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I

S u m m a r y

This thesis describes some methods which were employed to 

compute approximate solutions to partial differential equations 

w ith  m oving  boundarie s_verify ing  the ex is ting  num erica l 

solutions, modifying the techniques and applying them to new 

problems. The problems considered were the determination of the 

temperature in melting ice and of the concentration of oxygen 

diffusion in both one dimensional cartesian and axially symmetric 

cylindrical coordinates.

For the melting ice problem the methods studied included 

variab le  time step methods with d ifference  form ulae and 

different methods of calculating the variable time step, and also a 

transformation to fix the moving boundary using a conventional 

finite difference technique on the known domain. The diffusion 

problem had a singularity on the initial boundary. The singularity 

was treated by using an approximate analytical solution and the 

numerical solution found by a finite difference method with fixed 

time and space steps and a Lagrange-type formula near the 

moving boundary.
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C h a p t e r - 1 -

I n tr o d u c t io n

1.1. M oving boundary problems

B oundary-va lue  problem s are problem s involv ing  the 

solution of a differential equation satisfying certain conditions on 

the boundary of a prescribed domain . Moving boundary-value 

problems (MBP's), on the other hand, are associated with time 

dependent problems and the position of the boundary has to be 

determined as function of space and time.

The practical applications arise, for example in metal, glass, 

plastics and oil industries, space vehicle design, chemical diffusion, 

biological processes, statiscal decision theory, meteorology, shock 

waves in gas dynamics, crack problems in solid mechanics and 

many others (see Ockendon & Hodgkins 1975, Furzeland 1976).

Heat flow or diffusion involving phase changes from solid, 

liquid or vapor states constitute a large class of moving boundary 

problems. MBP's are often called Stefan problems with reference 

to early work of J.Stefan who around 1890, was interested in the 

most common example which is the melting or freezing of water.

The num erical solution of such problem s has either 

concentrated on many different methods for solving the classical

2



problems or one-off methods for more general types of MBP (see 

Fox in Ockendon & Hodgkins 1975).

Successive authors using numerical methods have referred 

to Stefan's publications. Earlier surveys have mainly concentrated 

on the one space dimensional problem and have been written by 

Bankoff (1964), Muelhbaurer and Sunderland (1965), Rubinstein 

(1971), Boley (1972), Crank (1975). More recent surveys which 

included multi-dimensional applications are given by Crank and 

Fox in Ockendon & Hodginks (1975), Meyer (1975a, 1976), 

Hoffman (1977 vol 1-3 ), Furzeland (1977a), Fox (1979) and 

Crank (1981) all with useful bibliographies.

Reports on several conferences (Ockendon & Hodgkins 

1975), Wilson, Solomon and Boggs (1978), Furzeland (1979), 

Magnes (1980), Albbrecht, Collatz and Hoffman (1980), Fasano 

and Premicerio (1983), are most comprehensive and contain a lot 

of practical applications.

1.2. Formulation of the problem

A simple version of the Stefan problem is the one phase, one 

dimensional ice problem, which consists of finding the pair of 

unknow ns (u (x ,t ) ,s ( t) )  , where u(x ,t) is the tem perature

distribution and x=s(t) the position of the ice/melted water 

interface (the moving boundary or MB). See F ig (l .l) .

3
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IceW aterU

► x
) x=s(t)

Fig(1.1). Simple Stefan problem

The governing partial differential equation is 

3 u /3 t= 3 2u /3 x 2 (0<x<s(t), t>0), 

the fixed boundary condition is 

u = u q  on x=0, t>0

the initial conditions are 

w h e n  t=0 

u=0 

s=0

and the moving boundary conditions are

( l . D

( 1.2)

(1.3)

(1.4)
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on the MB x=s(t) t>0

u=0 (1.5)

d u /d x = -d s /d t  (1-6)

Equation (1.6) is known as the Stefan condition.

The problem is one phase because we assume that in the 

semi infinite block of ice x>s(t) the temperature u(x,t) remains at 

u=0.

The corresponding two phase problem is to find the triple of 

u n k n o w n s  { u 1( x , t ) , u 2(x ,t),s(t}}, where Uj and u2 d e n o t e  

temperatures in water and ice phases respectively. A typical

example is a finite sheet of ice occupying the space 0 < s ( t)< x < l  

w here  u2(x,t) is not constant in this case and there is one 

governing equation for each phase,

3 u i/3 t= 3 2u i/3 x 2 i = l ,2  (1-7)

i =1 refers to water phase, 0<x<s(t) and i=2 refers to ice phase 

s(t)<x<l. It is assumed that the water and ice phases together 

always occupy the space 0<x<l.see Fig(1.2),

The MB conditions or Stefan conditions on x=s(t) are :

Uj=0 i= l ,2  (1.8)

( 3 u/ 3 x) 2 - ( 3 u/ 3 x) i = -d s /d t (1.9)

5



IceW ater

Fig(1.2). Path of melting interface

1.3. Generalizations of the classical Stefan problem

These two phase problems posed in 1.2 can be generalized 

to m ulti-phase , m ulti-M B P 's with d iffe ren t phase  change 

tem perature on each moving boundary. Other more general 

formulations of this classical problem are based on :

1.3.1. Non-linear governing equations

1.3.2. Time dependent or non-linear fixed boundary condition

1.3.3. Space and time dependent phase change temperatures.

(for more details see Crank 1984).
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1 .4 .  Other moving boundary problems

There are a number of other physical problems which are 

governed by a parabolic differential equation in conjunction with 

moving boundary conditions. Examples are water flooding and 

gravity drainage, the progress of temperature dependent chemical 

reaction through a solid, and the evaporation of droplets. All 

these problems have been considered under the name of Stefan's

problem, (see Douglas and Galliel955, Meyer 1976).

In one dimension, these problems involving time t as one 

independent variable lead usually to parabolic or hyperbolic 

equations. The simplest parabolic equation

u t= k u x x  ( 1 1 Q )

derives from the theory of heat conduction. In cylindrical

coordinates with axial symmetry this equation is

U t = k ( U x x + x ' 1 U x )  (1 .11)

Num erical methods for solving problem with parabolic 

partial differential equations of any complexity generally involve 

a great deal of computation. It is usual therefore to arrange,

whenever possible for one solution to represent wide variety of 

sim ilar problems and this can be done by transforming all 

equations in terms of non-dimensional variables.

In this thesis we have solved one-dimensional Stefan 

prob lem s, f irs tly  the m elting ice problem  (cartesian  and 

cylindrical coordinates) using variable time step methods which

7



have been suggested by some authors. Secondly, oxygen diffusion 

problems have been solved using both cartesian and cylindrical 

coordinate systems . The results computed from various methods 

are compared with each other and are found to be in very good 

ag reem en t.
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C h a p t e r - 2 -  

F in ite d ifferences

2.1. In trod u ction

Consider a partial differential equation (PDE) in which the

independent variables are denoted by x, y, z   and the

dependent variables by u, v, w , ..................

Direct functionality is often written in the form

u=u(x, y, z) (2.1)

which, designates u as a function of the independent variables x, 

y, and z .

The partial derivatives are denoted as follows : 

u x=3u/3x, uy=3u/3y, uxx=32u /3x2, uxy= 32u/3x3y etc. (2.2)

Using the definition of (2.1) and (2.2) we can represent a partial 

differential equation in the general form

F(x, y, u, ux, uy, uxx, uyy, uxy, . . . .)=0, (2.3)

where F is a given function of the independent variables x, y, . . .

and the "unknown" function u and of a finite number of its partial 

derivatives . We call u a solution of (2.3).

Examples :

u +u =0 (2.4a)xx yy v '

ux=u+x2+y2 (2.4b)

u x x x = u y y + u 2  ( 2 -4 c )

( u x ) 2 + ( u y ) 2= e x p ( u )  (2.4d)

The order of a PDE is defined by the highest-order derivative in

9



the equation

u -au = 0  is of first ordera y (2.5a)

uxx+uy=0 is of second order (2 .5b)

u VYv + u v =0 is of third order (2.5c)a.*, a. y y y

In the solution of partial d ifferen tia l equation  the

proprety of linearity plays a particularly important role.

Consider the first order equation

a( • )ux+b( ■ )uy=c( • ) (2.6)

The linearity of the above equation is established by the

functionality of the coefficients a( • ), b( • ) and c( • ).

2.1.1. If the coeffic ien t are constant or functions of the 

independent variable only [( • )=(x, y)], the PDE is linear.

Example :

ux+buy=0 (2.7)

2.1.2. If the coefficients are also functions of the dependent

variable [( • )=(x, y, u)] , the PDE is quasi-linear.

Example :

ux+uu =x2 (2.8)
A y

2.1.3. If  the coefficients are functions of the first derivative

[(• )=(x, y, u, ux, u )], the PDE is non-linear, e.g.

ux+(uy)2=0 (2.9)

In general when the coefficients of an nth order PDE depend 

upon mth-order derivatives, men, the equation is quasi-linear.

The analytical solution of a PDE may be written

10



U—u(x,  y) (2 .10)

When one discusses the solution of a PDE, it is necessary to 

consider appropriate auxiliary initial and boundary conditions 

which arise from the physical problem itself, for example:

The transient temperature distribution in a homogenous rod of 

finite length with insulated sides is described by the following 

system .

u(x, l)=0(x) x>0, y=l (boundary condition) (2.1 Id )

(see Lapidus, L. & Pinder, G.F 1982)

2.1.4. Classification of PDE

PDE may be classified in term of their transpose forms such 

as elliptic, hyperbolic and parabolic or in terms of type of 

problems to which they apply, namely 

Equilibrum problems 

Eigenvalue problems 

Propagation problems.

2.2. Boundary Conditions

The solution of a PDE has to be made to satisfy the 

boundary conditions which arise from the problem formulation.

2.2.1. First boundary value problem (the Dirichlet problem) 

where the solution u has to satisfy the given values 

(u)s=<j) on the boundary s

u(0,y)=f(y)

u(x, 0)=(J)(x) x>0, y=0

x>0, 0<y<l (P D E)

x>0, 0<y<l (initial condition)

(2 .11a)

(2 .11b)

(2.11c)

11



if (J>=0 the problem is homogeneous Dirichlet .

2.2.2. The Neu mann /  satisfies the normal derivatives

(uv)s=\|/ on the boundary of the region

2.2.3. Mixed problem satisfies a combination

[uv+hu]=\j/ on s

2.2.4. Periodic  boundary problem  satisfies the periodicity

conditions, for example

(u)x= (u)x+p, (uv)x=(uv)x+P where p is called the period.

2.3. Parabolic equation

M any problem s in physics and engineering  requiring

numerical solution involve special cases of the linear parabolic

partial differential equation.

The problem of flow of heat along a rod whose temperature 

depends only on the co-ordinate x and on the time t leads to the 

e q u a tio n

cput=(kux)x +f(x,t) (2 .12)

Linear parabolic equations are often written as

u t=f(t, x, ux, uxx) (2 .13)

Parabolic PDEs can serve as test vehicles for the numerical 

algorithms to be presented. Our model second-order parabolic PDE 

takes the form

ut=L(u) (2 .14)

where L(u) is a linear or non-linear operator involving partial 

derivatives and possibly other conditions. We now turn to the 

development of finite difference methods for parabolic equations.

12



To explain the basic ideas and illustrate the process of developing 

improved difference equations for a given problem, the simple 

dimensionless diffusion equation

ut= u xx (2 .15)

will be used as the initial model.

2.4. M ethods of N um erical Solution

There are, in general two different main techniques for 

solving PDEs, namely finite difference and finite element method. 

F inite difference methods have been used extensively for the

num erical solution of moving boundary problem s in partial 

d iffe ren tia l  equations applicable  to l inear  and non-linear

problems. In recent years the finite element technique has been 

in troduced .

The application of these techniques to time independent 

(elliptic) and time dependent or propagation problems (parabolic 

and hyperbolic) d iffer greatly. Here only tim e dependent

problems will be considered; the problems to be studied satisfy 

parabolic equations.

2.5. F in ite  D ifference G rids

In the finite difference method the whole region is covered 

by a grid, the values of the unknowns being found at the nodes of 

the grid. These grids may be applied in different ways.

2.5.1. Fixed finite difference grid

13



In this method the whole region for example (0<x s i )  must 

be subdivided into a finite number of equal intervals and a 

suitable time step is chosen before using a numerical method. 

Furthermore the grid sizes of the space and the time are kept

constant during the process (see Gupta 1974).

At any time the interface moves through the medium and at 

any time it will usually be located between two neighbouring grid

points. This can be allowed for by using variable finite difference

formulae which incorporate unequal space intervals near the 

moving boundary. Interpolation formulae of Lagrangian type can 

be used (see Crank 1957a).

2.5.2. Modified grids

There are various ways of varying the grid with the aim of 

avoiding the increased com plication  and loss of accuracy 

associa ted  with unequal space in tervals  near the m oving

boundary (see Gupta 1974).

2.5.2.a. Variable time step

Douglas and Gallie (1955) subdivided the whole region into a 

fixed space grid for all times but chose each time step such that 

the moving boundary coincides with a grid line in space at each 

time level. They treated the following problem

ut= u xx 0<x<s(t) t>0 (2 .16a)

ux= - 1 x=0 t>0 (2 .16b)

d x /d t= - u x u=0 x=s(t) (2.16c)

14



s(0)=0 (2 .1 6d)

This applied at the fixed surface x=0.

By integrating (2.16a) with respect to x and then t using (2.16b)

where u— denotes u(xj,tj), and r^/an iteration index .

The solution proceeds iteratively by using (2.18) to correct the 

assumed time step.

To avoid the iteration, they suggested using Uy in place of Uj

This method, due to Murray and Landis, uses a variable 

space mesh, choosing a finite time.

They keep the number of space intervals, between x=0 and x=s(t) 

i.e between a fixed and a moving boundary, constant and equal to 

n say, for all time see Fig.(2.1) . The space step Ax= s(t)/n is 

different at each time step.

The moving boundary is always on the nth grid line.

they deducted the alternative form oj* .c),

S(t)

s(t)= t - J u(x,t)dt .

Con ctot fOn  

(2 .17)

o

This equation was discretized as

( r + l ) (r)

Atj  = (  j +1  + £  Uj j+1 ) .Ax  -tj (2 . 18)

in (2.18).

2.5.2.b. Variable space grid

15



t

x=s(t)

i8x
Fig.(2.1) Murray and Landis variable grid

2.6. Irregular Boundaries

Many physical problems have irregular boundaries, that is 

the boundary does not coincide with a mesh line, so the distance 

from at least one line of points adjacent to the boundary will be 

smaller than the standard interval length in that direction. In this 

case we can still find similar formulae for points near the 

boundary, but the truncation error is likely to be of lower order. 

To illustrate the construction of irregular molecules we consider 

the situation in Fig.(2.2) and obtain approximations for ux, uxx

16



►  x

h
Fig.(2.2) geometry of an irregular point p near 

the moving boundary

The values of u are assumed to be known, N and M are 

boundary points and the distances pN and pM are fractions of the 

standard interval lengths h and k respectively.

If p is assumed to be the origin then by expanding u in terms of p 

we get in Taylor series

(u)N=(u)p +hXI(ux)p +0.5(hX1)2(uxx)p +o(h3) (2 .19)

(u)q=(u)p -h(ux)p +0.5h2(uxx)p +o(h3) (2.20)

Elimination of (uxx)p gives

17



(ux)p= ( l / h ) { [ l /X 1(l+X1)](u)N-[(l-X 1) A 1](u)p-[».1/( l+ X 1)](u)q}

+o(h2) (2 .21)

Similarly the elimination of (uY)n leads toX p

( u x x ) p = 0 / h 2 ) { [ 2 / X i ( l + X i ) ] ( u ) N + [ 2 / ( l + X i ) ] ( u ) q - ( 2 / X i ) ( u ) p } - h o ( h ) ( 2 . 2 2 )

Note that all finite difference formula are based upon

polynomial approximation, that is they give exact results when

operating upon a polynomial of suitable degree. In other cases the 

formulae are approximations. Since only a finite number of terms 

can of necessity be used, the truncation error is of concern.

2 .7 .  Explicit and implicit numerical methods

Fully explicit finite difference methods have been used

repeatedly with good success for a number of melting problems. 

However, the explicit solution of diffusion equations imposes 

severe stability restrictions on the space-time resolution of the 

problem (semi implicit technique). Explicit methods will break 

down when s(t) moves rapidly (see Attey 1974). Implicit 

methods require the solution of simultaneous linear equations.

2.8. Explicit formula

Explicit methods for parabolic PDE's use explicit formulae 

which compute directly the solution one point at time at grid

points on an advanced time level t = (j+ l)5 t from the solution on 

previous time levels. Explicit difference approximations are now 

derived for various forms of the difference equation with special 

cases of the equation.

Case constant coefficients

18



u t = u x x  ( 2 - 2 3 )

The resulting difference equation is

u i,j+ l = r u i - i , j  +  ( l - 2 r ) u itj +  r V l j  i = 1 - • • • <2 -2 4 )

where r=(5t/h2)=At/(Ax)2 , iAx, and t = jAt .

The computational molecule for (2.24 ) is illustrated in Fig.(2.3)

The explicit relation (2.24 ) is often called the forward difference 

equation (see Ames 1977).

O T  j+1

II

0 + 0 + 0 JL
i-1 i i+1

k
r=

h 2

Fig.(2 .3). Com putational m olecule for explicit d ifferen ce  
approximation of 3u/3t=3(3u/3x)3x

2.9. The Dufort-Frankel Explicit approximation

The simplest three-level scheme for the solution of the

19



diffusion equation

ut~u xx at point (ih> jk) is (2.25)

<u ij+i - ui , j . i ) /2 k = ( l /h 2)(u i. 1 j  + -2Uij + ui+1 j) (2 .26)

D u fo rt-F ranke l rep lace  2ui} in the equation by Uj j_j + Uj j  + 1 

thereby generating the three time level formula

( 1+ 2 r)u i j+j=2r(Uj.| j  + ui+1J) + (l-2r)Ui (2 .27)

where r=k/h2,

The computational molecule for [Eqn (2.27 )] is illustrated in 

Fig.(2.4). (see Gottlieb, D. & Gustafsson, B. 1976).

0  +
------------------ h ---------------------------------------------- h --------------------- ►)

i-1 i i+1
Fig.(2 .4 ). Com putational m olecule for Dufort-Frankel explicit 

difference approximation of 3u/3t=9(3u/3x)/3x

20



2.10. Implicit formula

An implicit formula is one with two or more unknown 

values in the j+1 row.

The simplest implicit method is that suggested first by O'Brien et 

al upon approximation of the derivative uxx of of the following 

e q u a t io n

u t= u xx 0<x<l, Ckt<T (2 .28a)

u(x,0)=f(x,x), Ckxcl (2 .28b)

u(0,t)=g(t), 0<t<T (2.28c)

u(l,t)=h(t), 0<t<T (2 .28d)

In the j+1 row instead of the j row we obtain

-ru i-l,j+l + (i+2r)Ui j + i  -rui+1 j+1= Ui j . (2 .29)

Crank and Nicolson used an average of approximations in the j and 

j+1 row. More generally one can introduce a weighting factor X 

and replace (2.29) by

u i , j+ r u i,j=r  t ^ [ u i - i , j + r 2 u i.j+i+ u i+i,j+i J+ ( 1 ' ^ ) [ ui-1,j- 2 u i,j+ u i+1,j] ) ( 2 - 3 0 )  

with 0 <  X <1 then

-rXui-i,j+i+ ( 1+2rX)ui,j+ rrXui+U+i=

rO-X.)uM j+ [ l -2 r ( l -X )]u i j+ r( l-X )u i+l j . (2 .31)

(see the computational molecule form in Fig (2.5) )

Special cases are

if X=1 eqn(2.31) becomes the O'Brien et al form, and

if X=0.5 eqn(2.31) becomes the Crank-Nicolson formula.

On the other hand. If A. = 0 the explicit relation eqn(2.24) is 

recovered.

21



i - 1

+ l+2A,r +

r= 0< \  <1
h

r(l-X)

i+1

Fig.(2.5). Computational molecule for implicit finite difference  
approximation for 3u/3t=3(3u /3x)/3x

-T-j+1

2.11. Douglas F o rm u la

The formula of highest possible accuracy based on the same 

six grid points as the Crank-Nicolson formula.

The resulting difference equation is

u i,i+i- ° -5 (r - 1/6 )[ui-i.j+i -2 u i.j+i+ u i+i.j+i ] =

u i,j+0-5 (r+ 1 /6 )[u ;. i j  -2ujj + ui+1J] (2 .32)

with a local truncation error that is 0 (k 2+h4)

2 . 1 2 . C o n v erg en ce , s ta b il i ty  and  consis tency

2.12.1. Convergence  is concerned with the conditions that must 

be satisfied in order for the discretization error to tend to zero at 

a fixed point or fixed time level t=jk as k (and h) tends to zero i.e 

as the number of time-levels of calculations tends to infinity.
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2 .12 .2 .  S ta b i l i ty :  Two standard ways of investigating the 

boundness of the solution of the finite difference equations exist. 

In the first we use a finite Fourier series, whereas in the second 

we express the difference equations in matrix form and examine 

the eigenvalues of an associated matrix. (See the diffusion oxygen 

problem in chapter-5- and the matrix stability in appendix B.) The 

Fourier series method is the easier of the two in that it requires 

no knowledge of matrix algebra but it is the less rigorous because 

it neglects the boundary conditions. There is also the energy 

method (see Mitchell 1980 p44).

2.12 .3 .  C ons is tency  ensures that the d ifference  equation  

converges to the solution of correct differential equation as the 

grid spacing (h,k) tends to zero. A difference approximation to a 

parabolic equation is constant if the truncation error tends to zero 

as h,k tend to zero.

2.13. Non-Linear Equations

We have considered only parabolic equations but many 

mathematical formulations of natural processes are non-linear or 

qu as i- linear .

Many numerical methods and techniques of proof for linear 

equations with constant coefficients carry over to non-linear 

equations. Questions of stability and convergence are more 

complicated (see Ames[1977]). Richtmyer[1967] considered the
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non-linear problem ut= ( u 5)xx and Douglas considejfa the quasi- 

linear parabolic equation.

uxx=F(x, t, u)ut+G(x, t, u) F>a>0 (2 .33)

For stability and more details see Ames [1977], Smith [1978], and 

Mitchell [1980].



C h a p t e r - 3 -

Modified variable time step method for 

solving the ice melting problem

3.1. One phase moving boundary problem

There are a number of problems in heat conduction in which 

one m aterial is transformed into another with generation or 

absorbtion of heat. Examples are the melting or freezing of a solid 

and the progress of a temperature-dependent chemical reaction 

through a solid.

u = u xx 0<x<s(t) 0<t<T (3.1)

u(x,0)=h(x) Ckxcb (b=s(0), h(b)=0) (3.2)

h(x)>0 if x^b

u(0,t)=f(t) 0<t<T (f>0) (3.3)

u(s(t),t)=0 (kt<T (3.4)

ux(s(t) ,t)=s’(t) 0<t<T (3.5)

The curve x=s(t) is called the moving boundary, or the free 

boundary and there are several methods to construct a solution:

3.1.1. Reduce the problem to an integral equation for ux(s(t),t)

3.1.2. Finite differences

3.1.3. Other approximation techniques

3.1.4. Weak solution

There are numerous other problems which gives rise to free
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boundary problems, in which some conditions (3.3)-(3.5) are 

d iffe ren t .

3 .2 .  P r o b le m

One such problem is the melting of a semi-infinite slab of ice 

which initially is at uniform temperature and subsequently is 

subjected to a constant heat flux at the surface.

Mathematically, the problem is defined as follows:

u t= u xx (0<x<s(t), t>0) (3.6)

ux= - l  (x=0, t>0) (3.7)

u=0 (x>s(t), t>0) (3.8)

d x /d t= - u x (x=s(t), t>0) (3.9)

s(0)=0 (3.10)

where u(x,t) is the temperature at a distance x from the fixed 

surface at time t, and s(t) is the position of the moving boundary. 

Condition (3.9) arises from the fact that part of the heat supplied 

at the moving boundary is used in changing the phase, and the 

condition (3.10) means the process of melting has not started yet.

3.3. Methods of solution

In a variable time method (see 2.5.2a) let us suppose (see 

Fig(3.1)) that during time tj the boundary has moved a distance

jAx in successive time steps of Atr r=0 , l ,2 , ............. j - 1, Atr being the

time taken by the boundary to move a distance Ax from its 

position xr=rAx to xr+1=(r+ l)A x.
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We assume that the values u(xj,tj) are known. We wish to 

find Atj where +Atj such that the boundary moves a distance

Ax during that time. Finally u(xi tj + 1) may be computed by 

standard finite difference methods.

1 +  1

j

. i

T
A t j

I I
I I
I I
I I

CM

J*

u 1 , 1

- A X —

x o=0

j+1.j+1

i r  i1 1 j .j 1i i i

xj-1 xj )j+1

Fig (3 .1 ) .  Grid s y s t e m  s h o w i n g  pos i t ion  of  m o v in g  
boundary  at  different  t im es .

3.4. M ethod of Douglas and  Gallie

The differential equation (3.6) is discretiszed at (Xj,tj+1) by 

O'Brien et al. formulae (See (2.28) and (2.29)) giving
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-r(k)u(k)i_1j +1+ ( l+ 2 r (k))u(k)ij +1-r(k)u(k)i+ljj+1= u(k)ij (3.11)

i = l , 2 , 3 ...................... j

(k)

where r^k  ̂= A t / ( A x ) 2 and the superscript k denotes the kth
j

iteration. The boundary condition (3.7) is replaced by a forward

difference, giving

(k) (k)

u l , j + l " u 0 , j + l = " A x  <3 - 1 2 )

(k) 00
Having chosen Atj, and hence r, the system of equations given by

(3.11) and (3.12) is solved, using the Thomas algorithm (see 

appendix A, and for more details Atkinson(1983)),

(k)

for ui j+1 i=0 , l ,2 , ............... j remembering that Uj+1 j+1=0 from the

boundary condition (3.8).

After the values of u have been computed at the kth

(k)

iteration, the assumed time step Atj is modified by the formula.

<k) j (k)

Atj={(j+1)+X uij+1)Ax-tj (3 .13)
i

in order to obtain (3.13). Equation[3.6] is integrated with respect 

to x from 0  to s(t) and with respect to t from 0  to t giving

s(t)

t=s(t)+J u dx (3 .14)
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The moving boundary condition (3.9) has been used in 

deriving (3.14) and relation (3.13) is simply a finite difference 

replacement of [3.14] (see (2.17) and (2.18) in chapter-2). Using 

the improved value of Atj from (3.13) the system of equations 

given by (3.11) and (3.12) is again solved by the Thomas 

algorithm using new value of r. The process is repeated until Atj is 

obtained to within desired accuracy.

3.5. Method of Gooding and Khader

These authors obtained equations [3.11] and [3.12] for a 

known value

(k)

of Atj and the equations given by [3.11] (j in number) contain j+1

(k)

unknowns Ui j+1, i=0,l,2,3, . . . . . j .  The authors used (3.9) instead

of using (3.12) which gives

-(uj+1 j + 1 - U j  J+1)/Ax=Ax/Atj (3 .15)

with the boundary condition (3.8) becoming

uj.j+i= (A x)2/Atj (3 .16)

and in terms of the kth iterate

(k) (k)

Atj=(Ax)2/ Ujj+| (3 .17)

(k )  (k)

Choosing an arbitrary value Ujj+p the value of Atj is fixed from
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(3.17) which subsequently fixes the value of

The values Uj j+1 i = 0 , l , 2 , ............................ .j-1 are determined from

(3.11) by the process of back-substitution. Equation (3.12) is used 

to check the

( k)

error in the choice of Ujj+1, but if (3.12) is not satisfied (with some 

reasonable limit), UjJ+1 is adjusted accordingly and a new value of 

Atj is obtained from (3.17).

The process is repeated until the desired accuracy in (3.12) is

ob tained .

3.6. Method of Gupta and Kumar

In this method the replacement of (3.6) is made as in 

methods 3.4 a n d 3 .5  leading to (3.11). The tridiagonal set of 

equations given by (3.11) and (3.12) is then solved by the method 

of Douglas and Gallie, and Atj is improved using the finite

difference replacements of (3.9) given by (3.17) and not by (3.13).

When an improved value of Atj was obtained, the system

(3.11 ),(3.12) is solved again to obtain Ujj+1, i=0,l,2, . . . ,j which is 

used to compute a new value of Atj from (3.17).

This process is repeated until the desired accuracy in Atj is 

achieved .

3.7. Boundary conditions for melting ice

On the unknown boundary x=s(t),
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u=0 (3 .18a)

d x /d t= -u x (3 .18b)

Also Au=uxAx + utAt=0 (3.18c)

i.e ux(dx/dt) + ut= 0  (3 .18d)

a n d  so ut= (u x)2 (3 .18e)

3.7.1. Variable grid method

(see Fig(3.2) where 8 x is fixed and 5t is chosen so that Q is a 

boundary point).

P
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A t  a boundary point ,  for x and t on  the boundary

t = t 0 +  ( x -x 0) ( d t / d x ) 0 +  ( l / 2 ! ) ( x - x 0) 2( d 2/ d x 2) 0 + ................( 3 . 1 9 )

w h e n c e  8 t = 8 x ( d t / d x ) 0 +  ( l / 2 ! ) ( S x ) 2( d 2t / d x 2) 0 + ...................( 3 . 2 0 )

and so  the ratio

k = S t / ( 8 x ) 2= l / 5 x ( d t / d x ) 0 +  ( l / 2 ! ) ( d 2t / d x 2) 0 +  ( l / 3 ! ) 8 x ( d 3t / d x 3) 0+.  . .

= - l / 8 x ( u x) 0 + ( l / 2 ) ( d 2t / d x 2) 0 +(  8 x / 3 ! ) ( d 3t / d x 3)0 + ..................... ( 3 . 2 1 )

N o w  8 x ( u x) q =U q -Uq . + ( ( 8 x ) 2/ 2 ! ) ( u xx) q +  . . . and uQ= 0  ( 3 . 2 2 )

so  k = l / u Q »  + ( l / 2 ) ( d 2t / d x 2)q  +  0 ( 8 x )  ( 3 . 2 3 )

w h e r e  the term ( d 2t / d x 2) has b e e n  n e g le c t e d

A l t e r n a t i v e l y ,  there e x i s t s  an i n te r m ed ia te  p o in t  R,  b e t w e e n  

p and Q, for w h ic h  ( d t /d x ) = ( 8 t / 8 x ) .

L e t  this be  at sR= s p+ 0 h  O<0<1 and d e n o t e  u x by u \  T h e n

a l o n g  the boundary ,  w e  have

u ' =  u ’p + ( s - s p) ( d u V d s ) p+ ( l / 2 ! ) ( s - s p) 2( d 2u 7 d s 2) + ............. ( 3 . 2 4 )

and so  u,Q = u ’p+ h ( d u 7 d s ) p+ ( h 2/ 2 ) ( d 2u 7 d s 2)p +  . . . { h = S q - s p } ( 3 . 2 5 )  

and u 'R= u ' ( s p+ 0 h ) = u ,p + 0 h ( d u 7 d s ) p +  ( 0 2h 2/ 2 ) ( d 2u 7 d s 2) p +  . . (3 .26 )  

Thus  u ’R - ( 1 / 2 ) u 'q = ( l / 2 ) u ' p + ( 0 - l / 2 ) h ( d u 7 d s ) p+

( ( 0 2 - l / 2 ) h 2/ 2 ) / ( d 2u / d s 2) p + .............  ( 3 . 2 7 )

i . e  u 'r = ( u 'p + u ,q ) /2 +  ( 0 - l / 2 ) h ( d u 7 d s ) p +

( ( 0 2- l / 2 ) h 2/ 2 ! ) ( d 2u 7 d s 2)p + ......................  ( 3 . 2 8 )

h h

N o w  h=J ds = S  V  ( ( d x ) 2+ ( d t ) 2)

o o
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=  f  V  ( l+ ( d t /d x ) 2) d  x 

o

Thus h = k 8x + 0 (8x )2 where k=V( l+ (d t /d x )2p) (3.29)

and so u'r =(u'p+u,q)/2 + 0(8x), (3.30)

which gives

K ) r =  t(Ux)p+ K ) q )/2 + ° ( 5x> (3 *3 1 )

F u r th e r  Sx(ux)Q = -uQ, + ((8x)2/2!)(uxx)Q (3 .32)

and similarly for 8x (u x)p

so that d t /d x  = - l / u x becomes, at R

(S t/S x )= -l / (u x)R (3.33)

o r  k= 8 t/(8x)2 = - l / 8x(ux)R

=-l / [ ( l /2 ){ (ux)p + ( u x) q } + 0 ( 8 x 2 ) ]  

=l/2.[(up,+uQ.)]+0(8x2)

=2/(up.+Uq.) + 0 (8x2) (3.34)

3.7.2. Approximation to ux

At a point on the moving boundary 

u =0  

dx/dt=-ux 

These conditions give

ut= (u x)2 (3 .35)

and from the equation (ux)2= u xx > (3 .36)

assuming expansion in powers of x about a boundary point x0,

‘ h=x-x0

u(x)=u0 + h(ux)0 +(h2/2!)(uxx)0 +(h3/3!)(uxxx)0 + ........... , (3.37)

and applying conditions

u(x)= h(ux)0 + (h2/2!)(ux)20 +(h3/3 !)(uxxx)0+ . . . (3 .38)
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then for the point immediately inside boundary u_x

h - - b x

and so u_j= -5x(ux)0 + {8x(ux)0 }2/2  + . . . . ( 3 . 3  7}

Solving for 8 x(ux)0 we get

8x(ux)0= 1 ± V ( l+ 2 u _ 1)

= 1- V ( l + 2 u . [ )  since ux<0

= l - ( l + 2 u . , ) 1/2

= l - {  1+ ( 1/ 2 ) .2u - i  + [ ( 1/ 2 ) . ( 1/2 ) /2 !].4 u 21 + .

= - u _ j  + u 2_i /2 - u 3 . ! / 2  + ................

From the above we can obtain the possible 

condition  m ethods, i.e approxim ations to dx/dt=- 

formula for k=8 t/(8x ) 2 

For the calculation at row j+1 see Fig(3.3), 

we get

k = l/u [ j , j+ l]  or l/k=u[j,j+l]

Applying (ux)2= u xx on the boundary

l /k = - l+ ( l  + 2 u) 1/2 u=u[j,j+l]

= u - u 2 / 2  +  u 3 / 2  

and taking the tangent, 

l /k={u[j-l,j]+u[j,j+ l]}/2 .

Taking the tangent with condition (ux)2=uxx 

l / k = ( l / k j  + l /k2)

where l /k 1 =u-u2/2 + . . . . with u=u[j-l,j]

( 3 . 4 0 )

( 3 . 4 1 )

. . .  }

boundary 

x giving

( 3 . 4 2 )

( 3 . 4 3 )

( 3 . 4 4 )

( 3 . 4 5 )
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and l / k 2= u-u 2/2+.............. with u=u[j,j+l]

Finally we obtain four different formulae to calculate the time,

t= (5x)2/ujJ+lj (3.46)

(the formula (3.46) was used by Gooding and Kahder (see(3.17)) 

and by Gupta and Kumar (see section 3.6).

t=2(5x)2/ (Uj y+Uj j+1), (3 .47)

t=(5x)2/ [ - l W ( l + 2 u j>j+1)], (3 .48)

and t=2(8x)2/ [ -2 + V ( l+ 2 u j. l j ) W ( l + 2 u jJ+1)] (3 .49)

We use the above formulae to calculate the time in some methods

mentioned in this chapter. See tables in chapter-6 /

f i O ;
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J-UJ+1r o w

r o w

Fig(3.3)

3.8. Solution of ice melting using the Douglas implicit

formula in the replacement of equation (3 .6 )

The Douglas formula is shown previously (see (2.32) section

2 .1 1  in chapter 2). Using notation shown in Fig(3.4), the

extrapolated value at (j+1 ,j) is required 

On the boundary,

u= 0 (3 .50a)

a n d  dx/dt= -ux (3 .50b)

the latter gives

Ut= (ux)2 (3.50c)
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and so we have

(u )2=uv X'  XX

Xj‘1,j+1 X>>j+1

Fig(3.4)

The finite difference approximation is { taking points as - 

[(u 1- u_1)2/ 2 5 x]2= ( u_1-2 u0+ u 1)/(8x)2 and u0= 0  

so (u 1-u . j )2= 4 (u 1+u .j)

This gives the quadratic equation for Uj

2 2 u 1-(2u_1+ 4 )u 1+u _i-4u.1= 0

with solution
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u i ~ u -i +2± 2 V ( 2 u_j+ 1)

2
Now plotting (u j-u .j)  = 4 (u 1+u_1) see Fig(3.5),

we see that for small u1? u_j lu ^ u . jk  4 when Uj>0 u^cO

and vice versa, choosing the negative sign we have

u 1—u _ i+ 2 - 2  V (1+2U.J)

This is the approximation required at ( j+ l j )

i.e u[j+l,j] =u[j- l , j ]+2-2V(l+2u[j- l , j ] )  (3 .51)
2 3

=-u + u +u + .........

where u=u[j-lj]
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3 . 9 .  Numerical Solutions of the Cartesian Problem

We have perform ed com putations using the methods 

described in (3.4), (3.6) and (3.8). In the case of the methods of 

(3 .6 ) and (3.8) we have calculated different solutions using each 

of the forms of the boundary condition on the moving boundary 

derived in (3 .7).

Each computation has been made until the boundary x=l is 

reached. In methods (3 .4 )  and (3 .6 ) an error of 0.5% has been 

allowed in the calculation of At i.e we iterate until two successive 

values of At differ by not more than 0.5%. In method (3 .5) until 

the left hand side of (3.12) agrees within 0.5% with its right hand 

side has been taken equal to Ax.

Comparative results for methods (3 .4) and (3 .6) are given 

in tables (6.1)— (6.5). Fig(3.11) shows the position of the moving 

boundary as calculated by the method (3.6) and 5x=Ax=h=0.01. It 

is clear that the velocity of the moving boundary s’(t) gets slower 

as time proceeds. Fig(3.12) shows the temperature at the fixed 

surface x=0 increases with time as expected and 8x=Ax=h=0.01.

Various results are given in table (6 .6 )— (6.11) using the 

method of Gupta and Kumar (section 3 .6 )  and the new finite 

difference replacement of equation (3.6) given in section 3.8 i.e 

using method 3 .8 .
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3.10. The c y lin d r ica l  p rob lem

The non-dimensional form of the heat conduction equation
2in three dimensions is ut=V u which, in cy lindrical polar 

coordinates (x,0 ,z) is

Ut=Uxx+(1/ X) Ux+ ( 1/ x2)u98 +Uzz ( 3 . 5 2 )
Ci.'S & o' tV\ i rt <j

For simplicity,^ that u is independent of z, this reduces to the two- 

dimensional equation.

ut= u xx + (l/x)ux + ( l /x 2)uee (3 .53)

Finally assuming that u is independent of 0, this leads to the 

simplest equation with cylindrical symmetry

ut=u xx+ X " ' U X (3-54)

where x is the radial space variable. There may be difficulties at
w h  i C 'h

the point x=0 , and we shall consider

3.10.1. Finite difference representation o f  the equation (3.54)

There is an apparent difficulty in representing the term 

x Xu x at x=0 , but this is eliminated by noting that there is 

symmetry about the line x=0 i.e u(x)=u(-x) see Fig(3.6)

Fig(3.6)
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Hence we can assume an expansion about x=0 of the form
2 4u=u0 + a2x + a4x + ............

i.e  ux= 2a2x + 4a4x3 + . . . .

uxx= 2 a 2 + 12a4x2 + .................

Thus at x=0 x !u x= u xx , and so 

the equation is

u = 2 ut  XX

The backward finite difference representation is

u 0,t - u0 . t -6 t  =  2 k ( u l , t  ”2 u 0,t +  u - l , t )
2

and ux t=u_j t where k=8t/(8x)

This leads to

u 0 , t - u 0 , t - 5 t = 4 k ( u l . t  -  u 0,t> 

o r  ( l + 4 k ) u 0 l-4 k u 1>t= u 0 t.st

3.10.2. Singularity

u xx +  X’ l u x = u t <3 - 5 5 )

This has a singularity when x=0 provided du/dx f  0 at x=0

Taking the case ut=c (constant)

(d 2u /d x 2) +x ^du/dx) =c

x_1d[x(du/dx)]=c

d[x(du/dx)]dx=cx

with solution 
2

u=cx /4  +b*ln(x) + a where a, b are constants.

Hence u - > 00 as x-» 0 and this can cause a difficulty, with 

inaccurate approximations for x small.
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3 . 1 1 . Two c y lin d r ica l  p ro b lem s

We consider a unit cylinder at a temperature greater than 

zero, and the ice either outside or inside this cylinder. We thus 

have two distinct problems.

3.11.1. Ice outside cylinder 

The equation is

u*x+x’lu x=ut

with initial conditions 

(t=0 ) u=0 x>l

and boundary conditions 

on the fixed boundary (x= l)  

ux= -1 t>0

on the moving boundary (x=s(t)>l) 

u=0 , dx/dt = -ux

In the solution of a cylindrical problem we use the same 

conditions as in the cartesian problem (see (3.6)— (3.10) section 

(3.2)). Hence we use the following implicit formula, see Fig(3.7)

( l / 8 t)Vtu0 = [ l / ( 8 x)2]8K2u0t +(x8x) 'V 8 xu0it
2 2i -e  u o , r u o,o =  [5 t / ( 5 x ) ] { 5 X + 5 xll 5 x i u o,t

o r  u o,t - u o , o =  k  l u l,t ' 2 u 0 ,t + u - i , t  + ( V 2 x > ( u i ,t
( l + 2 k )u 0 l -k(l+ 8x/ 2 x )u lit -k (l-8 x/ 2 x)u . 1 t= u 0 0

i.e

(1 + 2 k)u [ i , j  + l ]-k( 1 + 8 x/ 2 x )u [ i+ l  ,j + l ] -k (  1 - 8 x/ 2 x)u [ i- l , j+ l]= u [ i , j]

(3 .56)
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o,t 1, t

t

0,0
Fig(3.7)

Melting outside the unit cylinder l< x  then

► x

Fig(3.8)



Point 0,0 corresponds to t=0, x=l 

Point i,j corresponds to x=l+i8x, t=j8 t 

The equation is

(l+2k) u[i,j+l] -k(l+0.5/(l/6x+i)) u[i+l,j+l] 

-k ( l-0 .5 /( l /5 x  +i))u[i-l,j+l]=u[i,j] 

u[0,j+l]=u[l j+1] + Sx 

On the boundary, u=0

and so u[0 ,0]=0

u[l,l]=0 etc see Fig(3.9) 

Also u[0 ,l]=8x

t im e  t

2 ,2  Boundary

-►*
s p a c e

F i g ( 3 . 9 )

3.11.2. Ice inside the cylinder 

The equation is

Uxx+X' lu x=ut

(3 .57)
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with initial conditions 

(t=0 ) u=0  x<l

and boundary conditions 

on the fixed boundary (x= l)  

u x= - l  t>0

on the moving boundary (x=s(t)<l) 

u=0 , dx/dt = ux

Melting ice inside unit cylinder see Fig(3.10)

A  time t

elting

Boundary x=1 space x

Fig (3 .10)

Point 0,0 corresponds to x=l, t=0

Point i,j corresponds to x= l- i8x, t=j8 t. Equation is

-k ( l+ 0 .5 /( l /8 x - i) )u [ i- l , j+ l]+ ( l+ 2 k )u [ i , j+ l] -  

k ( l-0 .5 /( l /5x - i) )u [ i+ l , j+ l]= u [i , j]  (3 .58)

i* 0 , l/5x changes slope when i=l/Sx, i.e j= l /8x -1 

Same conditions for the initial value as for outside the cylinder.

3.11.3. Other numerical methods

Another technique which has been used to solve the 

cylindrical problem is to apply the Douglas formula (see (2.32) 

section 2 . 1 1 ) with central differences for the space derivatives,
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and a forward difference for the time derivative. The finite

difference replacement of (3.55) may then be written as

Outside cylinder

[ -0 .5 ( r - l /6 )+ 0 .5 r / ( ( l /h )+ i ) ]u i_1j +1 + (r+5/6)uiJ+1 +[-0 .5(r-l/6)- 

0 .5 r / ( ( l /h ) + i ) ] u i+1 j +1= 0 .5 ( r+ l /6 ) u i_1j  -( r -5 /6 )u jj  +0 .5 (r+ l/6 )u i+1 j

(3 .59)

and inside the cylinder,

[ -0 .5 ( r - l /6 ) -0 .5 r / ( ( l /h ) - i ) ] u 1_1J+1+ (r+ 5 /6 )u iJ+1u i+1,j+ [ -0 .5 ( r - l /6 )+  

0 .5 r / ( ( l /h ) - i ) ] u i+1 j +1= 0 .5 ( r + l /6 ) u i_1j - ( r - 5 /6 )u ij + 0 .5 ( r + l / 6 ) u i+1 j

(3 .60)

3.12. N um erica l  Solution of the  C y lind rica l  P rob lem

The computation and the permitted error are the same as in

the cartesian problem. (See section 3 .9 . )  Various results are 

given in tables (6.12)—(6.19) using the method of Gupta & Kumar 

and the new finite difference replacement of (3.55) is given as in

(3 .5 6 )— (3.60), section 3 .11 . Furthermore in all our methods we 

solve the problems by using one of the four formulae Atj 

(3 .46)—(3.49).
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Chapter 4

Solution o f  an ice m elting problem  using a fixed

domain method with a moving boundary

4.1. Several Methods

A variety of diffusion problems with moving boundaries are 

described in Ockendon and Hodginks (1975) where we observe 

that analytical solutions are possible for some problems and arise 

when there is a singularity in the region of solution or on the 

boundary e.g Fox in (Ockendon and Hodginks 1975 p228)

mentions the need for a short time analytical solution in the case 

of discontinuous agreement of initial and boundary conditions.

But the general approach should be necessarily numerical. 

C rank  in (O ckendon and Hodginks 1975) d iscusses finite

difference methods for the classical one dimensional diffusion 

problem, which include variable space steps and variable time 

steps and a change of space variable to fix the moving boundary.

Other methods for the num erical solution of the one 

dimensional problem with a moving boundary are compared by 

Furzeland (1980).
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4.2. P ro b le m

This is the problem mentioned in section 3.5 , viz 

u t= u xx (0<x<s(t), t>0 ) (4.1)

(4.2)

(4.3)

(4.4)

(4.5)

d x /d t= - u x

s(0 )= 0

u = 0

(x=0 , t>0 ) 

(x>s(t), t>0 ) 

(x=s(t), t>0 )

In a paper which is reviewed in detail here, Morland introduces 

another transformation to fix the moving boundary by replacing 

the time by the boundary position as the time variable. Hence we 

obtain a non-linear equation on a known domain.

This method introduces the boundary velocity expressed in 

terms of the boundary position, which will be updated at each 

step. Here the iteration to update the extrapolated boundary 

velocity is required. An essential feature of the transformation is 

the monotonicity of the boundary position with respect to time 

over the interval considered. From now on, we concentrate on 

Morland's procedure which is now outlined. We know that s(t) is 

monotonic and, so s can replace t as an independent variable. 

Defining

u(x,t)—c(x,s) 

s '(t)=¥(s)>0  

the diffusion equation (4.1) becomes

(4.6)

(4.7)

¥c =cS XX
0<X<S (4.8)

where the time at each s is calculated by
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s

t = J d s 7 ¥ ( s ' )

o
(4.9)

T h e  boun dary  v e l o c i t y  ¥ ( s )  is  a n e w  d e p e n d e n t  va r ia b le  to  

b e  d e t e r m i n e d  s i m u l t a n e o u s l y  w i t h  c ( x , s )  f r o m  e q u a t i o n  ( 4 . 8 )  

su bjec t  to  init ial  and boundary c ond i t ions  (4 .3 )— ( 4 . 5 ) .

N o w  w e  s e e k  a f in i te  d i f f e r e n c e  r e p la c e m e n t  o f  e q n  ( 4 .8 ) .  

T h e  r e g io n  to be e x a m i n e d  is the d om ain  0 < x < s  w h ic h  is  c o v e r e d  

by  a rect i l inear  grid,  wi th  grid po ints  (j,j) l y in g  on the boundary  

x = s  see  F ig (4 .1 ) .

s x=s
1,1+1

c=0
3c/3x=-¥(s)
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Let the step length be h and introduce the following notation ;

U i j = c ( X i , S j )  ¥ j = ¥ ( Sj) ( 4 . 1 0 )

where xj=(i-l)h, sj=(j-l)h ( i j= l ,2 ,3,4....................................)

Fo llow ing  Ames (1977) the Crank-N icolson im plic it  fin ite  

d iffe ren ce  approxim ation for equation (4 .8 ) with arb itrary  

weighting (0<r< l)  between the j +1 and j levels of s is

¥ c s= ¥ j(c i,j+i -c i ,jV5 s  ( 4 . 1 1 )

c xx= ( r / ( 8 x ) 2) ( Ci. lj+1 -2Cj j+1 + c i+1J+1) +

( ( l - r ) / ( 6 x ) 2) ( c i. 1J -2Cjj + ci+1J) (4 .12)

with 5x=8s=h

In order to obtain a more accurate representation we introduce 

another weight k(0 < k < l) ,  and instead of ¥j we use the variable 

Bj-k h ¥ j+1+ (l-k )h ¥ j , (4.13)

which leads to the following equation

rc i-i,j+r ( 2 r+ 6j)c i,j+i+ rc i+i,j+i=- ( 1-r )ci-i,j+ [2 ( 1-r ) -6j lc i.j-(1-r )c i+i,j
(4 .14)

The boundary condition (4.2) gives

c i,j+i ' c2,j+i“ h (4*15)

and the moving boundary condition (4.3) gives

cj+i,j+1=0 (4-16)

From  the a b o v e  w e  deduce  that (4 .14 ) , (4 .15 )  with ( i = 2 , 3 , ..................... j),

(j=3 ,4 ,5 , ............................................ ) constitute a tridiagonal linear system

of equations for the j unknowns ci,j+i(*“ l ’2 > 3 , ....................................... j )

which can be solved by a Thomas algorithm (see appendix-A-).

The exterior value cj+1 j may be estimated by the Taylor series
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cj+iJ+i=cjo+hc*lj+( l /2 )h2cxxl j + .............................  (4 .17)

where cx I j is the first partial derivative of c with respect to x at

level j on x=s. We know that c=0 and cx=-¥, and so

CjJ=0  and cxlj=-¥j (4 .18)

In order to find cxx we recall that 

dc=cxdx+csds

and since x=s, (dx/ds)=l, and (dc/ds)=0 , we deduce that

cs=¥ (4 .19)

and from (4.8) we have

(cxx)=*cs= ¥ 2 (4 .20)

From (4.17), (4.18), and (4.20) we deduce that

Cj+U— liV j+ d W l i^ j  (4 .21)

and similarly we may approximate ¥j+1 (boundary velocity) at j +1 

using the Taylor series,

cj,j+i=cj+i j +i - K ' j + i  + ( l /2 )h2(cxx)lj+1 + ...................

=h¥ j+1 + (l/2)h2¥ j+1 (4 .22)

From (4.21) we have

¥j+,=(l  + V ( l + 2 c jj+]))/h (4 .23)

which will be used to update ¥i+. once Cj j+1is determined from the 

above linear system. An iteration is started with 6j=h¥j 

The time at each s is calculated by the integral (4.9) and in 

particular tj+1, which is required in the boundary condition (4.15), 

is calculated from

t t=0, t2= ( h /3 ) [ ( l /¥ 2)+ (4 /¥ 3/2) + ( l /¥ , ) ]  (4 .24)

tj+1=tj_1+ (h /3 )[ ( l /¥ j+1)+(4/¥j)+ ( l /¥ j_1)], (j=2,3,4,................. ) (4 .25)

It remains to use the starting values for the temperature and the

boundary velocity.
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Alternatively we can use Taylor series expansions in (x,s) 

about (0 ,0 ) which will give better accuracy 0 (h3) in starting values 

for (4.14) than the finite difference approximation. Firstly from 

condition (4.2) and(4.4) we see that the initial velocity ¥=1 at 

x=s=0. In addition from (4.3) we deduce that the initial value of 

the temperature is zero leading to cn = 0 .

In order to obtain expressions for Cj 2, Cj 3, c23 we need the 

first three partial derivatives of c with respect to s calculated at 

(0,0). From (4.19) if we use lim(x,s)—»(0,0) we deduce that

Considering the second total derivative and using (4.3) we have

and equation (4.8) calculated at (0,0) gives cxx(0 ,0 )= l because 

c s(0 ,0 )=l and ¥ = 1.

Therefore from (4.27) we have css(0 ,0 )= -l  .

We also have above that cxx(0,0)=l, and by differentiation of

cs(0 ,0 )= l (4.26)

d 2c/ds2=css+2 cxs+cxx=0 .

B u t 2cxs(0,0)=0 (from condition 4.5)

(4 .27)

(4.28)

Also d 3c /d s3=csss +3cxss +3cxxs + cxxx=0 

w ith  c xss= 0  (from 4.5) .

(4 .29)

(4.30)

(4.8),

cxxx(0.0)=0 . (4.31)

Differentiation of (4.8) with respect to s gives

csxx= ¥ c ss +cs(d¥/ds) (4 .32)

and so (4.19) which is valid on x=s, gives 

(d¥/ds)(0 )=-l ,

We also deduce that csss(0 ,0 ) - -3 c xxs(0,0)-6, and

and so cxss(0 >0 ) = - 2 (4.33)

(4.34)

53



^1,2’ c i ,3’ *md c23 are

c ,  ,2= c ( 0 , h ) = c ( 0 , 0 ) + h c s( 0 ,0 ) + ( h 2/ 2) c ss(0 ,0 ) + ( h 3/ 6 ) c sss(0,0) + ....................

......................... =h-(h2/2 )+h3 ,

c ,  3= c ( 0 , 2 h ) = 2 h - 2 h 2 + 8 h 3 , 

a n d

c 2,3~ c (h ’2 h)= h -(3 h 2/2 ) + 6h3 , respectively.

Similarly we obtain expressions for (¥3/2), ¥ 2, ¥3 (boundary  

velocities)

On x=s from (4.19) , we obtain 

d 2¥ /d s 2= c5SS + 2cxss +cxxs 

¥ " (0 )= d 2¥ /d s2=4

(¥ 3/2)=¥ (h /2 )= ¥ (0 )+ (h /2 )¥ '(0 )+ (h 2/ 8 )¥ " (0 )= l  - (h /2 )+ (h 2/ 2 ) 

¥ 2= ¥ (h )= l-h + 2 h2 

¥ 3= ¥(2 h ) = l - 2 h + 8 h2 

and the values of time are deduced from (4.24), (4.25) as 

t 1 =  0

t2=h + (h 2/2 ) - (h 3/3 )  

t3= 2 h + 2 h 2-8 h 3/3 

Finally we can start the scheme with j=3 in (4.13)-(4.16), and 

(4.21), and (4.23).

In the first these the tridiagonal system (4.14), (4.15) is solved 

with Bj=h¥j using the Gaussian elimination. Hence we calculate the

value of Cj j+1 , i= l ,2 ,3 ,  ,j , for a fixed j and we can update

the boundary velocity from relation (4.23).

After that the system is solved using

Bj=hk¥j+1+( 1 -k)h¥j and we imposed the convergence test
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(N) (N-l) (N-l)

l¥j+i " ¥j+1' < hl¥J+11 (4 .35)

If the current value of ¥j + 1 satisfies the halt criterion , it is 

employed to calculate the value of tj+1, otherwise we perform 

another iteration in order to find a more accurate value for ¥j+1. 

For that reason we solve again the system with updated velocity 

and we repeat the procedure until (4.35) is satisfied. Superscript 

N is the iteration index.

4.3. N u m erica l  Results

The calculations were performed with 

a - r=k=0.5 and h=0.01 for 0<s<5

b- r=k=0.5 and h=0.02 for0<s<10

as suggested in Morland's paper, the results agreeing with these 

found by Morland but the number of iterations being different. 

( see results in chapter-6- Tables 6.20 & 6.21)
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C h a p t e r - 5 -

The Oxygen Diffusion Problem

5.1. Flow  E xam ple

A problem arises from the diffusion of oxygen in a 

medium where some of the oxygen is absorbed and thereby 

removed from the diffusion process. A moving boundary is an 

essentia l feature of this problem but the conditions which 

determ ine its movements are different, the concentration of 

oxygen always being zero at the boundary and no oxygen 

diffusing across the boundary at any time ( for more details see 

Crank 1972).

5.2. C a r te s ia n  C o o rd in a te s :S ta tem e n t  of P rob lem

In one dimension, the diffusion with absorption process is 

represented by the parabolic partial differential equation.

Cj=D( Cxx) - m

where C(X,T) denotes the concentration of oxygen free to diffuse 

at distance X from the outer surface of the medium at time T, D is 

a constant diffusion coefficient and m, a constant rate of
m

con si^ption of oxygen per unit volume.

This problem has two parts:

5.2.1. Steady State Solution

When oxygen is entering through the surface we have 

C=C0, X=0, T>0 with C0 a constant (5 .1)
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The steady state is defined by a solution of CT=0 viz

D (d2C /dX 2) - m=0 (5.2)

which satisfies the conditions (i.e no oxygen can diffuse beyond 

this point)

C=C^=0 X>Xo (5.3)

where X0 is the innermost extent of oxygen penetration, and on 

the outer surface X=0 C = C0 = constant.

The required solution is readily seen to be

C=(m/2D)(X-X0)2 (5.4)

where X0=V(2 DC0)/m (5.5)

5.2.2. The Moving Boundary Problem

After the surface X=0 has been sealed, the position of the 

receding boundary is denoted by X0(T) and the problem can be 

expressed by the equation

Ct =D(Cxx) - m 0<X<X0(T) (5.6)

with the conditions

Cx=0 X=0 T>0 (5.7)

C=Cx=0 X=X0(T) T>0 (5.8)

a n d  C=(m/2D)(X-X0)2 (KXsS^ T=0 (5.9)

where T=0 is the time when the surface is sealed.

By making the change of variables 

x=X/X0, t=D(T/X02), c=D/(mX02)=C/2C0

and denoting by s(t) the value of x corresponding to X0 ( t ) j th e  

above system is reduced to the following non-dimensional form: 

c = c xx- l  0<x<s(t) (5.10)

w ith  cx= 0  x=0  t>0 (5.11)

c=c =0  x=s(t) t>0 (5 . 12 )
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a n d  c = 0 .5 ( l-x ) 2 0<x<l

( see Fig-5.1-)

t=0 (5.13)

Fig-5.1-Concentration distributions for the steady-state
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where c is the concentration of the oxygen free to diffuse. It is the 

absence of st in (5.12) that renders this problem implicit.

This solution also has a singularity at x=0, t=0 due to the 

instantaneous sealing of the surface. In mathematical terms this is 

noted by the conditions

c = 0 .5 ( l-x )2 0<x<l ,

an d  cx= 0  x=0 when t = 0 .

5.3. Approximate Analytical Solution

An approximate analytical solution can be used to move
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away from the singularity at x=0, t=0. Thus in the range 

0 <t<0 .0 2 0 , the expression

c (x , t )= 0 .5 ( l -x )2-2V(t/7i)exp{-(x/2Vt)2)+xerfc(x/2Vt) 0 < x < l(5 .1 4 )  

is sufficiently accurate for most purposes (see Crank 1972).

This analytical solution can also be obtained by using 

Fourier expansion. This is relevant to the cylindrical coordinate 

case (see Sec 5.7). The cosine expansion for a function f(x) over 

the range 0 <x<l is

oo

f(x )= X A s COS(S7tx) . 

s=0

For this expansion, fx(0)=0, thus satisfying the derivative
2

cond ition  cx=0, t>0. For the function f(x)=x ,

oo

x 2=(1 /3)- (4 /j i2) X  [ ( - l ) s_1cos(sJ tx) ] /s2
S= 1

so that

oo

c[x ,0]=( l /6 )- (2 /j t2) X [ ( - l ) S‘1 c o s ( s j i ( 1 - x ) ) ] / s 2 , 0<x<l .
S=1

oo

Note that c x[x ,0 ]= (2 /7 t)X [(-1 )  s in (s7t ( l - x ) ) ] / s
s=l

and cY=0 , w h e n  x=0
oC

A ssu m e  c=a0(t) + X a s(t)cos(s7t(l-x))
s=l
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CO

th e n  c t= da0/dt + X  (das/d t)cos(s7i ( l - x ) )
s=l

oo

E 2 2
a s s K c o s ( s t i ( 1 - x ) )

s=l

Hence the equation becomes

°° 00

( d a 0/ d t ) + X d a s/ d t ) c o s ( s 7 i ( l  - x ) ) = - £ a s s 2jc2c o s ( s7c( 1 - x ) ) - 1

S=1 S=1

Equating coefficients of cos(src(l-x)) , we get

d a 0 / d t = - l ,

2 2
a n d  d a s/ d t = - s  jt a s , s > l

giving a0= A 0-t
2 2

A A ~ S 7t t , Aa n d  a s= A se where As=constant

Finally because of the initial condition t=0 , we get
Oft 2 2

c [x ,t ]= ( l /6 )-t -(2/jc2) Z  [ ( - l ) S le ' S K tc o s ( s n ( l - x ) ) ] / s 2 (5 .15)

S= 1

5.4. N um erica l  M ethod

Once the moving boundary has started to move we resort to 

num erical methods of solution. Several methods have been 

proposed ( see Douglas & Gallie (1955), Murray & Landis (1959), 

Ehlric (1958), Loktin (1960), Koh Et A1 (1969), Saitoh (1972), 

Bonnerot & Janet (1974), Meyer (1976) ). Crank (1957) suggested 

a three point Lagrangian Interpolation Formula near the moving 

boundary, where the concentrations at the intermediate points
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between the two boundaries have been calculated by using simple 

explicit finite difference formulae and the location of the moving 

point itself is determined by Taylor series.

Confining attention to three-point formulae, we have

2

f (x )= I  lj(x)f(aj) (5.16)
j=o

where lj(x )= p 2(x)/(x-aj)p,2(aj) (5 .17)

with p2(x )= (x -a0) (x -a1)(x-a2) (5 .18)

and p'2(aj) is its derivative with respect to x at x=aj . This leads to 

d 2f (x ) /2 d x 2= [f(a0)/(a0-a 1)(a0-a2)]+ [f(a 1) /(a1-a0) (a 1-a2)] +

[f(a2) /(a 2-a0)(a2-a ,) ]  (5 .19)

and df/dx=l'0(x)f(a0)+ l '1(x)f(a1)+l'2f(a2) (5 .20)

where l’0(x )= [(x -a1)+(x-a2)]/(a0- a 1)(a0-a2)

o r  (5 .21)

l0(x )= [(x -a 1)(x-a2)]/(a0-a 1)(a0-a2)

Similarly for 1'^x ), and l'2(x).

We apply these formula in the neighbourhood of the moving 

boundary at time t=j8 t when there is a fractional distance p5x 

between the grid lines i8x and ( i+ l)8x. The points a0, a1? and a2 are 

identified with the grid lines (i-l)5x, i5x and the moving boundary 

itself and correspondingly f(a0), f ^ ) ,  and f(a2) with c ^ j  Cy and 

c f  on the boundary. Then for x<s(t) we identify (see Fig-5.2-)

f teo ^ C j .p  f(aj)=cif f(a2)= c t (5 .22)

Then (5.19) and (5.20) become
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c xx- ( 2 /( 8x) )[(ci.i /p+ l)-(c i/p)+(ct/p(p+l))]> x=i8x (5 .23)

an d

c x= ( l /8 x ) [ (p c i. 1/p + l ) - ( (p + l ) c i/p )+ ((2p + l)c t /p (p + l))] ,  x=s(t) (5 .24)

and similarly for x>s(t) we have

c xx=(2 /(5x )2)[ (ct / ( l -p ) (2 -p)) - (c i+1/ ( l -p ) )+ (c i+2/(2-p))]> (5.25)

x=(i+ l)8x

a n d

cx= ( l /8 x )[ ( (2p -3 )c t / ( l -p ) (2 -p ))+ ((2 -p ))c i+1/ ( l -p ) ) -  (5 .26)

((1-p)ci+2/(2-p)) , x=s(t)

ao a i  a2

-Sx- -p8 x-j

i - 1 x = s ( t )  i + 1 i + 2

Fig-5.2-

We use these formula for the space derivatives in 

conjunction with the usual explicit or implicit replacement of the 

time derivative in the heat flow equation and in the conditions on 

the moving boundary x=s(t). For points other than i8 x, s(t) and
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( i + l ) 8 x, we use the usual finite difference formula for equal space 

intervals including any conditions on x=0 .

The numerical solution of the one-phase problem defined by

equation ( 1-1 1.6 ) provides simple equations at the values 5 x ,

28x, 3 8 x , .....................,n8x , ...........................and (i-l)8x

Equation (1.1) is replaced by the simple explicit formula 

c n,j+i = c nJ+ (5 t / (5 x )2)(cn. 1J-2cnJ+ c n+1J) n=l,2,3, . . (i-1) (5 .27)

and from (1.2) c -=1 at the point i8 x. Instead of (5.27) we write, 

using (5.23),

Ci,j+1= c i,j+(25t/(Sx)2)[ci. 1J/(pj+ l ) - c ij/pj], (5 .28)

since c |= 0  from (1.5). Similarly substitution of (5.24) into (1.6) and 

writing Sj=(i+pj)8x  gives

pj+1=pj+ (8 t/(6x)2)((pjc i.1>j)/pj+ l)-((p j+ l ) c iij/pj) . (5 .29)

Here we assume that the concentrations at each of the grid

points, at the jth time level are known and s=[(i-l)+pj]Sx. As

mentioned above pj is positive and usually less than one. Hence

the concentration at the (j+l)th time level up to and including the

mesh point i-2 can be calculated using the well known explicit

formulae (see Fig-5.3-)

(co,j+r c 0.j) /8t=(2/(5x)2) ( c l>j- c0J) - l  (5 .30)

( c n j + r  c n , j ) / 5 t = [ ( c n - l . j - 2 c n.j+ c n+ l.j>/ ( 8 x )  I ' 1 ( 5 . 3 1 )

n=l ,2,3,4............. (i-2)

So from the above we have

c xx= (2 / (8 x)2)[(c i.2/ ( l+ p ) ) - ( c i. 1>j/p ) ] - l  (5 .32)
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and the appropriate finite difference replacement at the point 

(i-l)5x leads to

(c i-i,j+r c i-i,j)/5t=(2/(8x)2)[(c i.2j/ ( l+ p j))-(ci. 1J/pj) ] - l ,  (5 .33)

an explicit expressions for Cj.j j+1

j + 1
8x

x=0 - 2
P j+iSx

Fig-5 .3
x= 1

5.4.1. Position o f  The Moving Boundary

Crank and Gupta (1972) in the absence of an explicit 

expression such as the Stefan condition, for the velocity of the 

moving boundary, used the two boundary condition (5.12) to 

deduce higher space derivatives for substitution into the Taylor 

Series.

Differentiation of the first of (5.12) with respect to t gives 

dc /d t= (cx)x=s(ds/dt)+(ct)x=s=0 (5.34)

By using (5.10) and the second of (5.12) in (5.34) we deduce 

th a t  cxx= l  x=s (5.35)

Differentiation of (5.10) with respect to x, gives

Cxt ^ x x x
(5 .36)

Again differentiating the second of (5.12) gives
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d (c x)/d t= (cxx)x=s(ds/dt)+(ctx)x=s= 0  (5 .37)

and hence using (5.35) and (5.36) in the above and assuming that 

the order of differentiation with respect to x and t can be 

interchanged, we obtain

c xxx= -d s /d t ,  x=s (5 .38)

S im ilarly

Cxxxx=(ds/dt)2, c xxxxx= -(d 2s /d t2) -(d s /d t ) 3 etc (5 .39)

Now, the Taylor series for ci_1, the oxygen concentration at the 

grid point ( i - l)5 x  obtained by expanding about the moving 

boundary point can be written as (see Fig-5.3-).

c M =c(s)-p8x(cx)x=s+((p8x)2/2 )(cxx)x=s-((p8x)3/6 )(cxxx)x=s +------

=((p8x)2/2 )+((p8x)3/6)ds/dt + .............. (5 .40)

Provided the boundary is not moving too quickly, the first term of 

the series provides a reasonable approximation and gives

p=(V 2 c M )/8x (5.41)

We shall see later that the boundary moves faster towards 

the end of the process and we then replace the finite difference 

solution by an analytical expression. When ci- i j+ i  has been

calculated from (5.33), the relation (5.41) gives the position of the 

moving point at the (j+l)th time level.

5.4.2. Moving Boundary Crossing A Mesh Line 

If c^ j goes on decreasing, we have



where (a) is physically impossible, and (b) could be caused by 

instability (for a stability analysis see Appendix B ). If the latter 

this happens at a point adjacent to the boundary, the (i-l)th  mesh 

point is given up at the (j-l)th time level. The Lagrange Formula 

is then applied to Cj_2 j using Pj_1=Pj_1+ l .  The calculations were 

performed with:

(a )-  t= 0 .0 0 1  a n d  h=0.1

as suggested in Crank’s & Gupta’s paper, (see numerical results in 

chapter-6 - ).

5.5. T he Du F o r t-F ra n k e l  Difference Scheme

We now solve the the problem posed by Crank using a new

technique of applying the Du Fort-Frankel scheme, and following

Crank's steps in solving the problem. This scheme has the

advantage of being explicit and yet unconditionally stable.

However the consistency condition requires that 8 t goes to zero 

faster than 5 x does, but the requirement is in practice not too

severe if the coefficient of the second derivative is small. The

simplest three level explicit scheme for the solution of the

diffusion equation

and

(b )-  t= 0 .0 0 1 and h=0.05

(5.43)
XX

IS

(5 .44)

which can be written in the form

r= 8 t/(8x)2 r (8x) C; j+c (5.45)
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Du Fort-Frankel (1953) proposed that ( 5 x ) 2c i j  be written as

(ci-l,j“2 c i,j+ c i+i,j) in (5.45) and c -  altered to give (cij +1+ c i j .1)/2. 

This leads to the scheme

(!+2r)Cj j+1=2r(Cj 1j+ c i+1j )+ ( l -2 r ) c ij.j . (5 .46)

Returning to our problem, in order to solve the first set of 

equations for ci>2, we calculate the solution along the first time- 

level by using the explicit scheme

(c i , j+ rc i,j)/8 t= (c i-i,j-2c i,j+ci+i,j) / (5 x ) 2 •

The initial data along t=0 are known and so we calculate the

concentration when x=0 by using the analytical solution (5.14),

where at x=0 we have c(0,t)=0.5-2V(t/7t) (see tables of results in

chapter-6-).

Fig-5.4- Position of the moving boundary with respect to time 
using the values of table T-6.22-

2e-l

0e+0
1.2e+01.0e+08.0e-l6.0e-l4.0e-l2.0e-l0.0e+0

Moving boundary xO
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5.6. The B erger et al Problem.

Berger et al (1975) proved satisfactory graphical results for 

the Crank Gupta oxygen problem. They also examined a similar 

oxygen comsuption problem but modified the initial and fixed 

boundary conditions, 

i.e they obtained a solution of ct=cxx- l

satisfying c= cx=0 for x=s(t). For the same s(t) look for a solution

of the form c=f(x+t-l)=f(z)

tak ing  x=l-t = s(t) .

Then c t=f'=df/dz

Finally we can solve the problem using the numerical method

and so

cxx=f"=d2f/dz2 

d f /d z = (d 2f /d z 2) -1

If df/dz=p then p=(dp/dz)-l,

x-t+ l+B

leading to

c x “ A e
( x + t - l ) -1

When x = 1 -t c=A+B,

Hence

and

leading to 

an d

mentioned above.
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5.7. T he C y lind rica l P rob lem

A general version of the oxygen problem in cylindrically 

shaped sections of tissue is described by Galib, Bruch and Soloss 

(1981). They assumed the following analytic expression for c 

which satisfies the tissue boundary conditions and which is zero 

and has a zero normal flux on the moving boundary 

c(x,e,t)=O.5[p(e,t)-r]2-[p(6,t)-r]3/(3[p(0,t)-ri]) 

and in non-dimensional terms the mathematical problem in two 

d im ensions (r, and 0) and time, in cylindrical coordinates is 

defined by the equation

ct- cxx + (cxW + (cee/x2) + f(x,0,t,c) (5.47)

where c (x ,0 ,t) is the oxygen concentration in the tissue, x is the 

radial coordinate , 0 is the angular coordinate, t is time and 

f (x ,0 ,t,c) is the rate of absorption of oxygen. p(0 ,t) is the position 

of the moving boundary, rj the sealed surface radius and r0 the 

outer tissue radius. The boundary radius conditions are

c(p,0 ,t)=O (5.48a)

cr(p,0 ,t)=O (5 .48b)

ce(p,0 ,t)=O (5.48c)

cr(ri,0,t)=O, (5.48d)

and c(ro,0 ,t)=O. (5.48e)

The absorption function is found by substituting this expression 

for c into the partial differential equation (5.47). For numerical 

solution, the finite difference equations are formulated using the
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Crank-Nicolson method ( details are given by Galib et al (1981)).

The one dimensional oxygen diffusion problem solved by 

Crank and Gupta can be posed in terms of cylindrical coordinates.

Assuming that the concentration c is independent of 0, the 

equation is

(5 .49a)

Taking the boundary to be the unit cylinder (x= l)

the boundary conditions are:

at the boundary of the cylinder (x= l)

cx=0

and on the moving boundary 

c=cx=0

t>0 (5 .49b)

(x=s(t))

t>0 . (5.49c)

Initially (t=0) the moving boundary is at x=x1=s(0),

and c satisfies

d 2c /dx 2 + (dc/dx)x - 1=0

This has the solution

c=0.25x2 +A ln(x) +B 

and the boundary conditions (x= l ,  x=Xj) give

A=-0.5 x , 2 B=0.5(xi2)ln (x ,)-0 .25x ,2

so that

c=0 .25(x2-x ,2)-0 .5x ,2(ln(x)-ln(x1)) (5.49d)

Note that from this initial solution ,

c x=0 .5x-0 .5 (x ,2/x)
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at the surface of the cylinder (x= l)

c = 0 .2 5 ( l-Xl2) + 0.5xj2 ln(xl) 

a n d  cx=0.5 ( 1-Xl2)

Because of the condition cx=0> x= l, t>0

the solution has therefore a singularity at the point x= l, t=0 ,

as well as a moving boundary.

OXYGEN

M oving
Surface

In s id e  P ro b lem

OXYGEN

Moving
Surface

O utside  P rob lem

F ig - 5 .5

Finally there are two different problems to consider. The 

oxygen may be outside the cylinder and diffusing into the 

medium inside the cylinder where it is absorbed. Thus the 

equations hold inside the cylinder. Alternatively, the oxygen may 

be inside the cylinder and diffusing into the surounding medium 

as in Galib et al (1981). In this case the problem is solved outside 

the cylinder. These two cases will be considered separately.
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5.8. Oxygen Diffusion Inside The Cylinder.

The problem involves the solution of the equation

u t= u x x +  (ux/x)-l t>0 s(t)<x<l (5 .50a)

with u=ux=0, x=s(t), t>0, s(0)=Xj(5.50b)

ux=0  x=l t>0, (5 .50c)

and u=0.25(x2-x ,2)-0.5x12(ln(x)-ln(x1))> Xl< x< l,t= 0  (5 .50d)

(see Fig-5.6-)

x = x l  x = l

F - 1 ------------------------------------

s ( l ) =0 (Fixed)
M o v in g

F i g - 5 . 6-

The problem has a singularity at the point (x=l, t=0) so that an 

approximate analytical solution must be found for the first values 

of t.

5 .9 .  A p p ro x im a te  A naly tica l Solu tion

It is known (see e.g Gray, Matthews and MacRobert 1952) 

that solutions of the homogenous partial differential equation

c ^ + x ' c ,  (5 .51)

are of the form
2

c= e 1 (CJ 0(U )  +DY0 (Xx))
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where Jq(A,x) ,  Yq(A ,x )  are Bessel function of order zero. This 

suggests that we should look for a series solution of the form 

c=a0(t) + X a s(t) (CJ0(Xsx) +DY0(Xsx»  .
S

W riting

u(x)= C J0(Xx) + DY0( U ) , 

we note that u satisfies

, -1 2 n
Uxx +  X Ux U=® •

Hence

c t=da0/dt + S a s (uxx +x'’uJ) = S a s Xs2 us .
s s

Equating coefficients, we get 

d a 0/dt= -1 , 

d a s/dt= -a<As2 s>l 

giving a0= A 0-t as= A se-^s t

and c=A0-t + Z A se-Xs2t (J0(^sx) + ksY0(Xsx)) .
S

When t=0, we have

c(0,x)=0.25 (x2-x12)-0 .5 x 1(ln(x))-ln(x1))= f(x) 

so that we require the Fourier Bessel Expansion

f(x)= Aq + 5 ^ A s (CJ0(^sx)  +DYq(X,sx ))  .

s

For the inside problem, c remains finite as x—>0 so that ks=0 and 

we can consider the expansion

f(x)=A0 + X a s J0( V )
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5.9.1. Expansion in terms o f  Bessel Functions 

If are constant then

(H2-X2)JxJ0(kx)J0(tix )d x= U 0'(X)J0(n)-nJ0'(n)J0W
0

a n d  !

^xJ0i (U )dx=0.5[J0z(X)+J0,‘(X)]J , . t 2 , , . ^  c r ,  2 , , , . r  .2,

0

Hence, for the expansion

f(x)=A0 +I A S J0(Xsx)
S

on multiplying by x, if s=0 or xJ0(Xsx) otherwise and integrating 

over the range 0,1

if  J0W =0 , (the usual case)

we get A0=0 ,

l i

A s=(Jxf(x)J0(Xsx)dx)/(JxJ02(Xsx)dx)  
o 0

1

=2 (Jxf(x)J0(Xsx )d x )/J ,2( \ s) s>l ,

0

1
whereas if J0 (k)=0 >

we get a  o

i '
A n= J x f (x )d x ) / ( J x d x )
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1 1

A s=(Jxf(x)J0(Xsx ) d x ) / J x J 02(A.sx)dx) 
0 o

1

=2(Ixf(x)J0( V ) d x ) / J 02(Jls) s>l . 
0

We require to find the Fourier Bessel expansion of 

f(x )=0.25(x2-x 12)-0 .5x12(ln(x)-ln(x1))

5.9.2. Bessel Function Integrals.

JxmJ0(x)dx=xmJ1(x)-(rn-l)Jx^m 1̂ J1(x)dx  

=xmJ1(x)+(rn-l)Jx(m 1)J0'(x)dx 

=xmJ1(x)+(rn-l)x(m'1)J0(x )- (m -l)2Jx(m 2)J0(x)dx  

JxJ0(x)dx=xJ1(x)

so that

Jx3J0(x)dx=x3J 1(x)+2x2J0(x)-4xJ1(x)

= ( x3 - 4 x ) J 1( x ) + 2 x 2J 0( x )

Jln(x)xJO(x)dx=xln(x)J1(x)+J0(x)

5.9.3. After some algebra, we find that 

{A, is root of J 1(A)=0}

l
A,2JxJ0(x)d x=A J^A ) ,

0
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1

X.4] x 3J0(x)dx=(X3-4X)J1(X) + 2 l \ ( X )  ,
0

a n d 1

X2Jln(x)xJ0(x)dx=J0(X) -1,
0

so that

A s= [(1 -X, 2) J0(Xs)+ x! 2]/Xs2J02(Xs) 

and A Q= 0 .125+0.5 x j2 l n ^ )

5.10. Oxygen Diffusion Outside The cylinder.

The problem is to solve

u t= u xx+ ( u x/ x ) - l , t > 0 , ( l < x < X i )  S(t)<Xj 

w it h  u = u x= 0 ,  x=s(t) ,  t>0,  s ( 0 ) = x 1= 2

u x= 0  x = l  t>0

u = 0 . 2 5 ( x 2- x 12) - 0 . 5 x 12( l n ( x ) - l n ( x 1)), 1<x<Xj=2, t=0.

5.10.1. Approximate Analytical Solution

We assume a series solution of the following form

u(x,t)=a0( t)+ X as(t)CsJ0(Xsx)+DsY0( l sx)
s

where J0(^ sx), YQ(A,sx) are Bessel functions of order zero 

The solution has to satisfy the boundary conditions. In 

satisfy the boundary condition at x=l, we require 

CSJ0'(^S) +DsY'(Xs)=0, 

i.e assume the expansion of the following form

(5.52)

(5 .53)

(5 .54a)

(5 .54b)

(5.54c)

(5 .54d)

(5.55)

order to 

(5 .56)
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u(x,t)=a0( t )+ X a s(t){J0(Jisx)/J0'(Xsx) -Y0(Xsx)/Y0'(A.s) } (5 .5 7 )
S

To satisfy the boundary condition at x=Xj, the values of A.s are 

given by

J 0(^sx i ) W s )  -Y0a ,X i ) /Y 0,a s)=0  (5 .5 8 )

The coefficients as(t) are given as before, i.e

ao(t )= ^ o" t

, / \ A "^S^ta n d  as( t ) - A se 

In this case A0=0,

A S=PS/Q S s>l

x

w h e r e  P S=I xf(x){J0(Xsx)/Jo'(Xs) -Y0(Xsx)/Y0'(^s)}2dx

x l

Q  = J  x{J0(Xsx)/Jo’(Xs) -Y0(Xsx)/Y0'(Xs)} d x = 0 .5 {x 12[J0,(XIx 1)/J0'(XI)]

Y0'(Xsx 1)/Y0'(Xs)]2-[J0(Xs)/J0'(A.s) -Y0(Xs)/Y0'(X5)]2).

(5 .5 9 )

Using the expressions for the integrals in sec 5.9.2. which are also 

true for Y0, 

we get

A s={-xitJi(^sx i)/Jo,(^s)-yi(^sxi)/yo,̂ s )l/A's3+0-5(xi2' 1)[Jo(Xs)/Jo,(Xs>-

yo(^s)/yo,» s))/x s2)/Qs s21 ( 5 -6 0 )
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For the analytic^ and the numerical solutions, we use the same 

methods as mentioned for the inside problem, but the boundary 

conditions are different, (see Fig-5.8-).

x = x l = 2

3x
( F ix e d )

s ( t )
M o v i n g

c = 3c/3x = 0
F i g - 5 . 8 -

Here in the numerical solution, for the interval 0.1, we have 

solved the problem using the analytical solution for the first three 

steps, but for the interval 0.05 we get the initial values from the 

formula (5.54d). See numerical results in tables (6.30, 6.31, 6.32) 

in chapter-6 -.

5.11. N um erica l Solution of Cylindrical Problem s

For the numerical solution of the problem (5.49) we use the 

development of Taylor series near the moving boundary in the 

space direction where Crank used Lagrange type formula in the 

cartesian problem, (see Fig-5.7-)
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We get

u xX= ( 2 / ( 8 x ) 2)[Uj_i/(p+l)-Uj/p+uB/ ( p ( p + l ) )  uB=0 (5 .61)

a n d

u x= ( l /5 x ) [ -p u j_1/ (p + l )+ (p - l )u j/p+ u B/(p (p + l) )  uB=0  (5 .62)

A pply ing  f ini te d ifferences to (5.49a) we ca lcu la te  the 

concentration from the following equations

u 0,j+i= 2 r (u i,r u0,j)+u0, r 5t r=8t / (8x)2 (5 .63)

V j  + l =  r ( 1 ' ° - 5 ( 1/ ( ( 1/ 5 x ) +  n ) ) )Un - lJ + ( 1 ' 2 r )UnJ +  r( 1 + 0 - 5 ( 1/ ( ( l / 5 x ) + n )))Un,+ l,j+6t

n=l,2,3, . . . .  (i-2) (5 .64)

a n d

u i- i , j+ i  =  u i - i j + 2 r ( u i-2 ,j / (Pj+ 1 ) - u i. 1j / P j ) + ( ( 8 t / 6 x ) ( ( - p j U i. 2j ) / ( P j + l )  +

(pj- l ) u i. 1j /p j))/(( i- l)5x)+ 8 t (5 .65)

For the position of the moving boundary and conditions crossing a 

mesh line, we use the same methods as in (5.4.1.) & (5.4.2.). (see 

numerical results in chapter-6 -).

Finally the concentration at the intermediate points between 

the two boundaries has been calculated by equations (5.63) and
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(5.64), but near the moving boundary by (5.65). The location of 

the moving boundary point and conditions crossing the mesh line 

are the same as in the cartesian problem.
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C h a p t e r - 6 -

Conclusion
&

Numerical Results
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6.1. Summary

In general finite difference equations are used to solve 

in itial value and boundary-value problems. It is required that 

fin ite  d ifference equations be everywhere reasonably accurate, 

that is the local truncation error is small and the step by step 

process in t direction is stable.

In chapter Three the results are agree quite well where

using different methods of calculations of time step and specially

in cartesian problem are agree with those obtained by Douglas &

Gallie and Gupta & Kumar where in every method, the implicit

formula was used. For The simplest explicit scheme the results are

not close to the results given when using the implicit scheme, may
2

be because of the process is stable only for 0<8t/(8x) <d where d is 

a num ber depending on which formula is used (0.5 for simple

explicit).(tables 6.1__6.11 for cartesian problem). The method of

G upta and Kumar has been applied to sim ilar problem  in 

cylindrical coordinates using other techniques and finding the 

solution both inside and outside cylinder.(tables 6.12, 6.13, 6.16, 

6.17 for outside cylinder and tables 6.14, 6.15, 6.18, 6.19 for 

inside cylinder).

In chapter four we have presented an alternative fixed 

domain transform ation by replacing time by boundary position, 

appropriate one moving boundary in one space dimension and the
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results are agree quite well with those found by Morland(1982) 

but the number of iteration is different.(see tables 6.20 and 6.21).

In chapter five, agreement for cartesianproblem with results 

of Crank and Gupta. Emphasis the importance of using the 

approxim ate analytical solution for the first few steps. We note 

that as the mesh size decrease, the position of the moving 

boundary as given by Crank and Gupta changes significantly. We 

therefore consider that the values as given by them are too

small (tables 6.22__6.26 for cartesian problem). The method has

been applied to a sim ilar problem in cylindrical coordinates, 

finding the solution both inside and outside the cylinder. We 

obtained an approximate analytical solution in each case to deal

with singularity. The results (tables 6.27___6.29 for the inside

problem  and tables 6.30___6.32 for the outside Problem) show

that an accurate solution can be obtained.

F inally for more details about Fourier-Bessel expanssions 

and the roots of J q(1 s ) , Y q(1s ) etc see (Bickley(1953), W atson(1944), 

N.B.S of Appl.Math series55 (1964), and Appendix C in thesis).
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6.2. Numerical Results for Ice Melting Problem

Com parison of time step At, t time, r radius, k iteration number 

and the surface temperature u(0,t). The upper entry corresponds 

to m ethod 3 .4 , the middle to 3 .6 , and the lower to 3.8. In 3.6
(k)

and 3 .8 , Atj is calculated by (3.46) . Ax=0.01

s ( t ) A t t k u( 0 , t )

0.012 0.2172 2 0.1858
0.2 0.012 0.2171 2 0.1858

0.012 0.2170 2 0.1859

0.012 0.3378 2 0.2709
0.3 0.012 0.3378 2 0.2709

0.012 0.3375 2 0.2710

0.013 0.4655 2 0.3525
fl A 0.013 0.4655 2 0.3525U .4 0.013 0.4652 2 0.3527

0.014 0.5999 2 0.4313
0.014 0.5999 2 0.4314

0.5 0.014 0.5994 2 0.4316

0.014 0.7405 2 0.5078
A  / 0.014 0.7405 2 0.5080
0 .6 0.014 0.7400 2 0.5082

0.015 1.0396 2 0.6553
0 8 0.015 1.0396 2 0.6555u .o

0.015 1.0388 2 0.6558

0.017 1.3608 1 0.7967
0.017 1.3609 2 0.7971

1.0 0.017 1.3598 2 0.7974

T a b l e - 6 . 1 -
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Comparison of time step Atj, t time, r radius, k iteration number 

and the surface temperature u(0,t). The upper entry corresponds 

to method 3 .4 , the middle to 3 .6 , and the lower to 3 .8 . In 3 .6  and
(k)

3 .8 , Atj is calculated by (3.46). A x=0.0125

s(t) At t k u(0,t)

0.015 0.2169 2 0.1859
0.2 0.015 0.2169 2 0.1860

0.015 0.2168 2 0.1860

0.016 0.4651 2 0.3527
0.4 0.016 0.4651 2 0.3528

0.016 0.4647 2 0.3529

0.018 0.7400 2 0.5081

0.6 0.018 0.7399 2 0.5082
0.018 0.7392 2 0.5085

0.019 1.0389 2 0.6556

0.8 0.019 1.0388 2 0.6558
0.019 1.0378 2 0.6561

0.021 1.3600 2 0.7971

1.0 0.021 1.3600 2 0.7974
0.021 1.3586 2 0.7977

T a b l e - 6 .2 -
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Com parison of time step Atj, t time, r radius, k iteration number 

and the surface temperature u(0,t). The upper entry corresponds

to method 3 .4 , the middle to 3.6 and the lower to 3.8. In 3 .6  and
(k)

3 .8 , Atj is calculated by (3.46). A x=0.025.

s ( t ) A t t k u(0,t)

0.029 0.2158 2 0.1867
0.2 0.029 0.2158 2 0.1867

0.029 0.2155 2 0.1869

0.032 0.4631 2 0.3537
0.4 0.032 0.4630 2 0.3538

0.032 0.4621 2 0.3542

0.036 0.7371 2 0.5093
0.6 0.036 0.7369 2 0.5095

0.036 0.7355 2 0.5100

0.039 1.0351 2 0.6569
0.8 0.039 1.0349 2 0.6572

0.038 1.0328 2 0.6578

0.041 1.3555 2 0.7984

1.0 0.041 1.3552 2 0.7989
0.041 1.3525 2 0.7996

T a b l e - 6 . 3 -
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Comparison of time step Atj, t time, r radius, k iteration number 

and the surface temperature u(0,t). The upper entry corresponds 

to method 3.4 the middle to 3.6 and the lower to 3 .8 . In 3.6 a n d

3 .8 , Atj(k  ̂ is calculated by (3.46). Ax=0.05.

s ( t ) A t t k u (0 ,t)

0.057 0.2136 2 0.1882
0.2 0.057 0.2136 3 0.1882

0.056 0.2132 3 0.1885

0.064 0.4590 2 0.3559
0.4 0.064 0.4590 3 0.3559

0.064 0.4577 3 0.3566

0.070 0.7312 2 0.5117
0.6 0.070 0.7314 3 0.5119

0.070 0.7290 3 0.5128

0.076 1.0278 3 0.6596
0.8 0.076 1.0280 3 0.6598

0.076 1.0245 3 0.6609

0.082 1.3466 3 0.8015
1.0 0.082 1.3469 3 0.8016

0.081 1.3422 3 0.8029
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Comparison of time step At, t time, radius, k iteration number and 

the surface temperature u(0,t). The upper entry corresponds to

m ethod 3 .4  the middle to 3 .6  and the lower to 3 .8 . In 3 .6  and
(k)

3 .8 , Atj is calculated by (3.46). Ax=0.1

s ( t) A t t k u(0 ,t)

0.109 0.2092 2 0.1916
0.2 0.109 0.2092 3 0.1916

0.109 0.2086 3 0.1921

0.124 0.4508 2 0.3604
0.4 0.125 0.4509 3 0.3604

0.123 0.4483 4 0.3619

0.138 0.7197 3 0.5171
0.6 0.138 0.7199 3 0.5170

0.136 0.7149 4 0.5192

0.150 1.0129 3 0.6653
0.8 0.150 1.0134 3 0.6653

0.148 1.0057 4 0.6680

0.161 1.3286 3 0.8074

1.0 0.161 1.3294 3 0.8073
0.159 1.3190 4 0.8105
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Com parison of time stepAtj, t time, r radius, k iteration number 

and the surface temperature u(0,t). The upper entry corresponds 

to m ethod 3 .6  and the lower to 3.8 and Atj is calculated by

(3.47), Ax=0.01

s(t) At t k u(0,t)

0.2 0.012 0.2164 2 0.1858
0.012 0.2163 2 0.1858

0.4 0.013 0.4641 2 0.3524
0.013 0.4638 2 0.3526

n a 0.014 0.7387 2 0.5078
u.o

0.014 0.7382 2 0.5080

0.015 1.0374 2 0.6553
0.8 0.015 1.0366 2 0.6556

1 0 0.017 1.3583 2 0.7969
1 .u

0.017 1.3573 2 0.7972
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Comparison of time step Atj, t time, r radius, k iteration number 

and the surface temperature u(0,t). The upper entry corresponds 

to method 3 .6  and the lower to 3 .8  and A t j ^  is calculated by

(3.47), Ax=0.1

s ( t) A t t k u (0, t)

0.2 0.105 0.2046 2 0.1913
0.104 0.2044 2 0.1916

0.121 0.4394 3 0.3596
0.4 0.120 0.4377 3 0.3610

A A 0.135 0.7030 3 0.5158
0.6 0.134 0.6994 3 0.5178

A A 0.147 0.9919 3 0.6638
0.8

0.146 0.9861 3 0.6663

0.159 1.3038 3 0.8057
1.0 0.158 1.2958 3 0.8085
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Comparison of time step At, t time, r radius, k iteration number 

and the surface temperature u(0,t). The upper entry corresponds 

to method 3.6 and the lower to 3.8 and Atj is calculated by (3.48), 

Ax=0.01

s ( t) A t t k u(0 ,t)

0.2 0 .012 0.2180 2 0 .1859
0.012 0.2179 2 0.1859

A A 0.013 0.4672 2 0.3527
0.4 0.013 0.4669 2 0.3528

n r 0.014 0.7430 2 0.5082
u  . o

0.014 0.7424 2 0.5084

0.016 1.0428 2 0.6558
0.8 0.016 1.0420 2 0.6560

1.0 0.017 1.3648 2 0.7974
0.017 1.3637 2 0.7977
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Comparison of time step Atj^ t time, r ra<jius? ^ iteration number 

and the surface temperature u(0,t). The upper entry corresponds 

to method 3.6 and the lower to 3.8 and Atj is calculated by (3.48),

Ax^O.l

s ( t ) A t t k u (0 ,t)

0.2 0.114 0.2136 3 0.1919
0.113 0.2127 3 0.1926

0.129 0.4635 3 0.3615
0.4 0.127 0.4605 4 0.3630

0.141 0.7402 3 0.5188
0.6 0.140 0.7346 4 0.5210

A  A 0.153 1.0408 3 0.6677
0.8

0.152 1.0325 4 0.6704

0.164 1.3637 3 0.8104
1.0 0.163 1.3526 4 0.8134
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Com parison of time stepAtj, time, r radius, k iteration number and 

the surface tem perature u(0,t). The upper entry corresponds to 

m ethod 3.6 and the lower to 3.8 and Atj^k  ̂ is calculated by (3.49),

Ax=0.01

s(t) A t t k u (0 ,t)

0.2 0.012 0.2173 2 0.1858
0.012 0.2172 2 0.1859

0.013 0.4658 2 0.3526
0.4 0.013 0.4655 2 0.3527

0.014 0.7412 2 0.5080
0.6 0.014 0.7406 2 0.5082

0.016 1.0406 2 0.6556
0.8

0.015 1.0398 2 0.6558

0.017 1.3622 2 0.7972
1 .U

0.017 1.3612 2 0.7975

T ab le-6 .10 -
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Comparison of time step Atj, t time, r radius, k iteration number 

and the surface temperature u(0,t). The upper entry corresponds 

to m ethod 3 .6  and the lower to 3.8 and Atj is calculated by 

(3.49), Ax=0.1

s ( t) A t t k u (0, t)

0.2 0.109
0.109

0.2092
0.2089

2
3

0.1916
0.1922

0.4
0.125 0.4523 3 0.3607
0.124 0.4503 3 0.3621

0.6
0.139 0.7236 3 0.5177
0.138 0.7194 3 0.5196

0.8 0.151 1.0197 3 0.6663
0.150 1.0132 3 0.6687

1.0 0.162
0.161

1.3385 
1.3296

3
3

0.8088
0.8115
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Comparison of time step Atj, t time, r radius, k iteration number 

and the surface temperature u(0,t) using the method 3.6 and the 

techniques described in 3.11.1 in solving cylindrical problem. The 

upper entry corresponds to Atj calculated by (3.46), the second by

(3.47), the third by (3.48) and the lower by (3.49),Ax=0.01

s(t) A t k u(0 ,t)

0.013 0.2354 2 0.1731
0.013 0.2338 2 0.1731

0.2 0.014 0.2363 2 0.1731
0.013 0.2347 2 0.1731

0.017 0.5398 2 0.3118
0.017 0.5368 2 0.3117

0.4 0.017 0.5416 2 0.3119
0.017 0.5385 2 0.3118

0.020 0.9089 2 0.4306
0.020 0.9045 2 0.4305

0.6 0.020 0.9114 2 0.4307

0.020 0.9071 2 0.4305

0.023 1.3405 2 0.5355

0.023 1.3349 2 0.5353

0.8 0.023 1.3439 2 0.5355

0.023 1.3383 2 0.5354

0.026 1.8334 2 0.6298

0.026 1.8267 2 0.6296

1.0 0.026 1.8376 2 0.6298

0.026 1.8308 2 0.6297
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Com parison of time step Atj, t time, r radius, k iteration number 

and the surface temperature u(0,t) using the method 3 .6  and the 

techniques described in 3.11.1 in solving cylindrical problem. The 

upper entry corresponds to Atj calculated by (3.46), the second by

(3.47), the third by (3.48) and the lower by (3.49), Ax=0.1

s( t ) At t k u (0, t)

0.118 0.2184 3 0.1845

n p 0.109 0.2087 2 0.1839
0.123 0.2229 3 0.1847
0.113 0.2134 3 0.1842

0.152 0.5055 3 0.3286
0.144 0.4802 3 0.3275

0.4 0.156 0.5185 3 0.3292
0.1.48 0.4934 3 0.3281

0.183 0.8562 4 0.4516

n £ 0.176 0.8171 3 0.4502
U.o

0.187 0.8774 3 0.4523
0.180 0.8385 3 0.4510

0.213 1.2680 4 0.5602

n q 0.207 1.2162 3 0.5586
U.o

0.217 1.2973 3 0.5610

0.211 1.2455 3 0.5595

0.243 1.7396 3 0.6577

0.237 1.6758 3 0.6561
1.0 0.247 1.7769 3 0.6587

0.241 1.7127 3 0.6572
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Comparison of time step Atj, t time, r radius, k iteration number 

and the surface temperature u(0,t) using the method 3 .6  and the 

techniques described in 3.11.2 in solving cylindrical problem. The 

upper entry corresponds to Atj calculated by (3.46), the second by

(3.47), the third by (3.48) and the lower by (3.49), A x=0.01

s( t ) At t k u(0,t)

0.010 0.2010 1 0.1992

0.2 0.010 0.2009 1 0.1992
0.010 0.2019 1 0.1993
0.010 0.2018 1 0.1992

0.010 0.4065 1 0.3958
0.010 0.4063 1 0.3957

0.4 0.010 0.4081 1 0.3960
0.010 0.4079 1 0.3959

0.011 0.6182 1 0.5900

0 fi 0.011 0.6179 0.5900
u ,u

0.011 0.6205 1 0.5904

0.011 0.6202 1 0.5904

0.011 0.8369 1 0.7827

0.011 0.8364 1 0.7826
0.8 0.011 0.8399 1 0.7833

0.011 0.8395 1 0.7832

0.011 1.0629 1 0.9744

0.011 1.0624 1 0.9742
1.0 0.012 1.0665 1 0.9751

0.012 1.0660 1 0.9750
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Comparison of time step Atj, t time, r radius, k iteration number 

and the surface temperature u(0,t) using the method 3 .6  and the 

techniques described in 3.11.2 in solving cylindrical problem. The 

upper entry corresponds to Atj calculated by (3.46), the second by

(3.47), the third by (3.48) and the lower by (3.49), Ax=0.1

s( t ) At t k u(0,t)

0.101 0.2008 2 0.1992

n o 0.100 0.2004 1 0.1991u.z
0.105 0.2052 3 0.1996
0.105 0.2050 2 0.1996

0.103 0.4061 2 0.3950

A A 0.103 0.4047 2 0.3947
0.4 0.107 0.4184 2 0.3967

0.107 0.4174 2 0.3964

0.107 0.6179 3 0.5874

A S ' 0.106 0.6151 2 0.5871
0.6

0.110 0.6372 3 0.5910
0.110 0.6350 2 0.5906

0.110 0.8367 3 0.7779

A o 0.110 0.8324 2 0.7774
0.8

0.114 0.8625 3 0.7832

0.113 0.8589 2 0.7827

0.114 1.0629 3 0.9671

0.113 1.0571 2 0.9664
1.0

0.117 1.0948 3 0.9741

0.116 1.0898 2 0.9735
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Comparison of time step Atj, t time, r radius, k iteration number 

and the surface temperature u(0,t) using the method 3 .6  and the 

te c h n iq u e s  d escribed  in 3 .11.3 in so lv ing  cy lin d ric a l 

problem (outside cylinder). The upper entry corresponds to Atj 

calculated by (3.46), the second by (3.47), the third by (3.48) and

the lower by (3.49), Ax=0.01

s(t) At t k u(0,t)

0.013 0.2362 2 0.1732

n o 0.013 0.2345 2 0.1732
0.014 0.2371 2 0.1732
0.013 0.2354 2 0.1732

0.017 0.5412 2 0.3120

n a 0.017 0.5382 2 0.3119
0.017 0.5430 2 0.3121
0.017 0.5399 2 0.3120

0.020 0.9109 2 0.4309

n c 0.020 0.9066 2 0.4307
U.b

0.020 0.9135 2 0.4310

0.020 0.9091 2 0.4308

0.023 1.3431 2 0.5358

n  o 0.023 1.3376 2 0.5356
U.o

0.023 1.3465 2 0.5359

0.023 1.3409 2 0.5357

0.026 1.8367 2 0.6301

0.026 1.8299 2 0.6299
1.0 0.026 1.8408 2 0.6302

0.026 1.8341 2 0.6300
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Com parison of time step Atj^ t time, r radius, k iteration number 

and the surface temperature u(0,t) using the method 3 .6  and the 

te c h n iq u e s  d esc rib ed  in 3 .11.3  in so lv in g  c y lin d ric a l 

problem (outside cylinder). The upper entry corresponds to A tj

calculated by (3.46, the second by (3.47), the third by (3.48) and 

the lower by (3.49), A x=0.1

s(t) At t k u(0,t)

0.125 0.2252 4 0.1799

0.2 0.1 12 0.2120 3 0.1786
0.129 0.2295 4 0.1802
0.1 17 0.2165 3 0.1791

0.154 0.5174 4 0.3283
0.147 0.4910 3 0.3267

0.4 0.158 0.5301 4 0.3288
0.151 0.5039 3 0.3274

0.186 0.8744 4 0.4531

0.6 0.180 0.8346 3 0.4518
0.190 0.8952 4 0.4539
0.184 0.8556 3 0.4526

0.216 1.2920 4 0.5624
0.210 1.2397 3 0.5609

0.8 0.220 1.3207 4 0.5633
0.214 1.2685 3 0.5618

0.246 1.7695 4 0.6605
0.240 1.7054 3 0.6589

1.0 0.250
0.244

1.8060 4 0.6614
1.7418 3 0.6599
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Com parison of time step A tj  ̂ t time, r radius, k iteration number 

and the surface temperature u(0,t) using the method 3 .6  and the 

te c h n iq u e s  d esc rib ed  in 3 .11.3  in so lv ing  c y lin d ric a l 

p roblem (inside cylinder). The upper entry corresponds to A tj 

calculated by (3.46), the second by (3.47), the third by (3.48) and

the lower by (3.49), Ax=0.01

s(t) At t k u(0,t)

0.010 0.1978 1 0.2009
0.010 0.1979 1 0.2009

0.2 0.010 0.1987 1 0.2010
0.010 0.1988 1 0.2010

0.009 0.3888 1 0.4051

0 4 0.009 0.3891 1 0.4051
0.009 0.3904 1 0.4053
0.009 0.3907 1 0.4054

0.008 0.5661 2 0.6104
0.008 0.5667 2 0.6107

u.o
0.008 0.5684 2 0.61 10
0.008 0.5690 2 0.61 13

0.007 0.7196 2 0.8061
0.007 0.7207 2 0.8070

0.8 0.007 0.7225 2 0.8071
0.007 0.7236 2 0.8081

0.002 0.8178 4 0.9451

0.002 0.8205 3 0.9483
1.0 0.002 0.8212 4 0.9467

0.002 0.8240 3 0.9500
T a b le - 6 .18-
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Com parison of time step A tj, t time, r radius, k iteration number 

and the surface temperature u(0,t) using the method 3.6 and the 

te c h n iq u e s  d e sc rib e d  in 3 .11.3  in so lv ing  cy lind rica l 

problem (inside cylinder). The upper entry corresponds to A tj, 

calculated by (3.46), the second by (3.47), the third by (3.48) and 

the lower by (3.49), Ax=0.1

s(t) At t k U(0,t)

0.2

0.092
0.095
0.096
0.100

0.1917
0.1954
0.1958
0.1997

3
2
3
1

0.2090
0.2096
0.2099
0.2107

0.4

0.091
0.092
0.094
0.096

0.3764
0.3806
0.3879
0.3926

4
2
4
2

0.4106
0.4126
0.4133
0.4155

0.6

0.083
0.084
0.086
0.088

0.5470
0.5533
0.5651
0.5719

5
3
4 
3

0.6151
0.6175
0.6200
0.6230

0.8

0.071
0.073
0.073
0.075

0.6953
0.7055
0.7189
0.7298

6
4
5 
3

0.8120
0.8182
0.8219
0.8284

1.0

0.045
0.049
0.047
0.052

0.801 1 
0.8180 
0.8293 
0 8477

8
5
7
4

0.9669
0.9834
0.9831
0.9989
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Comparison of boundary velocity ¥, t time, N iteration number and 

the surface temperature c(0,s)

s(t) ¥ t N c(0,s)

0.00 1.00000 0.00000 6 0.00000
0.20 0.85547 0.21728 6 0.18587
0.30 0.80459 0.33792 6 0.27102
0.40 0.76247 0.46568 6 0.35270
0.50 0.72666 0.60009 6 0.43161
0.60 0.69563 0.74080 6 0.50821
0.70 0.66832 0.88752 6 0.58286
1.00 0.60233 1.36140 6 0.79747
1.20 0.56765 1.70367 6 0.93436
1.37 0.54229 2.01021 5 1.04762
3.00 0.39588 5.59289 5 2.04103
4.00 0.34634 8.30208 5 2.59902
4.50 0.32702 9.78863 5 2.86848
4.80 0.31670 10.72100 5 3.02762
5.00 0.31026 11.35908 5 3.13276

r=k=0.5 and h=0.01 
Table-6.20-

103



Comparison of boundary velocity ¥, t time, N iteration number and 

the surface temperature c(0,s).

s(t) ¥ t N c(0,s)

0.20 0.8583 0.2168 5 0.1865
0.26 0.8262 0.2881 6 0.2382
0.34 0.7890 0.3872 5 0.3050
0.40 0.7644 0.4644 5 0.3537
0.80 0.6452 1.0375 5 0.6572
2.00 0.4707 3.2572 5 1.4502
3.00 0.3962 5.5854 5 2.0432
4.00 0.3466 8.2927 5 2.6013
5.00 0.3104 11.3479 5 3.1352
6.00 0.2826 14.7291 5 3.6507
6.40 0.2732 16.1691 5 3.8527
7.00 0.2604 18.4197 5 4.1417
8.00 0.2421 22.4065 5 4.6408

10.00 0.2135 31.2271 5 5.5900

r=k=0.5 and h=0.02 
Table-6.21-
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6.3. N u m erica l R esults for Oxygen Diffusion Problem

The values of 10 c and the position of the moving boundary using 
the simplest explicit formula

8t=0.001 and 8x=0.1

0 .1 0.3 0.5 0.7 0.9
Moving
boundary

0.005 391612 244916 125000 45000 5000 1.00000
0 . 0 1 0 369057 243388 124980 45000 5000 1.00000

0.015 348136 239577 124785 44996 5000 1.00000
0.025 312219 227335 123070 44880 4996 0.99996

0.045 254960 196340 113442 43024 4779 0.99770
0.060 219368 172360 102444 39543 4123 0.99080

0 . 1 0 0 141031 112108 066643 23345 0546 0.93304
0.130 091927 071106 038379 08763 0 0 0 0 0.84083

0.150 062278 045694 020360 01049 0 0 0 0 0.74581
0.160 048230 033595 012036 00000 0 0 0 0 0.68089

0.180 021597 0 1 1 0 1 0 000000 00000 0 0 0 0 0.49257

0.190 009082 001353 000000 00000 0 0 0 0 0.35201

0.195 003138 0 0 0 0 0 0 0 0 0 0 0 0 00000 0 0 0 0 0.17922

0.196 001809 000000 000000 0 0 0 0 0 0 0 0 0 0.16015

Table-6.22-
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The values o f 10 c and the position of the moving boundary using
the simplest explicit formula

8 t= 0 .0 0 1 and 8 x = 0 .0 0 5

0.1 0.3 0.5 0.7 0 .9
Moving
boundary

0 .0 0 5 3 8 9 1 2 8 2 4 5 0 0 0 125000 45000 5000 1.00000
0 .0 1 0 3 6 5 6 6 8 2 437 2 6 125000 4 5 000 5000 1.00000

0 .0 1 5 3 4 4 8 1 0 2 3 9 6 7 2 124891 45000 5000 1.00000
0 .0 2 5 3 0 9 3 2 8 2 2 6 8 5 4 123264 44931 4999 1.00000

0 .0 4 5 2 5 2 6 5 3 195347 113417 43159 4823 1.00000
0 .0 6 0 2 1 7 3 3 0 171251 102227 39645 4186 0 .9 9 2 2 0

0 .1 0 0 1 3 9 4 1 4 110966 066112 23232 0619 0 .9 3 5 1 8

0 .1 3 0 0 9 0 4 9 2 069995 037728 08541 0 0 0 0 0 .8 4 1 8 9

0 .1 5 0 0 6 0 9 2 8 04 4 6 0 2 019668 01007 0 0 0 0 0 .7 4 4 8 8

0 .1 6 0 0 4 6 9 1 2 032511 011346 0 0 0 0 0 0 0 0 0 0 .6 8 1 2 8

0 .1 8 0 0 2 0 3 2 8 0 0 9 9 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .49607

0 .1 9 0 0 0 7 8 2 7 0 0 0 7 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .33873

0 .1 9 5 0 0 1 9 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .1 6 1 2 8

0 .1 9 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .1 0 2 8 7
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The values of 10 c and the position of the moving boundary using 
The Du Fort-Frankel Scheme

8t=0.001 and 8x=0.1

0 . 1 0 .3 0 .5 0 .7 0 .9
Moving
boundary

0 .0 0 5 3 8 7 2 6 9 24 4 7 6 6 125000 45000 5000 1 .00000
0 .0 1 0 3 6 4 7 3 2 2 4 2 6 2 0 124943 44999 50 0 0 1 .00000

0 . 0 2 0 3 2 5 7 7 9 23 2458 123881 44941 4998 0 .9 9 9 9 8
0 .0 3 0 2 9 3 4 5 4 21 8218 120766 44553 4969 0 .9 9 9 6 9

0 .0 4 0 2 6 5 3 5 2 2 0 2 5 5 0 115673 43520 4841 0 .9 9 8 4 0

0 .0 6 0 2 1 7 1 8 7 170650 101397 39065 3996 0 .9 8 9 4 0

0 .1 0 0 1 3 9 3 3 9 110653 065792 00000 0 0 0 0 0 .8 9 6 4 0

0 .1 3 0 0 9 0 5 6 0 0703 4 5 000000 00000 0000 0 .6 7 5 0 9

0 .1 5 0 0 5 9 4 1 5 0 0 0 0 0 0 000000 00000 0000 0 .4 4 4 7 2

0 .1 6 0 0 4 3 9 2 1 0 0 0 0 0 0 000000 00000 0000 0 .3 9 6 3 8

0 .1 8 0 0 1 6 4 8 5 0 0 0 0 0 0 000000 00000 0000 0 .2 8 1 5 8

0 .1 8 0 0 1 1 7 2 1 0 0 0 0 0 0 000000 00000 0 0 0 0 0 .2 8 1 5 8
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The values o f 10 c and the position of the moving boundary using
the Du Fort-Frankel Scheme

8t= 0 .001  and 5 x = 0 .0 5

0 .1 0 .3 0 .5 0 .7 0 .9
Moving
boundary

0 .0 0 5 3 8 7 9 1 7 2 4 5 0 0 0 125000 45000 5000 1 .00000

0 .0 1 0 3 6 5 7 5 4 2 4 3 7 3 0 125000 45000 5000 1 .00000

0 .0 1 5 3 4 4 3 1 5 2 3 9 2 8 8 124848 45000 5000 1 .00000

0 .0 2 0 3 2 6 1 6 7 2 3 3 7 6 6 124350 44989 5000 1 .00000

0 .0 2 5 3 0 9 0 1 8 2 2 6 4 9 7 123130 00000 0 000 0 .9 9 9 6 2

0 .0 3 0 2 9 3 6 7 0 2 1 9 2 7 0 000000 00000 0 000 0 .9 8 4 5 8

0 .0 3 5 2 7 9 0 0 0 0 0 0 0 0 0 0 00000 00000 0000 0 .8 8 4 8 4

0 .0 3 8 0 0 0 0 0 0 0 0 0 0 0 0 000000 00000 0000 0 .7 9 7 7 7
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Com parison between analytical (5.15) and numerical solutions 

using the sim plest explicit formula for small times. The upper 

entry corresponds to the analytical solution and the lower entry to 

the numerical solutions. Values of 106c and 8x=0.05.

0 .0 0 . 2 0 .4 0 .6 0 .8

0 .0 0 1 464317
460000

320000
320000

180000
180000

080000
080000

020000
020000

0 .0 0 2 449537
452000

319973
320000

180000
180000

080000
080000

020000
020000

0 .0 0 3 438196
437600

319760
320000

180000
180000

080000
080000

020000
020000

0 .0 0 4 428635
429600

319212
320000

180000
180000

080000
080000

020000
020000

0 .0 0 5 420211
420320

318302
318976

179999
180000

080000
080000

020000
020000

0 . 0 1 0 387162
387497

309949
310719

179804
179927

079999
080000

020000
020000

0 . 0 1 5 361802
362071

298690
299304

178766
179040

079977
079994

020000
020000

0 . 0 2 0 340423
340661

286674
287180

176604
176960

079847
079905

019997
019999

0 . 0 4 0 274324
274497

240143
240440

159898
160269

076551
076767

019607
019672

0 . 0 4 5 260635
260798

229328
229598

154563
154917

074905
075140

019377
019377

0 . 0 5 0 247687
247842

218841
219090

148990
149327

072960
073208

018834
018955

Table-6.26-

109



The values of 10 c and the position of the moving boundary for
inside cylindrical problem

8t= 0 .0 0 1 and 5 x = 0 .1

0 . 1 0 .3 0 .5 0 .7 0 .9
Moving
boundary

0 .0 0 5
0 . 0 1 0

1 8 8 9 6 5
172151

116893
110761

05 8499
054487

0 1 9 4 1 0
016398

0 0 0 3 9 9
0 0 0 0 0 0

0 .0 7 1 7 6
0 .1 0 1 9 6

0 .0 1 5
0 .0 2 5

1 5 6 5 3 7
1291 0 1

103834
0 8 8 6 3 4

050423
041966

013533
0 0 8 6 0 4

0 0 0 0 0 0
0 0 0 0 0 0

0 .1 2 3 7 1
0 .1 6 4 2 5

0 .0 3 0
0 .0 3 5

1 1 6 8 6 0
1 0 5 3 9 3

080831
073081

03 7 5 9 2
0331 7 4

0 0 6 5 3 2
0 0 4576

0 0 0 0 0 0
0 0 0 0 0 0

0 .1 8 3 8 8
0 .2 0 4 3 4

0 .0 4 0
0 .0 4 5

0 9 4 5 9 3
0 8 4 3 7 8

0 6 5 4 5 7
0 5 8 0 0 7

02 8750
02 4 3 5 0

002798
001388

0 0 0 0 0 0
0 0 0 0 0 0

0 .2 2 5 2 0
0 .24731

0 .0 5 0
0 .0 6 0

0 7 4 6 8 5
0 5 6 6 7 5

0 5 0 7 5 9
0 3 6 9 4 2

02 0034
011819

0 0 0394
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 .2 7 7 2 9
0 .3 2 9 3 7

0 .0 7 0
0 .0 8 0

0 4 0 2 6 6
0 2 5 2 6 6

0 2 4 1 0 3
0 1 2 3 6 9

004445
0000 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 .4 0 5 7 1
0 .5 0 4 6 0

0 .0 9 5
0 .0 9 7

0 0 5 1 4 3
0 0 2 1 6 6

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 .7 4 9 5 0
0 .8 3 4 1 8

Table-6 .27-
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The values of 10 c and the position of the moving boundary for
inside cylindrical problem

5t=0.001 and 5x=0.05

Tn l 0.1 0.3 0.5 0.7 0.9 Moving
boundary

0.005
0.010

183472
162652

114633
106403

057492
052518

019100
015758

000503
000000

0.06828
0.09876

0.015
0.025

144169
112728

097367
078666

047548
037416

012638
007251

000000
000000

0.12390
0.17126

0.030
0.035

099105
086592

069536
060721

032299
027227

004989
003011

000000
000000

0.19551
0.21977

0.040
0.045

075041
064334

052271
044215

022261
017461

001396
000284

000000
000000

0.24715
0.27618

0.050
0.060

054381
036446

036561
022476

012883
004746

000000
000000

000000
000000

0.30960
0.39234

0.070
0.080

020781
007097

010075
000000

000000
000000

000000
000000

000000
000000

0.50390
0.68798

0.083
0.085

003371
000000

000000
000000

000000
000000

000000
000000

000000
000000

0.78603
0.89570

Table-6.28-
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Comparison between analytical and numerical solutions inside 

c y lin d r ic a l  p rob lem  for small times. The upper entry 

correspondons to the analytical solution and the lower entry to 

the numerical solutions. Values of 106c and §x=0.05.

oo

0 .2 0 .4 0 .6 0 .8

0 .0 0 1
244333
247950

160000
159799

090000
089875

040000
039918

010000
009941

0 .0 0 2
241971
246041

160000
159599

090000
089749

040000
039837

010000
009883

0 .0 0 3
240152
244256

160000
159399

090000
089624

040000
039755

010000
009824

0 .0 0 4
238615
242581

160000
159198

090000
089498

040000
039673

010000
009765

0 .0 0 5
237258
241004

160000
158998

090000
089373

040000
039592

010000
009707

0 .0 1 0
231904
234238

160000
157997

090000
088747

040000
039184

010000
009413

0 .0 1 5
227766
228744

159998
156993

090000
088121

040000
038776

010000
009120

0 .0 2 0
224256
224023

159985
155979

090000
087496

040000
038368

010000
008827

0 .0 4 0
213280
208949

159552
151697

090000
085001

040000
036739

010000
007679

0 .0 4 5
210983
205717

159318
150557

090000
084378

040000
036332

010000
007400

0 .0 5 0
208803

202623

159033
149390

089999
083756

040000
035925

010000
007127

Table-6.29-
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The values of 106C and the position of the moving boundary for
outside cylindrical problem

5t=0.001 and 8x=0.1

1.1 1.3 1.5 1.7 1.9 Moving
boundary

0.005
0.010

471557
434437

282352
275990

137285
135720

047410
047008

004823
004748

1.99822
1.99744

0.020
0.030

373069
323192

255949
231920

131267
124215

045902
044192

004545
004244

1.99534
1.99213

0.040
0.060

280962
211857

207395
161118

114948
092749

041602
033707

003785
002254

1.98701
1.96714

0.100
0.130

111109
055685

084151
038639

046006
015154

012106
000000

000000
000000

1.86426
1.70042

0.150
0.160

025339
011865

013452
002493

000000
000000

000000
000000

000000
000000

1.50876
1.37061

0.166
0.167

004149
002522

000000
000000

000000
000000

000000
000000

000000
000000

1.19109
1.17102

Table-6.30-
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The values o f 10 c and the position o f the moving boundary for 
outside cylindrical problem

8t=0.001 and 8 x = 0 .0 5

7 ^ 1.1 1.3 1.5 1.7 1.9 Moving
boundary

0.005 458655 274706 134108 046507 004982 1.99909
0.010 41243S 263751 130166 045303 004797 1.99719

0.020 33716^ 234323 121139 042421 004232 1.99163
0.030 27803”/ 202458 109634 038814 003471 1.98327

0.040 22966^ 172028 096329 034289 002545 1.97152
0.060 154565 118797 068140 022948 000480 1.93098

0.080 09893^ 075615 041432 010578 000000 1.85896
0.100 05640£ 040872 018170 000827 000000 1.74066

0.120 023287 013161 000882 000000 000000 1.54201
0.130 00952^ 002131 000000 000000 000000 1.36528

0.135 003292 000000 000000 000000 000000 1.21389
0.136 001932 000000 000000 000000 000000 1.16218

Table-6.31-
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Comparison between analytical and numerical solutions outside 

cylindrical problem for small times. The upper entry corresponds 

to the analytical solution and the lower entry to the numerical 

solutions. Values of 106c and 5x=0.05.

7 ^ . 1 .0 1 .2 1 .4 1 .6 1 .8

0 .0 0 1 583507
577730

381651
378896

203350
202144

086287
085879

020721
020657

0 .0 0 2 562063
562222

381614
376137

203350
200931

086287
085463

020720
020586

0 .0 0 3 545771
538795

381326
373373

203350
199711

086287
085039

020715
020510

0 .0 0 4 532144
523928

380586
370605

203349
198483

086287
084608

020697
020425

0 .0 0 5 • 520219 
507742

379363
366595

203348
197248

086287
084170

020660
020334

0 .0 1 0 474140
447050

368248
343224

203106
190888

086277
081870

020122
019795

0 .0 1 5 439528
399404

353467
317353

201822
183507

086185
079391

019042
019130

0 .0 2 0 410833
359475

337887
292060

199164
174854

085852
076670

017539
018353

0 .0 4 0 324780
242033

279016
205337

178729
134174

079816
062196

008489
014106

0 .0 4 5 307433
219463

265605
187192

172186
123788

077011
057792

005552
012728

0 .0 5 0 291164
198802

252678
170266

165330
113602

073745
053193

002357
011233

T ab le -6 .3 2 -
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A p p e n d i x - A -

Thomas  a lgori thm

Note that equation (3.11) is tridiagonal for all r^O, using 

(3.11) and (3.12) in section 3 .7  as model, let us write the general 

tridiagonal system of j+ l= M  equations in the form :

d i u i + ajU2 = Cj

^ 2 u l +  ^ 2 U2 +  a 2 u 3 =  c 2

^ M - l u M -2 + ^ M - l u M - l  “  CM-1

Where a’s, b's, c’s, and d's are known uM are known from the 

boundary conditions. The name tridiagonal system arises from the 

fact that the matrix is tridiagonal.

As we shall see, this system can be solved explicitly for the 

unknowns, thereby elim inating any m atrix  opera tions. The 

method described here was discovered by many and has been
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called Thomas algorithm by young (see Ames 1977).

The above system  is readily  solved by a G aussian 

elim ination method, with a maximum of three variables per 

equation, the solution can be expressed very concisely. The first 

equation of the system can be used to eliminate u l from the 

second equation, the new second equation used to eliminate u2 

from the third equation and so on, until finally the new last but 

one equation can be used to eliminate uM_2 from the last equation 

giving one equation with only one unknown uM 1.

The unknowns uM_2, uM_3, ............................ ,u3, u2, Uj can then

be found in turn back substitution. Noting that the coefficient " a 

in each new equation is the same as in the corresponding old 

equation, assume that the following stage of the elimination has 

been reached

f i M u i - i  +  a i - i u i = ¥ i - i  

b iu M  +  d >u i +  aiu i + i = c i

where fi1= d 1, ¥i=C]

Elimination of u ^  leads to

(dj-bjaj.j/Bj.jJUj + aiUi+1 

i.e BjUj + a;Ui+1 =¥j 

where Bi= (d i-b ia i/Bj_1) and ¥i= c i-b i¥j_1/Bj. j 

The last pair of simultaneous equations are

^ M - 2 u M-2 +  a M-2u M-l = ¥ M-2 

and
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(i=2, 3, . . . M-l).



^ M - l u M-2 +  ^M -1 UM-1 _C M-1 

Elimination of uM_2 gives

^ M - l  " ^ M - l a M - 2 ^ M - 2 ^ u M - l  =CM-1 " ^ M - l ^ M - 2 ^ M - 2

^ M - l  “  ( ^ M - l  ' ^ M - l a M - 2 ^ M - 2 )  = ¥ M-1

i-e  ^M-1UM-1 = ¥ M-1 ( 2 )

Equation (1) and (2) show that the solution can be calculated from

UM-1 =  W « M - 1  ( 3 )

uj = (¥j -aiu i+1)/Bi (i=M-2, M-3, M - 4 , ................ 3, 2, 1 )

where B's and ¥'s are given recursively by

B1=d lf Bi=dj -  (bi/Bi)a i_1 (4.1)

V p C p  ¥ - Ci - (bi/Bi)¥i l (i=2, 3 ,  4 , ....................M -l)) (4.2)

In many problems Bj and b j /b jB j  are independent of time 

and need only be calculated once, irrespective of the number of 

time-steps. If the coefficients are time dependent more calculation 

is required. The above method is highly efficient for automatic 

computation of tridiagonal systems.

While this method is equivalent to Gaussian elimination, it 

avoids the error growth associated with back substitution in the 

elim ination method, and also minimises the storage in the 

machine computation. In fact, the solution of a problem by this 

method in conjunction with an implicit difference scheme is more 

efficient than the solution using an explicit difference scheme 

where the solution is calculated directly. (For more details and 

examples see Ames 1977, Smith 1978 and Mitchell 1980).
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Appendi x - B-

S ta b i l i ty  A n a ly s is

T he m atrix  m ethod for an a ly z is in g  s ta b i l i ty  w ill 

automatically include the effects of the boundaries. To illustrate 

the procedure we utilize

(c i , j+ rc i,j)/5 t= (c i-i,j-2c i,j+ c i+i,j)/(8x)2-1 ^ O ’1- • • -(r~2)

(c r-l,j+l-c r-l,j)/5t = (2/ ( 5x>2)(c r-2,j/(1+Pj) -cr-1 J^Pj)" 1 

The two above formulas can be written in the following matrix
2

form where r=5t/(5x) and c , - c ,  5

C0,j + 1 1 -2r 2r 0 c 0,j 1
Cl.j+1 r l-2r r 0 c lj 1

* * * *
* * **
* * *
* = * *
* * * *
*- * *
* * * *
* * *

C N-2J+ 0 r 1 -2r  r CN-2J 1
_CN-l,j+ 2r/(l+pj) l - 2 r / p i C N-l,j_ 1

cj+i=Ajcj-U8t (2)

Where Aj is a square matrix of order N 

U is column vector 

In order to make analysis possible we replace pj by a constant
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value p. Then equation (2) is written as 

cj+i=Acj-u8t (3)

Let’s denote the computed values by y  so that we have actually 

solved the equations

(The error introduced at the kth step is denoted by the vector ek). 

The recurrence relation (5) gives

v s is an eigenvector of A corresponding to the eigenvalue Xs and 

a ’s are constant

N

e n ~ v s 
S= 1

For e* to tend to zero, as n increases, it follows that the largest of 

\Xt\, \X2\ , ................... \X̂ \ must be less than unity.

The Q s is the sum of the moduli of terms along the sth row

exluding the diagonal term ass in matrix A then by Braurer's

theorem every eigenvalue of a lies inside or on the boundary of at

least one of circles l^-assl=Qs.

Vj+i=AVj+USt 

the computational error is

(4 )

cj+1-Vj+,= A (c j-\|rj)

(5)

ej+l~Aj+le0

e 0 is an error vector for starting values 

Let us express e0 as

(6)
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As we are interested in the bounds of p, applying Braurer's 

theorem to the last row of A that contains p, we have

Q S= 2 P / ( 1 + P)> a ss= 1 _ 2 r /P  

so that a - ( l - 2 r / p ) l < 2 r / ( l + p )

the bounds of X are given by

A.1=l-2r/p(l+p), ^ 2=2r( 1 +2p)/p( 1 +p) -1

For stability we require |X2|^1, and hence

-1 < l - 2 r /p ( l+ p )< l  giving r/p(l+p)<l

Since p is always positive, the condition for stability is given by

the second inequality because the first one is then satisfied

automatically. Therefore for overall stability

p 2+ ( l-2 r )p - r> 0

Since r<0.5 for the stability of the simple explicit scheme used at 

the intermediate points, it can be shown that

p>r-0.5+V(0.25+r2) (7)

For 5x=0.1, 5t=0.001 we get the stability condition p>0.11 and for 

8x=0.05, 8t=0.001 we have p>0.54. This suggests that an

instability may arise when the moving points is nearer than 0.11 

to the neighbouring mesh point in the first case and 0.027 in the 

second case (8x=0.05). This confirms the need for the stability 

check described in moving boundary crossing a mesh line.

126



Appendix-C-

P r o g r a m s

p ro g r a m  Ic e .M l  (input,output);
{Ice melting cartesian problem using method 3.9}
label 999;
ty p e
subs=0. .300; 
ro w s^ re co rd  
a,b,c,d: real; 
end; {row}
rowsvectors=array[subs] of rows; 
matrix=array[subs,subs] of real; 
vectors=array[subs] of real; 
v a r
dt,h,r,m: real; 
k,n,i,j: integer; 
eqn: rowsvectors; 
x,t: matrix; 
s :vectors;
procedure TriDiag(var Ceqn : rowsvectors; var x: mtrix); 
cons t
a ssu m ed ze ro = lE -2 0 ;
v a r
i:subs;
pivot,mult, ci,bi: real;
begin {TriDiag}
eqn:=Ceqn;
for i:=0 to n-1 do
begin
with eqn[i] do 
begin
pivot:=d; ci:=c; bi:=b 
end;
with eqn[i+l] do 
beg in
m ult:=a /p ivo t;
if  abs(mult)>assumedzero then 
beg in
a:=mult; d:=d-mult*ci; b:=b-mult*bi; c:=c
e n d
else
a:=0
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e n d
end;
with eqn[n] do
x[n,j+l]:=b/d;
for i:=n-l downto 0 do
with eqn[i] do
x[i,j+l]:=(b-c*x[i+l,j+l])/d
end;{TriDiag)
beg in
write('value of dt,n');
read (d t ,n );
while n>0 do
beg in
h := l /n ;
x[0,0]:=0;x[l,l]:=0;x[0,l]:=h;t[0,0]:=h;j:=l;r:=l/h;s[0]:=h;t[l,0]=h; 
write(r:5:2,' ,:3);write(j:3,1 ,:2);write(t[0,0]:4:3,’ ’:3); 
write(s[0]:6:4,’ ':3);write(0:2,' ,:3);write(x[0,l];6:4);writeln; 
for j:= l to n-1 do 
beg in
x|jj]:=0;x[j+lj+l]:=0;
k := l;
while k<10 do 
beg in
with eqn[0] do 
beg in
a:=0; d:=-l; c:=l; b:=-h; 
end;
for i:=l to j do 
beg in
with eqn[i] do 
b eg in
a:=-r; d:=(l+2*r); C:=-r; b:=x[i,j];
end;
end;
n:=j;
TriDiag(eqn,x); 
t[j,k]:=(h*h)/x[j,j+l]; 
m :=t[j,k]-t[j,k-l]; 
if  abs(m)<dt then 
b eg in
r:=t[j,k]/(h*h);
goto 999;
e n d
e lse
r:=t[j,k]/(h*h);
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k:=k+l;
end;
999;
t[j+l,0]:=t[j,k];
s U ] ‘= s [ j - l ]+ t l j ,k ]
write(r:5:2,' ,:3);write((j+l):3/ ' ^ w r i t e C t ^ k M ^ , '  ’:3); 
write(s[j]:6:4,' '^^w riteC k ^ , ' ':3);write(x[0,j+l]:6:4);writeln; 
end;
write('values of dt,n);
r e a d (d t ,n )
e n d
end.

p ro g ra m  Ice .M2 (input,output);
{Ice m elting cartesian  problem  using m ethod described  in
chap te r-4 -} .
label 999;
const
k:=0.5
r:=0.5;
m:=100;
h:=0.01;
ty p e
subs=1..501; 
row s=record ; 
a,b,cd: real; 
end; {rows}
rowsvectors=array[subs} of rows; 
matrix=array[subs,subs] of real; 
vectors=array[subs] of real; 
v ar  
z: real;
e,n,i,j: integer; 
eqn: rowsvectors; 
x:matrix; 
s,y,t :vectors;
procedure TriDiag{ as mentioned in program Ice.Ml} 
beg in
y[l]:=l;y[2]:=l-h+2*h*h;y[3]:=l-2*h+8*h*h;
t[l]:=0;t[2]:=h+0.5*(h*h)-(h*h*h)/3; t[3]:=2*h+2*h*h-(8*h*h*h)/3;
x[l,l] :=0 ; x [ 1,2]:=h-0.5*h*h+(h*h*h); x[l,3]:=2*h-2*h*h+8*h*h*h;
x[2,3]:=h-((3*h*h)/2)+6*h*h*h; x[3,3]:=0; x[4,4]:=0; s[3]:=h*y[3];
x[4,3]:=-h*y[3]+0.5*h*h*y[3]*y[3];
with eqn[l} do
beg in
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a:=r; d:=l; c:=-l; b:—h; 
end;
for i:=2 to 3 do 
b eg in
with eqn[i] do 
beg in
a:=r; d:=-(2*r+s[3]); c:=r;
b :=-(l-r)*x[i-l,j]+(2*(l-r)-s[j])*x[i,j]-(l-r)*x[i+ l,j];
end;
end;
z:=h*(l-2*h+8*h*h);
j:=3;
while j<m do 
b eg in
x[j,j]:=0; x[j+l j+l]:=0;
x[j+l,j]:=-h*y|j]+0.5*h*h*y[j]*y[j];
while e> l do
b eg in
n:=j;
TriDiag(eqn,x);
y [ j+ l] := (- l+ sq r t( l+ 2 *x[j,j+13))/h; 
if abs (y[j+l]-z)<h*h*abs(z) then 
beg in
w r i t e C j i ^ j ^ l , ’ *:4);
t [ j+ l] := t[ j- l]+ (h /3 )* (( l/y [ j+ l])+ (4 /y [ j] )+ (l /y [ j- l] ) ) ;  
w rite ( 'e := \e :l/  ’:1); write('t=*,t(j+l]:6:4);
write(' ,:3);write(,x=,x [ l ,j+ l] :6 :4 ,’ ,:6);write(,y=',y[j+l]:6:4);writeln; 
goto 999; 
end else
z:=y[j+l]; s(jl:=h*k*y[j+l]+(l-k)*h*y[j];
with eqn[l] do
b eg in
a:=r; d:=l; c:=-l; b:=h; 
end;
for i:=2 to j do 
beg in
with eqn[i] do 
beg in  

—r*d*—-(2*r+s[j 1 )*c !~r; 
b:=-(l-r)*x[i-l,j]+(2*(l-r)-s[j])*x[i,j]-(l-r)*x[i+l,j]; 
end; 
end; 
end;
999:
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j -—j+ 1;
s[j]:=h*k*y[j]+(l-k)*h*y[j-l];
with eqn[l] do
b eg in
a:=r; d:=l; c:=-l; b:=h; 
end;
for i:=2 to j do 
b eg in
with eqn[i] do 
beg in
a:=r;d:=-(2*r+s[j]);c:=r;
b :=-(l-r)*x[i-l,j]+ (2*(l-r)-s[j])*x[i,j]-(l-r)*x[i+l,j];
end;
end;
end;
end .

p r o g r a m  d i f f u s io n l  (input, output);
{Analytical solution of oxygen diffusion(inside cylinder)) 
con s t
e p s= 0 .00000001 ; 
p i= 3 .14159265359;

function jO (x:real):real;
var u,term,sO,sl,k:real;
r: integer;
beg in
x:=abs(x);
if x<8 then
beg in
u:=-0.25*x*x;
s0:=l;
te rm := l;
r:=0;
r e p e a t
r:=r+l;
te rm := te rm *u /(r* r) ;
s0:=s0+term;
until abs (term)<eps;
j0:=s0;
e n d
e lse
b eg in
sl:= sq rt(2 /(p i*x ));
u :=-0 .015625/(x*x);
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t e r m := s l ;
sO:=term;
r:=0;
r e p e a t
r:=r+2;
k := (2*r-l)* (2*r-3 );
te rm := te rm * u * k * k /( r* (r - l ) ) ;
sO:=sO+term
until abs(term)<eps;
te rm := s l  * 0 .125/x;
s i  :=term;
r:=l;
r e p e a t
r:=r+2;
K :=(2*r-l)*(2*r-3);
te rm := te rm * u * k * k /( r* (r - l ) ) ;
s l := s l+ te rm ;
until abs(term)<eps;
j0 :=s0*cos(x-0.25*pi)+sl*sin(x-0.25*pi);
end;
end;
function zerojl (s: integer): real;
var x,u,sum: real;
b eg in
if s= l then zerojl:=3.831706
e lse
b eg in
x:=(s+0.25)*pi;
u := l/(x*x);
s u m := ( ( (2 4 .3 9 1 3 7 3 8 8 * u - l . 70131923 l)* u + 0 .2 3 0 2 7 3 4 3 7 5 )* u -

0.0234375)*u+0.375;
zeroj 1 :=x-sum /x;
e n d
end;
var z,n,w,i,r: integer;

dt,y,t,x,xl,j,k,sum,last,term: real; 
beg in
write('values of dt,n,z');
read(dt,n ,z);
while n>0 do
beg in
y:=l/n;
xl:=0;
for w:=0 to z do 
beg in
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w rite ln (w );
t:=w*dt;
for i:=0 to n do
beg in
x:=i*y;
if x l:=0  then sum:=0.125-t else
sum :=0.125-t+0 .5*xl*x l * ln(xl);
r:=0;
last:= l;
r e p e a t
r:=r+l
k :=zero jl(r) ;
j:=jO(k);
last:=abs(term );
term:=(( 1 -x 1 *x 1 )*j+x 1 *x 1 )/(k*k*j*j)*(jO(k*x)*exp(-k*k*t)); 
sum :=sum +term ;
until (abs(term),eps) and (last<eps); 
if t:=0 then
if x l:=0  then term :=0.25*x*x 
e lse
term :=0.25*(x*x-xl * x l)-0 .5*x l *x l* (ln (x )- ln (x l)) ;
writelnCterms’, r:6,' sum',sum:12:6,' true’, term:12:6);
end;
w rite ln ;
end;
write(’values of dt, n,z');
read(dt,n ,z);
e n d
end .

p r o g ra m  d iffu s io n2  (input,output);
{Numerical solution of Oxygen diffusion (inside cylinder)} 
v a r
n,m,i,k,j: integer;
u:array[0. . 40,0. . 1000] of real;
t,y,f,r,x: real;
p:array[0. . 1000] of real; 
beg in
writefvalues of t,n,m');
read(t,n ,m );
while n>0 do
begin
y := l /n ;
r:=t/(y*y);
k:=2;
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f:=-t;
p[0]:=l;
for i:=0 to n do
beg in
x:=l-i*0.1;
u[i,0]:=0.25*x*x;
end;
for j:=0 to (m-1) do 
beg in
u[0,j+l]:=2*r*(u[l,j]-u[0,j])+u[0,j]-t;
for i:=l to n-k do
beg in
u [i,j+ l]:=r*( 1-0.5 *(l/((  l/y)+i)))*u[i-l,j]+( 1-2 *r)*u[i,j]+

r(l+0.5*(l/((l/y)+i)))*u[i+lj]+f
end;
u[n-k+l,j+ l]:=u[n-k+l,j]+2*r*(u[n-k ,j]/(p[j]+ l)-u[n-k+l ,j]/p[j])+ 
(( t /y )*((-p[j]*u[n-k j])/(p [j]  + l)+ (p [j]- l)*u [n -k+ l,j] /p [ j] ) ) /( (n -  
k+l)*y)+f;
if (u[n-k+l ,j+l]<0) or (u[n-k+l ,j+l>(u[n-k+l,j])) then
beg in
k:=k+l;
p[j- l] :=plj- l ]  + l;
u[n-k4^ j] := u [n -k 44  j - l ^ + r ^ u t n - k j - l l / C p l j - l l + l J - u l n - k + l j - l l / p U -
llMa/y^-pU-llMn-kj-ll/CpU-l^Wptj^^
l ] )) /((n -k+ l)*y )+ f;
p[j]:=sqrt(2*u[n-k+l,j])/y ;
u [n -k ,j+ l]  := (r-t/(2*y+2*(n-k)*y*y))*u[n-k-l,j]+ (l-2*r)*u[n-
k,j]+(r+t/(2*y+2*(n-k)*y*y))*u[n-k+l,j]+f;
u [n -k+ l,j+ l ]:=u[n-k+l,j]+2*r*(u[n-k,j]/(p[j] + l)-u[n-
k+1 j i / p U l M C t / y ^ C C - p U l M n - k j M p t j I + l M p U l - ^ M n -
k+ljl/pUDVCCn-k+l )*y)+f;
p[j+l]:=sqrt( '2*u[n-k+l,j + l)/y;
e n d
e lse
p[j+ l]:=sqrt(2*u[n-k+ l,j+ l]) /y ;
x:=l-((n-k+l)+p[j])*y;
write(j,' ': 1);
for i:=0 to n-k+1 do
begin
write(u[ij]:8:6,' ’:1); 
end;
write(x:7:5);
w riteln ;
end;
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write('values of t,n,m');
read(t,n ,m );
e n d
end .

p ro g ra m  diffusion3 ( in p u t ,o u tp u t) ;
{Analytical solution of oxygen diffusion (outside cylinder))
co n s t
x l= 2 ;
p i= 3 .14159265359; 
count=20;

function approxzerojy (s:integer):real; 
var sum ,a ,b ,p ,q ,r ,te rm l,term 2,term 3:real; 
beg in
if s:=l then approxzerojy:=l.794007; 

else begin
a:=((s-0.5)*pi)/(xl-l);

b:=l/a;
p:=(3*xl + l)/(8*xl*(xl -1)); 
q:=(-63*xl *xl *xl -25)/(384*xl*xl * x l* (x l- l ) ) ;  

r:=(1899*xl *xl *xl *xl *xl + 1 0 7 3 )/(5 1 2 0 * x l* x l* x l* x l* x l* (x l- l ) ) ;  
terml;=p; 
term2:=q-p*p; 
term3:=r-4*p*q+2*p*p*p; 
sum:=((term3*b*b+term2)*b*b+terml)*b+a; 
approxzerojy :=s urn; 

end; 
end;

function fO (x:real):real;
var z,f:real;
beg in
z:=3/x;
f := (((0 .0 0 0 1 4476 *z-0 .00072805) *z+0.0013 723 7 )*z-0 .0 0 0 0 9 5 12)*z 

-0.0055274; 
f0 := (f*z-0 .00000077)*z+0.79788456; 
end;

function gO (x:real):real;
var z,g:real;
beg in
z:=3/x;
g ;=(((0 .00013558*z-0 .00029333)*z-0 .00054125)*z+  

0.00262573)*z-0.00003954;
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g0:=(g*z-0 .04166397)*z-0 .78539816+x; 
end;

function jO (x:real):real; 
var z,j:real; 
beg in  
x:=abs(x); 
z:=x*x/9; 
if x<=3 then 

begin
j := (((0 .00021 *z-0.003 9444) *z+0.0444479)*z-0.3163 866)*z+ 

1.2656208; 
j0 := (j*z-2 .2499997)*z+l; 
e n d
else j0:=f0(x)*cos(g0(x))/sqrt(x); 
end;

function yO (x:real):real;v
var z,y:real;
beg in
x:=abs(x);
z:=x*x/9;
if x<=3 then
beg in
y := ((( -0 .00024846 *z+0.004 279 16)*z-0.0 4 2 6 1 2 14)*z+ 

0.25300117)*z-0.74350384; 
y0:=(y*z+0.605593 66) *z+0.3674669 l+(2/pi)*ln(0 .5*x)*j0(x); 
e n d
else y0:=f0(x)*sin(g0(x))/sqrt(x); 
end;

function f l  (x:real):real;
var z,f:real;
beg in
z:=3/x;
f := (((-0 .0002003 3 *z+0.00113653 )*z-0 .0024951 l)*z+  

0.00017105)*z+0.01659667; 
f 1 :=(f*z+0.00000156)*z+0.79788456; 
end;

function gl (x:real):real;
var z,g:real;
beg in
z:=3/x;
g := (((-0 .00029166 *z+0.0007 98224) *z+0.00074348)*z-
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0.00637879)*z+0.00005650; 
g l :=(g*z+0.12499612)*z-2 .35619449+x; 
end;

function j l  (x:real):real; 
var z,j:real; 
begin  

x:=abs(x); 
z:=x*x/9; 
if x<=3 then 
beg in
j := ( ( (0 .0 0 0 0 1 109 *z-0 .00031761) *z+0.00443319)*z- 

0.03954289)*z+0.21093573; 
j 1 :=((j*z-0.56249985 )*z+0.5)*x; 
e n d
else j 1 :=f 1 (x)*cos(g 1 (x))/sqrt(x); 
end;

function yl (x:real):real;
var z,y:real;
begin
x:=abs(x);
z:=x*x/9;
if x<=3 then
beg in
y :=(((0 .0027 873 *z-0 .0400976)*z+0.312395 l ) * z - 1.3164827)*z+ 

2.1682709;
y l  :=((y*z+0.2212091 )*z-0 .6366198)/x+(2/p i)* ln(0 .5*x)*jl(x);
e n d
e lse

y 1 :=f 1 (x)*sin(g 1 (x))/sqrt(x); 
end;

function eqn (x:real):real; 
begin

eqn:=jO(x*xl)*yl(x)-yO(xl*x)*jl(x);
end;

function root (a,b:real):real; 
var fb,mid,fa,fmid,:real; 

iiinteger;
begin
fa:=eqn(a);
fb:=eqn(b);
for i:=l to count do
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begin
mid:=0.5*(b+a); 
fmid:=eqn(mid); 

if fa*fmid>0
then begin a:=mid; fa:=fmid; end 

else begin b:=mid; fb:=fmid; end; 
end;
root:=0.5*(a+b);
end;

procedure locate (var a,b:real; db:real); 
var fa,fb:real; 
b eg in  
fa:=eqn(a); 
fb:=eqn(b); 
while fa*fb>0 do 

begin 
a:=b; 
fa:=fb; 
b:=b+db; 
fb:=eqn(b); 
end; 

end;

function zerojy (s:integer):real;
var xa,xb,dx:real;
beg in
dx:=0.01;
xa:=approxzerojy(s); 
xb:=xa+dx; 
locate (xa,xb,dx); 
zerojy:=root (xa,xb); 
end;

function jy l  (x,k:real):real; 
beg in
jy l := j l (x * k )* y l(k ) -y l (x * k )* j l (k ) ;
end;

function jyO (x,k:real):real; 
beg in
jyO=jO(x*k)*yl(k)-yO(x*k)*jl(k)
end;
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