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S u m m a r y

The problem of finding the maximal flow through a given 

network has been intensively studied over the years. The classic 

algorithm for this problem given by Ford and Fulkerson has been 

developed and im proved by a num ber of authors including 

Edmonds and Karp. With the advent of parallel computers, it is of 

great interest to see whether more efficient algorithms can be 

designed and implemented.

The networks which we will consider will be both capacitated 

and bounded. Compared with a capacitated network, the problem 

of finding a flow through a bounded network is much more 

complicated in that a transformation into an auxiliary network is 

required before a feasible flow can be found.

In this thesis, we review the algorithm s of Ford and 

Fulkerson and Edmonds and Karp and implement them in a 

standard sequential way. We also implement the transformation 

required to handle the case of a bounded network.

We then develop two parallel algorithms, the first being a 

parallel version of the Edmonds and Karp algorithm while the 

second applies the Breadth-First search technique to extract as 

much parallelism  as possible from the problem . Both these 

algorithms have been written in the Occam programming language



and implemented on a transputer system consisting of an IBM PC 

host, a B004 single transputer board and a network of four 

transputers contained on a B003 board supplied by Inmos Ltd. 

This is an example of a multiprocessor machine with independent 

m em ory .

The relative efficiency of the algorithms has been studied and 

we present tables of the execution times taken over a variety of 

test networks.

The transformation of the original network into an auxiliary 

network has also been implemented using parallel techniques and 

the problems encountered in the development of the algorithm 

are described.

We have also investigated in detail one of the few parallel 

algorithm s for this problem described in the literature due to 

Shiloach and Vishkin. This algorithm is described in the thesis. It 

has not been possible to implement this algorithm because it is 

specifically designed to run on a m ultiprocessor machine with 

shared memory.
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1. I n t roduc t i on

A problem of continuing interest is the determination of the 

amount of flow that can take place through various kind of 

networks. This kind of problem is an example of a beautiful 

subject that has many important applications such as telephone, 

urban and interurban road networks and electrical transmission 

lines. Depending upon supply and demand , flow can be diverted 

along various paths within networks . The fact that all networks 

whose edges have a physical limitation have a maximum flow , 

has stimulated much interest in determining this quantity.

The term "network" is frequently used instead of "graph" 

especially when quantitative characteristics are imparted to the 

nodes and lines. It consists of a set of vertices V and a set of edges 

E. It is denoted by N(V,E). It is important to note also that the 

edges are directed. Vertices or nodes are used to indicate and to 

represent the objects , while the edges are used to represent the 

direct connection between objects .

The first algorithm of a maximum flow problem for a net

work was given L.R Ford and D.R Fulkerson [18] . They used their 

algorithm not only to solve the problem , but also to prove 

theorems about flow networks. It turned out that their algorithm 

depends on the edge capacities in the network as well as the 

number of vertices and the number of edges. Edmonds and Karp 

[12] gave their first algorithm for the problem whose speed is 

bounded by a polynomial function of a number of vertices and a
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o
number of edges. In fact, their algorithm runs in time 0 (E  V) . In 

1970, E.A Dinic [11] came with a new algorithm whose speed is 

0 (E V  ). From the figure which is displayed below (see [44]), all the 

algorithms except the two first follow the Dinic approach. The 

success of his approach is that he partitioned the network into 

layers or levels . A layer consists of a set of a vertices which are 

connected to the other vertices of the next layer by the edges. For 

example, the first layer contains the first vertex, while the last 

layer contains the last vertex. From the complexities of the 

algorithms of Fig.l , we can see that there is a lot of improvements 

since the Ford and Fulkerson method , but it is still unknown how 

close we are to the ultimate algorithm.

A u th o r (s ) Y ea r C om p lex ity

Ford , Fulkerson 1956

Edmonds , Karp 1969
2

0(E V )

D in ic 1970
2

0(EV )

K arzan ov 1973 0 ( V )

C h erk a ssk y 1976
1 / 2  2 

CKE V )

Malhorta , et al 1978 o  (v3 )

G alil 1978
5 / 3  2 / 3

0(V  E )

Galil , Naamad 1979
4

2
0(E V log V)

Sleator , Tarjan 1980 O(EVlogV)

G oldberg 1985
2

0(E V logV  /E )

Fig. 1
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The second chapter of this thesis w ill contain the 

fundamental definitions, terms and symbols required to describe 

and classify the problem . In fact, all m ajor concepts and 

generalities concerning the maximum flow problem  through a 

network are presented to get a relatively broad idea of the 

problem . We will look also at different types of networks for

which the problem is posed. These are capacitated networks and 

bounded networks. A capacitated network is the one in which the 

flow of an edge is bounded by a certain value from above ( i.e the 

flow cannot exceed this value). However, in a bounded network 

the flow of an edge is contained in an interval (i.e the flow is 

bounded from above and below). A brief method for getting the

maximal flow is presented for capacitated networks. A method for

transform ing a bounded network to a capacitated one is also 

described . At the end of the second chapter, among the 

algorithms which we will describe is the original version of Ford 

and Fulkerson [18] , this is because of its importance and its

simplicity, if not for its speed.

The third chapter is devoted to the total description of two 

sequential algorithms and gives the full details concerning them. 

The first algorithm which will be presented is the original method 

of Edmonds and Karp which chooses a path leading to an increase 

of flow by the largest possible augm entation. The second 

algorithm is based also on the Edmonds and Karp approach using 

the breadth-first search method for traversing a network. A brief 

description of this method is also given. As an illustration of each

3



algorithm presented, some test cases are added, showing how the 

algorithm s work in order to obtain the maximum flow in any 

ne tw ork .

Recently, the concept of parallelism  has been used to 

im prove the effectiveness of algorithm  design using parallel 

com puters. D uring this period a wide variety  of parallel 

architecture have been proposed and a fair number have been 

implemented at least in an experimental form. More precisely, 

four different organisational classes of computers have been 

defined by Flynn [17] . These may be classified into :

- SISD : (single instruction stream, single data stream)

- SIMD : (single instruction stream, multiple data stream)

- MISD : (multiple instruction stream, single data stream)

- MIMD : (multiple instruction stream, multiple data stream) 

The SIMD and MIMD machines are parallel computers.

The parallel algorithms for a maximum flow problem which we 

will present are designed for a network of transputers. A network 

of transputers is an example of an MIMD structure which is a class 

of multiple processors. Each transputer is considered as an SISD 

machine with own processor , memory and links. In chapter 4, 

more details are given about all the above architectures. It is also 

concerned mainly with the transputer and the Occam language. It 

illustrates the close association between the language and the 

device. The language which is designed for concurrent 

programming and which requires a modularity structure. The last 

part of the chapter, introduces the description of the network of
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transputers used for implementing our algorithms.

So far, there exist good parallel algorithms for problems like 

finding the maximum of a list of numbers by Shiloach & Vishkin 

[38], Valiant [43], and merging two ordered sets by Gavril [20] , 

Shiloach & Vishkin [38], and sorting a set of elements by 

Hirschberg [22], Preparata [33], Shiloach & Vishkin [38], and for 

elem entary  graph problem s such as com puting connected 

components by Hirschberg et al [23], Shiloach & Vishkin [39], 

finding the minimum spanning tree , perform ing breadth-first 

search as well as depth first-search by Eckstein [13] on graph and 

so on. However, there are difficulties in designing a good parallel 

algorithm for the maximum flow problem , this is because of the 

complexity structure of the problem and also for the its apparent 

sequential nature. The most efficient sequential algorithm does 

not have a straight forward parallel implementation.

The general idea behind parallel com putation is that 

programs using p processors should run p times faster than 

otherwise identical programs using only one processor, although 

theory and experience show that the actual speed up is smaller. It 

is important to note that the main objective of parallelism is to 

reduce the total cpu time that is used to obtain the solution of the 

problem. Among the parallel algorithms for a maximum flow 

problem which are known to us and presented in chapter 5 , is the 

algorithm of Shiloach and Vishkin [37]. It is considered as one of 

the few successful attempt to parallelise this kind of problem.
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Their algorithm follows the E.A Dinic approach and it is specifically 

designed for MIMD machine with shared memory. This method is 

illustrated by an example for a better understanding.

Most of the algorithms for the maximum flow problem have 

been designed for a serial computer so they might not expose all 

the parallelism  inherent in the problem. A typical simulation 

approach w ould divide the system  into subsystem s, each 

described by a m athem atical model. At any stage within an 

algorithm, parallelism is defined as the number of steps that are 

independent and therefore can be performed concurrently . The 

chapter 6 introduces the parallel im plem entations of the two 

algorithms already presented in chapter 3. We will notice how 

each im plem entation is d ivided into processes which the 

transputers and Occam require. The full details are given in that 

chapter. A comparison between the two parallel methods is 

carried out in order to show the best. This is illustrated by some 

results found when the methods are applied to some examples.

Concluding remarks are contained in chapter 7.
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2.  B a s i c s  a n d  g e n e r a l i t i e s

2.1.  Concep t s

All networks of our interest are finite, directed, have no 

loops and no parallel edges .

In a given network N =(V,E) , where 

V : Set of vertices or nodes 

E : Set of edges.

Each such a network has two distinct vertices , which are the 

source and the sink. They are denoted by s and t respectively. 

Most of the m aterial used here is related specifically to flow 

having a single source and a single sink. The source showed have 

no incoming edges and the sink showed also have no outgoing 

edges and although we allow these edges to exist, they are not of 

in te res t.

2.1.1.  Flow

A flow f in a network is an integer valued function defined 

on the edges which satisfies the following conditions

(a) - For every edge e, 0 =< f(e) <= c(e) , where c is a

nonnegative integer which is assigned to every edge e.

(b) - Let INF(v), OUTF(v) be the total amount of flow incoming

to a vertex v and outgoing from v, respectively. For every 

vertex v other than the source and the sink ( v e V - {s,t} ) 

INF(v) = OUTF(v)

The second condition is called the conservation rule.
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2.1.2.  Type o f  n e t w o r k s

In this thesis we will study two types of networks:

- Capacitated networks

- Bounded networks.

A network is said to be capacitated if for each edge, the flow is 

bounded from above by an upper bound which is denoted by ub. 

The upper bound is referring to a capacity ( when we mention the 

upper bound, this means that c(e) = ub(e) ). The flow f then 

sa tisfies

For e e E, 0 =< f(e) =< ub(e).

In a capacitated network, it is assumed that the flow starts from 

zero, for every edge. In a bounded network, in addition to the 

upper bound ( ub ), the flow is also bounded from below by a 

lower bound denoted by ( lb ). The bound ( lb ) is a nonnegative 

integer . The flow f in this case satisfies the following condition 

For each edge e e E, 0=< lb(e) =< f(e) =< ub(e).

Note that we can find in a bounded network at least one edge e in 

which lb(e) <> 0. If not ( i.e lb(e) = 0 for every e), the network is 

capacita ted .

The main question which we ask is how to get a maximal 

flow. A part of the answer is to get first a feasible flow.

8



2.1.3.  Feas ib i l i ty

A flow f is said to be feasible if and only if

For each edge e e E , lb(e) <= f(e) <= c(e)

From a previous definition of a capacitated network there is no 

problem in calculating a feasible flow. In fact, a starting feasible 

flow which is equal to zero is sufficient.

Once a feasible flow has been determined, we get an augmenting 

path from the source to the sink, then increase the flow along the 

edges of the path. This process is repeated until there is no 

augmenting path left in the network. This is the general method 

applied to get a maximum flow in a network.

The problem of finding a feasible flow in the case of a bounded 

network is more complicated than the capacitated one. Here the 

difficulty is that the initial feasible flow is not equal to zero since 

the flow must satisfy the condition

For every edge e e E , lb(e) <= f(e) <= c(e).

Thus our main problem here is whether or not this network 

possesses a legal (feasible) flow. We shall now describe a method 

which checks the existence of the flow.

2.1.4.  Modi f ica t ion  of  a n e t w o r k

We modify our original network N = (V,E) into another one, 

called an auxiliary network. It is denoted by N' = (V',E') and has 

the following characteristics :

9



- The vertex set V' consist of the set V = {v1,v2 ,v3 ,...,vn } including 

two additional vertices vQ, vn + 1 which are the source and the sink 

respectively of the new network N'.

- For every edge e = (v,w) , i.e v —> w, such that v,w e V , N' has 

three corresponding edges :

e* = (v,w) 

e" = (v0 ,w)

«" = (v ,vn +1)

- The assignment bounds are as follows :

lb'(e’) = lb'(e") = lb'(em) = 0 

c'(e') = c(e) - lb(e) 

c'(e") = cXe"') = lb(e) 

c' , lb' are the capacity and the lower bound of an edge 

belonging to the auxiliary network N', respectively.

- One final edge is added and has the following characteristics :

b = ( v v i )

- We associate with this edge a very high upper bound ( c'(b) = 

ub’(b) zz oo ) and a lower bound lb'(b) = 0

There are two main reasons for transforming a network N into an 

auxiliary network N' :

- First, N' is a capacitated network and a starting feasible flow is 

always available with a value zero.

- Second, a maximal flow in N' can be easily transformed into a 

starting legal flow for the original network N. For more detail see

10



[8] [14] [15] [18] . In fact, one can show that if the flow f  saturates 

all the edges emanating from v Q, such a flow ( if it exist) is

necessarily maximal in N \ Then it will follow that the original 

network has a legal flow. Clearly, if all the edges which emanate 

from Vq are saturated, then so are all the edges which enter v + 1 .

This follow from the fact that each lb(e), of the original network, 

contributes its value to the capacity of one edge emanating from 

v 0 and to the capacity of one edge entering vn + 1 . Thus the sum of

capacities of edges emanating from v Q is equal to the sum of

capacities of edges entering v +1.

f  (e") = c'(e") for each edge e" 

f  (e,M) = c’(em) for each edge em

Once the conditions above are satisfied we calculate the initial 

feasible flow for every edge of the original network N with the 

expression ( f(e) = f ( e ’) + lb(e) ) . The total initial feasible flow 

emanating from a vertex v x can be found in the edge b = (vn ,v 1).

It is the amount of flow entering the vertex v 1 through the edge

(vn ,y i )  .Once a feasible flow is calculated we return to our original

network N to determine a path and apply the general method for 

obtaining a maximal flow which is described above.

11



2.2 The Ford and Fulkerson  a lgor i th m

As an illustration of the simplest algorithm which solved 

the problem of a maximum flow, we propose to describe in this 

section the algorithm of Ford and Fulkerson. Their algorithm is the 

first which was suggested to find a solution to the problem [14] 

[15], [18], [44]. It mainly uses a method which is called a " 

labelling method " and it will be described later.

The main idea of their algorithm is in general:

- start with some feasible flow

- look for an augmenting path

- update the flow

These steps are repeated until there is no path left in the network. 

The most important step is to find an augmenting path. This path 

is a simple one from the source to the sink and may contain edges 

of the direction of the path i.e from the source to the sink 

(forward edges) and edges of the opposite direction of the path 

(backward edges).

For a forward edge e , in order to increase the flow through it , the 

flow must be less then its capacity ( f(e) < c(e) ). On the other 

hand, if we have a backward edge e in the path, in order to

increase the flow through the whole path, we must be able to

cancel or reduce some of its flow. Hence, we must have f(e) strictly

greater than zero , ( f(e) > 0 ).

To find an augmenting path for a given network, a labelling

12



process is used. In this process a vertex v gets a label of the form

(u,+/-,z), where u is the vertex from which v is labelled. The

vertex u must be labelled before any labelling from u of other

vertices take place. Then u becomes a scanned vertex after

labelling v.

If e = (u,v) is a forward edge then v gets a label (u,+,zy ), where 

Z v  = min { Zu , ( c(e) - f(e) ) } 

f(e) < c(e)

the sign "+" stands for forward.

If e = (u,v) is a backward edge Then v is labelled by (u,-,zy )

Zv  = min { Zu ,f ( e )  }

f(e) > 0

stands for backward.
{

The general algorithm presented below is applied to a capacitated 

network and may be stated as follows :

13



A lgorithm  of Ford  and  Fu lkerson :

B e g in

For each edge e, associate f(e) = 0. 

maxflow := 0

halt := FALSE ( at the beginning the flow is not maximal ) 

R e p e a t  

B e g in

Initially, every vertex is unlabelled and unscanned.

Label the source s by (-e» ,+ ,+ o°).

W h ile  { there is a labelled and unscanned vertex u and 

sink is unlabelled } Do labelandscan(u) ;

I f  sink is unlabelled Then halt := TRUE 

Else changeflow  

E n d

Until halt := TRUE 

E n d

labelandscan(y) ;

B e g in

F o r  every unlabelled vertex v that can be labelled from y by 

either a forward or a backward labelling D o 

I f  f(y,v) < c(y,v) T h en  label v by (y,+,zy)

E lse I f  f(v,y) > 0 T h en  label v by (y,-,zy ) ;

change the scan.status of y to ' scanned '

E nd

14



Changeflow ;

B e g in

{ Starting from the sink and going backward using the labels 

until the source is reached. The amount by which the flow is 

increased is found in the * z part of the sink1. }

B e g in  

x := sink

amount := ' z part of the sink '

R e p e a t

B e g in

from label of x 

I f  sign = ' + ' T h e n

increase flow of the edge (previous,x) by amount 

E ls e

decrease the flow of the edge (previous,x) by amount 

{ previous is the vertex which labelled x.} 

x := previous 

E n d  

U n til x = source 

maxflow := maxflow + amount

E n d

15



3.  S e q u e n t i a l  a l g o r i t h m s

3.1. Oueruiew

In this chapter we are going to present two sequential 

implementations for the algorithm of a maximum flow. The first 

implementation is the original method of Edmonds and Karp [12] . 

The main principle is that it finds an augmenting path from the 

source to the sink , then it increments the flow along those edges. 

The path found from the source to the sink is not an arbitrary one, 

but it is chosen in a way it increases the flow by the greatest 

amount compare to any other in the network. In fact, the search is 

always perform ed from the vertex which outputs the highest 

amount of flow, therefore it leads to a path which increases the 

flow with the highest value . The second method is based also on 

the Edmonds and Karp mentioned above but using Breadth-first 

search for traversing a network to get a path. The search in this 

method is always done from the vertex which was visited first 

and trying at the same time to find a path which increases the 

flow by a high value. The Breadth-first search is considered as the 

most efficient method for traversing a graph and it is well adapted 

for parallelism [2] [13]. The description of these two methods will 

be followed by examples for a better understanding.

3.2.  Data s t r u c t u r e  o f  t h e  s e q u e n t i a l  a l gor i t hm

The follow ing data structure is the backbone of the 

sequential algorithm which will be described later.

16



q u e u e  : implemented as an array used for keeping the vertices or 

nodes in. In general this queue represents a waiting list . The 

insertion is from the end of the queue , while the removal is from

the beginning. It is used in the second method which uses breadth

first search.

v a l : is a linear array where each vertex of the network has an 

entry. Each entry will contain the maximum output of flow from 

that vertex , or we can say also that it will contain the maximum 

input of flow to that vertex, this comes from the fact that the total

input of flow to a vertex is equal to the total output flow from a

vertex .

v is ite d  : an array identical to val. Each entry will be represented 

by one of the numbers 0,1 or 2.

- 0 stands for unvisited vertex

- 1 stands for vertices that have been visited but are still 

waiting for the search to be performed from them.

- 2 stands for vertices that have been visited and the search 

has been performed from them.

d a d  : this also is an array of the same size as the preceding. It will

help us to store the path. Each element of the array is used to

store its father. Suppose we have an edge i —> j , and j has been
thvisited from i then in the j entry of dad will contain i.

17



s iz e s  : the matrix for upper and lower bounds. In general it is 

used for representing a network. Each edge (i,j) is represented by 

two elements of the matrix. The first one is (i,j), this contains the 

upper bound or capacity, while the second (j,i) contains the lower 

bound but it is represented with a negative sign for differentiating 

between the two ( i.e " - (value of lower bound) ”). The auxiliary

network is also represented by the same matrix s izes  but with

some modifications which will be described later.

flow  : the flow of all the edges of the network is represented by a 

matrix of the same size than the matrix sizes.

q ,p  : the source and the sink of the network respectively. In our 

algorithm , they are represented by the 1st and the n**1 vertices

for the original network N and by the (n+l)**1 and the (n+2)1*1

vertices for the auxiliary network N \

3.3.  G en e ra l  i m p l e m e n t a t i o n  o f  t h e  m a n i m u m  f low 

a l g o r i t h m
In this subsection , we will present a general algorithm for 

obtaining a maximum flow in any network. This algorithm shows 

in general the steps which lead to a maximum flow in a network 

and it is valid for both methods which will be described later one 

by one. It is described in the following page
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- Initialisation of the corresponding tables, variables

- I f  network is bounded T hen Begin

- Proceed to the modification of the original network into an 

auxiliary one ( The new one should be capacitated).

- Find the maximal flow for the new network. This leads to 

an initial feasible flow for the original network. It is found 

in the edge (n ,l)  ( i.e the value of flow (n,l) in the matrix 

flow )

- Update the matrix sizes to its original form ;

- Go back to the original network, after finding the starting 

feasible flow for N. The flow of the edges can be calculated 

using the expression flow(e) = flow(e') + lb(e) ( i.e the flow 

of an edge e in N is equal to a flow of the same edge e' in N' 

plus its lower bound) ;

E nd ;

- find the maximal flow for the original network N.

3.4.  Algor i thm f o r  t r a n s f o r m i n g  t h e  n e t w o r k  into an 

au n i l i a rg  n e t w o r k

For transforming the network into an auxiliary one , we 

need to modify the matrix sizes of the upper and lower bounds. 

The modified matrix has two additional rows and two additional 

columns. The new source is represented by (n + l)^  vertex and the 

sink by (n+ 2)^  vertex.
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F o r i = 1 to n D o 

F o r j = 1 to n D o

If (sizes[i,j] > 0) and (sizes[j,i] o  0) Then Begin 

{ there exist an edge (i,j) and lb(i,j) > 0 } 

sizes [i,j] := sizes [i,j] + sizes[j,i]

{ this mean that c'(i,j) := c(i,j) - lb(i,j), c'(i,j) is the capacity 

of (i,j) in N' and sizesjj,i] < 0 ( lower bound of (i,j) )} 

sizes [n+l,j] := sizes[n+l,j] - sizes[j,i]

{ adding the edge (n+ l,j) to N' with the corresponding

upper bound sizes[n+l,j] . If there are redundant edges,

they are compacted all together } 

sizes [i,p] := sizes [i,p] - sizes [j,i]

{ adding the edge (i,p) (i.e from i to the new sink; p:=n+2). 

Redundant edges are also compacted };

E nd ; 

sizes [n,l] := k l

{ k l is an integer with a very high value, It represents the

upper bound of the added edge (n, 1)}.

Note that when the matrix sizes is put back to its original form, the 

additional two rows, two columns and the edge (n ,l) are eliminated. 

The upper bounds c of the edges in N are updated as follows:

For each edge e in N

c(e) := c'(e) + lb(e) { e is also an edge in N' }.
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3.5 Firs t  m e t h o d

3.5.1 RLgori thm

Initialisation of the vectors dad, val, visited to zero.

{q := 1; p := n (original network) and q := n+1; p := n+2 (for the 

auxiliary network) } 

val[0] := 0

max := q { The search is performed from max }

W hile ( max o  0 ) Do 

i := max 

max := 0 

visited[i] := 2

If i = q T h en  val[i] := maxint { output of the source is maxint } 

F o r  j := 1 to p Do

If  visited[j] <> 2 Then Begin

If ( there is an edge from i to j ) T hen Begin 

If sizes [i,j] > 0 Then

pri := sizes[i,j] - fiow[i,j]

{the edge (i,j) is forward, pri is the residual capacity) 

Else If ( the network is an auxiliary)

T hen  pri := flow[j,i]

{ The edge is backward ( sizes[i,j] = 0 ), the 

returning flow is equal to the flow value of 

the edge .)

Else pri := flow[j,i] + sizes[i,j] ;

{ the network is the original; (sizes[i,j] <= 0); the
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returning flow is pri := flow[j,i] - lb(j,i) }

If  val[i] < pri Then pri := val[i] ;

{ the output of i is the maximum amount that can 

reach j}

I f  val[j] < pri Then 

val[j] := pri 

dad[j] := i

{ the amount of flow that reached j is the highest 

compare to any other that has reached j until now.

Update of the corresponding values in dad and

val};

End ;

I f  valjj] > val[max] T hen  max := j;

{ testing if this vertex j possesses the highest output of

flow so that its value is recorded in max and the next

search should resume from max }; .

E nd  .

The algorithm described above is the original Edmonds and Karp 

algorithm to find one path from the source q to the sink p. To find 

all the paths, the algorithm above is repeated many times until 

there is no path left in the network. This happens when the sink 

cannot be reached ( i.e val[p] = 0 ). Once the execution of the above 

algorithm has terminated , the retrieval of a path is done as 

follows:
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y := p 

x := dad[p]

W hile (x o  0) Do

I f  edge (x,y) is forward T hen flow[x,y] := flow[x,y] + val[p]

Else flow[y,x] := flow[y,x] - val[p]

y := x  

x := dad[y]

Starting from the sink p and going backward, the edges are found 

one by one and the flow of the path is increased by val[p]. vai[p] 

contains the value by which the flow of the path should be 

increased. This value is the highest one. The value of the maximal 

flow is updated in the following manner:

I f  network is not an auxiliary 

flowmax := flowmax + val[p]

Initially, the value flowmax of the network N is equal to zero. In 

the case of a bounded network , when the maximum flow is found 

in the auxiliary network, the value of maxflow is put to flow[n,l] 

which is the value of the initial feasible flow of the original 

network N. The whole algorithm is illustrated in the next section 

by some examples.
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3.5.2 Test  c a s e s

Here we show two examples of networks. The first one is a 

capacitated network and the second is a bounded one. We will 

illustrate in general how the algorithm works:

E x a m p le l

The first example is a capacitated network (see fig.3.1).

The matrix given below is the matrix sizes which represents a 

network of the fig.3.1

0 8 7 6 0 0 0
0 0 0 0 7 0 0
0 0 0 0 2 4 0
0 0 0 0 0 4 o
0 0 0 0 0 0 6
0 0 0 0 0 0 5
0 0 0 0 0 0 0

4/0

8 / 0, 5 / 0
7/0

7/01
2 / 0

4 / g
6 / 0

6 / 0
2 / 0

4 5

Fig-3.1
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The lower bounds are all zeros in this case. So the starting feasible 

flow in the network is obviously zero for each edge of the 

network. Applying the algorithm for finding the maximal flow, the 

paths which have been found are in the following order:

[ 1 2 5 7 ] which increases the flow by val[7] = 6

[ 1 3 6 7 ] which increases the flow by val[7] = 4

[ 1 4  7 ]  which increases the flow by val [7] = 2

[ 1 4 6 7 ] which increases the flow by val[7] = 1

The paths found are in decreasing order. The first path increases

the flow by the highest value while the last one increases the flow

by the lowest value. The value of flowmax is the sum of all values

of the paths found above.

flowmax =13

E x a m p le 2 :

Case of a bounded network (see fig.3.2)

4 / 1

8 / 2 5 / 2
7 / 3

7 / 21
2 / 1

4 / a
6 / 1

6 / 3
2 / 0

4 5

Fig.3.2
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The second network is a bounded one. It is the same network as

the precedent but with lower bounds of the edges which are not

all equal to zero . The first thing to do is to apply the algorithm for

transform ing the network into an auxiliary one. The resulting 

network is represented in fig.3.3 which shows all the edges which 

have been added. After compacting all the redundant edges, the

final representation is in fig3.4

The matrix sizes representing the original network N of fig.3.2

0 8 7 6 0 0 0
-2 0 0 0 7 0 0
-2 0 0 0 2 4 0
-1 0 0 0 0 4 2
0 -3 -1 0 0 0 6
0 0 - 1 0 0 0 5
0 0 0 0 -3 -2 0

The upper bounds are denoted by a positive sign, while the lower 

bounds are denoted by a negative sign.

The resulting m atrix sizes after applying the algorithm  for 

transforming a network described previously is as follows :

0 6 5 5 0 0 0 0 5
-2 0 0 0 4 0 0 0 3
-2 0 0 0 1 3 0 0 2
-1 0 0 0 0 4 2 0 0
0 -3 -1 0 0 0 3 0 3
0 0 -1 0 0 0 3 0 2

k l 0 0 0 -3 -2 0 0 0
0 2 2 1 4 1 5 0 0
0 0 0 0 0 0 0 0 0
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Fig.3.3

Note that the resulting auxiliary network is a capacitated one and
I

all the lower bounds are equal to zero. Therefore, the bounds

represented in the augmented matrix sizes with a negative sign 

are not the lower bounds of the network N* but they are lower

bounds of the network N.

Initially, the elements of the matrix flow are all equal to zero.

Applying the algorithm for obtaining the maximum flow in N1 , the

results obtained are as follows:

[ 8 7 1 9 ]  which increases the flow by val[9] = 5 

[ 8 5 9 ] which increases the flow by val[9] = 3 

[ 8 2 9 ] which increases the flow by val[9] = 2
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Fig.3.4

[ 8 3 9 ] which increases the flow by val[9] = 2

[ 8 6 9 ] which increases the flow by val[9] = 1

[ 8 4 6 9 ] which increases the flow by val[9] = 1

[ 8 5 7 1 2 9 ] which increases the flow by val[9] = 1.

the resulting matrix flow after finding the maximal flow in N1 is 

given below:

0 1 0 0 0 0 0 0 5
0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 2
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 3
0 0 0 0 0 0 0 0 2
6 0 0 0 0 0 0 0 0
0 2 2 1 4 1 5 0 0
0 0 0 0 0 0 0 0 0
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The total initial feasible flow is found in the edge (7,1) = 6 

Now we give the starting flow for each edge in N using the matrix 

flow found above. The flow in each edge may be calculated using 

the expression flow(e) := flow(e’)+lb(e), where e is an edge in N 

and e’ is the same edge in N \

0 3 2 1 0 0 0
0 0 0 0 3 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 4
0 0 0 0 0 0 2
0 0 0 0 0 0 0

The value of flowmax is initialised to 6 (which the value of the 

initial feasible flow) .Using the matrix flow above we calculate the 

maximum flow for the original network and the paths obtained 

are :

[ 1 3 6 7 ] which increases the flow by val[7] = 3 

[ 1 4  7 ]  which increases the flow by val[7] = 2 

[ 1 2 5 7 ] which increases the flow by val[7] = 2

It is shown from the example that all the paths which have been 

found are in decreasing order.

The flowmax value is equal to the initial value plus the values of 

the paths found in this part.

flowmax = 13.
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3.6.  Second m e t h o d

The second method which is presented in this section is based 

on the previous one, but using the bread th-first search for 

traversing a network. Using this method, the search from vertices is 

done in first in first out. In fact, it does not need to search each time 

for the vertex from which the search should be performed like in 

the first one and the breadth-first search is well adapted for 

parallelism [2] [13].

3.6.1.  Genera l  m e t h o d  o f  b r e a d t h - f i r s t - s e a r c h

This classic traversal method [3] [6] [36] uses and maintains a 

queue Q as a waiting list and works as follows :

Procedure B FS( v : vertex)

{ v is the vertex where the search should start }

{ Q is empty at the beginning and all the vertices are unvisited} 

Put v in Q 

Mark v "visited"

W hile  Q is not empty D o

Remove a vertex u which is first in Q 

F o r each vertex w adjacent to u D o 

I f  w is unvisited T h en  put w in Q

mark w visited.

{ End of BFS } :

30



3.6.2.  Algori thm

Initialisation of val dad,visited to zero.

{ (q := 1 ; p := n) for the original network and (q := n+1 ; p := 

n+2) for the auxiliary network }

Put the first vertex into "queue". Usually it is the source q from 

which the search starts . { val[q] := maxint }.

W hile  ( queue is not empty ) Do

Remove the first vertex from the queue which we denote by u 

For each vertex v adjacent to u Do Begin

If sizes[u,v] > 0 Then pri := sizes[u,v] - flow[u,v]

{ the edge is Forward , pri is the residual capacity}

Else If (network is an auxiliary)

Then pri := flow[v,u]

Else pri := flow[v,u] + sizes[u,v] ;

{ If the network is an auxiliary ( lb(e) = 0 ) then the 

returning flow is equal to flow (v,u). However, if  the 

network is the original then pri := flow(v,u)-lb(v,u) }

If  v is "not visited" T h en  

visited[v] := 1 { v is put "visited" }

insert v in the queue ;

If val[u] < pri Then pri := val[u]

{ The output of u is the maximum which can reach v} ;

If val[v] < pri T hen  

val[v] := pri 

dad[v] := u ;
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{ This mean the flow which is outputted from u to reach v 

is bigger than any other flow outputted by other vertices 

to v till now. The vectors val and dad are updated. } ;

End

The procedure above is used to get a path from the source q to the 

sink p and it is repeated until there is no path left in the network 

( case where val[p] = 0)

Procedure for retrieving a path and update of flow

Once a path is found, it is retrieved by going backward from 

the sink to the source, and the value by which the flow is

increased is also calculated from the residual capacities of the path 

edges . The amount by which the flow is increased is denoted by 

min. This value is not necessarily equal to val[p]. If we consider 

that min is equal to val[p] then it may result in that no edge of

the path will be saturated . Therefore, this path will be found in

the next search (redundancy). The procedure is presented in the

next page.

Note that the paths which are found by this method are not 

necessarily in decreasing order and there may not be all the same.

The updating of the value of flowmax is done in the same manner 

as in the first method but instead of adding val[p] to flowmax , the
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value min is added to flowmax.

min := maxint { Initially the flow value of the path is maxint }

y := p { starting from the sink } 

x := dad[p] { going backward }

While ( x o  0 ) Do

If edge (x,y) is forward Then residual := sizes[x,y] - flow[x,y] 

Else If (network = auxiliary) Then residual := flow[y,x] 

Else residual := flow[y,x] + sizes[x,y] { sizes[x,y] < 0 } 

{(x,y) is backward; sizes[x,y] := - lb(y,x) }

If min < residual Then min := residual 

y := x

x := dad[y] { find another vertex of the path }

If dad[p] <> 0 Then { The path exist} 

for each edge e of the path

flow(e) := flow(e) + min ; { update of matrix flow }

3.6.3.  Test  c a s e s

Applying the method which uses breadth-first search to the 

same examples presented in the test cases section of the first 

method, the results obtained are exactly the same. All the paths 

which are found are in the same order as well. We will present now 

another example where the two methods give different results. The 

network is a capacitated one and it is shown in fig.3.5 which is
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presented below.

Applying the first method to this network the results which are 

obtained are as follows

Matrix sizes of a network in Fig.3.5

0 6 7 5 4 6 0
0 0 3 4 6 7 8
0 0 0 5 6 4 3
0 0 0 0 4 6 7
0 0 0 0 0 9 7
0 0 0 0 0 0 8
0 0 0 0 0 0 0

The paths which are obtained are in the following order: 

[ 1 2  7 ]  which increases the flow by val[7] = 6 

[ 1 3 5 7 ] which increases the flow by val[7] = 6
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[ 1 6  7 ]  which increases the flow by val[7] = 6

[ 1 4  7 ]  which increases the flow by val[7] = 5

[ 1 5 3 7 ] which increases the flow by val[7] = 3

[ 1 3 4 7 ] which increases the flow by val[7] = 1

[ 1 5  7 ]  which increases the flow by val[7] = 1 

The flowmax value obtained is equal to 28.

Applying the second method to the same network, the results are :

[ 1 2  7 ]  which increases the flow by min = 6

[ 1 3 5 7 ] which increases the flow by min = 6

[ 1 6  7 ]  which increases the flow by min = 6

[ 1 4  7 ]  which increases the flow by min = 5

[ 1 5 6 7 ] which increases the flow by min = 2

[ 1 5 3 7 ] which increases the flow by min = 2

[ 1 3  7 ]  which increases the flow by min = 1

We notice from these results that some paths which are found are 

different from the others found by the first method and with 

different values as well. There are many other examples when the 

second method is applied, the values by which the flow is 

increased are in different order (not necessarily in decreasing 

order) but they are not presented here.
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4.  P a r a l l e l  C o m p u t e r s  a n d  p a r a l l e l i s m

4.1.  Concep t

The availability of cheap processors and the introduction of 

VLSI technology has made a lot of im provem ents in the 

development of parallel computers. These computers now consists 

of m any processors in terconnected  in some ways. Many 

computational tasks can be divided into subtasks which need not 

be executed  sequentially . P aralle l com puters provide the 

opportunity for the distribution of computations and , therefore 

exploiting the parallelism. Parallel tasks may be defined in general 

as tasks which can be executed all together simultaneously.

4.2.  C o m p u t a t i o n a l  model

One of the earliest division of different computers was due 

to Flynn [17] . He has effectively classified the different computers 

into four categories . They are SISD, MISD, SIMD, MIMD. The two 

last categories are parallel computers which have been built.

S IS D  : ( Single Instruction stream, Single Data stream ) Is in 

general the conventional serial von Neuman machine in which 

there is only one instruction processing unit. Each arithmetic 

instruction initiates one arithmetic operation, leading to a single 

data stream.

M IS D  : (Multiple Instruction stream, Single Data stream ) This 

m achine includes a specialised stream ing organisation using 

multiple instruction streams on a single sequence of data stream.
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As far as we know there is no MISD machine which has been built, 

because this architecture has not received any attention.

S IM D  : ( Single Instruction stream, Multiple Data stream ) This 

sort of machine may have an array of processors working in 

lockstep under a common control. In fact, a central control unit 

broadcasts an instruction to be executed by all the processors. 

SIMD machines are restricted in a way that each processor must 

perform the same instruction simultaneously. In general, it is easy 

to instruct a lot of processors to do the same thing than to instruct 

them to do different things. For this reason this kind of machine 

usually is constructed from a lot of processing elements. A typical 

machine which has been widely used is the ICL DAP (Distributed 

Array Processors), now being built and m arketed by Active 

Memory Technologies. It consists of 4096 parallel processors and 

they are arranged in a grid of 64*64. There is also other machines 

like Goodyear MPP and CLIP.

M IM D  : ( multiple Instruction stream, Multiple Data stream ) This 

category is a class of a multiprocessors, where all the processors 

execute a number of independent instruction streams on a 

separate data streams. These types of systems become possible at 

present , this is due to the availability of a complete processor at a 

low cost. The processors are linked together to facilitate 

communication. There are machines in which all the processors 

can access memories through a switch, these are generally called 

MIMD shared memory machines. Examples of such machine are
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the BBN butterfly and Cmmp. The BBN butterfly has been built by 

Bolt, Baranek and Newman while the Cmmp has been built by 

Carnegie-Mellon University. There is also another type of machine 

where the processors have independent m em ories and the 

processors communicate only by messages passing like the Caltech 

hypercube and IBM LCAP ( Loosely Coupled Array Processors). A 

network of transputers falls in this category, where a single 

transputer is an SISD machine.

4.3. T r a n s p u t e r s  and Occam

4.3.1.  T r a n s p u t e r  c o n c e p t

A transputer is a fully programmable component which is 

designed for the implementation of concurrent systems. VLSI 

technology offers a high level of integration and in order to exploit 

this opportunity, it is necessary to built concurrent systems. These 

systems are composed from a number of the same devices which 

are interconnected in some ways to form concurrent systems. The 

name transputer come from transistor and a computer. A single 

transputer is considered as a computer which is built on a chip. It 

contains its own processor, local memory and links for 

interconnection. A system of interconnected transputers form a 

m ulticom puter.

4.3.2.  Relat ion b e t w e e n  Occam and  t r a n s p u t e r

The transputer is totally programmed in Occam which is 

considered to be the native language of this component. This 

language is specifically designed to facilitate communication and
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also for implementing concurrent systems. The transputer can also 

be programmed in most high level languages which exist, such as 

Pascal, C, Fortran. In a situation where it is possible to exploit 

concurrency, but still use standard languages, Occam can be used 

to link modules written in the selected language. For exploiting the 

maximum benefit of the transputer architecture, the whole system 

should be written and programmed in Occam from the system 

configuration, down to low level i/o and real time interrupts. The 

implementation of a system in Occam provides all the advantages 

of a high level language as well as the possibilities to use the 

features of the transputer.

4.3.3.  T r a n s p u t e r  a r c h i t e c t u r e

A transputer implements the process model of computation. 

A process may be defined as an independent computation, with its 

own program and data, and which can communicate with other 

p rocesses.

Fig 4.1 A process
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A process may also be considered as a black box that can perform 

an action. A process in general receives inputs and sends outputs. 

The processes communicate using channels by passing messages 

(see Fig. 4.1).

In addition, processes can be connected together to form a more 

complex concurrent systems. The processes {P1,P2,P3,P4,P5} are 

all connected together forming a more complex structure. These 

processes communicate through channels which are represented 

with arrows in Fig4.2.

PI

P3

P4 P5

Fig 4.2 Example of interconnected processes

Fig4.3 shows that a collection of processes may be regarded as a
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process. This process, itself can be interconnected to other 

processes . Then generally, a process can have an internal 

concurrency. The processes can only com m unicate using the 

channels. The process P of Fig.4.3 replaces all the interconnected 

processes {PI, P2, P3, P4, P5} of Fig.4.2.

Fig 4.3 Internal concurrency in a process

The description of the architecture has a hierarchic structure 

which shows how a system of interconnected transputers is 

designed and programmed in Occam . In fact, Occam enables more 

complex and powerful systems to be designed by connecting many 

transputers together. More generally, a transputer system consists 

of a number of connected transputers , where each of them 

executes an Occam process. Therefore, the Occam programming 

model is supported internally.
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4.3.4.  Sys t em  h a r d w a r e  

fl. Communica t ion  and l inks

The transputers com m unicate with each other using 

po in t-to -p o in t com m unication links. Each m em ber of the

transputer family has one or more standard links. Each link is 

bidirectional and provides two Occam channels, one in each

direction. One of them is used for inputting and the other for

outputting. This will allow an Occam program to be mapped onto 

an appropriate network of transputers (see Fig.4.4). The links are 

necessary to connect the transputers to build networks of 

different sizes and topologies (Fig 4.5). Therefore, there is no 

prob lem  in com m unication  when m any tran sp u te rs  are

in te rconnected . For each link  and for both d irec tions 

synchronisation is provided. A communication link is wordlength 

independent. Therefore, transputers of different wordlength may 

be interconnected and programmed as single system.

l i nk i n
l i n k o u t

l ink

Fig 4.4 Representation of a transputer
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B. Memory

Since all the memory is local, the memory grows in 

proportion to the number of transputers ( more transputers 

implies more memory)

Fig 4.5 Example of 16 interconnected transputer

in an array of (4*4)

4.3.5.  Basics in Occam

Occam enables a system to be described as a collection of 

concurrent processes which communicate with each other and 

peripheral devices through channels. An Occam channel does not 

depend on a particular hardware implementation because it just 

describes communication in the abstract. Thus, an Occam program 

which uses channels may be written and tested without describing
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where particular processes will be executed.

An Occam process is constructed from a small number of building 

blocks called primitive processes which we will now describe:

- Assignment : computes the value of an expression and 

changes the value of a variable, and it is done in the same way 

as in most other programming languages.

- Input : a process gets a value from a channel.

- Output : a process puts a value to a channel.

Processes can be combined to form  sequential, parallel or 

alternative constructs. These are described as

Sequential : the processes are executed one after another. 

Parallel : the processes are executed together at the same time 

( simultaneously ).

Alternative : the component process which is ready first to 

communicate is executed.

A construct is itself a process and may be used as a component of 

another construct. Concurrent processes can be expressed with 

channels, inputs and outputs which are combined in parallel and 

alternative constructs. Two im portant properties are described 

below :

- The first one, concerns a channel, is that it provides a one way 

connection between two concurrent processes. Communication is 

synchronised. If a channel is used for input in one process, and 

output in another, communication occurs when both processes are
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ready. The inputting and outputting processes then continue, and 

the value to be output is copied from the outputting process to the 

inputting process.

- The second property is that an Occam program is the same 

w hether it involves com m unication betw een processes on 

different transputers or on a single transputer. More generally, a 

program intended for a network of transputers, may be compiled 

and executed on a single transputer, which shares its time 

between the concurrent processes. A process which is waiting for 

communication does not consume any processor time.

4.5.6.  Co nf igura t ion

Occam programs may be designed, written, tested and 

debugged on a single processor (transputer), and then transferred 

on a network of transputers. Configuration associates specific 

processes with real processors and specific Occam channels with 

real hardware links. More generally, it is what happens at the 

topmost level of an Occam program in order to determine how the 

program is loaded on particular hardware. It does not affect the 

behaviour of a program. However, it does enable the program to 

ensure a better performance.

4.4. N e tw o rk  of  t r a n s p u t e r s  used

4.4.1.  Links

Each transputer of the network used has four links. Each 

link is bidirectional ( one way for each direction) . See fig.4.4.
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linkl

linkO link2

link3

linkl.in linkl.out

linkO.in link2.in

link2.out
linkO.out

link3.out link3.in

Fig.4.4 Links in a transputer

4.4.2.  N e tw o r k  and co n n e c t i o n s

The network of transputers used is com posed of two 

different boards. They are : IMS B003 and IMS B004 (fig.4.5).

- The IMS B003 is composed of four identical transputers. They 

are interconnected together using hard wires forming a square. 

Each transputer has a memory of 256 KBytes RAM. The links 

provided allow the user to extend the array of transputers by 

connecting other boards . The links (linkl, linkO) of each of the 

couples (TO, T l), (T l, T2), (T2, T3) are added by switching them 

with wires.

- The IMS B004 consists of a single transputer IMS T414 , 

32bit transputer with 2 MBytes memory RAM. The B004 is added 

inside the IBM PC XT which provides the access to the terminal 

(Keyboard, Screen) and the filing system. It provides standard 

links to allow the use of a m ultitransputer systems. It is 

considered as the one of the family of compatible evaluation
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boards. The linkl is switched to linkO of TO and link2 is switched

to link l of T3. The linkO is connected to the PC server for

interfacing as was mentioned before. The transputer development 

system  (the integrated environm ent which is developed for 

supporting the programming of transputer network in Occam and

which consists of the editor, file manager, compiler, and debugger)

runs on this board. An Occam program, which is designed and 

debugged within a TDS , is configured for either a B004 or a 

network as a whole. The resulting code is then downloaded to the 

corresponding system where it is executed.

IBM PC

G
CL,O

OM.s
T -H O Sl 

B004

lin k 2 .o i: 

link2.ir

CO

■aa

linkO.in

linkO.out

link l.in  linkl.out

TO

link3.in

link2.out 

linkl.in

linkl.out

link2.out link3.in

link2.in link3.out

linkO.in linkO.out

linkl.out
Tl

link3.out link2.in

T3

link2.in link3.out

link3.out link2.in

link3.in link2.out

link2.out “

link3.in a o o m c
T2

linkO.in

linkO.out linkO.in linkl.out linkl.in

B003

F ig  4 .5  T ransputer n etw ork  p resentation
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5. P rev ious  Paral le l  a lgo r i t hm

5.1.  High leuel  de sc r ip t io n

In this chapter, we will describe a synchronised parallel 

algorithm for the problem of a maximum flow in a directed 

network. This algorithm is implemented by Shiloach and Vishkin 

[37]. As far as we know, it is one of the few attempts to 

parallelise this kind of problem. This is due to the purely 

sequential nature of the problem. Their algorithm has in fact a 

parallel implementation, but it is quite difficult to conceive and 

analyse. The model used in their algorithm is a synchronised 

parallel computation in which all the processors have access to the 

common memory ( shared memory ). Simultaneous reading from 

the same memory location is allowed and also simultaneous 

writing is allowed, provided that the processors try to write the 

same thing. In fact, this algorithm is designed for MIMD machines 

with shared memory.

The Shiloach and Vishkin algorithm, is in general following 

the E.A Dinic method [11] in transforming the network into 

layered networks. The technique of layering has the effect of 

replacing a single maximum flow problem by several problems, 

each a good deal, easier than the original. More precisely, for a 

network with n vertices, the maximum flow is found by solving at 

most n slightly different problems, each one is called a layered 

network. Below we will show how a layered network is 

constructed .

We start from a source s which is contained in the O**1 layer. The
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first layer is constructed from every vertex v such that there is an 

edge from s to v. In the same way the ith layer is produced from 

the (i-l)**1 layer by connecting the vertices of the ( i- l)1*1 layer to 

the next layer with edges. These can be forward or backward. 

Note that there is no vertex which connects another vertex in the 

same layer. Obviously, the last layer will only contain one vertex 

which is the sink. The bounds that are associated with the edges of 

the layered network may be stated as follows:

Suppose u g  (i-l)th  layer and v g  ith layer then

if e = u —> v (forward edge) and f(e) < c(e) then the new

capacity c'(e) := c(e) - f(e) 

if e = u <— v (backward edge) and f(u,v) > 0 then the new 

capacity c'(e) := f(u,v)

Note that this apply only for a capacitated network.

An efficient method applied for getting the layered network is the

breadth-first-search. In fact, a search starts from the source 

revealing the first layer. In the same way, the ith layer is revealed 

by performing a search from the (i-l)th  layer. Naturally, the BFS 

applied is performed in parallel.

5.2.  Descr ipt ion of  th e  s e q u e n t i a l  m e t h o d

For a better understanding of the parallel implementation 

of the Shiloach and Vishkin algorithm of a max-flow, we shall 

describe the sequential method because it simulates the parallel 

one.

In general, the algorithm is divided into pulses. In one pulse, the
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flow is pushed from one vertex forward as much as possible. For 

example in the first pulse, s pushes the flow and saturates all the 

edges which emanate from it. In the succeeding pulses, there will 

be vertices for which INF(v) = OUTF(v) ( incoming flow to v is 

equal to outgoing flow from v), these kind of vertices are called 

balanced vertices, and vertices for which INF(v) > OUTF(v). The 

later are called unbalanced vertices and they always try to push 

the flow forward. If the flow cannot be eliminated, it is returned 

backward. Before starting the description of the algorithm, we will 

introduce some notions used in both the sequential and the

parallel implementations.

E X C E S S (v )  : is the amount of flow that should be pushed 

forward or returned backward to make the vertex v balanced.

This amount is calculated from the expression

EXCESS(v) := INF(v) - OUTF(v).

A V A IL A B L E (v ) : contains all the edges which eqianate from v 

through which the flow can still be pushed forward.

FLO W  QUANTUM Q(e,q) : the flow quantum q is the flow that

is pushed through e at a given pulse.

S T A C K (v ) : the stack is used to keep the flow quantums of the 

edges which enter v. It has the form of (e = u --> v, q). The stack is 

very useful since the returning of flow from v is done in a last in 

first out ( LIFO ) and the stack has this property.
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The sequential algorithm is described in two routines. The first 

one is PUSH(v,EXCESS(v)) implemented for pushing the flow 

forward, while the second one is used for returning the flow 

backward RETURN(v,EXCESS(v)). We will see that PUSH and 

RETURN have a parallel implementation.

PUSH(v,EXCESS(v)):

While ( EXCESS(v) > 0 ) and ( AVAILABLE(v) * 0 )  Do 

B eg in

e := (v,w) { the first edge of AVAILABLE(v) }

q := min( c(e)-f(e) , EXCESS(v) ) { c(e)-f(e) is the residual

capacity; q is the flow that is going to be pushed 

through the edge}

Add Q = (e,q) to STACK(w)

f(e) := f(e) + q { increment the flow of the edge e }

EXCESS(v) := EXCESS(v) - q { reduce the EXCESS(v) by q } 

EXCESS(w) := EXCESS(w) + q { increment the EXCESS(w) }

If  f(e) = c(e) Then delete e from AVAILABLE(v) {the edge 

e is saturated then it is removed from AVAILABLE(v) } ;

End ;

If  AVAILABLE (v) = 0  { no remaining edges available from v}

Then the vertex v becomes blocked, and for all u —> v e E, 

eliminate u —> v from AVAILABLE(u) { u leads to v which 

is blocked } ;
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R E T U R N (v,E X C E SS(v)): { this routine has to reduce the flow in

some edges to balance the vertex v }

While ( EXCESS(v) > 0 ) Do 

B e g in

Suppose Q = (e = u --> v, q); e is the first edge in STACK(v) 

q' := min ( q , EXCESS(v)) { returning the flow by q' } 

f(e) := f(e) - q'

EXCESS(v) := EXCESS(v) - q'

EXCESS(u) := EXCESS(u) + q'

I f  q = q' Then delete Q from STACK(v) { here we delete Q 

from STACK(v) because all the flow is returned 

backward through the edge e }

Else Q = (e,q-qf) { replace q by q-q’; reduction of the

flow by q’ on e . It will be the last edge for which 

the flow is returned }

End;

In fact, the two routines which are described above can be 

executed independently one after another. In fact, they have 

really  a parallel im plem entation. The corresponding parallel 

description of these routines are presented in the next section. The 

general algorithm associated with these two routines is presented 

below.
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B e g in

EXCESS(s) := £ c(s --> v), v e layerl

PUSH(s,EXCESS(s)) { by pushing the flow from s this will result 

in some unbalanced vertices. They are put into Queue } 

W hile  Queue is not empty Do ( still some unbalanced vertices) 

B e g in

take the first vertex of the Queue ( let it v )

If  v is not blocked Then PUSH(v,EXCESS(v));

RETURN(v,EXCESS(v));

Insert all newly unbalanced vertices to Queue

End;

E nd;

After finding the maximum flow in one layered network, the flow 

in the original network is updated. Then another layered network 

is constructed by applying the method described above for getting 

a layered network. The algorithm of maximum flow described 

above is applied again. This process is repeated until a layered 

network cannot be constructed. This mean that starting from the 

source , a sink cannot be reached. The flow then in the original 

network is surely maximal.

5.3. Ewample

The example which is treated in this section is the network 

represented by the Fig.3.1. in chapter 3. First of all, we construct

53



one layered network from the original and it is represented by 

the Fig.5.1

Fig.5.1. First layered network.

For each edge , the new capacity is associated with it.

At the beginning the queue is empty.

From vertex 1:

Push from vertex 1: 8 units through the edge (1,2), 7 units 

through (1,3) and 6 units through (1,4). It will result in some new 

unbalanced vertices which are {2,3,4}. No return of flow from 1.

From vertex 2:

Return 8 units through the edge (1,2).

From vertex 3:
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Return 7 units through the edge (1,3)

From vertex 4:

Push 2 units through the edge (4,7). Return of 4 units through the 

edge (1,4). {7} is the newly unbalanced vertex.

From vertex 7:

No return of flow.

The maximum flow which have reached the sink is equal to 2. The 

flow in the original network is then updated. The F ig .5.2. 

presented below shows the flow associated with each edge. Each 

edge is represented by three values. The first one is the original 

capacity. The second one represents a lower bound while the last 

one indicates the flow.

4/0/0

5/0/08/0/0 7/0/0
7/0/01

2/0/0

4/0/0
6/0/2 6/0/0

2/0/2

Fig.5.2 Original network

A new layered network is constructed and it is presented in 

fig.5.3.
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Fig.5.3 Second layered network.

From vertex 1:

Push from vertex 1: 8 units through the edge (1,2), 7 units

through (1,3) and 4 units through (1,4). It will result in some new 

unbalanced vertices which are {2,3,4}. No return of flow from 1.

From vertex 2:

Push 7 units through the edge (2,5). {5} is the new unbalanced

vertex. Excess(2) is currently equal to 1.

Return 1 unit through the edge (1,2).

From vertex 3:

Push from vertex 3: 2 units through the edge (3,5) and 4 units

through the edge (3,6). {6} is the newly unbalanced vertex.

Return 1 unit through (1,3) because Excess(3) is equal to 1.

56



From vertex 4:

Push from vertex 4: 4 units through the edge (4,6). Excess(4) is 

now equal to 0.

No return of flow.

From vertex 5:

Push 6 units through the edge (5,7). The new unbalanced vertex is 

{7}. Excess(5) is equal to 3.

Return from 5 : 2 units through the edge (3,5) and 1 unit through 

(2,5). { 2,3 ) become unbalanced.

From vertex 6:

Push 5 units through the edge (6,7). Excess(6) will be 3.

Return 3 units through (4,6). {4} becomes unbalanced.

From vertex 7:
{

No pushing and no return of the flow. The sink is reached.

From vertex 2:

Return of 1 units through (1,2)

From vertex 3:

Return of 2 units through (1,3)

From vertex 4:

Return of 3 units of flow through (1,4). No vertex then remains 

unbalanced.
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The maximum flow which has reached the sink is equal to 11. The 

flow in the original network is then updated. The F ig .5.4. 

presented below shows the flow associated with each edge. The 

total maximum flow is then equal to (2+11 = 13).

aiqm.

8/0/6 5 /0 /5
7/0/6

7/0/41
2/0/0

4/0/1
6/0/3

6/0/6
2/0/2

4 5

Fig.5.4. Original network

In the next step a new layered network is constructed. It is shown 

in Fig.5.5 .

L2LIL0

Fig.5.5. Third layered network.
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In the third layered network, the sink is not reached, then the 

flow in the original network is certainly maximal . It is equal to 

the sum of all the maximum flows of the layered networks. The 

value of the maximum flow in the original network is equal to 13.

5.4.  Descr ipt ion of  the  para l l e l  m e th o d

Before giving the entire algorithm, we start first by describing 

the data structure used. Most of the structure is based on the 

partial sums tree ( PS tree ). The tree is a complete binary tree. An 

example of the tree with k given numbers ( a j ,a 2 ,... is shown 

in Fig.5.6 . It contains 2riog2ki leaves, where the leftmost k leaves 

( a l , a 2 ,.. are called active leaves and the rest are all zeros.

Every node of the tree is denoted by T[h,il, where T is the tree, h 

is its height in T and i is its serial number among other nodes.

Note that the sums are shown next to the nodes of height (h > 1) 

between brackets in the Fig5.6 presented below
T[3,l] (9)

T[2,21 (2)T[2,l] (7)

T [l,l] (3) T[l,2] (4) T[1,3] (2) T[l,4] (0)

Fig 5.6. Example of a PS tree for a given numbers(3,4,2)
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In their algorithm, they attach 4 different PS trees to each 

vertex v. The name of these trees are:

T -O U T (v ) : this tree has a number of active leaves equivalent to 

the number of emanating edges from v. Each leaf is associated 

with one edge. The value attached to the leaf is the maximum 

amount of flow that can be pushed through the corresponding 

edge.

T - IN (v )  : This tree has 2n times the number of edges which 

enter v of active leaves, n is the total number of vertices and 2n 

stands for the total number of pulses before the whole algorithm 

terminates, the demonstration is given on that paper [37]. The 

represented tree simulates the STACK(v). In the leaves, the flow 

quanta are recorded from the left to the right.

T -A C C E S S (v ) : the number of active leaves in this tree is equal 

to the number of edges entering v. The tree coordinates the 

activity of the processors that attempt to update the STACK(v) 

sim ultaneously .

T -S U M (v ) : Each leaf of this tree is associated with one edge 

outgoing from v. The tree sums the amount of flow that is 

returned to v at given pulse.

Another tree is associated with each edge of the network.

T -E D G E (e) : This tree has 2n of active leaves. Each is associated
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with one pulse. It sums the amount of flow that is returned on e at 

a given pulse.

W ith the trees represented above 4 d ifferen t prim itive 

operations are performed.

C L E A R (i)  : In this operation, the processor Pi puts zero to all

the nodes from T [l,i] to the root. In fact, this operation can be 

executed by several processors simultaneously.

j : = l
W hile j <= h(T) { h(T) is the height of the tree } D o 

B e g in

{ zeroing the nodes }

j :=j+l
I

E nd;
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U P D A T E (i,a j)  : this operation can also be executed by several 

processors. Here the value of the ith leaf is put to aj and several 

other changes of the nodes are performed.

T[l,i] := *4 

j := 2

W hile j <= h(T) Do 

B e g in

T[j,ri/2Ci-l)l] ;= T[j-1,2fi/2Cj_1)l- l]  + T ^ -1,2Ti/2<J-1 >1]

{ changes on the nodes are performed }

j := j+ l

E nd;

SU M (i,S |) : this operation performs the sum := a^+a2 + .. + 

S i . -  â

j := 2

W hile j <= h(T) Do 

B e g in

If  2 f i / 2 0 'l )"] = ri/2 ( j-2>l T h e n  

Sj := Sj + T [j-lli/2 (j-2>l-l];

j “ j+1

End;
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F I N D ( a ; k , p )  : The operation return k,p for any given a  

satisfying:

{ a^+a2+ <'= &  <*=  al +a2+- • *+ak-1 +ak

p = a - ( a 1+a2+ .. +ak_i) }. 

j := h(T) 

k := 1 

p := a

WHILE (j  > l ) Do  Begin

IF p > T[j-1, 2k-1] Then p := p - T[j-1, 2k-l]

k := 2k 

Else k := 2k-I

j := j-1

End

For a simplicity of the description , Shiloach and Vishkin suppose 

that for every vertex v, a processor P(v) is assigned to it , and also 

every edge e has a processor P(e). In addition, every leaf of 

T-IN(v) has a processor attached to it and it is denoted as P(Q).

I m p l e m e n t a t i o n

In general the algorithm is divided into 4 routines. They are 

INITIALISE, PUSH, RETURN, CLEAN. The values of the tree nodes 

are all zero at the beginning of the first phase:
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I N I T I A L I S E ( v )  : the routine is applied sim ultaneously for each 

vertex v, at the beginning of each phase:

Instruct each processor P(ej = v —> w)

B e g i n

UPDATE(j ,c’(e)) in T-OUT(v)

{ j is the index of e among the edges which emanate from v 

and it is also the index of the leaf of T-OUT(v) associated 

with ej. c' is its new capacity }

f(ej) := 0 { the flow at the beginning of this phase is zero }

Instruct P(v) : 

b e g i n

hd(v) := 0 { the poin ter hd(v) poin ts to the head of

STACK(v) i.e to the rightm ost significant leaf in 

T-IN(v) }

k'(v) := 1 { k'(v) points to the smallest index of an edge which

is in AVAELABLE(v) }.

E nd;

E n d  ;{ end of rou tine  IN IT IA L IZE (v) }
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P U S H ( v , E X C E S S ( v ) )  : T his ro u tin e  as w ell as

RETURN(v,EXCESS(v)) depend on a(v), p(v), k(v), k'(v) for any 

vertex v. For an easier notation they will appear as a , p, k, k’. 

T[h(T),l] is denoted as T[root].

PU SH (v,EX C ESS(v)) :

Instruct processor P(v) :

B e g i n

a  := min ( EXCESS(v), T-OUT(v)[root])

{ the value in T-OUT(v)[root] is the total amount of flow that 

can be pushed from the vertex v and a  is the amount that is 

going to be pushed from v}

EXCESS(v) := EXCESS(v) - a  { reduction of the EXCESS(v) } 

FIND(a;k,p) in T-OUT(v)

{ The processor P(v) finds all the edges {e^.,........,6^} through

which the flow should be pushed forward from v. The edges

e ^ ,  >ek - l  should be saturated and an amount of p should

be pushed through }

E nd;

Instruct each processor P(ej = v —> w)

If  k' <= j < = k  T h en  

B e g i n

UPDATE(r,l) in T-ACCESS(w)

{the leaf of T-ACCESS(w) that corresponds to ej has an index
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r)

SUM(r,Sr) in T-ACCESS(w)

{ Sr is the serial number of processor P(ej) that wants to

register the flow quanta in STACK(w)}

I f  j o  k T hen  qj := T-OUT(v)[l,j]

Else qj := p ;

{ qj is the flow that is going to be pushed through the edge

ej }

f(ep  := f(ej) + qj { incrementing the flow of the edge ej }

TOTAL(w) := T-IN(w)[root]

{ TOTAL(w) is the the total amount of flow that is pushed 

into w till now)

UPDATE(hd(w)+Sr  qj) in T-IN(w)

{ update of T-IN(w). Sr +hd(w) is the index of the leaf in 

T-IN(w) that corresponds to the flow quantum (ej,q j). The 

flow quantum is recorded in STACK(w).}

UPDATEG, T-OUT(v)[l,j] - qj) in T-OUT(v).

{update of the residual capacity  of the edge ej in

T-OUT(v).}] 

hd(w) := hd(w) + T-ACCESS(w)[root]

{ hd(w) points now to the new head of the STACK(w) } 

CLEAR(r) in T-ACCESS(w)

{ T-ACCESS(w) is cleared for further use in the next pulse }
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EXCESS(w) := T-IN(w)[root] - TOTAL(w)

End ;

Instruct P(v) : k' := k 

Instruct PCe^ = u —> v)

If  EXCESS(v) > 0 Then 

B e g in

put vertex v blocked 

UPDATE(d,0) in T-OUT(u)

{ the vertex v becomes blocked, d denote the index of a leaf 

in T-OUT(u) that corresponds to the edge u —> v. Since u 

leads to a blocked vertex v, then the edge is removed from 

AVAILABLE(u) .}

End;

(E nd  of rou tine  PUSH(v,EXCESS(v)) }

RETURN(v,EXCESS(v)):

Instruct processor P(v) : FIND(T-IN(v)[root] - EXCESS(v); k, p) in 

T-IN(v). { Since the vertex v is unbalanced then an amount of 

flow equal to EXCESS(v) is going to be returned from v. The 

appropriate amount should be cancelled from STACK(v). P(v) 

searches for the edges which will remain in the stack and the 

other will be deleted}.

EXCESS(v) := 0 { excess becomes zero }

Instruct each processor P(ej = u —> v)
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B e g in  

I f  k < j <= hd(v) Then dj := qj 

E lse dj := qj - p

I f  k < j <= hd(v) T hen  UPDATE (j,0) in T-IN(v)

{ these edges are deleted from the stack and T-IN(v) is 

properly updated.}

Else UPDATE(j,p) in T-IN(v)

{the flow quanta is decremented for at most one edge }. 

UPDATE(rj,dj) in T-EDGE(ej).

{ rj is the pulse number when Qj was pushed. It is also the

index of a leaf of T-EDGE(ej). The total flow that is returned

on this edge ej at this pulse is in T-EDGE(ej)[root] }.

f(ej) := f(ej) - T-EDGE(ej)[root] { decrement the flow on ej}

UPDATE(lj, T-EDGE(ej) [root]) in T-SUM(u)

{ in T-SUM(u), the index that corresponds to ej is lj. The

total amount of flow that is returned to the vertex u is 

found in T-SUM(u)[root] }.

EXCESS(u) := EXCESS(u) + T-SUM(u)[root]

CLEAR(rj) in T-EDGE(ej)

CLEAR(lj) in T-SUM(u)

Instruct processor P(v) : hd(v) := k { update of the pointer }

{ end of rou tine  RETURN(v,EXCESS(v» }
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C L E A N (v ) : this routine cleans T-OUT(v) and T-IN(v) for further 

use . It is applied at the end of each phase.

Instruct each processor P(ej = v —> w):

CLEAR(j) in T-OUT(v).

Instruct each processor P(Qj = (u <— v, q^)) :

CLEAR(i) in T-IN(v) for 1 <= i <= hd(v).

{ end of rou tine  CLEAN(v) }

It is very important to note that the RETURN routine cannot start 

before the end of PUSH routine in the same pulse.

5.5.  Enample

Referring to the example given in the previous section, a 

parallel BFS is performed to get a first layered network. Then the 

above routines are applied for each vertex v of the network. The 

flow is pushed sim ultaneously from  one vertex through the 

available edges. The flow as well is returned sim ultaneously 

through the edges.

From vertex 1: Push 8,7,6 units through the edges (1,2),(1,3),(1,4) 

at the same time.

From vertex 2 : Return of 8 units through (1,2).

The return of 7 units of flow from a vertex 3 can be done in
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parallel with push from a vertex 4. 2 units are pushed through 

(4,7).

Return of 4 units from vertex 4 through the edge (1,4).

The flow maximal in the layered network is then found and it is 

equal to 2.

Another layered network is constructed (see Fig 5.3) using parallel 

B F S .

From vertex 1 : Push 8,7,4 units through the edges (1,2),(1,3),(1,4) 

sim u ltaneously .

From vertex 2: Push 7 units through (2,5).

The return of 1 unit of flow from vertex 2 through the edge (1,2) 

can be done in parallel with the push from a vertex 3. In the later 

operation, 2 and 4 units are pushed through (3,5),(3,6). The return 

of flow from a vertex 3 can also be done in parallel with the push 

operation from a vertex 4. 1 unit is returned from  a vertex 3 

through (1,3) and 4 units are pushed through (4,6) .

The PUSH and RETURN operations continue until there is no 

unbalanced vertices. The maximum flow in a layered network is 

then found. Another layered network is constructed using BFS see 

Fig.5.5. The sink is not reached then the maximum flow in the 

original is found and it is equal to 13.
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6.  P a r a l l e l  a l g o r i t h m

6.1.  Ouerui  eui

This chapter is devoted to the description of the parallel

m ethods that have already been presented in chapter 3. These 

algorithms have more less the same principle than the sequential 

methods. As was indicated previously, one of them is the original 

method of Edmonds and Karp and the other is following the same 

approach using Breadth-first search. Many believe that using BFS 

in parallel for traversing a graph gives an optimal bound and it is 

considered as the fastest especially for dense graphs [2] [13].

These algorithm s are implemented for capacitated and bounded 

netw orks. The transform ation of a bounded netw ork  to an 

auxiliary one is done in parallel and the corresponding method is 

presented followed by an example. The process for finding the 

paths from the source to the sink is described as well in parallel.

The whole algorithm is designed to run on the transputers. In

general it is divided into tasks, where each task is carried out by 

one transputer. More precisely, the algorithm  is partitioned into

processes because of the modularity structure which is required 

by Occam and the transputer. The processes com m unicate with 

each other using defined links. Finally, in the last part of this 

chapter some results obtained by the two methods are presented 

and a comparison between them is carried out.
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6.2 .  G e n e r a l  s c h e m a  o f  t h e  n e t m o r k  o f  t r a n s p u t e r s  

a n d  t h e  p r o c e s s e s  lo a d e d

carying orders+ 
inputs + resultsorders + inputs

from.master

to.t3 from.t3 carying 
orders + 
inputs + 
results

carying
results

carying
results

carying orders+ 
inputs + resultsto.master

results

Process3

Process1

TO

HProcess

HOST

Process2

T1

Process2

T2

Fig.6.1 The network and the processes

In the last section of chapter four, we have presented our 

transputer network. It is formed from one transputer called "host 

transpu ter" (IM S B004) and four o thers ca lled  "ex ternal 

transputers" (IMS B003). In this section, we present the general 

configuration used in our implementation. In an other word, which 

process is loaded on which transputer. Each algorithm is divided 

into four major processes. They are HProcess, Process 1, Process2, 

Process3 ( see fig.6.1 ). The main process ( "HProcess" ) is loaded 

on the host transputer. In particular, this process is responsible 

for giving the orders to the others which are loaded on the 

external transputers. An order is an instruction to perform certain 

task. Once an order is received by one of the processes resident on
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one of the external transputer, it sends it to the next process and 

starts performing the corresponding action to the instruction. The 

processes loaded on TO, T l, T2, T3 have in general the same 

structure. They are composed of a num ber of sm all processes 

where each one of them corresponds to an action which is 

performed when the order is recognised. The processes on TO, T l, 

.. etc have the following form:

( in s tru c t io n  = id e n t i f ie r .n o .o f .th e .o rd e r )  

action 1 {process}

( in s tru c t io n  = id e n t i f ie r .n o .o f .th e .o rd e r )  

action2 {process}

Note that "Process 1" on TO gets its orders and inputs from the

host process "HProcess" and carries the orders and results to the 

next process. "Process2" is loaded on all transputers between the
i

first and the last (i.e on T1,T2), this for making the program more 

general. Each "Process2" on T l, T2 gets its inputs, orders from the 

previous process as well as the partial results of the predecessor 

and passes the results and the orders to the next one. "Process3" 

gets its main orders from the previous one and outputs the results

if any to the host process ("HProcess"). The configuration in

general is shown in Fig.6.1 .

6.3.  I m p l e m e n t a t i o n

Before starting the description of the im plem entation, we

describe some Occam statments which we will use to present the
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algorithm s.

a) IF

co n d itio n l

p ro c e ss l

condition2

p rocess2

TRUE

process3

This conditional construction consists of the keyword IF and one 

or more components, each slightly indented. Each com ponent, 

consists of an expression (condition) and a little further indented 

process. The conditional executes by looking at a condition which 

has a value "True" and therefore the corresponding process is 

executed. If none of conditionl, condition2 has a value "True" then 

the last component is executed ( i.e process3). In this case, if TRUE 

were missing the whole construction stops.

b) W h ile  ( condition)

p rocess

A While statment consists of a condition and a slightly indented 

process.

6.3.1.  Data s t r u c t u r e  o f  t h e  i m p l e m e n t a t i o n s

The data structure which we describe below constitutes an 

important part of the implementations. Since each transputer has 

its own local memory, then the data has to be kept local for each 

process on a transputer. The data structure is used for both 

methods unless stated.
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A. D ata  s tru c tu re  for the host process

Two queues q.m, q.s are used. The insertion takes place at the 

end, while the removal is done from the top (i.e the beginning).

q .m  : used to keep the vertices which have just been visited 

(first they were unvisited vertices) once a search is perform ed 

from one vertex. These vertices will be used to search for the 

others, q.m  is used only for the method using the BFS.

q .s : is a secondary queue used to keep the vertices adjacent to 

the vertex from which the search w ill be perform ed. These 

vertices will be sent to the processes where they are visited and 

the flow which can reach them through the corresponding edges is 

calcu lated .

t e m p . l i s t  : Is a temporary list which is used for different 

purposes and has an important role for:

(i) Keeping the adjacent vertices of a node from which a search 

is performed.

(ii) keeping the vertices which will be sent to the processes .

(iii) keeping the unseen or unvisited vertices found from one 

search .

In addition we have also some data which is described in chapter3 

M atrices sizes and f lo w

V ector dad used only for the method using BFS

V ecto rs visited ( only for the original Edmonds and Karp ).

B. D a ta  s tru c tu re  fo r the  p ro cesses  on TO, T l ,  ...e tc

A djacency m atrix for the bounds which corresponds to 

"sizes". It is denoted here by s.
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The flow matrix is denoted by f.

The vectors v a l, d a d , v is i te d , and a temporary list tem p.

A ll these have the same structure as the ones described  

p rev io u sly .

6.3 .2 .  A s s ig n m e n t  o f  t h e  p r o c e s s o r s

The policy adopted for assigning the processors is :

A t any vertex v, where the search should be perform ed, 

processors are assigned to the edges which emanate from  v. In 

other words, each transputer will deal with one edge outgoing 

from v. If the number of edges which emanate from v is greater 

than the number of transputers available, then each transputer 

may be assigned more than once to different edges. In our case we 

treat each time at most four edges ( see Fig 5.2).

TO

T2
T3

TO
T l

Fig 5.2

6.3.3.  Genera l  fo rm of  t h e  p r o c e s s  e u e c u t e d  on o ne  of  

t h e  e n t e r n a l  t r a n s p u t e r s

It has been said before that the processes loaded on the 

external transputers have in general the same structure. Each
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process is constructed as a repeating one which is waiting for 

orders to execute the corresponding actions and it is working as 

fo llow s

W hile T rue  { repeat and wait for an instruction }

- W ait for an order

- Identify it

- Send it to the next process

- Starts executing the corresponding action

N aturally , the host process sends the instructions to Process 1 

resident on TO through the channel "from.master". W hen Process 1 

receives an instruction, it forwards it to the next process and the 

later sends it as well to the next and so on till Process3 receives it. 

Process3 do not output the instruction to the next one because it is 

the last one.

6.4.  I m p l e m e n t a t i o n  o f  t h e  s e c o n d  m e t h o d

We present first the algorithm of the method which uses 

BFS. The general form of the processes which are executed on the 

external transputers is described in the following page. These are 

required  in the im plem entation of the m ethod and a brief 

description of each is given. The detailed implementation may be 

found in the listing.
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While True

from.channel ? instruction { inputting the order }

IF  { test for identification of the instruction }

( instruction = take.mat )

to.channel ! instruction { output the order if necessary }

{ input from the channel the vertices source and sink, 

output them to the next process and input as w ell the 

matrices sizes and flow row by row. Each row input will 

be output directly  to the next process. All th is input 

must reach Process3}.

( instruction = initialisation )

{ Output the instruction to the next processes. In this part,

each process initialises the vectors dad, val, and visited to

zero as well as the variables used }

( instruction = vertex.priority )

{Output the instruction to the next if  necessary. Input the 

vertex.pr. In fact, it is from this vertex that a search 

is performed. If this vertex is the source then the value of 

the flow outputted from it, is put to a m axim um  i.e 

val[source] is m axint . O utput vertex .pr to the next 

processes)

( instruction = split.list )

{ Output the instruction to the next processes if necessary.

Receiving or inputting a list of the adjacent vertices to the

vertex.pr. The list inputted does not exceed the total 

numbers of the transputers. Each process in one transputer
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will take one vertex ( the first in the list ) and output the 

rest to the next process. The received list is term inated by 

an indicator "end.data". }

( instruction = perform.search)

{ Output the instruction to the next processes. Each process 

w ill verify whether or not the vertex taken from  the 

split (or divided) list is visited. It will look also at the 

maximum flow which can pass from  the vertex .pr to

the vertex taken. Make an update of the vectors val, dad,

and visited if necessary. }

( instruction = pass.unseen)

{ Output the instruction to the next processes. Each process 

which finds the unvisited vertex will send it to the last 

process where they are kept in a temporary list which is 

temp. Process3 updates the vector visited. }

( instruction = get.unseen)

{Forward the order till it is received by Process3. The last 

process is instructed to communicate the unvisited vertices 

to the host process in order to add them to q.m where 

further search will be performed from them. }

( instruction = changnetw)

{ Output the instruction to the the next processes. Each 

process is instructed to start the transform ation of the

original network to the auxiliary network. Each process is 

allocated a certain number of rows of the m atrix sizes 

to be modified.)
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( instruction = update.vect.val)

{ Output the instruction to the next processes. Each process 

has attempted changes on the vector val through execution 

of the action corresponding to perform.search. Process 1 will 

send val to the next and each successor w ill add the 

changes to val which were made by the process itself } .

( instruction = take.vect )

{ Forward the instruction to the last process. Process3 is

instructed to pass the vectors val, dad and visited to the 

other processes. Process 1 gets them through the channel 

from.t3 and forwards them to Process2 (on T l, T2). In fact 

Process3 possesses the updated vectors. }

( instruction = get.dad )

{ Forward the instruction to the last process. Process3 is

ordered to pass the vector dad to the host. This vector

contains the path found in the network. The value val[p] is 

passed also to the host. This value will allow the host

process to check whether the maximum flow is found or

not.}

( instruction = find.path.min)

{ Output the instruction to the next processes. Here the 

path is transmitted from the host where each process gets 

it. The value by which the flow is increased is calculated 

by the last process. The value min is passed to the host. }

( in s tru c tio n  = update .flow  )

{ Forward the instruction till Process3 receives it. Each

process is ordered to update the flow of the edges after
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finding the path and after each process receives the value 

min. This means the update of the m atrix f  of each 

process.}

( instruction = get.matf )

{ Forward the instruction to Process3. The last process is 

instructed to pass or communicate the m atrix flow to the 

host. This happens only when a maximum flow in the 

auxiliary network is found to allow the host to make the 

corresponding update. }

( instruction = pass.serial.num ber)

{ Forward the instruction to the processes. Each process on 

a transputer will get its serial number for a differentiation 

among the others. For example, the process on TO has its 

serial number kk = 1, and the process on T l is kk = 2 , 

etc..}

6.4 .1.  T ra n s f o r m a t i o n  o f  t h e  n e t w o r k

Before we proceed to the main algorithm, we expand in 

greater detail the transformation of the network into an auxiliary 

one indicated by the process corresponding to "changnetw" on 

page 79. The sequential algorithm has been already presented in 

the chapter 3. The following algorithm is the parallel version. The 

transform ation consists of the m odification of the adjacency 

matrix that represents a network. We divide the matrix into np 

parts ( where np is the number of the external transputers, for 

example , in our case np = 4 ). Each part is transformed by one
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process which resides on one of the external transputers ( see 

Fig.6.3). The number of rows ( nr ) that are allocated normally to 

one process is calculated from the expression :

nr := n/np { n is the number of vertices ( rows as well ) }

TO

T l

T2

T3

Fig 6.3

However, we have to consider the rem ainder o f the division 

(n/np). In general, there are three cases:

(i) n < np { number of rows < number of transputers}

From the expression above nr will be zero, but we will allocate to 

each transputer one row ( i.e nr := 1) and there will be at least one 

transputer which does not transform any row.

(ii) n = np { nr := 1 which is obvious }

(iii) n > np

If Rem(n/np) > 0 then in this case, we have to add one more row 

for each of the first processes until the remaining is exhausted.
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Part of the algorithm  executed by the host process

- Send to the processes the instruction "take.mat" followed by the 

vertices source and sink and also the matrices sizes and flow .

{ the reason for sending the matrix flow is that after the change 

of the network, all the data will be ready for further use }

- Instruct the processes to get the serial number

{ The host sends kk = 1 for TO, then TO will pass kk to T l and 

when T l receives it, it  increm en ts kk by one and 

communicates the value to next etc.. }.

IF

n < = np 

nr := 1 

TRUE

nr := n/np

- Send the com m and "changnetw" to all the processes for 

changing a network

- Communicate to the processes the values nr, n

- Get from Process3 the (n+ l)t h  row and the (n+2)t h  column.

{ In fact there are two rows and two columns added to the 

matrix after modification, but one row and another column are 

all zeros , we do not need to get them. }

The following procedures are parts of the processes executed on 

TO, T l, ...etc. They represent the actions which correspond to the 

instruction "changnetw" for changing a network.
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Change of network carried out by "Processl"

from.master ? nr; n

{ take the values nr and n communicated from the host } 

output ! nr; n

{ output them to the next process through the channel output }

IF

((np*nr)+kk) <= n { then in SEQ (sequence) what follows }

{ this test is to see whether or not there are remaining rows} 

sup := ((kk*nr)+l) { sup is the superior bound (i.e the last

row which is treated by this process. We are in the case 

where n > np and Rem(n/np) > 0 .}  

step := nr + 1 { step is the number of rows to treat }

TRUE { in SEQ } { TRUE to mean the opposite case }

sup := kk*nr

step := nr { case where Rem(n/np) = 0 } 

output ! sup { sup is outputted to the next process, the reason is

that the next process will start the transform ation from  the

(su p + l)t h  row }

SEQ i = 1 FOR step 

SEQ j = 1 FO R n  

IF

(s[i]lj] > 0) AND (s{j][i] <> 0) { then in SEQ } 

s[i](J] := s[i](j] + s[j][i] 

s[n+l][j] := s[n+l][j] - s[j][i] 

s[i][p] := s[i][p] - s[j][i]

{ this part is already described in the chapter 3 and
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its main task is to make the changes to the bounds 

and add the new edges. We w ill call this part " 

p r o c e s s  m o d if ic a tio n  " for a reference when we 

treat other parts. ( p is the new sink = n+2)}

TRUE SKIP { process which does nothing }

SEQ i = 1 FO R sup

output ! [s[i] FROM 1 FOR p]

{ it outputs the rows updated by this process to the next one. 

The output is done row by row}, 

output ! [s[n+l] FROM 1 FOR p]

{ send the (n + l)t h  row to the next process. The row contains 

the edges added by this process, since q := n+1 is the source.} 

SEQ i = 1 FOR p

from.t3 ? [ s[i] FROM 1 FOR p] 

output ! [ s[i] FROM 1 FOR p]

{ After all the processes have finished the transform ation, The 

whole updated m atrix is found in Process3. This process 

"Processl" gets it from the channel "from.t3". The m odified 

matrix sizes will be available for further use. }
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Change of network carried out by " P rocessl”

input ? nr; n { input from the previous process } 

output ! nr; n { output to the next process }

input ? inf { Get the limit where the previous process stopped 

(i.e the sup of the previous process) }

I F

( inf = n) { in  SEQ } 

sup := n

step := 0 {Case where n < np, this process do not proceed 

to the transformation of any row)

T R U E  { opposite case }

IF

((np*nr)+kk) <= n { in  SEQ } 

sup := inf+nr+1

step := nr+1 { case where Rem (n/np) > 0 }

TRUE {in SEQ} 

sup := inf+nr

step := nr { case where Rem(n/np) = 0 }

output ! sup 

SEQ i = (inf+1) FOR step 

"process modification"

{ "Process m odification" which is described previously in 

Processl. The modification starts from (inf+1) in this part. } 

SEQ i = 1 FOR inf

input ? [s[i] FROM 1 FOR p] 

output ! [s[i] FROM 1 FOR p]
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{ input the rows transformed by the previous process and 

output them to the next process. Each row inputted is 

outputted directly to the next. }

SEQ  i = (inf+1) FOR step 

output ! [s[i] FROM 1 FOR p]

{ output the rows transformed by this process }

SEQ  i = 1 FO R  (kk-1)

input ? [temp FROM 1 FOR p] 

output ! [temp FROM 1 FOR p]

{ Input the (n + l) t h  rows transform ed by the previous 

processes and output them to the next ). 

output ! [s[n+l] FROM 1 FOR p]

{ output the (n+ l)t h  row updated by this process )

SEQ i = 1  FOR p

input ? [ s[i] FROM 1 FOR p] 

output ! [ s[i] FROM 1 FOR p]

{ input the whole matrix sizes which is sent by the previous 

process. Each row inputted is outputted directly to the next 

process. Process2 on T2 does not output the matrix sizes to 

the last process (i.e Process3). In fact, Process3 possesses it.)
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Change of network carried out by "Process3"

input ? n; nr { input previous values n,nr }

input ? inf { input the value inf }

I F

(( inf+nr) = n)

step := nr { the remaining rows are treated by this process} 

TRUE

step := 0 { case where n < np }

SEQ i = (inf+1) FO R step 

"process modification"

{ the modification starts from the value (inf+1) }

SEQ i = 1 FO R inf

input ? [s[i] FROM 1 FOR p] { input the rows updated till now} 

SEQ i = 1 FO R  (kk-1)

input ? [temp FROM 1 FOR p]

SEQ j = 1 FOR p 

s[n+l][j] := s[n+l][j] + tempi]]

{input the (n + l) t h  rows updated by other processes, add 

them all together to make a full updating. } 

s[n][l] := k l { the edge (n ,l) added to the auxiliary network is 

assigned an integer which is big enough, we denote it by k l } 

to.master ! [ s[n+l] FROM 1 FOR p]

{ send to the host the (n+ l)t h  row }

SEQ i = 1 FOR n 

to.master ! s[i][p]

{ send to the host the (n+2)t h  column}



SEQ i = 1  FOR p

from.t3 ! [ s[i] FROM 1 FOR p]

{ send the whole m atrix to P rocessl w here it w ill be 

forwarded to the other processes. }

6.4.2 Example

Applying the algorithm above for transforming the network to 

the second example of fig.3.2 in chapter 3, all steps may be stated 

as:

H P ro  cess

The host process calculates nr which is equal to 7/4 := 1.

(nr := 1) is normally the number of rows which should be treated 

by one transputer, but there are rem aining rows which will be 

split among the processes. The host process instructs the processes 

to start the modification and sends the values (nr:= 1; n := 7) .

P r o c e s s  1

This process notices that there is a remaining, then calculates the 

new limits (sup := 2; step :=2). The number of rows treated by this 

process is (step := 2). It will treat the rows from 1 to sup (i.e from 

1 to 2). This process sends the value sup to the next process so 

that it can start the modification from the row after sup.

The results obtained after the transformation of the rows are:

0 6  5 5 0 0 0  0 5
- 2 0 0 0  4 0 0  0 3
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The row whose number is (n+1) is also updated :

0 2 2 1 3 0 0 0 0  

All these rows are sent to the next process "Process2".

P r o c e s s 2

a) On T l

This process gets all its inputs which are nr,n, inf; the value inf 

contains the sup of the previous process. It then calculates the 

values (sup := 4; step :=2) from the expressions. The modification 

starts from the value (inf+1) to sup (i.e from 3 to 4). The results 

a re
-2  0 0 0  1 3 0  0 2
-1 0 0 0  0 4 2  0 0

The (n + l) t h  row in this process is

0 0 0 0 1 1 0 0 0

This process gets the rows transformed by the previous process as 

well as the (n+ l)th  row. it outputs them to the next process. Then, 

it sends all the rows from 3 to the value sup(i.e from 3 to 4) to the 

next process. It also transmits the (n + l) t h  row updated by this 

process to the next process.

b) On T2

In this part, Process2 does exactly  the same steps it did 

previously. The values after calculations are (step :=2, inf:= 4, 

sup:=6). The modification starts from row 5 to 6. The modified 

rows 5 and 6 are as follows:
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0 -3  - 1 0  0 0 3  0 3
0 0  -1  0 0 0 3  0 2

The (n+l)th  row is:

0 0  0 0 0 0 5  0 0

This process receives the rows updated previously (i.e from 1 to

4) and the (n + l)t h  rows of the previous processes. It outputs these

to the next process. It also sends to the next process the rows (5 to

6) and the (n+ l)t h  row updated by this process.

P r o c e s s 3

In this process, there is only one row left which is the 7t h  row. It 

just adds the edge (n ,l) (i.e (7,1)). The edge (n ,l)  has a bound k l.

k l  0 0 0 -3  -2  0 0 0

This process receives the modified rows of the previous processes 

from 1 to 6. It receives the (n+ l)t h  rows updated previously. The 

( n + l ) t h  rows are added together as they were received to make a 

full updating. Then, it outputs to the host process the (n + l)t h  row 

and the (n+2)fc h column. The whole m odified m atrix sizes is 

outputted to the other processes through a channel from.t3.

6.4.3.  Algori thm f o r  f inding t h e  p a t h s  and m a n  floui

In this section we describe the parallel method for finding 

the paths and how the flow is updated. The algorithm  is 

represented mainly by two main processes executed on the host 

transputer. These two processes are the process path and search. 

The process path continually calls the process search for finding
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one path.

(a) P rocess pa th (s) { s is the matrix sizes }

{netb is a boolean variable which is set to the value TRUE when 

the network is bounded, once the maximum flow in the auxiliary 

network is found, the value is set again to FALSE. Initially the 

value is FALSE. }

I F

n e tb  

p := n+2

q := n+1 { q,p source and sink of the auxiliary network }

TRUE 

q :=1

p := n { Source and sink of the original network }
(

Send. mat. procs(from . m aster, sizes, flow , p,q)

Send. pass, se ria l. num ber(from . m aster)

W H IL E  still { still initially is TRUE (i.e flow maximal is not true ) } 

S e a rc h ( s )  { call the process search for finding a path }.

from.master ! " get.dad”

Receive the array dad and val[p]. 

from .master ! "find.path.min"

Retrieve the vertices of the path and pass them to processes, 

to.master ? min { value min is returned) 

from.master ! "update.flow"

Increase the value of flowmax value if necessary.
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IF

val.p = 0 

still := FALSE

{the source cannot be reached i.e  the m axim um  flow 

is found, val.p is equal to val[p] which is returned by the 

last process }

TRUE 

SKIP 

{ End of While }

S e n d . m a  t .  p ro c s  ( f ro m , m as  t e r ,  s iz e s ,f lo w ,p ,q )  

from .master ! "take.mat" 

send the source and sink

send the matrix sizes ligne by ligne

send the matrix flow ligne by ligne

S e n d . p a s s ,  s e r i a l .  n u m b e r ( f r o m . m a s te r )  

from .m aster ! "pass.serial.number" 

kk := 1

from.master ! kk

{ the first external transputer will be numbered by 1 }
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(b ) P rocess search

from .m aster ! "initialisation"

Put a vertex into q.m { this vertex should be the source }

W H IL E  (q.m not empty )

Take first vertex from q.m {this vertex is called vertex.pr}

Send, ve rtex .p r(from . m aster).

Get adjacency list of vertex.pr and copy it in temp.list.

Put a list (temp.list) into q.s 

W H IL E  ( q.s is not empty )

Take a list containing a maximum of np vertices from q.s and 

copy it in temp.list .

Send, sp lit.list(from .m aster,tem p.lis t), 

from .master ! "perform.search", 

from .master ! "pass.unseen".

Send .get. unseen. vert(from .m as ter, tem p .lis t)

IF

temp.list is not empty ( i.e number of vertices > 0 )

Put list obtained (temp.list ) into q.m 

TRUE 

SKIP

from .m aster ! "update.vect.val" 

from.master ! "take.vect"
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S e n d , v e r t e x .p r  ( f ro m , m as  t e r )

from .m aster ! "vertex.priority"

from.master ! vertex.pr { send the vertex (vertex.pr) }

S e n d , s p l i t ,  l i s t  ( f ro m , m as t e r ,  te m p , l i s t )

from.master ! "split.list"

SEQ k=0 FOR length.list 

from.master ! temp.list[k] 

from .master ! end.data

{ the full list is sent followed by an indicator 'end.data'. }

S e n d .g e t .u n s e e n .v e r t ( f r o m .m a s t e r , t e m p . l i s t )  

from .master ! "get.unseen"

Receive the unseen vertices and copy them into temp.list

Note that the processes already described in pages 78, 79, 80, 81 

occur naturally in the above algorithm and their names are listed 

between " " .

95



Detailed description of some operation used

1. Retrieval of the path and change of flow

The host process retrieves the path using the dad array by 

backtracking from the sink to the source. The process is already 

described in the chapter 3. The vertices which form the path are 

sent to the processes on the external transputers as they are 

retrieved. The first process calculates the residual capacities and 

sends them to the last process where the later calculates the 

minimum of all values to find the amount by which the path 

should be increased ( it is denoted by min). The value of min is 

comm unicated to all the processes. The host then instruct the 

processes to update the flow of the edges i.e the matrix f, while 

itself is updating the value of flowmax.

2. Operations performed on the queues 

1. Put a vertex

- Add the vertex at the end of the queue

- Increm ent the index (i.e the num ber of vertices in the 

queue). The index is necessary for testing w hether the 

queue is empty or not.

3. put a list of vertices

- Add the list at the end of the queue.

- Increment as well the index.

4. take a list from a queue

- Remove a list of np vertices from the queue if there exist. If
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there is less than np vertices than all the vertices are 

rem o v ed .

- Decrement the index.

6.4 .4 .  Eifample

Taking the same example of fig.3.2 in chapter 3, we will just 

give the steps of one iteration.

After a modification of the network, all the matrices are resident

on the transputers. Executing the process path on the host , it calls

the process "search". The host instructs the processes (Processl,....) 

to initialise the vectors val, dad,visited to zero. Starting from the 

source (q :=8 ), the queue "q.m" contains initially q.

A vertex.pr is removed from q.m which is "vertex 8".

The adjacency list of the vertex 8 is searched which is temp.list : 

temp.list = [2,3,4,5,6,7]

This list is put in q.s. The first four vertices [2,3,4,5] removed from 

q.s, are sent to the processes for splitting, (i.e P rocessl gets 

"vertex 2", Process2 on T1 gets "vertex 3", Process2 on T2 gets

"vertex 4, Process3 gets "vertex 5").

The host instructs the processes to perform  a search (i.e the 

vertices 2,3,4,5 are visited). The flow in each edge (8,2),(8,3),(8,4), 

(8,5) is calculated and the values in each vector val in each 

process is updated according to the flow of the visited edges, the 

vertices 2,3,4,5 become visited vertices and they are regrouped in 

the last process in the temporary list "temp". The last two vertices

6,7 are removed from q.s and sent to the processes where they 

are visited in the same manner as the predecessors, the vertices
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6,7 are also regrouped in the list temp. All these vertices are

passed to the host and added to q.m:

q.m := [2,3,4,5,6,7].

The host process instructs then the processes to assemble all the 

changes made by each process to the vector val so that the whole 

updated vector is found in Process3. The updated vectors val, 

dad, visited will be then sent to the other processes by Process3. 

Taking again the vertex.pr := 2 from q.m, all the steps above are

repeated until q.m is empty. The path then is considered as found.

6.5.  I m p l e m e n t a t i o n  o f  t h e  f i r s t  m e t h o d

We propose to present in this section the original method of 

Edmonds and Karp which finds a path leading to an increase of a 

flow by the highest possible augmentation. In general, there is a 

lot of sim ilarities between the algorithm of the first method and 

the second one. The processes which are listed below are the same 

as those described in pages 78, 79, 80 and 81.

(instruction = take.mat) ; 

(instruction = initialisation) ; 

(instruction = vertex.priority); 

(instruction = split.list) ; 

(instruction = perform.search) ;

(instruction = changnetw) 

(instruction = update.vect.val) 

(instruction = get.matf) 

(instruction = pass.serial.num ber) 

(instruction = pass.unseen)

The difference is mainly in retrieving the path and updating the 

flow and also in searching for the next vertex where the search 

should be performed.
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(instruction = get.dad)

{ The instruction is forw arded to Process3. Process3 is 

instructed by the host to pass the value dad[p] and the value 

val[p].}

(instruction = find.b)

{ W ith this method, each time, we need to search for the 

vertex v which outputs the highest amount of flow so that 

the next search starts from v. It is needed to calculate the 

maximum value in the vector val for the vertices where the 

search has not been performed yet from them. The vertex v 

corresponds to the vertex which possesses that value. The 

maximum is calculated by the processes. The vector val is 

divided into four parts . Each process will find the maximum 

in one part. In this specific process which corresponds to 

"find.b" the limits are calculated (i.e which part of the vector 

val is allocated to which process). The calculation of the 

limits in each process is done in the same manner than the 

calculation of the number of rows when the network is 

tran s fo rm e d .)

(instruction = find.next.v)

{ Forward the instruction to the last process. Here, each 

process calculates the maximum value of the val part 

allocated to it. The value is denoted by max. Each process 

will pass the value found to Process3. Process3 calculates 

the highest value of the max values obtained. The value of 

max is the vertex number where the next search should

99



resum e. It is passed to the host and it is considered as 

vertex.pr. }

( instruction  = find .path .update .flow )

( The instruction is forwarded to the last process. Process3 

retrieves the path. The vertices forming the path are passed 

to Processl and to the host as they were retrieved. Processl 

w ill forw ard them  to Process2. At the same tim e, all 

the processes update the flow values of the edges forming 

the path ( i.e update of the matrix f. The augmenting value is 

val[p].}

6.5.1 P r o c e s s e s  f o r  s e a r c h i n g  p a t h s  and  floui

Below , we present the main processes for finding the paths and 

the flow in the network. The two processes are already described 

and presented previously in section 6.4.3 . The process path is 

alm ost the same than the previous one, we include only small 

changes. It is presented in the next page. The process search will 

be also presented because it contains some changes.
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a) Process path(s)

n e tb  

p := n+2 

q := n+1

from.master ! "find.b"

TRUE 

p := n 

q := 1

Send.mat.procs(from.master,sizes,flow,p,q) 

Send pass, serial.num ber(from .m aster) 

from.master ! "find.b"

W H IL E  still

search(s) { call the process search }. 

from.master ! "get.dad"

Receive the values dad[p] and val[p] 

from .m aster ! "find.path.update.flow" 

Receive the path from the last process 

Update the flowmax value.

IF

val.p = 0

still := FALSE 

TRUE 

SKIP
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b) Process search(s)

from .m aster ! "initialisation” 

initialise the vector visited to zero, 

vertex.pr := q { starting from the source }.

W H IL E  (vertex.pr <> 0)

Send, v e rtex .p r(fro m .m aste r)

Mark vertex.pr "visited" (i.e visited[vertex.pr] := 2).

Get the adjacency list of vertex.pr and copy it in temp.list.

I F

tem p.list is not empty 

put a list (temp.list) in q.s 

TRUE 

SKIP

W H IL E  ( q.s is not empty )

Take list of np vertices ( our case four).

Send, sp lit.list(from . m aster,tem p.list) 

from .m aster ! "perform.search" 

from .master ! "pass.unseen" 

from .m aster ! "update.vect.val" 

from .master ! "take.vect" 

from .master ! "find.next.v"

receive vertex from the last process. { it should be the next

vertex .p r)

Note that the calls to the processes Send.mat.procs,Send.pass.serial
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Send.vertex.pr, Send.split.list, Send.get.unseen can be found in 

pages 93, 95.

The operations concerning the queues which are needed are :

Put a list 

Take a list

Get the adjacency list 

The only difference is found in "get adjacency list" . In fact, only 

vertices where the search has not been performed yet from them 

are searched.

6.6.  P r e s e n t a t i o n  of  t h e  r e s u l t s

The two algorithms described previously, are applied to two 

examples. The first example (exam plel) is presented by fig3.2 in 

chapter 3, while the second one is shown below for its importance.

The network is presented by its adjacency matrix sizes.

0 6 7 5 4 6 0
-1 0 3 4 6 7 8
-1 0 0 5 6 0 3
0 0 -1 0 4 6 7

-2 -1 0 -1 0 9 7
-1 -2 0 -2 -1 0 8
0 -3 0 -3 -1 0 0

1. The paths which are found, by applying the first method 

(original of Edmonds and Karp) are as follows :
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[ 8 7 1 9 ] (5)

[ 8 6 7 1 2 9 ] (5)

[ 8 5 7 1 4 9 ] (4)

[ 8 7 1 3 4 9 ] (2)

[ 8 2 9 ] (1)

[ 8 3 9 ] (1)

[ 8 4 5 9 ] (1)

[ 8 6 7 5 9] (1)

[ 1 3 7 ] (3)

[ 1 6 7 ] (2)

[ 1 5 7 ] (2)

[ 1 4 7 ] (1)

[ 1 3  4 7 ] (1)

The number between bn

increased in the path.

2. The paths obtained by the second method are:

[ 8 7 1 9 ] (5)

[ 8 5 9 ] (2)

[ 8 6 7 1 2 9 ] (5)

[ 8 2 9 ] (1)

[ 8 7 1 3 9 ] (1)

[ 8 5 7 1 4 9 ] (2)

[ 8 4 9 ] (1)

[ 8 3 4 9 ] (1)

[ 8 7 1 4 9 ] (1)

[ 8 6 7 1 4 9 ] (1)
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[ 1 3 5 7 ] (4)

[ 1 6  7 ]  (2)

[ 1 5 3 7 ] (2)

[ 1 3  7 ]  (1)

[ 1 4 7 ]  (1)

The total paths found by the first method is 13 whereas in the 

second the num ber is 15. Therefore the first one is optim al 

seq u en tia lly .

W e will now show some tables representing the timing of the two 

methods applied on the examples. The algorithms are run on

- A single transputer (host)

- On the the network of transputers.

A program run on a single transputer is considered as sequential.

Host 3057

Network 2502

Tab.l First method on examplel

Host 3914

Network 3041

Tab.2 First method on example2
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Host 3135

Network 1750

Tab.3 Second method on examplel

Host 4971

Network 2690

Tab.4 Second method on example2

From all the tables displayed above, we can notice that the first 

method when it is run on a single transputer is faster than the 

second one and gives better results. It can be deduced from the 

num ber of paths which are found by both methods. The first 

method is optimal if the two sequential algorithms are compared.

W hen it comes to the execution of the two methods on the 

network, the second one gives better results than the first one. 

The percentages of economy of times that are obtained on the 

network compare to the single transputer are:

- First method : between 20 to 25 percent.

- Second method : between 45 to 50 percent.

We have mentioned at the beginning of this chapter that the 

second method has an advantage over the first one, because it 

does not need to look for the vertex from which the search should
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be resum ed. In fact, the vertices from  which the search is 

perform ed are in the queue as they were visited. In the first 

method, a search is always done from a vertex which outputs the 

highest amount of flow. M ore precisely, the vertex where the 

search is not already performed from it and whose value in the 

vector val is the highest compared to the others. It corresponds to 

the action perform ed for the instruction "find.next.v" in the 

program. The task of find.next.v is divided among the processes 

(P rocessl, Process2, Process3). Each process finds a maximum 

value in one part of the vector val allocated to it for vertices 

where a search has not been perform ed yet from them. In the 

next step, each process will send the maximum found to the last 

process. The latter will calculate the maximum of these values. 

This value then represents the next vertex where the search is 

performed and it is passed to the host. Now, we show the timing of 

the process "search" presented before for the whole algorithm.

method 1 Process search 2250

method2 Process search 1330

Tab.5 Timing of process search on examplel

The time of the process action which corresponds to "find.next.v" 

on exam plel is 1360 for the whole algorithm. Then 1360 out of 

2250 has been consumed by "find.next.v". The time also includes 

the overhead which is the time consumed by the communication. 

The overhead comes from  passing the vertices from  one
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transputer to another. In fact, the network in exam plel contains

(7) vertices, and the the number of paths found is (10). To find a 

path, the search is performed from every vertex of the network, 

then it results in (7) times the instruction find.next.v is executed. 

For all the paths, the instruction is executed (70) times (7*10).

However, the auxiliary network contains more than (7) vertices. 

Then we can say that at least (70) times the instruction is

repeated . The overhead which occurs in one execu tion  of

find.next.v is multiplied by (70). The time which will be obtained 

must be great.

W e w ill p resen t now a tab le  ind ica ting  the tim ing  of 

com m unication cost:

Sending a vertex From (0 to 1) units

Sending a vector (7 vertices) : From (2 to 3) units

Sending a matrix (7*7) 14 units

Tab.6 Examples of overhead

The tim ing for the table displayed above is done from  one 

tranputer to another one.

We have also timed the process which sends the matrices from the 

host to the others and the result is 30 units.

The main reason why we have no more than 50 percent of
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econom y of tim e for the second m ethod is the cost of 

com m unication. Taking the process action which corresponds to 

"take.vect" that is responsible for sending the vectors val, dad, 

v isited  from  Process3 to the other processes, the tim e for 

communicating them takes 5 units to 6 units. The sending of these 

vectors is done after a search from one vertex. Then, at least (70) 

times the above time is consumed. The result will be at least 350 

units for the whole algorithm. The same thing happens for the 

first method.

Below, we present the tim ing for changing a netw ork to an 

auxiliary one.

Change of network (SEQ) 51

Change of network (PAR) 80

Tab.7 modification of a network on examplel.

The sequential m odification is done on the host process and it 

includes the time for sending the m atrix sizes to the other 

processes after changes.

The parallel one is done on the network and it includes also the 

time for sending the matrix until all the processes get it. The 

reason why the time of the parallel method is greater than the 

sequential is also due to the overhead. The com m unication is 

mainly based on sending the rows of the matrix sizes from one 

process to another. This is the main disadvantage of the method.
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The algorithm s presented  previously  are general. They are 

suitable for networks which contain at least three transputers (i.e 

np >= 3) and which have the same configuration as the one 

presented by fig.6.1 .In fact, we place a process (Process2) on all 

transputers between the first and the last one. However, this leads 

to some problems such as some tasks are resolved in sequence. As 

an example, the action which corresponds to " update, vect. val" for 

Process2 on T2 cannot add the changes made to the vector val for 

a full updating until the same action for Process2 on T1 has 

finished. In many cases as well, Process2 on T2 cannot output to 

the next process until it has received the outputs of the previous 

process (i.e the outputs of Process2 on T l)  for keeping the order.
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7.  C o n c l u s i o n

The design of parallel algorithm s for various parallel 

computer architectures is motivated by factors such as speed and 

the need to solve complex problems of practical interest. With the 

continuing decrease in hardware cost, the objective is to use a 

number of processors for a gain in computational speed.

D ue to the grow ing num ber of p a ra lle l com puter 

architectures and the algorithms developed on these for a large 

class of problems, it has become increasingly difficult for a user to 

select a particular algorithm for any given application. In fact, a 

cho ice  is usually  decided  by fac to rs such as ease  of 

implem entation of the algorithms and cost - effectiveness of the 

co m pu ters .

Since the design of parallel algorithms depends mainly on 

the parallel machine, it is necessary to keep the architecture in 

mind when designing a parallel algorithm. There is no universal 

method for designing parallel algorithms. In this thesis we have 

presented two implementations for the problem of a maximum 

flow in a netw ork. The im plem entations are designed for a 

netw ork of transputers which falls in the category of MIMD 

m achines. Another algorithm  is also described which is the 

Shiloach and Vishkin method. They have designed it for MIMD 

machines with shared memory where the processors communicate 

through it. It is far from our model, because there is no common 

memory and the communication is done through messages.
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In most sequential algorithm s of many applications, some 

degree of parallelism exists, it is then the role of the programmer 

to exploit it in the best way. The problem of a maximum flow is 

not easy to parallelise because of its complexity and also due to 

the sequential methods that do not show a straight forward 

implementation. We have tried to exploit the parallelism  inherent 

in the problem by assigning the processors to the edges and also 

by dividing some tasks into subtasks. The implementation of the 

second method which uses BFS showed us a better results than the 

first one, but still did not realise a great speed up because of many 

factors which are:

1. Synchronisation : the perform ance may be lost when the

processors require to be periodically  coordinated such as

passing the same data to all processors for continuing their 

w ork.

2. O verhead : it is the big problem  and it includes the

com m unication between the transputers which slow s the

program. As an example, the parallel version for transforming

the network into an auxiliary one requires more steps than its 

serial counterpart because of the overhead. This overhead is 

the cost of managing the parallelism.

3. Generalisation : through it , performance can be lost also and

some tasks are resolved in serial.

All these factors are found in most MIMD machines.

The best problems which should be resolved by this kind of

machine are those which do not require a lot of communications.
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