculation of Longitudinal Reinforcement
Longitudinal reinforcement is calculated from

As=(M/0.87.fy.Z) 2.36
where M is the design moment and Z is the lever arm which is equal to 0.21+0.3D
for continuous deep beams. D is the effective height of the beam.
Step 2: Distribution of Longitudinal Reinforcement (Sagging Moment)
It is recommended that the reinforcement be extended from end to end of a beam
and be distributed over one fifth of the beam depth from the beam soffit. The bars
must be anchored beyond the face of the support to develop 80% of the maximum
ultimate force beyond the face of the support and at or beyond a point 0.20L from
the face of the support to develop 20% of the maximum force.
Step 3 Distribution of Longitudinal reinforcement (Hogging Moment)
Half of the reinforcement calculated from the hogging moment should be extended

over the full length of the adjacent spans and may be counted as part of the



minimum web reinforcement. This is distributed over a depth of 0.20D from the
beam top. The remaining reinforcement must be curtailed at a distance 0.4L from the
face of the support. The distribution is given in Figure (2.18).

Step 4: Shear Reinforcement Calculations

The CIRIA Guide does not given any criteria for shear reinforcement, but refers to
Clauses 3.11 and 5.5 of BSCP8110[34]. The amount of web reinforcement should not

exceed the recommendations of the British Code.

2.6.5 General conclusion.
In the light of this review of design methods, the following general conclusions may

be drawn:

1:— It appears that the majority of design methods are based on elastic analysis using
a factor of safety on the material's performance, which leads to the measured
ultimate loads being higher than the design ultimate loads. This is because the reserve
strength of steel, and the contributions of dowel action of main reinforcing bars and
aggregate interlocking in shear transfer are ignored.

2:— Design procedures for continuous deep beams are extrapolated from simply
supported deep beam studies and earlier elastic design methods. Tests have shown that
in a continuous deep beam the bottom and top chord always take tensile forces but
the force in the top chord is less than the bottom one. Therefore, the proportions of
reinforcement based on elastic methods is not quite accurate for continuous deep beam
design.

3:— In deep beams, a neutral axis appears more than once. Hence there is no clear
idea of a moment arm with which to calculate the principal tension reinforcement.

4:— Shear reinforcement is mostly provided on ad hoc basis and there is no formulae
to calculate its value except by the direct design method.

5:— The design of deep beams with web openings has not yet been covered by the
majority of codes. CIRIA Guide 2 does cover the design of deep beams with web

openings, but when an opening interrupts the load path the CIRIA Guide is not valid.
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6:— Recent applications of plastic truss models suggest that they are better design
tools, although shear reinforcement is still provided on an ad hoc basis. Moreover, it
is not yet known whether these techniques have actually been used to design any deep
beams. Thus, there is no clear idea how well these methods would behave in practice

at serviceability or ultimate limit state.

2.7 Direct design technique.

In recent years the direct design technique has been examined for the design of a
large variety of structures i.e slab column connection, beams under torsion and
bending, deep beams ?\v;:inforced concrete slabs etc. The technique has a sound
theoretical framework based on the theory of plasticity and so far has proved
satisfactory in both serviceability and ultimate stages. The application of the direct
design technique to deep beams has been undertaken by Lin[3] and Memonl[4] who
have demonstrated its potential as a useful design tool because of this potential, it is
being further examined in this thesis will be fully explained and reviewed in Chapter
Five. However, some of its other advantages learned from the previous studies are

listed as follows:

a: It designs both web and main reinforcement automatically, It includes a procedure
for skew reinforcement. It distributes reinforcement in a natural way according to the
flow of applied stresses existing in structure, rather than on arbitrary basis.

b: It has good cracking control in addition to satisfactory behaviour at serviceability
and ultimate limit states.

¢: Any geometrical shape can be handled easily, for example beams with web

openings, providing extra reinforcement is used in zones of high stress concentration.
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CHAPTER THREE

FINITE ELEMENT MODELLING

3.1 Introduction

The finite element method (FEM) is now firmly established and accepted as the
most powerful general numerical technique for structural analysis. It has provided
engineers with a tool of very wide applicability, including the realistic analysis of
reinforced concrete members and structures. The application of the finite element
technique can provide new insights into the behaviour of ordinary reinforced concrete
structures, such as beams, columns, slabs, shearwalls, transfer girders and panels. But
it is also an essential tool for the analysis and design of complex structures like

offshore oil platforms, hyperbolic cooling towers and nuclear containment structures.

Scientists and engineers are often faced with practical physical problems whose
solution by conventional methods is either too difficult or even impossible in one
operation. The process of subdividing systems into their individual components or
‘elements’, whose behaviour is readily understood, and then rebuilding the original
system from such components to study its behaviour, is a natural way in which
scientists, engineers, or even economists proceed[l »2,3,4]. This process is often

referred to as discretization.

In any continuum the actual number of degrees of freedom are infinite and unless a
close form solution is available an exact analysis (within the assumptions made) is
impossible. However, numerical techniques can provide an approximate solution by
assuming that the behaviour of the continuum can be represented by a finite number
of unknowns. The finite element method is one such method, and is an extension of
the matrix analysis of skeletal structures. However, unlike skeletal structures, there

are no well defined joints in a continuum where equilibrium of forces can be

established.



In the finite element method a continuous body is divided into small finite
subregions called elements, each element possessing a finite number of unknown
parameters. The elements are interconnected to each other by a finite number of
common points existing on their boundaries, a process independent of the linear or
non— linear nature of the problem. These common points are termed ‘'nodes'. A set
of functions are chosen to define the variation of the required field variables within
each element in terms of its unknown values at the nodes. These functions are also
subject to certain constraints to ensure inter—element compatibility and correct

convergence characteristics.

In continuum mechanics problems, the unknown variables can be displacements,
stresses or both. This gives rise to the displacement (stiffness) method, the force
(flexibility) method or the hybrid method respectively. Because of the ease of
formulation, the displacement method is widely used, and has also been developed in

this research.

Nowadays there are numerous texts, for example[1 12,3,4,5,6] which describe finite
element methods and their applications, so no attempt will be made to describe it in
great detail. The elastic design program developed in this research was based on
Owen and Hinton'sl4:5] work and full details are given in their texts. But in order
to define basic terms, a brief résumé of two dimensional finite element theory using
isoparametric elements is presented in the following sections, however only those
aspects which are relevant to the needs of this research will be described. Although
the representation of steel reinforcement is not necessary in the design program, it is
necessary in the nonlinear analysis and so its formulation is also briefly described in

this chapter.

The linear elastic finite element program was modified and extended to include the

Direct Design equations. These equations used the elastic stress field produced by the
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analysis to determine design reinforcement ratios, and is described in this chapter.
All the transfer girders studied in this research were designed using this program and

will be described in detail in Chapter Five.

The nonlinear finite element modelling is based on the program of Phillips[7] for

reinforced concrete, and this is described in Chapter Four.

The use of the finite element method to obtain the elastic stress field was chosen

because:

(i) Any shape of continuum including bodies with holes such as deep beams with
openings, can be simulated without difficulty.

(ii) The finite element analysis is now well tested and proved as a reliable tool for
analysis. Also, nowadays, it is cheap in terms of cost and time to obtain an internal
elastic stress field of a continuous body.

(iii) A finite element analysis can produce a realistic elastic stress field throughout
the continuum.

(iv) Variable material and geometrical representation can be made according to the
real behaviour of the structure, such as different properties for support and loading
points which are reinforced by steel load cages.

(v) Boundary conditions can be dealt with easily.

3.2 General procedures and discretization by finite elements

For structural applications, the governing equilibrium equations can be obtained by
minimising the total potential energy of the system[1’2»4»5]. The total potential

energy, I, can be expressed as:

m= I/ZJ{U}T{e}dV -J{é}T{p}dV - J{&}T{q}ds (3.1)

where ¢ and e are the stress and strain vectors respectively, & is the displacements
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at any point, p is the body force per unit volume and q is the applied surface

tractions. Integrations are taken over the volume, V, of the structure and loaded

surface areas S.

The first term on the right hand side of equation (3.1) represents the internal strain
energy and the second and third terms are the work contributions of the body forces

and distributed surface loads respectively.

In the displacement method, the displacements are assumed to have unknown values
at the nodal points so that the variation within any element is described in terms of

the nodal values by means of interpolation functions. Thus

{6}=[N].{s%} (3.2)
where N is the interpolation functions often termed shape functions, and ¢ is the
vector of the nodal displacements of the element. The strains within the elements

can be expressed in terms of the element nodal displacements,

{e}=[B].{s¢} (3.3)
where B is the strain matrix generally composed of derivatives of the shape
functions. The stresses may be related to the strains by making use of elasticity

matrix, D, as follows:

{o}= [D){e} (3.4)
Ensuring that the element shape functions have been chosen so that no singular?ies
exist in the integrands of the function, the total potential energy of the continuum
will be the sum of the energy contributions of the individual elements. Thus:

I = Zlle (3.5)
e :

where [le is the potential energy of element e, by using equation (3.1) we get

Me= 1/2 |{s}T[B]T[D]T[B]{s®}dV -
Ve

73



ébe}T[N]T{p}dV - [gae}T[N]T{q}dS (3.6)

where Ve is the element volume and Se is the loaded surface area of the element.
The performance of minimisation for element, e, with respect to the nodal

displacements, &€, of the element results in:

dr/dse =]£B]T[D][B]{be}dv - J[N]T{p}dv - J[N]T.{q}ds
e Ve se

LK J(5°) - (F%) | 3.7)

where

{Fe}=J£N]T{p}dV + {EN]T{q}dS (3.8)

are the equivalent nodal forces for the element and

[Ke]=lgB]T[D][B]dV (3.9)

is termed the stiffness matrix. The summation of terms in equation (3.7) over all
the elements, when equated to zero, results in a system of equilibrium equations for

the complete continuum, i.e,

" {F)=[K {5} (3.10)
where (F} is the equivalent nodal forces for the continuum, [K] is the stiffness

matrix of the continuum and {4} is the nodal displacements of the continuum.

After the insertion of the necessary boundary equations, these equations are then
solved by any standard technique to yield the nodal displacements. Once the
displacements are determined, the strains and thereafter the stresses in each element

can be evaluated by using equations (3.3) and (3.4) respectively.

3.3 8— Noded parabolic isoparametric element

In the development of any finite element model, the first step is to decide the type
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of element. The efficiency of any particular element depends on how well the

defined shape functions are capable of representing the true displacement field.

In the last two decades many elements have been investigated and tested by various
researchers; from simple ones to complex, for example [1,2,4,5]. of these, the
isoparametric family of elements has appeared to be greatly beneficial. These are a
group of elements in which the shape functions are used to define the geometry as
well as displacement field. Isoparametric elements are known for their better
accuracy, versatility and efficiency over simpler types of elements. Savings in
computer effort is obtained, because, even though complex elements require more
time to formulate, fewer elements are required. In this study, a two dimensional
version of the parabolic isoparametric element, shown in Figure (3.1), has been used

throughout, and further description will be limited to this.

3.3.1 Shape functions

As mentioned earlier a shape function defines the variation of the field variables and
its derivatives, through an element in terms of its values at the nodes. Therefore,
the shape functions are closely related to the number of nodes and the type of

element. Hence, in the displacement finite element approach
n
6 = X Nj oi (3.11)

where Nj is the interpolation functions termed as shape functions and §; is the

vector of the nodal displacements.

In the distorted and curved isoparametric elements, the shape functions N; define the
geometry and finite element analysis, i.e the unknown values at the nodal points.
The shape functions are dependent on the local coordinate directions £ and 7. In
the distorted elements, a given point is defined by coordinate ¢ and 7 by means of

two intersecting curves, called curvilinear coordinates. Moreover, these coordinates
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represent better shape functions of isoparametric elements. Such curvilinear

coordinates are so chosen, that on the faces of an isoparametric element the values

of £ and 7 are +1 and —1.

For two dimensional applications, the displacement field at a particular point with
local coordinates (§,n) are u(f,7n), v({,7) and at each nodal point the displacement
degrees of freedom are ui, vi. For the quadratic interpolation scheme used with

parabolic isoparametric elements, there are eight nodes, i.e. n=8.

Therefore, for the displacements u(f,7) and v(£,7) at any point within the element,

we make use of the expressions

I ™Moo
[

u(g,m) = Ni(§,n).ui

(o]

v(&,n) =_21Ni(£,n)-vi (3.12)
l=

Global coordinate values x(£,7) and y(¢,7) make use of the isoparametric concept

and at any point within the element are defined in a similar manner:

8
x(E,m) = L Niy(¢&,m xj
i=1
8
vy, = X Nij¢&.,n) vi (3.13)
i=1

where (x;,y;), are the global coordinates of node i, and N{{,7) are the quadratic
shape functions for the 8—noded isoparametric element, given byl5]

NL(E,n) = -1/4(1-§) (1-n) (L+E+n)

N2(%,n) = 1/2(1-§2) (1-n)

N3(&,7m) = 1/4(1+) (1-n) (§-9-1)

Na(E,m) = 1/2(1+E) (1-n2)

NS(£,n) = 1/4(1+) (1+n) (E+n-1)

N6(E,n) = 1/2(1-£2)(1+n)

]
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N7(&,m) = 1/4(1-&) (1+9) (-E+79-1)

N8(£,m) = 1/2(1-£)(1-n2) (3.14)
The functions require that the node numbering is anticlockwise as shown in Figure
(3.2). Each of these shape functions has a value of unity at the node to which it is

related. They also have the property that their sum at any point within an element

is also equal to unmity, which satisfies the requirement that rigid body displacements

of the element results in no element straining.

3.3.2 Strain matrix

Once the shape functions are evaluated the strain within the element can be
expressed in terms of displacements or their derivatives. In plane stress and plane

strain situations the strain is expressed as:

€X = du/dx
€y = 9v/9dy
yxy= 9u/dy + 9v/9x (3.15)

in which ex, ey are normal strain components and 4xy is the shear strain

component. Equation (3.15) can be written in matrix form as follows:

du/9ox 9/ax 0 [ u ]
dv/dy =0 9/9y v (3.16)
du/dy+dv/ox d/dy 9/9x
Substituting for u and v from equation (3.15)
9N; /ox 0
uj 8
[e] Zl 0 oN; /oy = _Zl[Bi Ksi) (3.17)
i= i=

4!
3N; /3y ON;/3x

where [B;] is 3x2 strain matrix which contains the cartesian derivatives of the shape

functions.



Since the shape functions, Nj, are defined in terms of local coordinates, £,y of the
element, transformation from local to global coordinates is required to obtain the B
matrix in equation (3.17) . This is done through the well known Jacobian matrix
which is written as:

[ax/as ay/as]

ox/on dy/don

—
[

8 (ONj/38).xqy (ON;/38) .y
> (3.18)
=L | (aNj/am).x;  (3Nj/am).y;

1

The inverse of the Jacobian matrix can be readily obtained using standard matrix

inversion techniques

dt /3x dn/9x dy/on -dy/d¢
[41! = = (1/det J) (3.19)
ot /dy on/dy -9x/9n 9x/d7
3.3.3 _ - Stress— strain relationships

From basic theory of elasticity for elastic materials, the stress—strain relationship is
given by:

{o} = [D] (&} (3.20)
where [D] is the elasticity matrix. For a two dimensional isotropic material this

takes the form for plane stress situations

1 v 0
E .
[D] = v 1 0 (3.21)
(1-»2)
0 0 (1-v)/2

whereas for plane strain situations

1 (v/(1-») 0
E(1-v)
[D] —— (v/(1-7)) 1 0 (3.22)
(1+») (1-2»)
0 0 (1-2»)/(2(1-»))

where E is Young's modulus of elasticity and » is Poisson's ratio. The change in

material properties due to concrete nonlinearity are entered through the material
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property matrix [D] but this will be discussed in the next chapter. Here, we will

limit ourselves to linear behaviour.

3.3.4 Element stiffness matrix

We now have all the information necessary to evaluate the element stiffness matrix

K€, from equation (3.9), i.e

Ke =J J [B]T[D]Blav (3.23)

A typical submatrix K®ij linking nodes i and j may be evaluated from the expression

Kejj = ] l [Bi J'[D][Bj]t.det.J.d¢.dy (3.24)

where t is element thickness and
dv = det.J.df.dy.t (3.25)

and the limits of integration becomes —1 to 1 in each one of the two directions.

3.3.5 Numerical integration

It is difficult or perhaps impossible to perform the closed form integrations required
in evaluating the element matrix and thus numerical integration is essential. This
choice of numerical integration will replace the exact integral by evaluating the
integrand at various sampling points and then by making a weighted summation of
these values. In this study Gauss— Legendre quadrature values have been used
because of their higher accuracy over other forms of quadrature and the ease with
which these can be implemented. They can integrate a polynomial f(§) of

degree(2n— 1)[1,4,5],
In general, the one dimensional Gaussian quadrature formula is written as
+1 n
Inh = | ®(&)dt =,Zlai.¢ (¢9) (3.26)
1=

-1

where a; is a weighting factor, £; is the coordinate of the ith integration point and



n is the total number of integration points. In two dimensions where a double

integral exists, then

+1[+1 +1 +1
In,n = &(E,n)dE.dn = ®(&,7n)dé 1dy (3.27)
-1)-1 -1 -1

The inner integral is evaluated first keeping % constant and then the outer integral

is evaluated.

These Gaussian Legendre rules are particularly suitable for isoparametric elements
since the limits of integration are +1 to —1 which coincide with the local
coordinate system +1 to —1 on element boundaries. Table 3.1 shows the
symmetrical positions of Gauss points (i and the corresponding weighting factors a{i
for n=1,2,3, and 451, However in this work the 3x3 Gauss rule has always been

used for designing the reinforcement.

3.4 Steel representation

Since steel reinforcement is comparatively thin, it is generally assumed to be capable
of transmitting axial force only; thus steel stress— strain behaviour is assumed to be
uniaxial and therefore it is not necessary to introduce the complexities of multiaxial

constitutive relationships.

In the finite element modelling there are at least three different representations

which have been used[7’8:9»10»11]. These are:

(a) Distributed - representation
(b) Embedded representation

(c) Discrete representation

{a) Distributed representation

In distributed steel representation, steel is assumed to be distributed (i.e as a
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membrane) over the concrete element with a particular orientation 6 as shown in
Figure (3.3). Composite concrete and reinforcement constitutive relations are required
in this case. In order to derive such a relation, perfect bond between steel and
concrete has to be assumed. Although this approach is easy to implement, it is
unrealistic in the sense that reinforcing bars are no longer discrete uniaxial members
embedded in the concrete [9,10,11] additionally, dowel action mechanisms cannot be

modelled adequately{1 0,11],

(b) Embedded representation

Embedded representation is shown in Figure (3.4) and is often used in connection
with higher order isoparametric concrete elements. The reinforcing bars are
considered as axial members built into the isoparametric concrete element, such that,
its displacements are consistent with those of the element. Again in this type of

representation perfect bond has to be assumed[ 7.9,

(c) Discrete representation

A discrete representation of reinforcement using a one dimensional element as shown
in Figure (3.5), has been widely used by various researchers, for example[lO]. Axial
force members are effectively pin connected with two degrees of freedom at nodal
points for two dimensional problems and are simply superimposed onto a two
dimensional finite element mesh representing concrete. This approach is simple and
has a significant advantage, that it can take into account possible relative
displacements of reinforcement with respect to the surrounding concrete. However, a
serious drawback is that the location of steel often dictates the concrete mesh. This
may result in slender elements, when the reinforcing bars are close together,
violating the ideal of aspect ratios being as close to unity as possible [8.9]. This
representation can be particularly unsatisfactory when used with the higher order

isoparametric elements often used to represent concrete.
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3.4.1 Method of steel representation used in this study

Embedded representation of steel was considered to be a reasonable approach to
take in this work. This approach takes a proper account of dowel action and can be
incorporated without any difficulty into a finite element model, regardless of the type
of nonlinear material models used. In order to take into account skew steel, skew
elements can be used to represent the actual line of the steel. Although, in general
the reinforcing steel can be placed along any constant local coordinate line in an
element, here for ease of data input, the choice was restricted so that the bars can
be positioned on the boundaries of the element and or along a line joining the

midside nodes as shown in Figure (3.6).

4.5 Embedded bar element derivation

Consider a bar lying along a direction parallel to the local coordinate ¢ as shown in
Figure (3.7) i.e lying along the line of constant n= nc. Bars along constant § will
obviously follow a similar derivation. It is further assumed that the bars are capable
of transmitting in— plane forces only. The line of the bar is defined by using the
same shape functions as the main element. Thus the cartesian coordinate of any
point, P, are given by:

N; (5)x4 (3.28)
1

b
]
I ™ o

i
Full compatibility between the bars and basic element is assumed, therefore, the
displacements of the bar are obtainable from the displacement field of the basic

element! 78,91,

u

£y - ‘ ] - [N ] (5°) (3.29)

v
For bars only one component of strain contributes to the strain energy and is
defined locally by:

ep = du'/ox' (3.30)
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where x', y' are a local coordinate system at point, P, with y' being normal to the

line of the bar, and u', v' are the corresponding displacements.

Now at any point it is possible to define a distortion matrix [j] as:

du/9x 9v/dx ]

- |

du/dy ov/dy

and, as mentioned earlier, a Jacobian matrix given by:

dx/dt dy/dt aNj/3% 3Nj/3% ONm/dt....
[J1- =

ox/dn dy/dn

Therefore from the relation

3N; /3% ON;/d% aNm/as...‘
=[J

ON;/97n ONj/dn ONm/d7. ..

it follows that

[ (31T

uj vj

dNj/dn ONj/dn oNm/dn. ...

ONj /ox aNj/Bx ONm/dx. . ..

3N; /3y 3Nj/dy 8Nm/dy. ...

3N;/37m ANj/dn 3Nm/d7. ...

3N; /3t ANj/3% aNm/BE....l ui vi]

um vm

ui
uj
um

[xi

xJ
xm

vi]
vj

yi
MA
ym

ON;j /ox aNj/aX ONm/dx. ..

(3.31)

(3.32)

1¢3.33)

dN;/dy ONj/dy ONm/dy. ...

(3.34)

As [j]is a second order tensor, it transforms on co— ordinate rotation from x, y to

x', y' according to

du' /3x' Av'/ax'
[i] - [ ] - [RI[J][RTT

du' /dy' av' /3y

where [R] is the rotation matrix of direction cosines at point P, given by

(3.35)



[R] -

ox/9x' Jy/dx'
(3.36)

ox/dy' dy/dy’

and by noting that x' and ¢ coincide, and differ only in magnitude, it can be

shown by:
9x/9% dy/ok
[R] = 1//(8x/3E)%F(3y/3E)2 (3.37)
-9y/9t ox/d&
Finally from equation (3.30), (3.35) and (3.37), it follows that
ui]
vi
du/dx'= 1/h2 [ {c18Ni/dx+C23Ni/dy}{C23Ni/3x+C3aNi/3y}. ... ]|uj
vj
r
(3.355 -
where
h = /(3x/3%)2+(dy/ok) 2
Cl= (3x/3£)2, C2= (dx/dt.dy/dt), C3= (dy/dt)?2 (3.39)

The stiffness matrix [K'F of the bar can be calculated by using equation (3.9).
[K']e - J [B' ]T[D' [B' ] d(vol) (3.40)
\'

where [B'] is strain matrix obtained from equation (3.38). For plane stress and
strain case [D'} Es, where Es is the modulus of elasticity of steel and the

elemental volume is given by

d(vol) = As.dx' = As.h.d{ (3.41)

where As is the cross— sectional area of the bar and h is to be taken from equation
(3.39).

Clearly numerical integration must be used again, but now applied in one dimension
only.
The value of the stress which will be induced in the bar will be

op' = ep'.Es (3.42)
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The equivalent nodal loads contributed by the steel bar will be:

{P1}steEL= | [B' JT{op'}d(vol) (3.43)
v

where {op'}are the bar stresses.

3.6 Evaluation of loads

In the displacement method, the only permissible form of loading, other than initial
stressing, is by the prescription of concentrated loads at the nodal points.
Consequently, forms of loading such as gravity action and pressure applied to the
element surfaces, must be reduced to equivalent nodal forces before a solution can

proceed[S] .

It would be very difficult in general to calculate manually the equivalent nodal forces
using the isoparametric element principle, since area or volume integrations over
arbitrary shaped regions are generally involved. Therefore, a subroutine for doing
this function is used and is explained in detail in the referenced textl3] only a

summary is given here.

3.6.1 Point loads

Consider a point load, P, acting on an edge of the element as shown in Figure
(3.8). Applying virtual displacements, &*, in the x and y directions to each node in
turn, so that for node i we have virtual displacement components u* and v*
respectively then,

Pyju” = PyN; (5,7 yu*

Pyiv* = PyNj(§p,7 % (3.43)
where Pxi and Pyi are the corresponding forces in the x and y directions, Px and
Py are the components of load, P, acting in the x and y directions respectively and

Ep is the ¢ coordinate of the point and 7 is the constant value of 7 at the edge

in question i.e 7 = —1 or +1.

1)

>,
1%
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By invoking the arbitrary nature of the virtual displacement then

Pyi - Py

= Nj(§p. 1) (3.45)
Pyi Py
This is the equation from which the equivalent nodal forces can be calculated as

soon as the load component Px and Py and its points of application, as defined by

(§p,7 ), are specified.

If the x and y coordinate of the point of application are specified as Xp and Yp
respectively, and the nodal point coordinates are (x;y;) along the element edge then

using the isoparametric concept

X 3 Xi
= INj(§p,n ) (3.46)
i-1 Yi

Yp
The shape functions, Nj, are in this case quadratic expressions in ¢ and 7 and
therefore equation (3.46) is quadratic in £ and can be solved to yield Ep. The
equivalent nodal forces can then be determined from (3.45) (This, of course implies

that the point of application of the load is known to coincide with a particular mesh

line).

Point loads which act on a node are handled more conveniently by inputting directly

their values at the appropriate nodal points{5].

3.6.2 Body forces

Gravity forces are equivalent to the body force per unit volume acting within the
solid in the direction of the gravity axis. It is not necessary that gravity loading
should coincide with either of the coordinate axes. Gravity force components may

act in both the x and y directions. The direction of the gravity force is defined by

the angle which it makes with the y axis.

S 6
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In order to obtain the equivalent nodal forces similar procedures are followed as in
the previous section. Referring to Figure (3.8) once again, if g is the gravitational
acceleration and the material mass density is p then the gravity force dG acting on
an elemental volume dV is

dG = pg.dv (3.47)

The components acting in the x and y directions will be

dGy pg.dV.sinég

dGy = -pg.dV.cosd (3.48)
Applying the principle of virtual displacements, the equivalent nodal force in the x
and y directions are

Pxiu* = 1Niu*pg.sin0.dv
Ve

* *
Pyiv =—lNiv pg.cosf.dv (3.49)
Ve

where N are the shape functions, and the integration is taken over the volume of
the element. Noting the arbitrary nature of the virtual displacements these equations

can be replaced in matrix form as

Nipg av (3.50)

Pxi [ siné
Pyi Ve -coséf

Finally, this equation requires the Gaussian numerical quadrature to perform the

integration over the volume, i.e

Py NGAUS NGAUS |siné

= X Y pg Nij ({4, Mm)an-ap.t.det J (3.51)
Pyi n=1 m=1 -cosf

where t is the thickness of the element and J is the Jacobian matrix and ap ap

are the Gaussian weighting functions.



3.6.3 Normal and tangential distributed edge loads

In some cases, element edges will have distributed loading per unit length in either
the normal or tangential directions. In the parabolic isoparametric element shown in
Figure (3.9), an edge of an element is represented by three nodes listed in an

anticlockwise direction with respect to the loaded element.

The intensity of distributed load at any point along the loaded edge is given by

Pl’l n (Pn) i
= IN; (3.52)
P, i=1" (py);

where p, and p; are the normal and tangential distributed loads and N; are the

shape functions as defined before.

By applying the principle of virtual work to each nodal point of the element in
turn, the equivalent nodal forces can be calculated. The components of forces acting

in the x and y directions respectively, on an incremental length dS are

dP,,

I
I

(p¢.dS.coso - pp,.dS.sino) (pt -dx - pp-dy)

I

dPy = (pp.dS.cosa + p;.dS.sinw) (pp-dx + p¢.dy) (3.53)
By using the following relations in equation (3.53)

dx

I

(9x/0k) . 9¢

(9y/ok) .ok (3.54)

dy
and integrating along the element edge in terms of the curvilinear variable § then

finally the expressions for equivalent nodal forces become

Py = [Ni(pt(ax/af)-Pn(GY/ai))-35
Se

Pyi = Jni(pn<ax/as>-pt<ay/as)>.as (3.55)
Se

where integration is taken along the loaded element edge Se and is again carried out

using numerical integration.
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3.6.4 Temperature loading

Sometimes stresses can be induced in a solid by temperature change. As thermal
effects are only a particular case of initial straining, they are easily accommodated.
In this situation, first the initial stresses, ¢©, corresponding to the initial thermal
strains, eo, are calculated using 0o = Deo and then converted to equivalent nodal
forces. Later on, these stresses are added to stresses from other sources such as

applied loads etc.

For the plane stress situation the initial strains are

exo = oT
eyo = oT
yxyo= 0 (3.56)

where o is the coefficient of thermal expansion and T is the temperature increase

from an arbitrary datum.

For plane strain, the initial strains are

exo = (-v0zo/E) + aT

eyo = (-vogzo/E) + oT

yxyo= 0

€zo = (0zo/E) + oT = 0 (3.57)
By eliminating ¢zo in the above equation (3.57) we get

exo = (1+v) oT

eyo = (1l+») oT

vxy = 0 (3.57)

and o0zo = -EoT (3.58)

3.7 The equation solution technique

There are various equation solution techniques which can be used to solve a given

set of linear simultaneous equations. In this study direct Gaussian elimination



algorithims have been used in conjunction with the frontal method of equation
assembly and reduction,[3] and is applicable here only for symmetric systems of

linear equations. The main features of this technique are:

1:— It assembles the equations and eliminates the variables at the same time, hence
the complete structural stiffness is never formed, only the upper triangle of a square
matrix containing parts of the equations which are being assembled at a particular
time.

2:— The frontal solver does not store as many zero coefficients as a banded solver
does. Once an equation has been completely assembled and eliminated, it reduces
space which can be used for subsequent equations.

3:— The storage allocation in a banded solver is determined by the order in which
the nodes are presented for assembly. But, in front solver the storage is determined
by the order, in which the elements are presented. It can handle any order of node
numberings. Hence, at any stage, if a mesh of a problem is found to be too coarse
in some regions, its modification does not require extensive nodal point renumbering.
In this sense, the frontal solver is easier to use than banded solvers.

4:— The frontal solver tends to be more economical than banded solvers, especially

for higher order elements with midside nodes.

3.8 Brief description of the developed model for design

The finite element model described in this chapter was basically developed from the
work of Owen and Hinton[5] and was used to obtain the elastic admissible stress
field for in— plane structures. The program was modified and extended by
incorporating the Direct Design equations. The working order of the program is

presented in Figure (3.10).

The Direct Design equations, originally presented by Nielson[12] and later extended

by Clark[13], were programmed in two subroutines called Orthogonal and Skew to
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carry out each particular type of reinforcement design. In order to design
reinforcement for a particular beam, first an elastic stress field was obtained using
the assumed material properties of cracked concrete. Secondly, this elastic stress field
was transfered to the Design Module and, according to the type of reinforcement

required i.e orthogonal or skew, the reinforcement was calculated.

Reinforcement ratios in each direction were obtained at the 9 Gaussian integration
points of a 3x3 rule. As the stresses throughout the continuum were continuously
varying, the resulting steel ratios also varied from point to point in both directions.
To assist in the selection of discrete bars, the first step was to average steel ratios
in each direction in each element. Then, steel areas were calculated from these steel

ratios through some simple mathematical manipulations.

Once the steel areas for each element were determined for a particular load, the

program calls the Plotting Module.

The Plotting Module was built into the finite element program to present the
designed reinforcement as three dimensional and contour plots, and also in tabular
form. This allows the designer to visualise the designed reinforcement profile of the
structure, so that at any stage, decisions are more easily made about whether to
change material properties or the geometry, if they do not satisfy intended design
aims. This Plotting Module also helps in checking the mesh boundary conditions and
loading points, which is also important in avoiding errors in the analysis. Three
subroutines MESHPL, STEELP, BCPLOT carry out these functions as follows:
MESHPL— Plots the finite element mesh used in the analysis with nodal point
and element numbers.
STEELP— Plots the finite element mesh with the average steel areas required
in both directions in each element. It also plots a three dimensional view of

the main and shear reinforcement ratios and also plots contours of both
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reinforcements ratios.
BCPLOT— Plots boundary conditions on the finite element mesh and the

nodal loads as arrows in the appropriate direction.

A demonstration of the use of this Program can be seen in the Chapter Five when

designing the transfer girders.
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TABLE 3.1

Weighting factors and Gaussian sampling point positions

n i ¢i aj
1 I 0 2
1 +1/_3— +1
2
I -1/—3 +1
I 8/9
3 II 5/9
ITI 5/9
I 1 /30
2 36
1 /30
I - - —
2 36
4
1 /30
ITI -+ —
2 36
1 /30
v -+
2 36




\ r
PARABOLIC SHAPE AND

DISPLACEMENT VARIATION

Figure (3.1) Typical two dimensional parabolic isoparametric element.
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Figure (3.2) Orientation of local axes {, 7, and order of Gauss point
for two dimensional parabolic isoparamatric elements

94



Unit

Figure (3.3) Distributed representation of steel.
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Reinforcements

Figure (3.4) Embedded representation of steel.

Figure (3.5) Discrete representation of steel
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Figure (3.6) Bar element positions on the isoparametric element.
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Figure (3.7) Bar element.
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Figure (3.8) Application of point loads to two dimensional parabolic
isoparametric elements.
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Figure (3.9) Normal and tanential load per unit length applied to a
parabolic isoparametric element.
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CHAPTER FOUR

NONLINEAR MODELLING OF REINFORCED CONCRETE

4.1 Introduction

The challenges in designing complex concrete structures has prompted analysts to
acquire a sound understanding of reiﬁforced concrete structural behaviour. In m$y
cases conventional and code prescribed methods cannot be relied upon to provide
realistic information, such as load deformation response, crack patterns, strengthg
distorted shapes of structural elements, and failure mechanisms. This is primarily

because of the complex behaviour of reinforced concrete under short term loadings.

Concrete is much weaker in tension than in compression. Hence, even at relatively
low loads in many problems of practical consequence, concrete starts cracking and
linearity is no longer preserved. Material nonlinearity is also caused by the yielding
of steel and the "plasticity" of concrete in compression. Other nonlinearities arise
from the complex action of the individual constituents of reinforced concrete e.g
bond—slip between steel and concrete, aggregate interlock of a cracked concrete,
tension stiffening between cracks and dowel action of reinforcement. Time— dependent
effects such as creep, shrinkage, and temperature change also contribute to the
nonlinear response. However, the major material nonlinear response is caused by
cracking of the concrete, plasticity of reinforcement and the inelastic compressive
response of concrete and any nonlinear procedure should include these as a

minimum.

A structure may also exhibit nonlinear behaviour due to geometric nonlinearities;
however, these tend to be associated only with certain special structural elements and
systems in which the effects of displacements on internal forces must be considered
in the analysis. Reinforced concrete transfer girders have small deflections, thus

geometric nonlinearities have not been considered in this study. In order to study
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more accurately the behaviour of such structures throughout the entire load range, it

is important to extend the numerical process described in the previous chapter to

include the nonlinearties described above.

A nonlinear finite element solution is obtained by a sequence of linear
approximations using some iterative process which produces an overall response at
any stage that satisfies the constitutive laws, compatibility and equilibrium conditions
to some degree of tolerance. The obtained solution then represents the approximate

nonlinear behaviour of reinforced concrete .

The progress made in the field of nonlinear analysis over the last two decades with
the finite element technique has provided a reasonable method of prediction of the
overall behaviour of a structure. In particular a variety of models have been
proposed for predicting the nonlinear response of reinforced concrete. The ASCE
Task Committee's state— of— the— art report[l] provides a useful summary of the
various models up to 1982, whilst Chen[2] has provided a broad review of the
various nonlinear material modelling techniques. A recent text edited by Hinton and
Owenl3] also describes various models and their applications. For completeness, in
this chapter the mathematical modelling of the material and nonlinear solution
methods will be briefly explained and is based on earlier work and programs

developed by Phillips[4.5].

It has been customary to consider the two constituents, concrete and steel
reinforcement, as separate contributors to the overall stiffness and strength of the
structure and this approach is also adopted here. Isoparametric elements have been
used to model the concrete whilst a reinforcing element embedded in the main
element is used to simulate the reinforcement. In this embedded reinforcement

representation, full bond is assumed between steel and concrete. An advantage of
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this representation is that bars can be more or less placed in positions corresponding

to those in the real structure, leading to a more accurate analysis.

4.2 Numerical techniques for nonlinear analysis

The general basis of each method of nonlinear analysis is similar. For problems
where only material behaviour is nonlinear, as considered in this study, the
relationship between stress and strain is assumed to be of the form:

f(o,e) =0 (4.1)
The element stiffness matrix [K] is a function of the material properties and can be
written as:

[K] = Kk(o,¢€) (4.2)
The external forces (R} are related to nodal displacements {é} through the
stiffnesses of the element and can be expressed by:

®) - [K}(5) (4.3)
Which on inversion becomes:

() - [KI'Y®) (4.4)
Putting values of [K] from equation (4.2) into (4.4) we get

(8} =1[k (6,01 (R} (4.5)
This derivation illustrates the basic nonlinear relationship between {5} and (R} due

to the influence of the material laws on [K]

The solutions of nonlinear problems by the finite element method are usually

attempted by one of the following three basic techniques: v

(D) Incremental (Step by Step)
(ii) Iterative (Newton Method)

(iii) Incremental— Iterative (Mixed Method)
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These three methods will be briefly explained, but detailed discussion is presented by

the state—of—art reportll], Chen[2], AI- Manaseerl6], Owen and Hintonl7] and

Al— Mahadil9].

4.2.1 Incremental method

In this method the intended or assumed total load on the structure is divided into
small divisions called load increments. During each load increment, equation (4.3) is
assumed to be linear i.e a fixed value of the new structural stiffness [K ] is assumed
using material data existing at the end of the previous increment in the updated
material matrix [D] Nodal displacements resulting from the loading of each
increment are then added to the previously accumulated displacements. This process

is repeated until the total load is reached[1,6,7,8,9].

The accuracy of this procedure depends on the increment size, the smaller the
increments the better the accuracy, but at the same time more computational effort
is needed. A modified version of this scheme is the "mid point Runge— Kutta"
methodl6,7]. In this, the first step is to apply half of the load increment and to
evaluate new stiffnesses corresponding to the total stresses at this value. These

stiffnesses are utilized to compute an approximation for the full load.

The increment method in its original and modified form do not take into account
the force redistribution during the application of the incremental load (i.e no

iteration process exists to restore equilibrium).

4.2.2 Iterative method 10,11]

In this method, the full load is applied in one increment. The resulting internal
stresses are evaluated at that load according to the given material law. This gives

equivalent nodal forces which may not be equal to the external applied loads i.e
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equilibrium is not necessarily satisfied. The portion of the total loading which is not
balanced is called "unbalanced nodal forces”. These unbalanced forces are then used
to compute an additional increment of the displacements, and hence new stresses,
which give a new set of equivalent nodal forces. This process is repeated until
equilibrium is approximated to a certain degree of tolerance. At this stage the total
displacement is taken as the sum of the accumulated displacements from each

iteration.

There are several variations of this basic process and a solution depends in many
ways on the method used for computation of the stiffness matrix [K] and the

»
unbalanced nodal forces {Fu}.

(i) _Computation of unbalanced nodal forces
In general, the linear constitutive law can be written in the form:

{0} = [D] ({¢} - {eo}) + {oo} (4.6)
where [D] is the rigidity matrix, and {¢o} and {e0)} are the initial stress and
strain vectors. Equation (4.6) is in essence a linear approximation of the nonlinear
relation between stress and strain, i.e.

f(og,e) =0 4.7)
Adjustments to any of the quantities [D], {o), or {eo} in equation (4.6) can be
made to approximate equation (4.7). Adjustments to {e0} and {oo} are called the

“initial strain” method and "initial stress" method.

In this study an extension of the initial stress method was used, hence only this will
be explained. Equation (4.6) will become:

{o} =[D] (€} + {00} (4.8)
Assuming {00} = O initially, equation (4.8) is solved with an approximate [D ]

matrix and strain {es} to obtain a certain level of stress {oaj} where
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{oa1} = [D] {ea) (4.9)
The stress which should have occurred is:
{oa2} = [D]? {en) (4.10)
The difference between the stresses
{o0}= {oa2} - {oa1) (4.11)
can be introduced as an initial stress in equation (4.8). Thus equivalent unbalanced
nodal forces {(Fu} can be calculated from

(Fu} = -|[B]T{0c0}.av (4.12)
v

which are then removed by applying them to the structure to obtain a correction to
{6}. This process is repeated until {00} or {Fu)} becomes negligible. The steps in

the initial strain method are very similar.

(ii) Method for computing stiffnesd6,7,9,10,11]

The stiffness can be either constant or variable throughout the solution. In the
constant stiffness method, the linear stiffness as given in equation (4.8) is used at

every stage in the analysis.

Although this method has an advantage of calculating the stiffness only once, it still
requires a high number of iterations to achieve the desired accuracy, especially when
nonlinearity occurs due to the cracking of concrete and yielding of steel. This is due
to the sudden large changes that are caused in the stiffness. Accelerator processes
could be employed but improvement cannot be guaranteed, and in general there has

been a poor rate of success.

In the variable stiffness method, a linear solution is performed but the material
matrix [D] is adjusted during each iteration. The adjustments can be done by using

either a tangential or secant modulus approach.
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This method is a form of the well known "Newton— Raphson” method and requires
considerably less iterations than the constant stiffness method, although a full solution

is much more expensive than a resolution with constant stiffness.

A cheaper version of the variable stiffness approach can be obtained by using the
modified "Newton— Raphson" method, where the stiffnesses are updated only at

certain iterations. Figure (4.1a) shows the different methods used for the iteration

procedure.

4.2.3 Incremental— iterative (Mixed method)_[1 »3,5,6,11]

In this method a combination of incremental and iterative schemes are used. The
load is applied in small increments and a solution at each increment is obtained
iteratively until equilibrium is obtained to a certain degree of tolerance. This method
combines the advantages of both the incremental and iterative methods, hence it
tends to minimize the disadvantages of each, and so nowadays is used very widely.

Figure (4.1b) shows the different methods of the mixed procedure.

4.3 Method used in this study

There have been significant improvements in nonlinear solution techniques in recent
years leading to a wide choice of solution strategies, including modified
Newton— Raphson techniques, quasi— Newton techniques, arc—length methods etc.
These techniques can be applied in conjunction with line search algorithms,
accelerators, self adaptive techniques which automatically adjust load steps and so on.
To date, many of these techniques have been applied successfully to concrete

structures; however, the modified Newton— Raphson technique still seems to be the

most popular.
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In this study basically the mixed method is used in conjunction with the modified
"Newton— Raphson" approach to evaluate the stiffness, using a tangential elasticity
material property matrix. Four different algorithms were available for updating the

stiffness, which could be selected as options within the program[4], as follows:—

(a) KTO; the "initial stiffness” process
(b) KT1; where [Kh‘ is recalculated at the start of each load increment only
(c) KT2; where [K]T is recalculated at the start of the first iteration only

(d) KTA; the general "variable stiffness" process.

In order to calculate the unbalanced nodal forces, a modification of the initial stress
method is used. The basic aim is to check the applied loading system against the
equivalent forces caused by the total stress level rather than calculating initial
stresses. The difference between these two will give a set of residuals which are a
measure of any lack of equilibrium. The residuals are then applied to the structure
to restore equilibrium. The process is repeated until the residuals are sufficiently

small. Thus, for equilibrium, it is required that

{Fu}= |[B]T{0}.dV - {R} = 0 (4.13)
v

where {0} are the actual stresses depending on the constitutive law being used, {R}
lists all forces due to the external loads, initial stress etc, and {Fu} are the residual

forces which are a function of the displacements.

4.4 Convergence criterion

In order to identify the elimination of the "out of balance forces” and to terminate
the iterative process, a reliable convergence criterion is required. The user specifies
the accuracy by giving quantitative values known as convergence tolerances. The
convergence tolerance must be realistic; if generally too loose, inaccuracy may result,

if too tight, much expensive effort may be spent in obtaining needless accuracy.
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A convergence criterion can be based on checking the residual decay of every
degree of freedom, but this process is expensive. Therefore an overall check based

on some norm is preferable and in this study convergence was assumed when the

relation

Fui*/Ri* ¢ C (4.14)
was satisfied, where Fui*= mi is the norm of residuals, Ri*=/{R}iT{R}i
is the norm of applied loads and C is the preselected convergence factor usually

about 0.01 to 0.05.

4.5. Brief review of reinforced concrete behaviour

4.5.1 Behaviour of concrete

A reliable prediction of the response of a reinforced concrete structure requires a
knowledge of the behaviour of concrete in its elastic and nonlinear ranges under
various combinations of stress. Despite widespread use of structural concrete over a
considerable length of time, this knowledge is still incomplete. For instance, there is
no universally accepted triaxial failure criterion under combinations of tensile and
compressive stresses. Until recently most tests on biaxial and triaxial stress behaviour,
have concentrated on strength characteristics rather than obtaining stress— strain
relationships. However the availability of data regarding deformational characteristics
for biaxial stress states is now beginning to improve whereas there has been a
respectable body of experimental data pertaining to deformations for concrete under

uniaxial conditions for a number of years.

In this section the work done on the stress—strain behaviour and strength of
concrete under short term loading will be described for uniaxial and biaxial stress

states. This will give sufficient background for the constitutive models for concrete

which will be described in this chapter.
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4.5.1.1 Uniaxial stress behaviour

A typical stress strain curve of concrete subjected to a monotonically increasing

uniaxial compressive state of stress, is given in Figure (4.2) and illustrates that:

() There is an almost linear relationship to about 30% of its ultimate load.
Microcracks exist in the concrete at this stage, primarily due to stress and strain
concentrations resulting from its heterogeneous nature, however, these cracks are
stable and have little tendency to propagate. Prior to loading, microcracks can exist
at the aggregate paste interface, due to phenomena such as settlement of fresh
cement, hydration of cement paste, differential volume changes due to shrinkage or
thermal movements.

(i) Up to 30—50% of ultimate load, micro— cracks begin to propagate, but at a
very slow rate. Bond cracks around the aggregate start to extend due to stress
concentrations at crack tips. Mortar cracks remain negligible until a later stage. For
this stress range, the available internal energy is approximately balanced by the
required crack release energy. The stress—strain curve begins to show increasing
curvature.

(iii) At 50— 75% of ultimate load, some cracks near aggregate surfaces start to
bridge in the form of mortar cracks and a much more extensive and continuous
crack system then propagates into the matrix. If the load is kept constant, the
cracks continue to propagate with a decreasing rate to their final lengths.

(iv) For compressive stresses above 75%, the largest cracks reach their critical
lengths. The available internal energy is now larger than the required crack release
energy and crack growth becomes unstable and the stress strain curve becomes

increasingly nonlinear towards ultimate stress and will begin to strain soften[2,4,12],

The uniaxial compressive strength of concrete is the most common measure for



assessing the quality of concrete. It is suggested that the cylindrical compressive
strength of concrete is more meaningful than cube strength, since the ratio of the

height to width of a cylinder is higher than the height to width ratio of a
cubel1,3,5].

The uniaxial tensile stress—strain curve of concrete is much more linear than the
uniaxial compressive stress—strain curve. Up to approximately 60% of the ultimate
stress, the microcracks have negligible effect on the curve. This stress level
corresponds to the limit of elasticity, above this level microcracks starts to grow. As
the uniaxial tension stress tends to arrest the cracks much less frequently than the
compressive stress, one can expect the interval of stable crack propagation to be
relatively short. A reasonable value for the onset of unstable crack propagation will

therefore be about 75% of ft’

4.5.1.2 Biaxial stress behaviour

A biaxial stress condition occurs when the principal stresses are acting in only two
directions and the third principal stress is zero. Under different combinations of
biaxial loading, concrete exhibits strength and stress—strain behaviour somewhat

different from that under uniaxial conditions.

Typical stress—strain curves for concrete under biaxial stress in compression—
compression, tension— compression and tension— tension states are shown in Figure
(4.3) to (4.5). These curves were obtained from the classical experimental study by

Kupfer et all12]. The uniaxial compressive stress—strain curve is shown in these

figures for comparison.

The figures show that the curves are mostly linear up to about 40% of the ultimate

stress. There is also a small permanent deformation which might be due to

10
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microcracking; this limit is called the “initial discontinuity point" or the "elastic
limit". In two dimensional principal stress space this elastic limit is represented by
envelope 1 in Figure (4.6). Beyond this stress state larger cracks form, internal
disruption of the material takes place and substantial permanent deformations are
produced. Figure (4.6) also illustrates the envelopes 2, 3,4 for other important points

in the stress— strain relationship.

A detailed discussion of the experimental data given by Kupfer et al and that of
other workers has been given by Phillips[4], Chenl2], and Hinton and Owenl3]: for

example, and only the main points relevant to this study are summarized here:—

(i) The behaviour can be broadly classified into two categories conveniently defined
by its mode of failure, brittle or cleavage— type failures caused by biaxial tensile
stresses, and "ductile" or shear— type failures under biaxial compressive stress.

(ii) The ultimate strength of concrete under biaxial compression is greater than that
under uniaxial compression, mainly due to the confinement of the microcracks.

(iii) The ultimate strength increase in biaxial compression, fcb, is dependent on the
ratio of principal stresses. The biaxial compressive strength, fcb, is 1.1 to 1.4 times
the uniaxial compressive strength, fc'. The greatest increase in strength is given by a
stress ratio ¢l/02 of about 0.5; this diminishes somewhat as the ratio is increased to
unity.

(iv) The variation in Poisson's ratio is small until the start of stable crack
propagation at “critical load". The value of » typically varies between 0.18 for
biaxial tension to 0.2 for biaxial compression, this difference being negligible for
practical purpose.

(v) In biaxial compression the volume decreases linearly up to 30—50% of the
ultimate load, after which the rate of reduction slowly increases. A point of

inflection is reached at about the “critical load" level and a minimum value follows



shortly afterwards close to the maximum load (at 95% according to Kupfer). The
volume then expands very rapidly and often becomes greater than the original
unloaded volume. The volumetric concrete strain corresponding to maximum stress
varies from 0.0008 (uniaxial compressive stress) to 0.0025 (biaxial compressive stress)
as shown in Figure (4.7).

(vi) Biaxial and uniaxial tensile stress— strain curves are similar in shape.

(vii) The uniaxial tensile strength of concrete is slightly higher than the strength

under biaxial tension.

4.5.2 Behaviour of steel
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Since steel reinforcement is predominantly uniaxial, it is generally not necessary to.

introduce the complexities of multiaxial constitutive relationships. A typical uniaxial
stress— strain diagram for steel is shown in Figure (4.8). It is clear that the
relationship is linear and elastic until the “proportional limit" P is reached. For a
further small range of stress increase the strain is still elastic but no longer linear.
The "yield point” Y is then reached and this marks the start of plastic deformation.
The difference between P and Y is small for most steels and is usually neglected
in practical applications. Beyond the yield point, plastic flow occurs with strain

increasing at a much greater rate.

Generally, stress must be increased to cause further deformation, a condition termed
strain - hardening. Finally, a maximum stress is reached at point V, after

which a descending tail occurs to fracture at P.

For some steels, the yield point is poorly defined so that it is arbitrarily taken to be
at some fixed value of permanent strain, as 0.001 or 0.002, where the corresponding
stress is known as "proof strength". The value of strain at the yield point is usually

of the order 0.001.



Some steels, like mild steel, exhibit a small but sharp drop in load after the yield
point to a lower yield level. Strain then increases plastically at more or less constant
load to about ten times the vyield strain. At this point material begins to work
harden. Clearly the lower yield point should be used for calculation purposes. It is
noted that strains are now large at the ultimate strengths, but that the stress is
usually referred to the oviginel area. This point is well above any strain which can be
developed in concrete structure, so we shall be concerned mainly with values at

yield.

Similar behaviour is generally assumed for both tension and compression. Figure
(4.9) shows four different finite element idealizations which are commonly used for
reinforced steel behaviour. For each case it is necessary to define, experimentally,
the value of the stresses and strains at the onset of yield, and the strain hardening

modulus after yield up to the ultimate tensile strength as well as the elastic modulus.

4.5.3 Cracking and post— cracking behaviour of reinforced concrete

The tension failure of concrete is characterized by a gradual growth of cracks, which
join together and eventually separate parts of the structure. It is a usual assumption

that the forming of cracks is a brittle process.

Two main mechanisms develop after cracking through which shear is transferred
across the cracked section. These are aggregate interlocking on the two adjacent

surfaces of the crack and dowel action of any reinforcing bars crossing the cracks.

If the surface of the crack is rough, it is possible that the opposite faces of the
crack will interlock when subjected to differential movement as shown in Figure

(4.10). This depends on the texture of the cracked surface as well as any
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restraining force that can keep the cracked surfaces from moving apart, allowing
forces to transmit across the crack. The frictional resistance depends on the
properties of aggregate and mortar, the condition of the crack surface, and the
width of crack. If the cracked surface is smooth, frictional resistance would be small
and if the crack width becomes large the surface would completely separate and
interlocking  would cease. The important effect of this phenomenon is that shear

stress along the crack will not be zero.

This factor plays an important role in post— cracking behaviour of reinforced
concrete. For example, in reinforced concrete beams after the initiation of inclined
cracking, at least 40% to 60% of the shear force is carried by aggregate

interlocking.

Reinforced bars also act as dowels as shown in Figure (4.11), where major shear
n

deformation has occured after the development of the tension cracking and the

reinforced bar will also resist the concentrated shear forcel2:6]. There are various

factors which effect the dowel action, such as the number of bars crossing the

cracked concrete zone, diameters of the bars, the orientation of bars with respect to

crack direction, specimen geometry, length of the reinforcement bars and its

arrangements, and concrete cover to the bars.

Although a considerable amount of experimental research has been carried out to
quantify the dowel action contribution to shear transfer, it is still very difficult to
take into account dowel effect precisely for a particular problem. Much still remains
to be done before any definitive formulae can be used in finite element analysis. In
order to take into account shear transfer across cracks in the finite element analysis
due to aggregate interlocking and dowel action of reinforcing bars, in this study a

parameter known as shear retention factor to take equivalent shear stiffness and

114



115

strength of cracked concrete is used, and will be discussed in section 4.7.

In practice, the material between discrete cracks can exhibits a state of strain which
sometimes causes the crack to close. The movement required to close the crack
would be less than that needed for initial crack formation and it is also possible that
the crack may not be able to close perfectly. In order to take account of crack
closing, a formulation is incorporated in the finite element model, assuming as crack
has closed perfectly and the shear is considered as like a uncraked concrete,

although the plane would be weaker in reality, this will be discussed in this chapter

later.

In plane stress situation, once a primary crack has occured, on the further loading a
secondary crack could develop in the non— orthogonal direction to the first crack.
This plays an impotant role in the nonlinear finite element analysis and have been

taken into account in this study and will be discussed later in this chapter.

4.5.4 Bond—slip phenomenon between steel and concrete

Bonding between concrete and steel is created by chemical adhesion, friction and
mechanical interlock between these two materials. Loads are very rarely applied
directly to the reinforcement, steel receiving its share of the load from the
surrounding concrete. Bond stress is a name given to shear stress at the
steel— concrete interface, which, by transferring load between the bar and the
surrounding concrete, modifies the steel stresses. It can be measured by the rate of

change of force or stress in the reinforcing bars(20].

In simplified analysis of reinforced concrete structures, it is assumed that a perfect
bond exists between the concrete and steel. But this assumption is not valid in those

regions of the structure where considerable stresses are transferred between the
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concrete and steel. Slip between concrete and steel occurs when cracks appear along

the concrete— steel interface.

In finite element analysis, the bond—slip phenomenon can be accounted for by using
linkage elements, or interface elements connecting the nodes of steel and concrete
finite elements. The linkage element is composed of two orthogonal springs which
connect and transmit shear and normal forces between separate nodes. Each spring
must be given a certain value of interface shear stiffness obtained from experimental
pull out tests. A very high stiffness is given to the spring, perpendicular to the bar,
to prevent any separation between the bar and concrete. It is difficult to give
realistic values for the stiffness of springs perpendicular to the bar. Details of this

method are presented elsewherel1,21,22,23],

The advantage of using linkage elements is that there are no physical dimensions, i.e
two different deformations are allowed to occur at a common node. But it has the
disadvantage of being an expensive process, especially when there are a high number

of bars used at different layers.

An alternative method of taking into account the concrete—steel bond in the finite
element analysis is to use a "tension stiffening" approach in which a gradual
softening curve for concrete after cracking is defined. This approach is based on the
fact that, as a crack occurs, the bond fails, causing some movement between the bar
and concrete. This will then cause the shear force at the contact surface between
the cracks to feed tension stresses into the concrete. The concrete attached to the
bar will contribute to the overall stiffness of the system, and this is accounted for

by the gradual stiffening curve.

The bond—slip phenomenon can only be modelled through linkage elements when



the reinforcement is represented by discrete elements. In this study embedded
reinforcement representation is used, and as a result the use of linkage elements is
not possible. Nevertheless, with embedded bar representation, the tension stiffening

method has proved helpful in accounting for the bond—slip activity.

4.6 Development of material modelling

4.6.1 Cracking of concrete

Two fracture criterion are most commonly used: the maximum principal stress
criterion and the maximum principal strain criterion. These state that when a
principal stress or strain exceeds its limiting value a crack occurs in a plane normal
to the crack direction of the offending principal stress or strain and the crack
direction is fixed for all subsequent loading. The maximum stress criterion is more
commonly used than the maximum strain criterion, although it has been reported
that the maximum strain criterion can predict stiffer behaviour than the maximum

stress criterionl4].

In finite element analysis three different approaches have been most commonly used

for representation of the cracks. These are classified as follows:

(i) Smeared— cracking Model

The cracked concrete is assumed to remain a continuum i.e the cracks are smeared
out in a continuous fashion. A crack is not discrete but is represented by an infinite
number of parallel fissures across the applicable part of the element, as shown in
Figure (4.12). Once concrete is cracked, the material is assumed to change from
isotropic to an orthotropic with one of the material axes being oriented along the
direction of the crack. The element stiffness matrix will be modified. Thus, the
stiffness across the crack will not reduce to zero and cracked concrete will continue

to carry tensile stresses. The stiffness and stresses will depend on many factors such



118

as the amount of reinforcement crossing a crack, local bond characteristics and the
straink softening behaviour of concrete after fracture. Such a formulation easily allows
a gradual drop of strength in direction perpendicular to the crack and any reserve
shear strength due to aggregate interlocking can be taken into account by retaining a

positive shear modulus.

The smeared— cracking model was used in this study, since it is capable of
predicting load deflection behaviour and general stress— strain distribution. In addition

the problem of continuously altering the topology of the structure as cracking
progresses was avoided. Moreover the initiation, orientation and propagation of cracks

at sampling points are automatically generated resulting in a general solution.

(ii) Discrete— cracking Model

In discrete— cracking models, the nodes of the adjacent elements are assumed to be
separated when a crack occurs, as shown in Figure (4.13). The most obvious
difficulty in this approach is that knowledge of the location and orientation of cracks
are not known in advance. Thus, geometrical restrictions 'imposed by the preselected
fi;lite element mesh ca;n hardly be avoided. The model also requires, the ability to

redefine the element nodes, making this technique extremely complex and time

consuming.

(iii) Fracture mechnaics Model

The success of fracture mechanics theory in solving various types of cracking
problems in metals, ceramics, and rocks has lead to its use in finite element analysis
of reinforced concrete structures. By assuming concrete is a notch— sensitive material,
a cracking criterion based on tensile strength may be dangerously unconservative, and
the use of this method will provide a more rational approach to concrete

cracking[Z]. However, in its current state of development, the use of this model in



reinforced concrete is still questionable and much remains to be done.

4.6.2 Crack_simulation by fixed crack model

4.6.2.1 Opening of cracks

As mentioned earlier the cracking of concrete is generally modelled by linear
elastic— fracture relationships as shown in Figure (4.14). The comparison of the most
commonly used maximum principal stress and strain in the biaxial state of stress is
shown in Figure (4.15). It is clear that both these theories are similar, in particular
when »=0, they became identical. According to the basic hypothesis of the fracture
model, when a principal stress or strain exceeds its limiting value, a crack is
assumed to occur perpendicular to the stress or strain and the crack direction, oc, is
fixed for all subsequent loading[1’2’4:5]. This is known as a "fixed crack model".
Thus for cracking:—

ogi » ft’
or €i ) ecr i=1,2, (4.15)

where oi is the pricipal stress in both directions, ft is tensile strength of concrete,
ei is the principal strains in both directions, and ecr is the cracking strain of

concrete.

It is assumed that material parallel to the crack is capable of carrying stresses
according to the uniaxial condition prevailing parallel to the crack. On further
increase in loading, cracks may occur at some angle to the first crack. For
simplicity, it is commonly assumed that the second crack will be orthogonal to the
first crack and is also predicted by tensile stress or strain parallel to the plane of
the initial crack. This is known as the fixed, orthotropic smeared crack model.

Thus for a second crack:—

otx y ft!'

or e€t' ) ecr (4.16)
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4.6.2.2 Closing of cracks
A crack is assumed to close perfectly if the normal strain across the crack is
compressive, and then the full compressive stress can again be transmitted across the
crack.

i.e on* < 0 (4.17)
The initial modulus of elasticity is then assumed and stress is calculated accordingly.
The shear resistance on this closed, weakened plane will now depend on a number
of factors similar to shear transfer on an open crack e.g normal compressive stress
and interface characteristics. The shear stress can be calculated as:

T% = 3'G y* (/+.18)~
where (' is a preselected constant or given by another function such that 0¢B'<1l. In
this study (' was assumed equal to 1, implying a perfect "healing" of the crack.

The procedure for the reopening a crack is similar to the initial formation, except
that instead of a limiting tensile stress or strain, any tensile strain will cause
reopening.

i.e en* 20 (4.19)

where en* is the stress perpendicular to the crack.

4.7 Modelling of post— cracking behaviour using quasi— material parameters

There are various numerical parameters involved in nonlinear finite element analysis.
Two important parameters used frequently nowaday are the shear retention and
tension stiffening factors. These parameters can be considered as material properties,
since they try to represent actual physical phenomena but, in fact they tend to be
used more as numerical parameters which are adjusted in sensitivity studies prior to
a final solution. Therefore, they are not material parameters in the actual sense and

hence, we call them quasi— material parameters here.

L20



4.7.1 Shear retention

A considerable amount of work has been carried out on this activity experimentally,
and various analytical expressions have been suggested. However, these equations
cannot be used directly in finite element methods which use smeared crack models
because of crack width measurements etc. To account for shear transfer across the
cracks in finite element analysis, the shear retention factor, (3, was introduced by
Phillips[4] and Schnobrichl24]. This parameter can be defined as an assumed
numerical factor (0.0—1.0), which is used in the theoretical cracking model to take
into account the reduction in the shear modulus after the development of a crack.
In the smeared— cracking model, shear transfer is modelled as:—
B = G'G (4.20)

where G' is the reduced shear modulus for cracked concrete and G is the shear

modulus of concrete.

There are two main methods using the shear retention factor, these are the
constant shear retention factor method, where (8 is chosen rather arbitrarily and kept
constant[4:13], and the variable shear retention factor method, where (3 is assumed
to vary as a function of the strain normal to the crack[9:14]. Recent studies carried

out by Al—Manaseer and Phillipsl15] and Phillips and Mohamed[16] have shown that

the variable shear retention factor method predicts the behaviour in deep beams

more accurately than the constant shear retention factor method.

The use of § has provided satisfactory results in most cases and values greater than
0 were found necessary in order to prevent numerical difficulties. Unfortunately the
shear retention factor would appear to be dependent on the type of structure being
studied and its failure mechanism This is reflected in the different recommended

values resulting from other research carried out on post— cracking behaviour activity.
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Nevertheless, in this study, three different shear retention factor models have been
incorporated into the program. These shear retention models are presented in Figure

(4.15). and are given by:

g =G'/C (4.21)
B =0.4.G/(e/et") (4.22)
For e<et'<l g=1.0

For 1<e<et'¢B3  B=F1-P4[ (1-283)+2B3(e/et')-(e/et’ )2 ]

where

B4 = (B1-B2)/(1-B3)2 and 3B/3e = 0 at e/et' = (3

For e>et'>B3€t B=B2 (4.23)
where et'= ft'/Ec, ft is the uniaxial tensile strength of concrete and Ec is Young's
modulus of concrete and e is the current strain at a particular load level normal to

the crack.

The @1, (B2, and (3 are the shear retention factor parameters defining the shape of
the lawlll], #1 represents the sudden loss of stiffness at the crack formation; G2
represents a reserve of shear stiffness due to dowel action of any steel, (3
represents the rate of decay of stiffness as the crack widens and the crack surface
deteriorates. It is difficult, experimentally, to obtain values for (1, (2 and (3,
however, the values suggested by Mohamed[8] have been used in the program. From
a study on deep beams, it was concluded that the value of (1 could range from 0.4

to 0.5, the value of $2 a could be 0.2 and for ¢t.53 a value of 0.003 to 0.0035.

4.7.2 Tension stiffening

Tension stiffening is a method of retaining some stress when a crack occurs. This
phenomenon was first introduced into finite element analysis by Scanlon and
Murray[17] who assumed that when concrete reaches its ultimate strength in tension,

a primary crack will form, but that the cracked concrete will carry some tensile
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stresses perpendicular to the crack direction. Since then, this method has been used
by many researchers, who have shown that it can have a significant effect on load

deflection behaviour of a structure.

Many épproaches have been tried by many researchers for approximating tension
stiffening, e.g a descending branch beyond the cracking point and the use of coarse
tolerancesl6] etc. Currently, the descending branch approach is most commonly used
and that of Al— Manaseer and Phillips[ls] was used in this study. The model is

shown in Figure (4.17) and assumes that:

For e/et'(1l Ef = E (4.24)

For e/et')1¢a2 o = [ol.ft(a2-(e/et')) }/(a2-1)

ET = O'T/G (4.25)
For e¢/etyo2 c =0
ET =0 (4.26)

The value of Ev is evaluated from the above equation (4.25) at any iteration during
the loading process and is used in the material property matrix [D ]* depending on

whether the crack is caused by principal stress o1 or ¢2.

ol and o2 are difficult to select in practice because of the lack of experimental
data. An increasingly accepied trend is that they should be related to fracture energy
of the concrete, Gp, which is associated with strain softening behaviour of cracking
concrete. This is also reduces the dependency of the model on element size. It can
be done by relating fracture energy of an opening crack to a characteristic length Ic
of the crack which is in turn related to the volume represented by sampling
point[ls]. Thus, the relationship given by equation (4.25) can be presented in

fracture energy form as:

Gp = 0.5cla2ftet (4.27)
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from which ol and o2 can be evaluated. Al— Manaseer and Phillips[ls] suggested a
first approximation for Ic as Vv1/3 where V is the volume of concrete represented by
the sampling point. For a normal concrete Gg varies from 50 to 200N/m. However,
the concept of fracture energy is only applicable to a single crack in plain concrete
and therefore it does not account for tension stiffening effects between cracks, nor
the presence of reinforcement, nor the fact that a sampling point represents the

overall effect of a number of cracks.

Indeed it is difficult in practice to select appropriate values of ol and o2, because
there are no specifically accepted values for ol and o2; studies, completed by
various researchers, have shown that the values depend on the type of structure and
the type of failure experienced, for example in flexural failure these factors have a
greater influence. However, the use of tension stiffening appear to offer a reduction

in computational effort and stabilizes the solution.

4.8 Constitutive relations

The material property matrix for uncracked isotropic concrete in the plane stress
situation was given in the previous chapter. The incremental form in global

directions is given by the relationship, for plane stress

agx 1 v 0 AaExX
E
aTxy 0 0 G/E(1- »2) ayxy
and a0z = -»/E(acx+acgy) (4.29)

where E, » and G may be tangential values according to the compressive
constitutive relationships.
Thus o{c} = [Dr] 2{€} (4.30)

where [Dy] 1is the tangential elasticity matrix.



Once the crack has occurred, the form of the elasticity matrix is modified according
to the given tension stiffening law and preserved. The shear term is retained to take
account of shear transfer. The constitutive relationship in crack directions are then
given by

for plane stress

aon* E1q 0 0 aen¥
agt*p = 0 Eto O aet* : (4.31)
ar® 0 0 BG il
and aez* =- y/E(act¥*) (4.32)
Thus a{c}* = [DpJ* a{e}* (4.33)

where [DT ]* is the tangent elasticity matrix in the crack direction, E-is the
)
reduced modulus of elasticity due to the crack and B is the shear retention factor,

detail is discussed in section 4.7.

In plane stress, the values of the normal strain ez* are affected when a crack
occurs, therefore, after crack formation the normal strains are adjusted to.
€z* = €z + v/E.on (4.34)

where on is the stress across the crack prior to formation

When using [DT ]* for the new stiffness calculations, it is essential, for numerical
reasons, to avoid zero values on the diagonal terms, and so these are set to
comparatively small positive values if no tension stiffening is in use, causing the
stiffness normal to the cracked plane to effectively vanish. The value of the diagonal
terms will be determined from the descending branch of the uniaxial stress— strain

curve if tension stiffening is used.

As [Dr ]* is constructed in a local co— ordinate system coinciding with the angle of

crack, it is necessary to transform it back into the global co— ordinate system for
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stiffness calculations.

The constitutive law in the global co— ordinate system is given by equation 4.20.
a{0) = [Dr] (e} (4.35)

and in local crack directions by equation
a{0)* = [DrT* a{e)* (4.36)

The two sets of strains are related by transformation rules as follows (where oc is

defined in Figure (4.18)).

aex® cosZac sin2ac sinoc.cosoc aex

aey* 1= sinac cos2ac -sinac.cosac acey

A‘yxy* -2sinac.cosac  2sinac.cooc (cosZac-sin2ac) ayxy
(4.37)

where A'yxy*, ayxy are engineering shear strains
i.e a{e}* = [T] 2{€) (4.38)
Assuming that work done must be independent of the co— ordinate system, then
a{ e} Ta{o}* = a{e}T 2(0) (4.39)

Substituting equation (4.35), (4.36) and (4.38) into (4.39)

it follows thawm

[Dr] = [T]F [Dr [T} (4.40)

Calculation of angle of crack

The method of solution adapted in this model allows more that one crack to occur
during the same increment. Also the calculated stress which is used to check against
the tensile strength criteria could be well in excess of the tensile strength itself.
Thus, the resulting angle of crack could be significantly different from that if the
sufficient incremental quantities had been added, a discrepancy which might increase
for larger increments. In order to minimise the effect of increment size, a more

correct angle is calculated[4].
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For maximum stress criterion, the calculation of the angle of crack is given by

1 2(txy + orxy'')
ac = — tan-1 (4.41)
(ox+oox'')-(oy+acy'")
where
a{o}'" = F. af0) (4.42)

are the proportion of incremental stresses sufficient to cause cracking, {0} are the

previous total stresses, and

F= -8 +2;caé ~ Lac. (4.43)
a = (ayxy? - 4.a0%x.s0y) (&4.44)
B = 2 {yxyaxy+2(ft-oy)aorx+2(ft-ox)agy) (4.45)
N = {yxy?- 4(ft-ox)(ft-ay)) (4.46)

4.9 Concrete constitutive laws in compression zone

There have been various proposed concrete constitutive models[1,2:4], In this study a
compression model is used which is based on deviatoric and hydrostatic components
of stress and strain. The examination of the work done by Kupfer et all12] and
Weigler and Beckerl18] and Richart et all19] showed that an approximately unique
relationship exists between hydrostatic stress om and volumetric eo strain, and
between deviatoric stress and strain until close to ultimate conditions. Thus the
deformational response can be simulated incrementally by assuming the tangent bulk
modulus, K, and tangent shear modulus, G, to be functions of first and second

stress invariants Iy and J, respectively.

Kt = f1(17)

Cr = £2(3p) (4.47)

This implies that concrete remains isotropic under multiaxial compressive stress.

Plotting K, against, I, and, G, against, .121/2, demonstrated that the curves were
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clustered fairly close together. Finally, a particular relationship was obtained between
the ratio of Jp1/2 to fc’, and the ratio of Gt to Go forthe case where Ko was
constant which was satisfactory except for the weakest mix. This relationship is

shown in Figure (4.19).

In order to obtain the distortional relationships, a uniaxial stress—strain curve was

used and K was kept constant

ToCct = /5/3 ol .
yoct = J2/3 (3¢l - o1/3K) (4.48)

This procedure was assumed to give sufficient approximation for many practical

purposes.

In the implementation of the law it is required that at the beginning of a load
increment, values of KT and G are evaluated from a knowledge of I; and J21/2.
Values of E1 and »T are then obtained by using the following expressions

ET = (9KT.Gy)/(3KT+Gp)

v = (3Kp-207)/(6K7+267) (4.49)
from which the current tangential elasticity matrix [Dyp] is evaluated.
The estimation of incremental stress will be found by

a {0} = (D} & {€} (4.50)
Therefore, the total stress will be calculated by adding the incremental stress to the
previous level of stress.

{0} = {o)o + 2 {0} (4.51)
This procedure alone will lead to divergence of the calculated stresses and strains
from specified law and a corrective procedure is necessary. Using the updated values
of {0}, temporary values of Gt and Ky are evaluated. Final values of Gt and Kt

are then calculated using the weighted mean of the original values and the newly

calculated ones, i.e



Gij+1 = Gj+ ¢' (Go - Gp)

Ki+1 = Kj+ ¢' (Ko - K7) ‘ (4.52)
where Ko, Go are the initial values at the start of the increments, K; and Gj are
the intermediate values and Gj4+1 and K1 are the final values. ~ (o} is
recalculated by means of Gj; 1 and K41, from which new values of total stress

can be obtained. A value of c¢'=0.6 has proved satisfactory.

4.10 Compressive failure theories

There have been a number of compressive failure theories proposed and used by
various investigators over recent years. It appears that all theories deviate from each
other and there is not one single failure theory which seems applicable to all cases.
In the last decade, however, a great deal has been learned, and studies have been

made towards developing a consistent failure theory for concrete[1,3],

In this study the octahedral shearing stress theory was used. Studies carried out by
Phillips[4] showed that satisfactory agreement could be obtained between experimental
and theoretical results, for practical applications, where compressive failure did not

significantly control the response of the structure.

The Octahedral shear stress theory is based on the assumption that octahedral
shearing stress is a function of the octahedral normal stress1,2,4] at failure, i.e
rocty f(ooct) (4.53)
and satisfactory fits have been obtained by assuming a linear relationship. Assuming
the law to be applicable only in pure compressive zones, then the linear form of
equation (4.53) is written as
roct+ nooct+ ¢ » 0, ooct<-fc'/3 (4.54)
The values of n and c can be obtained from plots of roct against goct, available

from test data. Alternatively, n and ¢ can be obtained by substituting known
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compressive strength data in equation (4.5%). From Figure (4.20), for uniaxial

compressive tests.

ol =02 =0, 03 = -fc', fc'>0 (4.55)
for biaxial compressive tests

ol =0 , 02 = ¢3 = -mfc', m>0 (4.56)
which give

Toct+ /2(m-1)ooct/(2m-1)-/2.m.fc/(2m-1)) >0, coct<-fc'/3 (4.57)
In principal stress space this equation represents a circular cone with axis
0l=02=03 and truncated at the plane ol+ g2+ ¢3=—fc' as shown in Figure (4.21).
The cone intersects the biaxial plane to give an ellipse, which passes through the

uniaxial and equal biaxial compressive strength points, as shown in Figure (4.22). It

is seen that the ellipse is a reasonable fit to the actual failure envelope.

The major objections to the use of this theory are that it does not take into
account large changes in the third principal stress, which can have a significant
influence on the mode of failure, and that the relationships are different for biaxial
stress states and triaxial compression stress states. However, this theory is based on
the concept of a type of shear being exceeded, and can be thought of as a natural
extension of Mohr's theory[1,2,4]. However it gives a better biaxial approximation.
In addition, the octahedral quantities are related to the stress invariants, and thus
the criterion is a particular case of the general invariant law

f(11,19,13) > O (4.58)
4.11 Steel— reinforcement constitutive laws
The steel behaviour is modelled by a uniaxial, bilinear stress— strain curve with strain
hardening effects and elastic unloading and reloading as shown in Figure (4.23).
Thus,
(i) Elastic— perfect plastic behaviour is given by the hardening angle Ew=0

(ii) When the magnitude of stress in the steel is less than the yield stress, the stress
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is given by:

fs= Es.e¢i (4.59)
(iif) When the steel stress reachs the yield, stress is given by.

fs= fy +(Ew/Es(fs'-fy)) (4.60)
where Es is Young's modulus of steel, Ew is the Work hardening angle of steel, fy
is the yield stress of steel, fs' is the stress value if no yielding is assumed fy, and
fs is the uniaxial stress of steel at strain es
(iv) For stiffness calculations, Es is used when steel has not yielded or is unloading

or by Ew if the steel is on the failure surface.
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Figure (4.13) Discrete cracking model.
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CHAPTER FIVE

DIRECT DESIGN METHODOLOGY FOR A CONTINUUM STRUCTURE

5.1 Introduction

In the United Kingdom, the design of reinforced concrete is largely based on the
British Standards and BS Codes of Practice. Three basic methods are at present
permitted, namely limit—state analysis, the load— factor method and elastic theory.
Both the elastic theory and the load— factor method are permitted by CP 114[1]); aul
design to BSCP 8110[2] is undertaken on the basis of limit— state principles. All
three methods employ certain basic common assumptions, e.g. that the distribution of
strain across a normal beam section is linear and the strength of concrete in tension
is neglected. Apart from assumptions of this nature, the methods differ traditionally

from each other.

In order to choose a suitable design method for reinforced concrete structures, the
following points must be considered:—

(a) The designed structure or part of it should not become unfit for the use for
which it was designed during its intended life span. This is defined when it reaches
a limit state beyond which it ceases to satisfy the function and conditions for its
existence. Consequently, the structure should be designed to safely resist all loads
likely to occur during construction and use, limit deformations and also have
adequate durability.

(b) The designed structure must perform adequately all the intended functions in
serviceability (i.e under normal working conditions).

(¢) The designed structure should possess an appropriate factor of safety against
collapse.

(d) The design procedure should be capable of handling any geometry and boundary

conditions of the structure without any difficulty.

This chapter describes the proposed direct design methods for the ultimate limit state
design of deep beams in general, and for two span continuous transfer girders in

particular, using either orthogonal or skew reinforcement.
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5.2 Limit state design
The current recommendations in British Practice for reinforced concrete are based on
limit state design and are given in British Code of Practice BSCP 8110[2], There are

various limit states, but the two basic categories are summarized as follows:—

(a) Ultimate limit state : This state is primarly associated with the maximum load
carrying capacity of the structure. Collapse of a structure, as a whole or as a part,
may arise from the rupture of one or more critical sections, from buckling due to
elastic or plastic instability (including the effects of sway), or from the loss of static
equilibrium (e.g due to the transformation into a mechanism or due to loss of

stability by overall tilting)[3.4].

(b) Serviceability limit state: This limit state requires that the structure should not

suffer from excessive deflections, cracking or vibration under service loads.

The wusual practice in the design of reinforced concrete structure is to design a

structure for the ultimate limit state and check for the serviceability limit state.

5.3 Application of limit state design

During the last two decades, studies of plasticity in reinforced concrete have grown
extensively., Limit analysis has been used to predict both upper and lower bound
capacities of slabs, panels, beams etc under bending, shear, torsion and combined
actions[3:0,7,8]. These techniques are based on the theorems of plasticity which
demand that at collapse two of three conditions, i.e the equilibrium conditions, the
yield criterion or the mechanism condition must be satisfied. Also it is required that
the material should possess sufficient ductility so that areas which yield before
collapse can deform plastically without loss of strength until ultimate conditions are
reached. However, reinforced concrete structures generally exhibit limited plastic
behaviour. Consequently, there is always a danger of unloading taking place in some

parts of the structure whilst others are undergoing plastic deformation. One way of
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overcoming this is to reduce ductility demands and to ensure a minimum

redistribution of stress such that most of the critical sections of the structure yield

simultaneously.

In the lower bound methods for reinforced concrete, the applied stresses are less, or
equal to, the combined internal resistance offered by the concrete and steel. In
upper bound systems, sufficient hinges or yield zones are formed in the structure
which transform it into a mechanism. Upper bound methods are unsafe for design if
the wrong mechanism is assumed, but are generally best suited for analysing an
existing design. On the other hand, lower bound methods are safe and more suitable

for design, but may be uneconomical.

5.4 Proposed direct design method

Recent computer developments have diverted the attention from design of reinforced
concrete structures using conventional design methods in conjunction with code
prescribed rules to more highly sophisticated computer aided design (CAD)
procedures, using advanced analytical techniques such as the finite element method in
conjunction with interactive graphic facilities. These developments have emphasized a
need for the design procedures to be well supported by experimental verification
both at service and ultimate behaviour. Equal emphasis is also required on
automating the design procedures, so that a structure can be designed and redesigned
with minimum intervention by the designer, its details automatically produced in a

final drawing form.

Direct design is one of the more natural design— oriented procedures for the design
of reinforcement because of the way it combines analysis and design into a single
continuous operation. It uses a lower bound limit state approach in which a stress
field in equilibrium with the ultimate load is used in conjunction with an appropriate
yield criterion. The resultant design equations are based on the minimization of steel
and provides reinforcement which theoretically satisfies equilibrium and yield at each

point and causes simultaneous yielding throughout the structure at ultimate load.
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Thus, this technique satisfies theoretically all four basic conditions of the theory of

plasticity, since equilibrium, yield criterion, mechanism and ductility.

5.4.1 Equilibrium criterion

In classical approaches, the distribution of forces in reinforced concrete structures are
found by elastic theory and the internal stresses are predicted by elastic theory until
cracks are formed. This technique uses elastic stress field, obtained from a
linear— elastic finite element analysis. In fact, any other stress field in equilibrium
with the applied loads could be used. However, if the stress field departs
significantly from linear— elastic stress field, then it is possible that the behaviour of

the structure may not be satisfactory at working loads.

The elastic stress field for a structure is conveniently obtained by a linear— elastic
finite element analysis of the unreinforced concrete structure, using the uncracked
elastic material properties of concrete. The basic principals of finite element analysis
and its modelling is presented in Chapter Three. This, incidentically, satisfies not

only equilibrium but also compatability conditions.

5.4.2 Yield criterion

In reinforced concrete the resistance provided by concrete and steel at each point
must be equal to, or greater than, the applied stresses. For reinforced concrete
continuous structures, the resistance can vary quite widely by using different
reinforcement arrangements. In the direct design technique, the combined resistance
of steel and concrete at each point is matched as closely and as practically as
possible with the applied stresses. Thus, for a particular ultimate load, the theoretical
objective is for all parts of the structure to yield simultaneously. This will be

discussed in detail in section (5.5).

5.4.3 Mechanism
The resistance offered by concrete and steel to take applied stresses at ultimate loads

can be obtained by satisfying the conditions of equilibrium and yield. At the ultimate
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stage, with minimum possible redistribution all the sections will yield simultaneously,

thus, converting structure into a mechnasim.

5.4.4 Ductility
In classical plasticity theory, it is assumed that the material possesses unlimited
ductility. This means that the early yielded regions in the structure will continue to

deform plastically without any reduction in their strength.

For reinforced concrete this assumption must be treated with caution, since concrete
is not a perfectly plastic material. However, this requirement can be sidestepped if
the difference between the load at first yielding and the ultimate load is as small as
possible, so that the regions which yield early can deform at constant stress before
strain softening behaviour of the concrete has the opportunity to develop. If the
ideal situation of simultaneous yielding occurs at all points, then this requirement is
automatically satisfied. In practice, it is impossible to achieve this ideal situation,
since there are constraints on bar sizes, bar spacing and steel provided for
non— structural reasons etc. Nevertheless this departure from the requirement of
simultaneous yielding is unlikely to be excessive and therefore the load range
between first yielding and the final collapse should be sufficient to avoid violating

the ductility requirements.

Although it seems to be a bit paradoxical in first instance, that elastic stress field
should be used for ultimate limit state, but it is not expected that at ultimate load,
the stress should necessarily be similar to the elastic stress. However, the strength
determined by yield criterion and equilibrium at each point is tailored to elastic
stress at that point, then minimum redistribution of stress takes place allowing ideally
simultaneous yielding at all the points of the structure. In addition to that, since
there is minimum redistribution of the stresses, therefore a further consequence of
simultaneous yielding is that excessive deformation and cracking are unlikely at
working loads, especially when taken in conjunction with the fact that the initial

stress field is linear— elastic. So although the method gives no information about
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behaviour at serviceability loads, there is an intrinsic safeguard against undesirable

serviceability behaviour.

3.5 Direct design procedure equations

A number of design procedures have been developed for determining optimum
arrangements of reinforcement in a concrete structure subjected to certain loading
types[ll_lsl. The yield criterion for in— plane actions using known orthogonal
isotropic or orthotropic reinforcement which can carry tension and is placed
symmeterically with respect to the middle surface was originally presented by
Nielsenl11,12], He assumed that the provision of concrete of sufficient strength can
preclude the wuse of compression reinforcement if both in— plane forces are
compression. Later, Subedill13] presented a graphical approach to design compression
reinforcement when the compression forces in the structure are greater than the
allowable compressive strength of concrete. Also Morley[14v15] presented design
equations for skew reinforcement and highlighted its suitability on economical
grounds. It was Clark[16] who finally extended the idea of Nielsen, Subedi and
Morley by using Nielsen's yield criterion. He presented nine different cases for
orthogonal and skew reinforcement. The designed reinforcement can be either tension

or compression reinforcement for a given in— plane forces triad.

In order to establish the design equations, the following assumptions are adopted:

(i) A typical element cut from a deep beam shows the sign convention for in— plane
direct and shear forces per unit length as shown in Figure (5.1). All the tensile
forces are taken to be positive and compressive forces are considered negative.

(ii) The reinforcement is placed symmetrically about the middle surface of the
section, as shown in Figure (5.2), and is in two non orthogonal directions, as shown
in Figure (5.3). It only carries uniaxial stress in the original bar directions so
kinking and dowel actions are neglected.

(i) The reinforcement exhibits perfect elastic— plastic behaviour with a yield stress

of fs in tension and fs' in compression as shown in Figure (5.4). The bar spacing is

>
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small in comparison to the overall structure dimensions so that reinforcement can be
considered in terms of area per unit length rather than individual bars.

(iv) Concrete has zero tensile strength, exhibits the square yield criterion shown in
Figure (5.5), and is perfectly plastic.

(v) Instability failure and bond failure are assumed to be prevented by proper

detailing and choice of section.

5.5.1 Yield criterion derivation

In Figure (5.6—b), the principal stresses in the concrete are ¢q and ¢, with the
major principal stress oq making an angle ¢ to the x—axis. In Figure (5.6—c) the
original reinforcement directions coincide with the x and y directions. Let Ax and
Ay be the areas per unit lemgth and fx and fy the associated yield stresses. Thus,

the combined resistance of steel and concrete in the coordinate directions is given by

0x = 01.cos26 + 09.sin%6 + ox* 5.1
oy = 01.sin26 + 0y.cos?6 + oy* 5.2
TXy= ~01sinf.cosf + o9sinf.cosé 5.3

where ox*= pxfx and oy"= pyfy are the steel resistances. The reinforcement ratios in

x and y directions are given by px= Ax/t and py= Ay/t respectively. Now if oq is

tensile, the concrete will crack and gy = 0. Hence, equations (5.1) to (5.3) become
ox = 09.sin26 + ox* 5.4
oy=02.coszf)+oy* 5.5
TXy= 09.sinf.cosf 5.6

Now eliminating ¢, and 6 from these equations we obtain

(ox* - ox).(oy* -oy) - 7xy2= 0 5.7
This is the vyield criterion for an in— plane forces triad derived origionally by
Nielson[11,12], He also assumed that concrete had sufficient compressive strength so
that there was no need to provide compression reinforcement, he developed design
equations for four cases of reinforcement design where either one or both stresses

were tensile.

However Clarkl16] later extended these four cases to nine cases to both orthogonal
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and skew reinforcement and compression reinforcement also. Table 5.1 shows the
nine possible combinations of reinforcement. It can be seen that a direct solution is
available for all cases except 1 and 4 where four unknowns have to be determined
from three equations of equilibrium. This can be solved by minimizing the total
reinforcement in both directions of the section. The major principal stress ¢1=0
when tension reinforcement is required, and op=fc' when compression reinforcement
is provided. The derivation of these nine different cases for orthogonal reinforcement

design is now explained.

3.5.2 Derivation of design equations for orthogonal reinforcement

CASE No. 1:

Both x and y direct applied stresses are tensile so that tension reinforcement will be
required in both directions to carry tensile stress i.e Ax=0.0 and Ay=0.0. He also
assumed that fx=fy=fs, and 0> g>fc', then the number of unknowns are greater
than the number of available equations and cannot be solved directly. In order to
obtain a solution, the total steel voulme (Ax+ Ay) must be minimised.

From equations (5.1) to (5.3) then

0x=02.sin28+0x* 5.8
gy = 02.00320 + oy* 5.9
TXy= 09.sinf.cosé 5.10

Noting that ox*+oy" is equal to (Ax+ Ay)fs/t and eliminating o5 from equation
(5.8) and (5.9) using equation (5.10) then
(ox* + oy*) = ox + gy + 7xy (tanf + (1/tanf)) 5.11
Using the minimization condition:
(d.(ox* + oy*))/(d.(tand)) = 0
Then
tan26 = 1 and tanf = %1
Thus from equation (5.10)
TXYy = *09/2
Now because 09 < 0, g9 = -2]7xyl|

Now eliminating oo and 6 from equations (5.8) and (5.9) then
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ox*= ox + I7xyl

or

i.e px =(1/fs)[0x + {7xyl ] 5.12

and similarly;

oy =(1/fsxoy + lrxyl ] 5.13

Nielsenl11,12] suggested that if oo>fc' then the section should be redesigned. Note

also for gp>fc' then —2|rxy|>fc' i.e |rxy|<fc'/2.

CASE No. 2

When the direct applied stress in y direction is tensile and direct applied stress in x
direction is compressive, but the compressive stress is smaller than the uniaxial
compressive strength of concrete. Therefore only tension reinforcement is required in
y direction to carry tensile stresses i.e Ay=0.0 and Ax=0.0. This also assumes
fy=_fs, 09=0.0 and 0> gp>fc'.

Thus from equations (5.1) to (5.3) we obtain

ox = oz.sinza 5.14
oy = 09.cos26 + (Ay.fy)/t 5.15
TXy= 09.sinf.cosf 5.16

Now eliminating o9 and ¢ then

oy*~ oy - rxy2/ox
i.e py =(1/f§[ay - rxy"/ox] 5.17
CASE No. 3

When the direct applied stress in x direction is tensile and direct applied stress in y
direction is compressive, but the compressive stress is smaller than the uniaxial
compressive strength of concrete. Therefore, only tension reinforcement is required in
x direction to carry tensile stress i.e Ax#0.0 and Ay=0.0. This also assumes fx=fs,
01=0.0 and 0> gp>fc'.

Thus from equations (5.1) to (5.3) we obtain

ox = gy.sin26 + ox* 5.18



oy = 02.00520 5.19
TXy= 09.sinf.cosf 5.20

Now eliminating opand ¢ then

ox¥= gx - (rxy/oy)
i.e px =(/fYox - (rxy/oy) ] 5.21
CASE No. 4:

Both applied direct stresses are compressive in x and y directions and are higher
than the wuniaxial compressive strength of concrete, fc', therefore compression
reinforcement is required in both directions to carry the compressive stresses.
Assuming that fx=fy=fs', gp=fc', then the unknown equations are greater than the
number of available equations and cannnot be solved directly. In order to obtain a
solution, the total steel volume (Ax+ Ay) must be minimized.

Thus from equations (5.1) to (5.3) we obtain

ox = 01.c0320 + fc'.sin20 + ox* 5.22
oy = 01.sin2¢ + fc'.cos20 + oy* 5.23
TXy= -01.sinf.cosf + fc'.sinf.cosé 5.24

Adding equations (5.22) to (5.23) and using (5.24) then
((rx* +“/0y*) = gx + 0y + (7Xy/sinf.cos#®) 5.25
Minimization with respect to tané then
(d.(ox* + oy*))/(d.(tang)) =0
Therefore;
tan2¢ = 1 and tanf = %l
Thus, from equation (5.24)
g1 = 2 |rxyl + fe!'
Now eliminating ¢q and ¢ from equations (5.22) and (5.23) we obtain
ox¥= oxf - |rxyl
i.e px =(/fs)oxf - lrxyl] 5.26
and similarly;
py =(1/fs)oyf - lrxyl] 5.27

where oxf= gx—fc' and oyf= oy—fc'

1356
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CASE No. 5§

Both direct applied stresses in x and y directions are compressive, but the
compressive stress in the x direction is smaller than the uniaxial compressive strength
of concrete, while in the y direction the compressive stress is higher. Therefore,
only compressive reinforcement is required in the y direction and there is no need
for reinforcement in the x direction. Assuming Ax=0, Ay=0.0, op=fc' and fy=fs'.

Thus, from equation (5.1) to (5.3), we obtain

ox = 01.cos26 + fc'.sin20 5.28
gy = ol.sin26 + fc'.cos20 + oy* 5.29
TXy= -0]1.sinf.cos@¢ + fc'.sinf.cosé 5.30

Adding equation (5.28) and (5.28) and using (5.30) them
tanf = 7xy/oxf

knowing the value of tané from equation (5.28) and inserting in (5.30), we obtain
o1= Ox- Txy2/oxf

Now eliminating the ¢y and 6 from equation (5.29) we obtain
oy* = oyf - (rxy?/oxf)

i.e px =(1/fs) oyf- (rxy2/oxf) ] 5.31

CASE No. 6

Both the direct applied stresses are compressive in x and y directions, but the
compressive stress in the x direction is higher than the uniaxial compressive strength
of concrete, while the compressive stress in the y direction is smaller. In such a
case, compressive reinforcement is required in the x direction only and there is no
need for reinforcement in the y direction i.e Ay=0, o9=fc' and fx=fs".

Thus from equation (5.1) to (5.3), we obtain

ox = 01.c0520 + fc'.sin26 + ox* 5.32
ay = Gl.sinze + fc'.cos26 5.33
TXy= -0] .sinf.cos6é + fc'.sinf.cosd 5.34

Adding equation (5.32) and (5.33) and using (5.34) then
tanf = oyf/rxy

Knowing the value of tan¢ and usingin equations (5.33) and (5.34) then
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Thus from equation (5.1) to (5.3) we obtain

ox = fc'.sin29 + ox* 5.41
oy = fc'.cos26 + oy* 5.42
TXy= fc'.cosf.siné 5.43

Adding equations (5.41) and (5.42) and using (5.43) then

tand - -(2rxy/fe' (1-B)

where § = /1-(2rxy/fc')2

Now eliminating 6 from equation (5.41) and (5.42) we obtain

ox* = ox - fe' /2(14B)
i.e px =(1/fs) [ox - fc'/2[1+8]] 5.44
and similarly;
py =(/fs')[oy - fc'/2[1-8]] 5.45
CASE No. 9:

Nielsen[11,12] and Clark[16] have assumed that when the both principal stresses are
compressive i.e, o,¢fc' and op¢fc,, there is no need for reinforcement ( i.e Ax=0.0
and Ay=0.0). However, it was suggested to know the principal stresses in the
concrete. Therefore, in this case the derivation regarding o1, o9 and 6@ is presented.

Thus from equations (5.1) to (5.3) we obtain.

oxX = 01.00520 + az.sinze 5.46
gy = al.sinze + 02.c0520 5.47
7Xy= (-01 + 03).sinf.cosé 5.48

Adding equations (5.46) and (5.47) together we get:
oxX + 0y = 01 + 09
Now multiplying equations (5.46) by cos2¢ and (5.47) by sin20 and subtracting (5.47)

from (5.46) and using (5.48) then

tand = ((ox - oy) - J(ox - oy)2 + 4.7rxy2)/2.7xy
Now eliminating 6 from equations (5.46) and (5.47) and solving simulaneously, we

obtain

((ox + oy) + / (ox -ay)2+ 4.rxy2)/2 5.49

71

oy = ((ox + ay) - / (ox -oy) %+ 4.7xy2)/2 5.50



o1 = oy + (rxy2/oyf)

Now eliminating o1 and 6 from equation (5.32) we obtain

ox* = oxf - (Txyz/axf)
i.e px =(1/fsp[6xf - (Txyz/oxy)] 5.35
CASE No. 7

When the direct applied stress in the x direction is tensile, and the direct applied
stress in y direction is compressive and higher than the uniaxial compressive strength
of concrete. In this situation, tensile reinforcement is required in x direction to take
tension stress and compression reinforcement is required in y direction to take
compressive stress. Assuming Ax#0.0 and Ayx0/0,. 01=0, op=fc', fx=fs, and
fy=fs'.

Thus from equations (5.1) to (5.3), we obtain

ox = fc'.sin20 + ox*¥ 5.36
oy = fc'.cos26 + ay* ' 5.37
7xy= fc'.cosf.sind 5.38

Adding equation (5.36) and (5.37) and using (5.38) then

tanf = -(27xy/fc' (1+08)

where 8 = ./1-(27xy/fc‘)2
Now eliminating 6 from equations (5.36) and (5.37) ) we obtain
ox* = ox - fc'/2(1-B)
i.e px =(1/fs)[ox - fc'/2[1-8]] 5.39
and similarly;

oy =Q/fs)[oy - fc'/2[1+8]] 5.40

CASE No. 8:

When the direct applied stress in x direction is compressive and higher than the
uniaxial compressive strength of concrete, while direct applied stress in y direction is
tensile. Therefore, compression reinforcement is required in x direction to take
compressive stress and tensile reinforcement is required in the y direction to take

tensile stress. assuming o1=0, Ax#0, Ay#0, fx=fs', fy=fs and op=fc".
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The above nine cases of reinforcement designs for orthogonal reinforcement are in
graphically form in Figure (5.7). Table 5.2 summarizes the design equations for
calculating steel ratios, principal concrete stresses and 6 for each case. The following
symbols are introduced in this Table.

oxf

ox - fc!

oyf = oy - fc!

B =/ (1-(27rxy/fc')2

5.5.3 Derivation of boundary curves for orthogonal reinforcement.

It is also necessary to establish a means of determining which set of equations
should be used for a particular stress triad. This can be achieved by deriving the
surfaces in stress space which form boundaries to regions pertaining to each case.
Graphs of the boundaries have been plotted in Figure (5.8), using a reference frame

where the vertical axis is oy/|7xy| and horizontal axis is ox/|7xy].

All these boundaries curves were derived by comparing the design equations of the
two particular cases for a border line which separates them, for example, curve 4 is
separating case 6 and 4, so the derivation will be:

1/fs' (oxf-|7xyl) = 1/fs'(qxf—(1xy2/0yf))

lrxyl = (Txyz/ayf)
lrxyl = rxy2[ (1/oy)-(1/fc") ]
oy/lrxyl = [ (fc'/lTxy|+1] 5.51

In this way all the boundary curve equations were derived and are given in Table

5.3 to 5.4.

In similar way, the design reinforcement equations for skew reinforcement can be
derived. The summary of these design equations is given in Table 5.5. Figure (5.9)
to (5.12) shows the graphs for skew reinforcement. Table 5.6 to 5.7 summarize the

equations for boundary curves.

v
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3.6 Design of transfer girders

5.6.1 Application of design program

In order to obtain an admissible stress field, a linear— elastic finite element model
with isoparametric parabolic elements was developed, this model has been described
in more detail in Chapter Three. The stress field was obtained for the the design
ultimate load using elastic material data for the unreinforced concrete beam. The
design equations for orthogonal and skew reinforcement of Clark[16] were codified
and introduced into the program. Steel ratios were automatically calculated in two
non— orthogonal directions. Before carrying out the final analysis, which was used for
the designing of the reinforcement, a mesh convergence study was carried out to
ascertain the most effective discretization. While designing the test girders in this

study, a mesh convergence study was carried out each time when any change
Y

b
occured in the geometry of the girders.

5.6.2 Selection of reinforcing bars

Numerical analysis gives steel ratios which vary from point to point and from
element to element. In order to simplify this, all the steel ratios for each element
were averaged in each direction. Even doing this, steel ratios were varying from
element to element continuously throughout the structure, since the test girders were
small (i.e. (2.0x0.9x0.1m), (3.0x0.9x0.1m), (3.0x2.0x0.1m)) in comparison to usual
practical dimensions, there was little possibility of varying the steel area (by
curtailing the steel bars) to match the theoretical steel requirements. There are two

possibilities to overcome these shortcomings:—

(a) To choose the maximum steel ratios at each level and place the required steel

bar through this level.

(b) To take the average of all steel ratios at each level in both directions and

placing the steel bars accordingly.

In the comparison between the two methods it was found that, method (a) appeared

to be uneconomical but it provided a safe design, since it used higher steel areas in
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some regions of the structure than the required theoretical steel areas. While the
averaging procedure though more economical, might give an unsafe design, since
some areas of the structure would be under— reinforced. At this stage a
comprehensive study of steel behaviour and concrete behaviour was again revised to
justify one of the above mentioned procedures. Finally, the average procedure with

some constraints imposed on its use as described below was adopted:

(i) When high tensile strength steel is used in the structure, and the structural
design is based on 0.2 percent of proof stress strength, by ignoring the
work— hardening effect of steel. It is seen that steel can carry 30% to 40% of the
ultimate strength after first yielding i.e the yield strength at 0.2% proof stress.

(i) When the contribution of dowel action, kinking of bars and aggregate
interlocking are ignored in the design process, since some researchers have found
that they contribute a significant shear force to the strength of deep beamsl2].

(iii) When the tensile strength of concrete is ignored in the design process.

(iv) When the variation between the maximum steel area in an element, at each
level, in both directions is not higher than 20% of the average value at each level.
When the difference between the maximum value of the steel area in an element
and the average at the same level is higher than 20%. In such situation, other
assumptions were made averaging the area over a certain length rather than the full
length. This criteria was employed in all the test girders except girder TRGRASI11

which was reinforced with exact required steel areas as much as practically possible.

Aditionally, there are some other constraints concerning the bar spacing, bond
anchorage and concrete cover, since all the codes of practicel1,2,23,24,25] in this
respect are not fully aware of the experimental results on a deep beam subject,
Some limitations are proposed following the various codes of practice and

experimental results on deep members.

(i) The diameter of the bar used in a deep member, in particular deep beams

should not be greater than one tenth of the thickness of the member.
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(ii) The concrete cover should be at least 15 mm to the main reinforcement in the

member.

(iii) The space between the two bars of a layer along the beam thickness should not
be less than 4 times the diameter of the bars.

(iv) The concrete cover to the bottom steel from the beam soffit should not be
greater than 40 mm.

(v) The spacing between two layers of steel bars along the beam depth should not
be less than 40mm, to allow concrete compaction between the bar layers.

(vi) The thickness of the beam should not be less than 100mm to provide adequate
side concrete cover and space for reinforcing bars.

(vii) The main reinforcement will be extended from one end of the beam to the
other without curtailing since there is a point of contraflexure. This is currently

recieving some attention from reaserches and codes of practice

A selection of transfer girder design is presented and described in this section. This
includes finite element mesh, required steel ratios in a tabular form, three
dimensional views of steel ratios, contours of steel ratios and the final reinforcement
calculations based on the averaging procedure from the steel ratio envelopes in both
directions for each girder. The selected design examples for girders TRGRASI,
TRGRAS4, TRGRAS7, TRGRAS9, TRGRAS10 and TRGRASI11 are given in Figures

(5.13) to (5.42).

All the girders were designed for orthogonal reinforcement except TRGRAS7, which
was designed with skew reinforcement; with the exception of reinforcement girder
TRGRAS1 shared similar variables with TRGRAS7. For the skew reinforcement five
different angles were studied i.e 5°, 10°, 15°, 20° and 25°. In comparison it was
found that angles 10° and 15° were the best choice, producing 9% and 8% less
volumetric reinforcement ratios compared to that orthogonal reinforcement. The
comparison of volumetric ratios by excluding one fifth from bottom and top
produced 11% reduction for 10° and 15% for 15°. Figure (5.43) shows the

reduction trend of percentage of volumetric ratio of steel versus the various skew
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angles. However, it was found that angles 10° and 15° were the most economical in

both main and shear reinforcement. For girder TRGRAS7 the reinforcement was

inclined at an angle of 15° to the x— axis.

The final details of reinforcement in the all transfer girders, which includes the

selected sample, are shown in Figures (5.44) to (5.54).

3.7 Design of support bearing

Various authors have reported that local failure due to point load is the most
common example of premature failure in deep beams. This is because, under the
point load, a considerable force is transmitted to the support directly through the
compression strut. Due to this phenomenon, a biaxial state of stress develops at the
joint of the support and the compression strut, and at the loading point and two
compression struts. The concentration of stresses may become higher than the
permissible allowable bearing stress at the contact area. As a result, all the Codes of
practice[1 12,23,24,25]  and guides have proposed a criteria for checking bearing

capacity.

In clause 5.2.5.4 of BSCP 8110[2], it states that the compressive stress in the
contact area should not normally exceed 0.4fcu under ultimate loads. Stresses in
excess of 0.8fcu of ultimate loads should only be used in laboratory conditions with

proper provision of reinforcement.

A short column design (e.g a steel cage at support and loading point) was employed
to ensure that there would be no premature failure due to bearing failure using
clause 3.3.3 in BSCP 8110[2], that is

N = 0.4.fcu.Ac + 0.67.Asc.fy 5.52
where N is the applied force (i.e for support it is the reaction of the applied load
and for the loading point it is the design load), fcu is the characteristic cube
strength of concrete, Ac is the area of concrete (i.e bearing area), Asc is the

required area of compression steel in the bearing area Ac and fy is the
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characteristic strength of the compression reinforcement.

In a continuous beam, the distribution of the reactions is chosen according to BSCP
8110[2] for continuous beams based on elastic theory. The area, Asc, of
reinforcement starts from the bearing plate and extends such that forces may be
transmitted from the bearing area into the inner concrete zone. The required
developed length can be calculated from the required anchorage length.

La = 0.18.fy.p/fba 5.53

where fba is the ultimate anchorage bond stress and ¢ is the diameter of the bar.

Additionally, links of minimum diameter size bars are also be provided to avoid

buckling of the load or support cage, causing premature failure.

It is reported in previous studies by Lin[17] and Memonl18] that at the bearing
point, bearing failure can also be caused by the effect of Poisson's ratio. Poisson's
ratio effects results in a lateral force of one sixth in magnitude of the vertical force
in the vicinity of the loading zone. In a real structure, sufficient concrete cover and
reinforcement should also be provided to prevent this. In these tests to avoid
congestion of reinforcement in the bearing area, the expansion force was resisted by
using external plates clamped to the beam. A beam with such plates is shown in

Figure (5.56).

5.8 Bond And Anchorage

Bond stress is the shear stress acting parallel to the reinforcement bars on the
interface between the bars and the concrete. It is directly related to the change of
stress in the reinforcement bars; there can be no bond stress unless the bar stress
changes and conversely there can be no change in bar stress without bond
stress[4’26]. When an effective bond stress exists, the strain in reinforcement, for

design purposes, may be assumed to be equal to that in the adjacent concrete.

Bond strength is a more serious problem when only plain reinforcing bars are used.
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Bars with a deformed surface provide an extra element of bond strength and safety.

However, the designer must be aware of the bond stress and anchorage that

critically effect the structural behaviour.

In this respect, clause 3.11.6.2, 3.11.6.7 and 8 of BSCP 8110[2] are followed. While
considering the tied—arch behaviour in deep beams, the main reinforcement, which
may reach its yield stress near the support due to the diagonal crack, should be
securely anchored. It is suggested that full positive anchorage should be provided
beyond the face of the support. There is some suggestion that bars should not be

bent up within a region of 1/8 to 1/5 of the beam depth from the centre of

support.

The local bond stress at a given section of a bar is the bond stress due to the rate
of change of steel stress at that location. In fact only longitudinal bars in tension
need to be checked for local bond stresses. The direct design technique assumes that
bond and anchorage are perfect, and consequently in these examples the bond was
assumed to be perfect. However, an additional anchorage was provided by using
180° hooks at the ends of the main bars. When these hooks were again fastened to
the steel cages at the supports, they provided an additional positive anchorage.

Hence bond stress does not necessarily have to be checked.
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TABLE 5.1

Summary of various possible nine different cases of reinforcement design.

o7

Case Reinforcement Known values Method of solution
description
1 Both tension fx=fy=fs, px#0, py=0, 01=0 Minimization of
(px+py)

No X

2 fy=fs, px=0, py#0, ¢l1=0 Direct solution
Y tension
X tension

3 fx=fs, px#0, py=0, 01=0 Direct solution
No Y

4 Both compression| fx=fy=fs', px#0, py#0, o2=fc' Minimization of

(px+py)

No X

5 fy=fs', px=0, py#0, o2=fc’ Direct solution
Y Compression
X compression

6 fx=fs', px#0, py=0, o2=fc' Direct solution
No y
X tension fx=fs, fy=fs', px#0, py=0

7 Direct solution
Y compression and o2=fc’
X compression fx=Ffs', fy=fs, px#0, py=0,

8 Direct solution
Y tension and g2=fc'

9 No reinforcement| px=py=0 Direct solution
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TABLE 5.3

Boundary curves for orthogonal reinforcement

Jo

Curve Equation
9 b e
1 lrxyl
gy =1[fc'+/fc'2_4]
2 lrxyl 2 Lirxyl (lrxyl)
9y - 1
3 l7xyl
4 oy _ fe' 4+ 1
lTxyl lrxyl
oy =1[fc' fc'z_a]
> l7xyl 2 ljrxyl (ITX)’I)
6 - W
l7xyl
ox 1 [ fe' fc™ o _ 4]
7 lrxyl 2 lrxyl (lrxyl)
8 A --1
l7xyl
9 oxf oyf _
[7xyl I7xyl
oxX gy _
10 lrxyl l7xyl
oX fc'
= +
11 l7xyl l7xyl
ox .1.[ fe' o,/ fec’ 2—4]
12 l7xyl 2 frxyl (lfxyl)




TABLE 5.4

Modified boundary curves for orthogonal reinforcement

Curve Equation

R

2 Ep =%§T %‘ |f§;| +“(l£;;|)2'4]

3 Eq = -l%:—il_ -1

4 A Ifi;'l+1

s B =127 - 1 ey - e -

? Fox = Iffq"l * Ié;y and  Egy = lfi;'l F
1| e - BT Tt

v e - By i [ et St ¢
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TABLE 5.6

Boundary curves for skew reinforcement

Curve Equation
0 [+ cana - £ ]
1 7%y anc 2|Txyl (1-jseca])
oy 1 [ fe' , f fe' 5o ]
— = -4
2 l7xyl 2 lirxyl| (Irxyl)
A + -1
3 7y (coseca * cota)
1
4 ay___ _fc -(—coseccyi'.cotoz)"1
l7xy| | Txy]
ay 1 [ fc' fc' ]
5 =z -4
Irxyl 2 llrxyl (ITxyl)
6 9y = - [: tana - fe (1 + lsecal)]
I7xyl 2|7xyl
ox 1 [ fe' |, Ji fe” J2_, (gycota oyfcoto ]
——— = -5 |- ————%2cota+ -4 ] +]1
/ l7xyl 2 l7xyl cote (Irxyl) ( lrxyl DY l7xyl )
8 gx = 9y cota(coty * coseca) - coseca * 2cota
l7xyl |7xyl
9 oxf — _oyf _
I7xyl [7xyl
10 gx 9y
lrxyl l7xyl
ox__ _ oy _ . + +2cota—tS - atcot
11 B Ty cota(-cota*coseca)+cosecat2coto ITxylcosecaz( cosecatco @
1
12 oX = oy cota(cotatcoseca)-cosecat2cotort fe coseca(coseca*cota)
l7xyl lTxyl lrxyl
13 X - 9 __ cota( - cota * coseca) + coseca t 2cotw
l7xyl l7xy|
ox 1 N/ ECRY I Uycotozt1 oyfeota, ]
16| 2 - |- e pezcota-/irp 26 (FeTeh (g tel)
Note: Alternative sign is the same as that of 7xy.
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TABLE 5.7

Modified boundary curves for skew reinforcement

Curve Equat i on
= + fe
1 Ei = - |% tana - 2!Txyl (1-{secal)
1[fc' SEe g, ]
Ey = + -
2 2 2 llrxyl (ITxyl) 4
3 E3 = - (coseca t cota)~l
_ fe' -1
4L E4 = I—TXT ( Cosecatcota)
1 fe! / fc' (o ]
E = = - -4
5 5 2 lirxyl (Irxyl)
fc
6 Eg = - [t tana - oo—rr xyl (1 + |secal)
_ 1 [_ fc' fc™ 5, gycota . oyfcota, ]
7 E7 = -3 |Txy|'200ta+qurxy|) S Gt D
8 Eg = - ay cotx(cota * cosece) - cosec * 2coto
l7xyl
~ |rxyl fc' _ Iyl fe!'
9 Egy = “3§f“ + 17Xyl and Egy oxf + l7xyl
[7xyl l7xyl
10 E10x=—-0—)-;y—— and  Ejgy=
11 E11 = Tg§§T cota(—cotaicoseca)+coseca1200ta—Irxylcoseca(-cosecaiCOt@
12 Ejp = ISZYI cota(cotatcoseca)+cosecai2cota+|Txylcoseca(cosecatcot&)
13 E - % cota( - cota * coseca) + coseca t 2cota
13 ITxyI
1 [ fc' / _,(oycota, . ayfeota, ]
14 E1a = -5 |~ Toyri2eot® (Irxyl YO Gt D

Note: Alternative sign is the same as that of 7xy.
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Figure (5.6) Combined resistance of concrete and steel against applied stresses.
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Figure (5.10) Conditions for chosen cases of boundary curves for skew
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Figure(5.13) Finite element mesh of transfer girder TRGRAS1
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Figure(5.14) Theoretical required steel ratios for

girder TRGRAS1
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Figure(5.19) Theoretical required steel ratios for

girder TRGRAS4
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Flg. (5.22) Design of reinforcement of Transfer Girder TRGRAS4
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Figure(5.23) Finite element mesh of transfer girder TRGRAS7
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Figure(5.24) Theoretical required steel ratios for girder TRGRAS7
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Figure(5.29) Theoretical required steel ratios for girder TRGRAS9
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Figure(5.33) Finite element mesh of transfer girder TRGRAS10
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Figure(5.34) Theoretical required steel ratios for girder TRGRASI10
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Figure(5.39) Theoretical required steel ratios for girder TRGRASI1
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Figure(5.55) Typical test arrangements showing the use of steel
plates clamped at bearing points.
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CHAPTER SIX

EXPERIMENTAL INVESTIGATION .

6.1 Introduction

Although considerable experimental research has been carried out on deep beam
behaviour, research is still needed on large scale models which are close to actual
practical  situations, particularly in the provision of realistic reinforcement
arrangements. Also, more experimental tests are needed to assess the applicability of
the direct design technique for deep beams and continuous deep girders since little
work has been done on this. The object of this experimental investigation was to
meet these condifions by studying the ultimate strength, and general behaviour
characteristics of a variety of two span continuous reinforced concrete transfer girders
and simply supported girders, with and without openings, subjected to in— plane

loads.

A total of eleven beams were tested of which eight were two span continuous deep
beams, two were simply supported with openings, and one was a solid simply
supported deep beam reinforced with steel areas as close as practically possible to
that calculated by the direct design equations. The geometric details of all the
girders and the concrete properties are given in Table 6.1, steel properties are given
in Table 6.2, Figure (6.1) and Figure (6.2). The reinforcing details have already

been given in a previous chapter.

The actual design of all the test girders has been described in the previous chapter,
and the purpose of the next section in this chapter is to explain the reasons and

objectives for studying these girders.

The loading arrangement for the two span deep girders were point loads acting at

the top edge of the girder at the centre of each span. For the simple span girders




two point loads were applied on the top edge of the girder at the third points. The

following characteristics were monitored in all tests:

1 :— Load deflection relationships

2 :— Strain distributions in the concrete and steel
3 :— Crack propagation and crack patterns

4 :— Failure mechanisms

6.2 Experimental programme

6.2.1 Description of experimental parameters

The tested girders were subdivided into five series and are explained in more detail

below:

SERIES 1: This series consisted of four test girders, denoted TRGRAS1, TRGRAS2,
TRGRAS3 and TRGRAS6. The aim of this series was to check the applicability of
direct design for continuous deep beams, the effect of shear reinforcement and
different distribution of reinforcement, other than those resulting from the direct
design technique, on ultimate and serviceability behaviour. The geometry of all the
girders in this series was kept constant. Discrete reinforcing bars were selected by
taking arbitrary levels across and along the beams and calculating the average
reinforcement ratios at each level. Reinforcement bars were selected and distributed

using specified bar diameters, and limits and spacing.

The difference between the first girder, TRGRAS1, and the second girder,
TRGRAS2, was in the provision of shear reinforcement, the main reinforcement and
beam dimensions were same. This was because the shear reinforcement calculated
according to the direct design equations was very small in comparison with even the
minimum bar size recommended by cP110[1] and BS CP8110[2]. Thus, the provided

shear reinforcement in girder TRGRAS1 was higher than the calculated shear
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reinforcement according to the direct design procedure. In order to match theoretical
and practical requirements closely, the provided shear reinforcement in girder
TRGRAS2 was closer to (but higher than the) calculated value. Thus, the amount of
shear reinforcement in girder TRGRAS1 was higher than TRGRAS2, this was to

evaluate the effect of shear reinforcement on ultimate load.

The difference between girders, TRGRAS2 and TRGRAS3, was in the main
reinforcement, while the shear reinforcement was kept constant. The aim of this
comparison was to meet the minimum diameter size of shear reinforcement as
required by BSCP 8110[2], which meant that the design ultimate load had to be
increased and so consequently increased the amount of main reinforcement required.
Hence, the design ultimate load of the girder TRGRAS3 was higher than that of

TRGRAS2.

The design load for girders TRGRAS3 and TRGRAS6 was the same, but the
calculated reinforcement for girder TRGRAS6 was distributed according to CIRIA
Guide 2(3] and CEB-FIP[4l. The aim of this comparison was to evaluate the effect

of different steel distribution on both ultimate and serviceability behaviour.

SERIES 2: This series consisted of two girders denoted TRGRAS4 and TRGRASS.
The general aim of this series was to check the applicability of the direct design
procedure for continuous deep beams with increased span to depth ratio L/D, and
clear shear span to depth ratio X/D, compared to the first series. These ratios are

believed to be important parameters affecting the general behaviour of deep girders.

The difference between these two girders was in the steel distribution. In girder
TRGRAS4, the steel was provided according to averaging procedure at each level,
and so can be directly compared with girder TRGRAS2, thus deducing the effect of

L/D and X/D ratios. In Girder TRGRASS the steel was distributed according to the
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CIRIA Guide 2[3], CEB—FIP Model Codl4] and Leonhardt and Walther'slS]

recommendations and so can be compared with girder TRGRASH

SERIES 3: This series consisted of two deep continuous girders TRGRAS7 and
TRGRASS, reinforced with skew reinforcement.. The purpose of this study was to
investigate the general behaviour of girders with skew reinforcement in terms of
cracking control, ultimate and service loads. It has been reported in literature, that
skew reinforcement can be highly beneficial despite its complexities in practice(4:6),
(i.e. laborious work in bending and fabrication, etc). Two angles of skew 159 and
10° degrees to the horizontal were chosen for TRGRAS7 and TRGRASS respectively,
in all other aspects they were identical. The behaviour of these two girders can be
compared with girder TRGRAS2, an identical girder but reinforced with orthogonal

reinforcement.

SERIES 4: This series consisted of two large scale single span girders with web
openings. The aim of this series was to check the applicability of the direct design
procedure in designing deep beams, when web openings interrupt the load path in
the shear spans. The CIRIA Guide 203] only covers the design of beams with
openings which do not interrupt the load path and suggests that the regions top and
bottom of an opening are designed as deep beams. Another aim of this series was

to assess the location of the opening in the shear spans of the deep beams.

The first girder, TRGRAS9, had two openings both 500*500mm in size. One was
located above the mid— depth of the beam in one shear span, and the other was
located below the mid—depth of the girder in the other shear span. The second
girder, TRGRAS10, had two openings of dimensions 500%*400mm in one shear span,
one above mid— depth and the other below the mid—depth of the beam. It also had
a third opening of dimensions 500*500mm in the other shear span of the beam,

located at mid— depth of the beam. Figure (6.2) shows the general view of these

2
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two beams.

SERIES 5: This series consisted of testing of a very large scale simply supported
girder denoted TRGRAS11. It was tested to examine the accuracy of the direct
design equations in detail. The direct design procedure produces a continuously
varying reinforcement field as calculated at each Gauss point in the finite element
analysis, but in practice the bars have to be provided either by using maximum steel
ratios at a particular level, or by averaging steel areas. This leads to over and
under— reinforced zones in the structure, and final design which has departed

significantly from the original design assumptions.

In this beam, steel areas were provided as close as possible to those required by the
theoretical calculations. This was achieved by reducing the bar diameters at selected

points throughout the structure.

The direct design equations do not take into account the work— hardening effect.
Hence, in this test, mild steel was used which has a small work— hardening effect as
compared to high tensile strength steel. This test was designed to see that the
simultaneous yielding of steel occurs at the ultimate load stage as theory provides, if

theoretical steel areas are provided.

6.2.2 Beam notation

The letters 'TRGRAS' stands for Transfer Girder with Averaged Steel. The girders

are numbered sequentially from the start of the investigation. For example,
e

TRGRAS1 represents a Transfer Girder with Averag'a Steel ratio Number

'TRGRAS1'. This notation is used for all the girders studied in this investigation.

6.3 Formwork

Since the geometries of all girders were not the same, it was necessary to design



and make several different formworks. However, only the construction of the
is
formwork for girder, TRGRASI, is described here, since it‘essentially the same.

The formwork was made from 20mm thick plywood panels. To maintain the stability
and strength of the mould during casting, 50mm*S0mm timber battens were nailed at
close spacing along the length of the mould. Battens were also nailed along the
vertical walls of the mould (i.e soldiers) to make it more stable and some were
nailed as stiffeners as shown in Figure (6.3). Prior to casting, the mould was oil

coated in order to prevent the concrete sticking to the mould.

64 Test—rig

The test—rig was set up as shown in from Figure (6.4) to Figure (6.6). Figure (6.7)
shows a photograph of one of the girders being tested. The test—rig was designed to
be accommodated in a 10,000kN Losenhausen Universal Testing Machine and was
capable of accommodating a girder of up to 3 metres long and up to 2.5 metres in
height. It was designed for a total loading capacity of 2000kN. The main

components of the test—rig are:

1:— Base Beam

2:— Support Girders
3:— Loading Girders
4:— Supporting Bearings

5:— Losenhausen Machine Platen

6.4.1 Base beam

This beam is made of two 356*406*287kg/m I—sections welded together to provide a
firm base of up to 5000kN capacity. This beam was placed on the bottom platen of
the Losenhausen Machine. Steel columns were bolted to this beam so that the girder

could be positioned and placed accurately in the machine. During testing, these



columns were either dismounted or slackened and kept at least 20mm away from the

beam plane, in order to avoid interference with the load transmission.

6.4.2 Support girders

Support girders of 250*250*16kg/m hollow square box cross section were used. The
girders were designed as simply supported cross beams spanning the I—sections of
the base beam and loaded at the centre by a maximum reaction of 2000kN from
the test girder. Three girders were used for the two span continuous girders and two

for the single span girders.

6.4.3 Loading girders

This loading girder was designed and used only for the two span continuous girders
of 3 metre lengths because direct transmission of the load from the machine platen
to the specified loading point locations on the top of beam was not possible. The
loading girder was a 305*%305*158kg/m I—section. To strengthen the girder at the
loading points, extra steel web stiffeners were welded to the girder. BS449[7] was
used to design this strengthening. Angle sections of 120*120*18.5kg/m were also
designed to attach the loading girder to the machine platen safely. The bolts
connecting the loading girder to the machine platen were also checked and designed

accordingly.

6.4.4 Support bearings

All the support bearings were made of mild steel. Both exterior supports in the two
span continuous girders were provided with rollers to allow free horizontal
translation, and the mid— support was restrained horizontally and vertically. Under
the loads, one bearing was roller supported and the other was fixed. The roller
supports at the bottom and top of the girder were provided with two roller rods to

avoid perman nt deformation of the bearing block which would restrict the horizontal

translation.
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The support bearing dimensions for the two span continuous girders of two meters
length were 80*100*50mm at each exterior support, 160*100*SOmm for the
intermediate support and 150*100*50mm for the load bearings. In the case of the
two span continuous girders of three meters length, the exterior support bearing
dimensions were 100*100*50mm, the interior support bearing dimensions were
200*100*50mm and the load bearing dimensions were 150*100*50mm. For the simply
supported girders the dimensions for the support bearing and load bearing were both

200*100*50mm.

6.4.5 Losehausen machine platen

The detachable Losenhausen machine platens were used at the bottom for holding
the base beam, and at the top to transmit the loads either directly onto the beam
from the machine head, or for providing a uniformly distributed load on the loading
girder for the beams of 3 metre length. In addition steel plates SOmm thick and of
area 400*400mm were used in between the machine platen and the top of the

loading support bearing block, to spread the load more effectively.

6.5 Material properties

6.5.1 Concrete

The same concrete mix was used for all specimens. It consisted of Rapid Hardening
Portland Cement (RHPC), 10mm Hyndford uncrushed gravel of grading zone 2 and
Hyndford sand obtained from Lanarkshire. A mlx proportion of 1:1.5:3 and with
0.48 water/cement ratio was designed for an intended average cube strength of 45
N/mm2 at 7 days. The weighted quantities of cement, sand, 10 mm gravel and water

were mixed thoroughly in a 3 cu.ft capacity pan mixer. A minimum slump of 100

mm was specified.

All the girders were cast horizontally. The concrete was placed in the mould with

shovels. The compacting of the mix during casting was achieved by using a 12mm



diameter poker vibrator. The vibration continued until a reasonably good compaction

was achieved.

In addition to the main specimen, six 100*100mm cubes and at least four
150*300mm cylinders were cast as control specimens from all the different batches of
material used for constructing the main specimen. These were compacted by using a

vibrating table.

All the control specimens and the main specimen were cured under damp hessian
for the first 24 hours. After that, the control specimens were taken out of the
moulds and a few control specimens were cured in the water tank. All the
remaining control specimens and the main specimen were kept under wet sacking for

the first three days and then were cured dry under laboratory conditions.

The cubes were used to determine the cube strength of concrete, two cylinders were
used to determine the splitting tensile strength, ft', and two for the concrete
compressive strength, fc'. The remaining two cylinders were used to obtain the
stress— strain curve and modulus of elasticity. All the control specimens were tested
on the same day the transfer girder was tested. A typical compressive stress— strain

curve for the concrete (girder TRGRAS3) is shown in Figure (6.8).

6.5.2 Reinforcing steel

High vyield deformed bars of 6, 8 and 10mm diameter made by British Steel
Corporation were used for the longitudinal and transverse reinforcement in all
girders, except transfer girder TRGRASI1. Mild steel bars of 8, 10 and 12mm
diameter were used for girder TRGRAS11. The yield stress of all different bar sizes
were measured on samples cut from different batches of steel bars using a Tinus
Olsen Universal Class A testing machine, fitted with a S—type electronic

extensometer, and procedure laid down by British Standard BS18 (8] was followed.

295
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Since high yield deformed bars have no definite yield point, the yield stress was
assumed to be that at the 0.2 percent proof strain. Typical stress strain curves for
all high tensile strength bars are shown in Figure (6.9) to (6.11) and for mild steel

bars are shown in Figure (6.12) to (6.14).

When the bending of steel and cementing of strain gauges on the steel was
completed, the fabrication of the steel commenced by placing the main and
transverse steel at their required locations. All the reinforcement were then tied
together by wires. Before casting, plastic spacers were attached to the longitudinal
bars and the transverse steel, at certain intervals to ensure adequate cover to the
reinforcement on both sides of the beam. In all the models, a 15mm concrete cover

was provided to the reinforcement.

6.6 Instrumentation

All girders were connected to instruments to measure the load, the deflections, steel

and concrete strains, and crack widths.

6.6.1 Loads

The intermediate support in two span continuous. girders takes more than 60% of
the total load. Therefore, the available Davy Limited K500 load cells were not
suitable for the intermediate support because their maximum capacity is SO0kN.
Thus, for the two span continuous girders, only the exterior reactions and the
applied loads at the top of each span were recorded by load cells. The total load
was directly recorded by the machine. In the case of simply supported girders, all
the reactions and loads were measured by load cells. It was found, that if the beam
was positioned satisfactorily (i.e levelled horizontal) the reactions were within

2%— 4% of each other. The load cells were connected to an Orion 3530 type data

logger.
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The loads were applied by the Losenhausan Universal Testing Machine, at the centre
of the two spans in the case of the two span continuous girders and at third point
for the simply supported girders. Figure (6.15) shows the loading arrangements for
one of the two span continuous test girders. Figure (6.16) shows the loading

arrangement for a simple supported test girder.

6.6.2 Deflections

Net deflection measurements in deep girders is a challenging parameter. This is
because these members take a very high load and failure is likely to be in shear, so
that deflections are very small. The test floor is susceptible to vibrations and the
plaster between the supports and the beam is subjected to a high load causing extra
deflection. Thus, it was decided to try and isolate these effects by measuring the
deflections using displacement transducers fixed to a frame, which could be mounted

on the girder itself. The frame was thus constructed from handy angles.

The vertical deflections of two span continuous deep girders were measured by
means of Novatech R101 type transducers located at the mid—span of the beam and
at 200mm from the exterior and interior supports for each span on both sides of
the girder as shown in Figure (6.17). For single span girders, vertical deflections
were measured by means of transducers located at the mid—span of the beam and
at 200mm from the each support of the girder on both sides of the girders as

shown in Figure (6.18).

All the transducers were connected to the data logger and the deflections were
recorded automatically at each load increment. These Novatech R101 type transducers

were able to measure the deflection to an accuracy of 0.0001mm.

6.6.3 Steel strain gauges

EA— 06— 240LZ— 120 Student type strain gauges were cemented to the longitudinal

~1
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and transverse steel at critical sections to record the strain history. Prior to fixing
the strain gauges, the surface of steel was prepared by filling and then smoothning it
with sand paper. During this process, care was taken not to remove a considerable
area of steel which would weaken the steel bars. The surface was then treated with
M~ Prep conditioner A and M—Prep neutralizer 5 to remove any dirt and grease.
Each strain gauge was checked with a voltmeter before cementing, and its proper
position was located by making a very thin line on the steel bar. The strain gauge
and terminal strip were cemented to the bar using M—Bond 200 adhesive. To
protect the gauge from moisture and mechanical damage during fabrication and
casting, an air drying protective coating type M—Coat D and expoy resin was
applied to the gauge and terminal. Finally, a check using the voltmeter was carried

out for each strain gauge after cementing.

At most positions on a bar, a pair of strain gauges were fixed on the opposite
sides. Figure (5.19) to (6.29) shows the location and positions of the strain gauges in

the all girders.

6.6.4 Concrete strains

To record the concrete surface strains, stainless steel demec gauges were used at
critical sections. A gauge length of 100 mm was used as a sufficient length through
which cracks could propagate. The points on the surface where demec gauges were
to be fixed, were cleaned of dust and grease, and the points were correctly located
using a standard setting bar provided for this purpose. The gauges were fixed with
Araldite. The location and positions of the demec gauges in all girders are given in
Figure (6.30) to (6.40). An average value of concrete surface strain of two demec
gauges at the same point on either sides of the girder at each location was used in

subsequent analysis of the results

2

8




229

6.6.5 Crack propagations and crack widths

Crack propagation and crack widths were monitored and measured throughout the
loading history. The crack widths were measured by means of a microscope of
accuracy up to 0.02mm. A few predominant cracks were selected and their crack
widths were measured at each load level. The average of the crack width on two

faces of the specimen were used as crack width.

6.7 Testing procedure

When each model was fully cured, it was manoeuvered on to wooden tressels and
whitewashed with paint. A rectangular grid of 100*100mm lines was drawn in order
to facilitate marking and locating crack propagation. After this process the demec

gauges were fixed.

Using slings, placed through lifting hooks attached to the reinforcement, the girders
were then taken to the test—rig by crane. 3mm of quick setting plaster was used
between the bearing blocks and the beam, and in other critical places, so that any

unevenness in the surface could be avoided.

Once the test girder was installed the various transducers were mounted on to a
handy angle frame. The strain gauges, load cells, displacement transducer and a
displacement transducer recording the overall displacement between the two machine
platens, were connected to a 3530 Orion data logger fof automatic recording. All
the instruments were checked one day before starting the actual test. Additional steel
plates were clamped to the loading and support points on the girders, in order to

constrain local failure due to high bursting stresses.

The Losenhausen Universal Testing Machine was operated in displacement control
mode using LVDT (Linear Variable Displacement Transducer). Loads were applied in

small increments of about 50 kN up to the failure without unloading. It was



observed that in some girders that at small loads, there was a variation in loads and
reactions of up to 4%, but as the load increased this became insignificant. This

might be due to the unevenness in plaster thickness etc.

At each increment the displacements and strain in the steel and concrete demec
gauges readings were recorded. Crack propagation and crack widths were marked and
measured respectively. The duration of each load increment stage was usually about
15 minutes. In some cases when any major crack has occut‘gd during the test, load
was considerably dropped. In such situations, prior to increasing the load according
to intended increment, a set of readings was always taken. In some cases, beams
were unloaded and reloaded, and similar procedures were adopted during reloading.
For a few tests, photographs were taken at various loading levels when any major
failure cracks or any new phenomenon occurred. For each test, photographs were

taken of the crack pattern and failure type after the testing was over.
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TABLE 6.2
Steel properties of reinforcement used in this study.

Bar size

Area

Es

fy ey 0.2% proof stress
mm mm2 kN/mm2 N/mm2 mm/mm N/mm2
6 28.0 199.0 _— —_ 513.0
8 50.0 195.0 _— _ 520.0
10 79.0 200.0 _— —_ 471.0
8 50.0 210.0 290.0 | 0.0014 —_—
10 79.0 212.0 318.0 | 0.0015 _
12 113.0 198.0 336.0 | 0.0017 _
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Figure (6.8) Typical stress— strain curve for concrete (TRGRAS3)
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Figure (6.9) Typical stress—strain curve for 10mm dia. steel bar.
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Figure (6.10) Typical stress—strain curve for 8mm dia. steel bar.
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Figure (6.11) Typical stress—strain curve for 6mm dia. steel bar.
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Figure (6.12) Typical stress—strain curve for 12mm dia. mild steel bar.
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Figure (6.13) Typical stress—strain curve for 10mm dia. mild steel bar.
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Figure (6.14) Typical stress— strain curve for 8mm dia. mild steel bar.
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Figure (6.15) The arrangements of loading in a two span continuous girder
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Figure (6.16) The arrangements of loading in a simply supported girder.
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Figure (6.26) The location and position of steel strain gauges in transfer girder TRGRASS
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Figure (6.28) The location and position of steel strain gauges in transfer girder TRGRAS10
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Figure (6.33) The location and position of demec gauges in transfer girder TRGRAS4
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CHAPTER SEVEN

PRESENTATION OF EXPERIMENTAL RESULTS

7.1 Introduction

This chapter presents the results of the experimental tests on the transfer girders

described in the previous chapter. The purpose of the experimental investigation was:

1. To validate the direct design procedures for designing deep beams in general, and
continuous deep girders in particular, for serviceability and ultimate conditions.

2. For two span continuous girders, to study:

(i) the effect of shear reinforcement

(ii) the effect of the span to depth (L/D) ratio on the ultimate strength and the
failure mechanism. Two span to depth ratios (L/D) were examined, 1.07 and 1.61.
(iii) the effect of placing the main reinforcement according to the CIRIA Guide 2[1]
distribution (similar to the CEB-— FIP Model Code[z]).

(iv) the effect of using skew reinforcement.

3. For single span girders with L/D ratio of 1.4, to study:

(i) the validity of the direct design approach when the web openings intercept the
load path.

(ii) the behaviour of a very large scale solid deep girder with reinforcement which
satisfies the design theory as close as possible, by reducing the bar size diameters to

the required value.

A summary of all the results is presented in Table 7.1. The tests are classified into
five series depending on the geometry, reinforcement type (i.e orthogonal or skew),
reinforcement distribution or the continuity conditions. In all the tests the loads were
applied under displacement control in small increments, average value of 50kN, up

to failure. Each series will be discussed separately in the following sections.

7.2. Experimental observations

7.2.1 Series 1

This series was designed to test the validity of the direct design approach using

o
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orthogonal reinforcement for two span continuous deep girders, whose span to depth

(L/D) ratio was 1.07.

Four girders denoted TRGRAS1, TRGRAS2, TRGRAS3 and TRGRAS6 were tested
and had similar cross— sections, span lengths and thicknesses, as shown in Figure
(7.1). Girder TRGRAS1 and TRGRAS2 had the same amount and distribution of
main reinforcement, but girder TRGRAS1 had twice the shear reinforcement in the
interior shear spans. Test girders TRGRAS2 and TRGRAS3 had similar amounts of
shear reinforcement, but TRGRAS3 had a higher amount of main reinforcement.
Girders TRGRAS3 and TRGRAS6 were designed for the same design ultimate load,
but the distribution of steel in girder TRGRAS6 was placed according to the rules of
CIRIA Guide 2[1], which is the same as that suggested by the CEB— FIP Model
Codel?] and Leonhardt and Walther[3]. The steel properties of girder TRGRAS3
were different from those of TRGRAS6, consequently the amount of steel provided
was not exactly the same, otherwise a direct comparison in terms of steel area could

have been made.

Transfer Girder TRGRAS1

Girder TRGRAS1 was designed for an ultimate design load of 850kN, but for
practical reasons was reinforced with more shear reinforcement in the interior shear

span than required by the direct design technique.

The first visible crack appeared at the bottom of the beam soffit at a load of
200kN. On further increase in loading, more cracks spread in the flexural zone of
the beam and started propagating towards the loading points. Before cracking, steel
strains were very small. As cracking progressed the steel strains started to increase
and the displacements became considerably higher than the pre— cracking values. On
a further increase in the load, cracks became wider and at 986kN inclined cracks
appeared in both internal shear spans of the beam with a loud “thud" and the load
suddenly dropped. The steel strains were also high, at some points the steel had

yielded. The girder continued to take more load after the formation of the diagonal
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cracks. The steel strains show that, at some points, forces in bars which originally

took compression began to reduce and even became tensile.

The girder finally failed in a clear shear failure mode as shown in Figure (7.2).
Failure occurred in one of the interior shear spans with a diagonal crack running
from the inside edge of the support towards the outside edge of the loading point.
The other span was severely cracked and looked as if it had also lost its stiffness
and strength. Some crushing and spalling of concrete at the loading point was
noticed as well. At failure all the steel except the stirrups had yielded at the

measured points and was well above the yield stress.

Figure (7.3) illustrates the load deflection curve, and shows that the behaviour was
linear up to the cracking of the concrete. This confirms that reinforced concrete
beams behave much like plane concrete beams up to the concrete cracking or the
yielding of the steel, whichever is first. The plots of longitudinal and transverse steel
strains, shown in Figures (7.4) to (7.7), indicate that the bars carried relatively small
strains before cracking. The steel strain in the bottom bars, along the span length,
are plotted in Figure (7.8). This shows that the strains were more or less uniform
along the beam length and did not behave according to the ordinary bending

moment diagram of the beam.

The maximum crack width was monitored as shown in Figure (7.9). From this the
0.3mm crack width serviceability load was determined to be 900kN. Figure (7.10)
shows the wvariation of concrete surface strains for increasing load. These tend to

show a marked increase after the shear crack appeared at load 900kN.

It is worth noting that the beam was able to take a considerable increase in load
after the diagonal crack formed. This is due to the development of arching action in
conjunction with dowel action of the main reinforcing bars and interface shear
transfer across the shear cracks. The ratio of the serviceability load to design

ultimate load was 1.06 and the ratio of ultimate load to design ultimate load was



1.56. This confirms that serviceability behaviour of the design technique is good,
whilst the measured ultimate load indicates a fair safeguard against collapse. The

overall behaviour confirms the validity of the direct design technique.

Transfer Girder TRGRAS2
This girder was also designed for an ultimate load of 850kN. It was reinforced with

the same amount of main reinforcement as TRGRAS1, but with half the shear

reinforcement in the interior shear spans.

The first visible crack appeared at the bottom of the beam soffit at 250kN. As the
load increased, the cracks started propagating and extending towards the loading
point. Steel strains were very small before cracking, but as cracking progressed the
steel strains increased. At 1050kN a diagonal crack occurred with a loud "thud",
immediately reaching a width of 1.3mm and causing the deflections to increase
drastically. At this load the steel started yielding at the centre of the girder span in
the bottom bars, and the steel strains increased to almost twice the total at the
previous increment. On further loading, cracks widened and the beam continued to
take load. Finally, at a load of 1216kN the beam failed in a shear failure mode
with some crushing of the concrete at the load and supporting points. At failure, all
steel was carrying tensile forces and the strains in all steel bars were well above the
yield value, except the top bars. The crack pattern at failure is shown in Figure

(7.11).

The load deflection curve is shown in Figure (7.12). It illustrates that after the
formation of the inclined crack, the stiffness of the girder reduced considerably. The
steel strain in all bars at the centre of the span is shown in Figure (7.13), these
demonstrate similar behaviour to the load deformation behaviour. The steel strains in
the top bar, 200mm from the centre of the intermediate support, are illustrated in
Figure (7.14). The distribution of strain along the bottom bar is shown in Figure

(7.15) and is different from ordinary beam behaviour.



Crack widths were monitored at various points and are illustrated in Figure (7.16).
From these, the 0.3mm crack width serviceability load was determined to be 1050kN.
Finally, Figure (7.17) shows the variation of concrete surface strains for increasing

load, these show a marked increase after the shear crack at load 1050kN.

Since concrete strength was higher in this girder, the shear crack appeared at a
higher load, therefore, the 0.3mm crack width for serviceability also occurred at a
higher load. The smaller amount of shear reinforcement, however, reduced the
ultimate load, therefore, tl;e ratio of serviceability load to design ultimate load (1.24)
is higher than for girder TRGRAS1, and the ratio of ultimate load to design
ultimate load (1.43) is smaller. However, the overall behaviour in serviceability and
the ultimate stage is still satisfactory, indicating the suitability of the direct design
technique. The comparison between TRGRAS1 and TRGRAS2 indicates that when
the amount of reinforcement is closer to that required by the direct design
equations, the range between serviceability limit state and ultimate limit state is

smaller. This tends to confirm that the concept of simultaneous yielding is

reasonable.

Transfer girder TRGRAS3

In the previous two girders, the required shear reinforcement was very small, but
using the minimum bar size of 6 mm, the amount of shear reinforcement provided
was substantially greater than this. In this girder an attempt was made to avoid this
problem. The girder was designed to provide shear reinforcement which was closer
to that required by the direct design equations. The idea was to provide the same
minimum shear reinforcement as in girdker TRGRAS2 and to calculate the design
load which corresponds to this amount. It was not possible to calculate this precisely
because of geometrical constraints and some other consequences relating to the
test—rig. However, a design load of 1100kN was adopted. This higher design load
obviously required a substantial increase in the amount of main reinforcement, but

the shear reinforcement was the same as girder TRGRAS2.
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The first visible crack occurred at 300kN at the centre of the beam span near the
soffit. Some flexural cracks occurred in the central span region and propagated
towards the loading points as the load was increased. When the load reached
1000kN, it dropped suddenly to 890kN but then started to increase again until, at
920kN, a shear crack suddenly appeared with a loud "thud" in one of the internal
shear spans. At 1050kN, the steel started to yield in the centre of the span and the
beam finally failed at 1500kN in a clear shear failure. At failure, some crushing of
concrete was noticed at the load and support points. It was also observed that there
had been about 7mm of relative displacement along the shear planes of the shear
cracks, indicating that dowel action must have come into play. Also all the steel had
yielded except in some of the top bars. The crack pattern at failure is shown in

Figure (7.18).

The load deflection curve, in Figure (7.19), shows that behaviour was linear before
cracking and that the girder exhibited a little ductility after diagonal -cracking.
Figures (7.20) to (7.23) illustrate the steel strain curves and show that some of the
main bars started to depart from linear behaviour at about 600kN, whilst others did
not start to behave nonlinearly until the shear cracks occurred at about 920kN. Steel
strains along the bottom bars are presented in Figure (7.24), these show a different

distribution from ordinary beam behaviour.

Crack widths were monitored at four crack points, as shown in Figure (7.25). From
these the 0.3mm crack width serviceability load was determined to be 970kN.
Finally, Figure (7.26) shows the variation of concrete surface strains for increasing
load. These also tend to show a marked increase after the shear crack at about

920kN.

It is worth noting that the beam was able to take a considerable increase in load
after the diagonal shear cracks formed. This is due to the development of arching
action in conjunction with dowel action from the main reinforcement and interface

shear transfer across the shear cracks.
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The ratios of the serviceability load to design ultimate load (0.88) and measured
ultimate load to the design ultimate load (1.36) are smaller than for girder
TRGRAS2 (1.24 and 1.43 respectively). The comparison of TRGRAS2 and TRGRAS3
indicates that when the amount of reinforcement is closer to that required by the
direct design equations, the ultimate load is closer to the design load. The overall

behaviour in serviceability and ultimate stage is still satisfactory.

Transfer girder TRGRAS6

This girder was designed for the same load as the previous girder i.e 1100kN. The
main difference was the placement of main steel. The amount of main steel
calculated according to direct design was distributed following the procedure given by

CIRIA Guide 2 [1].

The first visible crack occurred at 150kN at the centre of the span near the soffit.
As the load was increased, more flexural cracks occurred in the central span region
and propagated towards the loading points. Although cracks were spreading, the steel
strains and deflections were approximately linear until 700kN. At 1100kN, shear
cracks suddenly appeared with a loud "thud" in both shear spans of the beam,
running from the loading point to the inside face of the support in both interior
and exterior shear spans. After the shear cracks appeared, the steel strains showed
an increase, but the steel did not yield. At 1300kN, the steel started to yield in the
centre of the span and finally the beam failed at 1486kN in a clear shear failure
mode. At failure, some crushing of concrete was noticed at the load and supporting
points. All the steel had yielded at failure, except the top bars and stirrups and the
top bars over the intermediate support. The crack pattern at failure is shown in

Figure (7.27).

The . load deflection curve is shown in Figure (7.28), and illustrates that the
behaviour was linear before cracking. Figures (7.29) to (7.32) illustrate the steel
strain curves and show that they started to depart from linear behaviour at about

700kN. The steel strain along the bottom bars, at various points, is shown in Figure



(7.33). These show a different distribution from ordinary beam behaviour.

Crack widths monitored at various points are illustrated in Figure (7.34). From these
the 0.3mm crack width serviceability load was determined to be 900kN.  Figure
(7.35) show the variation of concrete surface strains for increasing load. These tend

to show a marked increase after 1100kN.

Again the beam was able to take considerable increase in load after the formation
of diagonal shear cracks due to the arching action, dowel action of reinforcing bars,

and interface shear transfer across the shear cracks.

The ratio of serviceability to design ultimate load (0.8) is slightly smaller than for
girdler TRGRAS3 (0.88), whereas the ratio of ultimate load to design ultimate load
(1.35) is practically equal. It would appear that when the reinforcement is distributed
according to CIRIA Guide 2, behaviour is marginally worse than the direct design

distribution.

7.2.2 Series 2
This series consisted of two continuous girders denoted TRGRAS4 and TRGRASS,

whose span to depth (L/D) ratio was 1.61.

Both girders had similar cross sections, span lengths, thicknesses, amount of shear
and main reinforcements, loading conditions, but different distributions of the main
reinforcement. Girder TRGRAS4 was reinforced according to the averaging procedure
used in the direct design technique, while girder TRGRASS was reinforced using the

distribution given by CIRIA Guide 201],

Transfer girder TRGRAS4

This girder was designed for an ultimate load of 850kN. Apart from the (L/D) ratio
and the amount of reinforcement this girder was identical to girder TRGRAS2. The

aim of this test was to ascertain the effect of the span to depth (L/D) ratio on the
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ultimate and serviceability behaviour, and the failure mechanism.

The first visible crack occurred at 100kN in the beam soffit in the maximum tensile
zone. On a further increase in the load, more flexural cracks occurred in the
central span region and propagated towards the loading points. At 600kN, cracks
started to appear over the top of the intermediate support in the tensile zone. A
further load increase caused more cracks to appear in this region and extend towards
the support. Up to 749kN the deflections and the steel strains were very small and
were approximately linear. Steel started yielding at the centre of the girder span at
a load of 789kN. At 900kN a shear crack appeared with a loud "thud" in one of
the internal shear spans. Final failure of the beam was at 1143kN in a shear mode.
All the steel had yielded except the stirrups and the top bars. The final crack

pattern at failure is shown in Figure (7.36).

The crack pattern indicates that the cracks over the intermediate support are similar
to those at the mid—span of the girder. This crack pattern was different to the
pattern found in the girders of series 1 and confirms that as the span length of a
girder increases, the behaviour changes from deep beams towards ordinary beams.
However, the behaviour is still in the range of deep beams, because the flexural
cracks appeared first in a positive bending moment region rather than in a region of

negative bending moment existing over the intermediate support.

The load deflection curve in Figure (7.37) exhibited a different behaviour in
comparison to the previous series. The deflections were higher which was according
to expectations, but the shape of the curve suggests much greater ductility. The
behaviour was linear before cracking, Figures (7.38) to (7.41) show that the steel
strain curves were approximately linear up to 600kN. The steel strain in the bottom
bars at various points along the beam length are shown in Figure (7.42). Although
this beam has a larger length than the previous series, this strain distribution is still

different from ordinary beam behaviour.



Crack widths were monitored at several points and are illustrated in Figure (7.43).
From these, the 0.3mm crack width serviceability load was determined to be S800kN.
Figure (7.44) shows the variation of concrete surface strains for increasing load,

these tend to show a marked increase after about 600kN.

The ultimate load was closer to the design ultimate load than in the previous series,
but as before the beam still took a considerable increase in load after the formation

of inclined crack and behaved with an arching action.

The ratios of serviceability load to design ultimate load (0.90) and measured ultimate
load to design ultimate load (1.27) indicate satisfactory serviceability and ultimate
behaviour. Although the amount of reinforcement provided was higher than in girder
TRGRAS2, the serviceability and ultimate strength are smaller. This can in part be
attributed to different material properties. However, the trend of load deflection,
steel strain curves and crack pattern indicate a different behaviour than girder
TRGRAS2. In particular, the cracking over the intermediate support is much more
extensive and the load deflection and steel strain curves suggest that ductility was

considerably higher in TRGRAS4 than TRGRAS2.

Transfer girder TRGRASS

This girder was also designed for an ultimate load of 850kN. It was reinforced with
the same amount of reinforcement as TRGRAS4, but the reinforcement was placed

according to CIRIA Guide 2.

The first visible crack occurred at 100kN, at the centre of the span near the soffit.
As the load increased the cracks propagated and extended towards the loading
points. The deflections and steel strains were very small before cracking. At a load
of 650kN cracking started above the intermediate support. With a further increase in
load, more cracks in this region spread and extended towards the intermediate
support. At 800kN, a shear crack appeared with a loud "thud" in one of the

internal shear spans. On the next load increment, another shear crack appeared in
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the other internal shear span again with a loud "thud", along a line joining the
support and loading point. However, the girder was able to sustain further increases
in load and at an increment before failure, the flexural cracks over the intermediate
support became approximately 8mm wide and extended to the intermediate support
indicating that flexural failure was about to occur. The crack pattern indicates that
the cracks over the intermediate support are severe and are responsible for the
failure in the girder Finally, the beam failed at 1243kN in a flexure— shear failure
mode. All the steel had yielded except the top bars at the centre of the beam span

and the stirrups. The crack pattern at failure is shown in Figure (7.45).

The crack pattern is different from the crack patterns of girders in series 1, and
suggests that the behaviour is changing from deep beam towards ordinary beam

behaviour.

The load deflection curve in Figure (7.46) illustrates that the behaviour was linear
up to cracking but after cracking there was a fair amount of ductility. The steel
strain curves for all bars are shown in Figures (7.47) to (7.50). These demonstrate
that the strains were very high in the steel over the top of the intermediate support
as in ordinary beams, but the distribution was not the same as the ordinary beams.
The steel strain in the bottom bars at various points along the span length is shown

in Figure (7.51).

Crack widths were monitored at several points and are illustrated in Figure (7.52).
From these, the 0.3mm crack width serviceability load was determined to be 650kN.
Figure (7.53) shows the variation of concrete surface strains for increasing load,

these show a marked increase after about 650kN.

The ratio of serviceability to design ultimate load (0.76) is smaller than for girder
TRGRAS4 (0.90), whilst the ratio of measured ultimate load to design ultimate load
is higher (1.38 to 1.27). This might be attributed to the higher concrete material

properties of girder TRGRASS. The comparison of these two girders indicates that
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CIRIA Guide 2 distribution does not give as satisfactory a serviceability behaviour as
that obtained by the direct design technique. Better crack control is achieved because
the reinforcement is placed throughout the beam depth. In addition to that the

failure mode changes from shear to flexural mode.

This series was designed to test the validity of the direct design approach for skew
reinforcement in two span continuous deep girders. It was expected that skew

reinforcement would give better ultimate and serviceability behaviour.

Two girders, TRGRAS7 and TRGRAS8, were tested and had identical geometry,
loading conditions, amount and distribution of main and shear reinforcement as
girder TRGRAS2 but skew reinforcement was used instead. The skew reinforcement
in girder TRGRAS7 had an angle of 15° with the x—axis and 10° in girder

TRGRASS.

Transfer girder TRGRAS7

This girder was designed for an ultimate load of 850kN. The required amount of
reinforcement was smaller than for transfer girder TRGRAS2, but in order to make
a direct comparison the same amount was provided as girder TRGRAS2. Each span
had a different configuration of the skew angle. In one span a sharp bend was
introduced at the centre of the span. In the other span a flat transition was
introduced between the bends, the length of this transition being equal to the length

of the load bearing block.

The first visible crack occurred at 250kN at the centre of the span near the soffit.
As the load increased, more flexural cracks occurred in the central span region and
propagated towards the loading point. It was observed that the cracking was more
severe in the span which was reinforced with the sharp skew angle. Also, the
deflections in this span were higher than the other. At 857kN, yielding started in

the span which was reinforced with the sharp skew angle, and at 1050kN a shear
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crack occurred in the same internal shear span. At 1250kN a shear crack appeared
with a loud "thud" in the other internal shear span. When the load reached 1346kN
the span with the sharp angle failed in a clear shear mode. From the crack pattern
it was clear that the other span could take more load. Hence the load was released
and the other span of the girder was tested on its own. The retesting was carried
out in order to obtain the ultimate strength only, since the girder was already
cracked and with repositioning the whole set—up, the load deflection behaviour
would be different than the original. This span of the girder failed in shear at a
load of 720kN (i.e overall beam load of 1440kN). At failure all the steel was well
above the steel yield point except the top bars and stirrups. The crack pattern at

failure is shown in Figure (7.54).

The load deflection behaviour of both spans of the girder was approximately similar.
The load deflection curve in Figure (7.55) indicates that behaviour was linear before
cracking. The steel strain curves are shown in Figures (7.56) to (7.58), and show
that steel strain behaviour was linear up to 700kN. The comparison of the steel
strains in the bottom bars at the centre of each girder span are given in Figures
(7.59) and (7.60), which shows that behaviour is more or less identical. The steel
strain in the bottom bars at various points along the span length (Figure (7.61))
indicates that for up to 60% of the ultimate load, the strain in the bottom bar was

fairly constant.

Crack widths were monitored at several points and are illustrated in Figure (7.62).
From these, the 0.3mm crack width serviceability load was determined to be 810kN.
Figure (7.63) shows the variation of concrete surface strains for increasing load,

these show a marked increase after about 1050kN.

The ratio of serviceability load to design ultimate load (0.95) is smaller in
comparison to girder TRGRAS2 (1.23) this might be due to the higher material
properties of TRGRAS2. However, the ratio of measured to design ultimate load

(1.67) compared to girder TRGRAS2 (1.43) indicates that skew reinforcement allows



273

a higher load. The load deformation behaviour also indicates that even after the
formation of diagonal cracks, the girder took considerably more load in comparison
to TRGRAS2. This suggests that skew reinforcement, which is approximately
perpendicular to the load path joining the load bearing block to the support points,
is more efficient than horizontal reinforcement. Finally, it would appear that
reinforcement which is gradually bent, is better than that with a sharp change in

skew angle.

Transfer girder TRGRASS

This girder was also designed for an ultimate load of 850kN and was reinforced with
the same amount of reinforcement as the previous girder. The angle of skew,
however, was 10° to the x—axis. In a similar fashion to girder TRGRAS7, this
girder was reinforced with two different configurations of steel, i.e one span was
reinforced with a sharp skew angle whilst the other span was reinforced with a
gradual change of angle by introducing a flat transition length, equal in dimension to

that of the load bearing block, at the centre of the beam span.

Prior to the test starting properly, a sudden load of S00kN was accidentally applied,
which caused precracking of the beam and some permanent deformation in the
girder. Because of this, there was no precise idea of the correct serviceability load

and crack widths. Therefore crack widths were not recorded.

At 950kN the steel started yielding at the centre of the span which was reinforced
with the sharp skew angle. This span finally failed at a load of 1300kN. After the
failure of one span, the other span was retested alone, but it did not take a higher
load. The yielding history of the steel showed that all the steel had yielded except

for the top bars. The crack pattern at failure is shown in Figure (7.64).

The load deflection behaviour of both spans of the girder were approximately
similar. The load deflection curve is shown in Figure (7.65) and the steel strain

curves in Figures (7.66) to (7.68). Though the beam was initially cracked, the curves
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still indicate that nonlinearity started after 900kN. Comparison of the strains in the
bottom and top bars in both spans is presented in Figures (7.69) and (7.70) and
show quite similar behaviour. The strain distribution in the bottom bar (Figure
(7.71)) indicates that strain in the steel bar is fairly constant up to 80% of the

ultimate strength.

Figure (7.72) shows the variation of concrete surface strains for increasing loading, a

marked change is evident after 900kN.

The ratio of serviceability load to design ultimate load (0.36) is poor in comparison
to girder TRGRAS2 (1.23); however this is not a true reflection of behaviour
because of the accidental cracking before the test, so that there was no precise idea
of the serviceability load. However, the ratio of measured ultimate load to design
ultimate load (1.54) indicates that skew reinforcement takes higher loads than the
orthogonal reinforcement. In addition, the comparison of this girder with TRGRAS7
indicates that the 15° angle of skew is better than 10° when considering the

ultimate strength.

7.2.4 Series 4

This series consisted of single span deep girders with web openings, namely
TRGRAS9 and TRGRAS10. Girder TRGRAS9 was designed with two openings. One
opening (500*500mm) was placed in the upper mid—depth of the beam in one shear
span and the other (500*500mm) was placed in the lower mid— depth of the beam
in the other shear span. Girder TRGRAS10 was designed with three openings, two
(400*500mm) were placed in one shear span in the upper and lower half, and one
(500*500mm) was placed in the other shear span at the mid—depth. The aim of
this series was to test the direct design technique when the load path is intercepted
by perforations and to study the behaviour of such beams. Both beams were

designed for a load of 1000kN.

Transfer girder TRGRAS9



The first visible crack occurred at 200kN at the beam soffit and the corners of the
openings. The cracks mostly propagated around and widened at the corners of the
openings. On further increase of load the concrete surface strains became higher at
the corners of the upper opening. This opening, which interrupted the load path to
a larger extent than the bottom one, was severely cracked. As the new cracks
formed the load dropped considerably. However, attempts were made to continuously
increase the load either from the dropped point to the next intended increment or
by unloading to zero load and then increasing again. Several times the load was

reduced to zero and applied again as cracking progressed around the openings.

At 437kN cracking became more severe in areas away from the holes, and steel
strains started to increase more rapidly. At 796kN, yielding occurred at the centre of
the span in the bottom bars and also in the bars underneath and above the top
opening. Before failure shear cracks occurred in both shear spans over the top and
bottom of the openings, indicating that the structure was converting into a
mechanism at ultimate load by the rotation of the block between the shear crack at
the exterior bottom corner of the top opening and the shear crack running from the
load bearing block to the top corner of the opening (Figure 7.73). Finally the beam
failed in a clear shear mode with a shear crack running from the loading point to
the exterior corner of the top opening. Most of the steel had yielded except the
transverse steel which took compressive stresses throughout the loading history. The

crack pattern at failure is shown in Figure (7.74)

The load deflection curve showing the load drops is illustréted in Figure (7.75). The
steel strains in longitudinal and transverse steel are shown in Figures (7.76) to
(7.79), these show that most of the steel started nonlinear behaviour from 450kN.
The strain distribution in the bottom bars is shown in Figure (7.80) which

demonstrates that the behaviour is quite different from ordinary beams.

Crack widths were monitored at several points and are illustrated in Figure (7.81).

From these, the 0.3mm crack width serviceability load was determined to be 400kN.



Figure (7.82) shows the variation of concrete surface strains for increasing load.

These show a marked increase after about 300kN.

It should be noted that the serviceability load was based on a crack width which
occurred in local zones around the openings. This may not represent true
serviceability behaviour because stress concentrations at the corners of openings cause
severe cracking, and normally such zones would be strengthened with extra diagonal
reinforcement, provided on an ad hoc basis. Hence, the ratio of the serviceability

load to the design ultimate load (0.40) is not satisfactory.

However the ratio of the measured ultimate load to the design ultimate load (1.05)
is satisfactory. It would appear from the results that the opening in the upper part
of the beam interrupted the load path to a greater extent, and so was more severely

cracked.

Transfer girder TRGRAS10

The first visible crack occurred at 250kN near the top corner of the opening, in the
shear span with the two openings. After that, the majority of crack propagation
occurred around the top opening. At S550kN, a diagonal crack running from the
outside edge of the loading point to the exterior corner of the top opening
appeared, accompanied by a diagonal crack running between the inside corner edge
of the top opening to the far side edge of the bottom opening. During the
progression of these cracks, the load continuously dropped. Attempts were made to
increase the load either from a dropped point to a new intended increment level or
by unloading to zero and then loading in small increments until new cracks
developed or failure occurred. Steel strains showed linear behaviour until the load
reached 600kN. The failure mechanism was the rotation of the block in between the
shear cracks above and below the top opening and a diagonal crack from the nearer
corner of the bottom opening ;owards the support (Figure 7.83). Steel at the top of

the upper opening started yielding at a load of 891kN, after which the load dropped

to 600kN. After this the beam did not attain the higher load again. At failure the
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bottom bars and the bars at the bottom and top of the upper opening had yielded,
the remainder had not yielded. The crack pattern at failure is shown in Figure

(7.84).

The load deflection curve including the load drops is shown in Figure (7.85). It
illustrates that the behaviour was more flexible in comparison to the solid girders,
due to the earlier severe cracking around the opening. The steel strains in the
longitudinal and transverse steel are shown in Figures (7.86) to (7.90), these show

that the curves are approximately linear up to 600kN.

Crack widths were monitored at several points and are illustrated in Figure (7.91).
From these, the 0.3mm crack width serviceability load was determined to be SOOkN.
Figure (7.92) shows the variation of concrete surface strains for increasing load.
These tend to show a marked increase after about S00kN except at points near the

corners of the openings, which showed a slightly earlier increase.

The ratios of serviceability to design ultimate load (0.5) and ultimate to design
ultimate load (0.89) are not satisfactory. This suggests that when the load path is
severely intercepted, reinforcement design based on the averaging procedure is unsafe
unless special precautions are taken around the openings. Both this and girder
TRGRAS9 exhibited poor serviceability behaviour and although the ultimate behaviour
of girder TRGRAS9 was just satisfactory but girder TRGRAS10 was not, which deals
the greater extent of interception of the load path by opening, the less satisfactory
the behaviour when the openings are not additionally strengthened over and above

that required by the design procedure used here.

7.2.5 Series §

This series consisted of one large scale solid deep girder, namely TRGRAS11. This
girder was reinforced as close as possible to the amount required by the direct
design theory by reducing bar diameters at selected points throughout the girder. The

aim was to test the theoretical assumptions and to compare the behaviour of this
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reinforcement field with those using the average or maximum stress envelopes. The

girder was designed for a load of 1000kN.

Transfer girder TRGRAS11

The first visible crack occurred at a load of 250kN near the beam soffit. With
increasing load, more cracks appeared in the maximum tensile zone at points where
steel bar diameters were reduced to the required values. Initially cracks propagated
vertically upwards from the beam soffit. At about the design load, some major
cracks appeared along the line joining the support and the loading point. As
cracking progressed the steel started taking more stress. At 1153kN, the steel started
yielding in the bottom bars and the beam finally failed at a load of 1750kN in a
clear shear failure. All the main and shear reinforcement had yielded throughout the
structure and were well above the yield strain at failure except at points in the
stirrups which were carrying compressive stresses. The crack pattern at failure is

shown in Figure (7.93).

The load deflection curve of the girder in Figure (7.94) illustrates that, before
cracking, behaviour was linear. The strain in steel is shown in Figures (7.95) to
(7.98) and illustrates that nonlinearity starts after 500kN. The distribution of steel
strain in various bars along the length of the girder is shown in Figures (7.97) to

(7.103), these clearly show that the distribution is different from ordinary beams.

Crack widths were monitored at several points and are illustrated in Figure (7.104).
From these, the 0.3mm crack width serviceability load was determined to be 1050kN.
Figure (7.105) shows the variation of concrete surface strains for increasing load.

These show a marked increase after the shear crack at a load of 1050kN.

The ratio of the serviceability to design load (1.05) is satisfactory, whereas the ratio
of ultimate load to design load (1.75) is higher than expected. Some of this can be
attributed to the contribution of the dowel action of main reinforcing bars and

aggregate interlocking in transferring shear. However, the reinforcement reduction at
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selected points throughout the girder means that at no point was the steel less than
that required, and in some places it was much higher than required. The averaging
procedure used elsewhere in this work produced ultimate loads on average 45%
higher than the design load. This is less, because some regions are underreinforced
and others are over— reinforced, producing less favourable load paths. Linl4] used

maximum stress envelopes and observed 100% higher ultimate loads than design

ultimate loads.

7.3 General discussion of experimental results
The detailed discussion of experimental behaviour of individual girders was given in

section 7.2. This section summarizes the results under the following headings.

(i) Deflections

(ii) Strains

(iii) Crack propagation and crack widths
(iv) Mode of failure

(v) Limit state behaviour

7.3.1 Deflections

The measurement of net deflections in deep beams is a challenging task because the
deflections are always small and the isolation of effects due to the squeezing of
plaster or support settlements are difficult to quantify. Neverthless Figures (7.106)
and (7.107) attempt to compare the load deflection curves of groups of girders

tested in this study.

In all two span continuous girders, prior to the initiation of cracks, very small
deflections were observed and the load deflection relationships were approximately
linear. After the initial flexural cracking, subsequent load increases caused increases
in crack lengths and widths and accordingly the flexural stiffness of the section
progressively deteriorated. After the occurrence of diagonal cracks, deflections

increased rapidly and the final failure was imminent except for the girders with skew
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reinforcement, in which case the final failure was considerably later. The deflections
were larger in girders having span to depth (L/D) ratio equal to 1.61 (TRGRAS4

and TRGRASS) than those girders having span to depth (L/D) ratio equal to 1.07.

In general, deflections were small in all continuous girders and were of the order of
1.0mm at 80% of the measured ultimate load. The serviceability limit state criterion,
based on BSCP8110[5], was not attained in those girders whose span to depth ratio
was 1.07, whereas girders having span to depth (L/D) ratio equal to 1.61 attained
serviceability behaviour at about ultimate load stage. Thus, the serviceability limit

state, with respect to deflection, is not a problem.

The load deflection curves of girders with perforations indicate that behaviour was
linear up to 200kN, after which cracking started and the curves became nonlinear.
The load deflection curves of both girders are more or less similar. The stiffness of
girder TRGRASI0 in the post— cracking range is less than girder TRGRAS9, which
is to be expected because it had a greater area of openings interrupting the load

path.

The load deflection curve of girder TRGRAS11 has a similar form to two span
continuous girders, but the deflections are smaller than the perforated girders.
However the curve indicates a unique behaviour in that there is no sharp increase in
deflection at the occurence of a diagonal shear crack. The deflection criterion for

serviceability limit state was not attained in this case.

7.3.2 Strains
The concrete surface strains were not consistent and at some critical points, cracks
appeared and the demec gauges came off. Hence a comprehensive comparison from

girder to girder cannot be made and only the steel strain will be discussed.

In general, the behaviour of steel strain was similar to the load deflection behaviour.
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In all continuous girders, before cracking the behaviour was linear and relatively
small strains existed. As cracking started a gradual increase of strain was observed in
all bars including the stirrups. After the formation of a diagonal crack the steel

started to yield, the stress rapidly increasing well into the work— hardening range.

For loads up to 75% of ultimate strength, the strain distribution along the length for
girders having span to depth (L/D) ratio of 1.07, is approximately constant on
average. For girders having span to depth ratio equal to 1.61, the strain distribution
is constant up to 52% of the ultimate strength. The distribution becomes more like

that in the shallow beams as stress redistribution take place.

The data also suggests that the steel strains are larger for higher span to depth
ratios at all load levels. The yielding in all two span continuous girders on average

at the load approximately equal to design load.

For girders with perforations early yielding of steel depends on the extent to which
the load path is intercepted by the openings. Figures (7.76) and (7.84) reveal that in
girder TRGRAS10 yielding started earlier than girder TRGRASY9. The yielding of
steel, in the perforated deep girders, occurrred at 80% of the design load on
average, which is lower than the design load. This might be due to the perforation

interception of the load path.

The strain distribution of girder TRGRAS11 shows evidence of arching action. The
strain in reinforcement at various heights indicate that the main bars are carrying a
constant force. The yielding of steel in a single span solid girder occurred at the

design load

7.3.3__Crack propagation and crack widths

The formations of cracks can be conveniently classified into two major groups for

two span continuous girders:
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(i) Flexural cracks, which started from the beam soffit and propagated towards the
loading point, or started at the top above the intermediate support and propagated
towards this support. It was generally observed that cracks did not occur until a load
of 0.20 to 0.35 of the design ultimate load had been applied except for girder
TRGRASS8, which was accidentally cracked before testing. In girders TRGRAS4 and
TRGRASS with span to depth (L/D) ratio of 1.61 these cracks reached 0.3mm crack
widths before the formation of a diagonal shear crack.

(ii) Shear (i.e diagonal splitting) cracks occurred after about after 68% of the
measured ultimate load, originating from the inside face of the support to the
outside edge of the loading point. In some beams parallel cracks formed. The shear
crack was more severe in the interior shear span than the exterior shear span, as

was expected, since the interior shear span carries a higher shear load.

Crack width curves (Figure (7.108) show that the maximum crack widths were
greater in girders having a span to depth (L/D) ratio of 1.61 and consequently the
serviceability loads, based on the maximim crack width criterion, were lower than for

girders having a span to depth (L/D) ratio of 1.07.

For the beams with web openings, the initial cracks appeared in the region of the
maximum tensile strain around the openings, propagating from the corner of the
opening towards the support and loading points. The shear cracks occurred at about
0.5 of the ultimate load running from the top exterior corner of the top opening
towards the loading point. The monitored maximum crack width of TRGRAS9 and
TRGRAS10 was of similar order. The maximum crack widths (Figure (7.109)) were

wider than the solid girder, which is clearly due to the web openings.

7.3.4 Modes of_failure

It was mentioned in Chapter Two that whatever the initial cracks in deep beams the
eventual failure will be a type of shear failure, although it has been reported that
premature failure such as bearing failure or the spalling and splitting of concrete

near supports can occur. In this investigation all the tested girders exhibited a wide
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range of cracking, but the final collapse was a shear (i.e diagonal splitting) mode,
when the high force in the compression strut caused it to suddenly split. In the two
span continuous deep girders shear failure always occurred in one of the interior

shear spans.

‘The modes of failure in perforated girders were also shear type over the top of the
top opening. The shear cracks always occurred from the exterior corner of the top
opening to the loading point and from the nearer corner of the opening to the
support. At failure a block between these two shear cracks rotated and the load
path was destroyed. The summary of all the types of modes of failure is given in

Table 7.2.

7.3.5. Limit state behaviour
mj
7.3.5.1 Serviceabi* behaviour

Serviceability load according to BS 8110[5] is based on the one of the following
criterio:
(a) Deflection limit of span/250
(b) Maximum crack width of 0.3mm
and normally, the minimum serviceability load of the two criterion is considered as
the serviceability load for a particular section of the structure. Since deflections are
small in deep beams only the crack width criterion has been used and these are
summarized in Table 7.1. The average serviceability load for a two span continuous
girder is 0.91 of the design ultimate load, for a single span girder with web opening

it is 0.45, and for single span solid girder it is 1.05.

In order to gain an idea of serviceability load, the ratio of serviceability load to
concrete compressive strength (Ps/fc') against X/D ratio is illustrated in Figure
(7.110) for all the two span continuous girders. Because of the limited amount of
data and the effect of other parameters on the data, it was difficult to suggest any
equation for this relationship. However, the trend indicates that a larger shear span

to depth (X/D) ratio produces lower serviceability behaviour.
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7.3.5.2 Ultimate limit state

The measured ultimate loads for all the tested girders are presented in Table 7.1.
The ultimate strengths are different for all girders due to differences in concrete
strengths, difference of shear reinforcement, main reinforcement, L/D or X/D ratios
or because of skew reinforcement. The ratio of ultimate strength to concrete
compressive strength (Pu/fc') against percentage of main reinforcement (pt),
percentage of shear reinforcement (ps) and shear span to depth ratio (X/D) for all
continuous girders are illustrated in Figures (7.111) to (7.113). Again, because of the
limited amount of data and the effect of other parameters on the data, it is difficult
to suggest any relationship for predicting the ultimate strength of a girder. However,
the ultimate strength would appear to be affected by the X/D ratio, when the span
length of girder was increased the ultimate strength decreased considerably (i.e girder

TRGRAS4 in comparison with girder TRGRAS2).

An examination of ultimate strength of both perforated girders reveals that the
ultimate strength depends upon the extent to which an opening interrupts the load
path joining the bearing block and the loading and support points. Serious strength
reduction occurred in girder TRGRAS10 (which had two opening in one shear span)
as compared to girder TRGRAS9 (which had one opening in each shear span). Also
the comparison of the perforated girders with the solid girder indicates significant

strength reductions, again because the load path is intercepted by the openings.

7.4 Appraisal of direct design method

Two span continuous girders

All the two span continuous deep girders designed by the direct design technique in
conjunction with the proposed averaging procedure, produced satisfactory overall
behaviour.

(2) The serviceability behaviour based on 0.3mm crack width always occurred at 80%

to 125% of the design load.

(b) The measured ultimate loads were 25% to 60% higher than the design ultimate
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loads, which gives an intrinsic safety factor against collapse.

(c) First yielding of steel occurred approximately at the design loads or in some
cases later. Most of the steel had yielded near ultimate conditions. This suggests that
redistribution of stresses was possible as that failure occurring in local regions, and
that the ductility requirements were adequate.

(d) Crack widths were not severe because of the control given by the better
distribution of reinforcement obtained using the direct design technique rather than
CIRIA Guide 2.

(e) The use of skew reinforcement produced significantly higher ultimate and

serviceability loads than the orthogonal reinforcement.

Perforated girders

When applying the direct design technique to deep girders in which the load path is
intercepted by web openings the proposed averaging procedures leads to difficulties in
coping with the corners of the openings, where a high concentration of stress exists.
In these situations the corﬁers should be considered as local zones with additional
diagonal reinforcement being provided. The greater the extent of the load path by

the web openings interception the less satisfactory the behaviour.

Special girder

The behaviour of the solid single span girder which at selected points was reinforced
as closely ~as practically possible to that required by the direct design equations,
provided an ultimate load 75% higher than the design load. This may be explained
by the dowel action of the reinforcing bars and aggregate interlocking which
contribute the shear transfer. Also the fact that reinforcement was provided higher
than calculated due to the practical reasons. In comparison to reinforcement provided

on averaging procedure, the ultimate behaviour is satisfactory.
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TABLE 7.2

Failure modes of tested girders

Girder No. Mode of failure
TRGRAS1 Shear failure
TRGRAS2 Shear failure
TRGRAS3 Shear failure
TRGRAS4 Shear failure
TRGRASS Flexure-shear failure
TRGRAS6 Shear failure
TRGRAS7 Shear failure
TRGRASS Shear failure
TRGRAS9 Shear failure
TRGRAS10 Shear failure

TRGRAS11

Shear failure
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FIG(7. 19) Load deflection curve for girder TRGRAS3
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FIG(7.28) Load deflection curve for girder TRGRAS6
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FIG (7. 65) Load deflection curve for girder TRGRASS
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Figure (7.73) Failure mechanism of girder TRGRAS9
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Figure (7.83) Failure mechanism of girder TRGRAS10
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CHAPTER EIGHT
THEORETICAL INVESTIGATION AND DISCUSSION

8.1 Introduction

The aim of this chapter is to provide some perspective on the application of the
nonlinear finite element method to the tested girders. At present, this is the main
technique for predicting the complete nonlinear behaviour of existing designs.
Although in the last three decades, much has been learned about this technique, its
reliability depends on the ingenuity and skill of the engineer. This is because it is
an approximate iterative method based on various assumptions and, depending on
their validity, it may or may not provide a true picture of behaviour. Experience
gained in nonlinear analysis suggests that some experimental verification is essential
when complex behaviour is to be analysed to give confidence for conducting
parametric studies once the reliability of the developed model for a particular

problem has been validated.

Finite element analysis of reinforced concrete predicts the general behaviour of the
structure including load— deformation, stress flow, crack patterns, yielding of steel,
and failure mechanism. It has so far been difficult, if not impossible, to predict
accurately every aspect of the actual behaviour. Many comparisons have used the
stiffness and ultimate load, that is the load deformation behaviour. However, a good
agreement with experimental results is relatively straightforward to achieve, by
adjusting certain factors, such as quasi— material parameters like the shear retention
and tension stiffening factors. Other consequences resulting from adjusting these
parameters on the general structural behaviour, such as crack pattern, yielding of
steel, stress and strain history in the structure, and the failure mechanism, are not
always considered thoroughly. For example, Al—Manaseer and Phillips[l] have
recently demonstrated the effect of the quasi—material parameters on load
deformation behaviour, cracking and failure mechanisms of the structure, which warns

analysts not to rely solely on just load— deformation behaviour.

In this chapter, the results of the nonlinear finite element analysis are presented and

verified using load deflection curves, steel strain history, crack patterns, deformational
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behaviour of the structure in the form of distorted finite element mesh, and three
dimensional views and contours of the maximum shear strains. Results for girder
TRGRAS1 will be presented in detail, the behaviour of the other two span girders
was similar and will only be discussed briefly. The comparison of ultimate loads is
summarized in Table 8.1. A numerical parametric study of two span continuous
girders was also carried out, and the results of these are presented in section 8.4.

This study supplemented the experimental tests.
In addition, a comparison has been made with other empirical formulae developed
for predicting the ultimate capacities of deep beams. These are presented in section

8.7.2 and Tables 8.10 to 8.14.

8.2 Sensitivity studies of the nonlinear finite element method

A sensitivity study was carried out on the following aspects:

(i) The finite element mesh

(ii) The shear retention factor

(iii) The tension stiffening factor

and this will be presented first. Girders TRGRAS1 and TRGRASS were used for this

purpose.

Throughout the analysis a 3*3 Gauss integration rule was used. The element
stiffnesses were recomputed at the first iteration of each load increment. The
maximum number of iterations was kept to 10 for the two span continuous girders
and for the solid single span girder and for perforated girders was kept to 30. The
convergence tolerance was set to 5%. All the reinforcing bars were embedded as

close as possible to their positions within the girders themselves.

8.2.1 Mesh sensitivity

Because of symmetry, only one span of the two span continuous girder was

considered for nonlinear analysis. Five different meshes of 10, 20, 28, 42 and 54

elements . . . .
fwere studied with a linear— elastic analysis as shown in Figure(8.1) using the same




boundary conditions and loading application point. The central displacement versus
the number of degrees of freedom is plotted in Figure(8.2). The displacement
increased about 8% when the mesh was refined from ten to twenty elements, about
2% from twenty to twenty eight, about 1.5% from twenty eight to forty two and
1% from forty two to fifty four. Thus it was concluded that a mesh containing a
maximum of 42 elements was the best choice. For girder TRGRASS, 48 elements

were used in order to better simulate the reinforcing bars.

In the single span perforated girders, openings were placed at different locations in
each shear span, so it was not possible to use symmetry. In this case, 100 and 108
elements were used, in both the elastic and nonlinear analysis, in order to represent
the reinforcing bars accurately. For these girders, a mesh convergence study was not
carried out because the number of elements were already high and were considered
to be sufficient. For girder TRGRAS11 only one half was analysed as it was

symmetrical and 60 elements were used.

8.2.2 Shear retention factor

A study was carried out to evaluate the effect of the shear retention factor on the
ultimate strength and overall behaviour. Four different constant values of shear
retention were used, 0.1, 0.25, 0.5 and 0.75 respectively, for girder TRGRAS1. The
results are presented in Figures (8.3) to (8.5). It is clear from these figures that the
shape of the deflection and steel strain curves are not greatly affected by various
values of the shear retention factor, but the failure load is affected. The summary
of results in terms of ultimate strengths is presented in Table 8.2. Although several
researchers have proposed a constant shear retention factor of 0.502,3] as well as
variable valuesl1,4,5] for deep beams, in this study 0.25 seemed satisfactory and so

was used in the analysis of all girders.

8.2.3 Tension stiffening study

A study of tension stiffening models was carried out on girder TRGRASS. Figures

(8.6) to (8.8) show the comparisons of experimental and theoretical results using
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different models and Table 8.3 summarizes the effect on the ultimate strength. It

appears that tension stiffening has a tendency to:

(a) increase the ultimate load.
(b) improve the shape of load deformation curve.

(c) give a stiffer response for secondary behaviour i.e steel strains etc.

However an increase in the load would give a worst predictions for some of the
other girders. Therefore, using tension stiffening parameters for girders designed by
the direct design method in conjunction with the averaging procedure did not
improve all aspects of behaviour. Since this was the intention rather than relying
solely on the load deflection and ultimate strength, it was decided to omit tension

stiffening from the analysis altogether.

8.3 Comparison of the theoretical and experimental results

Figure (8.9) shows the finite element mesh used for TRGRAS1 and Figure (8.10)
illustrates the details of the reinforcement used in the analysis. Figure (8.11) shows
the load deflection curve and demonstrates that general trends and ultimate strength
were satisfactorily predicted. The ratio of predicted to experimental ultimate strength
is 0.98. The theoretical curve is more flexible up to 40% of ultimate load, after
which it is stiffer than the experimental curve. The discrepency between these curves
might be attributed to the difficulties in measuring the experimental deflection by
mounting a handy angle frame on the model itself. This is another reason why it is
not wise to rely solely on the load deflection curve for verifying the analytical

model. The post— cracking behaviour is predicted with reasonable accuracy.

The steel strain is examined for both longitudinal and transverse reinforcement in
Figures (8.12) and (8.13). Reasonable agreement can be seen between predicted and
experimental behaviour. These curves show that neither the longitudinal steel nor the
stirrups recorded any significant strains prior to concrete cracking. After cracking,

there is a considerable increase in the strains and this is well predicted. However,
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the accuracy of these predictions vary between remarkable to fairly acceptable. The
comparison of yielding of the main and transverse steel indicates that yielding in the
finite element model occurred at a later stage than the experimental. This was due
to the assumption of full bond between reinforcement and concrete in the finite
element analysis, whereas in the real structure, as the cracking progressed, the bond
would deteriorate and the steel would take over the load earlier than in the

theoretical model.

The predicted deformational behaviour and crack progression for all girders tested in
this study are given in detail in a departmental report . However, a resume' for
girder TRGRAS1 is shown in Figures (8.14) to (8.16). The deformations are

exaggerated ten times in these figures.

Cracks started in the local zones (i.e support points) and at the beam soffit at a
load of 375kN. On a further increase in load, more cracks occurred at the centre of
the beam span and started propagating towards the loading point (Figure (8.14), and
continued to do so until 750kN (Figure (8.15)) when a few cracks occurred at the
top of the intermediate support in the tensile zone. At 900kN (Figure (8.16)), shear
cracks appeared running from the inside face of the support towards the loading
point. The cracking in the interior shear span was more severe than the exterior
shear span. Some secondary cracks also appeared at the beam soffit at the bottom
tip of the shear crack. This illustrates the arching behaviour in both interior and
exterior shear spans. More cracks occurred at loads of 1125kN and 1275kN and the
formation of the shear crack in the interior shear span was then quite clearly
evident. The final failure was at 1312kN, the crack pattern is not given at this
particular increment, because of the numerical instability in nonlinear analysis which
occurs at failure. The final crack pattern clearly indicates that the shear failure takes
place in the interior shear span running through the intermediate support to the

loading point.

The final predicted crack propagation is in reasonable agreement with experimentally
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observed crack propagation, as shown in Figure (8.17), except in the local regions of
the loading and support points. In the experiments these areas were clamped by

N
external steel plates, as a result either the cracks were prevented from occuring or

they could not be observed.

At an increment before failure, Figure (8.17) tends to show that the shear
deformation were larger in the interior shear span suggesting that the beam was

failing in a shear mode.

Maximum shear strains were small as cracking started as shown in Figure (8.18) for
a load of 600kN. At 825kN, large shear strains were concentrating towards the
loading points in both shear spans, but by 975kN the shear strains were clearly
higher in the interior shear span and were concentrated along the line joining the
support and the loading point. After this, the maximum shear strains became more
significant in the other shear span, although they were still about half the value of
the interior span. At 1275kN, the increment before failure, the maximum shear
strains clearly indicate that the failure of the beam will be by shear along the line
joining the support and the loading point in the interior shear span as shown in

Figure (8.19). This agrees well with the experimental failure mechanism.

The above results tend to confirm the adequacy of the modelling approximations
with regard to boundary conditions, load increment size, load application, material
modelling, and the shear retention and tension stiffening parameters. These were

then used for all other analysis.

The load deflection curves for the specimens in the first series, TRGRASI,
TRGRAS2, TRGRAS3 and TRGRAS6, are illustrated in Figure (8.20). The
pre—cracking and post— cracking behaviour are reasonably predicted for all girders
except the load— deflection curve for girder TRGRAS2, which might be attributed to
the difficulties in measuring the experimental deflections by mounting handy angle

frame on the model istself, although the predicted post— cracking behaviour gives a
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slightly stiffer response. The predicted and measured ultimate strengths are within

4%, with a mean ratio of 0.98 which is very satisfactory.

Figures (8.21) to (8.25) compares steel strains for both longitudinal and transverse
steel for girders TRGRAS2, TRGRAS3 and TRGRAS6. Again the predictions are

similar to girder TRGRASI] and are in reasonable agreement.

The predicted deformed shape and crack progression for girders TRGRAS2,
TRGRAS3 and TRGRAS6 are similar to girder TRGRAS1 and compare well with
experimental crack patterns as illustrated in Figures (8.26) to (8.34). Cracks always
started at the beam soffit, and eventually lead to shear failure in the internal shear
span. There was less cracking in the external shear span of girder TRGRAS6, due
to the concentration of reinforcement at the bottom of the beam, and this was well

predicted.

The maximum shear strains were similar to girder TRGRAS1 and are not presented
here. However they also confirm that failure was due to shear in the interior shear

span.

Figures (8.35) to (8.38) show the finite element meshes and reinforcement details for
girders TRGRAS4 and TRGRAS5. Figure (8.39) shows the load deflection curves.
The finite element model predicted the overall behaviour of TRGRAS4 quite
reasonably, giving a predicted to measured ultimate strength ratio of 1.0 although the
stiffness in the final 20% of loading was much higher than the experimental.
However, for girder TRGRASS, the ultimate strength was underestimated by 22%
although the post—cracking stiffness was similar to the experimental value. This
underestimate might be due to the fact that the reinforcement provided over the
intermediate support was insufficient to control the severe cracking which occurred in
this region in the numerical model. This would lead to sperious local mechanism,

causing premature breakdown of the numerical solution, and hence underestimating

the ultimate strength.




363

Figures (8.40) to (8.43) compare the steel strains curves for longitudinal steel and
stirrups. These demonstrate that the theoretical response is stiffer than the

experimental but, with one or two exceptions, general trends are on the whole

satisfactorily predicted.

The deformed shape and crack progression were similar to girder TRGRAS1 except
that deformations were larger because of the larger span length. Comparisons of
experimental and theoretical crack patterns are given in Figures (8.44) to (8.49).

Again satisfactory agreement is evident, except for local regions.

The maximum shear strains are illustrated in Figures (8.50) and (8.51) for
TRGRAS4 and demonstrate the shear failure mechanism along the line joining the

support and the loading point in the interior support.

Figures (8.52) and (8.53) show the finite element mesh and reinforcement details for
the skew reinforced girder TRGRAS7. Similar details were used for girder TRGRASS8
except the different angle of skew. Figure (8.54) compares the load deformation
curves for both girders and demonstrate reasonable predictions in both the
pre— cracking and post— cracking ranges. The mean of the ratio of predicted to

measured ultimate strengths is 1.02.

Figures (8.55) to (8.58) compares the steel strains for longitudinal and shear
reinforcement. Generally speaking, there is reasonable agreement for TRGRAS7.
However, the experimental behaviour of TRGRAS8 is much more flexible, which is

probably due to the accidental load applied before starting the test.

The deformed shape and crack progression are illustrated for different load levels in
Figures (8.59) to (8.64). Again, satisfactory agreement is evident except for local

regions.




The maximum shear strains are illustrated in Figures (8.65) and (8.66) for

TRGRAS7, and again suggest a shear failure mechanism as observed in the

experimental study.

Figures (8.67) to (8.70) show the finite element meshes and details of reinforcement
used for the perforated girders TRGRAS9 and TRGRASI10. Figure (8.71) compares
the load deformation curves. The predictions are reasonably good, except for the
stiffer post— cracking behaviour for TRGRASO. In the test, failure was initiated
locally by cracking around the opening which might have caused early bond
deterioration. In the finite element analysis this was not the case and thus a more
stiff response occurred. However the mean ratio of the predicted to measured

ultimate strengths is 1.0, which is highly satisfactory.

The comparison of the experimental and theoretical steel strains are presented in
Figures (8.72) to (8.75). The comparsion is generally satisfactory, however some
strains were poorly predicted, particularly in the stirrups. This is probably due to the
bond deteriorations which were not properly modelled in the finite element analysis.
Also the predicted response tended to be stiffer than the experiment in the

post— cracking stages.

Figure (8.76) shows the cracking in TRGRAS9 at 420kN. Cracking started at corner
2 of opening A at a load of 240kN. With increase in load to 300kN and beyond
more cracks occurred at corner 2 and 4 of both openings, and near the beam soffit,
extending towards the loading point. At a load of 420kN more cracks appeared, in
particular a horizontal crack appeared from the end of the beam extending towards
corner 1 of opening B. Figure (8.77) shows how the cracks had extended by 720kN.
At 480kN, more flexural cracks at the beam soffit occurred, extending vertically, and
also more cracks propagated around both openings. At 600kN, more cracks appeared
from the beam soffit and joined the bottom of openings A and B, and propagated
towards the loading points. The cracks which occurred at the centre of the beam

were vertical.
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Figure (8.78) shows the extent of cracks at 1020kN. At B800kN severe cracks
occurred around opening B, and cracks which joined corner 1 and the loading point
behaved like a shear crack. Similar behaviour was evident from the deformed shapes
over the top of opening B. Also at this load the horizontal crack extended to corner
1 of opening B, after which the block above the opening bounded by the diagonal
shear crack and the horizontal crack started to become more distorted. This indicates
that the block is trying to rotate and that the diagonal shear crack over the top of

opening B will cause failure, as can be seen in Figure (8.78).

The comparison of experimental and theoretical crack patterns illustrated in Figures
(8.76) to (8.78) show good agreement and suggests that the finite element model is

quite capable of handling the perforated deep beam analysis.

The maximum shear strain plots shown in Figures (8.79) and (8.80) show that as
cracking progresses the maximum shear strains start to increase and concentrate in

the shear crack zones particularly over the top of opening B, where failure occurred.

Figure (8.81) show the extent of cracking in TRGRAS10 at a load of 420kN. When
the load was at 180kN, the first numerical cracking occurred at corner 1 and 3 of
openings B and C; in addition some cracks also appeared in the beam soffit. On a
further increment in the load more cracks appeared in the other shear span at
corners 2 and 4 of opening A. At 360kN, cracks appeared at the beam soffit and
extended vertically. At this load a horizontal crack also appeared from the end of
the beam extending towards corner 4 of opening C. On a further increase in load,

more cracks occurred extending around openings B and C.

Figures (8.82) and (8.83) show the growth of cracks at 720kN and 780kN
re%ectively. At 600kN, more cracks appeared around all the openings and started
extending towards the loading point, forming diagonal shear cracks between corner 4

of opening C and the loading point, and between corner 4 of opening B and corner
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2 of opening C. Also a horizontal crack appeared at the end of the beam extending
towards corner 3 of opening A. A further increase in load caused more cracks and
some secondary cracks occurred in the zone between opening B and C close to
corner 4 of opening B, and also at the top of opening C at corner 4. At this load,
the deformed shape also showed the significant appearance of a shear crack over the
top and at the bottom of opening C. At 840kN, a diagonal crack occurred over the
top and bottom of opening C as is evident from the deformed meshes.

This description is essentially the same as occurred experimentally as can be seen in

Figures (8.81) to (8.83).

The maximum shear strains (Figures (8.84) and (8.85)) also illustrate the high
concentration of the shear strains around opening C and B and show that the failure
mechanism is probably due to the diagonal shear crack over the top opening C and

between openings C and B.

Figures (8.86) and (8.87) show the finite element analysis mesh and details of the
reinforcement used in the analysis of girder TRGRAS11. Details of bar diameters
were given in Chapter Five. Exact steel areas as used in the actual test were used
in the nonlinear finite element analysis. Figure (8.88) shows the comparison of the
experimental and theoretical load deflection curves. The predicted ultimate strength is
satisfactory but the predicted stiffness is more flexible at low loads and becomes

more stiffer than the experimental values at higher loads.

Figures (8.89) and (8.90) show the comparison of the steel strains in longitudinal
steel and steel stirrups. The predicted pre— cracking and post— cracking behaviour is

in reasonable agreement with experimental behaviour.

Figures (8.91) to (8.93) illustrate the crack development at loads of 640kN, B00kN
and 1760kN in the nonlinear analysis. The first crack occurred at 400kN at the
beam soffit in the tensile zone. On a further increase in load more flexural cracks

occurred in the beam soffit extending in the vertical direction. Cracks already
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existing between the loading point and the centre of the girder continued to extend
in a vertical direction, but cracks in the shear span started to bend round towards
the loading point, forming diagonal shear cracks. This confirms that failure was a
flexural— shear type mechanism. Severe cracking occurred at a load 1454kN near the
support face and extended towards the loading point. Similar behaviour was evident
from the deformed meshes. The comparison between experimental and predicted
crack patterns is good except in the local regions which were clamped with steel

plates in the experimental tests.
Shear failure is very clear from the maximum shear strain contours shown in Figures
(8.94) and (8.95). These indicate that failure took place along the plane joining the

support to the loading point.

The finite element analysis also confirms the much higher ultimate strength compared

to the design ultimate load.

8.4 Parametric_study

Since satisfactory predictions were given by nonlinear finite element analysis in the
previous section, further numerical experiments were conducted on two span
continuous girders. The object of this exercise was to study the effect of various
other factors on the ultimate strength of a transfer girder designed by the direct
design technique which had not been examined experimentally. These results will be
combined with experimental results of Chapter Seven in order to extend the

experimental conclusions.

8.4.1 Parameters chosen for_investigation

Table 8.4 shows the details of the numerical models. This includes three specimens
of the experimental programme to aid comparison. The main variables investigated
are given as follows and the results are given in Table 8.5.

(a) The effect of the shear reinforcement on the ultimate strength.

(b) The effect of clear shear span to depth (X/D) ratios on the ultimate strength.



(c) The effect of skew reinforcement on the ultimate strength.

(d) The effect of different reinforcement distribution on the ultimate strength.

(a) The effect of shear reinforcement on the ultimate strength.

The effect of the shear reinforcement on the ultimate strength was studied by using
the material properties of girder TRGRAS2 to analyse girder T11 (i.e TRGRAS1)
and T12 (i.e TRGRAS2) by nonlinear finite element analysis. The results are given
in Table 8.5, and indicate that the ultimate strength increases with increase in the
shear reinforcement. The addition of one extra 6mm diameter bar stirrup in the

interior shear span increased the ultimate load by 6%.

{b) The effect of clear shear span to depth (X/D) ratio on the ultimate strength.

In order to study the effect of clear shear span to depth (X/D) ratio on the
ultimate strength two more continuous girders were designed by the direct design
technique to cover the ultimate strength ranges of X/D ratios varying from 0.3 to

0.64. The details of these girders are given in Figures (8.96) and (8.97).

These girders were then analysed by nonlinear finite element model. The results are
given in Table 8.5, which indicates that increse in clear shear span to depth (X/D)
ratio reduces the ultimate strength. However, a graph has been plotted as shown in
Figure (8.98), which shows the reduction in ultimate strength with increase in X/D
ratio. This confirms the earlier findings of Kong et al and other researchers that the

deeper the beam, the higher is the ultimate strength.

(c) The effect of skew reinforcement on the ultimate strength.

To study the effect of skew reinforcement on the ultimate strength four more
continuous girders were designed by the direct design technique with different skew
angles from those covered in the experimental programme. The details of these

girders are given in Figures (8.99) to (8.102).

Nonlinear finite element analysis was carried out to predict the ultimate strengths.

o2}
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The results are given in Table 8.5, which indicates that skew reinforcement takes
higher ultimate strengths. A graph of ultimate strengths versus skew angle is given in
Figure (8.103) which includes both the experimental and theoretical predictions. It
clearly shows that strength increases steadly up to skew angle of 10°, after which it

increases more rapidly. It was found that an angle between 15° and 20° was the

best for the girders in this study.

(d) The effect of different reinforcement distribution on the ultimate strength.

Two different reinforcement distribution have been studied experimentally in this
investigation. But because of the variation in the material properties, it was not
possible to make conclusions about the effectiveness of these distributions on the
ultimate strength. Therefore, in this section the material properties were kept

constant in order to study different reinforcement distributions:

(i) Girder TRGRAS3 was identical to girder TRGRAS6 except for the reinforcement
distribution and material properties. Therefore, girder T41 (i.e TRGRAS6) was
numerically studied by using the same material properties as girder TRGRAS3.
Girder T41 produced 30% less strength than girder TRGRAS3.

(ii) Girder TRGRAS4 was identical to girder TRGRASS5 except for the reinforcement
distribution and material properties. Therefore, girder T42 (i.e TRGRASS) was
numerically studied by using the same material properties as girder TRGRAS4.

Girder T42 produced 8% less strength than girder TRGRASS produced numerically.

However, the results have indicated that CIRIA Guide 2 distribution is not so

effective as that of the direct design technique.

8.5 Discussion of finite element analysis

The aim of this study was to assess the general predictions which may be made
from the nonlinear finite element model. The predictions have confirmed that large
scale continuous and single span girders with web openings can be satisfactorily

analysed by nonlinear finite element analysis. The load— deflection behaviour,
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cracking, failure mechanism, yielding of steel were found to be in reasonable
agreement with experimental behaviour. This suggests that the model can be used

confidently for further numerical parametric studies.

Its versatility in predicting most aspects of behaviour allows additional information to
be obtained which cannot be observed experimentally. For example, the maximum
shear strains and deformed shapes have provided extra information about the failure

mechanism rather than relying on crack patterns alone.

The use of a constant shear retention factor of 0.25 for girders designed by direct
design technique in conjunction with the averaging procedure gave a reasonable

prediction when compared with observed ultimate strengths.

Although the wuse of tension stiffening for girder TRGRASS demonstrated that it
would improve the ultimate load and load deformations, it also provided much stiffer
response for steel behaviour. However an increase in the ultimate strength would
give worse predictions for other girders of this study. Thus, tension stiffening was

omitted.

8.6 Comparison of the direct design technique with various proposed formulae

As mentioned in chapter two, a considerable amount of work has been reported on
the simple supported deep beams, and a lot less on continuous deep beams. Various
empirical formulae and truss models have been proposed from time to time for both
design and analysis purposes. This study has verified experimentally and by nonlinear
analysis that the direct design technique is satisfactory in both serviceability and
ultimate behaviour, showing that it is a natural design— oriented method. This section
will compare the use of some of these other formulae on the girders tested in this
study in order to highlight the suitability of the direct design method as a design

tool for producing economic reinforcement.
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8.6.1 Design of tested transfer girders

Six formulae, already described in detail in Chapter Two, have been used to design
the reinforcement for the girders tested in this study. All, except Kotsovos's formula,
have been used widely either in U.S.A or British practice, or appear in the
European work. These formulae are as follows: Portland Cement Association (PCA)
methodl6], CEB-FIP Model Codel7], ACI Codel8], CIRIA Guide 2[9], Kong et alll0]

and Kotsovos'sl11] formulae.

Most of these formulae were developed from single span deep beam studies, but
include design rules for continuous deep beams as well. They give procedures for
obtaining main and shear reinforcement, although some disregard shear reinforcement
altogether, while some of the other formulae provide shear reinforcement on an ad
ruinlavummt
hoc basis. Table 8.6 to 8.11 summarizes theldesigns given by these formulae and
compare them with the direct design method. These tables clearly shows that the
direct design technique is generally economical in the use of both main and shear
reinforcement. Because all the code— prescribed formulae have provided higher
reinforcement than the direct design technique, however, some formulae were
supplied with partial factor of safety for steel (ym=1.15). The provision of the
shear reinforcement is on ad hoc basis, also there is no idea how design will behave

in serviceability and ultimate behaviour whereas direct design is proved to be

satisfactory in both serviceability and ultimate behaviours.

The development of the plastic truss model by MacGregor et all12,13] has been
applied to continuous deep beams and its use has been advocated for designing deep
beams. The author tried to apply the plastic truss model to the girders tested in this
study, but it was found that MacGregor et al had used an iterative process of
rebuilding the geometry of tested beams and using a different concrete effectiveness
factor for their two different series of beams. For example, in reference 12 they
used effectiveness factor »'=1.0, but they could not get good predictions for some
beams, and so they varied the effectiveness from 1.0 to 0.5 to get a closer

prediction without any specific criteria. In reference 13, the effectiveness factor used
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was »'=1.0. Therefore, rather than analysing the girders of this study, the direct
design technique was applied to a series of five beams tested by MacGregor et
all13]. The details of this series of five beams is given in Figures (8.104) to (8.108)
and the material properties are given in Tables 8.12 and 8.13. The design ultimate
load of these beams was not given, but it was assumed to be the actual failure load

of the beams which is on the conservative side.

Beams designed by the direct design technique are illustrated in Figure (8.109) to
(8.113) and a comparison with the plastic truss model is given in Table 8.14. The
results indicate that the direct design technique gives a considerable saving in main
reinforcement, whereas shear reinforcement is higher than that required by the

plastic truss model.

However, it is clear that the overall direct design technique compares favourably with
the plastic truss model. This study has shown that the measured ultimate loads were
always 30% to 60% higher than the design ultimate loads. Therefore since
MacGregor's failure load was taken as the design load, the direct design method is
even more economical than the table would at first suggest. The difference in the
shear reinforcement between these techniques might be due to the fact that in the
plastic truss model shear reinforcement is provided on an ad hoc basis, whilst the

direct design method has a sound theoretical framework for its calculation.

8.6.2 Analysis of ultimate strength by empirical formulae

There are various formulae for predicting the ultimate strengths of simply supported
and continuous deep beams and these were discussed in Chapter Two. A sample of
some prominent formulae are examined in this section. These are, Ramakrishnan and
Ananthanayranal14], de Paiva and Siess[15], ACI Codel8], Kong et all10] and CIRIA
Guide 2[9]. These formulae were calibrated on the test data for simply supported
deep beams which were loaded either at the centre or at the third point. Therefore,
the estimation of shear strength of a shear span can be multiplied by 2 to get the

overall shear capacity, because at the ultimate stage both shear spans are assumed to
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be failed even if a failure only occurred in one shear span. In a continuous deep
girder, failure is always in the interior shear span, therefore, the estimation of the
shear strength based on the same criteria as simply supported may not be correct. It
is difficult to know the shear strength of the exterior shear span, because it did not
fail in any continuous girder reported in this thesis. In order to accommodate this,
an elastic distribution of shear force was utilized to estimate the shear strength.
According to the elastic distribution of reaction, 31% shear is taken by the exterior
shear span and 69% by the interior shear span, if a load is acting at the centre of

the span.

In addition to that, experimental results have revealed that at the ultimate load stage
57% of the load was carried by the intermediate supports for girders whose span to
depth (L/D) ratio was 1.07 and 63% was carried for girders whose span to depth

(L/D) ratio was 1.61.

The various formulae were modified to take these (i.e elastic and ultimate reaction)
distribution into account and the summary of the results is presented in Tables 8.15
to 8.19. These formulae have been applied with and without the modifications to

demonstrate its effect.

Only the ultimate shear strength of solid girders has been estimated, because there is
no formulae to predict the ultimate shear strength of perforated deep girders when

the openings are not placed symmetrically in both shear spans.

The estimated results from the empirical formulae are far from the experimental
measured strengths. However, the modified version of the Ramakrishnan and

Ananthanayranal14] formula is fairly close to the experimental results.

8.7 Conclusion

The following conclusions can be drawn from the analytical studies made in this

chapter:
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1: (a) Theoretical results indicate the applicability of the nonlinear finite element
model for analysing the complicated general behaviour of large scale continuous and
solid span girders. The basic characteristics of the behaviour, namely the
pre— cracking and post—cracking behaviour, ultimate strengths and crack patterns,
overall deformations and failure mechanism are predicted with reasonable accuracy
for the majority of girders examined. The finite element analysis provided additional
information, such as deformational behaviour and maximum shear strains, which is
difficult if not impossible to obtain in experiments.

(b) All the girders were analysed using the same material and solution parameters.
The results demonstrate that for the type of transfer girders tested in this study,
satisfactory behaviour is obtained if tension stiffening is not used (2 = 0.0) and a
constant shear retention factor of 0.25 is selected.

(c) Steel response was found to be stiffer, however, the comparison was generally
satisfactory. This could have been due to the assumption of full bond between
concrete and steel in the finite element analysis.

(d) An increase in shear reinforcement increased the ultimate strength.

() For the decreasing shear span to depth (X/D) ratios the ultimate strength
increased.

() The use of skew reinforcement produced higher ultimate strengths; however, an
angle of 15° to 20° were the most efficient.

(g) CIRIA Guide 2 reinforcement distribution produced less satisfactory behaviour and
lower ultimate strengths than the direct design method.

2. Various other design methods required a higher amount of reinforcement than the
direct design technique, suggesting that the direct design method is the more
economical technique.

3. The predicted ultimate strengths by empirical derived formulae by other
reseavchers greatly overestimated the actual measured strengths. This suggests that
these empirical formulae cannot be reliably applied to continuous deep beams.

Nevertheless, the modification to Ramakrishnan and Ananthanayrana's[”] formulae

produced reasonable predictions.

374




TABLE 8.1
Comparison of the experimental and predicted ultimate strength of the test girders
Series Girder Experimental |Theoretical |[Tu/Pu |Mean S.D
No. No. Failure Failure
load kN load kN
TRGRAS1 1333 1312 0.98
1 TRGRAS?2 1216 1237 1.02
TRGRAS3 1500 1462 0.97
TRGRAS6 1486 1425 0.96 |0.98 (0.026
2 TRGRAS4 1143 1144 1.0
TRGRASS 1243 975 0.78 10.89 |0.155
3 TRGRAS7 1420 1425 1.02
TRGRAS 8 1312 1350 1.03 ]1.02 |0.019
4 TRGRAS9 1046 1110 1.06
TRGRAS10 891 840 0.94 1.0 ]0.084
5 TRGRAS11 1750 1800 1.03 1.03
TABLE 8.2
The effect of shear retention factor on the ultimate shear strength for girder
TRGRAS1
Girder Shear retention [Actual strength|Predicted strength
factor Pu Tu
TRGRAS1 0.01 1333.0 1125kN
0.25 1333.0 1312kN
0.50 1333.0 1388kN
0.75 1333.0 1462kN
TABLE 8.3 .
The effect of tension stiffening factor on the ultimate shear strength for girder
TRGRASS
Girder Tension stiffening|Ultimate strength Predicted strength
factor Pu Tu
TRGRAS S NTS 1243kN 975kN
al=0.4 «2=10.0 1243kN 1125kN
al=0.5 «2=10.0 1243kN 1200kN
al=0.6 «2=10.0 1243kN 1350kN
L
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TABLE 8.4

The details of girders analysed in parameﬁic study.

Girder No.|Depth| Length |L/D |X/D |[Type of Reinforcement
D L Ratio|Ratio

TRGRAS2 900 960 1.07 | 0.38 Orthogonal
T11 900 960 1.07 | 0.38 Orthogonal
T12 900 960 1.07 | 0.38 Orthogonal
T21 900 960 1.07 | 0.30 Orthogonal
TRGRAS?2 900 960 1.07 | 0.38 Orthogonal
T22 900 | 1300 1.44 | 0.50 Orthogonal
TRGRAS4 900 | 1450 1.61 | 0.64 Orthogonal
TRGRAS?2 900 | 960 1.07 | 0.38 Orthogonal
T31 900 960 1.07 | 0.38 Skew 6=5°
T32 900 960 1.07 | 0.38 Skew 6=9°
TRGRASS8 900 960 1.07 | 0.38 Skew 6=10°
TRGRAS7 900 960 1.07 | 0.38 Skew 6=15°
T33 900 960 1.07 | 0.38 Skew 6=20°
T34 900 960 1.07 | 0.38 Skew 6=25°
TRGRAS3 900 960 1.07 | 0.38 Orthogonal
T4l 900 960 1.07 | 0.38 Orthogonal
TRGRAS4 900 1450 1.61 | 0.64 Orthogonal
T42 900 | 1450 1.61 | 0.64 Orthogonal
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TABLE 8.5
The summary of ultimate strengths obtaind in parametric study
Girder No.|L/D X/D Type of Ultimate
Ratio|Ratio| reinforcement | strength kN
TRGRAS2 |1.07 | 0.38 Orthogonal 1216
T1l1 1.07 0.38 Orthogonal 1237
T12 1.07 | 0.38 Orthogonal 1312
T21 1.07 0.30 Orthogonal 1320
TRGRAS?2 1.07 | 0.38 Orthogonal 1237
T22 1.44 | 0.50 Orthogonal 1162
TRGRAS4 1.61 0.64 Orthogonal 1144
TRGRAS?2 1.07 0.38 Orthogonal 1237
T31 1.07 | 0.38 Skew 6=5° 1312
T32 1.07 | 0.38 Skew 6=9° 1387
TRGRAS8 1.07 | 0.38 Skew 6=10° 1350
TRGRAS7 1.07 | 0.38 Skew 6=15° 1425
T33 1.07 | 0.38 Skew 6=20° 1662
T34 1.07 | 0.38 Skew 6=25° 1462
TRGRAS 3 1.07 { 0.38 Orthogonal 1500
T4l 1.07 0.38 Orthogonal 1125
TRGRAS4 |1.61 | 0.64 Orthogonal 1143
T42 1.61 0.64 Orthogonal 900
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TABLE 8.6
Comparison of Reinforcement design for transfer girders tested in
this study with PCA Method.

Comparison of Reinforcement design for transfer
this study with CEB— FIP Method.

Girder No.|!Direct Design Method|PCA Method Ratio of
Main| Shear|Total Main|Shear|Total |PCA/DDM
TRGRAS1 329 171 500 935} — | 935 1.87
TRGRAS?2 329 | 114 443 935] — | 935 2.11
TRGRAS3 373 | 114 487 1082 — 1082 2.22
TRGRAS4 430 | 285 715 952 — | 952 1.33
TRGRASS 417 285 702 952 — [ 952 1.36
TRGRAS6 417 § 114 531 1209 — {1209 2.28
TRGRAS7 329 | 114 443 935 — | 935 2.11
TRGRASS8 329 | 114 443 935§ — | 935 2.11
TABLE 8.7

girders tested in

Girder No.|Direct Design Method|CEB-FIP Method |Ratio of
Main| Shear|Total Main|Shear|Total |CEB-FIP/DDM

TRGRAS1 329 | 171 500 583} 370 | 953 2.15
TRGRAS?2 329 | 114 443 583| 370 | 953 2.15
TRGRAS3 373 | 114 487 675] 370 |1045 2.15
TRGRAS4 430 | 285 715 789 470 1259 1.76
TRGRASS5 417 | 285 702 789} 470 1259 1.79
TRGRAS 6 417 | 114 531 7541 370 [1124 2.12
TRGRAS7 329 | 114 443 583| 370 | 953 2.15

—
TRGRAS8 329 | 114 443 583| 370 | 953 2.15
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TABLE 8.8

Comparison of Reinforcement design for transfer girders tested in

this study with ACI Code Method.

Girder No.|Direct Design Method|ACI Code Method |Ratio of

Main{ Shear|Total Main|Shear|Total |ACI/DDM
TRGRAS1 329 | 171 500 935| 485 |1420 2.84
TRGRAS2 329 | 114 443 935} 485 }1420 2.84
TRGRAS3 373 | 114 487 1082 485 [1567 3.22
TRCGRASS 430 | 285 715 952] 571 1523 2.13
TRGRAS S5 417 | 285 702 952] 571 |1523 2.13
TRGRAS6 417 | 114 531 1209| 485 1694 3.19
TRGRAS7 329 | 114 443 935] 485 1420 2.84
TRGRAS 8 329 | 114 443 935] 485 {1420 2.84

TABLE 8.9

Comparison of Reinforcement design for transfer girders tested in
this study with CIRIA Guide 2 Method.

L _

Girder No.|Direct Design Method|CIRIA Guide 2 Ratio of
Main| Shear|Total Main|Shear|Total [CIRIA/DDM
TRGRAS1 329 | 171 500 6101 475 [1085 2.17
TRGRAS?2 329 | 114 443 610§ 475 [1085 2.45
TRGRAS3 373 | 114 487 706 475 (1181 2.42
TRGRAS4 430 | 285 715 761 588 [1349 1.89
TRGRAS5 417 285 702 761| 588 [1349 1.92
TRGRAS6 417 | 114 531 789 475 |[1264 2.38
TRGRAS7 329 | 114 443 610 475 {1085 2.45
TRGRASS8 329 | 114 443 610[ 475 |[1085 2.45
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TABLE 8.10

Comparison of Reinforcement design for transfer girders tested in
this study with Kong et al's proposed Method.

Girder No.|Direct Design Method|Kong's Method Ratio of

Main| Shear|Total |Main|Shear|Total|KONG/DDM
TRGRAS1 329 | 171 500 522 — | 522 1.04
TRGRAS2 329 | 114 443 5221 — | 522 1.18
TRGRAS3 373 114 487 6047 — | 604 1.24
TRGRAS4 430 | 285 715 789 — | 789 1.10
TRGRASS 417 285 702 7891 — | 789 1.12
TRGRAS6 417 | 114 531 675 — | 675 1.27
TRGRAS7 329 114 443 522 — | 522 1.18
TRGRASS8 329 114 443 522 — | 522 1.18

TABLE 8.11

Comparison of Reinforcement design for transfer girders tested in
this study with Kotsovos's proposed Method.

Girder No.|Direct Design Method{Kotsovos Method |Ratio of
Main| Shear|Total Main|{Shear|Total |KOTSOV/DDM
TRGRAS1 329 | 171 500 934 — | 934 1.89
TRGRAS? 329 | 114 443 934 — | 934 2.10
TRGRAS3 373 | 114 487 1091 — |1091 2.24
TRGRAS4 430 | 285 715 1448 —— }1448 2.03
TRGRASS 417 | 285 702 1448 — 1448 2.06
TRGRAS6 417 | 114 531 1220f — |1220 2.30
TRGRAS7? 329 | 114 443 934 — | 934 2.10
TRGRASS8 329 | 114 443 934 — | 934 2.10
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TABLE 8.12
Concrete properties of Ricketts and MacGregor's Beams
Beam No. fc! ft' Ec Age
N/mm? N/mm? N/mm?2 days
1 35.4 25600 52
2 31.3 2.7 21700 42
3 3160 — 21000 56
4 3160 3.0 25300 50
5 3160 3.0 23900 48
TABLE 8.13
Reinforcing properties of Ricketts and MacGregor Beams
Bar size fy Es
mm N/mm2 N/mm2
20 410 219000
20%* 440 206000
10 435 203000
6 451 190000

Note:~ 20*mm bar is only used for beam 1

TABLE 8.14

Comparison of reinforcement calculated by direct design technique

Macgregor's

and Ricketts and

Beam No.| Ricketts & MacGregor's Direct design Difference
technique %
Main Shear| Total Main| Shear Totezzl
mm2 mm2 mm? mm?2 mm2 mm
1 2199 342 2541 1533] 1006 2539 _—
2 2514 | 2670 5184 2273| 1414 | 3673 29
3 2199 | 969 3168 1759| 1188 | 2947 7
4 2199 969 3168 2110 1414 3524 -10
5 2199 | 969 3168 1758 1188 | 2946 7
'\
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TABLE 8.15
Comparion of ultimate strengths predicted by Ramakrishnan and
Anathanayrana's formula

Girder Exp. Predicted Pl'/Pu Elastic P1'/Pu gg‘teim- P1''/Pu
No Load Pu Pl forigil]a pL't
TRGRAS1 1333 1809 1.35 1327 1 0.99 | 1621 | 1.22
TRGRAS2 1216 2078 1.70 1327 | 1.09 | 1621 | 1.22
TRGRAS3 1500 1920 1.28 1295 | 0.86 | 1584 | 1.06
TRGRAS4 1143 1694 1.48 1211 § 1.06 | 1326 | 1.16
TRGRASS 1243 2293 1.85 1311 | 1.06 | 1436 | 1.16
TRGRAS6 1486 2395 1.61 1295 | 0.87 | 1568 { 1.06
TRGRAS7 1440 1474 1.02 1262 | 0.88 | 1526 | 1.06
TRGRAS8 1312 1920 1.46 1343 | 1.02 | 1626 | 1.24
TRGRAS11 | 1750 2097 1.20 1815 | 1.04 | —— | ——
E TABLE 8.16

Comparion of ultimate strengths predicted by de Paiva and Siess's

formula
Girder Exp. Predicted|P2/Pu |Elastic [P1'/Pu gééim— P2''/Pu
No Load Pu P2’ forgyla P2t
TRGRAS1 1333 2084 1.56 1510 1.13 | 1828 | 1.37
TRGRAS?2 1216 2128 1.75 1540 1.26 | 1863 | 1.53
TRGRAS 3 1500 2012 1.34 1588 1.04 | 1922 | 1.28
TRGRAS4 1143 1460 1.28 1180 1.03 | 1292 | 1.13
TRGRAS5 1243 1628 1.31 1466 1.18 | 1606 | 1.29
TRGRAS6 1486 2024 1.36 1558 1.05 | 1821 | 1.22
S
TRGRAS7 1440 1256 0.87 910 0.63 | 1101 | 0.76
TRGRASS 1312 2140 1.63 1550 1.18 | 1877 | 1.43
M
TRGRAS11 1750 988 0.56 _— — | -
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b3 TABLE 8.17

Comparion of ultimate strengths predicted by ACI Code's formula
Girder  |Exp. Predicted|P3/Pu |Elastic |P3'/Pu Ultim-|P3'"/Pu
No Load Pu P3’ fori!lgla ate

P3l’
TRGRAS1 1333 1212 0.91 | 878 0.66 | 1061 | 0.84
—
TRGRAS2 1216 1176 0.97 852 0.70 | 1029 | 0.80
TRGRAS3 1500 1132 0.75 | 820 0.55 | 992 | 0.66 |
TRGRAS4 1143 1124 0.98 814 0.71 | 891 0.78
TRGRASS 1243 1196 0.96 867 0.70 | 949 0.76
TRGRAS6 1486 1132 0.76 820 0.55 992 0.66
TRGRAS7 1440 1116 0.78 809 0.56 978 0.68
TRGRAS8 1312 1180 0.90 855 0.65 | 1035 0.79
TRGRAS11 | 1750 1222 0.70
£ TABLE 8.18

Comparion of ultimate strengths predicted by Kong et al formula
Girder Exp. Predicted|P4/Pu |Elastic |P4'/Pu g%gim— P4'"' /Pu
No Load Pu P4 forgpla P4t
TRGRAS1 1333 1626 1.22 1177 0.88 1425 1.07
TRGRAS?2 1216 1824 1.57 1322 1.09 1660 1.31
TRGRAS 3 1500 1740 1.16 1260 | 0.84 | 1524 | 1.01
—
TRGRAS4 1143 1436 1.26 1041 0.91 1140 1.0
TRGRASS 1243 1868 1.50 1353 1.09 | 1728 | 1.39
TRGRAS6 1486 2184 1.47 1582 1.06 | 1914 | 1.29
TRGRAS 7 1440 1380 0.96 1000 0.72 | 1210 | 0.84
r\
TRGRAS8 | 1312 1716 1.30 | 1273 | 0.97 | 1540 | 1.17
TRGRAS11 | 1750 2220 1.27  — | — | — | —
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b4 TABLE 8.19
Comparion of ultimate strengths predicted by CIRIA Guide 2's formula

Girder Exp. Predicted|P5/Pu |Elastic P5' /Pu g%gim- P5'' /Pu
No Load Pu P5 forigg]a Pt

TRGRAS1 1333 1032 0.77 748 0.56 | 905 0.68
TRGRAS?2 1216 1040 0.86 754 0.62 | 912 0.75
TRGRAS3 1500 1032 0.69 748 0.50 | 905 0.74
TRGRAS4 1143 884 0.77 640 0.56 680 0.60
TRGRASS 1243 980 0.86 710 0.57 | 760 0.61
TRGRAS6 1486 1076 0.86 780 0.52 | 944 0.63
TRGRAS7 1440 1000 0.69 725 0.50 877 0.60
TRGRAS8 1312 1048 0.80 759 0.58 | 917 0.69
TRGRAS11 | 1750 1268 0.72 | —— —_— — —_—
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Figure(8.9) Finite element analysis mesh for girder TRGRAS1

Figure(8.10) Reinforcement detail in finite element analysis for girder TRGRASI
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Figure(8.14) Predicted crack pattern and deformed shape at 600kN (TRGRASI)
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Figure(8.15) Predicted crack pattern and deformed mesh at load 750kN (TRGRAS1)
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Experimental crack pattern at 600kN
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Figure(8.26) Predicted crack pattern and deformed shape at 600kN (TRGRAS2)
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Experimental crack pattern at 950kN
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Figure(8.27) Predicted crack pattern and deformed shape at 950kN (TRGRAS2)
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Experimental crack pattern at 1200kN
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Figure(8.28) Predicted crack pattern and deformed shape at 1200kN (TRGRAS2)
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Experimental crack pattern at 600kN
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Figure(8.29) Predicted crack pattern and deformed shape at 600kN (TRGRAS3)
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Experimental crack patiern at SO0kN
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Figure(8.30) Predicted crack pattern and deformed shape at 900kN (TRGRAS3)
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Experimental crack pattern at 1500kN
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Figure(8.31) Predicted crack pattern and deformed shape at 1425kN (TRGRAS3)
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Experimental crack pattern at 950kN
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Figure(8.32) Predicted crack pattern and deformed shape at 950kN (TRGRAS6)
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Figure(8.33) Predicted crack pattern and deformed shape at 1050kN (TRGRAS6)
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Figure(8.34) Predicted crack pattern and deformed shape at 1350kN (TRGRAS6)
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Figure(8.36) Reinforcement detail in finite element analysis for girder TRGRAS4
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Figure(8.38) Reinforcement detail in finite element analysis for girder TRGRASS
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Experimental crack pattern at 450kN
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F igure(8.44) Predicted crack pattern and deformed shape at 450kN (TRGRAS4)

1Y)



429

AU
—1—‘

Experimental crack pattern at 600kN
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Figure(8.45) Predicted crack pattern and deformed shape at 600kN (TRGRAS4)
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Figure(8.46) Predicted crack pattern and deformed shape at 1125kN (TRGRAS4)
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Experimental crack pattern at 600kN
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Figure(8.47) Predicted crack pattern and deformed shape at 600kN (TRGRASS)
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Experimental crack pattern at T750kN
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Figure(g.4g) Predicted crack pattern and deformed shape at 750kN (TRGRASS)
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Experimental crack pattern at 975kN
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Figure(8.49) Predicted crack pattern and deformed shape at 975kN (TRGRASS)
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Experimental crack pattern at 600kN
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Figure(8.59) Predicted crack pattern and deformed shape at 600kN (TRGRAS7)
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Figure(8.60) Predicted crack pattern and deformed shape at 825kN (TRGRAS7)
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Experimental crack pattern at 1350kN
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Figure(8.61) Predicted crack pattern and deformed shape at 1350kN (TRGRAST)
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Figure(8.62) Predicted crack pattern and deformed shape at 525kN (TRGRASS)
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Figure(8.63) Predicted crack pattern and deformed shape at 825kN (TRGRASS)



447

Experimental crack pattern at 1250kN
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Figure(8.64) Predicted crack pattern and deformed shape at 1275kN (TRGRASS)
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Experimental crack péttern at 400kN
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Figure(8.76) Predicted crack pattern and deformed shape at 420kN (TRGRAS9)
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Predicted deformed shape at T20kN
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Figure(8'77) Predicted crack pattern and deformed shape at 720kN (TRGRAS9)
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Figure(8'78) Predicted crack pattern and deformed shape at 1020kN (TRGRAS9)
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Figure (8.79) Predicted maximum shear strain*10~ 5 at 1760kN (TRGRAS9).
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Figure(8.81) Predicted crack pattern and deformed shape at 420kN (TRGRAS10)
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Figure(8.83) Predicted crack pattern and deformed shape at 780kN (TRGRAS10)
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CHAPTER NINE

CONCLUSIONS

9.1 From the theoretical and experimental investigations reported in this thesis,
the following conclusions can be drawn.

9.1.1 Direct Design Method
The large scale experimental tests and nonlinear finite element modelling
have verified that the direct design method, in conjunction with the
averaging procedure used in this study, produces practical designs for a
range of in—plane structures, and for continuous girders in particular.
The direct design technique is a natural design— oriented method for
continuum concrete structures because of the way it combines analysis and
design into one continuous automatic operation. Some of its advantages

are as follows:

(i) Once the direct design equations are codified in conjunction with any
numerical technique, such as the finite element technique, into a
computer program, the design of reinforcement can be easily and
conveniently obtained. Once initiated, this does not in general require any
intervention by the designer. This method provides all the relevent
information regarding the intended design in a graphical and tabular form.
This technique can become a core for the development of computer aided
designs (CAD), which is the demand of current practice.

(i) It is based on the principles of plasticity, and is a lower bound
approach. It has an intrinsic safeguard against unsatisfactory serviceability
and collapse behaviour by aiming for simultaneous yielding throughout the

structure.

(iii) It uses steel economically, because the design equations are based on
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minimising steel requirements. It can handle any geometrical shape and

different material properties.

Two_span_continuous girders
(i) Service loads were near to the design ultimate load. Additionally, the
average ultimate loads were found to be 45% and 50% higher than the
designed and service loads respectively and hence there is an intrinsic
safety factor against collapse. No girder failed before attaining the design
ultimate load.
(ii) All the Codes of Practice underestimate the ultimate shear capacity of
the reinforced concrete deep girders and are uneconomical in
reinforcement design.
(iii) An increase in shear reinforcement influenced the ultimate strength,
however, it was not possible, with the limited data in this investigation,
to offer a relationship.
(iv) Less skew reinforcement than the orthogonal reinforcement was
required from 0.2 to 0.8 of the depth from the bottom of the beam
whereas more skew reinforcement was required in the other zones than
orthogonal reinforcement.
a) Skew reinforcement produced a saving of 17% at an angle of 15
degree and 12% at an angle of 10 degree to the x— axis.
b) Skew reinforcement produced better cracking control by reducing crack
widths and consequently producing higher service and ultimate loads.
(v) The strength of concrete influences the ultimate load and serviceability
behaviour.

(vi) No girder failed prematurely by bearing failure.

Perforated girders

(i) The applicability of the results, from the direct design technique in
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conjunction with the averaging procedure on perforated deep girders,
showed that the ultimate strength of a girder depends primarily on the
extent to which it intercepts the “load path" i.e the path joining the load
bearing blocks at the loading point and the support reaction points, and
on the location at which this interception occurs. The position of the
openings are significant only in so far as these affect the extent and
location of such interception.

(a) When a girder had two perforations the load path was intercepted to
a lesser extent so that the measured ultimate load was slightly higher than
the design load, however, serviceable behaviour based on the crack width
limit was not satisfactory.

{b) When a girder had three perforations the load path was intercepted
to a larger extent, because of the interception of the load path by two
openings, the measured ultimate load was smaller than the design load.
Also the serviceable behaviour was not satisfactory based on the crack
width limit.

(c) The position of the opening in the lower mid—depth zone intercepted
the load path to a lesser extent than the opening in the upper
mid— depth zone of the girder. This indicated that if the opening is
placed in the lower mid—depth zone, the ultimate strength could be
improved.

(i) The experimental results has indicated the use of extra diagonal steel
bars at the corners of the openings (i.e the local zones) as the local
zones at support and load points are reinforced with steel cages. This is
because in the high concentration zones direct design procedure might

have difficulty in coping with.

Special girder

The behaviour of the single span deep girder, which was reinforced as
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close as possible to that required by the direct design equations behaved
satisfactorily in ultimate and serviceable behaviour. But it carried an
ultimate load 75% and 66% higher than the designed and service loads
respectively. This is because (i) the provided steel areas were higher at
some points due to practical constraints (ii) the contribution of the dowel
action and aggregate interlocking in shear transfer. This demonstrates the
intrinsic safety factor against collapse. An interesting behaviour was
observed in this model that progressive yielding of steel was very close to
the simultaneous yielding of the steel throughout the structure, which
confirms the ideal situation of simultaneous yielding of steel which is one

of the basic assumptions of the direct design technique.

9.1.2 Finite element study:

(i) The nonlinear finite element analysis proved to be satisfactory in
predicting general behaviour. The predicted ultimate load and steel strains
were in reasonable agreement with the measured values, whilst the crack
pattern predicted by the fixed smeared crack model demonstrates that it
is an adequate approximation to real behaviour.

(i) A constant shear retention factor of 0.25 was found suitable for the
girders designed by the direct design method.

(iii) Tension stiffening model was found not to be useful and hence was
ignored in this study.

(iv) Girders with smaller span to depth (L/D) ratios gave higher ultimate
strength than girders with larger span to depth (L/D) ratios.

(iv) The finite element analysis provided useful additional information,
such as deformational and maximum shear strain behaviour, this was used

in order to ascertain the failure mechanism.

9.2 Suggestion for future work
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The following are some suggestions for further research in this area:

(i) The two span continuous girders in this study were tested with top
point loads at the centre of the span, and the single span girders at the
third points. There is a need to test the behaviour of transfer girders
subjected to multiple load cases which frequently occur in practice.

(i) Since deep beams are frequently used as panels, it would be
worthwhile to test some beams with supporting frames.

(iii) The use of the deep beams in a shearwall supporting system involves
slab and floor connections, hence it will be useful to test I—section deep
girders to simulate this situation.

(iv) In this study the girders were designed using an elastic stress field.
An elasto— plastic model was also developed for the design of transfer
girders, but was not adequately assessed. It would be worthwhile to design
some girders using an elasto— plastic stress field to ascertain if a more
economical distribution of reinforcement resulted.

(v) The design program is currently semi— automatic. It should be
extended to select reinforcing bars and spacing automatically according to
the averaging procedure in conjunction with the rules and regulations
prescribed by various codes, so that the final drawings may be directly
obtained from the computer.

(vi) In this study skew reinforcement was handled by the skew elements
in the nonlinear program which can cause some numerical difficulties.
Modification of the program is essential to simplify the handling of skew
reinforcement, so that the orientation of the bar is independent of the
main mesh.

(vii) The nonlinear program is currently not incorporated into the design
process. It would be more useful for the design and nonlinear analysis
program to be joined together, so that the complex structure can then be

designed and analysed within the same process to check the ultimate load
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and other important behaviour, such as failure mechanism, cracking of

concrete, yielding history of steel and deformational behaviour.

N o



APPENDIX A

MODES OF FAILUE INVESTIGATED IN DIFFERENT STUDIES

Shear failure is generally classified as "diagonal tension failure” or "diagonal

compression failure"”. The mechanism of this failure was first described by

Laupa et al at University of Illinois. Ramakrishnan and Ananathanayarana

later extended it under the title of "Ultimate strength of deep beams".
r

They described these various modes of failure, which occufed throughout

their experimental investigation, on the deep beam behaviour as:

1 Diagonal tension failure : For a concentrated load, a clear and sudden
fracture along a line joining the inside face of the support (in continuous
deep beams inside face of the interior support) with the loading point,
which is nearest to the support. It is shown in Figure (Ala) that for a
concentrated load and for a wuniformly distributed load, a clear fracture

occurs along the line joining the support to the nearst third span (Figure

1Ab).

Diagonal compression failure : In this type of failure, an inclined crack
develops first along the line joining the loading point with the support, then
after a small increase in the load, a second parallel inclined crack appears
near to the first one. The final failure is due to the destruction of a
portion of the concrete between these two parallel inclined cracks (Figure

2Aa).

3 Shear compression failure : If the inclined crack continues to grow as the
beam carries additional loads, the crack extends into the compression zone
and concrete starts crushing, this failure is to be called the shear

compression failure (Figure 2Ab).

501
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4 Flexure failure : This failure of the deep beam is due to either failure of
4 Flexure failure
‘the "arch rib", where concrete in the arch crushes in the maximum tension ‘

region at mid—span or “tie" failure where the tie ruptures at flexural

failure (Figure 3Aa).

5 Flexure— shear failure : In this type of failure, first the flexural cracks

develope and then a diagonal crack suddenly develop. and causes the failure
of the beam. This type of failure is due to the combination of either
diagonal tension failure and flexure failure or diagonal compression failure

and flexure failure (Figure 3Ab).

6 Splitting failure : In this type of failure, failure occurs by clear vertical

fracture of the compression zone at the top of an inclined crack at one

edge of the loading block under the concentrated load (Figure 4Aa).

7 Splitting spalling failure : It is similar to splitting failure, except that the
start of the destruction of the beam occurs over the support and extends

vertically upward (Figure 4Ab).
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Figure(1ha) Diagonal Tension failure Figure(2Aa) Diagonal compression failure
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Figure(1Ab) Diagonal tension failure Figure(2Ab) Shear-compression failure



Figure(3Aa) Flexure failure
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Figure(3Ab) PFlexure-shear failure
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Figure(4Aa) Splitting-shear failure
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Figure(4Ab) Splitting-spalling failure




