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SUMMARY

This thesis describes theoretically the evanescent coupling of a D-fibre, with the
aim of calculating the propagation constants of the transverse modes. Both analytical
and numerical methods are considered for the study of coupling situations involving a

fibre.

The first analytical method, Coupled Mode Theory (CMT), provides an understanding
of the coupling phenomenon which occurs between two similar guides. In this
situation, for example, for two fibres/guides with a similar range of propagation
constants, coupling does not occur between a guided mode of the first guide and a
radiation mode of the second. However, plane wave analysis is preferred to CMT

for its simplicity and adequacy in prism coupling application.

Secondly, the GF method is selected as the appropriate numerical method for the
case of a D-—fibre coupled to a semi— infinite dielectric medium, in preference to
the point matching and finite elements methods. The GF method (a semi— numerical
method) leads to an eigenvalue problem, with the propagation constant as the only

unknown.

The behaviour of the GF is dependent on the refractive index of the medium
surrounding the fibre, the distance from the core to the flat surface of the cladding,
and the possible effective refractive indices of the guided modes. A program is
developed to calculate the GF as a function of these variables. By defining these
parameters, it enables the testing of several routines which could be later introduced
into a final program calculating the different propagation constants of the guiding

structure.

Finally, the analytical study has been extended to allow direct application in the

final program.
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CHAPTER ONE INTRODUCTION

Recent technical developments have considerably improved the characteristics of

optical fibres, and in particular of monomode fibres. These fibres are characterized
by a very high data rate handling capacity, with a bandwidth potential of several
GHz over 1km, and hundreds of MHz over 10km. However, their electrical
counterpart: the co— axial cable, limits the transmission of a communication system
to a few hundred MHz at a distance of the order of 1km.
The unique properties of these fibres have also stimulated considerable interest in a
broad range of other applications including interferometers, optical signal processors,
and optical sensors. In particular, some basic functions required in any optical
systems such as: polarization controllers, modulators, power dividers, and passive
filters, all previously performed in bulk materials, are now successfully achieved by
in—line optical fibre components. One of the first important functions that was
considered, was the transfer of signal power between two optical fibres. Thus, the
fibre to fibre coupler became a basic component of a 'fibre—based' device, which
operates on the principle of evanescent coupling, as further explained in chapter 3.

Concurrently, important developments were taking place in integrated optics,
particularly in modulators PP, integrated lasers NK, deflectors HM, and detectors O,
Thus, other optical functions previously elaborated in bulk materials, are replaced by
their integrated optics equivalents. The main advantage of an integrated system
comes from its small size, and therefore such a device is thermally and mechanically
more stable than its bulk counterpart. What is more, the high electrical and optical
densities possible in integrated optics lead to very efficient and compact devices.

However, the advance in integrated optics, is of use only if an efficient method
of coupling optical circuits to optical fibres acting mainly as a data link, exists.
Therefore, efficient coupling of optical fibres to integrated waveguides is the basis
for the development of all guided optics systems.

Note that, the replacement of an ‘electronics system' by optical circuitry based

on fibre and integrated optics devices, is an attractive solution only if its



performance is superior and its cost acceptable K .| However, the positional and
dimensional tolerances imposed by the small fibre core diameter (= 8 um) are tight,
and progress has not been spectacular in the domain of coupling from a fibre to a
slab waveguide. Consequently, this problem is still of great interest, especially that of
finding a half— coupler based on a fibre, involving a simple, low cost manufacturing
process. For this purpose the D-fibre was elaborated, and the study of its
evanescent field éoupling behaviour was chosen as the basis of this thesis.
Nevertheless, let us first introduce the different possible solutions for a fibre to slab

waveguide coupler.

1.1 FIBRE— SLAB WAVEGUIDE COUPLER
The various fibre—slab waveguide couplers can be classified into two principal
categories:
1. the end—fire or butt coupler.

2. the transverse, directional or evanescent coupler.

1.1.1. End-fire coupling

The end— fire coupler is the most common coupler, and is used as an input or
output coupler. A schematic description of a fibre— film coupler is shown in fig.
1.1.a. The fibre—end is cleaved or polished, and set up so that the beam coming
or merging from the fibre is normal to the polished side of the film. Different
methods are used for the alignment and fixation of the fibre Aj, Mp, Nt Thys, the
light leaving the end— face of the first guide is radiated directly into the end— face
of the second. One difficulty with this technique, is that any loss or misalignment
results in a degradation of the primary optical signal. A second source of loss comes
from the Fresnel losses, due to the reflection at the fibre/air and air/waveguide
interfaces.

The butt— joint approach, although dependent on very tight alignment and
geometrically matching conditions, can be satisfactorily achieved in numerous

applications. Komatsu et al. Km  for example, reported a loss from fibre to
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a. End— fire coupling from a fibre to a film waveguide.
The arrows represent the direction of propagation of the guided light.

b. Evanescent coupling between a fibre and a film waveguide



waveguide to fibre coupler of only 0.5 dB. Furthermore, it is simpler to manufacture
an end— fire coupler than an evanescent coupler. Thus, the former is often preferred
to evanescent coupling. However, end— fire coupling is not a flexible solution, and it
would be advantageous if the fibre could be coupled at any part of an integrated
circuit, and not only at the film edge. What is more, it does not allow selective
coupling in terms of power, polarization, mode or wavelength, which can be

succesfully achieved by the directional coupling method described below.

1.1.2. Directional coupling

This coupling method is a second approach to the fibre to slab waveguide
coupling problem. The coupling of optical power is made possible by a perturbation
of the evanescent field which extends outside the core and the film, for the guided
mode of the fibre and the slab waveguide, respectively, as shown in fig. 1.1.b. A
theoretical explanation of directional coupling is given in chapter 3.

However, we shall mention the main advantages to be gained from this coupling

technique in comparison with end— fire coupling:

a. Firstly, the relative cross—section of the waveguides to be coupled does
not need to be the same or similar.

b. Secondly, coupling can take place at any point on the thin film.

c. Thirdly, thanks to the evanescent coupling properties, some functions can
be directly executed through a selective coupler in terms of the modes,
power, polarization or wavelength.

d. Finally, the power transfer can reach a theoretical and maximum value of
100%. However, a successful total power transfer has not yet been
reported in the literature. The fabrication tolerances and the complexity
of the half— fibre coupler, constitute the main difficulties of the method.
A fibre— film— fibre loss of 2dB has been reported Br2 at a wavelength
of 1.35 and 1.54 microns, which correspond to the region of minimum
loss and dispersion in optical fibres, and thus is of great interest for

telecommunication applications.



It is interesting to note that many analogies can be drawn from the
well— established microwave technology of directional and distributed couplers H The
technique applied in microwave couplers can in principle be applied to higher optical
frequencies. However, because of the much shorter wavelengths of light, the
dimensional and positional tolerances of such couplers decrease. Thus, further
difficulties are introduced, although realization is still within the framework of our
present— day technology.

In conclusion, despite higher losses than a corresponding end— fire coupler (due
to the manufacturing process), the directional coupler is the appropriate and
complementary coupling technique in many cases, due to the particular properties it

exhibits.

1.2 HALF-FIBRE COUPLER

Optical fibres have thick cladding layers, specifically chosen so that the
evanescent field at the outer cladding surface is negligibly small for all well— guided
modes. To enable directional coupling, much of the cladding must be removed
locally, thus allowing a perturbation of the evanescent field of the fibre by the other
half coupler (i.e., to cause sufficient overlap of the evanescent fields of the two
half— couplers). There are two basic approaches:

1. to use a conventional fibre polished locally.

2. to use a D—fibre.

1.2.1. Use of a conventional fibre.

The first use of a fibre in a directional coupler was proposed by Hsu in 1876
Hs  He demonstrated coupling from a single— mode fibre to a prism. The fibre was
disposed in a preferentially etched silicon v— groove and polished to within a few
microns of the core. A high index prism was then used to remove the fundamental
mode power (see sect. 3.2).

However, the most common method using a polished fibre, was developed by

Bergh et al. Bg. They achieved a tunable fibre— fibre coupler, giving any desired



coupling ratio with very low insertion loss or cross—talk. This coupler is known as
the 'Stanford coupler’ or polished ‘'directional coupler’ (PDC) (see fig. 1.2). The
fibre in each coupler was bonded into a groove cut into a silica substrate block.
The groove had a radius of curvature of typically 25cm, and was formed using a
wire saw. The surface of the substrate containing the fibre was polished to remove
the excess cladding.

The main inconvenience of this method, is that extreme care is necessary to
maintain an accurate radius of curvature. Afterwards, other similar techniques were
used to set up the fibre Pr.NY,Zh  However, each technique involves fastidious
polishing of the whole half fibre— coupler. In order to give access to the evanescent
field of a half— coupler, most of the cladding must be removed to within a few
microns of the core. Hence, this operation implies the removal of nearly 60um for
a conventional single mode fibre (core radius of 4um and overall diameter of
125 pum).

Finally, for flatness of the polished area of the fibre, and a reproductibility of the
core/flat distance, the silica substrate block and the epoxy were chosen because of

the polishing hardness rather than the optical index matching.

1.2.2. Use of a D—fibre.

Before the use of the D-— fibre, another method avoiding fastidious polishing was
used in a fibre—fibre SMDC. The two fibres were etched SP to locally remove most
of the cladding around the core. The remaining fibre was locally very thin, and
susceptible to mechanical damage. However, this method is not applicable to a
fibre— film coupler.

A coupler using a D—fibre is another interesting alternative which avoids the
polishing process of the polished directional coupler. The first application of a
D— fibre using the evanescent coupling effect was published by Shdéner et al.
Sc,Hn, Dy who manufactured a single mode directional coupler (SMDC) between two

D— fibres.



(a)

Polished fibre surface

Silica substrate block

' Fibre
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Epoxy
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FIGURE 1.2

a. Geometry of a half— Stanford coupler, also called polished directional
coupler (PDC), showing set—up in silica substrate block.

b. Cross— section of fibre— film coupler using PDC.



a. Fabrication

Now, let us briefly describe the fabrication of a D-—fibre, the geometry of
which is shown in fig. 1.3. First of all, a flat is cut and polished parallel to the
core of a standard single mode preform. This modified preform is then pulled by
the usual process for the fabrication of the fibre. By this means, a fibre with an
approximately semicircular cross— section, called an SCCS—fibre or D-—fibre was
manufactured.

Note, that a preform was previously manufactured to build a directional coupler,
based on a double core fibre pulled from two appended partial preforms Sf. The
main advantage of this method is that the core alignment is carried out directly on
the fibre's preform. However, it is difficult to splice or couple two single mode
fibres at each extremity of the double core fibre, the two cores of the fibre being
close enough to enable evanescent coupling (the spacing was approximately 10um for

a fibre monomode at 633um). To overcome this difficulty the D— fibre was drawn.

b. Characterisation

In their article 'Fabrication and Characterisation of D- fibres with a Range of
Accurate Controlled Core/Flat Distance', Millar et al. Ml at BRTL defined the first
study of the fundamental optical properties of D—fibres drawn from a standard
quasi— step— index type 'B' single mode design preform. This is probably the most
important class of D-— fibres, owing to their compatibility with main stream single
mode fibres.

First of all, in order to characterize the D-— fibres, one preform was cut and
polished at an angle to the longitudinal axis. This choice of polished preform, should
therefore allow the full range of fibre samples which could possibly be used in
evanescent field coupling situations.

Precautions were taken to keep the circular cross— section of the fibre core constant,
and to reproduce the D—shape by minimizing the rounding effects due to surface
tension. Numerical values of these characteristics are given in the article previously

mentioned.
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FIGURE 1.3

Typical D— fibre with core/flat distance: d, of 4uym, and variation between
the core and cladding refractive indices: An= 0.005.



Transverse coupling behaviour was then investigated by measuring the input
prism coupling efficiency (see section 3.2.1), as a function of the core/flat distance
(d), at a wavelength of 633nm. Repeatable input coupling measurements (*0.8dB),
were achieved, using the curved surface of a Scm glass rod to push the fibre against
the prism. At this chosen wavelength, the fibre was supporting at least three sets of
degenerate modes, which were identified by their far field pattern and synchronous
coupling angle. Figure 1.4 shows the plot of coupled power against the core/flat
distance, for the fundamental mode (LPO1), and the first order mode (LP11).

The fundamental mode is better confined in the core than the LP11 mode, i.e., its
evanescent field does not extend into the cladding as far as that of the higher order
mode. This implies, that the evanescent input coupling power, which propagates
along 20cm of fibre, decreases more rapidly for the fundamental mode than for the
first order mode.

The lesser confinement of the higher order mode, induces important perturbation of
the evanescent field for small core/flat distances. Therefore, some power from the
guided mode radiates during its propagation along the fibre to the detector, resulting

in an apparent decrease in coupling efficiency as 'd' diminishes.

c. Conclusion

Consequently from the above characterisation, the alternative method of building
a half fibre— coupler with a D-—fibre becomes quite interesting, especially as it
avoids partial or total polishing of the half— fibre set—up, and therefore simplifies
the manufacturing procedure of the coupler. It also allows the advance determination
of the appropriate core/flat distance for efficient coupling. Additionally, long coupling
lengths are possible, allowing weak interactions over extensive propagation distances

(104 — 105 wavelengths), and thus leading to high Q- factor devices.

10
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1.3 Review of the content of the thesis

The background information on the two principal coupling methods: transverse
and directional coupling, have previously been introduced. We have also given the
motivation for the use of a D—fibre in a half— fibre coupler.

The second chapter on waveguide theory introduces the parameters and
definitions used in the following chapters.

Next, in the third chapter we give two analytical approaches to the coupling
problem:

— Coupled Mode Theory (CMT) applied to two similar waveguides,

— plane wave analysis of a prism coupler.

Both analyses give a basic understanding of the evanescent coupling phenomenon.

Thereafter, in chapter 4 we try to formulate the perturbation theory for
transverse modes in a coupling structure formed by a D—fibre and a semi— infinite
dielectric medium. Thus we want to calculate the propagation constants of the mode
of the perturbed D— fibre. We first introduce the assumptions of the problem. Then,
a review of the theory of the GF is given before the definition of the
Kirchhoff— Huygens integral, having this GF as one of its elements. Finally, we
justify the selection of the GF method (which is in fact a semi— numerical method),
for these particular applications.

In chapter 5, we first develop the analytical calculation of the first and second
parts of the GF. Then, starting from the Kirchhoff— Huygens integral, we derive an
eigenvalue problem with the propagation constants as the only variables.

However, programming application involves further analytical developments as
described in chapter 6.

The results of the GF are reported in chapter 7. Finally, we give the further
development leading to a total definition of the evanescent field coupling of a

D— fibre to a prism.

12



CHAPTER TWO WAVEGUIDE THEORY

Fibres, planar waveguides, and prisms constitute a group of guides between
which evanescent coupling may occur. Therefore, in the following paragraph let us
give a brief description of these different guides, which is not exhaustive but which

aims to introduce the parameters and the definitions used in the following chapters.

2.1 FUNDAMENTAL PROPERTIES OF THE MODES

The electric and magnetic field vectors E(x,y) and H(x,y) are each separated
into two parts: one part representing the power guided without attenuation along the
guide, the other representing the power radiated away from the waveguide. For a
simple guide (fibre, slab waveguide, rib waveguide for example), it is possible to

calculate a finite number of guided modes and a continuum of radiation modes.

2.1.1 Modal expansion of the guided or bound modes

Let us consider an ideal guide supporting forward propagating modes only.
Thus, the field vectors satisfying the homogeneous vector wave equations (St equ.
*30.18) are expanded as a finite sum of the modal electric or magnetic fields,

E,(x,y,2), Hy(x,y,2) as in:

E(x,y,z) Sap Eq(x,y,2) withn=1,2,..,N (2.1)
H(x,y,z) = Ya, Hy(x,y,2)

where a, are the modal amplitudes, which depend on the source of excitation,

and where the time dependence exp(—iwt) of the modal fields is assumed implicit.
Note, that the decomposition in series is a general form of fitting boundaries

and satisfying a partial differential equation, for example in our case the wave

equation. However, the application of this method requires the separation of the

partial differential equation into coordinates, £,, so that a boundary corresponds to

one or more constant coordinate values, i.e., &, = constant (M sect. 6.3).

Consequently, this method is applicable to guides with simple geometry, and we will

consider only the two main ones: the slab waveguide and the fibre.

13



2.1.2 Translational invariance and propagation constant

a. Translational invariance:
The cylindrical symmetry or translational invariance of a guide enables us to
express the modal fields in the separable form, as in:
Ej(:x,y,z) - ej(x,y) exp i(sz - wt) (2.2)
Hj(x,y,z) - hj(x,y) exp i(sz - wt)
where Bj is called the propagation constant or eigenvalue of the jth mode.
Furthermore, the translational invariance in conjunction with the homogeneity of the

guide, implies that no coupling occurs between the modes.

b. B for guided modes:

The decomposition of the fields in series of eigenfunctions (MW sect.9, Mf sect.
6.3), has the different propagation constants: Bj as eigenvalues. As a result of these
different eigenvalues, the boundary conditions are satisfied for each mode. There is a
distinct Bj per mode, unless two modes are degenerate. Such modes have equal
phase velocity, but their transverse field distributions do not need to be identical.
From a ray approach (Sl part 1, Tm sect. 2.1), or a modal treatment (5! sect. 31,
Tm gect, 2.2.6), the range of all possible values of the propagation constants for the
guided modes is limited within the interval:

kny £ knp £ f £ km (2.3)
where ny, np, and n3 are the refractive indices of respectively, the film, the
substrate, and the superstrate, and where k=2x/\ is the wave number in free space.
If we consider a fibre, the relation (2.3) becomes:

kn.| £ B £ kngg (b)

where n., and ng are the core and the cladding of a fibre, respectively.

¢. Cutoff condition:

If the propagation constant of a mode satisfies the following relation:

B =kny or f =kngy (2.4)

14



the mode is said to be cutoff. In the ray picture, this situation corresponds to the
loss of total internal reflection, and in the modal analysis, to the loss of optical
confinement and field spreading from the guiding region throughout the surrounding
medium (substrate or cladding).

Consequently, over the cutoff value, the guide supports radiation modes only, i.e.,

for 8 3 knp or B ; kngj (2.5)

2.1.3 Helmholtz equation

There are only a few guides which have an exact analytical solution of their
modal fields. Planar guides, circular symmetric and elliptical fibres, all with a step
index profile, for example, have an exact solution. A step index fibre has a core
and cladding of uniform refractive index, with the cladding being assumed infinite.
Thus, the only variation in profile is a step discontinuity at the core/cladding
interface.

This characteristic implies, that the analytical solution of a waveguide with a
step index profile, can be calculated from a simplification of the homogeneous vector
wave equation (8! equ. 12.2). Each cartesian coordinate of the electromagnetic field
satisfies the Helmholtz equation within each region of constant refractive index, i.e.,

{ V24 n2k2- sz }enj -0 with n = x,y,z , (2.6)
but not at the interface between two different regions. This equation is sometimes
called the scalar wave equation, and is the appropriate equation for a uniform

electric medium.

2.1.4 TE, TM and hybrid modes

In general, modes of an optical waveguide satisfying the homogeneous vector
wave equation, have both €z and hzj components, and are called hybrid modes.
These modes are usually called EH and HE modes for reasons discussed elsewhere
SI

However, in special situations depending on the geometry of the cross— section

and the profile variation of the guide, the modes can be separated into two linearly
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independent sets Jh: one with hzj = 0 everywhere, called transverse magnetic mode
(TM); the other with ezj = O everywhere, called transverse electric mode (TE).

The simplest example is the planar waveguide, where all modes can be expressed as
either TE or TM modes. Another example is provided by the modes with azimuthal
symmetric fields on circular fibres. In these two special cases, the transverse electric
field components: etj» with t = x,y, satisfy the scalar wave equation given below in
(2.7).

The last and trivial case is the one occuring in an infinite uniform medium,
with ez; = hyj = 0 everywhere. In this situation, the modal fields are called TEM
waves, and satisfy the following scalar wave equation:

{ V¢2+ n2k?2- B2 } ¥y = 0 (2.7)
where the scalar field: y, represents any one of the following transverse components:
ex or ey, hy or hy .

Remember, that (8 is supposed to be the propagation constant of one particular
mode, and its subscript: j, defined in the previous section is omitted, unless it is
necessary.

To conclude, note that a TEM mode induces a wave phenomenon, possessing a
phase constant identical to that of a uniform wave propagating in an unbounded
medium, and is expressed by the following equation:

Vv = ¥, exp{i(kx - wt)} (b)
where x is the unit vector in the direction of propagation of the wave,

and where Y is the scalar field amplitude at x = 0.

2.1.5 Weak guidance approximation (or paraxial approximation)

Let us consider a cylindrical guide with a core and an infinite cladding region
of refractive indices n;, and ngj, respectively. By the term ‘'weakly guiding' (Gloge
1971 Gl). we mean that the refractive indices of the two regions are not too
dissimilar, or to be more specific that n;q — n¢p € neo.

Thus, if the different refractive indices are almost equal, the profile height, defined

by:
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A = (ngo? - ng12)/ 2n02 € 1 (2.8)
is small. It follows, that the range of propagation constants of the bound modes
becomes narrow. Consequently, we may assume that:

Bj = ngo ¥ ngj (2.9)
Thereby, this slight non— uniformity maintains total internal reflection inside the
guide, but the medium is virtually homogeneous as far as the polarization effects are
concerned. Thus, the modal fields of a weakly guiding waveguide are nearly TEM
waves, since the direction of propagation of a ray is almost parallel to the z— axis
(i.e., ezj=h;;=0), with only a weak dependence on the polarization properties of the
waveguide.

It follows that, the tranverse electromagnetic fields satisfy the following simple
relation:

he = (eg/p)1/2 nggy z X e (2.10)
with the transverse components expressed as in:

h¢

hye(x,y) x + hy(x,y) y (2.11)
ey = ey(x,y) x + ey(x,y) y (2.12)
Thereafter, if we know e, the electromagnetic field is specified. This is done by
solving the scalar wave equation (2.7) for ey and ey, with the appropriate boundary
conditions at the interfaces defining the field amplitudes.
Note, that the scalar wave equation gives no information about the electric field
polarization, i.e., its vector field direction. Thus, this direction must be determined

from the polarization or symmetry properties of the waveguide.

2.2 SLAB WAVEGUIDE AND WEAK GUIDANCE APPROXIMATION
The slab waveguide has been extensively studied Ad and its behaviour is well

known. However, let us recall some of its properties.

2.2.1 Mode field shape
From the geometry of the slab waveguide defined in figure 2.1, a guided mode

propagates in the z— direction, with the assumption of a z— dependence of the form
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FIGURE 2.1

: refractive index of the film/guide
: refractive index of the substrate
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:incidence angle of ray
: propagation constant of guided mode

: free space wave number

Geometry of a slab waveguide with conditions of guidance of the waves
inside the film defined by: nj 5 nj } n3 and 0y < 4.
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exp(ifz). Secondly, a guided mode has no variation along its y—axis, i.e., 3/3y=0.
Finally, this mode is confined in the x— direction, and thus the guide has a
confinement of order one. Thus, a phase front of a mode lies in the xy— plane and
extends at infinity in the y— direction.

The above invariance assumption in the y— direction, implies (via Maxwell's
equations) that the only nonzero field components are, respectively: Ey, Hy, H, for
a TE mode and Hy, Ey, E, for a TM mode. This implies that, starting from the
solution of the Helmholtz equation (2.6), the magnetic field of a TE mode can be
written in terms of the electric field, as in:

hy = B/wp, ey (2.13)

hy, = ~i/wp, aey/ax
with hy(x,y), hy(x,y), and ey(x,y) as defined in (2.2).

Then, as we want a guidance of the modal power to be largely confined inside
the guiding layer of the planar waveguide (see fig. 2.1), the solution of the wave
equation must be oscillatory in region 1. The previous condition associated with the
assumption of a finite guided energy inside the guide, implies an exponential decay
of the fields towards *« in the x— direction. Consequently, the fields have an

“evanescent 'tail' in the substrate (region 2), and in the superstrate (region 3). From
the above consideration, and the inequation concerning the propagation constant in
(2.3), we write the solution for the electric field of a TE mode for the three

regions of the guide, in the y— direction, in the following form:

A e_(62 - njy2 k2y1/2,

(2.14)
with x 3 0 and 82 > n32 k2

B cos(nlz‘ 1;2 - 62)+ C sin(n12 k2 - 62) (b)
with 0 ) x 3 2a and 2 ( ny2 k2

D82 - np2 k)2 (x + 2a)
with -2a 3 x and 82 > n22 k2 (c)

where A,B,C,D are constants to be determined.

As the tangential field components (i.e., ey and hzzaeylax) must be continuous
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.

across a boundary between two different regions, we obtain four equations from

which the unknowns of (2.14) will be calculated.

2.2.2 Eigenvalue equation

We assume that the slab waveguide is symmetric, i.e., the refractive index of
the substrate equals that of the superstrate (i.e., np=n3=n.). By elimination of the
constants A,B,C,D in equation 2.14, and by satisfying the continuity conditions at
the interfaces, i.e., by using the modal approach, or by means of the ray approach,
the eigenvalue equation (also called the characteristic equation) for a TE mode of a

weakly guiding step index slab waveguide, becomes:

tan(2u) = 2u(v2 - u2)/2 ;242 - V2) (2.15)

The normalized variables u, v, b are given by:

v = ak(m? - ny2)1/? (2.16)
u = a2(k2ny2 - g2y1/? (b)
b=1-uZpn2 (c)

where 2a is the width of the guiding layer.
Using u and b as the dependent variables, and v as the independent variable, the
eigenvalue equation may be rewritten as:

2b1/2(1 _ b)1/2l

1-2b

2v(1 - b)1/2 = tan-1

+ jx (2.17)

where j = 0,1,2,..J is the mode number.

Therefore, the numerical resolution of the above transcendental equation leads
to the values of the propagation constants, Bj, of the particular TEj modes.
Furthermore, from the above characteristic equation, we define the normalized
frequency at cutoff, v,, for a symmetric slab waveguide, as in:

Ve = jn/2 with j = 0,1,..,] (2.18)
Thus, the corresponding expression for the number of propagating modes, M, in a
guide of normalized frequéncy v, is:

M ¢ 2v/x (2.19)

where M is the lowest integer satisfying the above inequality.
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Finally, from the characteristic equation (2.17), we deduce that higher order modes
have a smaller ﬁj than the fundamental mode (with j = 0). Then, thanks to the
expression of the mode field in the guiding layer (2.14.b), we can also tell that
higher modes have more field turning points, which affect the evanescent coupling

between two modes of two parallel waveguides (see sect. 3.1.6).

2.2.3 Confinement of the modal power inside the core
The time average power flow, P, of a mode in a waveguide, is given by the
integral over the guide cross—section of the z—component of the Pointing vector,
S,, as in:
+o0 4
P - J S, dx = 1/2 J Re(Ej X Hj®) z dx (2.20)
-0 -0
where Re means that the real part of the complex number is used, and where the
superscript * defines the complex conjugate.
After some calculation, the proportion of modal power in the guiding region, Pgjim,

versus the total modal power, P, is expressed as:

Prilm \Y b1/2+ b (2.21)
P v bl/%+ 1

for the case of a weakly symmetric slab waveguide. Thus, the power in the cladding

region, P j,4, versus the total modal power, is given by:

Pclad Pfilm

P P

(2.22)

Now, if we introduce the cutoff value of the propagation constant (f=n.)
inside the normalized variables in (2.21), we see that the power in the guiding layer
is zero. If B is close to the propagation constant of a wave in an unbounded
medium of refractive index nj (i.e., 62= n12k2), nearly all the power is in the
guiding region, and the mode has a strong confinement inside that region. Thereby,
the equivalent refractive index:

ne - B/k (2.23)
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leads to an intuitive understanding of how strongly a mode is guided. An effective
index close to np indicates that the corresponding mode is well confined inside the
guide. However, the extent of the evanescent field is greater for a mode with an
effective index close to that of the cladding.

Finally, as the low order modes have higher f values than the higher order
modes (see previous sect.), we deduce that the fundamental mode has the highest

confinement inside the guide.

2.3 MODE_SINKS

In order to give an intuitive understanding of mode sinks, we first of all
consider a planar symmetric guide. Then, we increase the thickness of the guiding
layer of width equal to 2a. This also implies an increase in the number of guiding

modes defined in (2.19), which is rewritten explicitly as in:

2a k(ny2 - ny2)1/2
M ¢ (2.24)

x

When the guiding layer is extremely thick, i.e., 1000's of wavelengths, the mode
density is so high, that it can be considered as continuous. This mode continuum is
known as a mode sink. The prism is one example of this, and has a confinement of
order zero.

Observe, that a mode sink situation comes from the loss of at least one order
of confinement, which is also the case for a coupling structure formed by a fibre
and a slab waveguide.

Note finally, that this approach using an increasing thickness of guide, will be
used to calculate the weak coupling between a planar guide and a semi— infinite

substrate or a prism (see sect. 3.1.8).
2.4 WEAKLY GUIDING OPTICAL FIBRE

Now we consider the properties of a weakly guiding fibre, where its geometry

implies a confinement of order two.
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2.4.1 The equivalent step index fibre

The only optical fibres which have an exact analytical solution are the step
index fibre and some graded index fibres (S! chap. 14, TM gect. 2.4). The solution
of the mode fields of a step index fibre is mathematically more involved than the
slab waveguide analysis, since it is stated in terms of circular functions, and its
modes are a solution of the vector wave equation.

However, ultra low loss single mode fibres used in telecommunication, as
described for example by Miya et al. MY and Linke et al. LR, have a graded index
profile. What is more, very few graded index profile fibres are amenable to exact
analytical solution, for example, fibres with smoothly varying profiles. Nevertheless,
the other fibres are approximated by numerical methods. Very accurate solutions
have been obtained by the variational technique Ok, and by the beam propagation
method Ft, Another technique, known as the ‘equivalent step index' method (ESI)
BLMI2| has been demonstrated to a sufficient accuracy to explain the fibre— film
coupling behaviour Br, From an index profile measurement the corresponding ESI
profile is calculated, and thus the equivalent index difference and the ESI core
radius are determined. Consequently, the step index fibre will be considered in the

coupling theory, in the situation where a fibre is one element of the coupler.

2.4.2 Weakly guiding step index fibre

Most monomode fibres, for example those used in telecommunication, are
weakly guiding. The weak guidance, as defined in sect. 2.15, allows the use of the
scalar wave equation (2.7). It follows that, the mode fields are nearly TEM, i.e.,
E,=H,=0.
As a result of the above approximation, it is possible to define linearly polarized
modes or ‘'pseudo— modes': LPj,, modes. Several approaches have been used to build
these LP modes and their approximate eigenvalue equation. Adams (Ad sect. 7.2.2)
started from the exact eigenvalue equation and field components. However, Gloge Gl
derived his results by assuming linearly polarized modes. Arnaud Ar then pointed out

that these results can also be simply achieved by scalar analysis, so that the
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approximation relies on the solution of the scalar wave equation, rather than on

vector solution of the vector wave equation.

a. Fundamental LPy; mode
Several authors used the same approach as Arnaud, in particular Snyder (Sn,Sl

sect. 13), who defined the modal parameters in the case of a weak guidance

approximation as:

U = p(nge? K2 - p2) (2.26)
W= p(B2 - ngp? k2) (2.27)
V= (U2 + V2) = kp(ngg2 - ng 2)Y/? (2.28)

where ;J is the core parameter,
;N is the cladding parameter,
V is the waveguide or fibre parameter,
and B is the scalar propagation constant.
As a result of his calculation, the eigenvalue equation derived from the scalar wave

equation for the fundamental mode of a weakly guiding step index fibre is:

U0 WK W)

Jo(U)  Ko(W)

(2.29)

where the range of single mode operations is given by 0<V<2.405. With this
convention, the fundamental modes HEqy, i.e., the two polarizations, are
degenerated into the LPp; mode. The degeneracy of the LP modes is of course
exact only when the profile height is equal to zero (i.e., A=0 as defined in (2.15)).
Then, to improve the accuracy of the LP modes, Snyder (S! table 14— 3) gives
a polarization correction, 33, to the scalar propagation constant. If we compare the
corrected mode parameters:
;J + ab
with the exact solution: U, of the fundamental mode, we find that the maximum
relative error has a magnitude of less than 0.005% for A=0.005. Note, that this

profile height is a typical value for the low loss fibre used in telecommunication or
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for a D— fibre.

b. LP designation for 1)1

The construction of the remaining LPj, modes degenerate the four even
HE|+ 1 m and odd EHj_1 p modes, the latter denoting TMgyy, and TEqgp, when
I=1. However, unlike the fundamental and other LP(,, modes, all the LP; modes
with 131 are not plane polarized. Instead, due to fibre polarization effects, the
direction of the field depends on the position in the fibre cross— section.

Accordingly, the LP designation of the fundamental mode is applicable if we
ignore the polarization properties of the fibre. Thus, all degenerate modes have the
same propagation constant (see fig.2.2). Nevertheless, such a description will lead to
more significant errors for the higher order modes. In practice, even for a small
profile height, the HEj4 1 y, and EHj_ 1 p,, modes have slightly different propagation
constants. Only after a distance of a beat wavelength, i.e., 2x/(81— 87, are the two
constituant hybrid modes exactly in phase, so that a linear polarization is achieved.
This means, that a LPj, or 'pseudo— mode' will change its field distribution during
its propagation.

Despite its disadvantages, the LP mode treatment of the weakly guiding fibre

has provided useful results for fibre design.

2.4.3 Birefringence of a D— fibre

Consider a D—fibre pulled from a weakly guiding single mode fibre. If the
core/flat distance, d, (see fig. 2.3a) is sufficiently small, i.e., if d is smaller than
the effective penetration of the fundamental mode of an equivalent unperturbed
fibre, then the cladding cannot be considered everywhere as infinite. The circular
symmetry of the fibre cross—section is broken and the D-fibre becomes
birefringent. Thus, the propagation constants, By and By, differ along the axes of
symmetry (see fig. 2.3b) defining the principal axes of birefringence.

However, in a first approximation, we consider that the modes are far from

cutoff and well confined in the core region, so that szﬁy. Thus, we also ignore
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FIGURE 2.2
Numerical solutions of the eigenvalue equation (from S! p. 320), showing

the mode labelling and the corresponding values of 1 and m. The values
along the dashed lines are the cutoff values, v, (one for each mode).
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the radiation leakage due to a small coupling effect between the two polarization
states, and the resulting slight difference of propagation constant (S! sect. 13.13),
and therefore By and By remain constant during the propagation of a mode of a

D— fibre.
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: refractive index of the air

: refractive index of the core

Nco : refractive index of the cladding
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FIGURE 2.3

a. Geometry of a D— fibre showing the main axes of birefringence: x and
y, and the core/flat distance: d, on which depends the anisotropy of the
fibre.

b. Schematic refractive index profiles of a D-— fibre along the main axis
of birefringence.
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CHAPTER THREE COUPLED WAVEGUIDES

3.1 COUPLED MODE_THEOQORY (CMT)

Solving electromagnetic problems by the eigenvector or modal expansion
approach (see sect. 2.2.2), where fields are expanded into modes that individually
satisfy the boundary conditions, is both mathematically powerful and physically
intuitive in special situations, where separation of variables is possible. However, for
complicated boundary conditions, in which separation of variables is no longer
possible, the modal approach must be abandoned, as it is not possible to define
some of them.

Couple mode theory (CMT) attempts to preserve the mode concept in some
situations in which the modes cannot be easily found by analytical calculation, but
where they remain physically intuitive. However, CMT is applicable to weak
perturbation, for example, to slightly irregular or lossy fibres, or in our case, to a
two— waveguide structure with a weak coupling between them. By weak perturbation,
in a coupling situation for example, we mean that the modal fields of the guiding

structure are nearly the modes of each guide.

3.1.1 Perturbation assumption of CMT

CMT is accomplished by expanding the fields of a complicated system, in terms
of a complete set of known and local modes for simpler subsystems. In the case of
a directional coupler, the subsystems are formed by the two guides in isolation.
However, in this theoretical approach, we will consider the coupling between two
similar monomode guides. Thereafter, we will briefly extend our study to the case of
guides supporting several modes.

Therefore, let us first consider two dielectric waveguides placed alongside each
other. The introduction of the second guide distorts the field distribution of the first
one. In order to solve the theoretical problem, CMT uses a perturbation formalism

to approximate the solution. This approximation Mr, Y1, Ty jnvolves the assumption of
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a weak perturbation caused by the coupling situation, so that each waveguide mode
distribution remains unaffected by the presence of the other guide. Consequently the
fields of the two waveguide system: E and H, are expressed as a linear combination
of the unperturbed fields of each guide. It follows, that the total fields: E and H at
the plane z=0 (see fig. 3.1), are assumed as the sum of the fields of the two
waveguides in isolation, so that:

E=-E, +E (3.1)

H = H, + Hy (b)
where E,,H,, and Ep,Hy, are respectively, the local mode fields in the two guides a
and b.

However, the field coefficients of the local modes now depend on their position
along the z—axis. Consequently, they can no longer be obtained directly from
orthogonality properties (see Sl sect. 31.3), as the local modes do not satisfy the
boundary conditions of the whole structure. Instead, they are found by solving a set

of first order differential equations, called coupled line equations.

3.1.2 Coupled line equations

First of all, we consider a coupler formed by two parallel single mode guides,
i.e., with a non— absorbing, uniform dielectric structure along their length. We also
set the two guides to have equal confinement (for example two fibres), and to
support guided modes.

To begin our study, we consider the two guides in isolation. The fields of the
local forward propagating modes in guides a and b, can be written as follows:

E, = A eg(x,y) exp(if; z) Ep = B ep(x,y) exp(ifp 2) (3.2)

Hy, = A hy(x,y) exp(if,y 2) Hy = B hy(x,y) exp(ify z) (b)
where the subscripts a,b refer to guides a and b, respectively,
e,, hy, and ey, hy are the transverse field distributions,
A, B are the modal amplitudes at t=0 (or modal field coefficients),
Ba, Bp are the propagation constants of the two modes to be coupled.

Now, we can write the phase change of the electric field, according to the following
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Ba :propagation constant of guide a in isolation
Bb : propagation constant of guide b in isolation

I'* T~ : propagation constants of the coupled mode of the whole structure

FIGURE 3.1
Geometry of a directional coupler formed by two guides of equal

confinement. The arrows represent the direction of propagation of the
local modes, B, and By, to be coupled between guides a and b.
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differential equations:
dEy/dz = i B4 E, (3.3)
dEp/dz = i B Ep (b)
Next we suppose the modes to be coupled together by some means, so that E,
is affected by the amplitude of Ey, and vice— versa. Therefore, in the presence of a

coupling effect, we can write the general coupled line equations of the two modes

Mr a5 in:
dE,/dz = i B, E; + Cap Ep (3.4)
dEp/dz = i B Ep + Cp,; Ey (b)

where the coupling coefficients which quantify the effect of guide b on guide a, and
vice— versa, are C,p and Cp,, respectively.

B, Cap and Cp,, may be complex since we want to include the case of lossy
modes.

Note finally, that similar equations as in (3.3) and (3.4) can be written for the

magnetic field.

3.1.3 Coupled modes

We consider the coupling between two modes only. As demonstrated in the
following section, efficient directional coupling is possible, only if the propagation
constants of one mode in each guide are identical, i.e. B,=Bp=48, and these modes
(also called local modes) are said to be degenerate. Note that the coupling
coefficients are allowed to be different, since the two modes can be different though
degenerate.

Now let us assume that, the two guides constuting the coupler would support
forward propagating modes only, if uncoupled. Thus, if the waveguides are lossless,
conservation of power in a co— directional coupler imposes the following relation
between their two coupling coefficients Mi such that:

Cab = ~Cha* (3.5)
The asterisk indicates complex conjugation.

Since we consider the coupling of two degenerate local modes with 8, Cap, and Cp,
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constant, the solution of the coupled line equation for synchronous guides has the

following form:

+iTtz  +iTz +iTtz  +iT 2z
Ea(z) = 1/2{Ale +e |+(Cap/Cpa)l/? Ble - e
(3.6)
+iTtz  +iTz +iTtz  +iT z
Ep(z) = 1/2{B|e +e [+(Cpa/Cap)l/? Ale - e
(b)
with A = i(Cap Cpa)l/2, (3.7)
T = 8 + A8, and T~ = 8 - AB. (3.8)

Consequently, the modal amplitude in each guide appears as the superpositon of two
new modes, called coupled or normal modes, with new propagation constants, T+
and T, as described in fig. 3.1. The degeneracy of the two modes of the isolated
waveguides is removed by coupling. The amount of mode splitting of the two
coupled modes depends on the coupling strength, i.e., on the coupling coefficients:
Cab» Coa-

Next, from a linear combination of E, and Ey of two identical fibres, the
normal mode amplitudes, which satisfy the boundary conditions of the whole

structure, can be defined as in:

+iTt2

At = E (z) + Ep(z) = (A + B) e (3.9)

+iT~z

A” = Ej(z) - Ep(z) = (A + B) e (b)

where A* and A~ define the amplitudes of the symmetrical and anti— symmetrical
coupled modes, also known as normal modes. Due to their differing propagation
constant (AB), the two coupled modes beat with each other in a distance, I,
satisfying the relation: 1= x/AB. This gives the appearance of an interchange of

power from the local mode of one fibre to the local mode of the other fibre.

3.1.4 Power transfer between two single mode guides

From the solution of the coupled line equations (3.6), let us study the
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cross—talk of power in a co— directional coupler with two single mode guides of
equal confinement. To start, we consider that the modes are lossless (i.e.,
Cab=Cpa  and Af), and that all the power is initially in the first guide. Therefore,
the power in each guide can be written as a function of the distance z, as in:

P,(z) = A2 cos2(AB) (3.10)

Pp(z) = B2 sinZ(AB) (b)
From the above equations, it follows that the two waveguides exchange power after
a distance, D, given by:

D = x/248 (3.11)
The previous equation also demonstrates, that the cross—talk between the two
degenerate modes, is determined by the change in their propagation constants and
not by their coupling coefficient. It follows that, with the perturbation assumption
(3.1), it is sufficient to calculate AB to define the mode fields of the coupler formed
by two similar single mode guides interacting weakly (see sect. 3.1.6).

Then, let the ideal guides have different propagation constants, i.e., B,#0p. It
can therefore be demonstrated L$:S that the distribution of power initially in guide

a, satisfies the following relations:

Pa(z) = 1 - Pp(z) (3.12)
PL(z) = F sin? [((Ba- Bb)/2)1/2 + 1Cyap12 2]1/2 (3.13)
where
1
F = (b)

1+ ( (Ba- Bp)/ 21Capl2 )

is the maximum of power transfer (see fig. 3.3).

In conclusion, if the propagation constants are mismatched, little power is
transferred between the modes, unless 8,— Bb<lCab|2.
Therefore, a strong coupling (i.e., with a large |Cab|2), allows a relatively large
propagation constant mismatch: (8;— Bp), for a given efficiency. However, in CMT
we assume a weak coupling, so that significant power transfer occurs only between

modes of nearly identical propagation constants, i.e. for B;=8y.
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FIGURE 3.3

Power division between two coupled guides when propagation constants of
the uncoupled guides (or local modes) are different. There is only partial
power transfer, but it is periodic.
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3.1.5 Other assumptions for CMT in use for single— mode couplers
The first simplification of CMT comes from the study of the coupling between
forward nearly degenerate modes (i.e., AB€B,.0y), of two similar guides. Thus, to
couple efficiently with a weak perturbation condition, i.e.,|C,p| being small, the
power transfer from a forward mode of the first guide a, with a backward mode of
the second guide b, is very small (see (3.13)) and can be neglected.
Note that:
B_pb=-Bp (3.14)
Secondly, we can consider the coupling of a guided mode of one guide to a
radiation mode of the second guide. As we have previously considered that the two
guides are similar, they therefore have a similar range of bound modes, so that a
propagation constant of a radiation mode, By, Brp, satisfies the following relation:
k2 ncimax? € Ba?, Bp? (3.15)
Ba?, Bb2k? ¢ k2 ncipin?
with ncjmax, Dclmin being the maximal and minimal values of the refractive index
of the cladding of both guides a and b.
This means, that except for discrete modes close to cutoff (see sect. 2.1.2), the
propagation constant of a guided mode is much larger than that of a radiation
mode, and can therefore be neglected. Nevertheless, starting with CMT applied to a
coupler with one lossy guide, Arnaud Ar2  demonstrated coupling to a mode sink,

which supports radiation modes only (see sect. 2.3).

3.1.6 Perturbation theory for CMT

From the perturbation assumptions in (3.1) and the solution of the coupled line
equations in sect. 3.3, we have seen that the coupling theory is based on finding the
difference in propagation constant: AS, between the two local modes and the coupled
modes. Remember, that the local modes are those which propagate into the two
guides in isolation and are supposed to be degenerate, whereas the coupled modes
are valid for the whole coupling structure and were defined by (3.8). To calculate

AB, several perturbation formulae, all equivalent in accuracy, have been derived, for
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example by Marcuse MI, Vanclooster V¢, Yariv YT, Taylor TY, and Snyder (S! sect.
26). However, we report the one proposed by Arnaud AF, which involves an integral
along a contour located between the two waveguides (see fig. 2.1).

At first, Arnaud defined E,, H,, Ey, Hyp, as being the modal fields of the
local modes of the two waveguides in isolation, with the propagation constants: f3,,
Bo-

Then, he let EY, Ht = (—E,, E, H;,— Hpexp(—iTz) be the adjoint field of a
normal mode (E,H) of the two coupled waveguides.
Thus, his perturbation formula, based on Lorentz's reciprocity theorem, was

expressed as in:

[ Eyp X H' - EY X Hy p ds = 0 (3.16)
Sa ,b
where:

Sa,b was the surface formed by S, p, S; p+C,p dz shown in fig. 3.1, and ds was
a vector normal to the integration surface pointing outward, with a magnitude of
unity.

Then, he let the spacing, dz, between S; and S, tend towards zero, so that the

above equation was reformulated so that:

(iBy - iT)J(EaxH+ - EbH,) ds, = -J(EaxH+ - EtxH,) dC, (3.17)
Sa Ca

Then, by interchanging subscript a with b, a similar expression was written for the
second guide, b.

From the perturbation assumption (2.1), he replaced the expression for the total
field (E, H), by its approximation as a function of the local fields (E,,H,, and
Ep,Hp). Thereafter, he chose the two contours, C; and Cp, as being coincident with
the y—axis, and closed at infinity where the field vanishes. Finally, after neglecting
some second order terms in the development of (3.17), his perturbation formula Al

was obtained, as in:

(T - Ba) (T - Bp) = C2 /P Py (3.18)
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where C was the coupling coefficient dependent on the overlap between the fields in

the two guides, such that:

40
C =172 J(anﬂbz + EazHpy - EpyHaz + EpzHay) dy (b)
~Q0
4
where Pap - J[(Ea,b X Hy p) z dx dy (c)

-
with z denoting the unit vector along the z— axis.

If we assume now, that the local modes are degenerate, i.e., that B,= fp= 8,
the perturbation formula can be rewritten as in:

(T - B) = (€2 / (PaPL)) (3.19)
This equation leads to the two propagation constants for the two coupled modes
defined in sect. 3.3, and expressed as:

T =8 ¢+ A8 (3.20)
with the variation of propagation constant, or 'mode splitting': AB, given explicitly
as:

AB = (C2/P, Pp) (b)

Consequently, if the guide separation is increased, the coupling strength is
reduced, since the field intensity of each guide in the vicinity of the other would
fall (i.e., also the coupling strength: C). Therefore, T* would converge towards the

original value of the local modes of the two guides in isolation.

3.1.7 Extension of CMT to multimode guides

A strict analysis of the coupling between two multimode guides should include,
for each mode of one guide, the effect of each mode on the second guide.
As demonstrated in sect. 3.4, the effect of the coupling between one mode, i, of
the first guide, a, with one mode, j, in the second guide, b, is negligible, unless
31=6j- This condition comes from the weak coupling assumption, which implies that

Cij<(3i,6j. 1t does not imply that only like modes couple, unless the two guides are
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identical. The coupling will occur between two degenerate modes, i and j, one in
each guide. Coupling of the modes i,j to a third one is negligible, unless the third
mode is nearly degenerate with the two others, i.e., 6n=61=3j~ Thus, in general, if
m Bi's of the first guide have a corresponding nearly degenerate 6]‘ in the other
guide, m couple line equations as in (3.4) must be solved. Snyder Sn and Digonnet
Dg, for example, have shown that the total coupling coefficient, C, of the two
weakly coupled and synchronous guides, is simply given by the spatial overlap of the
interacting modes in the two guides, so that:
+o0
C = -w €/4P Jj(n(x.y)z- np2) Ea* Ep dx dy (3.21)
—o0
The variables of the previous equation are defined such that:
n{x,y) is the refractive index profile of the guiding region,
ny is the refractive index of the cladding or substrate,
P is the total power carried by the waveguides at t=0,
w is the angular frequency, and
E,, Ep are the transverse electric field distributions for the interacting modes

expanded as in:

m
Ea =i21 aj eai(x,y) (3.22)

m
Ep =jzl bj epj(x,y) (b)

with ai,bj being the modal amplitude at t=0,
and eg;, epj being the modal transverse electric field distributions of guides a and b,
respectively.

Consequently, if the two guides are not identical, their transverse fields will
have a reduced overlap compared to the modes of identical guides, since positive
and negative field contributions will cancel each other out as described in fig. 3.4.

This implies, that the coupling coefficient is reduced and the coupling length

increased.
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FIGURE 3.4

Field overlap of two different and degenerate modes of two multimode
guides. The field overlap is reduced for local or uncoupled modes having
different mode field distributions, by partial cancellation of positive and
negative contributions.
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3.1.8 Discussion

It follows from CMT, that the mode splitting AS can be calculated directly
from the modal fields of the two guides in isolation, i.e., derived by using the same
coordinate system for both guides Ar. Thus, the propagation constant of the coupled
modes and the transfer of power between the two guides constituting the coupler,
can be calculated. However, the results of CMT, even though intended for arbitrary
waveguides, are accurate only in special cases of nearly identical guides with a weak
coupling situation. Hardy and Streifer Hr phave extended the accuracy of CMT by
starting from the following perturbation assumption:

E = E; + Ep + Eresidual (3.23)

H = Hy + Hp + Hregidual (b)
instead of the one defined in (3.1). This improves the accuracy of CMT by a few
percent, and extends its applicability to stronger coupling, but in very strong
coupling situations this approximation is still inaccurate.

Finally, note that CMT was used by Arnaud Ar2 {5 demonstrate the coupling
of a planar waveguide to a semi— infinite dielectric substrate acting as a mode sink,
such as a prism, for example. At first he considered a substrate with a finite
thickness and a complex propagation constant, the imaginary part being responsible
for the radiation losses. Thus, the propagation constants of the coupled modes, T+
and T, are still given by (3.18) for two guides of equal confinement. Now, by
increasing the thickness of the substrate, the number of lossy guided modes
increases, until a mode continuum (which characterizes a mode sink) is obtained.
Therefore, by adding losses associated with each substrate mode, an expression for
the total loss is obtained along with the coupling coefficient. However, as the
method is valid for feeble coupling only, and as CMT for two similar guides has
already provided an understanding of the weak coupling process, the full development
is not given here. We will prefer a plane wave approach to prism coupling, which
gives a simple and intuitive understanding of the parameters used in prism coupling

application.
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3.2 PLANE WAVE ANALYSIS OF PRISM COUPLING

As prism to fibre coupling is a development of the prism to thin film coupler,
let us first describe the latter. The prism to thin film coupler was first described by
Ulrich and Tien Ul and subsequently by numerous workers Md,U2, 115 main
application is the input coupler. A light beam coupled via the prism into the guide
modes of the planar guide, is a basic problem for a group of optical signal
processing devices Mi,Sb (e.g., modulators). The high power density obtainable in
such films, and the inherent possibilities of phase matching conditions, make the
prism to planar guide a suitable device for electro—optics and non— linear
experiments.
A second important application of the prism to thin film coupler, is the
determination of the characteristic propagation constant of the modes in a given
film, by measuring the 'mode angles', which are also used to caiculate the refractive

index and the thickness of the film UL3,

3.2.1 Input coupler

First, we analyse the propagation constant in the half—space formed by the
prism and the air—gap. There is total reflection (see fig.3.5), provided that the
incident angle at the base of the prism satisfies Snell's law:

6p > Ocp= sin-l(l/np) (3.24)
where op and ecp are the incident and critical angles, respectively, at the base of
the prism, and where np is the refractive index of the prism.
The superposition of the incident and reflective plane waves at the base of the
prism/air interface, yields a standing wave along the vertical x—axis in the denser
medium. Below the interface, the standing wave continues into an exponentially
decreasing function, which is said to be evanescent, since it decreases rapidly in the
air medium, and does not represent a free radiation.
The incoming wave in the prism has a wave vector of magnitude: knp, which can

be decomposed into a vertical component, and a horizontal one of magnitude:

kn_sin 8

p p’ which is equal to the propagation contant, Bp, of a free wave in the
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FIGURE 3.5
Coupled— mode description of prism coupler:
a. Field of a plane wave incident from a denser medium, undergoing
total reflection at the interface to a rarer medium, i.e,
6> 6= sin™ 1(na/nb).
b. Field of a surface wave propagating along a thin film, with ng>ng,n..
¢. The two preceding configurations can be brought together by letting h,
become very small, thus obtaining the prism— air— gap— thin— film structure

shown here. The incident field now couples to the surface wave via the
evanescent field in the air gap.
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prism. The entire field can be regarded as a radiation mode in the half—space
geometry, which propagates in the z— direction as a function of the form: exp(ifz).

Secondly, consider the second waveguide which is formed by a film on a
substrate. With a similar ray approach, its corresponding propagation constant, g, of
the plane wave becomes:

Br = k np sinéf (3.25)
Note that, f¢ corresponds to one discrete mode. Therefore, the critical angle at the
interface film/substrate is:

fcf = sin~l(ng/nf) (3.26)
with n; and ng being the refractive indices of the substrate and the film,
respectively. It follows that the range of all possible guided modes is expressed by
the following inequation:

kng < B¢ < kng (3.27)
Observe from fig. 3.5, that each guided mode has its own evanescent fields
extending into the substrate and the air gap.

Finally, the whole structure formed by the prism on top of the film is
considered. Provided the air gap between the prism and the film is sufficiently small
(one eight to one fourth of the vacuum optical wavelength), the reflection at the
base of the prism is no longer total, but frustrated by the presence of the guiding
layer of the planar guide. If the radiation mode of the prism has the same
propagation constant as one mode of the planar guide (i.e.,ﬁp= Bf= B), some energy
of the beam in the prism will tunnel through the air gap into the film. The optical

tunnelling, which constitutes a leakage of energy, will be explained in sect. 3.2.6.

3.2.2 Phase matching conditions and design of the prism

The degeneracy of the propagation constants of the modes to be coupled is
necessary to obtain an efficient evanescent coupling, as proved in sect. 3.3.2. This
condition is equivalent to a phase matching condition, and is effectuated by changing
the angle of the incoming light at the entrance of the prism, 6;, and thus also the

angle, 6,, at the base of the prism, as described in fig. 3.6. Provided a refractive

p’
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FIGURE 3.6

Geometry of the symmetrical prism on film waveguide, which defines the
variables of the input coupler from a prism to a selected guided mode of
effective index: negf, propagating inside the film.
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index of a guided mode of the prism superior to the effective index of a guided
mode of the film, it is possible to couple to any guided mode by selecting the
suitable synchronous input angle: §;, of the light wave at the entrance of the prism.
All the range of input angles comprised between the minimal value: 6j may and the
maximal value: 6 mj, both chosen at grazing incidence, is defined by the following
relation:
-7/2 & 8§ min € 01 < 0§ max € 7/2 (3.28)

It follows that, all the guided modes can be excited only if the base angle of the

prism satisfies the inequation:

Neff
fp = arc sin

1
+ arc sin[ — sin(ii] (3.29)
p "p

calculated by Snell's law.

The design considerations of the prism are well described by Seligson S& and Ulrich

U3,

3.2.3 Coupling length

We have previously defined the necessary conditions for the transfer of light
from the prism to the film. However, the energy transferred in the planar guide in
the region 0<z< Lp, defined by fig. 3.7b, escapes back to the prism in the region
> Lp This leakage of energy from the film is due to the frustrated reflection at
the film/air gap interface, caused by the presence of the prism. In a first
approximation, Tamir IM described that the maximal coupling of a uniform beam
occurs after a coupling length, Lp' defined as:

Lp = 2a / cosop (3.30)
where 2a is the incident beam width and op is the incidence angle at the base of
the prism. It follows that, if the prism coupling is stopped after a coupling length,
the coupled energy is trapped in the film and propagates. This is done by using a
right angle prism as described in fig. 3.7b.

In more accurate analysis, Tien Tn for example, considered a uniform beam at

the base of a right angle prism between x=0 and x=L satisfying the phase
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FIGURE 3.7

Use of symmetrical and right angle prisms in an input coupling situation:

a. The light energy transferred from the symmetrical prism in the region
0<z< is returned to the prism in the region > Lp. The net energy is
therefore 0.

b. By using a right angle prism, coupling between the prism and the film
stops in the region z>L,. The light wave coupled into the film in the
region 0<z<Lp is therefore retained in the film and continues to
propagate.
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matching condition, and showed that the coupling efficiency, 7, was:

n = 2/ SL(1 - exp(-SL))2 (3.31)
where L was the interaction length.

By maximizing the above expression with respect to SL, he found the maximum
coupling length:

SL = 1.25 (b)
where the coupling strength, S, was defined by equation 15 in reference Tn,

In the coupling situation represented in fig. 3.7, complete transfer of energy
from the beam surface wave cannot occur even if all the media are lossless. This is
due to the fact that the amplitude variation within the beam cross— section has been
neglected. Tien also showed that a maximum energy of about 80% can be coupled
in the case of an incident beam having a uniform or Gaussian profile, with a
constant air— gap between the prism and the film. Nevertheless, a perfect input
coupler (100% efficient) could be realised, if the input light would be properly
distributed along the coupling gap, since the uncoupled light is immediately lost upon
being reflected at the base of the prism. This implies that, the field distribution of
the output coupler has to match the field distribution of an equivalent output coupler
with the same coupling conditions, where the amplitude leakage of the light in the
right angle of the prism could be described by:

bp(x) - bp(O) exp(-Sx), x>0 (3.32)

bp(x) = 0 , x<0 (b)

A better field distribution can be achieved, for example, by varying the air— gap

between the planar waveguide and the prism (Tm sect. 3.1.5).

3.2.4 m- lines

Nevertheless, the symmetrical prism is used for the determination of mode
angles. As seen in the previous section, the energy fed into the film is returned
after one coupling length. However, as the film in practice is not _ perfect and
scatters light, a more complex phenomenon occurs. Since the incident angle of the

beam is chosen to match the propagation constant of one mode, the energy is
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coupled to that selected mode. Then, some of the energy in the film is rapidly
scattered into other waveguide modes. It follows, that the light wave coupled back to
the prism consists of many waveguide modes. The reflection of each mode onto a
screen appears as an m-— line, as described in fig. 3.8. The angle of reflection
allows us to calculate the corresponding propagation constant. The reflected main
beam is on the m-—line which corresponds to the excited mode.

Therefore, by measuring the deviation angle of the different m-— lines, it is
possible to calculate the propagation constant of the modes by means of the ray

approach.

3.2.5 Output coupler

By reciprocity relations, the behaviour of a plane wave propagating in the film
and then coupled out into the prism, can be deduced. However, as the prism
supports only radiation modes, the light is not coupled back to the prism. Note, that

the energy of each mode is coupled out into the m-— lines.

3.2.6 Leaky wave theory of beam coupler

a. Inhomogeneous plane wave

We first recall that the solution of the Helmholtz equation in the guiding region
of a step index slab waveguide, can be expressed in terms of plane waves, as in:

Y = yo exp{i(ky x + k; 2)} (3.33)
where (kx2 + 1(22)1/2 = k is the wave number in free space, and
¢ stands for the scalar field.
Note that, we assume a two dimensional situation (3/9y) and a time dependence of
the form exp(—iwt), as in sect. 2.1.2, with the solution of the fields expressed in
rectangular coordinates.
If the wave vector components: ky, and k,, satisfying the following relations:

k, = k cosp (3.33b)

]

k, = k sinp (3.33¢)
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Experimental arrangement for observation of the mode spectrum of a

thin— film waveguide.
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of the corresponding excited mode.
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are real, then y in (3.33) is an homogeneous plane wave, which propagates at an
angle ¢, with respect to the x— axis.

Now, let us consider ky and k, as complex numbers defined by:

kyn = b - ia (3.34)

kyn = B - ia (b)
so that the modulus of the wave vector: k, still satisfies the relation: jk|=k.
Due to the complex value of the wave vector along the x—axis of both media of
refractive indices: n; and np, the reflection of a TE and a TM wave are no longer
total (see fig 3.9b), so that in general, the magnitude of the reflection coefficient
cannot be unity. Therefore, some energy is refracted into the less dense medium,
even if the incident angle, 61, is larger than the critical angle, 6. However, for
61> 6. and for PB»c>0, the refracted energy is small and the magnitude of the
reflection coefficient is close to unity. This implies that, some energy leaks into the
outer region, as for example at the interface between the guiding layer and the
superstrate in fig. 3.9.b. This leakage rate is expressed by rewriting the plane wave
equation as in (3.33), but this time with the complex propagation coefficient, such
that:

¥ = Yo exp(ax + az) expi(bx + fz) (3.35)
where the imaginary part of the propagation coefficient is responsible for the
radiation loss, which is consistent with a field decay of the form exp(— az) along the
longitudinal axis.

Consequently, (3.34) is still a plane wave because the equi—phase and
equi— amplitude of the fields are plane. This wave is known as an inhomogeneous
plane wave because the variation of the field intensity along any equi— phase line is

plane.

b. Leaky wave in beam coupler
First of all, we consider a planar guide formed by a film on a substrate, in
which a surface wave of propagation constant gy, is guided. Next, we introduce a

prism on top of the film, leaving an air— gap between the two.
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Fields of inhomogeneous plane wave:

a. Propagation of an inhomogeneous plane wave in free space.

b. Reflection and refraction (leakage) of an inhomogeneous plane wave at
the interface between two dielectric media. The density of the amplitude

(flux) lines suggests the magnitude of the field intensity, which decays in
a direction parallel to the equi— phase lines.
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Therefore, the reflection of the wave at the film/air— gap interface is frustrated by
the presence of the higher refractive index prism. It follows, that the wave in the
film below the prism is a leaky wave, having a propagation constant: k,=f—ia. If g
is now very close to fgy, and if the leakage is weak, i.e., a8, a surface wave
varying as exp(—ifsy2z) and incident from the left as in fig. 3.10a, will be smoothly
transmitted as a leaky wave varying as exp(— ik,2), past the z=0 plane. Due to the
leakage of energy in the region where z>0, power is radiated away from the thin
film as in fig. 3.10b, in the form of a beam that progresses in the film at an
angle, 61, given by the relation:

87 = tan-1(g/b) (3.36)
Then the angle of radiation of the fields in the prism, 69, is deduced from the
refraction law, so that:

85 - sin~1((ny/ny) sindy) (3.37)
Finally, note that an eigenvalue equation or transverse resonance equation can still
be used to identify a leaky mode. The phase shifts are then complex rather than
real, but the picture of the wave inside the guide is still a zig—zag wave, as shown

in fig. 3.10.

3.3 PRISM _COUPLING TO A FIBRE

The prism to fibre coupler is a development of the prism to thin film coupler
previously described. The ray approach is however valid only for multimode fibres.
Starting from Maxwell's equations in the core region, it can be shown that for large
values of core radius, the waves in the guide can be described in plane wave terms,

with three orthogonal wave vector components: k,, k , and k.. These are illustrated

w’
in fig. 3.11. Also shown in the same figure, are the angles o and o, which
respectively indicate the angle of skew and the angle of elevation of the local plane

wave in the fibre. These relations are simply expressed as in:

ag = tan~1(kp/B) (3.38)

oe = tan~1(kr/B) (b)
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Leaky wave description of prism coupler:
a. basic film— on— substrate configuration;

b. leakage due to prism coupling. The density and thickness of flux lines
suggests intensity variation.
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where k(p,r,z) is the wave vector in a homogeneous medium of refractive index ng,

so that:

k| = k2 "02 - er + sz + 32 (3.39)

3.3.1. Modification of the cladding

Optical fibres have thick cladding layers, specially chosen so that the evanescent

field at the outer cladding surface is negligibly small for all well guided modes.

Therefore,

to reach the evanescent field of the fibre, and thus allow optical

tunnelling of some energy from the fibre to the prism, or vice versa, the cladding

thickness has to be reduced.

If enough cladding is removed so that the core is nearly reached, it is possible to

create a leaky mode situation for all guided modes of the fibres.

There are several ways of doing this:

1.

One method was illustrated by Midwinter Md, who tapered down a fibre
on its full circumference. The result is that the light of an output coupler
radiates all around the modified cladding in the shape of a cone.
Consequently, only low efficiency coupling is possible, as the field
distribution of the equivalent output coupler is impossible to reproduce.
This tapered fibre cannot be used to couple to other guides, and is thus
of little interest.

Secondly, the cladding can be modified locally at one side of the fibre
contour. This is effectuated by polishing, as for the directional coupler
(see sect. 1.2.1), or by etching a D-—fibre locally. By the etching
process, some cladding is removed all around the core, including the flat
surface, which remains flat. Thus, we obtain a smaller core— flat distance,
which enables evanescent field coupling.

Finally, a D—fibre with a very small core/flat distance can be used (see
sect.1.2.2), although with this method the fibre becomes very sensitive to
bending. Nevertheless, a small sample of D—fibre can be spliced to a

normal fibre to reduce radiation losses outside the coupling region.

55



oYYy

~~~~~~~~~~~~~~~~~~~~~

-------

Og =tan™! (kyp) : elevation angle
O =tan"(k¢/ﬁ) : skew angle

B : propagation constant of a guided mode

FIGURE 3.11

Definition of the vector wave components in a cylindrical coordinate
system with: k = k, ¢ + k r + k, z, where f=k,n is the propagation
constant of a guided mode inside the fibre, n being the refractive index
of the fibre core.
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3.3.2 Phase matching conditions

From the study of the prism to thin film coupler, it is evident that efficient
coupling is achieved when the best possible phase matching occurs between an
incoming quasi— plane wave from a laser beam, and the local plane wave of the
fibre at the point of conjunction. Note that, the condition of a sufficient overlap
between the evanescent wave at the base of the prism, and the evanescent radial
wave of the fibre, is implicit.

Thus, for the optimum excitation o-f a particular mode, the synchronous and tilt
angles: 6, and e, at the entrance of the prism, must be selected to phase match
the characteristic skew and elevation angles: og and o, of the ray inside the fibre
corresponding to the chosen mode.

From simple geometrical considerations as seen in fig. 3.12, we obtain:

On = sin‘l[np sin(sin‘l(sinme Neore/MNp) - ozp)] (3.40)

Po = sin‘l(np sinag) = sin'l(npkw) (b)
where the subscript m denotes the angle at the entrance of the prism,

n, and op are the prism refractive index and angle, respectively,
and kgo is the angular component of the vector wave, expressed in a cylindrical
coordinate system as defined previously in fig. 3.11.

Observe that, as in the prism to thin film coupler, each mode of the fibre has
its corresponding m—line, which allows the characterization of its different
propagation constants. Finally, note that as the fundamental mode (HEqq or LPOI)
and the higher order HEj,, modes of a fibre satisfy the scalar wave equation, they
have no azimuthal variation, i.e., ag=0. Therefore, they are formed by meridional

rays only.

3.3.3 Launching efficiency of a prism to fibre coupler

As a first approximation, the coupling region can be divided into the xy and
xz— planes, and the efficiency in each plane is discussed separately.

In the xz— plane, we can apply the results for the efficiency of a plane wave

such as in the prism/film coupler (see sect. 3.2.3), which can be noted as ny,, and
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FIGURE 3.12

Geometry of prism/circular fibre coupler.

a. The synchronous angle, 6, at the entrance of the prism, allows the
phase matching of the elevation angle, ¢, inside the fibre core.

b, c. The appropriate skew angle, g, defined in fig. b and c is obtained
by variation of a tilt angle, g = sin_l(np sinay), of the prism.
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is equal to the value in equation (3.31).

However, in the xy— plane the situation is more complex. Not only does the
strength of the coupling vary in the y—direction, but due to the geometry of the
cross— section, the radial wave vector component, k., becomes mismatched with the
incoming evanescent wave vector in the air—gap medium along the y— axis.
Therefore, coupling occurs only over a small region, which is defined by Millar M
as:

y(0) ¢ 5y secag/2 (3.41)
so that the efficiency, Txy» in the xy— plane will be:

Nxy = dxy secag/D (3.42)
where D is the width of the incoming beam.

Note, that By has been estimated as an order lower than the fibre diameter.
Finally, we deduce the total efficiency as the product of the two efficiencies,

the first one in the xz— plane and the other in the xy— plane, so that:

Mtotal = Mxy Txz (3.43)
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CHAPTER FOUR DEFINITION OF THE PROBLEM AND

USE OF THE GREEN FUNCTION METHOD

4.1 DEFINITION OF THE PROBLEM AND ASSUMPTIONS

The aim of this project is to try to formulate and solve the perturbation theory

for a fibre core in a half—space cladding, by means of the Green functions (GF).

We then want to calculate the propagation constants of the perturbed fibre, knowing

the refractive indices of the step index fibre. Note, that the core/flat distance as

defined in fig. 4.1 can take any value between zero and the distance corresponding

to a circular fibre. Thus, we include all the range of D— fibres which can be drawn

from a preform (see sect. 1.2.2), or any half— directional coupler formed by a

polished fibre (see sect. 1.1.2).

Now let us define the assumptions of our problem.

a.

At first, we consider that the whole structure formed by the core, the
modified cladding, and the surrounding medium, is translationally invariant
in the z— direction, i.e., in the direction of propagation. The problem is

therefore reduced from a three dimensional to a two dimensional one.

. Secondly, the fibre used in our study is weakly guiding, i.e., the profile

height is small (see sect. 2.2.3). The previous assumption allows us to
substitute the vector wave equation by the scalar wave equation. Hence,
we ignore the polarization dependence of the mode fields in the fibre.

Finally, we assume that the modes are far from their cutoff frequency
(see sect. 2.2.4). This implies a strong guidance of the modes inside the
core, and a small evanescent field outside the core. Consequently, as the
modes are well confined inside the core, the boundary at the
cladding/surrounding medium is supposed to be at infinity, on all but one
side. This means that the core is considered to be in a half—space

cladding.



N2
cladding

d : variable core/flat distance

N, : refractive index of the core
N, : refractive index of the cladding

N5 : refractive index of the surrounding medium

FIGURE 4.1

Fibre core with variable core/flat distance, d, in a half—space cladding.
If nj>ny>n3, we have the situation of a D—fibre surrounded by a low
refractive index medium, for example the air in the case of a D- fibre

in isolation.
If n3>n;>ny, we have a prism coupling situation, provided that the

core/flat distance is sufficiently small.
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4.2 GENERAL THEORY ON GREEN FUNCTIONS (GF)

We want to study the guiding structure formed by a fibre core in a half— space
cladding, as defined in the previous section, by means of the GF. Therefore, let us

first introduce the GF and their properties.

4.2.1 Definition and properties of the GF

First of all, let us recall that the electric and magnetic field vectors, E(r,t) and
H(r,t), respectively, in a homogeneous medium of refractive index n=(e/ eo)” 2,
satisfy the following Maxwell or field equations:

VXE + pdH/3t = - M (4.1)
VxH - €dE/dt =] (b)
where the source excitation: J(r,t) and M(r,t) are, respectively, the vector electric
and magnetic current densities, and where e, and p, represent, respectively, the

dielectric constant and the permeability in the vacuum.
At any time, the field equations are supplemented by the auxiliary equations:

V ¢E =p (4.2)

V uoH = oy (b)
where p and pp, are respectively, the electric and magnetic charge densities.

Then, due to the linearity of the field equations, the field can be expressed in

terms of the excitation charge densities in the following integral representation:

E(r) = —jcll(r,r') p(r') dr’ -Jclz(r,r') Pp(r') dr' (4.3)

H(r) = -chl(r,r') p(r') dr' -chz(r,r') pp(r') dr' (b)

where the integrals are extended over a volume, within which the currents M and J
are non— vanishing, and where the implicit time dependence has been omitted.

From the above equations, we identify the dyadic components Gji1.e' and Gjj.e' as
being the negative of the vector electric and magnetic field, respectively, at r
produced by a unit electric current density at r‘, in the direction e'.
Correspondingly, Gpp.e' and Gpj.e' are the negative components of the vector

electric and magnetic field, respectively, at r produced by a unit magnetic current
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density at r', in the direction e'. The four dyadics are called Green's functions of
the electromagnetic fields.

We deduce from the above integral equation that if Gq1(r,r') is the electric
field at the observation point r, caused by a unit source point r'. Thus, the field at
the observation point r, caused by a source distribution p(r'), is proportional to an
integral of the GF over the whole range of unit source points constituting the total
source. In other words, the field caused by any source distribution can be calculated

by adding the effects of each elementary portion of source.

4.2.2 Wave equation for the GF

As the current application involves no magnetic charge densities, pp,, we
consider a uniform medium with none. It follows that, by substitution of (4.3a,b)
into the field equations, we obtain the following defining equations:

V X Gyp + € 3G11/3t = -1 §(r - r') (4.4)

V X 611 + pg 9Gg1/3t = 0 (b)
where §(r—r') is the delta function,
and 1 is the unit dyadic which is defined by: 1.A = A.1, with A being a vector.

Next, on elimination of the GF: Gj1, in the defining equation, we obtain the
second order differential equation for the electric type of GF: Gqy, for an
homogeneous medium. Hence:

n2 32614 )
WX G611 + = ——= = - po — 1.8(r-r") (4.5)
c2 a2 at
Therefore, Gpp satisfies the inhomogeneous vector wave equation.

From the above equation, Felsen Fm jn sect.1, showed that the electromagnetic
fields in an unbounded region are derivable from a scalar Green's function: g(r,r'),
which satisfies the following scalar wave equation:

n2 32

[ 2 .- - ] gr,r') = - §(r-r') (4.6)

c2 a2

subject to the boundary conditions g=0 if |r — r'| » «
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4.2.3 Boundary conditions and surface charges

At first, we want to show how the solution of an inhomogeneous equation, with
homogeneous boundary conditions (BC), will help us to solve a homogeneous
equation with inhomogeneous BC. We consider, for example, a homogeneous
differential equation in terms of a scalar field potential: ((x,y), which must satisfy
an arbitrary set of Dirichlet BC on a surface S (i.e., p=pg on the surface). This is
done by replacing the inhomogeneous BC on S by homogeneous BC: =0, together
with a surface layer of charge density: pg/e€, just inside the surface, S, as shown in
fig. 4.2, with pg being the surface charge density. The distance to the boundary
surface, ¢, is taken to be much smaller than the radius of curvature of the surface,
and also smaller than the distance over which pg varies appreciably. Therefore, for a
distance of order ¢, the surface is plane, and the charge density may be considered
uniform. Furthermore, from electrostatics, we can consider that, the normal gradient
of potential changes by an amount: 4xpy/ e, when going through such a charge layer.
Because e is assumed small, the gradient between the charge layer and the boundary
must be very much larger than that outside the charge layer, and can therefore be
neglected. Thus, in this region between x=— ¢ and x=0, the potential must be:

p =~ (4x pg/e)x y with —e < x < 0 (4.7)
Consequently, if we make the surface density: pg, which is infinitesimally close to
the boundary, equal to ¢¢/4x, the potential just outside the charge layer at x=— ¢,
is ¢, and the potential at x=0 is ¢=0, i.e.,, the new boundary value we wish to
satisfy. Of course, we have not proved the equivalence between a homogeneous
equation with inhomogeneous BC, and an inhomogeneous equation with homogeneous
BC, but we have made it plausible.

Thus, we deduce that the above property is applicable to either the
homogeneous or inhomogeneous scalar wave equation, with inhomogeneous or
homogeneous BC, respectively. This implies that the same GF can be used to build
up a solution for an arbitrary charge distribution inside the definition domain, as
shown by fig. 4.3a, and also for an arbitrary set of Dirichlet BC on the surface

enclosing the same definition domain, as described in fig. 4.3b.



FIGURE 4.2
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83;?rvation [r-r'] Equivalent
Source Point
FIGURE 4.3

a. Definition domain of the GF used to build up the solution of an

inhomogeneous scalar wave equation with homogeneous boundary
conditions (BC). The source and observation points are inside or on the
boundary defined by the surface S.

b. Definition domain of the GF leading to the solution of a homogeneous
scalar wave equation with inhomogeneous BC. The value of the field at
that boundary is replaced by an equivalent unit source distribution, so that
the GF is that of an equivalent source point at that boundary.
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Therefore, we suppose at first that we know the scalar field: Wrg") (and/or its
gradient), on a surface S. The value of ¥rg'), which represents the BC, can be
thought of as being equivalent to a unit source distribution on this surface.
Thereafter, we want to calculate the field at the observation point: r, with the BC
equal to zero, at every point on the surface, except at the point: rg'. The boundary
value behaves as a delta function at this equivalent source point, meaning that the
integral over a small surface around rg' is unity Hence, this field at the observation
point: r, caused by an equivalent source point at: rg', is also a GF noted g(r,rg",
which will enable us to calculate the inhomogeneous wave equation (4.6).

Finally, as a result of the above equivalence, and the linearity of the scalar
wave equation, we can also solve the inhomogeneous equation with inhomogeneous

BC, by superposition of the two individual solutions.

4.2.4 Reciprocity relations

We want to show that the GF is a symmetric function of the source and
observation point at r' and r, respectively. We start from (4.6) with the scalar GF:
g(r,r"), rewritten below with the implicit time dependence, so that:

V2g(r,r') + k2 g(r,r') = - &(r-r') (4.7)
Let us now consider a source point at rj ‘, and then write its corresponding
differential equation as in:

V2g(r,r1') + k2 g(r,ry') = - 8(r-r1') (b)
Next, we multiply (4.7a) by g(r,r'), and (4.7b) by g(r,ri'), and subtract the two

resulting equations. Thereby, we obtain after integrating over a volume:

0= JH g(r,r")¥2g(r,r') - g(r,r")v2g(r,r1') dv

+ J” g(r,ry")é(r-r') - g(r,r')é(r-rq') dv (4.8)

We now recall the second Green's formula, which gives the following relation

between a surface and a volume integral, such that:
IJ[u W - v Vu] ng dS = Ijj[u V2y - v V2u] qv (4.9)

where S is a closed surface bounding the volume V, and ng denotes the normal unit
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vector, ng, directed outward from the volume enclosed by the surface S (see fig.
4.4a). The continuity conditions on u and v are defined by Kreizig Kr in sect. 9.7,

for example. As a result of the above relation, (4.8) becomes:
Jjg(r.r')v(g(r,r1') -8(r,r1')V(g(r,r') ng 45 = g(ry',r')-g(r',r1")

Since both g(r,r') and g(r,r;') satisfy the same homogeneous BC, the surface integral
vanishes, and therefore we have demonstrated the following reciprocity relation:
g(r,r') = g(r',r) (4.10)

as long as both r and r' are inside or on the surface of integration.

4.3 DEFINITION OF THE ANALYTICAL PROBLEM: KIRCHHOFF— HUYGENS

INTEGRAL

4.3.1. Data

First of all, let us define the problem of a guiding structure formed by a fibre
core in a half—space cladding. This guide can be either a D—fibre or a half— fibre
coupler based on a conventional fibre, and both fibres are assumed to be monomode
with step index profiles. The geometry of the guide implies a longitudinal
translationa! invariance. Each region of the guide is also supposed to be
homogeneous. Finally, the fibre is assumed to be weakly guiding, so that the
transverse electromagnetic fields satisfy the scalar wave equation (see sect. 2.1.3) in
each region, so that:

Ve2y + Ky =0 (4.11)
with

92y = V. 2y - B2y and K2 = k2n? - g2 (b,c)
where y is the scalar field.

Note that, we have assumed a time harmonic and z— dependence of the form
expfi(Bz— ut)}. This assumption also applies to the the next equations.

Then, the fields must also satisfy the boundary conditions (BC) at the
core/cladding and cladding/surrounding medium interfaces, as described in fig. 4.1.

However, due to the boundary at the flat surface of the cladding, it is impossible to
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' : source point
N : outer unit normal vector to s

S : surface enclosing the volume V

(b) cladding
C.
P :is the surface enclosed by the contours C and C,
1 is the contour at the core cladding boundary
C.. : contour closed at infinity
Ng :outer unit normal vector to C
n_, :inner unit normal vector to C
FIGURE 4.4

a. Definition domain for Green's second formula with the source points
inside or on the surface, S, enclosing the definition domain, P, and
applied to a three dimensional problem.

b. Definition domain for Green's second formula with the source points

on or outside the contour, C. Note, that the definition domain defined
between the contours C and C,, is closed at infinity by the contour, C,.
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find an appropriate coordinate system which would enable the separation of the
partial differential equation (4.11) in terms of coordinates: £n, so that each boundary
would correspond to one (or more) coordinate equal to a constant, i.e.,
¢ h= constant.

This explains the reason for the use of a numerical method, in our case the GF

method as opposed to the eigenfunction method or modal expansion Mf

4.3.2 Development leading to the Kirchhoff— Huygens integral

Now we consider the GF of our study. In sect. 4.2, we have shown that a GF
expressed the field at one observation point (r), caused by one source point when
the BC are homogeneous and the equation to satisfy is inhomogeneous. The same
GF applies if the GF is caused by one equivalent source point, when the BC are
inhomogeneous and the scalar wave equation homogeneous, as in our problem. In
both cases the GF, which must satisfy the inhomogeneous scalar wave equation
(4.7a), written below, with a time and z— dependence as defined in (4.11b,c), as in:

Ve2g(r,r') + K g(r,r') = - 8(r - r') (4.12)
Let us assume that we know the GF for an equivalent source point at the
core/cladding interface, which will be calculated in chapter 5, and which will also
satisfy the boundary conditions at the cladding/surrounding medium interface. With
the previous considerations, we can thus show that the homogeneous scalar wave
equation having inhomogeneous BC at the core/cladding interface, may be expressed
in terms of g(r,r').

To do this, we first multiply (4.12) by y and (4.11) by g(r,r'), and subtract
the product, exchanging r for r' at the same time, so that:

Y(r') Ve2g(r,r') - g(r,r') Ve 2y(r') + y(r') &(r-r') = 0 (4.13)
As the 2z—invariance implies a two dimensional problem, we want to integrate
equation (4.13) over the xy—plane, and then by using the second Green's formula
(see 4.9), to reduce it to a line integral. Therefore, let the definition domain: P, as

shown in fig. 4.4b, be limited between the contour of the core: C, which is

included, and a contour closed at infinity: Co,
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Their corresponding normal unit vectors: ng and n,, are directed outwards for C
and inwards for C,, to the centre of the core.
Note that the definition domain is the same for both the source and observation
point, so that C'=C, C,'=C', and ng', ng have the same direction.
Thus, the integral of (4.13) over the definition domain, P, with the source points
(or equivalent source points) on or outside the contour of the core, becomes:
JJ¢(r‘) Ve2g(r,r') - g(r,r') Ve2y(r') + y(r') s(r-r') dsg’'
Sy

+ JJ¢(r') Velg(r,r') - g(r,r') Vy2y(r') ds' (4.14)
S!

where S.' and S' represent, respectively, the surfaces enclosed by the contours C,'
and C'.

Sommerfeld's radiation conditions at infinity make the integral over S_' tend to zero,
as defined for example by Jones JO in sect. 1.31 and 1.34.

As a consequence of the previous conditions, and the property of the delta function,

the integral around S.' is equal to y(r'), which is the scalar field at the source

point (4.14) is reformulated as in:

jj¢(r') Velg(r,r') - g(r,r') 9.2y(r') ds' + y(r') = 0 (4.15)
Sl

Thereafter, using Green's formula in the plane, we obtain the following line integral:

ag(r,r')  oyY(r')
y(r')

- g(r,r') dl' = - y(r) (4.16)
ong' ong'
c'
where 1' is the integration path along the contour C'.
Consequently, the above equation is the Kirchhoff— Huygens integral for a two
dimensional problem with the following variables:
1. The Green function: g(r,r') is the value chosen for an equivalent source
point on the core, which takes into account the boundary conditions at
the core/cladding interface due to the equivalence between a boundary

condition and a unit source distribution on the contour of that boundary

(see sect. 4.2.3).
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Wr') is the general solution of the homogeneous scalar wave equation at

the coordinate of the selected source point.

Wr) is the expression of scalar field at any observation point inside the

definition domain.

Finally, note that the choice of this Kirchhoff— Huygens integral will be justified by

further analytical development in chapter S, leading to one unknown: the propagation

constant, (.

4.4 JUSTIFICATION OF THE CHOICE OF THE NUMERICAL GF METHOD

4.4.1 Diverse aspects of numerical methods

A D-fibre with its surrounding medium, constitutes a multi— layer longitudinal

uniform waveguide. In order to characterize the guide, Maxwell's equations are the

basic relations. These equations are valid over each layer or region, and are subject

to the boundary conditions, such that the tangential field components must be

continuous

at the interface between two regions.

The various numerical methods satisfying Maxwell's equations differ mainly according

to three di

1.

fferent criteria.

Some methods are directly applied to the Maxwell equations, their integral
form, or any other reduced forms. However, the majority of the methods
are semi— numerical, in the sense that the original equations are
transformed through various mathematical modelling schemes, into a
system of linear equations solvable by standard matrix techniques.
Secondly, one method may approximate the fields over each dielectric
layer, or over a subregion of a dielectric layer, as in the finite elements
method. Note, that for our GF method, the field is explicitly expressed
only for the cladding region (which is sufficient to find @), although the
GF has been formulated for all the regions.

Thirdly, methods differ from the way they deal with the boundary at

infinity.
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4.4.2 Different methods to solve a homogeneous problem

Saad SM gives a review of the main methods used in the analysis of the
arbitrarily shaped dielectric waveguides. In the case of an isotropic homogeneous
guide, our D— fibre for example, for simplicity he considers three main approaches,
although a combination between several methods sometimes offers the best solution
for one particular case.

1. The first and one of the oldest approaches is the point matching method

Jm, which uses an expansion in series of the fields in each region, and a
matching of the tangential field at optimal selected points around the
boundaries. However this method would be cumbersome if applied to our
problem, and is therefore excluded.

2, The second group of methods is formed by the variational and integral
approaches, for example our GF method.

3. Thirdly, the finite elements method R,Sv js considered. This method
offers probably the most powerful and efficient numerical solution of the
most general problem (i.e., for an arbitrarily shaped, inhomogeneous, and
anisotropic guide).

Consequently, for the selection of the most appropriate method for our
problem, the finite elements method and the GF method were taken into
consideration. As the latter method was previously described, we will now give a
brief explanation of the finite elements method. For this approach, the waveguide
cross— section is divided into a large number of triangles (or elements), and the
fields in each element are represented by a polynomial. The continuity conditions of
the fields are then imposed on all the interfaces between the different elements. By
employing a variational expression for Maxwell's equations, or its equivalent wave
equation, an eigenvalue matrix equation is obtained, and solved using standard

methods.
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4.4.3 Choice of the appropriate numerical method

First of all, we consider the main criterion for selection of the appropriate
numerical method for our study, which is the formulation of the boundary
conditions, in particular, those at infinity.

For example, the conventional finite elements method is based on the fact that the
fields of a mode above cutoff decay in the cladding, so that the infinite cladding
can be approximately modelled by a closed region bounded by an artificial Dirichlet
boundary, or others Yh,Mb_ However, in the case of our D—fibre used in coupling
situations, the distance core/flat surface of the cladding cannot be considered as
infinite. Therefore, in a guided mode situation, the evanescent field also extends into
the surrounding medium. Then, if the refractive index of the surrounding medium is
higher than that of the cladding as in prism coupling, for example, and if the
core/flat distance is small, the evanescent field decay of a guided mode of the
D— fibre is slower than that of a guided mode propagating in a similar circular fibre
with a cladding supposed to be infinite. Consequently, a larger number of elements
outside the fibre in the surrounding medium, would be necessary, as the evanescent
field decays very slowly.

On the contrary, for the GF method, the boundary conditions at infinity are
formulated in the same way for any refractive index of the surrounding medium.
What is more, they are easily included in the GF formulation (see (5.23) and
(5.28)), which constitutes one element of our integral equation (5.30), and thus
simplifies the calculation leading to the final eigenvalue matrix (5.42).

Furthermore, if we consider the case where the core/flat distance is small
enough to allow a non— negligible penetration of the evanescent field inside the
surrounding medium, which has a refractive index higher than that of the core, the
D— fibre can become leaky. In that situation, the boundary at infinity has no
significance, since a leaky mode represents a free radiation in the surrounding
medium, and therefore, the field does not decay towards zero at infinity (see sect.
3.2.6). Nevertheless, with the GF method, it would still be possible to calculate the

complex propagation constants of the leaky modes, by analytical continuation of the
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theory elaborated for the real propagation constants of the guided modes. However,
as the finite elements method is purely numerical, no analytical continuation is
possible, and thus a leaky mode guiding structure cannot be considered.

Consequently, for a D-fibre supporting guided modes, the GF formulation of
the boundary conditions at infinity is exact, and simpler than that of the finite
elements method, which requires an approximation of the boundary at infinity and
does not enable the direct extension of the study to include leaky modes.

Next, we consider the convenience of the two methods with respect to the
particular geometry of the D-—fibre. The GF method is ideally suited to planar
stratified environments, where the GF can be calculated by an elementary Fourier
method. The finite elements method is better suited to application to linear
boundaries. The curved boundaries present in our problem would increase the
number of numerical operations.

Another important criterion of selection is based on the computational
efficiency. As the GF method is not a direct method, it requires more programming
tasks to obtain the final matrix, than the finite elements method. At first, in order
to solve the Helmholtz equation for the GF, the inverse Fast Fourier transform must
be computed, and an iteration of the GF in the x— direction is necessary for each
sampling point around the core.

Therefore, the program must be optimized to minimize the computing storage
requirement. However, the matrix of the finite elements method is sparser than that
of the GF method, but its order is higher.

In conclusion, despite the additional computing requirements, the GF has been
chosen to calculate the propagation constant of a D-fibre, with different core/flat
distances and surrounded by different refractive index media, because of the intrinsic
formulation of the boundary conditions, and the possible extension to leaky mode

situations.
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CHAPTER FIVE ANALYTICAL STUDY

5.1 ANALYTICAL PART OF THE CALCULATION OF THE GF

In the previous section we have seen that the GF must satisfy the boundary
conditions at the core/cladding and cladding/surrounding medium interfaces.
Furthermore, as the definition domain of the GF was chosen on and outside the
contour of the core, the scalar field must tend towards zero at infinity.

We have also assumed that the GF would be the that of an equivalent source point
at the core/cladding boundary.

Finally, the complete GF must also include the effect of the flat/surrounding medium
boundary, the cladding being supposed infinite on all but one side (see fig. 5.4).
Therefore, let us first calculate the GF of a source point in a half— space cladding
as defined in fig. 5.1, before solving the Kirchhoff— Huygens integral, from which
the different propagation constants of the guided modes of a D—fibre (i.e., for g

real) with a variable core/flat distance, will be determined.

5.1.1 Fourier transform of the Helmholz equation

a. Helmholtz equation and choice of the coordinate system
As defined in sect. 4.3, a GF is the solution of the Helmholtz equation, except
at the source point. Hence, this equation can be rewritten as below:
328 a2g
— o+ — K2 = - s(x=x") 8(y-y") (5.1)
ax2  ay?
where K2 = n%? - 62
g(r,r") is the scalar GF,
r(x,y) is the vector position of the observation point,
r'(x’,y') is the vector position of the source point,
n is the refractive index of the medium,
k is the free space wave number,

and B is the propagation constant of one guided mode, and is thus real.
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Now, let us choose the appropriate coordinate system for the calculation of the
GF of a unit source point in the cladding region, as defined in fig. 5.1.
As the cladding and surrounding medium are infinite along the x— axis, the wave
equation possesses a translational invariance along this axis. It follows that, in the
x— direction, the solution, which is our GF, depends only on the difference in
abscissa between the observation and source points, i.e., on (x—=x'). Consequently,
we can set the abscissa of the source point equal to zero (i.e., x'=0), so that the
origin of the x— axis is moving with the source point. Secondly, let the origin of the
y—axis be at the interface between the flat surface of the cladding and the
surrounding medium. The refractive indices: ny and n3, are those of the cladding

and the surrounding medium, respectively.

b. Fourier transform of the differential equation
As the partial differential equation (5.1) is translationally invariant in the
x— direction, a Fourier transformation in terms of x, reduces the partial differential
equation (5.1) into an ordinary differential equation, with y as the variable, as in:
32¢
— + (K2 - 4G = - 8y - ¥") (5.2)
8y2
where K2 = njzk2 - 62 , and nj is the refractive index of either the cladding
(nj= ny) or the surrounding medium (nj= n3).

Note that we use the time convention exp(—iwt). The Fourier transform is thus

defined as:

+o0
G(y) = J g(x) :Yx dx (5.3)
-0
where v is the spatial angular frequency,
and where the inverse Fourier transform is defined as:

400

1 1yX
g(x) = — J G(y) e dy (b)
2r

-
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n surroupding
3 medium
> X
n half-space X(x,y)
2 cladding

x{xy’)

X' : coordinates of the source point
X :coordinates of the observation point
N_ :refractive index of the surrounding medium

N, : refractive index of the cladding

FIGURE 5.1

Definition of the parameters of our GF.

The source and observation points are inside a half—space cladding
(interface included). The origin of the x—axis is based on the source
point, and that of the y—axis at the interface between the two media.
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Now, by rewriting (5.2) for the cladding and surrounding medium regions

obtain:
3¢
dy

32¢

— + (K32 - 26 =0

6y2

we

_ K2_2 - - - vu!
2+(2 Y4)G &y -y, for y ¢ 0 (5.4)

for y # y' and y > 0 (b)

. 2 _ - .
with Kp* = n22k2 62, ny being the refractive index of the cladding,

. 2 .
and with K3¢ = 1132k2 - g2, n3 being the refractive index of the surrounding

medium.

Then, let us define the sign of the constants: K52 and K32.

If we consider the structure for a D—fibre surrounded by a semi— infinite medium,

several refractive index profiles are possible. The value of the propagation constant,

B, or its effective refractive index, ne, determines the possible guidance of a mode

as shown in fig. 5.2 and described below.

a.

The first case allowing the guidance of a mode is that of a
D— fibre/surrounding medium structure with refractive indices satisfying the
following inequality as in fig. 5.2a: n3 ¢ ny < ng < ny. The refractive
index of the surrounding medium is lower than that of the cladding, as
in the case of a D— fibre surrounded by an air medium.

The second case still allows guidance inside the fibre, and is formed by a
fibre surrounded by a medium with a higher refractive index than that of
the cladding, but lower than the effective refractive index of the mode,
as in: ny ¢ n3 ¢ ng < Ny.

However, if the effective refractive index is lower than at least one of
the refractive indices of the cladding or surrounding medium, this
corresponding mode is not guided into the D— fibre, but is leaky.

This is the case of a prism to fibre coupler where the leakage is due to
the high refractive index of the surrounding medium. The values of the
refractive indices satisfy the following inequation: np ( me ( n3, and their
parison with the effective refractive index of the mode are

values in com
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nz
(d ng<ng<nz<ny
N3
. 4 ng

FIGURE 5.2

Definition of the different refractive index profiles.

a. Refractive index profile of a D-— fibre surrounded by a low refractive
index medium, for example the air. Thus the guided mode has an
effective refractive index profile superior to the refractive indices of the
cladding and surrounding medium.

b. Refractive index profile for a surrounding medium of a higher
refractive index than that of the cladding, but lower than the effective
refractive index of the guided mode.

¢. Refractive index profile of a fibre to prism coupler. A refractive index
of the surrounding medium higher than the effective refractive index of
the mode creates a leaky mode situation.

d. If the effective refractive index of a mode is lower than the refractive
index of the cladding and/or the surrounding medium, the mode is leaky.
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represented in fig, S.2c.
Even if the D-fibre is surrounded by air, the guide can support leaky
modes, for example after coupling from a laser to a fibre, until all the
energy injected into that mode has leaked out and radiated inside the air
medium.
In conclusion, as in our problem we want to consider only the guided modes with a
real propagation constant, the first two cases are considered. It follows that for a
given value of the core and refractive indices, the range of propagation constants, £,
is defined by the following inequality (see sect. 2.1.2):
k2n32 e k2n22 < 62 < k2n12 (5.5)
or
kZnp2 € k2n32 ¢ B2 ¢ K2ng2 (b)
Consequently, we can write the following inequations:
Kp2 ¢ 0 (5.6)
and

K32¢ 0 (5.7)

5.1.2 General solution of the ordinary differential equation

First of all, let us make the following change of variables:

M2 = 42 - K92 >0 (5.8)

732 = 42 - K32 >0 (b)
Hence, with the above change of variables we can rewrite the ordinary differential
equation for the three regions, as defined in fig 5.3, which will lead to the different
particular solutions. The first region is formed by the surrounding medium, and its
corresponding differential equation is:

32¢

___n320=o , with y > 0 (5.9)

8y2
The second region is formed by the cladding region from the source point (included)

to the cladding/surrounding medium interface, and its corresponding equation is:
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32¢

——’7220--5(y-y') ) with yg ¢ y < O (5.9b)

dy2
The third and last region is formed by the cladding region below the source point,
and its corresponding equation is:

32¢

—-"M2c=-0, with y < yo (5.9¢)

8y2

Note that the distance from the source point to the boundary between the
cladding and the surrounding medium, is implicitly given by the ordinate of the
source point.

Next, we want to include the boundary conditions, which will define the
particular solution of the differential equation in each region.
First of all, due to conservation of the energy, the GF that represents the field
produced by a source point (at y'), must tend towards zero at infinity, i.e., for
y= tw=. Hence, the GF along the y—axis must have an evanescent decay for an
observation point in the surrounding medium, i.e., for y>0 in region 1, and also
for the values of the ordinate of the observation point inferior to those of the
source point, i.e, for y<y' in region 3.
However, due to the reflection at the interface between the two media of refractive
indices ny and nj, the solution in region 2 (for y'<y<0) is the sum of a progressive

and retrograde wave.

Therefore, from the following general solutions for each region:

“n3 Yy

G=Ace with y > 0O (5.10)
M2y 12

GC=Ce + De with y' ¢y ¢ O (b)
ny

G=Be with y <y’ (¢)

the particular solutions are determined by the calculation of the constants: A, B, C,
D, which depend on the boundary conditions at the interface between the two

media, and at the source point: i.e., at y=0 and y=y', respectively.
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surrounding
medium

P <

(air or prism) region1 : y>0
n
3
3 ¢° .
d n, region2 : y'<y<0
cladding -Y X
r'e .y’) : source point
nz . . (]
region3 : y<y

d :distance from the source point to the surrounding medium

n,,n,: refractive indices of the cladding and surrounding medium, respectively

FIGURE 5.3

Definition of the region for the resolution of the system of differential
equations (5.7).

Region 1 is formed by the surrounding medium.

Region 2 is formed by the cladding from the source point to the
cladding/surrounding medium interface.

Region 3 is formed by the cladding below the source point.
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5.1.3 Boundary conditions and particular solution of the ordinary differential equation

First of all, we want to calculate the boundary at the interface between the
cladding and the surrounding medium. At y=0, the tangential component of the GF
must be continuous. This can be achieved by making the Fourier transform of the

GF and its derivative continuous. It follows that, at y=0:

G G

|0_ - |O+ then A = C + D (5.11)
FYel oG
— =- — then -3 A = 73(- C + D) (b)
9y lo- 9y iot

Secondly, at the source point, the boundary condition also implies that the
Fourier transform of the GF must be continuous, to satisfy the law of conservation
of energy. However, the Lh.s term in (5.9b) is equal to a delta function, and
therefore the 15! derivative must decrease by unity at this source point as in:

oG

oy

oG

r+ 8y

- -1

] -

y y

as described in fig. S.4, such that:
a2¢
— ==y - ¥y")
ay2

Hence, from the above equations the boundary condition at y=y' becomes:

2y’ -2y’ noy'
B e =Ce + De (5.12)

n2y' -2y’ 1
and (D - B) e - Ce = - - (b)

N2

After some calculations, the insertion of the constants in the general solution gives
the particular solution of the ordinary differential equation in the three regions, such
as,

for region 1, where y > 0:

n2y' -n3y
GC= — (5.13)
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FIGURE 5.4
Representation of the unit step of the first derivative of the Fourier

transform of the GF, leading to a delta function of the differential
equation (5.7).
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for region 2, where y' ¢ y ¢ O:

ny' -m2y noy' may
e e N2 -~ N3] e e
C = — + |—_—] — (b)
279 2 + n3d 29y
for region 3, where y < y':
n2y'  -may n2y'  ny
e e - 172 + ‘q3 e e
Gm- . ___] ° ©)
27 2 + n3 1 29

Observe that all the boundary conditions have been included, i.e., the one at
infinity and the one at the interface flat/surrounding medium, by solving the above
ordinary differential equation. The resolution of the BC by the FT of the original
partial differential equation, is the appropriate calculation method because of the
translational invariance of the field along the x— axis. Remember also, that the
boundary at the core/cladding interface is implicitly satisfied by the definition of the
GF for an equivalent source point at that boundary.

In conclusion, from the above equation if we want to solve the Helmholtz
equation, which was the original partial differential equation, and thus find our GF,
the solution of the ordinary differential equation must be inverse Fourier

transformed.

5.1.4 Integral form of the GF

a. Integral form of the total GF

As we choose the equivalent source points of the GF to be on the contour of
the core, we are concerned by region 2 in fig. 5.3, formed by the cladding from
the source point, which is included in the region, to the flat/surrounding medium
interface. Therefore, its corresponding particular solution is the one where y'¢y<0,
and will lead to the whole range of the GF. The solution of the corresponding
partial differential equation is then calculated by means of an inverse Fast Fourier
transform (FFT—1), in order to reintroduce the x—dependence of our GF. From

the definition of the FFT—1 in (5.3b), the integral form of our GF is written as:
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+<0

' 1 M2V TN (g - gy M2V M2V ) g
g(r,r') = — + | — e dy
2x

2n2 12 + n3) 2mp

-0
(5.14)
At first note, as our problem is translationally invariant along the x— axis (see
sect.5.1.1), the system of coordinates was centred on the source point for the
x—axis. The value of the source point was thus assumed to be equal to zero, i.e.,
x'=0. Hence, in the above equation the variable x can be replaced by the
difference in abscissa between the source and observation points, i.e., (x—x').

Secondly, we replace the variables 7 and 753, by their equivalents in (5.8). It

follows that the above integral form of the GF becomes:

+
(22 (y -y
1 e iy(x -x")
glr,r') = — e dy
2v | 2 (y2-kp2y1/2
+0
172 2 k.2 :
(v“-K24)  (y +y")
1 [(x2ke) 2o (y2k32) 12 e iy(x -x')
M TN V. 5 1/2 5 172 e dy
27 | (42-K92) "/ “+(42-K32) 2 (y2-Kp2)
'm (5.14.b)

From sect. 5.1.1b, we have defined that the propagation constant of a free wave in
the surrounding medium is inferior to that of a guided mode in the fibre, i.e.,
K2n32< 62. This integral form of the GF is valid only for a surrounding medium
with a refractive index lower than the effective refractive index of the guided mode.

Remember that:
Ko2 = ng2k? - B2 < 0, so that (K2)/% = 11Ky

K32 = n32k? - g2 < 0, so that (K32)1/? = 11x5

Consequently, the above integral equations are the same for a surrounding
medium of high or low refractive index, if guidance exists. Furthermore, this
solution, and the boundary conditions (5.11 and 12) do not vary in form with

different values of the refractive indices.
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b. Separation of the GF into two parts
From (5.14) we can separate the integral equation into two terms, so that:
g(r,r') = gy(r,r') + go(r,r") (5.17)
The first term does not involve the refractive index of the surrounding medium, and
therefore is independent of the surrounding medium. Hence, this term is valid for
any value of K32, and is defined from (5.14) as in:

+< .
-2k % (v -y
1 e iy(x -x")

gi(r,r') = — e dy (5.18)
2r | 2 (y2-kp2)1/?

-0
The second term of the GF depends on the refractive index of the surrounding

medium and is defined by the following integral:

40
1/2
(Y2-K2) ™/ C (y +y")
1 (72—K22)1/2 --(‘\/2—K32)]'/2 e iy(x =x")
g(r,r') = — e dy
2% (72—K22)1/2+(72—K32)1/2 2 (72-K22)1/2
- (5.18b)

Note that ¥2— K2 ¢ 0 and 42— K32 ¢ 0.
A physical explanation of this separation of the GF into two terms will be given in

the following subsection.

5.1.5 15t term of the GF
The first term of the GF can be solved analytically. First of all, let us make the
following change of variables:

1210 - ip) = i IKyl ch(8 - ip) (5.19)

y = (K2)
dy = (Kp2)/%sh(o - ip) do

R ch(iyp) (b)

x - x' = R cosyp

y -y =R sinp = -i R sh(ip)

Hence, ( (‘.><—><')2 + (y--y')2 )1/2= R, and ¢ = tg[ (y-y')/(x-x")]

Thereby, we find:
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+<0

~(K2[ ch2(0-1p) -1 ]}/ 2[ -iRsh(ip) J+i (Kp2) 2/ 3n(6-ip)Reh(ip)
e
(Kp2}/2sh(0-ip)ds

81
2x| 2 {Kzz[chz(()—i«p)-l ]}1/2

-

Then, as chZu — sh2u = 1, this integral is transformed and becomes:

+<

1 -1(ky2}/ %R [sh(f-ip) sh(ip) + ch(8-ip) ch(ip) ]
g1(r,r') = — | e dé

4x
- (5.20)

Now, thanks to the properties of the hyperbolic functions, the argument of the
exponential is simplified, and the above integral expression of the first part of the

GF is explained such that:

~+00
1 i(Kp2)1/?R cho
gi(r,r') = — 1 e de
4x
-
Then, as [K22 ]1/2 = 1i|Ky|, and as the function to be integrated is even, the

limits of the integral are changed as written below:

+0

1 -1K»| R ché
g1(r,r')y = — | e dé (5.21)
2%

0
Finally, we use an integral expression of a modified Bessel function (see equ. 9.6.24
in Abramowitz and Stegun A), which is rewritten for the zero order of the Bessel

function as in:

§

1 - z cht
Ko(z) = - e dt , with larg z| < x/2 (5.22)
2

0

This implies that we can write the solution of the first part of the GF in terms of

a modified Bessel function as in:

g(r,r') = 1/x Kg{IKp| R} , where [K3|R > 0 and real (5.23)
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This solution can be transformed into a Bessel function of the third kind, of order

zero, also called a Hankel function: H The relation between the two Bessel

-
functions is given below for the zeroth order (see Abramowitz and Stegun A equ.
9.6.4):

Ko(2z) = in/2 Ho(1)[z exp(in/2)] = ix/2 Hy(1) (iz) (5.24)

where —x < arg z ¢ x/2, and z is a complex number.

Hence, we find the following expression of the first part of the GF as in:

g1(r,r) = i/2 Hy(D[ (k,2}/2 ] = i72 HyD[i1K,yIR] (5.25)
where the argument of the Bessel function is purely imaginary.
Note that, the expansion of Ho(l)(u) for a large argument (see SL equ. 37.87),
i.e., for u — o, is:
9 1/2
Ho(1) (u) = [__]

Tu

exp[i (u - x/4)] (5.26)

If we apply the above relation, the solution of the first part of the GF would be

proportional to:

g(r,r') = exp(-1KzIR)/ [*1KpIR]2,  with R —> w (5.27)
This shows that, if the distance between the source and observation point (R) tends
towards infinity, the first GF tends towards zero according to the conservation of
energy law.

Note that the first part of the GF is independent of the refractive index of the
surrounding medium (n3), and thus is independent of the boundary at the
cladding/surrounding medium interface. Therefore, this part of the GF is equivalent
to that of a source point in an unbounded medium. It follows that, if the
observation point is far from the source point, the field produced by that source
point becomes negligible. Furthermore, this term is completely symmetrical, and
depends only on the magnitude of the distance R, between the source and
observation point. Finally, this first GF is also regular and continuous everywhere,
except when the source point has the same coordinates as the observation point,

i.e., for r=r'.



5.1.6 284 term of the GF

The second term of the GF (5.18.b) is not simply a function of the distance
between the source and observation point. The distance between the
cladding/surrounding medium interface and the source point, appears implicitly in the
expression (y+y'), as y=0 at that interface (see fig. 5.3). This second part of the
GF also depends on the refractive index of the surrounding medium (n3). Therefore,
this term takes account of the boundary conditions, and is regular and continuous
everywhere inside the contour formed by the boundary of the cladding.
However, this second term of our GF can only be solved by means of a numerical
Fourier transform. With the following change of variable: x—x'=x, this term

becomes:

1/2
(v2-k2) 12 (y 4yt
g(r,r') = FT 1 |[(Cor C') e (5.28)
where the constant C is for the case where 72 > K32, and equal to:

1/2 1/2
(v2-Ko?)  -(y2-K3?) 1

(5.29)
(v2-K92) 124 (42 K32y /2 2 (y2-Ky2)1/?

Observe from (5.28), that the function to be inverse Fourier transformed is an
even and real function, so that the second part of the GF will also be an even and
real function, with x=x—x' as abscissa, and with y and y' being constant and

selected for each pair of source and observation points as shown in fig. 6.2.

5.1.7 Discussion

The GF has been separated into two terms: its first term is equivalent to the
GF of a source point in an unbounded medium, has an analytical solution, and is
regular and continuous everywhere, except at the source point. The second term
takes the boundary conditions into account. It is regular and continuous everywhere
inside the definition domain of the Kirchhoff— Huygens integral, and leads to the
integral form of the GF in the cladding region, i.e. from the source point to the

cladding/surrounding medium interface. However, this second GF must be solved
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numerically. Remember that the source points have been chosen on the contour of
the core in sect. 5.2, and are included in the definition domain.

Note finally, that these properties of the GF are explained in sect. 7.2 by Morse
and Fesbach MF,

In conclusion, defining the refractive indices of the cladding and the surrounding
medium (prism or air), and the distance from the source point to the flat surface of
the cladding, implies that the Green function of the problem is totally defined (see
(5.25) and (5.28)), leaving the propagation constants of the different guided modes

as the only unknowns.

5.2 ANALYTICAL APPROACH TO THE EIGENVALUE PROBLEM

5.2.1 Introduction: elements of the Kirchhoff— Huygens integral
The chosen Kirchhoff— Huygens integral (4.16) expresses the scalar field: U(ry)
with re(xc,yc), on the contour of the core and in the cladding, in terms of a line
integral around the contour (C') of the core, and is written below with the origin of
the Cartesian coordinates centred on the core (see fig. 5.5).
Ig(re,re') dU(r.')

U(rg) = J U(rer) - g(re,re') dl’ (5.30)
on' on'’

c
where r, and r;' defined the position of the observation and source point,
respectively.

The first element of this integral is the GF previously expressed in sect. 5.1.
The GF is chosen for an equivalent source point at the core/cladding boundary, with
the observation point defined on the contour and in the cladding region. Note, that
the boundary conditions at the cladding/surrounding medium interface and at infinity
have also been included (see sect. 5.2.4c).

The second element of this integral is the particular value of the field on the
contour C': U(r.'), satisfying the homogeneous scalar wave equation at the
coordinates of the equivalent source point.

As we want to determine the propagation constants (8) of the guided modes
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a : is the core radius

d : corefflat distance

D :difference in ordinate between the two Cartesian coordinate systems Oxy, Ox cYe
: normal outer vector to the contour of the core, C4
C, : core/cladding boundary

C..: boundary of the cladding at infinity

FIGURE 5.5

Definition of the different coordinate systems, where:

Oxy is the Cartesian coordinate system with the origin of the y—axis on
the flat surface of the cladding, and the origin of the x— axis based on
the source point,

Ox.yc is the Cartesian coordinate system centred on the core,

and Or'6' is the polar coordinate system also centred on the core.
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of a D—fibre, implicitly expressed in the GF, the unknowns U(rp), U(rc") and
oU(r.")/9n’ have to be eliminated. Therefore, the Kirchhoff— Huygens integral is only
an intermediate equation, which is worked out below to obtain an eigenvalue

problem with B8 as the only unknown.
5.2.2 Formulation of the eigenvalue problem

a. Expansion of U(r.') and 3U(r,')/on’

First of all, note that the transverse component of the field and its derivative
are continuous at the core/cladding boundary. Thus, its formulation inside the core is
also valid at the boundary. Furthermore, the spatial transverse dependence of a field,
which has a circular cylindrical symmetry in a homogeneous medium, can be
expanded in a Fourier series, as for example in our problem, for a point inside or
on the contour of the core. Consequently, the field at the core boundary is
expanded in polar coordinates, with the origin of the coordinate system also taken at
the centre of the core (see fig. 5.5). This gives:

e imo'

U(rc')l = Z Uy gm(y1 r') e (5.31)

r=—c0

r'=a

where the Fourier coefficient: upy,, is given by:

4o
1 -img’
up = — [ U(rg') e do (b)
2x
-0
1/2
where y] = (n12k2 - §2) (5.32)

and where n; is the refractive index of the core.
r', 9' are the radius and the angle of a source point in polar coordinates, which is
chosen at the core/cladding boundary.

Next, starting from the above expansion, we derive U(rg') with respect to the
normal vector: n', defined outward from the contour of the core. Thus, we obtain

the corresponding expansion of the derivative of the first part of the GF:
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+0
im o'

- Z Up Jm (y1 1) e (5.33)
or M= —00
r'=a r'=a

d3U(r.') l U
an'

where oU(r.')/96' = 0.

b. Introduction of the expansion of U

Now, starting from the Kirchhoff— Huygens integral this time expressed in
coordinates centred on the core, we substitute U and dU/dn' by their above
corresponding expansions. Hence,

2%

+0o0
im 8' o9g(rgo,rgo')
U(ry) = z a uy Jnp(yy a) e _— de'
Me=—00 or'
0
4o 2% ‘
, im 0'
- Z a uy Jy (y1 a) J e g(re,ro') dé' (5.34)
m=~c
0

Note, that C' is defined by r'=a and by 0¢68'¢2#x, and dlI'=r'de"’.
Next, if we multiply the above equation by exp(—iné), and integrate over ¢ along

the contour C (i.e. for r=a and 0<6¢2r), the above equation becomes:

2x +oo 2%
1 ~iné 1 imf'-inf dg(rg,re’)
Je U(ro)de = — Z a uy Jn(n a)JJe — d6'de
2x 2%  m=-o or'
=0 0',6=0
oo 2x
1 im 6' -iné
- — la up Jp (91 a) JJ e g(re,re') do'de
2x M=—c0
9", =0
(5.35)

where r,0 are the radius and the angle, respectively, of one observation point. All
the observation points are also chosen to be on the contour of the core, and
therefore inside the limits of the definition domain (see fig. 5.4) of the

Kirchhoff— Huygens integral. Thus, the r.h.s of (5.35) has the form of a Fourier

coefficient of U(rg), as in:
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2x
1 -iné

Up = — J U(re) e dé (5.36)
2%

0

As both the observation and the source point are selected on the contour of
the core, both contours C and C' are equal. The expansion (5.31) is thus applicable
to U(rg), provided the exchange of variables 6', r', m for 6, r, n. Therefore, both
U(re) and U(re') have the same Fourier coefficient (i.e., (5.36) equal (5.31.b)).

It follows that (5.35) can be reformulated by the following linear equation:

+oo +o0
u, = Z a uy Jp(yr a) Gmn' - Z a uy Jm.('Yl a) Gyn (5.37)
m==00 M=-00
with:
2x
' 1 im 6'-in 8§ dg(rgo,rg')
CGpun = — e — dé'd¢ (b)
2% or'
6',6=0
27
1 im 6'— in 6
Cpn = — e g(rg,rg') do'de (c)
L
6',0=0
Finally, we apply a last change of variable:
Amn = a Ipn(7 a) Gmn, -a Jmn.(')’l a) Gpp (5.38)

so that (5.37) is reduced to a simple infinite series:

400

up = zAmn Uy | with - { n ¢ 4+ (5.39)

M=~
Consequently, the Kirchhoff— Huygens integral (5.30) has been transformed into an
eigenvalue problem, which can be rewritten by the following set of linear equations:

+00

)\_w U_op = z Am’_’,w Um
m=-©
+c0

Ap Up = ZAm,n U
M= -
+00

x_{_m Ut = z Am’_w um
m=-°
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where the eigenvalues _ s eosApyees Ak o ar€ equal to 1.

Thus, in the matrix notation, the system of equations becomes:

ANU=MU (5.41)
"-l—oo A—o.o—oo v Moo
with X =1, U= | a, M= -1 Apgn -
Ut Aot - Mot

As we want a non— trivial solution of our eigenvalue problem, the determinant
of the resulting matrix must be equal to zero, as in:

det{ M - X } =0 (5.42)
where \ is a real number equal to one. First of all, observe that the scalar field at -
the source and observation points: U(re) and U(re'), respectively, and 3U(r;')/on'
have been suppressed from (5.42). Consequently, the only unknown of our problem
is now the propagation constant: B, which appears explicitly in the formulation of
the GF and its derivative in (5.23) and (5.28). This implies that, the above equation
totally defines the values of the propagation constants of the guided modes of a
D— fibre. One value of the above determinant equal to zero, yields one propagation

constant of one guided mode of our D— fibre.

5.2.3 Conclusions

Starting from the scalar wave equation, we have calculated the
Kirchhoff— Huygens integral, which includes a GF as one of its elements. This
integral is an intermediate equation, which has been transformed through some
formal analytical procedures, into an eigenvalue problem, leaving the propagation
constant of a guided mode as the only variable. Thus, we have obtained a system of
equations, which can only be satisfied for the values of the different propagation
constants of the guided mode in the D—fibre. These discrete values will be
calculated by an iterative method, and some classical matrix calculation.
Furthermore, after the calculation of the different propagation constants (f), it is
possible to return to the Kirchhoff— Huygens integral, and therefore, to calculate the
transverse electromagnetic field at any observation point, either inside the cladding

region or on the surface of the core.
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CHAPTER SIX REFORMULATION OF THE EQUATIONS

FOR COMPUTER APPLICATIONS

6.1 INTRODUCTION

The programming language in use for numerical calculation is Turbo— Pascal. Its
disadvantage is that the complex numbers are not defined as in Fortran. Therefore,
the calculation of the real and imaginary parts has to be considered separately. The
main calculus routines come from the book: 'Numerical Recipes: The Art of
Scientific Computation® P,

Starting from the eigenvalue problem defined in the previous chapter in sect.
5.2.2b, we want to calculate numerically the different propagation constants of the
guided modes of the D-—fibre. However, the analytical equations defining our
problem need some further development before their insertion into the calculus
routines and the programme itself.

Before initiating further calculations, we recall the equations leading to the
eigenvalue matrix.

At first let us recall the separation of the GF into two parts, as in:

g(r,r') = gi(r,r') + go(r,r') (6.1)

given in (5.23) and (5.28). Then the derivative of the 20d GF has to be calculated,

with the derivative of the total GF expressed as in:

dg(r,r') 9gi(r,r') dgy(r,r')

= + (6.2)
or' or' or'
Next, we rewrite the two main constants of the elements of the eigenvalue matrix:
2%
1 imd' -iné
Cpn = — e g(ro,ro.') de'deé (6.3)
2x
0
with Gpn = Gpn1 + Gpn2 (b)
2%
1 img' -in8 9g(rg,re')
Gmn'= — e _—— d6'ds (6.4)
2x or'
0
with Gy, = C'mnl'Jr Cng' . (b)
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Note, that the GF is expressed in Cartesian coordinates with the origin of the
y—axis on the flat, and that of the x—axis based on the source point (see fig. 5.5).
Therefore, a reformulation of the above equation into a polar coordinate system is
necessary to solve the double integral leading to the above constants, otherwise the
result of the GF would have to be interpolated for each angular sampling point of
the integrals in terms of # and 6'. Moreover, we recall the expression of the
elements of the eigenvalue matrix, as in:

Amn =t In(y1 1') Gpn' - 1" Iy’ (91 1) Cpp (6.5)
with r' being equal to the core radius, a, i.e., r' = a,
so that the matrix M is rewritten such that:

A'°°T°° ces A—{:co—m
M= | A .o (6.6)
Aol - Ajoteo
where —o ¢ n { +x,
Finally, § are found by satisfying the following determinant equation:
det{ M - X\I} = 0, (b)

with A = 1 as defined in sect. 5.2.2b, and I is the identity matrix.

6.2 REFORMULATION OF THE 1ST PART OF THE GF

6.2.1 Expression in polar coordinates

The first part of the GF in (5.23) is expressed in Cartesian coordinates centred
on a source point along the x— axis, with. the origin of the y—axis on the flat
surface of the cladding. However, the variables Gpn and Gp, are in polar
coordinates centred on the fibre core. Therefore, reformulation of this equation is
necessary. The first part of the GF depends only on the distance from the source to
the observation point,

R=[ (x-x)2+ (y-y)2]/?

where r'(x',y") is the source point,

and r(x,y) is the observation point.
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Consequently, this term is valid for any Cartesian coordinate system, and in
particular for the one centred on the core as in fig. 5.5. Finally, we rewrite the

relationship between the Cartesian and polar coordinate system, as in:

Xe = r cosf Yo = r sino (6.8)
Xe' = r' cosé' Yo' = r' sing’
where x.', y.' and x;, y. express the position of the source and observation points,
respectively, in a Cartesian coordinate system centred on the core;
and where r', ¢' and r, 6 are the radius and the angle of the source and
observation points, respectively, in polar coordinates.

Then R is transformed by this change of coordinate system to:

R = ( rd +r'2 - 2r cos(6 - 8') )1/2 (6.9)
As both source and observation point are on the contour of the core (i.e., r=r'=a),

the above equation is simplified such that:

R=af[2(1-cos(o -6y )]"/2 (b)
with a being the core radius.
It follows, that the solution of the 15t GF in terms of a modified Bessel function as

in (5.23), leads to the corresponding expression in polar coordinates to give:

81(re,re') = i/2 HO(I) {(i1Ko1[ r2 + r'2 - 2rr' cos(6 - §') ]1/2 }

with i|Ky| = ny2k2 - g2, (6.10)

This implies that, for a source and observation point at the core/cladding boundary,

the 15t GF becomes:

81(re,re') = i/2 Ho(l) {i|K2I a [2( 1 - cos(8 - 8') )]]/2 }(b)

6.2.2 Reformulation with Graf's expansion: Gpny
If the source and observation points have the same angular coordinate, i.e.,
9'= 0, the corresponding Bessel function in (6.10) tends towards infinity, as both

points were selected to be on the contour of the core so that: r=r'. Thus, the
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numerical calculation of the double integral leading to the variable Gp,, would be
impossible.

Nevertheless, the use of Graf's expansion will allow the calculation of Gpp.
Therefore, let us rewrite Graf's expansion given in equ. 7.1.79 in Abramowitz and
Stegun AS as follows:

+0

C,(w) cos(vy) = ZCH.p(u) Jp(v) cos(pa) (6.11)

p=-x

where C, is a Bessel function and where u, v, w, v, and o are defined in fig. 6.1,

so that w satisfies the cosine theorem:

w=(u2 + vZ2 - 2uv cosa )1/2 (b)

Additionally, the following inequality:

<u (c)
must be satisfied.

The corresponding parameters for our expansion are defined in fig. 6.1. It follows
that the first part of the GF in (6.10a) becomes:

+ .
Z (1) lP(e—o')
gL = i/2 Hp {ilKp|r} Jp{i|l<2|r'} e (6.12)
p=-CD
Note, that the condition on u and v expressed in (6.11c), is satisfied by supposing
that the observation point is just outside the core— cladding boundary, as defined in

fig. 6.1b. In fact that supposition can be neglected once the expansion (6.12) is

introduced into the double Fourier integral (6.3a), which becomes:

oo 2%
1 (1) i(m-p)6' i(p-n)é
Gmnl = Z Hp {ilelr} Jp(ill(zlr'} e e dée de
4x p=-x
0

(6.13)
This double integral is not equal to zero only if p=m=n. It follows, that the
variable Gp,, is defined for any value of 6 and 6', and is simplified such that:

1 .
Hm(l){ileh'} Jn{ilKglr'} 8(m-n) (6.14)

Cmnl =

4x

where - {( m,n { +x .
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(a)

(b)
» X
core boundary

r' : coordinate of the source point
I :coordinate of the observation point

0] XY, : Cartesian coordinate system centred on the core
R : distance between the source and observation point

FIGURE 6.1

a. Relation between the different variables of the cosine theorem:
w = (u2 + vZ — 2uv cosa )1/2

b. Variables for the application of Graf's expansion to the Bessel
function: Kg{ |kp| R }, with:

lkpjr = u
[kpir' = v
[kogIR = w

The source point is supposed to be just outside the core— boundary, so
that: r = a*, where a is the core radius.
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Thereafter, the infinite number of integer components m and n, have to be
reduced to a finite number, to allow numerical calculation. It follows that, the
different variables: Gp,;1, associated with the chosen range of discrete integer values

m and n, lead to a matrix with only the diagonal elements non zero, as in:

Ho,(Pa_ 0 0
; 1 ;
1 = 0o ... Ho' ?Jo .. 0 (6.15)
0 0 o' 1,
where mp,, = np,, < + (b)

6.3 DERIVATIVE OF THE 15t GF AND ITS INTEGRATION: Gmg]'

The derivative of the 15t GF could be calculated from its expression in terms
of the Bessel function Ky in (5.23). However, we encounter the same problem as
for the function itself, i.e., the infinite value when the source and observation points
are superposed. Therefore, we calculate this derivative with respect to the normal to

the contour of the core from Graf's expansion of the Bessel function (6.12), as in:

5 4o . .
— Hy, LilKyir) [-Jp+1lilKolr") + Jplilkylr') Je

ar 2 p=-w HIKyIr (6.16)
where J,%(z) = — J,+1(2) + »/z J,(z) and z=i|Ky|r".

Further, as developped in the previous section, the term Gy,,1' including the

derivative of the 15t GF is expanded as in:

Gponl'= Hp {ilelr} [-Jm+1{i|K2lr'} + Jm{ilelr'}]é(m-n)
L4x i|K2|l"
where - ¢ m,n { +x, (6.17)

and leads to the corresponding diagonal matrix:

HoD [V miyredom] .. 0 ... 0
Gy '= o ... W [a1ees] 0
0 e 0 e Hm(l)[-J(mi1)+ch]
where my,y = Npax < +© , and where ¢ = m/i|Kp|r'. (6.18)

In conclusion, using Graf's expansion of the Bessel function in the first part of the

GF and its derivative avoids the numerical integration leading to the variables G,
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and Gmyp1'-

6.4 REFORMULATION OF THE DERIVATIVE OF THE 28d GF

As seen in (5.28), the 2nd GF is still an integral, and the inverse Fourier
transform must be achieved by a numerical method. In order to obtain the variable
Gmn2' in (6.4), this 2"d GF has to be derived, which can be done prior to the
FT— 1, as demonstrated in the following equation:

+oo0 +o
[ iy(x-x' )]
382 1 9Gy  iy(x-x") 1 al e

- = dy + — | 6 dy  (6.19)
or' 2% ar' 2x or'

-00 -0

As the derivative with respect to r’, is calculated in polar coordinates centred on the
core (see fig. S5.5), the FT of the 2nd GF: Gy, in (5.28), requires two successive
changes of variables. The first one transforms the integral expression of G, from the
Cartesian coordinate system with its y— axis origin at the flat surface of the cladding,
into a Cartesian coordinate system centred on the core (see fig. 5.5). The relation
between the two systems is as follows:

Yy =yc ~-D with D=d + a (6.20)

y'=Yc - D |
where the subscript ¢ denotes the coordinate system with the core centre as origin,
and no subscript denotes the one with the origin of the y—axis based on the flat
surface of the cladding.
Remember, that d is the core/flat distance, a is the core radius, and y' and y are
the ordinates of the source and observation points, respectively.
Note that, as the abscissa appears only as a difference between the source and
observation point, its expression is the same for any Cartesian coordinate system,
thus:

X - X' =% - x'¢ (b)

This implies that the integral form of the 2nd GF becomes:
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4+

(72 - K22)1/2(-20+yc+yc') fy(xe=xc")
8o(re,re') =1/2x|C e e dy (6.21)

with C = C or C', as defined in (5.28).

Secondly, we transform the expression under the above integral into polar
coordinates by the following change of variables:

xc' = r' cos§’ ye' = r' sing’ (6.22)
Xe = r cosé Ye = r siné

where r',r, and 6',6 are the radius and the angle in polar coordinates of the source

and observation points, respectively.

Thus, we find:
<+
2 2}/2 3 ' ] { 1 ]
dgy 1 ) (y“-Ko (r sinf +r'siné' -2D) 1iy(r cosb -r'cosf')
— = — |C — je e dy

or' 2« or'
- (6.23)
Then, after calculating the derivative of the above product, we revert back using this

result to the original Cartesian coordinates based on the flat surface of the cladding

for the y— axis.

Hence,
“+0
1/2 . 1/2
9gy(r,r') 1 172 (y2-Kp2) / (y+y') iy(x-x'") /
_ = — sing' C (72—K22) e e dy
ar' 2x
+0
i (2K 2 (yeyt)  ay(xex')
- — cos#’ Cvy e e dy (6.25)
2x
-Q0

Next, by setting x=x—x' as the spatial domain variable, and +y as the frequency

domain variable, we can explain the above equation in terms of two FT™ 1, such

that:
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agr(x,y,y") 1/2 (72-K22)1/2(y+y')
—————— = sing' FT-1 { C (42-Kp2) e
ar'

(2K 2 (yry*)
- cosg' FT-1 iCy e (6.26)

Observe that, the sine and cosine terms are independent of the integration variable
of the FT™1, and have not been transformed into Cartesian coordinates. Thus,
(6.26) is one element of the double integral, with 6 and 6' as integration variables,
leading to the formulation of Gp,".

Note that, from the properties of the FT~1, a real and even function is
transformed into a real and even function, and an imaginary and odd function, into
a real and odd function. Thus, (6.26) will be transformed by the two internal

FT'“I's, into the sum of two real functions which can be reformulated as below:

982 982y 98y

- + (6.27)
or' or' or'
9gor 1/2
where = sind' FTIGp, , FTGyp(x,y,y')= FT-1{C (42-K92) /" see (6.26)}
or (6.28)
9821
where = cosf' FTIGy; , FTIGyj(x,y,y')= FT"1{C v ...see (6.26)}
or'
(6.29)

6.5 INTEGRATION OF THE 2"d GF AND ITS DERIVATIVE: Cmn2, Cmn2'

6.5.1 Development

We want to formulate the complex integrals (6.3) and (6.4) into two integrals,
one for the real part, and the other for the imaginary part, to enable numerical
integration. At first, we transform the exponential complex term into a real and an
imaginary part such as:

im#' - iné
e = cos{(mf'-nf) + i sin(mé'-no) (6.30)

Secondly, as g3(x,y,y') is only a real function as seen in (5.28), the double integral
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can be separated into real and imaginary parts, so that:

Cmn2 = Cmn2real + Gmn2im (6.31)
2x
where Gpnoreal = 1/2r “ cos(mé'-nb) go(x,y,y') d6'dé (b)
0
2x
and  Cppojy = 1/27 ” sin(md'-nb) go(x,y,y') do'de (c)
0

with x= x— x'.
As mentioned in the previous section, dgy/dr' in (6.27) is a real function only. The

term Gp,po+, involving the derivative of the 204 GF, can be developed as above.

Hence:
GCmn2' = Gmn2'real * Gmn2'im (6.32)
where:
1 2%
Cngreal? JJCOS(mO'-nG)[sinG’ FGT),(x,y,y')-cosf' FTGyi(x,y,y') ]d6'ds
x
0
(b)
1 2x
Con2imm— stin(me'-ne)[sina' FGTp,(x,y,y')- cos8' FTGyi(x,y,y') ]d6'ds
2x
0
()

6.5.2 Discussion

Firstly we should recall that the FT are in Cartesian coordinates, based on the
flat surface of the cladding for the y— axis, and on the source point for the x— axis.
It follows that, after their numerical FT"l, the terms involved in the 20d GF:
gy(r,r') in (5.28), FTGy, in (6.28a), FTGy; in (6.28b), are functions of x=ux—x', y,
and y'. However, the integrals leading to G2 and Gy 2" are expressed in polar
coordinates centred on the core. Therefore, the results of the numerical FT~ 1 must
be interpolated to correspond to the discrete angular values of the integration steps.
As the variables: y, y' are independent of the FT™1, for each incrementation of
the source and observation points: jA9' and kA# (j,k being integer numbers, and

A@',A6 being the angular incrementation of 6', ), their corresponding y' and y in
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> <

g(x-x)
surrounding
medium
» X
ych

cladding
g,(rr) =g,,0,0) L7

v Mww»/ .'\ N"‘Ww..“ >

: X = x-x'

el
>

AB',AB : angular incrementation for numerical integration

r' : coordinates of the source point

r :coordinates of the observation point

Oxy :Cartesian coordinate system with the abscissa, x, based on the source point,

OxcYe
g Int(e ’e) :

FIGURE 6.2

and the ordinate, y, based on the flat surface of the cladding
Cartesian coordinate system centred on the core

result of the 2 " GF after interpolation of the FFT g, (x-x')

Definition of the angular incrementation for the numerical integration
leading to Gmn2 and Gmn2' in (6.31) and (6.32).

Note that the 2Md GF: g(r,r'), is an element of the variable Gmn2. This
term of the GF is calculated by means of a numerical Fast Fourier
transform and then interpolated for the distance in abscissa corresponding
to the difference in abscissa between the source and observation points:
x=x—x'. This is also the case for the variables FTGy, and FTGy;
leading to Gmn2'.
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Cartesian coordinates, are directly calculated. Then, with these selected y, y' values,
the FT~1 is worked out, and leads to a function with x=x—x' as abscissa, as
shown in fig. 6.2. Thereby, the 20d GF and its derivatives for a source and
observation point corresponding to the angular incrementation of the integral in
terms of #' and 6, can be deduced by linear interpolation, knowing the difference
in the x—direction from the source to the observation point.

Secondly, we want to reformulate the terms: Gp 2 and Gpno', in a matricial
notation. In (6.31) and (6.32) only the sine and cosine depend on m and n. Let us
consider Gp,7 first, and in particular its real part: Gpnareal (6.31b).

Using the following trigonometric relation:

cos(mf'-nf) = cos(nf-mb'),
we find:

Cmnreal = Gnmreal (6.33)
Then for the imaginary part: Gppim,, the following trigonometric relation:

sin(m@'-nd) = - sin(né-mé')

leads to the equality:

Cmn2im = = Cnm2im (6.34)
Thereby:
Cmnreal * 1 Gpn2im = Gnmreal - 1 Cnm2im (6.35)

Next, in order to simplify the notation, we make the following change of variables:

Cmn2real = amn > Cmn2im = bmn

Thus, the simplified notation of the complex matrix of Gy 7 is reformulated as in:

a_p-0 tib_o_w ... apn tibypp ... .
G2 = . ib ) . . : (6.36)
ann  "1Pmn | Coe .
. . aw +ib+_m+m
Finally, a similar matricial formulation is applied to the elements: Gp,,9', so that

we can define the corresponding matrix: G2' as:

oo +idowco -+ Cpp +idpny ... -
G2'= s : : X (6.37)
Cmn ~idpn | . ) .
: Chootm Hidioiwo
where:
Cmn2real = €mn > Cmn2im = 9mn
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Finally, observe that both matrices: G2' and G2 are Hermitian, and thus:

' T*
T G2 - c2T* (6.38)

c2' = G2
with the superscripts T and * denoting a transposate and conjugate matrix,

respectively.

6.6 REFORMULATION OF Jm'
The variable J,' of the components: Ay, of the eigenvalue matrix, is the last

element to be reformulated. We can rewrite the property of the derivative of Jgpn

as follows:
dJ,(z) 1
= — {Jp-1(2) - Im1(2)} (6.39)
dz 2

With the following change of variable:
zZ=+v1r' and dz = yp dr'
the derivative of the Bessel function becomes:

dJp(y1r")

1
= — {Jn-1(m ") - Ip1(m ")} (b)
dr' 2

Note that: J_p(z) = (-1)™ Jy(2)
Finally, note that the elements r'J,(yq r') and —r'Jm'(71 r') constitute diagonal

matrices written as in:

0 0 0
r'Jim(y1 ") 0 0
J= 0 r'Jo(y; r") 0 (6.40)
0 0 r'Jua(yy r")
0 0 0
0 0 0
r'den (1 ") 0 0
J'= 0 r'Jg'(y1 r'") 0 (6.41)
0 0 r'Jp'(y1 r")
0 0 0

6.5 MATRICIAL REFORMULATION OF THE PROBLEM
With the previous matricial notation we can rewrite matrix M in (6.6) as in:

M=J {Gl'+G2'}+J" (Gl +G2) (6.42)
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where:

— J and J' are the diagonal matrices given in (6.40) and (6.41),

— G1 and G1' are the diagonal matrices defined in (6.15) and (6.18) which

include the effect of the 1St part of the GF and its derivative,

respectively,

— G2 and G2' are the Hermitian matrices defined in (6.36) and (6.37) which

include the effect of the 20d part of the GF and its derivative, respectively.
For the computational operations, we separate the real and imaginary parts of the
final matrix M as in:

M=A+1i8B (6.43)
The imaginary part is due to the 20d GF and its derivative, and appears in the

formulation of G2 and G2', as seen in (6.36) and (6.37).
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CHAPTER SEVEN RESULTS OF THE GF AND CONCLUSIONS

7.1 INTRODUCTION

In order to optimize the numerical calculation of the propagation constants from
the eigenvalue problem defined in sect. 6.5, it is necessary and interesting to know
the behaviour of the GF for any pair of source and observation points on the
contour of the core.

As the 15! part of the GF was analytically defined in equation (5.23) of section
5.1.5, we start by considering the values of the 20d GF, which involves further

numerical calculation from its integral form defined in equation (5.28).

7.2 FFT—1 AND LINEAR INTERPOLATION LEADING TO THE 20d GF

As defined in sect. 5.1.7, the 20d GF is regular and continuous everywhere,
and is the part of the GF which takes the boundary conditions into account, and in
particular those at the interface between the flat surface of the cladding and the
surrounding medium. However, this term of the GF is calculated by a numerical
inverse Fast Fourier transform (FFT™— 1), followed by a linear interpolation for a

pair of source and observation points.

7.2.1 Choice of the numerical parameters

From the results of the FFT™1, for example in fig. 7.1, we first choose the
sampling frequency: Ay 3 1/(2 dm), where dm is the core diameter, so as to
include all the possible pairs of source and observation points on the contour of the
core. Remember that the propagation constant, 8, or its equivalent, the effective
refractive index of its corresponding guided mode, n. is the only unknown of our
eigenvalue problem defined in chapter 5. It follows that, we have to choose an
arbitrary value of n. to study the behaviour of the GF, for example, ng=1.455,
which is included within the possible range of guided modes (i.e., ny<ng<nj). To
define our problem, we set the core/flat distance equal to zero. Then, we define the
refractive indices of the core, cladding and surrounding medium as: ny=1.4563,
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FIGURE 7.1

FFT~! leading to the 20d GF for an arbitrary value of the effective

refractive index, ng, of a guided mode, and several core/flat distances:
d= 2,1, 0.5, 0 yum.

The source and observation points have the following values:

6 = 80° and 6' = 90°, or vice versa.
The refractive indices of the guiding structure are given by the following
inequality:

ny ¢ Ny ¢ ng {ng,
where
n3 is the refractive index of the surrounding medium (air in this
case),
ny is the refractive index of the cladding,
- nq is the refractive index of the core.
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np=1.45 and n3=1, respectively, and a core radius of 4 um. In this situation, to
minimize the aliaising effects caused by the numerical Fourier transform, we choose
that:

Ay 3 1/€2 (%-x')pax  Wwhere (x-x')pay= 3/2 dm
where x = (x—x') is the spatial domain variable of the FFT— 1,

The number of points is then optimized so that the linear interpolation of the
FFT™ 1 is of sufficient accuracy, as shown in fig. 7.2. We could have chosen a
higher order interpolation and a larger interval in the spatial domain, but the linear
interpolation was preferred for the simplicity of the algorithm and because of its

suitability to the discrete curve to be interpolated.

7.2.2 Results of the FFT~ 1

Even with an arbitrary value of (3, the result of the FFT~ ! can already give
an intuitive understanding of the behaviour of the 204 GF by varying the core/flat
distance and the angular position of the source and observation points.

a. We first analyse the effect of the core/flat distance on the result of the
FFT~!. From fig. 5.4, which defines the coordinate system, and from
the formula (5.28) to be FFT—l, we recall that the distance from the
core to the flat surface of the cladding, is implicitly given by the choice
of the y— coordinate at the cladding/surrounding medium interface. Having
set the data of the FFT™!, we can demonstrate the effect of the
core/flat distance, d, by comparing the results for a pair of source and
observation points with angular positions of 80° and 90°, respectively,
where d=0, 0.5 and 1um, as in fig. 7.1. We first observe that, the
FFT™1 used to calculate the 20d GF, induces a negative contribution
which decreases with an increase in core/flat distance, for any difference
in abscissa between the source and observation points, i.e., x—x'. This
implies that, if the distance: d, is sufficiently large, the whole cladding is
supposed infinite. We also confirm the reciprocity relation of the 2nd GF,
i.e., gy(r,r")=go(r',r) by the symmetry of the FFT™1 in terms of its
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FIGURE 7.2

a. FFT~ ! leading to the 2nd GF for a source point fixed with 6'=90,
and the observation point variable with:

¢ = 90°, 60°, 45° and 10°.
The other parameters are defined in fig. 7.1.

b. Value of the 20d GF for the pair of source and observation points
defined below, after the addition of the 15t GF and interpolation of the
FFT™ 1 curves.

X represents the value of the total GF.
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abscissa values: x—x', and by the y and y' dependence of the function to

be transformed, as in: y+ y'= y'+ y.

b. Secondly, we study the effect of the angular position of the source and
observation points. From the previous subsection on the effect of the
core/flat distance, we can deduce the additional effect caused by the
angular position of both points decays exponentially with the distance to
the flat of the cladding, or in other words for both source and
observation point with an angular position of 90° (see fig. 7.3 for the
definition of the angles). This property is confirmed by fig. 7.2a showing
the FFT™1 with x—x' as abscissa, with the ordinate of the source point
at an angular position of 90°, and with several observation points (one
per curve). We then observe that, for =90° and 180°¢6¢360°, or vice
versa according to the reciprocity relation, the maximal value of the GF
becomes negligible. However, before the automatic suppression of the
calculation of these FFT™! producing negligible values, we want to take
into account their interpolation which gives the value of the 2nd GF, and
also the offset values caused by the addition of the 15t GF, as described
in fig. 7.2b, and demonstrated in later subsections. We also recall that,
the effective refractive index, ne is arbitrary. Consequently, it may affect
the behaviour of the FFT—l, and thus the whole GF, as explained

below.

7.3 VARIATION OF THE GF AS A FUNCTION OF 6 AND ¢°

With the same parameters as the in the previous section, i.e., d=0,
n;=1.4563, np=1.45, n3=1, and ng=1.455, we want to analyse the effect of the
angular position of all the range of source and observation points on the contour of
the core. Therefore, we compute the GF for several source points, for example,
6'=0°, 30°, 60°, and 90° (one per curve), and for all the range of observation
points, 6, which occur in the interval: 0¢6¢120°, as abscissa.
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FIGURE 7.3

a. Variation of the 15t GF and 2" GF as a function of the angular
position, 6', of the observation points, the source point having a fixed

angular coordinate for each curve, i.e., for § = 0°, 30°, 60° and 90°.
The curves with positive values represent g1(4,6'), and the negative ones
82(46,8").

The other parameters of the guide defined in fig. 7.1, are set as follows:
d=0, n3=1, np=1.45, nj=1.4563, ne=1.455.

b. Variation of the total GF: g1(60,0")+gx(6,6'), with the same
parameters as above.
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FIGURE 7.3

a. Variation of the 15t GF and 2"d GF as a function of the angular
position, 6', of the observation points, the source point having a fixed

angular coordinate for each curve, i.e., for § = 0°, 30°, 60° and 90°.
The curves with positive values represent g1(6,6'), and the negative ones
82(8,6").

The other parameters of the guide defined in fig. 7.1, are set as follows:
d=0, n3=1, ny=1.45, n1=1.4563, ne=1.455.

b. Variation of the total GF: g1(0,6")+gy(6,6'), with the same
parameters as above.
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The upper values in fig.7.3 show the variation of the 15 GF as a function of
the variation of the angular position of the observation point, with the source point
fixed. Each curve is valid for one value of the observation point. We remember that
the 15t GF represents the intensity of the field caused by a source point at an
observation point also on the contour of the core (as set in chap. 5). This implies
that the 15t GF is only dependent on the angular position of both source and
observation points, i.e., g1(6,0'). These field intensities have a positive value only.
Their maximum value is infinity, when the coordinates of the selected source point
are equal to that of the observation point, as seen in fig. 7.3. This confirms that
the value of gq(0,6') for 6=6' in (5.23) is proportional to the Bessel function
Ko(0)= K0(|K2|R), with R being the distance between the source and observation
points. Finally note, that each curve formed by the different values of the GF for
all the range of observation points, has equal amplitude. This proves the
independence of the 15t GF towards the boundaries, and its dependence of the
distance between the source and observation points (R).

The lower values of fig. 7.3 represent the 2nd GF for an abitrary source point,
as a function of the angular value of the observation point. As for the 15! GF, each
curve is valid for one value of the source point. However, the 20d GF is dependent
on the boundary conditions. It follows that, its contribution to the total GF in fig.
7.3b will vary for different pairs of source and observation points around the core.
The boundary conditions also imply a dependence of the 2nd GF as a function on
the refractive index of the surrounding medium and the geometry of the guiding
structure, i.e., on the core/flat distance, d. Any variation of these above parameters
will also affect the value of the propagation constants of the modes and their
corresponding effective refractive indices. Consequently, we will consider the effects
of these different parameters in the following sections.

Now, let us explain the limitation of the range in abscissa (6) of the curves in
fig. 7.3a and 7.3b. The truncation of the figures along their abscissa was chosen to
enable the full decay of the curve corresponding to the angular position of the
source point at 90°. Then, the discrete values of the source points were chosen in

118



the first quadrant, i.e., for 0°¢6'¢90°, to induce a maximum effect on g4,6')
from the boundary at the core/flat surface of the cladding. Due to the axial
symmetry of the guide along the y— axis, i.e., g(4,8")=g(x— 6,x— 0'), the second

quadrant could also have been chosen.

7.4 VARIATION OF THE GF AS A FUNCTION OF d AND 3
7.4.1 GF(d)

First of all, we analyse the variation of the GF as a function of the distance
from the surface of the core to the flat of the cladding (see fig. 4.1). We first

consider the effect on the 15t GF and then on the 2nd GF.

a. As the 15t GF is independent of the boundaries, it is not directly
dependent on the core/flat distance, but indirectly affected by the change
of B. This change in propagation constant may be caused by the variation
of the refractive index, n3, of the surrounding medium at the side of the
flat surface of the cladding, and of the core/flat distance, d, if it is small
enough as defined in (5.14b). The other parameters, the refractive indices
of the core, ny, and the cladding, n,, the core diameter of the fibre and
the wavelength of the light source are fixed. Thus, the propagation
constant of the coupler has a different value to that of a circular fibre
built from the same preform and having a cladding supposed infinite.
This effect has already been discussed in the CMT for a weak coupling

situation in chapter 3.

b. The 20d GF takes into account the boundary conditions and is directly
dependent on the distance: d. In fig. 7.4a and 7.4b we show the values
of the 2nd GF for different source Apoints at 30°, 60° and 90°, with the
observation points as abscissa. As mentioned in sect. 7.1.2 on the FFT—1
leading to the 2nd GF, its negative amplitude is at a maximum for both
source and observation points at 90°, and its decay is proportional to an
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Variation of the 21 GF as a function of the angular position, §', of the
observation points, the source point having a fixed angular coordinate for
each curve, i.e., for 6 = 0°, 30°, 60° and 90°.
The following parameters of the guide:

n3=1, ny=1.45, n;=1.4563, ne=1.455
are defined in fig. 7.1.

a. The first figure represents g5(6,0') with a value of the core/flat
distance equal to zero, i.e., d = Oum.

b. The second figure represents gy(6,6') with d = 0.5um.
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increase in the core/flat distance. For d)lum the maximum of the GF

becomes negligible for the guiding structure defined in sect. 7.2.

7.4.2 GF(n3)

We now study the variation of the GF as a function of the refractive index of
the surrounding medium. We set the core/flat distance equal to zero, to allow the
maximum effect of the boundary between the cladding and the surrounding medium,
and assume a constant value of 3 as above. We also recall that the calculation of 8
by the GF applies to all the values of nj, allowing at least the propagation of one
guided mode.

At first, we consider the effect of n3 on the 15t GF. This function is
independent of n3, and thus the same comments as those previously used to analyse
the effect of d, apply to the variation of B caused by the change of n3.

We then consider the second part of the GF for different n3, which can be
either superior or inferior to the refractive index of the cladding. Note that, in both
cases at least one guided mode must propagate inside the D— fibre (with n3<n.<nj)

as explained below.

a. In the first case, the 2" GF induces a negative contribution on the total
GF as described by fig. 7.5a, and for example, as assumed in the
previous sections where n3=1¢nz¢{ne. This can be seen as if one
equivalent source point taken on the contour of the core, was reflected at
the cladding— surrounding medium interface, and then observed at one

observation point also on the contour of the core.

b. The second case, described in fig. 7.5b is valid for: nj¢n3¢ne. It induces
the positive contribution from the 2nd GF on the total GF, as if the
equivalent source point was this time transmitted at the

cladding— surrounding medium interface.
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Variation of the 20d GF as function of the angular position, 4°', of the
observation points, the source point having a fixed angular coordinate for
each curve, i.e., for 9§ = 0°, 30°, 60° and 90°.
The following parameters of the guide:

d=0, np=1.45, nj=1.4563, ng=1.455
are defined in fig. 7.1.

a. The first figure represents gy(6,0') for a value of the refractive index
of the surrounding medium satisfying the following inequality: n3>nj, and
in particular: n3=ne=1.455

b. The second figure represents g5(#6,6') for n3<n; and in particular for:
n3=1.445.
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7.5 VARIATION OF THE GF AS A FUNCTION OF D¢

Finally, let us see the influence of the effective refractive index of a guided
mode on the 20d GF. The maximal possible value of ng, occurs when its wvalue is
equal to the refractive index of the core. In this situation, the mode is well
confined inside the core, and its evanescent field decays rapidly inside the cladding
region. This implies, that the perturbation caused by the reduced cladding at one
side of the fibre is minimal. However, when the value of ne is close to the
refractive index of the cladding, the mode has a weak confinement, and its
evanescent field extends further into the cladding than in the previous situation. It
follows that, the influence of the boundaries increases for an effective refractive
index closer to the value of np than that of n;. We demonstrate this effect by
comparing the curves describing g5(90°,6): one with n, = nj and the other with
ne~nj, as in fig. 7.6a and 7.6b, respectively. This effect is also seen on the total

GF as shown in fig. 7.7.

7.6 DISCUSSION

First of all, we recall that the parameters of the numerical calculation (FFT"1
and interpolation) of the 2nd GF, using the intermediate analytical result obtained in
(5.28) as the basic formula, have been determined in the previous sections.

Then, from the analytical approach to the eigenvalue problem where the
propagation constant of the guided mode, 3, is the only variable, we remember that
both source and observation points were chosen on the contour of the core (see
sect. 5.2.2). Thus, the radial angular coordinate of both points satisfies the following
equality: r=r'=a (a being the core radius), and the GF is simply a function of the
angular position, i.e., g(6,8'). We also recall from sect. 7.3, that the number of
FFT™! to be calculated, can be reduced due to the following properties of the GF:

8(6,0") = g(6',0)
and g(r— 6,— ¢') = g(6,6")

However, as f (or the corresponding effective refractive index, ng) is the unknown
of our problem, it is impossible to determine if the calculation of the FFT1 is
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Variation of the 20d GF as a function of the angular position, 6', of the
observation points, the source point having a fixed angular coordinate for
each curve, i.e., for 8 = 0°, 30°, 60° and 90°.
The following parameters of the guide:

d=0, n;=1.4563, np=1.45, n3=1,
are defined in fig. 7.1.

a. The first figure represents go5(6,0') for a value of the effective
refractive index of a guided mode equal to the refractive index of the
core, i.e., for ng=ny.

b. The second figure represents gy(6,6') for a value of the effective

refractive index of a guided mode equal to the refractive index of the
cladding, i.e., for ne.=nj.
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Variation of the total GF as a function of the angular position, 8', of
the observation points, the source point having a fixed angular coordinate
for each curve, ie., for § = 0°, 30°, 60° and 90°.
The following parameters of the guide:

d=0, ny=1.4563, ny=1.45, n3=1,
are defined in fig. 7.1.

a. The first figure represents g(8,8') for a value of the effective
refractive index of a guided mode equal to the refractive index of the
core, i.e., for ng=ng.

b. The second figure represents g(6,8') for a value of the effective
refractive index of a guided mode equal to the refractive index of the
cladding, i.e., for ng=nj.
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necessary for the full range of source and observation point, with angular positions
between: 180°< ¢',6<360°. For these values of 6' and 6, it would be possible to
suppress the calculation of the 2nd GF, and therefore its FFT_l, for a value of ng
close to the refractive index of the core. In this situation only, the corresponding
guided mode is well confined inside the core, and the disturbance of the evanescent
field by the surrounding medium is weak, and thus the 27d GF is small and
negligible in comparison with the value of the 15! GF.

Consequently, the program developed to calculate the GF (see appendix 1) will
help us to reduce the operational time of the main program, which calculates the
propagation constant of a D-— fibre with different values of the refractive index of
the surrounding medium. What is more, several procedures used and tested in this
first program calculating the GF, will be introduced in the main program, for
example: the FFT-1, INTERPOLATION, and BESSEL procedures.

Note finally, that the numerical calculation and the introduction of the 1St GF
into the total GF, will not be used in the main program. As seen in chapter 6, the
1t GF is reformulated with Graf's expansion, and introduced inside a double
integral (6.13) to suppress the singularity caused by g1(6,6")=XK(0) in (6.14), when

the angular coordinate of the source point equals that of the observation point.

7.7 EURTHER DEVELOPMENTS AND CONCLUSIONS

Using the results and some of the procedures from the program calculating the
GF, we can now develop the main program which calculates the propagation
constant of a guided mode, (B, of a D—fibre. Its proposed flow chart is given in
appendix 2. Its procedures have been tested separately, although the full program is
not in operation. This program stores several important matrices simultaneously. We
give the dimensions of the main matrices below:

2 x cpnt-M, created in the G1-G2-CALC. procedure

4 x nb-angle x nb-angle, created in the g2-FTG2r-FTG2i—CALC. procedure

2 x cpnt-M x cpnt-M, created in the M—CALCULATION procedure.
Each of these procedures has one internal important matrix of the following
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dimensions: cpnt-serie, 2 x point, and 2 x nb—angle, respectively.

The integer variables: cpnt-M, nb-angle, cpnt-serie, and point are defined in
appendix 2 in the INPUT-CONST procedure. The only matrix in which the
optimum number of elements (cpnt— M) has to be determined by running the whole
program is the complex matrix M= A+ iB as seen in sect. 6. We recall that the real
and imaginary part of a complex matrix are calculated separately because of the
choice of programming language. In chapter 6, the number of components of the
matrices A and B is still defined as infinite, i.e., —o¢ m,n ¢+ ®, with m being the
number of column elements, and n being the number of row elements. The real and
imaginary part of the elements of matrix M, i.e., Amn and Bmn as defined in sect.
6.5, are negligible for a high order value of their row or column elements.
Therefore, we can truncate matrices A and B, so that:

— cpnt-M div 2 < m,n < cpnt-M div2,
with cpnt-M being the number of elements of these square matrices. Now, if we
suppose a value of cpnt-M equal to 20, the total storage capacity used to
memorized the above matrices simultaneously, is approximately 37 Kbytes. However,
we cannot double the number of angular integration points without exceeding the
maximum memory capacity assigned to data by the operational system DOS (i.e, 64
Kbytes. Another inconvenience of using Turbo Pascal—3 on a personal computer, in
our case the IBM— AT, is the operational time. The transfer of the program to a
main frame computer, would overcome these disdvantages.

Having thus defined the program calculating the propagation constant, we will
be able to compute by successive iterations, the g eigenvalues which are the
solutions of our problem as defined in (5.42). The different § are real, as we have
defined our problem for guiding situations only. Their variation is a combination of
the core/flat distance, d, and the refractive index of the surrounding medium, nj.
The other parameters are fixed by the characteristics of the fibre and the
wavelength of the laser. The two main observations which can be made on the

variation of (@ are described below.
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a. At first, we determined the full range of core/flat distances, d, and
refractive indices of the surrounding medium, nj3, which still allows the
propagation of at least one guided mode inside our D— fibre. The limiting
case of the existence of B, will give the condition on d and nj3 for the
loss of a guided mode in favour of a leaky mode.

The loss of one guided mode propagating in a D-— fibre surrounded
by an air medium, in comparison with the propagation constant of the
same fibre surrounded by a higher refractive index medium, implies that
this mode leaks out into the surrounding medium. Therefore, if this high
refractive index surrounding medium is locally introduced on top of a
D— fibre, for example as in a fibre to prism coupler, the energy of the
initial guided mode, leaks and couples out into the radiation mode with
the same propagation constant as the initial guided mode of the D-— fibre.

Observe that, if we increase the value of n3 for a small value of
d, the real propagation constant of the high order guided mode will
disappear before that of low order. This is due to a value of the
effective index of a higher order mode closer to n, than that of a low

order mode. The effect of n, has been discussed in sect. 7.5.

b. Secondly, we will also be able to calculate the difference in propagation
constants induced by the reduced cladding of a D-—fibre and/or a
refractive index of the cladding superior to that of the air. For example,
the difference in propagation constants between a D-—fibre and its
corresponding circular fibre pulled from a similar preform, is found by
calculating the B for a value of the refractive index of the surrounding
medium different to that of the cladding, i.e., for n3#nj, and then for a

value of its refractive index equal to that of the cladding, i.e., n3=nj.

Next, we observe that the definition of one [— value can enable the calculation
of the scalar field in the caldding region, by the use of the Kirchhoff— Huygens
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integral in (4.16) which was the basic function of our analytical development.

In conclusion, in this thesis we have considered several approaches to the
evanescent field coupling of a D— fibre.

The simplest is the ray approach applied to a multimode fibre. By plane wave
analysis, the input skew and elevation angle of a fibre to prism coupler, were
defined (see sect. 3.3.1). The leaky rays provide a first understanding of an
evanescent coupler formed by a fibre and a semi— infinite dielectric substrate (3.26).
We then studied the CMT (see sect. 3.1) which is defined for a weak coupling
situation, and usually applied to a guiding structure formed by two similar guides,
and which was extended by Arnaud A2 to demonstrate the coupling from a planar
guide to a semi— infinite medium acting as a mode sink. However, this method is
not accurate.

Next, with the chosen GF method, we analysed the loss of confinement of a
coupling structure formed by a D— fibre and a semi— infinite dielectric medium, for
example a prism. This loss of one guided mode in favour of a leaky mode,
characterizes the limiting values of the core/flat distance and refractive index of the
surrounding medium, over which one guided mode of the fibre couples into the
radiation mode of the prism.

Note that, this semi— numerical method is ideally suited to a planar stratified
environment, and in particular our D-— fibre, where the GF can be calculated by an
elementary Fourier method. The use of the scalar field is appropriate for our weakly
guiding fibre, and implies a scalar GF. The formulation of the boundary conditions
is exact and intrinsic. The main disadvantage of the chosen GF comes from the
important computational operations.

Finally, it would be of great interest to extend the GF method to leaky mode
situations, by an analytical continuation of the theory elaborated for the guided
modes. Therefore, it would be possible to calculate the complex propagation
constants of the leaky modes, thus to totally define the evanescent field coupling of
a D—fibre to a prism.
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APPENDIX 1

PROGRAM FOR CALCULATION OF GF(6,6"

INPUT -CONST

dist: core/flat distance

n3: refractive index of the surrounding medium interface

ny: effective refractive index of the guided mode

delta: interval in the spatial domain of the FFT

nb-angle: number of pairs of source and observation points
selected on the contour of the core

CALCULATION

—— - choice of the angular position of the source point:
' = ?
b=20 with b{0,...,nb-angle)}

~= -incrementation of the observation point:

6 = b A6

GREEN-FUNCTION : calculation of g(#6,6')
- calculation of x,x',y,y' of the source and observation
point in coordinates of the flat surface of the cladding

FUNCT
calculation of the function to be FFT-!1
separation in a real and imaginary part

A ) - FFT-1

use of the FFT routine: FOUR, and
correction of the phase and the amplitude

calculation of the 1St GF by the use of the
Bessel function routine: BESSEL

- INTERPOLATION
interpolation routine of the 2nd GF
Y
if 6 < 360°
GRAPHIC

graphic of the GF for the selected source point and
the observation point variable as abscissa.

choice of another source point?

SUMMARY

summary of the input data
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APPENDIX 2

NP

PR FOR ATION QF 8 FOR A D—FIBRE

-CON
dist: core/flat distance
n3: refractive index of the surrounding medium interface
ng: effective refractive index of the guided mode
delta: interval in the spatial domain of the FFT
nb-angle: number of pairs of source and observation points

selected on the contour of the core
cpnt-serie: number of elements of the Graf expansion

for the calculation of the 1St GF
cpnt-M: order of the matrix M
nb—iteration: number of iterationsfor the calculation
of B

it =0 , integer for the incrementation of the number
of iteration, with its maximum: nb-iterations

G1-G2-CALCULATION

- calculation of the diagonal elements, Gmnl (6.13) and
Cmnl' of the matrices Gl (6.15) and G2 (6.18), respectively

- wuse of the procedures BESSEL-J and BESSEL-K for the
calculation of Ky, Jyi1 and Jp

g2-FTG2r-FTG21-CALCULATION

- calculation of the variables:
82(6,0"), FTGy,(6,6'),FTG;(6,6')
for all the range of 6'= a. A¢', a{0,...nb-angle}
8'= b. Af6', b{0,...nb-angle}

- use of the procedures FFT-1 and INTERPOLATION

M-CALCULATION
m=1
—— m=m +1 -(cpnt-M div 2) : incrementation of the rows
n=-1
— n=n +1 -(cpnt-M div 2) : incrementation of the columns

Gmn2-Cmn2'-calculation
double numerical integral expressing:
Cmn2real in (6.31b)

Con2im in (6.31c)
Cmn2'real in (6.32b)
A Gmn2'im in (6.32b)

- calculation of Jy, (6.40) and Jp,' (6.41)
- calculation of the real components of M:

Amn = Jmn(Gmn2'real +Cmn2'im) +Jmn(Gmn2'real +Gmn2'im)
- calculation of the imaginary components of M:

Bmn = Jmn(Gmn2'im) +Jmn(Cmn2'im)

—if n¢cpnt-M div 2

_——if m¢cpnt-M div 2
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DETERMI NANT

calculation of the complex determinant of the matrix:

det(M - I), (I being the identity matrix)
using an algorithm with Gaussian elimination and
partial pivoting

ITERATION

if it>0 then fteration by the secant method algorithm:

(Bit-1 - Bit) I(detjy /detj¢_q)

Bit+1 = Bi¢ -
1 - ( detit / detit_l)

it =it +1

Y
if (det>0 and it<nb-iterations )
N
SUMMARY

summary of the input data
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