

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

P a r a l l e l A l g o r i t h m s f o r t h e

M a x i m u m Floui

hg

Zai r f lbd e loua ha b

R Thesis S u b m i t t e d in Fulf i l lment o f

t h e R e q u i r e m e n t s f o r t h e Degree o f

M a s t e r of Science

in th e

D e p a r t m e n t o f Comput ing Science

a t th e

Univers i tg o f Glasgow

O ctobe r 1988

ProQuest Number: 10998227

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10998227

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

ACKNOWLEDGEMENTS

I am greatly indebted to my supervisor Professor A. C. ALLISON.

He was a continuous source of inspiration and advice. His keen

interest and his thoughtful comments brought this thesis in its

present shape. Professor D. C. GILLES deserves credit for accepting

me to study in this department. I would like to express my deep

gratitude and all my respect to the Algerian Government for their

financial support and the opportunity he gave me to study for this

postgraduate degree.

Finally, I wish to thank my family and all my fronds for their

help, assistance and encouragement.

S u m m a r y

The problem of finding the maximal flow through a given

network has been intensively studied over the years. The classic

algorithm for this problem given by Ford and Fulkerson has been

developed and im proved by a num ber of authors including

Edmonds and Karp. With the advent of parallel computers, it is of

great interest to see whether more efficient algorithms can be

designed and implemented.

The networks which we will consider will be both capacitated

and bounded. Compared with a capacitated network, the problem

of finding a flow through a bounded network is much more

complicated in that a transformation into an auxiliary network is

required before a feasible flow can be found.

In this thesis, we review the algorithm s of Ford and

Fulkerson and Edmonds and Karp and implement them in a

standard sequential way. We also implement the transformation

required to handle the case of a bounded network.

We then develop two parallel algorithms, the first being a

parallel version of the Edmonds and Karp algorithm while the

second applies the Breadth-First search technique to extract as

much parallelism as possible from the problem . Both these

algorithms have been written in the Occam programming language

and implemented on a transputer system consisting of an IBM PC

host, a B004 single transputer board and a network of four

transputers contained on a B003 board supplied by Inmos Ltd.

This is an example of a multiprocessor machine with independent

m em ory .

The relative efficiency of the algorithms has been studied and

we present tables of the execution times taken over a variety of

test networks.

The transformation of the original network into an auxiliary

network has also been implemented using parallel techniques and

the problems encountered in the development of the algorithm

are described.

We have also investigated in detail one of the few parallel

algorithm s for this problem described in the literature due to

Shiloach and Vishkin. This algorithm is described in the thesis. It

has not been possible to implement this algorithm because it is

specifically designed to run on a m ultiprocessor machine with

shared memory.

P r e f a c e

I declare that the work reported herein and the writing of the

thesis is my own work. The design and implementation of the

algorithms as described in chapter 6 is my own original work.

Z. ABDELOUAHAB

TABLE OF CONTENTS

1. Introduction... 1

2. Basics and concepts.. 7

2.1 Concepts... 7

2.1.1 flow... 7

2 .1 .2 Type of networks..8

2.1.3 Feasibility.. 9

2 .1 .4 Modification of a netw ork... 9

2 .2 The Ford and Fulkerson algorithm ..12

3. Sequential algorithms...16

3.1 Overview...16

3.2 Data structure of the sequential algorithm 16

3.3 General implementation of the maximum flow

algorithm..18

3 .4 Algorithm for transforming the network into an

auxiliary.. 19

3.5 First method...21

3.5.1 Algorithm.. 21

3.5.2 Test cases... .24

3.6 Second method.. 30

3.6.1 General method of B F S ..30

3.6.2 Algorithm.. 31

3.6.3 Test cases...33

4. Parallel computers and parallelism ...36

4.1 Concept..36

4 .2 Computational model...36

4.3 Transputers and Occam ... 38

4.3.1 Transputer concept..38

4 .3 .2 Relation between Occam and transputer 38

4.3.3 Transputer architecture..39

4 .3 .4 System hardware... 42

4.3.5 Basics in Occam...43

4.3 .6 Configuration... 45

4 .4 Network of transputers u se d ... 45

4.4.1 Links..45

4 .4 .2 Network and connections..46

5. Previous parallel algorithm s... 48

5.1 High level description... 48

5 .2 Description of the sequential method ...49

5.3 Example..53

5.4 Description of the parallel method ... 59

5.5 Example..69

6. Parallel algorithm..71

6.1 Overview... 71

6.2 General schema of the network of transputers and

processes loaded...72

6.3 Implementation... 73

6.3.1 Data structure of the implementation 74

6.3.2 Assignment of processors...76

6.3.3 General form of the process executed on one of

the external transputers ..76

6 .4 Implementation of the second method ...77

6.4.1 Transformation of a network .. 81

6.4.2 Example..89

6.4.3 Algorithm for finding the paths and a max

flow .. 91

6.4.4 Example..97

6.5 Implementation of the first method ... 98

6.5.1 Processes for finding the paths and flow100

6.6 Presentation of the results ..103

Conclusion.. I l l

References... 113

1. I n t roduc t i on

A problem of continuing interest is the determination of the

amount of flow that can take place through various kind of

networks. This kind of problem is an example of a beautiful

subject that has many important applications such as telephone,

urban and interurban road networks and electrical transmission

lines. Depending upon supply and demand , flow can be diverted

along various paths within networks . The fact that all networks

whose edges have a physical limitation have a maximum flow ,

has stimulated much interest in determining this quantity.

The term "network" is frequently used instead of "graph"

especially when quantitative characteristics are imparted to the

nodes and lines. It consists of a set of vertices V and a set of edges

E. It is denoted by N(V,E). It is important to note also that the

edges are directed. Vertices or nodes are used to indicate and to

represent the objects , while the edges are used to represent the

direct connection between objects .

The first algorithm of a maximum flow problem for a net

work was given L.R Ford and D.R Fulkerson [18] . They used their

algorithm not only to solve the problem , but also to prove

theorems about flow networks. It turned out that their algorithm

depends on the edge capacities in the network as well as the

number of vertices and the number of edges. Edmonds and Karp

[12] gave their first algorithm for the problem whose speed is

bounded by a polynomial function of a number of vertices and a

1

o
number of edges. In fact, their algorithm runs in time 0 (E V) . In

1970, E.A Dinic [11] came with a new algorithm whose speed is

0 (E V). From the figure which is displayed below (see [44]), all the

algorithms except the two first follow the Dinic approach. The

success of his approach is that he partitioned the network into

layers or levels . A layer consists of a set of a vertices which are

connected to the other vertices of the next layer by the edges. For

example, the first layer contains the first vertex, while the last

layer contains the last vertex. From the complexities of the

algorithms of Fig.l , we can see that there is a lot of improvements

since the Ford and Fulkerson method , but it is still unknown how

close we are to the ultimate algorithm.

A u th o r (s) Y ea r C om p lex ity

Ford , Fulkerson 1956

Edmonds , Karp 1969
2

0(E V)

D in ic 1970
2

0(EV)

K arzan ov 1973 0 (V)

C h erk a ssk y 1976
1 / 2 2

CKE V)

Malhorta , et al 1978 o (v3)

G alil 1978
5 / 3 2 / 3

0(V E)

Galil , Naamad 1979
4

2
0(E V log V)

Sleator , Tarjan 1980 O(EVlogV)

G oldberg 1985
2

0(E V logV /E)

Fig. 1

2

The second chapter of this thesis w ill contain the

fundamental definitions, terms and symbols required to describe

and classify the problem . In fact, all m ajor concepts and

generalities concerning the maximum flow problem through a

network are presented to get a relatively broad idea of the

problem . We will look also at different types of networks for

which the problem is posed. These are capacitated networks and

bounded networks. A capacitated network is the one in which the

flow of an edge is bounded by a certain value from above (i.e the

flow cannot exceed this value). However, in a bounded network

the flow of an edge is contained in an interval (i.e the flow is

bounded from above and below). A brief method for getting the

maximal flow is presented for capacitated networks. A method for

transform ing a bounded network to a capacitated one is also

described . At the end of the second chapter, among the

algorithms which we will describe is the original version of Ford

and Fulkerson [18] , this is because of its importance and its

simplicity, if not for its speed.

The third chapter is devoted to the total description of two

sequential algorithms and gives the full details concerning them.

The first algorithm which will be presented is the original method

of Edmonds and Karp which chooses a path leading to an increase

of flow by the largest possible augm entation. The second

algorithm is based also on the Edmonds and Karp approach using

the breadth-first search method for traversing a network. A brief

description of this method is also given. As an illustration of each

3

algorithm presented, some test cases are added, showing how the

algorithm s work in order to obtain the maximum flow in any

ne tw ork .

Recently, the concept of parallelism has been used to

im prove the effectiveness of algorithm design using parallel

com puters. D uring this period a wide variety of parallel

architecture have been proposed and a fair number have been

implemented at least in an experimental form. More precisely,

four different organisational classes of computers have been

defined by Flynn [17] . These may be classified into :

- SISD : (single instruction stream, single data stream)

- SIMD : (single instruction stream, multiple data stream)

- MISD : (multiple instruction stream, single data stream)

- MIMD : (multiple instruction stream, multiple data stream)

The SIMD and MIMD machines are parallel computers.

The parallel algorithms for a maximum flow problem which we

will present are designed for a network of transputers. A network

of transputers is an example of an MIMD structure which is a class

of multiple processors. Each transputer is considered as an SISD

machine with own processor , memory and links. In chapter 4,

more details are given about all the above architectures. It is also

concerned mainly with the transputer and the Occam language. It

illustrates the close association between the language and the

device. The language which is designed for concurrent

programming and which requires a modularity structure. The last

part of the chapter, introduces the description of the network of

4

transputers used for implementing our algorithms.

So far, there exist good parallel algorithms for problems like

finding the maximum of a list of numbers by Shiloach & Vishkin

[38], Valiant [43], and merging two ordered sets by Gavril [20] ,

Shiloach & Vishkin [38], and sorting a set of elements by

Hirschberg [22], Preparata [33], Shiloach & Vishkin [38], and for

elem entary graph problem s such as com puting connected

components by Hirschberg et al [23], Shiloach & Vishkin [39],

finding the minimum spanning tree , perform ing breadth-first

search as well as depth first-search by Eckstein [13] on graph and

so on. However, there are difficulties in designing a good parallel

algorithm for the maximum flow problem , this is because of the

complexity structure of the problem and also for the its apparent

sequential nature. The most efficient sequential algorithm does

not have a straight forward parallel implementation.

The general idea behind parallel com putation is that

programs using p processors should run p times faster than

otherwise identical programs using only one processor, although

theory and experience show that the actual speed up is smaller. It

is important to note that the main objective of parallelism is to

reduce the total cpu time that is used to obtain the solution of the

problem. Among the parallel algorithms for a maximum flow

problem which are known to us and presented in chapter 5 , is the

algorithm of Shiloach and Vishkin [37]. It is considered as one of

the few successful attempt to parallelise this kind of problem.

5

Their algorithm follows the E.A Dinic approach and it is specifically

designed for MIMD machine with shared memory. This method is

illustrated by an example for a better understanding.

Most of the algorithms for the maximum flow problem have

been designed for a serial computer so they might not expose all

the parallelism inherent in the problem. A typical simulation

approach w ould divide the system into subsystem s, each

described by a m athem atical model. At any stage within an

algorithm, parallelism is defined as the number of steps that are

independent and therefore can be performed concurrently . The

chapter 6 introduces the parallel im plem entations of the two

algorithms already presented in chapter 3. We will notice how

each im plem entation is d ivided into processes which the

transputers and Occam require. The full details are given in that

chapter. A comparison between the two parallel methods is

carried out in order to show the best. This is illustrated by some

results found when the methods are applied to some examples.

Concluding remarks are contained in chapter 7.

6

2. B a s i c s a n d g e n e r a l i t i e s

2.1. Concep t s

All networks of our interest are finite, directed, have no

loops and no parallel edges .

In a given network N =(V,E) , where

V : Set of vertices or nodes

E : Set of edges.

Each such a network has two distinct vertices , which are the

source and the sink. They are denoted by s and t respectively.

Most of the m aterial used here is related specifically to flow

having a single source and a single sink. The source showed have

no incoming edges and the sink showed also have no outgoing

edges and although we allow these edges to exist, they are not of

in te res t.

2.1.1. Flow

A flow f in a network is an integer valued function defined

on the edges which satisfies the following conditions

(a) - For every edge e, 0 =< f(e) <= c(e) , where c is a

nonnegative integer which is assigned to every edge e.

(b) - Let INF(v), OUTF(v) be the total amount of flow incoming

to a vertex v and outgoing from v, respectively. For every

vertex v other than the source and the sink (v e V - {s,t})

INF(v) = OUTF(v)

The second condition is called the conservation rule.

7

2.1.2. Type o f n e t w o r k s

In this thesis we will study two types of networks:

- Capacitated networks

- Bounded networks.

A network is said to be capacitated if for each edge, the flow is

bounded from above by an upper bound which is denoted by ub.

The upper bound is referring to a capacity (when we mention the

upper bound, this means that c(e) = ub(e)). The flow f then

sa tisfies

For e e E, 0 =< f(e) =< ub(e).

In a capacitated network, it is assumed that the flow starts from

zero, for every edge. In a bounded network, in addition to the

upper bound (ub), the flow is also bounded from below by a

lower bound denoted by (lb). The bound (lb) is a nonnegative

integer . The flow f in this case satisfies the following condition

For each edge e e E, 0=< lb(e) =< f(e) =< ub(e).

Note that we can find in a bounded network at least one edge e in

which lb(e) <> 0. If not (i.e lb(e) = 0 for every e), the network is

capacita ted .

The main question which we ask is how to get a maximal

flow. A part of the answer is to get first a feasible flow.

8

2.1.3. Feas ib i l i ty

A flow f is said to be feasible if and only if

For each edge e e E , lb(e) <= f(e) <= c(e)

From a previous definition of a capacitated network there is no

problem in calculating a feasible flow. In fact, a starting feasible

flow which is equal to zero is sufficient.

Once a feasible flow has been determined, we get an augmenting

path from the source to the sink, then increase the flow along the

edges of the path. This process is repeated until there is no

augmenting path left in the network. This is the general method

applied to get a maximum flow in a network.

The problem of finding a feasible flow in the case of a bounded

network is more complicated than the capacitated one. Here the

difficulty is that the initial feasible flow is not equal to zero since

the flow must satisfy the condition

For every edge e e E , lb(e) <= f(e) <= c(e).

Thus our main problem here is whether or not this network

possesses a legal (feasible) flow. We shall now describe a method

which checks the existence of the flow.

2.1.4. Modi f ica t ion of a n e t w o r k

We modify our original network N = (V,E) into another one,

called an auxiliary network. It is denoted by N' = (V',E') and has

the following characteristics :

9

- The vertex set V' consist of the set V = {v1,v2 ,v3 ,...,vn } including

two additional vertices vQ, vn + 1 which are the source and the sink

respectively of the new network N'.

- For every edge e = (v,w) , i.e v —> w, such that v,w e V , N' has

three corresponding edges :

e* = (v,w)

e" = (v0 ,w)

«" = (v ,vn +1)

- The assignment bounds are as follows :

lb'(e’) = lb'(e") = lb'(em) = 0

c'(e') = c(e) - lb(e)

c'(e") = cXe"') = lb(e)

c' , lb' are the capacity and the lower bound of an edge

belonging to the auxiliary network N', respectively.

- One final edge is added and has the following characteristics :

b = (v v i)

- We associate with this edge a very high upper bound (c'(b) =

ub’(b) zz oo) and a lower bound lb'(b) = 0

There are two main reasons for transforming a network N into an

auxiliary network N' :

- First, N' is a capacitated network and a starting feasible flow is

always available with a value zero.

- Second, a maximal flow in N' can be easily transformed into a

starting legal flow for the original network N. For more detail see

10

[8] [14] [15] [18] . In fact, one can show that if the flow f saturates

all the edges emanating from v Q, such a flow (if it exist) is

necessarily maximal in N \ Then it will follow that the original

network has a legal flow. Clearly, if all the edges which emanate

from Vq are saturated, then so are all the edges which enter v + 1 .

This follow from the fact that each lb(e), of the original network,

contributes its value to the capacity of one edge emanating from

v 0 and to the capacity of one edge entering vn + 1 . Thus the sum of

capacities of edges emanating from v Q is equal to the sum of

capacities of edges entering v +1.

f (e") = c'(e") for each edge e"

f (e,M) = c’(em) for each edge em

Once the conditions above are satisfied we calculate the initial

feasible flow for every edge of the original network N with the

expression (f(e) = f (e ’) + lb(e)) . The total initial feasible flow

emanating from a vertex v x can be found in the edge b = (vn ,v 1).

It is the amount of flow entering the vertex v 1 through the edge

(vn ,y i) .Once a feasible flow is calculated we return to our original

network N to determine a path and apply the general method for

obtaining a maximal flow which is described above.

11

2.2 The Ford and Fulkerson a lgor i th m

As an illustration of the simplest algorithm which solved

the problem of a maximum flow, we propose to describe in this

section the algorithm of Ford and Fulkerson. Their algorithm is the

first which was suggested to find a solution to the problem [14]

[15], [18], [44]. It mainly uses a method which is called a "

labelling method " and it will be described later.

The main idea of their algorithm is in general:

- start with some feasible flow

- look for an augmenting path

- update the flow

These steps are repeated until there is no path left in the network.

The most important step is to find an augmenting path. This path

is a simple one from the source to the sink and may contain edges

of the direction of the path i.e from the source to the sink

(forward edges) and edges of the opposite direction of the path

(backward edges).

For a forward edge e , in order to increase the flow through it , the

flow must be less then its capacity (f(e) < c(e)). On the other

hand, if we have a backward edge e in the path, in order to

increase the flow through the whole path, we must be able to

cancel or reduce some of its flow. Hence, we must have f(e) strictly

greater than zero , (f(e) > 0).

To find an augmenting path for a given network, a labelling

12

process is used. In this process a vertex v gets a label of the form

(u,+/-,z), where u is the vertex from which v is labelled. The

vertex u must be labelled before any labelling from u of other

vertices take place. Then u becomes a scanned vertex after

labelling v.

If e = (u,v) is a forward edge then v gets a label (u,+,zy), where

Z v = min { Zu , (c(e) - f(e)) }

f(e) < c(e)

the sign "+" stands for forward.

If e = (u,v) is a backward edge Then v is labelled by (u,-,zy)

Zv = min { Zu ,f (e) }

f(e) > 0

stands for backward.
{

The general algorithm presented below is applied to a capacitated

network and may be stated as follows :

13

A lgorithm of Ford and Fu lkerson :

B e g in

For each edge e, associate f(e) = 0.

maxflow := 0

halt := FALSE (at the beginning the flow is not maximal)

R e p e a t

B e g in

Initially, every vertex is unlabelled and unscanned.

Label the source s by (-e» ,+ ,+ o°).

W h ile { there is a labelled and unscanned vertex u and

sink is unlabelled } Do labelandscan(u) ;

I f sink is unlabelled Then halt := TRUE

Else changeflow

E n d

Until halt := TRUE

E n d

labelandscan(y) ;

B e g in

F o r every unlabelled vertex v that can be labelled from y by

either a forward or a backward labelling D o

I f f(y,v) < c(y,v) T h en label v by (y,+,zy)

E lse I f f(v,y) > 0 T h en label v by (y,-,zy) ;

change the scan.status of y to ' scanned '

E nd

14

Changeflow ;

B e g in

{ Starting from the sink and going backward using the labels

until the source is reached. The amount by which the flow is

increased is found in the * z part of the sink1. }

B e g in

x := sink

amount := ' z part of the sink '

R e p e a t

B e g in

from label of x

I f sign = ' + ' T h e n

increase flow of the edge (previous,x) by amount

E ls e

decrease the flow of the edge (previous,x) by amount

{ previous is the vertex which labelled x.}

x := previous

E n d

U n til x = source

maxflow := maxflow + amount

E n d

15

3. S e q u e n t i a l a l g o r i t h m s

3.1. Oueruiew

In this chapter we are going to present two sequential

implementations for the algorithm of a maximum flow. The first

implementation is the original method of Edmonds and Karp [12] .

The main principle is that it finds an augmenting path from the

source to the sink , then it increments the flow along those edges.

The path found from the source to the sink is not an arbitrary one,

but it is chosen in a way it increases the flow by the greatest

amount compare to any other in the network. In fact, the search is

always perform ed from the vertex which outputs the highest

amount of flow, therefore it leads to a path which increases the

flow with the highest value . The second method is based also on

the Edmonds and Karp mentioned above but using Breadth-first

search for traversing a network to get a path. The search in this

method is always done from the vertex which was visited first

and trying at the same time to find a path which increases the

flow by a high value. The Breadth-first search is considered as the

most efficient method for traversing a graph and it is well adapted

for parallelism [2] [13]. The description of these two methods will

be followed by examples for a better understanding.

3.2. Data s t r u c t u r e o f t h e s e q u e n t i a l a l gor i t hm

The follow ing data structure is the backbone of the

sequential algorithm which will be described later.

16

q u e u e : implemented as an array used for keeping the vertices or

nodes in. In general this queue represents a waiting list . The

insertion is from the end of the queue , while the removal is from

the beginning. It is used in the second method which uses breadth

first search.

v a l : is a linear array where each vertex of the network has an

entry. Each entry will contain the maximum output of flow from

that vertex , or we can say also that it will contain the maximum

input of flow to that vertex, this comes from the fact that the total

input of flow to a vertex is equal to the total output flow from a

vertex .

v is ite d : an array identical to val. Each entry will be represented

by one of the numbers 0,1 or 2.

- 0 stands for unvisited vertex

- 1 stands for vertices that have been visited but are still

waiting for the search to be performed from them.

- 2 stands for vertices that have been visited and the search

has been performed from them.

d a d : this also is an array of the same size as the preceding. It will

help us to store the path. Each element of the array is used to

store its father. Suppose we have an edge i —> j , and j has been
thvisited from i then in the j entry of dad will contain i.

17

s iz e s : the matrix for upper and lower bounds. In general it is

used for representing a network. Each edge (i,j) is represented by

two elements of the matrix. The first one is (i,j), this contains the

upper bound or capacity, while the second (j,i) contains the lower

bound but it is represented with a negative sign for differentiating

between the two (i.e " - (value of lower bound) ”). The auxiliary

network is also represented by the same matrix s izes but with

some modifications which will be described later.

flow : the flow of all the edges of the network is represented by a

matrix of the same size than the matrix sizes.

q ,p : the source and the sink of the network respectively. In our

algorithm , they are represented by the 1st and the n**1 vertices

for the original network N and by the (n+l)**1 and the (n+2)1*1

vertices for the auxiliary network N \

3.3. G en e ra l i m p l e m e n t a t i o n o f t h e m a n i m u m f low

a l g o r i t h m
In this subsection , we will present a general algorithm for

obtaining a maximum flow in any network. This algorithm shows

in general the steps which lead to a maximum flow in a network

and it is valid for both methods which will be described later one

by one. It is described in the following page

18

- Initialisation of the corresponding tables, variables

- I f network is bounded T hen Begin

- Proceed to the modification of the original network into an

auxiliary one (The new one should be capacitated).

- Find the maximal flow for the new network. This leads to

an initial feasible flow for the original network. It is found

in the edge (n ,l) (i.e the value of flow (n,l) in the matrix

flow)

- Update the matrix sizes to its original form ;

- Go back to the original network, after finding the starting

feasible flow for N. The flow of the edges can be calculated

using the expression flow(e) = flow(e') + lb(e) (i.e the flow

of an edge e in N is equal to a flow of the same edge e' in N'

plus its lower bound) ;

E nd ;

- find the maximal flow for the original network N.

3.4. Algor i thm f o r t r a n s f o r m i n g t h e n e t w o r k into an

au n i l i a rg n e t w o r k

For transforming the network into an auxiliary one , we

need to modify the matrix sizes of the upper and lower bounds.

The modified matrix has two additional rows and two additional

columns. The new source is represented by (n + l)^ vertex and the

sink by (n+ 2)^ vertex.

19

F o r i = 1 to n D o

F o r j = 1 to n D o

If (sizes[i,j] > 0) and (sizes[j,i] o 0) Then Begin

{ there exist an edge (i,j) and lb(i,j) > 0 }

sizes [i,j] := sizes [i,j] + sizes[j,i]

{ this mean that c'(i,j) := c(i,j) - lb(i,j), c'(i,j) is the capacity

of (i,j) in N' and sizesjj,i] < 0 (lower bound of (i,j))}

sizes [n+l,j] := sizes[n+l,j] - sizes[j,i]

{ adding the edge (n+ l,j) to N' with the corresponding

upper bound sizes[n+l,j] . If there are redundant edges,

they are compacted all together }

sizes [i,p] := sizes [i,p] - sizes [j,i]

{ adding the edge (i,p) (i.e from i to the new sink; p:=n+2).

Redundant edges are also compacted };

E nd ;

sizes [n,l] := k l

{ k l is an integer with a very high value, It represents the

upper bound of the added edge (n, 1)}.

Note that when the matrix sizes is put back to its original form, the

additional two rows, two columns and the edge (n ,l) are eliminated.

The upper bounds c of the edges in N are updated as follows:

For each edge e in N

c(e) := c'(e) + lb(e) { e is also an edge in N' }.

20

3.5 Firs t m e t h o d

3.5.1 RLgori thm

Initialisation of the vectors dad, val, visited to zero.

{q := 1; p := n (original network) and q := n+1; p := n+2 (for the

auxiliary network) }

val[0] := 0

max := q { The search is performed from max }

W hile (max o 0) Do

i := max

max := 0

visited[i] := 2

If i = q T h en val[i] := maxint { output of the source is maxint }

F o r j := 1 to p Do

If visited[j] <> 2 Then Begin

If (there is an edge from i to j) T hen Begin

If sizes [i,j] > 0 Then

pri := sizes[i,j] - fiow[i,j]

{the edge (i,j) is forward, pri is the residual capacity)

Else If (the network is an auxiliary)

T hen pri := flow[j,i]

{ The edge is backward (sizes[i,j] = 0), the

returning flow is equal to the flow value of

the edge .)

Else pri := flow[j,i] + sizes[i,j] ;

{ the network is the original; (sizes[i,j] <= 0); the

21

returning flow is pri := flow[j,i] - lb(j,i) }

If val[i] < pri Then pri := val[i] ;

{ the output of i is the maximum amount that can

reach j}

I f val[j] < pri Then

val[j] := pri

dad[j] := i

{ the amount of flow that reached j is the highest

compare to any other that has reached j until now.

Update of the corresponding values in dad and

val};

End ;

I f valjj] > val[max] T hen max := j;

{ testing if this vertex j possesses the highest output of

flow so that its value is recorded in max and the next

search should resume from max }; .

E nd .

The algorithm described above is the original Edmonds and Karp

algorithm to find one path from the source q to the sink p. To find

all the paths, the algorithm above is repeated many times until

there is no path left in the network. This happens when the sink

cannot be reached (i.e val[p] = 0). Once the execution of the above

algorithm has terminated , the retrieval of a path is done as

follows:

22

y := p

x := dad[p]

W hile (x o 0) Do

I f edge (x,y) is forward T hen flow[x,y] := flow[x,y] + val[p]

Else flow[y,x] := flow[y,x] - val[p]

y := x

x := dad[y]

Starting from the sink p and going backward, the edges are found

one by one and the flow of the path is increased by val[p]. vai[p]

contains the value by which the flow of the path should be

increased. This value is the highest one. The value of the maximal

flow is updated in the following manner:

I f network is not an auxiliary

flowmax := flowmax + val[p]

Initially, the value flowmax of the network N is equal to zero. In

the case of a bounded network , when the maximum flow is found

in the auxiliary network, the value of maxflow is put to flow[n,l]

which is the value of the initial feasible flow of the original

network N. The whole algorithm is illustrated in the next section

by some examples.

23

3.5.2 Test c a s e s

Here we show two examples of networks. The first one is a

capacitated network and the second is a bounded one. We will

illustrate in general how the algorithm works:

E x a m p le l

The first example is a capacitated network (see fig.3.1).

The matrix given below is the matrix sizes which represents a

network of the fig.3.1

0 8 7 6 0 0 0
0 0 0 0 7 0 0
0 0 0 0 2 4 0
0 0 0 0 0 4 o
0 0 0 0 0 0 6
0 0 0 0 0 0 5
0 0 0 0 0 0 0

4/0

8 / 0, 5 / 0
7/0

7/01
2 / 0

4 / g
6 / 0

6 / 0
2 / 0

4 5

Fig-3.1

24

The lower bounds are all zeros in this case. So the starting feasible

flow in the network is obviously zero for each edge of the

network. Applying the algorithm for finding the maximal flow, the

paths which have been found are in the following order:

[1 2 5 7] which increases the flow by val[7] = 6

[1 3 6 7] which increases the flow by val[7] = 4

[1 4 7] which increases the flow by val [7] = 2

[1 4 6 7] which increases the flow by val[7] = 1

The paths found are in decreasing order. The first path increases

the flow by the highest value while the last one increases the flow

by the lowest value. The value of flowmax is the sum of all values

of the paths found above.

flowmax =13

E x a m p le 2 :

Case of a bounded network (see fig.3.2)

4 / 1

8 / 2 5 / 2
7 / 3

7 / 21
2 / 1

4 / a
6 / 1

6 / 3
2 / 0

4 5

Fig.3.2

25

The second network is a bounded one. It is the same network as

the precedent but with lower bounds of the edges which are not

all equal to zero . The first thing to do is to apply the algorithm for

transform ing the network into an auxiliary one. The resulting

network is represented in fig.3.3 which shows all the edges which

have been added. After compacting all the redundant edges, the

final representation is in fig3.4

The matrix sizes representing the original network N of fig.3.2

0 8 7 6 0 0 0
-2 0 0 0 7 0 0
-2 0 0 0 2 4 0
-1 0 0 0 0 4 2
0 -3 -1 0 0 0 6
0 0 - 1 0 0 0 5
0 0 0 0 -3 -2 0

The upper bounds are denoted by a positive sign, while the lower

bounds are denoted by a negative sign.

The resulting m atrix sizes after applying the algorithm for

transforming a network described previously is as follows :

0 6 5 5 0 0 0 0 5
-2 0 0 0 4 0 0 0 3
-2 0 0 0 1 3 0 0 2
-1 0 0 0 0 4 2 0 0
0 -3 -1 0 0 0 3 0 3
0 0 -1 0 0 0 3 0 2

k l 0 0 0 -3 -2 0 0 0
0 2 2 1 4 1 5 0 0
0 0 0 0 0 0 0 0 0

26

Fig.3.3

Note that the resulting auxiliary network is a capacitated one and
I

all the lower bounds are equal to zero. Therefore, the bounds

represented in the augmented matrix sizes with a negative sign

are not the lower bounds of the network N* but they are lower

bounds of the network N.

Initially, the elements of the matrix flow are all equal to zero.

Applying the algorithm for obtaining the maximum flow in N1 , the

results obtained are as follows:

[8 7 1 9] which increases the flow by val[9] = 5

[8 5 9] which increases the flow by val[9] = 3

[8 2 9] which increases the flow by val[9] = 2

27

Fig.3.4

[8 3 9] which increases the flow by val[9] = 2

[8 6 9] which increases the flow by val[9] = 1

[8 4 6 9] which increases the flow by val[9] = 1

[8 5 7 1 2 9] which increases the flow by val[9] = 1.

the resulting matrix flow after finding the maximal flow in N1 is

given below:

0 1 0 0 0 0 0 0 5
0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 2
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 3
0 0 0 0 0 0 0 0 2
6 0 0 0 0 0 0 0 0
0 2 2 1 4 1 5 0 0
0 0 0 0 0 0 0 0 0

28

The total initial feasible flow is found in the edge (7,1) = 6

Now we give the starting flow for each edge in N using the matrix

flow found above. The flow in each edge may be calculated using

the expression flow(e) := flow(e’)+lb(e), where e is an edge in N

and e’ is the same edge in N \

0 3 2 1 0 0 0
0 0 0 0 3 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 4
0 0 0 0 0 0 2
0 0 0 0 0 0 0

The value of flowmax is initialised to 6 (which the value of the

initial feasible flow) .Using the matrix flow above we calculate the

maximum flow for the original network and the paths obtained

are :

[1 3 6 7] which increases the flow by val[7] = 3

[1 4 7] which increases the flow by val[7] = 2

[1 2 5 7] which increases the flow by val[7] = 2

It is shown from the example that all the paths which have been

found are in decreasing order.

The flowmax value is equal to the initial value plus the values of

the paths found in this part.

flowmax = 13.

29

3.6. Second m e t h o d

The second method which is presented in this section is based

on the previous one, but using the bread th-first search for

traversing a network. Using this method, the search from vertices is

done in first in first out. In fact, it does not need to search each time

for the vertex from which the search should be performed like in

the first one and the breadth-first search is well adapted for

parallelism [2] [13].

3.6.1. Genera l m e t h o d o f b r e a d t h - f i r s t - s e a r c h

This classic traversal method [3] [6] [36] uses and maintains a

queue Q as a waiting list and works as follows :

Procedure B FS(v : vertex)

{ v is the vertex where the search should start }

{ Q is empty at the beginning and all the vertices are unvisited}

Put v in Q

Mark v "visited"

W hile Q is not empty D o

Remove a vertex u which is first in Q

F o r each vertex w adjacent to u D o

I f w is unvisited T h en put w in Q

mark w visited.

{ End of BFS } :

30

3.6.2. Algori thm

Initialisation of val dad,visited to zero.

{ (q := 1 ; p := n) for the original network and (q := n+1 ; p :=

n+2) for the auxiliary network }

Put the first vertex into "queue". Usually it is the source q from

which the search starts . { val[q] := maxint }.

W hile (queue is not empty) Do

Remove the first vertex from the queue which we denote by u

For each vertex v adjacent to u Do Begin

If sizes[u,v] > 0 Then pri := sizes[u,v] - flow[u,v]

{ the edge is Forward , pri is the residual capacity}

Else If (network is an auxiliary)

Then pri := flow[v,u]

Else pri := flow[v,u] + sizes[u,v] ;

{ If the network is an auxiliary (lb(e) = 0) then the

returning flow is equal to flow (v,u). However, if the

network is the original then pri := flow(v,u)-lb(v,u) }

If v is "not visited" T h en

visited[v] := 1 { v is put "visited" }

insert v in the queue ;

If val[u] < pri Then pri := val[u]

{ The output of u is the maximum which can reach v} ;

If val[v] < pri T hen

val[v] := pri

dad[v] := u ;

31

{ This mean the flow which is outputted from u to reach v

is bigger than any other flow outputted by other vertices

to v till now. The vectors val and dad are updated. } ;

End

The procedure above is used to get a path from the source q to the

sink p and it is repeated until there is no path left in the network

(case where val[p] = 0)

Procedure for retrieving a path and update of flow

Once a path is found, it is retrieved by going backward from

the sink to the source, and the value by which the flow is

increased is also calculated from the residual capacities of the path

edges . The amount by which the flow is increased is denoted by

min. This value is not necessarily equal to val[p]. If we consider

that min is equal to val[p] then it may result in that no edge of

the path will be saturated . Therefore, this path will be found in

the next search (redundancy). The procedure is presented in the

next page.

Note that the paths which are found by this method are not

necessarily in decreasing order and there may not be all the same.

The updating of the value of flowmax is done in the same manner

as in the first method but instead of adding val[p] to flowmax , the

32

value min is added to flowmax.

min := maxint { Initially the flow value of the path is maxint }

y := p { starting from the sink }

x := dad[p] { going backward }

While (x o 0) Do

If edge (x,y) is forward Then residual := sizes[x,y] - flow[x,y]

Else If (network = auxiliary) Then residual := flow[y,x]

Else residual := flow[y,x] + sizes[x,y] { sizes[x,y] < 0 }

{(x,y) is backward; sizes[x,y] := - lb(y,x) }

If min < residual Then min := residual

y := x

x := dad[y] { find another vertex of the path }

If dad[p] <> 0 Then { The path exist}

for each edge e of the path

flow(e) := flow(e) + min ; { update of matrix flow }

3.6.3. Test c a s e s

Applying the method which uses breadth-first search to the

same examples presented in the test cases section of the first

method, the results obtained are exactly the same. All the paths

which are found are in the same order as well. We will present now

another example where the two methods give different results. The

network is a capacitated one and it is shown in fig.3.5 which is

33

presented below.

Applying the first method to this network the results which are

obtained are as follows

Matrix sizes of a network in Fig.3.5

0 6 7 5 4 6 0
0 0 3 4 6 7 8
0 0 0 5 6 4 3
0 0 0 0 4 6 7
0 0 0 0 0 9 7
0 0 0 0 0 0 8
0 0 0 0 0 0 0

The paths which are obtained are in the following order:

[1 2 7] which increases the flow by val[7] = 6

[1 3 5 7] which increases the flow by val[7] = 6

34

[1 6 7] which increases the flow by val[7] = 6

[1 4 7] which increases the flow by val[7] = 5

[1 5 3 7] which increases the flow by val[7] = 3

[1 3 4 7] which increases the flow by val[7] = 1

[1 5 7] which increases the flow by val[7] = 1

The flowmax value obtained is equal to 28.

Applying the second method to the same network, the results are :

[1 2 7] which increases the flow by min = 6

[1 3 5 7] which increases the flow by min = 6

[1 6 7] which increases the flow by min = 6

[1 4 7] which increases the flow by min = 5

[1 5 6 7] which increases the flow by min = 2

[1 5 3 7] which increases the flow by min = 2

[1 3 7] which increases the flow by min = 1

We notice from these results that some paths which are found are

different from the others found by the first method and with

different values as well. There are many other examples when the

second method is applied, the values by which the flow is

increased are in different order (not necessarily in decreasing

order) but they are not presented here.

35

4. P a r a l l e l C o m p u t e r s a n d p a r a l l e l i s m

4.1. Concep t

The availability of cheap processors and the introduction of

VLSI technology has made a lot of im provem ents in the

development of parallel computers. These computers now consists

of m any processors in terconnected in some ways. Many

computational tasks can be divided into subtasks which need not

be executed sequentially . P aralle l com puters provide the

opportunity for the distribution of computations and , therefore

exploiting the parallelism. Parallel tasks may be defined in general

as tasks which can be executed all together simultaneously.

4.2. C o m p u t a t i o n a l model

One of the earliest division of different computers was due

to Flynn [17] . He has effectively classified the different computers

into four categories . They are SISD, MISD, SIMD, MIMD. The two

last categories are parallel computers which have been built.

S IS D : (Single Instruction stream, Single Data stream) Is in

general the conventional serial von Neuman machine in which

there is only one instruction processing unit. Each arithmetic

instruction initiates one arithmetic operation, leading to a single

data stream.

M IS D : (Multiple Instruction stream, Single Data stream) This

m achine includes a specialised stream ing organisation using

multiple instruction streams on a single sequence of data stream.

36

As far as we know there is no MISD machine which has been built,

because this architecture has not received any attention.

S IM D : (Single Instruction stream, Multiple Data stream) This

sort of machine may have an array of processors working in

lockstep under a common control. In fact, a central control unit

broadcasts an instruction to be executed by all the processors.

SIMD machines are restricted in a way that each processor must

perform the same instruction simultaneously. In general, it is easy

to instruct a lot of processors to do the same thing than to instruct

them to do different things. For this reason this kind of machine

usually is constructed from a lot of processing elements. A typical

machine which has been widely used is the ICL DAP (Distributed

Array Processors), now being built and m arketed by Active

Memory Technologies. It consists of 4096 parallel processors and

they are arranged in a grid of 64*64. There is also other machines

like Goodyear MPP and CLIP.

M IM D : (multiple Instruction stream, Multiple Data stream) This

category is a class of a multiprocessors, where all the processors

execute a number of independent instruction streams on a

separate data streams. These types of systems become possible at

present , this is due to the availability of a complete processor at a

low cost. The processors are linked together to facilitate

communication. There are machines in which all the processors

can access memories through a switch, these are generally called

MIMD shared memory machines. Examples of such machine are

37

the BBN butterfly and Cmmp. The BBN butterfly has been built by

Bolt, Baranek and Newman while the Cmmp has been built by

Carnegie-Mellon University. There is also another type of machine

where the processors have independent m em ories and the

processors communicate only by messages passing like the Caltech

hypercube and IBM LCAP (Loosely Coupled Array Processors). A

network of transputers falls in this category, where a single

transputer is an SISD machine.

4.3. T r a n s p u t e r s and Occam

4.3.1. T r a n s p u t e r c o n c e p t

A transputer is a fully programmable component which is

designed for the implementation of concurrent systems. VLSI

technology offers a high level of integration and in order to exploit

this opportunity, it is necessary to built concurrent systems. These

systems are composed from a number of the same devices which

are interconnected in some ways to form concurrent systems. The

name transputer come from transistor and a computer. A single

transputer is considered as a computer which is built on a chip. It

contains its own processor, local memory and links for

interconnection. A system of interconnected transputers form a

m ulticom puter.

4.3.2. Relat ion b e t w e e n Occam and t r a n s p u t e r

The transputer is totally programmed in Occam which is

considered to be the native language of this component. This

language is specifically designed to facilitate communication and

38

also for implementing concurrent systems. The transputer can also

be programmed in most high level languages which exist, such as

Pascal, C, Fortran. In a situation where it is possible to exploit

concurrency, but still use standard languages, Occam can be used

to link modules written in the selected language. For exploiting the

maximum benefit of the transputer architecture, the whole system

should be written and programmed in Occam from the system

configuration, down to low level i/o and real time interrupts. The

implementation of a system in Occam provides all the advantages

of a high level language as well as the possibilities to use the

features of the transputer.

4.3.3. T r a n s p u t e r a r c h i t e c t u r e

A transputer implements the process model of computation.

A process may be defined as an independent computation, with its

own program and data, and which can communicate with other

p rocesses.

Fig 4.1 A process

39

A process may also be considered as a black box that can perform

an action. A process in general receives inputs and sends outputs.

The processes communicate using channels by passing messages

(see Fig. 4.1).

In addition, processes can be connected together to form a more

complex concurrent systems. The processes {P1,P2,P3,P4,P5} are

all connected together forming a more complex structure. These

processes communicate through channels which are represented

with arrows in Fig4.2.

PI

P3

P4 P5

Fig 4.2 Example of interconnected processes

Fig4.3 shows that a collection of processes may be regarded as a

40

process. This process, itself can be interconnected to other

processes . Then generally, a process can have an internal

concurrency. The processes can only com m unicate using the

channels. The process P of Fig.4.3 replaces all the interconnected

processes {PI, P2, P3, P4, P5} of Fig.4.2.

Fig 4.3 Internal concurrency in a process

The description of the architecture has a hierarchic structure

which shows how a system of interconnected transputers is

designed and programmed in Occam . In fact, Occam enables more

complex and powerful systems to be designed by connecting many

transputers together. More generally, a transputer system consists

of a number of connected transputers , where each of them

executes an Occam process. Therefore, the Occam programming

model is supported internally.

41

4.3.4. Sys t em h a r d w a r e

fl. Communica t ion and l inks

The transputers com m unicate with each other using

po in t-to -p o in t com m unication links. Each m em ber of the

transputer family has one or more standard links. Each link is

bidirectional and provides two Occam channels, one in each

direction. One of them is used for inputting and the other for

outputting. This will allow an Occam program to be mapped onto

an appropriate network of transputers (see Fig.4.4). The links are

necessary to connect the transputers to build networks of

different sizes and topologies (Fig 4.5). Therefore, there is no

prob lem in com m unication when m any tran sp u te rs are

in te rconnected . For each link and for both d irec tions

synchronisation is provided. A communication link is wordlength

independent. Therefore, transputers of different wordlength may

be interconnected and programmed as single system.

l i nk i n
l i n k o u t

l ink

Fig 4.4 Representation of a transputer

42

B. Memory

Since all the memory is local, the memory grows in

proportion to the number of transputers (more transputers

implies more memory)

Fig 4.5 Example of 16 interconnected transputer

in an array of (4*4)

4.3.5. Basics in Occam

Occam enables a system to be described as a collection of

concurrent processes which communicate with each other and

peripheral devices through channels. An Occam channel does not

depend on a particular hardware implementation because it just

describes communication in the abstract. Thus, an Occam program

which uses channels may be written and tested without describing

43

where particular processes will be executed.

An Occam process is constructed from a small number of building

blocks called primitive processes which we will now describe:

- Assignment : computes the value of an expression and

changes the value of a variable, and it is done in the same way

as in most other programming languages.

- Input : a process gets a value from a channel.

- Output : a process puts a value to a channel.

Processes can be combined to form sequential, parallel or

alternative constructs. These are described as

Sequential : the processes are executed one after another.

Parallel : the processes are executed together at the same time

(simultaneously).

Alternative : the component process which is ready first to

communicate is executed.

A construct is itself a process and may be used as a component of

another construct. Concurrent processes can be expressed with

channels, inputs and outputs which are combined in parallel and

alternative constructs. Two im portant properties are described

below :

- The first one, concerns a channel, is that it provides a one way

connection between two concurrent processes. Communication is

synchronised. If a channel is used for input in one process, and

output in another, communication occurs when both processes are

44

ready. The inputting and outputting processes then continue, and

the value to be output is copied from the outputting process to the

inputting process.

- The second property is that an Occam program is the same

w hether it involves com m unication betw een processes on

different transputers or on a single transputer. More generally, a

program intended for a network of transputers, may be compiled

and executed on a single transputer, which shares its time

between the concurrent processes. A process which is waiting for

communication does not consume any processor time.

4.5.6. Co nf igura t ion

Occam programs may be designed, written, tested and

debugged on a single processor (transputer), and then transferred

on a network of transputers. Configuration associates specific

processes with real processors and specific Occam channels with

real hardware links. More generally, it is what happens at the

topmost level of an Occam program in order to determine how the

program is loaded on particular hardware. It does not affect the

behaviour of a program. However, it does enable the program to

ensure a better performance.

4.4. N e tw o rk of t r a n s p u t e r s used

4.4.1. Links

Each transputer of the network used has four links. Each

link is bidirectional (one way for each direction) . See fig.4.4.

45

linkl

linkO link2

link3

linkl.in linkl.out

linkO.in link2.in

link2.out
linkO.out

link3.out link3.in

Fig.4.4 Links in a transputer

4.4.2. N e tw o r k and co n n e c t i o n s

The network of transputers used is com posed of two

different boards. They are : IMS B003 and IMS B004 (fig.4.5).

- The IMS B003 is composed of four identical transputers. They

are interconnected together using hard wires forming a square.

Each transputer has a memory of 256 KBytes RAM. The links

provided allow the user to extend the array of transputers by

connecting other boards . The links (linkl, linkO) of each of the

couples (TO, T l), (T l, T2), (T2, T3) are added by switching them

with wires.

- The IMS B004 consists of a single transputer IMS T414 ,

32bit transputer with 2 MBytes memory RAM. The B004 is added

inside the IBM PC XT which provides the access to the terminal

(Keyboard, Screen) and the filing system. It provides standard

links to allow the use of a m ultitransputer systems. It is

considered as the one of the family of compatible evaluation

46

boards. The linkl is switched to linkO of TO and link2 is switched

to link l of T3. The linkO is connected to the PC server for

interfacing as was mentioned before. The transputer development

system (the integrated environm ent which is developed for

supporting the programming of transputer network in Occam and

which consists of the editor, file manager, compiler, and debugger)

runs on this board. An Occam program, which is designed and

debugged within a TDS , is configured for either a B004 or a

network as a whole. The resulting code is then downloaded to the

corresponding system where it is executed.

IBM PC

G
CL,O

OM.s
T -H O Sl

B004

lin k 2 .o i:

link2.ir

CO

■aa

linkO.in

linkO.out

link l.in linkl.out

TO

link3.in

link2.out

linkl.in

linkl.out

link2.out link3.in

link2.in link3.out

linkO.in linkO.out

linkl.out
Tl

link3.out link2.in

T3

link2.in link3.out

link3.out link2.in

link3.in link2.out

link2.out “

link3.in a o o m c
T2

linkO.in

linkO.out linkO.in linkl.out linkl.in

B003

F ig 4 .5 T ransputer n etw ork p resentation

47

5. P rev ious Paral le l a lgo r i t hm

5.1. High leuel de sc r ip t io n

In this chapter, we will describe a synchronised parallel

algorithm for the problem of a maximum flow in a directed

network. This algorithm is implemented by Shiloach and Vishkin

[37]. As far as we know, it is one of the few attempts to

parallelise this kind of problem. This is due to the purely

sequential nature of the problem. Their algorithm has in fact a

parallel implementation, but it is quite difficult to conceive and

analyse. The model used in their algorithm is a synchronised

parallel computation in which all the processors have access to the

common memory (shared memory). Simultaneous reading from

the same memory location is allowed and also simultaneous

writing is allowed, provided that the processors try to write the

same thing. In fact, this algorithm is designed for MIMD machines

with shared memory.

The Shiloach and Vishkin algorithm, is in general following

the E.A Dinic method [11] in transforming the network into

layered networks. The technique of layering has the effect of

replacing a single maximum flow problem by several problems,

each a good deal, easier than the original. More precisely, for a

network with n vertices, the maximum flow is found by solving at

most n slightly different problems, each one is called a layered

network. Below we will show how a layered network is

constructed .

We start from a source s which is contained in the O**1 layer. The

48

first layer is constructed from every vertex v such that there is an

edge from s to v. In the same way the ith layer is produced from

the (i-l)**1 layer by connecting the vertices of the (i- l)1*1 layer to

the next layer with edges. These can be forward or backward.

Note that there is no vertex which connects another vertex in the

same layer. Obviously, the last layer will only contain one vertex

which is the sink. The bounds that are associated with the edges of

the layered network may be stated as follows:

Suppose u g (i-l)th layer and v g ith layer then

if e = u —> v (forward edge) and f(e) < c(e) then the new

capacity c'(e) := c(e) - f(e)

if e = u <— v (backward edge) and f(u,v) > 0 then the new

capacity c'(e) := f(u,v)

Note that this apply only for a capacitated network.

An efficient method applied for getting the layered network is the

breadth-first-search. In fact, a search starts from the source

revealing the first layer. In the same way, the ith layer is revealed

by performing a search from the (i-l)th layer. Naturally, the BFS

applied is performed in parallel.

5.2. Descr ipt ion of th e s e q u e n t i a l m e t h o d

For a better understanding of the parallel implementation

of the Shiloach and Vishkin algorithm of a max-flow, we shall

describe the sequential method because it simulates the parallel

one.

In general, the algorithm is divided into pulses. In one pulse, the

49

flow is pushed from one vertex forward as much as possible. For

example in the first pulse, s pushes the flow and saturates all the

edges which emanate from it. In the succeeding pulses, there will

be vertices for which INF(v) = OUTF(v) (incoming flow to v is

equal to outgoing flow from v), these kind of vertices are called

balanced vertices, and vertices for which INF(v) > OUTF(v). The

later are called unbalanced vertices and they always try to push

the flow forward. If the flow cannot be eliminated, it is returned

backward. Before starting the description of the algorithm, we will

introduce some notions used in both the sequential and the

parallel implementations.

E X C E S S (v) : is the amount of flow that should be pushed

forward or returned backward to make the vertex v balanced.

This amount is calculated from the expression

EXCESS(v) := INF(v) - OUTF(v).

A V A IL A B L E (v) : contains all the edges which eqianate from v

through which the flow can still be pushed forward.

FLO W QUANTUM Q(e,q) : the flow quantum q is the flow that

is pushed through e at a given pulse.

S T A C K (v) : the stack is used to keep the flow quantums of the

edges which enter v. It has the form of (e = u --> v, q). The stack is

very useful since the returning of flow from v is done in a last in

first out (LIFO) and the stack has this property.

50

The sequential algorithm is described in two routines. The first

one is PUSH(v,EXCESS(v)) implemented for pushing the flow

forward, while the second one is used for returning the flow

backward RETURN(v,EXCESS(v)). We will see that PUSH and

RETURN have a parallel implementation.

PUSH(v,EXCESS(v)):

While (EXCESS(v) > 0) and (AVAILABLE(v) * 0) Do

B eg in

e := (v,w) { the first edge of AVAILABLE(v) }

q := min(c(e)-f(e) , EXCESS(v)) { c(e)-f(e) is the residual

capacity; q is the flow that is going to be pushed

through the edge}

Add Q = (e,q) to STACK(w)

f(e) := f(e) + q { increment the flow of the edge e }

EXCESS(v) := EXCESS(v) - q { reduce the EXCESS(v) by q }

EXCESS(w) := EXCESS(w) + q { increment the EXCESS(w) }

If f(e) = c(e) Then delete e from AVAILABLE(v) {the edge

e is saturated then it is removed from AVAILABLE(v) } ;

End ;

If AVAILABLE (v) = 0 { no remaining edges available from v}

Then the vertex v becomes blocked, and for all u —> v e E,

eliminate u —> v from AVAILABLE(u) { u leads to v which

is blocked } ;

51

R E T U R N (v,E X C E SS(v)): { this routine has to reduce the flow in

some edges to balance the vertex v }

While (EXCESS(v) > 0) Do

B e g in

Suppose Q = (e = u --> v, q); e is the first edge in STACK(v)

q' := min (q , EXCESS(v)) { returning the flow by q' }

f(e) := f(e) - q'

EXCESS(v) := EXCESS(v) - q'

EXCESS(u) := EXCESS(u) + q'

I f q = q' Then delete Q from STACK(v) { here we delete Q

from STACK(v) because all the flow is returned

backward through the edge e }

Else Q = (e,q-qf) { replace q by q-q’; reduction of the

flow by q’ on e . It will be the last edge for which

the flow is returned }

End;

In fact, the two routines which are described above can be

executed independently one after another. In fact, they have

really a parallel im plem entation. The corresponding parallel

description of these routines are presented in the next section. The

general algorithm associated with these two routines is presented

below.

52

B e g in

EXCESS(s) := £ c(s --> v), v e layerl

PUSH(s,EXCESS(s)) { by pushing the flow from s this will result

in some unbalanced vertices. They are put into Queue }

W hile Queue is not empty Do (still some unbalanced vertices)

B e g in

take the first vertex of the Queue (let it v)

If v is not blocked Then PUSH(v,EXCESS(v));

RETURN(v,EXCESS(v));

Insert all newly unbalanced vertices to Queue

End;

E nd;

After finding the maximum flow in one layered network, the flow

in the original network is updated. Then another layered network

is constructed by applying the method described above for getting

a layered network. The algorithm of maximum flow described

above is applied again. This process is repeated until a layered

network cannot be constructed. This mean that starting from the

source , a sink cannot be reached. The flow then in the original

network is surely maximal.

5.3. Ewample

The example which is treated in this section is the network

represented by the Fig.3.1. in chapter 3. First of all, we construct

53

one layered network from the original and it is represented by

the Fig.5.1

Fig.5.1. First layered network.

For each edge , the new capacity is associated with it.

At the beginning the queue is empty.

From vertex 1:

Push from vertex 1: 8 units through the edge (1,2), 7 units

through (1,3) and 6 units through (1,4). It will result in some new

unbalanced vertices which are {2,3,4}. No return of flow from 1.

From vertex 2:

Return 8 units through the edge (1,2).

From vertex 3:

54

Return 7 units through the edge (1,3)

From vertex 4:

Push 2 units through the edge (4,7). Return of 4 units through the

edge (1,4). {7} is the newly unbalanced vertex.

From vertex 7:

No return of flow.

The maximum flow which have reached the sink is equal to 2. The

flow in the original network is then updated. The F ig .5.2.

presented below shows the flow associated with each edge. Each

edge is represented by three values. The first one is the original

capacity. The second one represents a lower bound while the last

one indicates the flow.

4/0/0

5/0/08/0/0 7/0/0
7/0/01

2/0/0

4/0/0
6/0/2 6/0/0

2/0/2

Fig.5.2 Original network

A new layered network is constructed and it is presented in

fig.5.3.

55

Fig.5.3 Second layered network.

From vertex 1:

Push from vertex 1: 8 units through the edge (1,2), 7 units

through (1,3) and 4 units through (1,4). It will result in some new

unbalanced vertices which are {2,3,4}. No return of flow from 1.

From vertex 2:

Push 7 units through the edge (2,5). {5} is the new unbalanced

vertex. Excess(2) is currently equal to 1.

Return 1 unit through the edge (1,2).

From vertex 3:

Push from vertex 3: 2 units through the edge (3,5) and 4 units

through the edge (3,6). {6} is the newly unbalanced vertex.

Return 1 unit through (1,3) because Excess(3) is equal to 1.

56

From vertex 4:

Push from vertex 4: 4 units through the edge (4,6). Excess(4) is

now equal to 0.

No return of flow.

From vertex 5:

Push 6 units through the edge (5,7). The new unbalanced vertex is

{7}. Excess(5) is equal to 3.

Return from 5 : 2 units through the edge (3,5) and 1 unit through

(2,5). { 2,3) become unbalanced.

From vertex 6:

Push 5 units through the edge (6,7). Excess(6) will be 3.

Return 3 units through (4,6). {4} becomes unbalanced.

From vertex 7:
{

No pushing and no return of the flow. The sink is reached.

From vertex 2:

Return of 1 units through (1,2)

From vertex 3:

Return of 2 units through (1,3)

From vertex 4:

Return of 3 units of flow through (1,4). No vertex then remains

unbalanced.

57

The maximum flow which has reached the sink is equal to 11. The

flow in the original network is then updated. The F ig .5.4.

presented below shows the flow associated with each edge. The

total maximum flow is then equal to (2+11 = 13).

aiqm.

8/0/6 5 /0 /5
7/0/6

7/0/41
2/0/0

4/0/1
6/0/3

6/0/6
2/0/2

4 5

Fig.5.4. Original network

In the next step a new layered network is constructed. It is shown

in Fig.5.5 .

L2LIL0

Fig.5.5. Third layered network.

58

In the third layered network, the sink is not reached, then the

flow in the original network is certainly maximal . It is equal to

the sum of all the maximum flows of the layered networks. The

value of the maximum flow in the original network is equal to 13.

5.4. Descr ipt ion of the para l l e l m e th o d

Before giving the entire algorithm, we start first by describing

the data structure used. Most of the structure is based on the

partial sums tree (PS tree). The tree is a complete binary tree. An

example of the tree with k given numbers (a j ,a 2 ,... is shown

in Fig.5.6 . It contains 2riog2ki leaves, where the leftmost k leaves

(a l , a 2 ,.. are called active leaves and the rest are all zeros.

Every node of the tree is denoted by T[h,il, where T is the tree, h

is its height in T and i is its serial number among other nodes.

Note that the sums are shown next to the nodes of height (h > 1)

between brackets in the Fig5.6 presented below
T[3,l] (9)

T[2,21 (2)T[2,l] (7)

T [l,l] (3) T[l,2] (4) T[1,3] (2) T[l,4] (0)

Fig 5.6. Example of a PS tree for a given numbers(3,4,2)

59

In their algorithm, they attach 4 different PS trees to each

vertex v. The name of these trees are:

T -O U T (v) : this tree has a number of active leaves equivalent to

the number of emanating edges from v. Each leaf is associated

with one edge. The value attached to the leaf is the maximum

amount of flow that can be pushed through the corresponding

edge.

T - IN (v) : This tree has 2n times the number of edges which

enter v of active leaves, n is the total number of vertices and 2n

stands for the total number of pulses before the whole algorithm

terminates, the demonstration is given on that paper [37]. The

represented tree simulates the STACK(v). In the leaves, the flow

quanta are recorded from the left to the right.

T -A C C E S S (v) : the number of active leaves in this tree is equal

to the number of edges entering v. The tree coordinates the

activity of the processors that attempt to update the STACK(v)

sim ultaneously .

T -S U M (v) : Each leaf of this tree is associated with one edge

outgoing from v. The tree sums the amount of flow that is

returned to v at given pulse.

Another tree is associated with each edge of the network.

T -E D G E (e) : This tree has 2n of active leaves. Each is associated

60

with one pulse. It sums the amount of flow that is returned on e at

a given pulse.

W ith the trees represented above 4 d ifferen t prim itive

operations are performed.

C L E A R (i) : In this operation, the processor Pi puts zero to all

the nodes from T [l,i] to the root. In fact, this operation can be

executed by several processors simultaneously.

j : = l
W hile j <= h(T) { h(T) is the height of the tree } D o

B e g in

{ zeroing the nodes }

j :=j+l
I

E nd;

61

U P D A T E (i,a j) : this operation can also be executed by several

processors. Here the value of the ith leaf is put to aj and several

other changes of the nodes are performed.

T[l,i] := *4

j := 2

W hile j <= h(T) Do

B e g in

T[j,ri/2Ci-l)l] ;= T[j-1,2fi/2Cj_1)l- l] + T ^ -1,2Ti/2<J-1 >1]

{ changes on the nodes are performed }

j := j+ l

E nd;

SU M (i,S |) : this operation performs the sum := a^+a2 + .. +

S i . - â

j := 2

W hile j <= h(T) Do

B e g in

If 2 f i / 2 0 'l)"] = ri/2 (j-2>l T h e n

Sj := Sj + T [j-lli/2 (j-2>l-l];

j “ j+1

End;

62

F I N D (a ; k , p) : The operation return k,p for any given a

satisfying:

{ a^+a2+ <'= & <*= al +a2+- • *+ak-1 +ak

p = a - (a 1+a2+ .. +ak_i) }.

j := h(T)

k := 1

p := a

WHILE (j > l) Do Begin

IF p > T[j-1, 2k-1] Then p := p - T[j-1, 2k-l]

k := 2k

Else k := 2k-I

j := j-1

End

For a simplicity of the description , Shiloach and Vishkin suppose

that for every vertex v, a processor P(v) is assigned to it , and also

every edge e has a processor P(e). In addition, every leaf of

T-IN(v) has a processor attached to it and it is denoted as P(Q).

I m p l e m e n t a t i o n

In general the algorithm is divided into 4 routines. They are

INITIALISE, PUSH, RETURN, CLEAN. The values of the tree nodes

are all zero at the beginning of the first phase:

63

I N I T I A L I S E (v) : the routine is applied sim ultaneously for each

vertex v, at the beginning of each phase:

Instruct each processor P(ej = v —> w)

B e g i n

UPDATE(j ,c’(e)) in T-OUT(v)

{ j is the index of e among the edges which emanate from v

and it is also the index of the leaf of T-OUT(v) associated

with ej. c' is its new capacity }

f(ej) := 0 { the flow at the beginning of this phase is zero }

Instruct P(v) :

b e g i n

hd(v) := 0 { the poin ter hd(v) poin ts to the head of

STACK(v) i.e to the rightm ost significant leaf in

T-IN(v) }

k'(v) := 1 { k'(v) points to the smallest index of an edge which

is in AVAELABLE(v) }.

E nd;

E n d ;{ end of rou tine IN IT IA L IZE (v) }

64

P U S H (v , E X C E S S (v)) : T his ro u tin e as w ell as

RETURN(v,EXCESS(v)) depend on a(v), p(v), k(v), k'(v) for any

vertex v. For an easier notation they will appear as a , p, k, k’.

T[h(T),l] is denoted as T[root].

PU SH (v,EX C ESS(v)) :

Instruct processor P(v) :

B e g i n

a := min (EXCESS(v), T-OUT(v)[root])

{ the value in T-OUT(v)[root] is the total amount of flow that

can be pushed from the vertex v and a is the amount that is

going to be pushed from v}

EXCESS(v) := EXCESS(v) - a { reduction of the EXCESS(v) }

FIND(a;k,p) in T-OUT(v)

{ The processor P(v) finds all the edges {e^.,........,6^} through

which the flow should be pushed forward from v. The edges

e ^ , >ek - l should be saturated and an amount of p should

be pushed through }

E nd;

Instruct each processor P(ej = v —> w)

If k' <= j < = k T h en

B e g i n

UPDATE(r,l) in T-ACCESS(w)

{the leaf of T-ACCESS(w) that corresponds to ej has an index

65

r)

SUM(r,Sr) in T-ACCESS(w)

{ Sr is the serial number of processor P(ej) that wants to

register the flow quanta in STACK(w)}

I f j o k T hen qj := T-OUT(v)[l,j]

Else qj := p ;

{ qj is the flow that is going to be pushed through the edge

ej }

f(ep := f(ej) + qj { incrementing the flow of the edge ej }

TOTAL(w) := T-IN(w)[root]

{ TOTAL(w) is the the total amount of flow that is pushed

into w till now)

UPDATE(hd(w)+Sr qj) in T-IN(w)

{ update of T-IN(w). Sr +hd(w) is the index of the leaf in

T-IN(w) that corresponds to the flow quantum (ej,q j). The

flow quantum is recorded in STACK(w).}

UPDATEG, T-OUT(v)[l,j] - qj) in T-OUT(v).

{update of the residual capacity of the edge ej in

T-OUT(v).}]

hd(w) := hd(w) + T-ACCESS(w)[root]

{ hd(w) points now to the new head of the STACK(w) }

CLEAR(r) in T-ACCESS(w)

{ T-ACCESS(w) is cleared for further use in the next pulse }

66

EXCESS(w) := T-IN(w)[root] - TOTAL(w)

End ;

Instruct P(v) : k' := k

Instruct PCe^ = u —> v)

If EXCESS(v) > 0 Then

B e g in

put vertex v blocked

UPDATE(d,0) in T-OUT(u)

{ the vertex v becomes blocked, d denote the index of a leaf

in T-OUT(u) that corresponds to the edge u —> v. Since u

leads to a blocked vertex v, then the edge is removed from

AVAILABLE(u) .}

End;

(E nd of rou tine PUSH(v,EXCESS(v)) }

RETURN(v,EXCESS(v)):

Instruct processor P(v) : FIND(T-IN(v)[root] - EXCESS(v); k, p) in

T-IN(v). { Since the vertex v is unbalanced then an amount of

flow equal to EXCESS(v) is going to be returned from v. The

appropriate amount should be cancelled from STACK(v). P(v)

searches for the edges which will remain in the stack and the

other will be deleted}.

EXCESS(v) := 0 { excess becomes zero }

Instruct each processor P(ej = u —> v)

67

B e g in

I f k < j <= hd(v) Then dj := qj

E lse dj := qj - p

I f k < j <= hd(v) T hen UPDATE (j,0) in T-IN(v)

{ these edges are deleted from the stack and T-IN(v) is

properly updated.}

Else UPDATE(j,p) in T-IN(v)

{the flow quanta is decremented for at most one edge }.

UPDATE(rj,dj) in T-EDGE(ej).

{ rj is the pulse number when Qj was pushed. It is also the

index of a leaf of T-EDGE(ej). The total flow that is returned

on this edge ej at this pulse is in T-EDGE(ej)[root] }.

f(ej) := f(ej) - T-EDGE(ej)[root] { decrement the flow on ej}

UPDATE(lj, T-EDGE(ej) [root]) in T-SUM(u)

{ in T-SUM(u), the index that corresponds to ej is lj. The

total amount of flow that is returned to the vertex u is

found in T-SUM(u)[root] }.

EXCESS(u) := EXCESS(u) + T-SUM(u)[root]

CLEAR(rj) in T-EDGE(ej)

CLEAR(lj) in T-SUM(u)

Instruct processor P(v) : hd(v) := k { update of the pointer }

{ end of rou tine RETURN(v,EXCESS(v» }

68

C L E A N (v) : this routine cleans T-OUT(v) and T-IN(v) for further

use . It is applied at the end of each phase.

Instruct each processor P(ej = v —> w):

CLEAR(j) in T-OUT(v).

Instruct each processor P(Qj = (u <— v, q^)) :

CLEAR(i) in T-IN(v) for 1 <= i <= hd(v).

{ end of rou tine CLEAN(v) }

It is very important to note that the RETURN routine cannot start

before the end of PUSH routine in the same pulse.

5.5. Enample

Referring to the example given in the previous section, a

parallel BFS is performed to get a first layered network. Then the

above routines are applied for each vertex v of the network. The

flow is pushed sim ultaneously from one vertex through the

available edges. The flow as well is returned sim ultaneously

through the edges.

From vertex 1: Push 8,7,6 units through the edges (1,2),(1,3),(1,4)

at the same time.

From vertex 2 : Return of 8 units through (1,2).

The return of 7 units of flow from a vertex 3 can be done in

69

parallel with push from a vertex 4. 2 units are pushed through

(4,7).

Return of 4 units from vertex 4 through the edge (1,4).

The flow maximal in the layered network is then found and it is

equal to 2.

Another layered network is constructed (see Fig 5.3) using parallel

B F S .

From vertex 1 : Push 8,7,4 units through the edges (1,2),(1,3),(1,4)

sim u ltaneously .

From vertex 2: Push 7 units through (2,5).

The return of 1 unit of flow from vertex 2 through the edge (1,2)

can be done in parallel with the push from a vertex 3. In the later

operation, 2 and 4 units are pushed through (3,5),(3,6). The return

of flow from a vertex 3 can also be done in parallel with the push

operation from a vertex 4. 1 unit is returned from a vertex 3

through (1,3) and 4 units are pushed through (4,6) .

The PUSH and RETURN operations continue until there is no

unbalanced vertices. The maximum flow in a layered network is

then found. Another layered network is constructed using BFS see

Fig.5.5. The sink is not reached then the maximum flow in the

original is found and it is equal to 13.

70

6. P a r a l l e l a l g o r i t h m

6.1. Ouerui eui

This chapter is devoted to the description of the parallel

m ethods that have already been presented in chapter 3. These

algorithms have more less the same principle than the sequential

methods. As was indicated previously, one of them is the original

method of Edmonds and Karp and the other is following the same

approach using Breadth-first search. Many believe that using BFS

in parallel for traversing a graph gives an optimal bound and it is

considered as the fastest especially for dense graphs [2] [13].

These algorithm s are implemented for capacitated and bounded

netw orks. The transform ation of a bounded netw ork to an

auxiliary one is done in parallel and the corresponding method is

presented followed by an example. The process for finding the

paths from the source to the sink is described as well in parallel.

The whole algorithm is designed to run on the transputers. In

general it is divided into tasks, where each task is carried out by

one transputer. More precisely, the algorithm is partitioned into

processes because of the modularity structure which is required

by Occam and the transputer. The processes com m unicate with

each other using defined links. Finally, in the last part of this

chapter some results obtained by the two methods are presented

and a comparison between them is carried out.

71

6.2 . G e n e r a l s c h e m a o f t h e n e t m o r k o f t r a n s p u t e r s

a n d t h e p r o c e s s e s lo a d e d

carying orders+
inputs + resultsorders + inputs

from.master

to.t3 from.t3 carying
orders +
inputs +
results

carying
results

carying
results

carying orders+
inputs + resultsto.master

results

Process3

Process1

TO

HProcess

HOST

Process2

T1

Process2

T2

Fig.6.1 The network and the processes

In the last section of chapter four, we have presented our

transputer network. It is formed from one transputer called "host

transpu ter" (IM S B004) and four o thers ca lled "ex ternal

transputers" (IMS B003). In this section, we present the general

configuration used in our implementation. In an other word, which

process is loaded on which transputer. Each algorithm is divided

into four major processes. They are HProcess, Process 1, Process2,

Process3 (see fig.6.1). The main process ("HProcess") is loaded

on the host transputer. In particular, this process is responsible

for giving the orders to the others which are loaded on the

external transputers. An order is an instruction to perform certain

task. Once an order is received by one of the processes resident on

72

one of the external transputer, it sends it to the next process and

starts performing the corresponding action to the instruction. The

processes loaded on TO, T l, T2, T3 have in general the same

structure. They are composed of a num ber of sm all processes

where each one of them corresponds to an action which is

performed when the order is recognised. The processes on TO, T l,

.. etc have the following form:

(in s tru c t io n = id e n t i f ie r .n o .o f .th e .o rd e r)

action 1 {process}

(in s tru c t io n = id e n t i f ie r .n o .o f .th e .o rd e r)

action2 {process}

Note that "Process 1" on TO gets its orders and inputs from the

host process "HProcess" and carries the orders and results to the

next process. "Process2" is loaded on all transputers between the
i

first and the last (i.e on T1,T2), this for making the program more

general. Each "Process2" on T l, T2 gets its inputs, orders from the

previous process as well as the partial results of the predecessor

and passes the results and the orders to the next one. "Process3"

gets its main orders from the previous one and outputs the results

if any to the host process ("HProcess"). The configuration in

general is shown in Fig.6.1 .

6.3. I m p l e m e n t a t i o n

Before starting the description of the im plem entation, we

describe some Occam statments which we will use to present the

73

algorithm s.

a) IF

co n d itio n l

p ro c e ss l

condition2

p rocess2

TRUE

process3

This conditional construction consists of the keyword IF and one

or more components, each slightly indented. Each com ponent,

consists of an expression (condition) and a little further indented

process. The conditional executes by looking at a condition which

has a value "True" and therefore the corresponding process is

executed. If none of conditionl, condition2 has a value "True" then

the last component is executed (i.e process3). In this case, if TRUE

were missing the whole construction stops.

b) W h ile (condition)

p rocess

A While statment consists of a condition and a slightly indented

process.

6.3.1. Data s t r u c t u r e o f t h e i m p l e m e n t a t i o n s

The data structure which we describe below constitutes an

important part of the implementations. Since each transputer has

its own local memory, then the data has to be kept local for each

process on a transputer. The data structure is used for both

methods unless stated.

74

A. D ata s tru c tu re for the host process

Two queues q.m, q.s are used. The insertion takes place at the

end, while the removal is done from the top (i.e the beginning).

q .m : used to keep the vertices which have just been visited

(first they were unvisited vertices) once a search is perform ed

from one vertex. These vertices will be used to search for the

others, q.m is used only for the method using the BFS.

q .s : is a secondary queue used to keep the vertices adjacent to

the vertex from which the search w ill be perform ed. These

vertices will be sent to the processes where they are visited and

the flow which can reach them through the corresponding edges is

calcu lated .

t e m p . l i s t : Is a temporary list which is used for different

purposes and has an important role for:

(i) Keeping the adjacent vertices of a node from which a search

is performed.

(ii) keeping the vertices which will be sent to the processes .

(iii) keeping the unseen or unvisited vertices found from one

search .

In addition we have also some data which is described in chapter3

M atrices sizes and f lo w

V ector dad used only for the method using BFS

V ecto rs visited (only for the original Edmonds and Karp).

B. D a ta s tru c tu re fo r the p ro cesses on TO, T l , ...e tc

A djacency m atrix for the bounds which corresponds to

"sizes". It is denoted here by s.

75

The flow matrix is denoted by f.

The vectors v a l, d a d , v is i te d , and a temporary list tem p.

A ll these have the same structure as the ones described

p rev io u sly .

6.3 .2 . A s s ig n m e n t o f t h e p r o c e s s o r s

The policy adopted for assigning the processors is :

A t any vertex v, where the search should be perform ed,

processors are assigned to the edges which emanate from v. In

other words, each transputer will deal with one edge outgoing

from v. If the number of edges which emanate from v is greater

than the number of transputers available, then each transputer

may be assigned more than once to different edges. In our case we

treat each time at most four edges (see Fig 5.2).

TO

T2
T3

TO
T l

Fig 5.2

6.3.3. Genera l fo rm of t h e p r o c e s s e u e c u t e d on o ne of

t h e e n t e r n a l t r a n s p u t e r s

It has been said before that the processes loaded on the

external transputers have in general the same structure. Each

76

process is constructed as a repeating one which is waiting for

orders to execute the corresponding actions and it is working as

fo llow s

W hile T rue { repeat and wait for an instruction }

- W ait for an order

- Identify it

- Send it to the next process

- Starts executing the corresponding action

N aturally , the host process sends the instructions to Process 1

resident on TO through the channel "from.master". W hen Process 1

receives an instruction, it forwards it to the next process and the

later sends it as well to the next and so on till Process3 receives it.

Process3 do not output the instruction to the next one because it is

the last one.

6.4. I m p l e m e n t a t i o n o f t h e s e c o n d m e t h o d

We present first the algorithm of the method which uses

BFS. The general form of the processes which are executed on the

external transputers is described in the following page. These are

required in the im plem entation of the m ethod and a brief

description of each is given. The detailed implementation may be

found in the listing.

77

While True

from.channel ? instruction { inputting the order }

IF { test for identification of the instruction }

(instruction = take.mat)

to.channel ! instruction { output the order if necessary }

{ input from the channel the vertices source and sink,

output them to the next process and input as w ell the

matrices sizes and flow row by row. Each row input will

be output directly to the next process. All th is input

must reach Process3}.

(instruction = initialisation)

{ Output the instruction to the next processes. In this part,

each process initialises the vectors dad, val, and visited to

zero as well as the variables used }

(instruction = vertex.priority)

{Output the instruction to the next if necessary. Input the

vertex.pr. In fact, it is from this vertex that a search

is performed. If this vertex is the source then the value of

the flow outputted from it, is put to a m axim um i.e

val[source] is m axint . O utput vertex .pr to the next

processes)

(instruction = split.list)

{ Output the instruction to the next processes if necessary.

Receiving or inputting a list of the adjacent vertices to the

vertex.pr. The list inputted does not exceed the total

numbers of the transputers. Each process in one transputer

78

will take one vertex (the first in the list) and output the

rest to the next process. The received list is term inated by

an indicator "end.data". }

(instruction = perform.search)

{ Output the instruction to the next processes. Each process

w ill verify whether or not the vertex taken from the

split (or divided) list is visited. It will look also at the

maximum flow which can pass from the vertex .pr to

the vertex taken. Make an update of the vectors val, dad,

and visited if necessary. }

(instruction = pass.unseen)

{ Output the instruction to the next processes. Each process

which finds the unvisited vertex will send it to the last

process where they are kept in a temporary list which is

temp. Process3 updates the vector visited. }

(instruction = get.unseen)

{Forward the order till it is received by Process3. The last

process is instructed to communicate the unvisited vertices

to the host process in order to add them to q.m where

further search will be performed from them. }

(instruction = changnetw)

{ Output the instruction to the the next processes. Each

process is instructed to start the transform ation of the

original network to the auxiliary network. Each process is

allocated a certain number of rows of the m atrix sizes

to be modified.)

79

(instruction = update.vect.val)

{ Output the instruction to the next processes. Each process

has attempted changes on the vector val through execution

of the action corresponding to perform.search. Process 1 will

send val to the next and each successor w ill add the

changes to val which were made by the process itself } .

(instruction = take.vect)

{ Forward the instruction to the last process. Process3 is

instructed to pass the vectors val, dad and visited to the

other processes. Process 1 gets them through the channel

from.t3 and forwards them to Process2 (on T l, T2). In fact

Process3 possesses the updated vectors. }

(instruction = get.dad)

{ Forward the instruction to the last process. Process3 is

ordered to pass the vector dad to the host. This vector

contains the path found in the network. The value val[p] is

passed also to the host. This value will allow the host

process to check whether the maximum flow is found or

not.}

(instruction = find.path.min)

{ Output the instruction to the next processes. Here the

path is transmitted from the host where each process gets

it. The value by which the flow is increased is calculated

by the last process. The value min is passed to the host. }

(in s tru c tio n = update .flow)

{ Forward the instruction till Process3 receives it. Each

process is ordered to update the flow of the edges after

80

finding the path and after each process receives the value

min. This means the update of the m atrix f of each

process.}

(instruction = get.matf)

{ Forward the instruction to Process3. The last process is

instructed to pass or communicate the m atrix flow to the

host. This happens only when a maximum flow in the

auxiliary network is found to allow the host to make the

corresponding update. }

(instruction = pass.serial.num ber)

{ Forward the instruction to the processes. Each process on

a transputer will get its serial number for a differentiation

among the others. For example, the process on TO has its

serial number kk = 1, and the process on T l is kk = 2 ,

etc..}

6.4 .1. T ra n s f o r m a t i o n o f t h e n e t w o r k

Before we proceed to the main algorithm, we expand in

greater detail the transformation of the network into an auxiliary

one indicated by the process corresponding to "changnetw" on

page 79. The sequential algorithm has been already presented in

the chapter 3. The following algorithm is the parallel version. The

transform ation consists of the m odification of the adjacency

matrix that represents a network. We divide the matrix into np

parts (where np is the number of the external transputers, for

example , in our case np = 4). Each part is transformed by one

81

process which resides on one of the external transputers (see

Fig.6.3). The number of rows (nr) that are allocated normally to

one process is calculated from the expression :

nr := n/np { n is the number of vertices (rows as well) }

TO

T l

T2

T3

Fig 6.3

However, we have to consider the rem ainder o f the division

(n/np). In general, there are three cases:

(i) n < np { number of rows < number of transputers}

From the expression above nr will be zero, but we will allocate to

each transputer one row (i.e nr := 1) and there will be at least one

transputer which does not transform any row.

(ii) n = np { nr := 1 which is obvious }

(iii) n > np

If Rem(n/np) > 0 then in this case, we have to add one more row

for each of the first processes until the remaining is exhausted.

82

Part of the algorithm executed by the host process

- Send to the processes the instruction "take.mat" followed by the

vertices source and sink and also the matrices sizes and flow .

{ the reason for sending the matrix flow is that after the change

of the network, all the data will be ready for further use }

- Instruct the processes to get the serial number

{ The host sends kk = 1 for TO, then TO will pass kk to T l and

when T l receives it, it increm en ts kk by one and

communicates the value to next etc.. }.

IF

n < = np

nr := 1

TRUE

nr := n/np

- Send the com m and "changnetw" to all the processes for

changing a network

- Communicate to the processes the values nr, n

- Get from Process3 the (n+ l)t h row and the (n+2)t h column.

{ In fact there are two rows and two columns added to the

matrix after modification, but one row and another column are

all zeros , we do not need to get them. }

The following procedures are parts of the processes executed on

TO, T l, ...etc. They represent the actions which correspond to the

instruction "changnetw" for changing a network.

83

Change of network carried out by "Processl"

from.master ? nr; n

{ take the values nr and n communicated from the host }

output ! nr; n

{ output them to the next process through the channel output }

IF

((np*nr)+kk) <= n { then in SEQ (sequence) what follows }

{ this test is to see whether or not there are remaining rows}

sup := ((kk*nr)+l) { sup is the superior bound (i.e the last

row which is treated by this process. We are in the case

where n > np and Rem(n/np) > 0 .}

step := nr + 1 { step is the number of rows to treat }

TRUE { in SEQ } { TRUE to mean the opposite case }

sup := kk*nr

step := nr { case where Rem(n/np) = 0 }

output ! sup { sup is outputted to the next process, the reason is

that the next process will start the transform ation from the

(su p + l)t h row }

SEQ i = 1 FOR step

SEQ j = 1 FO R n

IF

(s[i]lj] > 0) AND (s{j][i] <> 0) { then in SEQ }

s[i](J] := s[i](j] + s[j][i]

s[n+l][j] := s[n+l][j] - s[j][i]

s[i][p] := s[i][p] - s[j][i]

{ this part is already described in the chapter 3 and

84

its main task is to make the changes to the bounds

and add the new edges. We w ill call this part "

p r o c e s s m o d if ic a tio n " for a reference when we

treat other parts. (p is the new sink = n+2)}

TRUE SKIP { process which does nothing }

SEQ i = 1 FO R sup

output ! [s[i] FROM 1 FOR p]

{ it outputs the rows updated by this process to the next one.

The output is done row by row},

output ! [s[n+l] FROM 1 FOR p]

{ send the (n + l)t h row to the next process. The row contains

the edges added by this process, since q := n+1 is the source.}

SEQ i = 1 FOR p

from.t3 ? [s[i] FROM 1 FOR p]

output ! [s[i] FROM 1 FOR p]

{ After all the processes have finished the transform ation, The

whole updated m atrix is found in Process3. This process

"Processl" gets it from the channel "from.t3". The m odified

matrix sizes will be available for further use. }

85

Change of network carried out by " P rocessl”

input ? nr; n { input from the previous process }

output ! nr; n { output to the next process }

input ? inf { Get the limit where the previous process stopped

(i.e the sup of the previous process) }

I F

(inf = n) { in SEQ }

sup := n

step := 0 {Case where n < np, this process do not proceed

to the transformation of any row)

T R U E { opposite case }

IF

((np*nr)+kk) <= n { in SEQ }

sup := inf+nr+1

step := nr+1 { case where Rem (n/np) > 0 }

TRUE {in SEQ}

sup := inf+nr

step := nr { case where Rem(n/np) = 0 }

output ! sup

SEQ i = (inf+1) FOR step

"process modification"

{ "Process m odification" which is described previously in

Processl. The modification starts from (inf+1) in this part. }

SEQ i = 1 FOR inf

input ? [s[i] FROM 1 FOR p]

output ! [s[i] FROM 1 FOR p]

86

{ input the rows transformed by the previous process and

output them to the next process. Each row inputted is

outputted directly to the next. }

SEQ i = (inf+1) FOR step

output ! [s[i] FROM 1 FOR p]

{ output the rows transformed by this process }

SEQ i = 1 FO R (kk-1)

input ? [temp FROM 1 FOR p]

output ! [temp FROM 1 FOR p]

{ Input the (n + l) t h rows transform ed by the previous

processes and output them to the next).

output ! [s[n+l] FROM 1 FOR p]

{ output the (n+ l)t h row updated by this process)

SEQ i = 1 FOR p

input ? [s[i] FROM 1 FOR p]

output ! [s[i] FROM 1 FOR p]

{ input the whole matrix sizes which is sent by the previous

process. Each row inputted is outputted directly to the next

process. Process2 on T2 does not output the matrix sizes to

the last process (i.e Process3). In fact, Process3 possesses it.)

87

Change of network carried out by "Process3"

input ? n; nr { input previous values n,nr }

input ? inf { input the value inf }

I F

((inf+nr) = n)

step := nr { the remaining rows are treated by this process}

TRUE

step := 0 { case where n < np }

SEQ i = (inf+1) FO R step

"process modification"

{ the modification starts from the value (inf+1) }

SEQ i = 1 FO R inf

input ? [s[i] FROM 1 FOR p] { input the rows updated till now}

SEQ i = 1 FO R (kk-1)

input ? [temp FROM 1 FOR p]

SEQ j = 1 FOR p

s[n+l][j] := s[n+l][j] + tempi]]

{input the (n + l) t h rows updated by other processes, add

them all together to make a full updating. }

s[n][l] := k l { the edge (n ,l) added to the auxiliary network is

assigned an integer which is big enough, we denote it by k l }

to.master ! [s[n+l] FROM 1 FOR p]

{ send to the host the (n+ l)t h row }

SEQ i = 1 FOR n

to.master ! s[i][p]

{ send to the host the (n+2)t h column}

SEQ i = 1 FOR p

from.t3 ! [s[i] FROM 1 FOR p]

{ send the whole m atrix to P rocessl w here it w ill be

forwarded to the other processes. }

6.4.2 Example

Applying the algorithm above for transforming the network to

the second example of fig.3.2 in chapter 3, all steps may be stated

as:

H P ro cess

The host process calculates nr which is equal to 7/4 := 1.

(nr := 1) is normally the number of rows which should be treated

by one transputer, but there are rem aining rows which will be

split among the processes. The host process instructs the processes

to start the modification and sends the values (nr:= 1; n := 7) .

P r o c e s s 1

This process notices that there is a remaining, then calculates the

new limits (sup := 2; step :=2). The number of rows treated by this

process is (step := 2). It will treat the rows from 1 to sup (i.e from

1 to 2). This process sends the value sup to the next process so

that it can start the modification from the row after sup.

The results obtained after the transformation of the rows are:

0 6 5 5 0 0 0 0 5
- 2 0 0 0 4 0 0 0 3

89

The row whose number is (n+1) is also updated :

0 2 2 1 3 0 0 0 0

All these rows are sent to the next process "Process2".

P r o c e s s 2

a) On T l

This process gets all its inputs which are nr,n, inf; the value inf

contains the sup of the previous process. It then calculates the

values (sup := 4; step :=2) from the expressions. The modification

starts from the value (inf+1) to sup (i.e from 3 to 4). The results

a re
-2 0 0 0 1 3 0 0 2
-1 0 0 0 0 4 2 0 0

The (n + l) t h row in this process is

0 0 0 0 1 1 0 0 0

This process gets the rows transformed by the previous process as

well as the (n+ l)th row. it outputs them to the next process. Then,

it sends all the rows from 3 to the value sup(i.e from 3 to 4) to the

next process. It also transmits the (n + l) t h row updated by this

process to the next process.

b) On T2

In this part, Process2 does exactly the same steps it did

previously. The values after calculations are (step :=2, inf:= 4,

sup:=6). The modification starts from row 5 to 6. The modified

rows 5 and 6 are as follows:

90

0 -3 - 1 0 0 0 3 0 3
0 0 -1 0 0 0 3 0 2

The (n+l)th row is:

0 0 0 0 0 0 5 0 0

This process receives the rows updated previously (i.e from 1 to

4) and the (n + l)t h rows of the previous processes. It outputs these

to the next process. It also sends to the next process the rows (5 to

6) and the (n+ l)t h row updated by this process.

P r o c e s s 3

In this process, there is only one row left which is the 7t h row. It

just adds the edge (n ,l) (i.e (7,1)). The edge (n ,l) has a bound k l.

k l 0 0 0 -3 -2 0 0 0

This process receives the modified rows of the previous processes

from 1 to 6. It receives the (n+ l)t h rows updated previously. The

(n + l) t h rows are added together as they were received to make a

full updating. Then, it outputs to the host process the (n + l)t h row

and the (n+2)fc h column. The whole m odified m atrix sizes is

outputted to the other processes through a channel from.t3.

6.4.3. Algori thm f o r f inding t h e p a t h s and m a n floui

In this section we describe the parallel method for finding

the paths and how the flow is updated. The algorithm is

represented mainly by two main processes executed on the host

transputer. These two processes are the process path and search.

The process path continually calls the process search for finding

91

one path.

(a) P rocess pa th (s) { s is the matrix sizes }

{netb is a boolean variable which is set to the value TRUE when

the network is bounded, once the maximum flow in the auxiliary

network is found, the value is set again to FALSE. Initially the

value is FALSE. }

I F

n e tb

p := n+2

q := n+1 { q,p source and sink of the auxiliary network }

TRUE

q :=1

p := n { Source and sink of the original network }
(

Send. mat. procs(from . m aster, sizes, flow , p,q)

Send. pass, se ria l. num ber(from . m aster)

W H IL E still { still initially is TRUE (i.e flow maximal is not true) }

S e a rc h (s) { call the process search for finding a path }.

from.master ! " get.dad”

Receive the array dad and val[p].

from .master ! "find.path.min"

Retrieve the vertices of the path and pass them to processes,

to.master ? min { value min is returned)

from.master ! "update.flow"

Increase the value of flowmax value if necessary.

92

IF

val.p = 0

still := FALSE

{the source cannot be reached i.e the m axim um flow

is found, val.p is equal to val[p] which is returned by the

last process }

TRUE

SKIP

{ End of While }

S e n d . m a t . p ro c s (f ro m , m as t e r , s iz e s ,f lo w ,p ,q)

from .master ! "take.mat"

send the source and sink

send the matrix sizes ligne by ligne

send the matrix flow ligne by ligne

S e n d . p a s s , s e r i a l . n u m b e r (f r o m . m a s te r)

from .m aster ! "pass.serial.number"

kk := 1

from.master ! kk

{ the first external transputer will be numbered by 1 }

93

(b) P rocess search

from .m aster ! "initialisation"

Put a vertex into q.m { this vertex should be the source }

W H IL E (q.m not empty)

Take first vertex from q.m {this vertex is called vertex.pr}

Send, ve rtex .p r(from . m aster).

Get adjacency list of vertex.pr and copy it in temp.list.

Put a list (temp.list) into q.s

W H IL E (q.s is not empty)

Take a list containing a maximum of np vertices from q.s and

copy it in temp.list .

Send, sp lit.list(from .m aster,tem p.lis t),

from .master ! "perform.search",

from .master ! "pass.unseen".

Send .get. unseen. vert(from .m as ter, tem p .lis t)

IF

temp.list is not empty (i.e number of vertices > 0)

Put list obtained (temp.list) into q.m

TRUE

SKIP

from .m aster ! "update.vect.val"

from.master ! "take.vect"

94

S e n d , v e r t e x .p r (f ro m , m as t e r)

from .m aster ! "vertex.priority"

from.master ! vertex.pr { send the vertex (vertex.pr) }

S e n d , s p l i t , l i s t (f ro m , m as t e r , te m p , l i s t)

from.master ! "split.list"

SEQ k=0 FOR length.list

from.master ! temp.list[k]

from .master ! end.data

{ the full list is sent followed by an indicator 'end.data'. }

S e n d .g e t .u n s e e n .v e r t (f r o m .m a s t e r , t e m p . l i s t)

from .master ! "get.unseen"

Receive the unseen vertices and copy them into temp.list

Note that the processes already described in pages 78, 79, 80, 81

occur naturally in the above algorithm and their names are listed

between " " .

95

Detailed description of some operation used

1. Retrieval of the path and change of flow

The host process retrieves the path using the dad array by

backtracking from the sink to the source. The process is already

described in the chapter 3. The vertices which form the path are

sent to the processes on the external transputers as they are

retrieved. The first process calculates the residual capacities and

sends them to the last process where the later calculates the

minimum of all values to find the amount by which the path

should be increased (it is denoted by min). The value of min is

comm unicated to all the processes. The host then instruct the

processes to update the flow of the edges i.e the matrix f, while

itself is updating the value of flowmax.

2. Operations performed on the queues

1. Put a vertex

- Add the vertex at the end of the queue

- Increm ent the index (i.e the num ber of vertices in the

queue). The index is necessary for testing w hether the

queue is empty or not.

3. put a list of vertices

- Add the list at the end of the queue.

- Increment as well the index.

4. take a list from a queue

- Remove a list of np vertices from the queue if there exist. If

96

there is less than np vertices than all the vertices are

rem o v ed .

- Decrement the index.

6.4 .4 . Eifample

Taking the same example of fig.3.2 in chapter 3, we will just

give the steps of one iteration.

After a modification of the network, all the matrices are resident

on the transputers. Executing the process path on the host , it calls

the process "search". The host instructs the processes (Processl,....)

to initialise the vectors val, dad,visited to zero. Starting from the

source (q :=8), the queue "q.m" contains initially q.

A vertex.pr is removed from q.m which is "vertex 8".

The adjacency list of the vertex 8 is searched which is temp.list :

temp.list = [2,3,4,5,6,7]

This list is put in q.s. The first four vertices [2,3,4,5] removed from

q.s, are sent to the processes for splitting, (i.e P rocessl gets

"vertex 2", Process2 on T1 gets "vertex 3", Process2 on T2 gets

"vertex 4, Process3 gets "vertex 5").

The host instructs the processes to perform a search (i.e the

vertices 2,3,4,5 are visited). The flow in each edge (8,2),(8,3),(8,4),

(8,5) is calculated and the values in each vector val in each

process is updated according to the flow of the visited edges, the

vertices 2,3,4,5 become visited vertices and they are regrouped in

the last process in the temporary list "temp". The last two vertices

6,7 are removed from q.s and sent to the processes where they

are visited in the same manner as the predecessors, the vertices

97

6,7 are also regrouped in the list temp. All these vertices are

passed to the host and added to q.m:

q.m := [2,3,4,5,6,7].

The host process instructs then the processes to assemble all the

changes made by each process to the vector val so that the whole

updated vector is found in Process3. The updated vectors val,

dad, visited will be then sent to the other processes by Process3.

Taking again the vertex.pr := 2 from q.m, all the steps above are

repeated until q.m is empty. The path then is considered as found.

6.5. I m p l e m e n t a t i o n o f t h e f i r s t m e t h o d

We propose to present in this section the original method of

Edmonds and Karp which finds a path leading to an increase of a

flow by the highest possible augmentation. In general, there is a

lot of sim ilarities between the algorithm of the first method and

the second one. The processes which are listed below are the same

as those described in pages 78, 79, 80 and 81.

(instruction = take.mat) ;

(instruction = initialisation) ;

(instruction = vertex.priority);

(instruction = split.list) ;

(instruction = perform.search) ;

(instruction = changnetw)

(instruction = update.vect.val)

(instruction = get.matf)

(instruction = pass.serial.num ber)

(instruction = pass.unseen)

The difference is mainly in retrieving the path and updating the

flow and also in searching for the next vertex where the search

should be performed.

98

(instruction = get.dad)

{ The instruction is forw arded to Process3. Process3 is

instructed by the host to pass the value dad[p] and the value

val[p].}

(instruction = find.b)

{ W ith this method, each time, we need to search for the

vertex v which outputs the highest amount of flow so that

the next search starts from v. It is needed to calculate the

maximum value in the vector val for the vertices where the

search has not been performed yet from them. The vertex v

corresponds to the vertex which possesses that value. The

maximum is calculated by the processes. The vector val is

divided into four parts . Each process will find the maximum

in one part. In this specific process which corresponds to

"find.b" the limits are calculated (i.e which part of the vector

val is allocated to which process). The calculation of the

limits in each process is done in the same manner than the

calculation of the number of rows when the network is

tran s fo rm e d .)

(instruction = find.next.v)

{ Forward the instruction to the last process. Here, each

process calculates the maximum value of the val part

allocated to it. The value is denoted by max. Each process

will pass the value found to Process3. Process3 calculates

the highest value of the max values obtained. The value of

max is the vertex number where the next search should

99

resum e. It is passed to the host and it is considered as

vertex.pr. }

(instruction = find .path .update .flow)

(The instruction is forwarded to the last process. Process3

retrieves the path. The vertices forming the path are passed

to Processl and to the host as they were retrieved. Processl

w ill forw ard them to Process2. At the same tim e, all

the processes update the flow values of the edges forming

the path (i.e update of the matrix f. The augmenting value is

val[p].}

6.5.1 P r o c e s s e s f o r s e a r c h i n g p a t h s and floui

Below , we present the main processes for finding the paths and

the flow in the network. The two processes are already described

and presented previously in section 6.4.3 . The process path is

alm ost the same than the previous one, we include only small

changes. It is presented in the next page. The process search will

be also presented because it contains some changes.

100

a) Process path(s)

n e tb

p := n+2

q := n+1

from.master ! "find.b"

TRUE

p := n

q := 1

Send.mat.procs(from.master,sizes,flow,p,q)

Send pass, serial.num ber(from .m aster)

from.master ! "find.b"

W H IL E still

search(s) { call the process search }.

from.master ! "get.dad"

Receive the values dad[p] and val[p]

from .m aster ! "find.path.update.flow"

Receive the path from the last process

Update the flowmax value.

IF

val.p = 0

still := FALSE

TRUE

SKIP

101

b) Process search(s)

from .m aster ! "initialisation”

initialise the vector visited to zero,

vertex.pr := q { starting from the source }.

W H IL E (vertex.pr <> 0)

Send, v e rtex .p r(fro m .m aste r)

Mark vertex.pr "visited" (i.e visited[vertex.pr] := 2).

Get the adjacency list of vertex.pr and copy it in temp.list.

I F

tem p.list is not empty

put a list (temp.list) in q.s

TRUE

SKIP

W H IL E (q.s is not empty)

Take list of np vertices (our case four).

Send, sp lit.list(from . m aster,tem p.list)

from .m aster ! "perform.search"

from .master ! "pass.unseen"

from .m aster ! "update.vect.val"

from .master ! "take.vect"

from .master ! "find.next.v"

receive vertex from the last process. { it should be the next

vertex .p r)

Note that the calls to the processes Send.mat.procs,Send.pass.serial

102

Send.vertex.pr, Send.split.list, Send.get.unseen can be found in

pages 93, 95.

The operations concerning the queues which are needed are :

Put a list

Take a list

Get the adjacency list

The only difference is found in "get adjacency list" . In fact, only

vertices where the search has not been performed yet from them

are searched.

6.6. P r e s e n t a t i o n of t h e r e s u l t s

The two algorithms described previously, are applied to two

examples. The first example (exam plel) is presented by fig3.2 in

chapter 3, while the second one is shown below for its importance.

The network is presented by its adjacency matrix sizes.

0 6 7 5 4 6 0
-1 0 3 4 6 7 8
-1 0 0 5 6 0 3
0 0 -1 0 4 6 7

-2 -1 0 -1 0 9 7
-1 -2 0 -2 -1 0 8
0 -3 0 -3 -1 0 0

1. The paths which are found, by applying the first method

(original of Edmonds and Karp) are as follows :

103

[8 7 1 9] (5)

[8 6 7 1 2 9] (5)

[8 5 7 1 4 9] (4)

[8 7 1 3 4 9] (2)

[8 2 9] (1)

[8 3 9] (1)

[8 4 5 9] (1)

[8 6 7 5 9] (1)

[1 3 7] (3)

[1 6 7] (2)

[1 5 7] (2)

[1 4 7] (1)

[1 3 4 7] (1)

The number between bn

increased in the path.

2. The paths obtained by the second method are:

[8 7 1 9] (5)

[8 5 9] (2)

[8 6 7 1 2 9] (5)

[8 2 9] (1)

[8 7 1 3 9] (1)

[8 5 7 1 4 9] (2)

[8 4 9] (1)

[8 3 4 9] (1)

[8 7 1 4 9] (1)

[8 6 7 1 4 9] (1)

104

[1 3 5 7] (4)

[1 6 7] (2)

[1 5 3 7] (2)

[1 3 7] (1)

[1 4 7] (1)

The total paths found by the first method is 13 whereas in the

second the num ber is 15. Therefore the first one is optim al

seq u en tia lly .

W e will now show some tables representing the timing of the two

methods applied on the examples. The algorithms are run on

- A single transputer (host)

- On the the network of transputers.

A program run on a single transputer is considered as sequential.

Host 3057

Network 2502

Tab.l First method on examplel

Host 3914

Network 3041

Tab.2 First method on example2

105

Host 3135

Network 1750

Tab.3 Second method on examplel

Host 4971

Network 2690

Tab.4 Second method on example2

From all the tables displayed above, we can notice that the first

method when it is run on a single transputer is faster than the

second one and gives better results. It can be deduced from the

num ber of paths which are found by both methods. The first

method is optimal if the two sequential algorithms are compared.

W hen it comes to the execution of the two methods on the

network, the second one gives better results than the first one.

The percentages of economy of times that are obtained on the

network compare to the single transputer are:

- First method : between 20 to 25 percent.

- Second method : between 45 to 50 percent.

We have mentioned at the beginning of this chapter that the

second method has an advantage over the first one, because it

does not need to look for the vertex from which the search should

106

be resum ed. In fact, the vertices from which the search is

perform ed are in the queue as they were visited. In the first

method, a search is always done from a vertex which outputs the

highest amount of flow. M ore precisely, the vertex where the

search is not already performed from it and whose value in the

vector val is the highest compared to the others. It corresponds to

the action perform ed for the instruction "find.next.v" in the

program. The task of find.next.v is divided among the processes

(P rocessl, Process2, Process3). Each process finds a maximum

value in one part of the vector val allocated to it for vertices

where a search has not been perform ed yet from them. In the

next step, each process will send the maximum found to the last

process. The latter will calculate the maximum of these values.

This value then represents the next vertex where the search is

performed and it is passed to the host. Now, we show the timing of

the process "search" presented before for the whole algorithm.

method 1 Process search 2250

method2 Process search 1330

Tab.5 Timing of process search on examplel

The time of the process action which corresponds to "find.next.v"

on exam plel is 1360 for the whole algorithm. Then 1360 out of

2250 has been consumed by "find.next.v". The time also includes

the overhead which is the time consumed by the communication.

The overhead comes from passing the vertices from one

107

transputer to another. In fact, the network in exam plel contains

(7) vertices, and the the number of paths found is (10). To find a

path, the search is performed from every vertex of the network,

then it results in (7) times the instruction find.next.v is executed.

For all the paths, the instruction is executed (70) times (7*10).

However, the auxiliary network contains more than (7) vertices.

Then we can say that at least (70) times the instruction is

repeated . The overhead which occurs in one execu tion of

find.next.v is multiplied by (70). The time which will be obtained

must be great.

W e w ill p resen t now a tab le ind ica ting the tim ing of

com m unication cost:

Sending a vertex From (0 to 1) units

Sending a vector (7 vertices) : From (2 to 3) units

Sending a matrix (7*7) 14 units

Tab.6 Examples of overhead

The tim ing for the table displayed above is done from one

tranputer to another one.

We have also timed the process which sends the matrices from the

host to the others and the result is 30 units.

The main reason why we have no more than 50 percent of

108

econom y of tim e for the second m ethod is the cost of

com m unication. Taking the process action which corresponds to

"take.vect" that is responsible for sending the vectors val, dad,

v isited from Process3 to the other processes, the tim e for

communicating them takes 5 units to 6 units. The sending of these

vectors is done after a search from one vertex. Then, at least (70)

times the above time is consumed. The result will be at least 350

units for the whole algorithm. The same thing happens for the

first method.

Below, we present the tim ing for changing a netw ork to an

auxiliary one.

Change of network (SEQ) 51

Change of network (PAR) 80

Tab.7 modification of a network on examplel.

The sequential m odification is done on the host process and it

includes the time for sending the m atrix sizes to the other

processes after changes.

The parallel one is done on the network and it includes also the

time for sending the matrix until all the processes get it. The

reason why the time of the parallel method is greater than the

sequential is also due to the overhead. The com m unication is

mainly based on sending the rows of the matrix sizes from one

process to another. This is the main disadvantage of the method.

109

The algorithm s presented previously are general. They are

suitable for networks which contain at least three transputers (i.e

np >= 3) and which have the same configuration as the one

presented by fig.6.1 .In fact, we place a process (Process2) on all

transputers between the first and the last one. However, this leads

to some problems such as some tasks are resolved in sequence. As

an example, the action which corresponds to " update, vect. val" for

Process2 on T2 cannot add the changes made to the vector val for

a full updating until the same action for Process2 on T1 has

finished. In many cases as well, Process2 on T2 cannot output to

the next process until it has received the outputs of the previous

process (i.e the outputs of Process2 on T l) for keeping the order.

110

7. C o n c l u s i o n

The design of parallel algorithm s for various parallel

computer architectures is motivated by factors such as speed and

the need to solve complex problems of practical interest. With the

continuing decrease in hardware cost, the objective is to use a

number of processors for a gain in computational speed.

D ue to the grow ing num ber of p a ra lle l com puter

architectures and the algorithms developed on these for a large

class of problems, it has become increasingly difficult for a user to

select a particular algorithm for any given application. In fact, a

cho ice is usually decided by fac to rs such as ease of

implem entation of the algorithms and cost - effectiveness of the

co m pu ters .

Since the design of parallel algorithms depends mainly on

the parallel machine, it is necessary to keep the architecture in

mind when designing a parallel algorithm. There is no universal

method for designing parallel algorithms. In this thesis we have

presented two implementations for the problem of a maximum

flow in a netw ork. The im plem entations are designed for a

netw ork of transputers which falls in the category of MIMD

m achines. Another algorithm is also described which is the

Shiloach and Vishkin method. They have designed it for MIMD

machines with shared memory where the processors communicate

through it. It is far from our model, because there is no common

memory and the communication is done through messages.

I l l

In most sequential algorithm s of many applications, some

degree of parallelism exists, it is then the role of the programmer

to exploit it in the best way. The problem of a maximum flow is

not easy to parallelise because of its complexity and also due to

the sequential methods that do not show a straight forward

implementation. We have tried to exploit the parallelism inherent

in the problem by assigning the processors to the edges and also

by dividing some tasks into subtasks. The implementation of the

second method which uses BFS showed us a better results than the

first one, but still did not realise a great speed up because of many

factors which are:

1. Synchronisation : the perform ance may be lost when the

processors require to be periodically coordinated such as

passing the same data to all processors for continuing their

w ork.

2. O verhead : it is the big problem and it includes the

com m unication between the transputers which slow s the

program. As an example, the parallel version for transforming

the network into an auxiliary one requires more steps than its

serial counterpart because of the overhead. This overhead is

the cost of managing the parallelism.

3. Generalisation : through it , performance can be lost also and

some tasks are resolved in serial.

All these factors are found in most MIMD machines.

The best problems which should be resolved by this kind of

machine are those which do not require a lot of communications.

112

REFERENCES

[1] A. V. Aho , J. E. Hopcroft , j . D. Ullman , "The design and

analysis of computer algorithms1' , Addison - Wesley , 1974.

[2] E. R. Arjomandi , D. G. Comeil , "Parallel computation in

graph theory" , SIAM. J. COMP. 7 , No. 2, pp 230 - 237,

1978.

[3] S. Baase , "Graph algorithms: Introduction to design and

analysis" , Addison - Wesley, 1988.

[4] R. Bornat , "A protocol for generalised Occam", Dept of

com puter science and statistics , Queen M ary College ,

London , Oct 1984.

[5] K. C. Bowler et al , "An introduction to Occam 2 and the

Meiko surface" , Dept of physics , University of Edinburgh ,

1987.

[6] G. Brassard , P. Bratley , "Algorithmics theory and practice" ,

Prentice - Hall , 1988.

[7] A. Burns , "Programming in Occam 2" , Addison - Wesley,

1988.

[8] R. G. Busacker, T. L. Saaty, "Finite graph and networks :

113

An introduction with application" Me Graw-Hill , 1965.

[9] V. Chachra , P. M. Ghare , J. M. Moore , "Applications of

graph theory algorithms" , North Holland , 1979.

[1 0] J. M. Crishlow , "Introduction to distributed and parallel

computing" , Prentice - Hall , 1988.

[1 1] E. A. Dinic , "Algorithm for solution of a problem of

maximum flow in a network with power estimation",

Soviet Math. Dokl. 11 , No. 5 , pp 1277 - 1280 ,1970.

[1 2] J. Edmonds , R. M. Karp , " Theoretical improvements in

algorithmic efficiency for network flow problems" , J. ACM.

19 , No. 2 , pp 248 - 264 , 1972.

[13] D. M. Eckstein , "Parallel processing using Depth-first search

and Breadth-first search" , PhD. thesis , Dept of computer

Science , University of Iowa , Iowa city, 1977.

[1 4] S. Even , "Algorithmic combinatorics" , Collier - Macmillan ,

1973.

[1 5] S. Even , "Graph algorithms" , Pitman 1979.

[16] S. Even , "Parallelism in tape sorting" , CACM 17 , No. 4 , pp

202 - 204 , 1974.

114

[1 7] M. J. Flynn , "Some com puter organisations and their

effectiveness" , IEEE Trans Comp. 21, No. 9 , pp 11 - 23,

1972.

[1 8] L. R. Ford , D. R. Fulkerson , "Flows in networks" , Princeton

Press University , 1962.

[1 9] Z. Galil , A. Naamad , "An o(EV log^ V) algorithm for the

maximal flow problem" , Journal of Algorithms 21 , pp 203

- 207 , 1980.

[2 0] F. Gavril , "Merging with parallel processors" , CACM 18 ,

No. 10 , pp 588 - 591 , 1975.

[2 1] D. Heller , "A survey of parallel algorithms in numerical

linear algebra" , SIAM Rev. 20. No. 4 , pp 740 - 777 ,

1978.

[2 2] D. S. Hirschberg , "Fast parallel sorting algorithms" , CACM

21, No. 8 , pp 657 - 661 , 1978.

[2 3] D. S. Hirschberg , A. K. Chandra , D. V. Sarwate , "Computing

connected components on parallel computers" , CACM 22 ,

No. 8 , pp 461 - 464 , 1979.

[2 4] C. A. R. Hoare , "Communicating sequential processes" ,

115

CACM 21 , No 8 , pp 323 - 334 , 1978.

[2 5] C. A. R. Hoare , "Occam programming manual", Inmos Ltd,

Prentice - Hall , 1984.

[2 6] R. W. Hockney , C. R. Jesshope , " Parallel computers " ,

Adam Hilger , 1983.

[2 7] G. Jones , "Programming in Occam", Prentice - Hall , 1987.

[2 8] A. V. Karzanov , "Determining the maximal flow in a

network by the method of perflows " , Soviet Math. Dokl. 15

pp 434 - 437, 1974.

[2 9] D. May , R. Taylor , "Occam - an overview", M icroprocessors

and Microsystems . 8 , No. 2 , March 1984.

[3 0] D. May , "Preliminary: Occam 2 product", Inmos Ltd, June

1986.

[3 1] C. H. Papadim itriou , K. S te ig litz , "C om binatorial

optimisation algorithms and complexity" , Prentice - Hall ,

1982.

[3 2] D. Pountain , " A tu to rial in troduction to Occam

programming" , Inmos Ltd , August 1986.

116

[3 3] F. P. Preparata , "New parallel sorting schemes" , IEEE Trans

Comp , c27 , No 7 , pp 669 - 673 , 1978.

[3 4] P. W. Purdom . Jr , C. A. Brown, "The analysis of algorithms"

Holt , Renehart and winston , 1985.

[35] C. Savage , "Parallel a lgorithm s for graph theoretic

Problems", PhD. thesis , University of Illinois , Urbana ,

1977.

[3 6] R. Sedgewick , "Algorithms" , Addison - Wesley , 1984.

[3 7] Y. Shiloach , U. Vishkin , "An o(n^ log n) Parallel Max Flow

Algorithm" , Journal of Algorithms 3 , pp 128 -146 , 1982.

[3 8] Y. Shiloach , U. Vishkin , "Finding the maximum , merging

and merging in a parallel computation model " , Journal of

Algorithms. 2, pp 88 - 102 , 1981.

[3 9] Y. Shiloach , U. Vishkin , "An o(log n) parallel connectivity

algorithm" , Journal of Algorithms 3 , pp 57 - 67 , 1982.

[4 0] "Transputer Development System" , Inmos Ltd , Prentice -

Hall 1988.

[4 1] "Transputer family" , Inmos Ltd ,1986.

117

[42] "Transputer reference manual" , Inmos Ltd , 1985.

[4 3] L. G. V aliant , " Parallelism in comparison problems" ,

SIAM.J. 4 , No 3 , pp 348 - 355 , 1975.

[4 4] S. H. W ilf , "Algorithms and complexity" , Prentice - Hall,

1981 .

