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Abstract

A universal persistent object store is a logical space of persistent 
objects whose localities span over machines reachable over 
networks. It provides a conceptual framework in which, on one 
hand, the distribution of data is transparent to application 
programmers and, on the other, store semantics of conventional 
languages is preserved. This m eans the m anipulation of 
persistent objects on remote machines is both syntactically and 
semantically the same as in the case of local data. Consequently, 
many aspects of distributed programming in which computation 
tasks cooperate over different processors and different stores can 
be addressed within the confines of persistent program m ing. 
The work reported in this thesis is a logical generalization of the 
notion of persistence in the context of distribution.

The concept of a universal persistent store is founded upon a 
universal addressing  m echanism  which augm ents existing 
addressing mechanisms. The universal addressing mechanism 
is realized based upon rem ote pointers w hich although 
containing more locality information than ordinary pointers, do 
not require architectural changes. M oreover, these rem ote 
pointers are transparent to the program m ers. A language, 
Distributed PS-algol, is designed to experiment with this idea. 
The novel features of the language include: ligh tw eigh t 
processes w ith a flavour of distribution, mutexes as the store- 
based synchronization prim itive, and a remote procedure call 
mechanism as the message-based interprocess communication 
m echanism . Furtherm ore, the advantages of shared  store 
program m ing and network architecture are obtained with the 
in troduction  of the program m ing concept of locality in an 
unobtrusive manner.

A characteristic of the underlying addressing mechanism is that 
data are never copied to satisfy remote dem ands except where 
efficiency can be attained w ithout compromising the semantics 
of data. A remote store operation model is described to effect 
rem ote updates. It is argued that such a choice is the most 
natural given that rem ote store operations resem ble rem ote 
procedure calls.
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Chapter 1

Universal Persistent Store

§1.1 Introduction
A universal persistent object store is a logical space of persistent objects 
spread over machines reachable across networks. It provides a context for 
the application programmers that hides the distribution of data so that 
the store sem antics of conventional languages is provided. The 
m anipulation of objects on remote machines is both syntactically and 
semantically the same as in the case of local data. Consequently, many 
aspects of d istribu ted  program m ing in which com putation tasks 
cooperate on different processors and stores can be addressed within the 
confines of persistent programming.

The prim ary motive for this kind of store is to ease programming. 
Difficult tasks such as data movement to and from volatile memories 
and disks scattered over a netw ork can be factored out so that each 
program m er does not face them. Example application systems where 
such a store is useful are CAD/CAM , office inform ation systems, 
distributed databases, program  development environments etc.

The work reported in this thesis is a logical generalization of the 
notion of persistence [Atkinson et al. 81] in the context of distribution. 
Persistence is the concept whereby program m ers see only a one level 
store. Moreover, objects outlive the processes that created them. They 
remain available so long as they are still referenced. The im m ediate 
implication is that the need for overlaying and explicit transferring and 
translating data from a backing store into the main memory and vice 
versa is obviated. This has been proved to be valuable in reducing coding 
effort in a large class of applications. The figure often quoted is a saving 
of around 30%. There are other implications as well. For instance, with 
orthogonal persistence, values of any type may be kept in a persistent 
store. In PS-algol, a language for experim enting w ith orthogonal 
persistence, objects of types such as integer, boolean as well as images of 
rectangular arrays of pixels and procedures can be placed in a persistent 
store for subsequent use. This may be contrasted w ith a num ber of 
database programming languages where there is a restriction on the type 
of objects that can be kept in long term storage. In addition to the 
orthogonal treatm ent of persistent objects, a variety of typing and 
binding strategies are also supported to meet various needs of persistent
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data [Atkinson & Morrison 85b]. Thus persistence offers a rich, flexible 
bu t at the same time secure fram ework for constructing large scale 
systems.

Derivable from the one level store notion is that the locality of data 
is never a programming concern. This principle of locality transparency 
is fundam ental to persistent program m ing. The m ovem ent of data 
betw een a backing store and the m ain m em ory is perform ed 
automatically on a demand basis by a store management system [Brown 
& Cockshott 85]. This principle enables the use of the same instructions 
and therefore the same language constructs for the manipulation of data 
residing in different storage media. The locality transparency principle 
can be generalized in respect of distribution. The idea is based on the 
observation that storage m edia may be scattered but reachable over 
networks. The management of distributed data can be dealt with without 
involving program m ers. Hence m any aspects of distribution can be 
captured in a persistent programming language w ithout requiring any 
syntactic or semantic changes. From the programmers' point of view, the 
same algorithms can be applied to data whether they are resident in the 
local physical memory, on a local disk, a remote physical memory or a 
remote disk.

The universal persistent object store envisaged is a logical one. It can 
be thought of as the union of individual persistent stores, one or more of 
which may be associated with a particular machine. The reason for this 
arrangem ent is to preserve autonomy which is intrinsic in a distributed 
environment. In such an environment, the failure of a machine is often 
regarded as isolated and has no consequence on the availability of other 
machines. Even in the case of a file server breakdown, client machines 
are still available as computation engines. Similarly, the addition of a 
machine does not affect others in any way. The universal persistent store 
reflects this property of a distributed system. When a machine with a 
persistent store breaks down, objects on that persistent store become 
tem porarily  unreachable. H ow ever, objects in other parts of the 
universal store remain available. Furthermore, adding a new node with 
a persistent store on a network merely enriches the overall store.

The universal persistent store can be provided for, independent of 
machine architectures, on a heterogeneous system. Although different 
kinds of machines m ay be connected over the same netw ork, the 
availability of physically remote objects relies on the availability of a 
com m on co m m u n ica tio n  p ro to co l. U n fo rtu n a te ly  com pu ter
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m anufacturers do not necessarily conform  to the sam e standard  
protocols even though they exist. An example is ICL Perq computers and 
DEC Vax computers which use incompatible protocols.

The construction and m aintenance of such a universal store is 
feasible only if the adm inistration of different resources is at least 
cooperative in nature. There may be practical difficulties as the system 
gets larger. But, we contend, the advantages offered by such a store are 
more than offset the problems that it is likely to raise. However, a 
centralized mechanism would be unreliable and would perform poorly 
when the system becomes large. Hence a cooperative architecture for the 
universal store is required.

Another pragmatic uncertainty arises w ith such a store is locality 
transparency. The principle is fundamental to persistent programming as 
explained above. But the advantages of a distributed system can not be 
exploited because of this. This thesis reports the construction of an 
experim ental apparatus to test w hether the principle of locality 
transparency should be retained or whether programmers should control 
data and process locality in a distributed system. A program m er may 
work within the constructed distributed system without knowledge of 
the locality of objects, this being managed entirely automatically. Equally 
a programmer may explicitly control the location of data and process and 
construct algorithms which explicitly change the locality of these objects. 
Consequently it should be possible to observe programmers using this 
system in either fashion or in some compromise combination of these 
styles, and hence glean inform ation to guide the design of future 
languages and implementations. For example, if consistent patterns of 
explicit locality use are observed we may later directly support this 
programming with suitable constructs.

§1.2 Distributed Shared Stores
Multics [Organick 72] is one of the early well-known operating systems. 
One of its outstanding features is the concept of one level store. Each 
process is allocated a very large address space organized as a collection of 
214 segments each consisting of as many as 218 36-bit words. The main 
reason for supporting such a large address space is to avoid the necessity 
of overlays and therefore data movement within it [Daley & Dennis 68]. 
The problem addressed here is the issue of sharing. The issue is an 
important one as it has strong implications on building complex systems 
out of existing ones. The issue rem ains central to the design of 
generations of multi-user systems.
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With the recent technological advances of high speed networks and 
VLSI, the large and expensive multi-users systems are gradually giving 
way to small, cheap bu t equally, if not more, pow erful personal 
workstations connected over a network. In the absence of common 
physical stores and the lack of a central management system, sharing 
becomes once again the focus of research into providing distributed 
programming environments [Needham & Herbert 82].

One of the motivations behind persistence is the desire to facilitate 
reuse of software components and other data by providing a type secure 
yet flexible program m ing environment. The idea is akin to the concept 
of very large address space first advocated in Multics. In the universal 
persistent store the unit of sharing is the object whereas the unit of 
sharing in systems like Multics is the segment. The principal difference 
between the segment and the object is that objects retain their types 
which mediate their use even when they are created by one program and 
reused by another. Given that there is provision for accessing objects by 
name this kind of system is analogous to a filing system, except that there 
is a richer repertoire of structures and typing is imposed. Thus the issues 
that arise in distributed filing systems [Schroeder et al. 85] are extended by 
those of typing.

It has been pointed out earlier that the facilities of persistent stores 
can be provided in a distributed environment in the most natural way. 
The provision of a universal persistent store presents to programmers 
on a distributed system a single paradigm  in the m anipulation of both 
remote and local data.

§1.2.1 Overview
Locality transparency in persistence is achieved by providing very large 
address spaces so that data whether in heaps or on disks can be identified 
uniformly with persistent identifiers. This is the basis on which language 
constructs are insensitive to the locality of data. Such an approach is 
adopted here and a form of universal addressing is introduced for the 
purpose of accessing non-local data. An objective of this thesis is to 
demonstrate that such a universal persistent store can be realized in a 
way that has a minimal impact on program m ing semantics. There are 
three reasons for this: 1) to avoid affecting innocent by-standers who are 
accustomed to tradition and those who do not wish to take advantage of 
distribution, 2) to avoid learning costs and 3) to capitalise on existing 
investm ent.
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The main difficulties to overcome in realizing such a store are:

1) to allow dynamic merging and decoupling of persistent 
stores with minimal impact on existing programs and data;

2) to support a universal addressing structure allowing 
different addressing schemes with minimal trade-offs in 
flexibility, space and performance;

3) to facilitate communication of data between different kinds 
of machines on the network under the control of either 
program m ers or the system in a m anner consistent with 
the programming paradigm of persistence.

It is not obvious, a priori, that w ith the present technologies and 
current theories these difficulties can be overcome. To test whether they 
can be overcome a universal persistent store was implemented and used. 
The following assumptions about requirements and contexts were made:

• A network is understood to be made up of a number of 
machines with individual processors, physical memories 
and  backing stores connected over a high speed 
com m unication netw ork such as the E thernet. The 
num ber of machines connected and therefore the num ber 
of machines participate in the construction of a universal 
persisten t store is restricted only by the underlying 
communication hardware.

• Autonomy is important, in particular, there is no notion 
of master and slave machines on the network. Machines 
may share one or more file servers but this does not cause 
any contradiction.

• The machines need not be homogeneous. They may have 
d ifferent architectures. M oreover, m achines are not 
required to have a provision of local persistent stores in 
order to participate in a universal persistent store.

Primarily, we seek the advantages of shared memory program m ing in 
the context of network architectures. These advantages are derived from 
uniqueness of objects or pieces of store and semantic implications 
therefore include : 1) cheaper value equality, 2) space efficiency and 
visibility of updates and 3) a richer spectrum of binding strategies.
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We envisaged that processes running  on different m achines 
cooperate with each other by using the universal persistent store. Objects 
created by one process can be shared w ith other processes and may 
become directly manipulable. For instance, if the shared object is a 
procedure, a remote process could call it as if it were a local procedure. 
Similarly, if it is a vector of integer variables, it can be assigned or used in 
expressions as if it were local. In either case, no extra syntax is required 
and possible side-effects can be seen by all those concerned. This kind of 
facility does not necessarily compromise the well-known engineering 
principle of encapsulating information. Implementation details can be 
hidden using scope rules or abstract data types. This idea is illustrated in 
some of the examples in chapter 8.

Process communication, which is essential in a distributed system, is 
seen in this context as a means of establishing initial links with programs 
or data. Once the root to a tree has been obtained, any leaf node becomes 
automatically reachable. For example, once an instance of an abstract data 
type is obtained through com m unication, any of its procedure 
components can be called w ithout explicitly invoking communication 
again.

N orm ally there is no m ovem ent of objects betw een machines, 
rather cooperation is achieved by the implicit movement of operations 
to objects. An im plem entation m ay copy for engineering reasons, 
provided it retains the illusion of no copying. For example, immutable 
values such as strings are copied in communication. Hence, string 
operations can always be carried out locally w ithout the overheads of 
communication. But care has to be taken to ensure the equality test still 
gives correct results. The strategy of not copying data in general is 
im portant as the scale of the problem of data inconsistency is reduced 
and can be dealt w ith in a straightforw ard m anner. It has other 
advantages as well. The most im portant one is that synchronization 
primitives such as semaphores can be implemented in virtual memory. 
If data w ere copied, atomic access to sem aphores could not be 
guaranteed. This provides a platform  on which experim ents with 
concurrency control can be carried out within the language.

Requests for the manipulation of data are always obeyed at the sites 
where they were created. In consequence, resilience, which can be 
achieved by replication, cannot be provided. Applications such as some 
relational database systems where replication of data at various sites is 
required, cannot be supported. Two primitive concepts are introduced so 
that particular forms of replication for reliability and recovery may be
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programmed, these are locality and explicit copy.

§1.3 Related Work
Research on shared stores has always been in the realm of operating 
system people rather than language designers. Although the dividing 
line is becoming blurred as a consequence of persistence, it is not 
surprising that related work on distributed shared stores is relatively 
rare. Related work on programming languages is covered in chapter 3 
and here we consider operating systems and stores.

The concept of distributed shared m em ory is absent from some 
distributed operating systems such as LOCUS [Popek et al. 81], the 
Newcastle Connection [Brownbridge et al. 82], the Network File Service 
of Sun [Walsh et al. 85] etc. They are concerned with providing a Unix- 
like computing environment over a network. The idea is to pu t together 
individual Unix file systems connected over a network. Thus one file 
system may appear to be a sub-tree of either another or a network-wide 
file system so that any file in it can be accessed in the usual Unix 
paradigm.

A variety of strategies in copying data can be found in some of the 
following distributed operating systems, although they advocate the 
concept of distributed shared memory.

Accent [Rashid & Robertson 81, Fitzgerald & Rashid 86], the 
Distributed V Kernel [Cheriton & Zwaenepoel 83], and the Apollo Aegis 
system [Leach et al. 83] are all message based distributed operating 
systems. They allow processes on different machines to share pages of 
one another's address space. The idea is that when a page fault occurs, 
the missing page can either be brought in from a local secondary storage 
or fetched from a remote machine. Eventually, modified pages are sent 
back to the home nodes to effect updates. W ithin this framework, there 
are variations on the approach and in particular the concurrency control 
strategy.

In Accent, there is an emphasis on the relationship between inter­
process com m unication and the v irtual m em ory m anagem ent. To 
handle distribution, there is a network server process on each node to 
facilitate the transfer of pages between nodes. It serves as an intermediary 
between processes on different nodes sharing a common collection of 
pages. There is an interesting notion of copy-on-write so that each 
process concerned has a logical copy of a shared page. This can be
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explained as follows. Pointers to pages may be passed in messages for the 
purpose of inclusion in the page table of another process. However, 
because of the asynchronous semantics of message passing, the sender 
process may alter the pages before the message is received and acted 
upon. W hen this happens, copies of the pages are then m ade in the 
sender process' address space.

The Distributed V Kernel approach is not radically different from 
that of Accent. The m ajor difference is tha t com m unication is 
synchronous. Processes may send pointers to locations in their address 
spaces in messages. These sender processes are then suspended until 
replies arrive. In the meantime, the receiver processes may use the 
prim itives Mo v e To  and Move Fr om  using po in ters and process 
identifiers passed as parameters in transferring data between the address 
spaces before replies are sent.

The Apollo Aegis provides processes, in the tradition of Multics and 
IBM System/38 [French et al. 78], with a network-wide flat address space. 
All processes running on different machines on a network see a single 
level store so that both local and remote data whether in main memory 
or on disks are accessed uniformly. Unlike Accent where because of the 
notion of copy-on-write there is no need for synchronization and the 
Distributed V Kernel where synchronization is built into the message 
passing semantics, concurrency control over copies of shared objects in 
Apollo Aegis is achieved by using locks. Because processes on each node 
can access objects on another node and because lock modes can change 
e.g. from read to write, each node maintains a lock database with lock 
records of not only local but also remote objects referenced as well. This 
entails a complicated procedure in realizing the locking convention. 
Lock and unlock requests are always sent to the home node and the lock 
databases at the two nodes are updated simultaneously. Locking of an 
object may cause local out-of-date page copies to be removed from a 
process address space. Up-to-date page copies will then be transferred on a 
demand basis. Unlocking of an object causes pages to be sent back to the 
home node before the remote lock database is modified.

The Monads system [Abramson & Keedy 85] appears to offer a 
simpler yet more attractive alternative in its locking convention. The 
idea is to mark each page as either read-only or read-write. An interrupt 
is generated if an attempt is made to write into a read-only page. There is 
a memory server global to all machines on a network which maintains a 
page status table. This table keeps track of the whereabouts of pages as 
well as their mark bits. It is interesting to note that concurrent requests
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for a page are always granted. Any inconsistency which m ay arise is 
avoided by changing the mark bit of the m ost up-to-date copy. For 
example, if a page is used in read-write mode and the new request is 
read-only, the node holding the page is asked to return the most up-to- 
date copy of it to the memory server. At the same time, that page is 
m arked as read-only at the site where it is currently held. The most up- 
to-date copy of that page is subsequently sent to the requestor node. Both 
nodes then have a read-only copy of the page and the memory server 
also has the most up-to-date copy.

There is a concept of write-through-stores on the ICL 3900 machines. 
Processes distributed on nodes connected by the MACROLAN [Warboys 
85] may share a segment and a write into that segment causes update 
messages to be broadcast. In all such systems we know of this write 
through mechanism depends on hardware support.

The approaches taken by these operating systems represent novelties 
in trying to support distributed shared stores; some of them, such as the 
System /38 (with network-wide addresses), were even ahead of their 
time. However, most of them either lack generality (e.g. because special 
hardware is assumed as in ICL 3900 series), suffer the problem of scale-up 
(e.g. the memory server on the Monads system when moving to handle 
larger address spaces is likely to become a bottleneck) or a combination of 
both. Other approaches, which do not entail such rigid features, are 
worth exploring and the approach employed in the realization of the 
universal persistent store represents one such.

§1.4 Thesis Organization
Generality means different things to different people. In the case of 
operating systems, typically the use of a low level facility often requires 
expertise in different areas. For example, the use of a Unix 4.2 socket 
requires knowledge of address families, protocols, naming and binding of 
sockets, and even the size of data that can be transm itted in a single 
packet. To encourage the exploitation of netw ork environm ents, 
programmers should be protected from having to use and understand 
such low-level details. The universal persistent store approach offers an 
attractive alternative whereby the underlying systems can be presented 
in an abstract and unobtrusive manner.

The realization of the universal persistent store relies on two 
m echanism s: an RPC m echanism  and a un iversal addressing  
mechanism in addition to the persistence mechanism. The universal
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addressing mechanism is unusual in that it is not designed to be a stand­
alone addressing mechanism . It relies on the existing addressing 
mechanisms to locate data. The RPC mechanism is integrated into a 
concurrent abstract machine. The design and implementation of both the 
RPC mechanism and the concurrent abstract machine are described in 
chapter 5. The universal addressing mechanism is covered in chapter 7.

A concurrent language based on PS-algol has been designed and 
implemented to experiment with the idea of a universal persistent store. 
The design work and in particular the programming concept of locality 
are discussed in chapter 4 and the implementation is described in chapter
6. Examples using the language can be found in chapter 8.

This work grew out of the need for concurrency in PS-algol. The 
problems of concurrency in PS-algol are examined in chapter 2 where 
previous attem pts in extending PS-algol w ith concurrency are also 
described. A concurrency model which fits well with the distributed store 
model is arrived at based on a survey of concurrency and the analysis of 
the strengths and weaknesses of the related mechanisms. These can be 
found in chapter 3.

The conclusion and a summary of related areas not covered in this 
thesis appear in chapter 9.
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Chapter 2

PS-algol

§2.1 The Language
PS-algol was designed as a language supporting  experim ents into 
persistent program m ing [Atkinson et al. 81, Atkinson et al. 83, Atkinson 
& Morrison 85a, Philbrow & Atkinson 86, Carrick et al. 87]. It is a strongly 
typed language in the Algol tradition. Many of the features are similar to 
o ther conventional languages such as Algol68 bu t its principal 
innovations include:

• integrated graphics,
• higher order functions, and
• orthogonal persistence.

As a result of the adherence to the principle of data type completeness, 
the language is powerful yet simple to learn.

The language has a rich set of data types. The base types are integer, 
real, boolean, pixel, string and picture. H igher order data types are 
generated by the (possibly recursive) application of the type rules. The 
notion of orthogonal persistence is derived from the relationship 
betw een persistence and types. W hat it means is that any value 
irrespective of its type can be made persistent. This is contrasted with 
other related languages such as Pascal/R  [Schmidt 77] in which only 
values of a subset of the language's data types are allowed to persist. The 
generality of the PS-algol persistent m echanism  has proved to be 
invaluable in many respects. For instance, since procedures are first class 
values, they can be m ade persistent. An implication of this is that 
modules or objects (as in Smalltalk) can be constructed, w ithout further 
language support, as persistent structure instances whose fields are 
procedure values.

The application domain includes that of conventional languages 
and is also aimed at database related utilities. Experience gained in the 
use of the language has proved to be fruitful. It has been used as the basis 
of an Alvey project [Atkinson et al. 87, Hepp 83, Kulkarni 83] and several 
others including Prolog [Gray et al. 87] and a distributed relational data 
system [Norrie 85]. At the time of writing, there are also plans to use it in 
several large scale projects e.g. support of Flagship's data store [Sparks 88]
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and the store for IPSE 2.5.

In retrospect, it was felt that the language represents a milestone in 
the pursuit of persistent programming languages. However, some of its 
features have been overlooked in the process. In particular, its most 
powerful feature is where one of its weaknesses is most felt.

§2.2 Persistence and Concurrency
PS-algol is one of the first store semantics languages with the provision 
of a persistence store. The notion of a store is much more general than in 
other conventional languages. A persistent store is an abstraction over 
physical memories [Cockshott 83] in that:

• from the programmers' point of view there is no distinction 
between RAM and the secondary storage,

• it is m eant to be a data depository and there is no limit on the 
amount of data that can be put into it,

• it is reliable and transactionally secure, and
• it is object oriented.

In the present implementation, the persistent store is organized as a 
collection of databases. There is no constraint on the kinds of objects that 
can be pu t into any one of these databases. There is no limit on the 
amount of data that the store can accommodate as the number and the 
size of databases are not constrained either. Thus it appears to the 
programmers that the underlying store is a very large and secure one- 
level store. Data whether in RAM or on disks are manipulated uniformly 
as if they were in RAM.

On a m ulti-user system such as Unix™, a num ber of PS-algol 
processes may run simultaneously against the same persistent store. In 
order to resolve conflicts that may arise, concurrency control is necessary. 
However, since concurrency is not defined in the language, concurrency 
control has to be introduced at the store level. In order to ensure the 
integrity of data in store, each PS-algol process is seen as a single 
transaction by the store management system. A transaction is considered 
to have two parts: atomicity and stability. Atomicity is supported by a 
locking convention which guarantees that the effect of a transaction is 
seen by others as a whole. That is to say either it takes place or nothing 
happens at all. Stability is provided through a language interface to the 
store. The effect of calling this interface is to cause copies of objects 
reachable from a root from which persistent objects hang to be sent back
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to the persistent store. The entire operation itself is atomic. Stability here 
means that once in store, data are free from anomalies such as power 
failures. M oreover, only inverse operations can nullify the effect of 
stability.

The locking convention applies to all processes running PS-algol 
programs and is enforced implicitly by the store management system. It is 
rudimentary: multiple readers and single writers and the unit of locking 
is a database. Locks are acquired at the time when the required databases 
are open and are not released before the process has terminated. In 
retrospect, the efficacy of the system with respect to the utilization of the 
persistent store has not been found satisfactory. There are a couple of 
reasons for this.

First of all, the granularity of lock is unacceptably coarse. The unit of 
locking is a database, disregarding the ratio of the amount of data in it 
and that actually used in a transaction. Consequently, some transactions 
are locked out unnecessarily for arbitrarily long periods. The degree of 
concurrency attainable is not as high as one w ould like. Logically 
speaking, there is no reason why transactions m anipulating a non­
intersecting set of persistent objects cannot proceed in parallel.

The consequence of organizing the persistent store as a collection of 
databases and the locking convention was a grave one. A database could 
contain objects which have pointers to objects in other databases. De­
referencing such pointers automatically causes these databases to be 
locked in the same m ode as the one containing those pointers. Under 
such a circumstance, the system could deadlock yet there is no trace of it 
anywhere in the source codes. This makes understanding program s 
much more difficult. In principle, a separate PS-algol 'database' could be 
constructed for each object or group of objects that require a lock, though 
the present implementation would make that inefficient.

It is beyond any doubt that concurrency is essential as the volume of 
data increases in persistent stores. The lower the utilization of data the 
less attractive persistent stores appear to be. The present arrangement in 
PS-algol is an ad hoc expedient. The issue has not been addressed 
properly.

The core problem is the lack of coordination among transactions. 
The compiler does not have enough information on the extent of the 
effects of transactions. Because of this, the unit of locking as imposed at 
the persistent store level could not have been finer than its structural
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un it viz. a database. A lthough this guarantees the atom icity of 
transactions, it is at the expense of locking out transactions unnecessarily. 
Ideally, the subject of locking should be at a lower level, for example, on 
the basis of either individual objects or a group of objects. If an object has 
been locked out exclusively then any acquiring transaction will have to 
wait until it is released. Research in this area have found optimistic 
approaches of such nature often more favourable [Kung & Robinson 81] 
in sparsely populated databases as the chance of running into a deadlock 
situation is relatively small.

One approach we could take is to do away w ith the locking 
convention im posed at the persistent store level altogether. Instead 
synchronization primitives and concurrency are introduced into the 
language to allow customized locking conventions.

There are other reasons for wanting to introduce concurrency into 
the language. Firstly, the expressiveness of the language is enhanced as 
some inherently concurrent applications such as simulation of discrete 
events, handling i /o  events etc. can be described in a very natural way. 
One may argue that it is possible to use a sequential language to emulate 
pseudo-concurrency. However, the resulting program s are often less 
structured and the logic more complicated.

Furthermore, concurrency is one of the means whereby it is feasible 
for the language designers and implementors to explore the underlying 
machine architecture. Concurrent programs give rise to the opportunity 
that their fragm ents can be executed in parallel on m ultiprocessor 
m achines.

Last bu t not least, concurrency is inseparable as a component of a 
distributed system. Concurrent processes are building blocks from which 
distributed applications can be realized.

§2.3 Previous Work
Four attem pts have been made in tackling the concurrency problem in 
PS-algol. Larry Krablin developed CPS-algol [Krablin 85a] in his 
investigation into transactions and persistence during a visit in 1985 
from Burroughs Corporation, USA. Chris Barter from University of 
Adelaide, Australia, proposed language extensions in experim enting 
with the idea of polymorphic persistent processes in 1987 [Morrison et al. 
87]. Richard Connor, a member of the PISA team at University of St. 
Andrews, is pursuing the same line as Krablin but using PS-algol as the
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platform for experiments. Michael Guy at ICL implemented a concurrent 
version of PS-algol on ICL 3900 series computers.

In CPS-algol, concurrency is introduced by a form of dynamic 
processes. A dynamic process is created using the language construct fork 
which acts on procedures. Unlike in Unix, the forked process executes in 
the same environment as the executing process. Furthermore, there is no 
dependency between child and parent processes. Parent processes are not 
suspended because of the creation of child processes. The termination of 
one type of process is not conditional on the other. There are two 
pragm atic reasons for allowing this. Firstly, there is a restriction on 
procedures that can be used in a fo rk  statement; they m ust not return 
results. Secondly, the representation of processes is a chain of stack 
frames which are objects in the heap. Thus environm ents rem ain 
reachable even if processes have terminated.

Krablin favoured this form of concurrency because of its generality. 
But he also pointed out that because of the dynamism, more care and 
discipline are required on the part of the programmers. The interaction 
between forked processes and the PS-algol notion of transaction is also a 
subject of concern. The problem is that the effect of a commit is global to 
all processes sharing the same environment.

The focal point of Krablin's interest is in transactions [Krablin 85b]. 
Concurrency is a means whereby parallel transactions can be obtained 
and therefore their study is made possible. In particular, he is concerned 
w ith atom icity and deadlocks as persistence already provides the 
provision for stabilizing the effects of transactions. In his experiments, he 
proposed using some form of critical region (see Chapter 3 for a more 
general description) as the synchronization primitive. The following 
simple example sketches the idea.

resource a(int b; bool c)
let d = a(10, true)

atomic on d do {await d(c) = true; d(b) := 0; d(c) := false}

Protected data are encapsulated in resource expressions such as d which 
is created as an instance of the resource class identifiable as a in the 
example. Accesses to them can be m ade only through an a to m ic  
statement. If d is in use, the executing process is blocked. Otherwise, it 
continues to carry out the assignments if furthermore the boolean field c 
indicates a true. If d(c) evaluates to false, the executing process is then
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blocked and d is made available to other processes. It is resumed when d 
can be seized, the condition expression is evaluated again prior to the 
assignments.

The intention is that a transaction can be realized with an atom ic 
statement where atomicity is guaranteed and stability can be achieved by 
performing a commit in scope. However, the problem of deadlock is left 
open. It remains the responsibility of the programmers who organize the 
order in which resources are accessed.

In contrast, Barter is interested in the concurrent use of a large 
volume of data which may be distributed over different machines on a 
network. The usefulness of the Krablin approach is considered to be 
inappropriate in the absence of shared stores. Barter's idea is centered 
around communicating processes. Each process encapsulates protected 
data which can only be m anipulated by procedures local to the process. 
These procedures are invoked by sending requests. Mutual exclusion is 
achieved by ensuring that requests are served one at a time. There is a 
strong resemblance in spirit with monitors in his approach.

The language extensions put forward by Barter come close to that of 
Ada. The proposal is also close to some of the ideas which I had arrived 
at independently. In his proposal, processes are also dynamic and 
independent from one another as in CPS-algol, but processes are created 
as instances of process classes. A process class can be introduced into the 
type system. Since processes do not share data even if they share the same 
store, communication is achieved by calling each other's procedures.

Krablin and Barter addressed the same problem of the concurrent 
use of persistent data but from two extreme perspectives. Krablin 
concentrated on the construction of concurrent transactions on a local 
store and Barter was more concerned with the distribution of data. The 
work of K rablin’s was experim ental in na tu re  supported  by an 
implementation and the concurrency model did not appear to be more 
attractive than that of Barter's. On the other hand, Barter seemed to have 
left open the issue of distributed transactions. The work on concurrency 
reported in this thesis, which was undertaken concurrently with other 
work, is an attem pt to tackle the same problem again but with a flavour 
of the two approaches.

Connor has experimented with the use of a CPS-algol-like language 
to examine its efficacy in im plem enting various transaction models.
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Michael Guy has built a system which adds monitors to PS-algol and uses 
object level locking.

It is not yet clear which models of concurrency will work best for 
pe rsisten t languages, particu larly  w ith  respect to p rogram m er 
com prehension and use. It is therefore w orthw hile conducting the 
experiment reported in this thesis, and other experiments, to explore this 
issue. The sub-issues include locking and concurrency control, process 
synchronization and com m unication and m atters arising from  the 
distribution of data such as distributed transactions and distributed 
commit.
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Chapter 3

A Survey of Concurrency

§3.1 Objective
Concurrency is perhaps the most talked-about subject in Com puter 
Science. It has been studied in many fields: program m ing languages, 
theory of computations, database systems etc. The fields are diverse and 
the wealth of knowledge that has been generated is probably too much to 
be comprehensible for any single person. The principal objective of this 
chapter is to understand what concurrency means particularly in the 
areas of program m ing languages and database systems. This is for the 
purpose of introducing concurrency into PS-algol w ith a flavour of 
distribution.

The study of existing concurrent programming languages is aimed at 
the understanding of different concurrency models; their strengths and 
weaknesses as well as the state-of-the-art technologies. But there is no 
intention of evaluating them against some problem domain nor do we 
wish to suggest a universal one.

There are a large number of concurrent programming languages; the 
survey is conducted based on a selection of representative languages: 
Algol68 [van W ijngaarden et al. 76], Concurrent Pascal [Brinch Hansen 
75], CSP [Hoare 78], Distributed Processes [Brinch Hansen 78], Ada [ANSI 
83], Amber [Cardelli 85], Occam [May 83] and Modula-2*1- [Rovner et al. 85].

A word of warning is in order at this point. We take the liberty to 
use the term process in the following discussion. It is not properly 
defined and it is m eant to be some kind of concurrent activity. This will 
give us the necessary freedom  to talk about various aspects of 
concurrency without committing to a particular form of concurrency.

§3.2 Synchronization Mechanisms
As soon as concurrency is admitted, the notion of atomicity becomes 
prom inent. We are not aware of it because everything is ordered in 
sequential programming. When something goes wrong in a program we 
are inclined to think that the sequence of events (e.g. declarations, 
assignments, procedure calls etc.) is not in the correct order or an event is 
missing. Atomicity of change is always guaranteed and to correct a 
problem can be a matter of re-arranging events. The ability to control the
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ordering or timing of events is lost once concurrency is adm itted. 
Concurrency in this context is usually taken to mean that the ordering of 
events is not important; that is to say two events could happen at the 
same time or in either order.

A favourable interpretation of concurrency is that there is a partial 
order on the happening of events. W hat this means is that there are 
occasions when some subsequences of events do require to be ordered. A 
sim plistic  exam ple w hich serves to illustra te  the po in t is the 
simultaneous execution of two identical statements viz. "x := x + 1". If 
there is no synchronization, the effect of one of the updates is likely to be 
lost. The problem is that we can never be certain about it. We therefore 
cannot tell whether or not a bug exists in the program. Partial ordering of 
events can be achieved by the provision of concurrent processes which 
are used to delineate unrelated sequences of events and synchronization 
mechanisms which serialize selected events between processes.

One shou ld  notice that there is a lready  som e prim itive  
synchronization mechanism at the store level. The parallel execution of 
the two statements "x := 2" and "x := 3" results in x being assigned a value 
of either 2 or 3 and nothing else. The fact that we are uncertain which 
value x has taken is m ore a sem antic than an integrity concern. 
Synchronization mechanisms are used to guarantee the integrity or 
consistency of shared resources.

§3.2.1 Semaphore
The example on the parallel execution of "x := x + 1” above is not an 
arbitrary choice. It highlights the core problem of synchronization. The 
statement represents a sequence of three events: inspection, addition and 
assignment, in that order. Two processes could do the inspection at about 
the sam e tim e w ithout being aw are of one another. Instead of 
incrementing the value of x twice, the effect of the one of the pair of 
addition and assignment is simply duplicated. A remedy is to arrange the 
sequence of events to be carried out indivisibly. One way this can be 
achieved is to abstract the sequence of events into a single operation and 
to make sure that such an operation can only be carried out serially. Two 
practical examples are: 1) a test-and-set store instruction and 2) non- 
interruptable system calls.

It turns out that an indivisible operation such as the test-and-set 
instruction is very useful. It can be used to organize synchronization in 
more general settings.
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In [Dijkstra 68], Dijkstra proposed the use of sem aphores as a 
synchron iza tion  m echanism  in the accom panied  p roposa l on 
in troducing  concurrent program m ing into Algol60. The idea of 
semaphore is based on a convention of signals whose origin can be traced 
to the early railway systems. A common definition of sem aphore is 
described in [Ben-Ari 82] as:

A semaphore s is an integer variable which can take on only non-zero values.

Once s has been given its initial value, the only permissible operations on sare to call 

the procedures wait(s) and signal(s) which are primitive operations. ... The 

definition of these operations is as follows:

wait(s) : If s > 0 then s := s  - 1 else the execution of the process that called 

wait(s) is suspended.

signal(s) : If some process P has been suspended by a previous wait(s) on this 

semaphore sthenwake upPelse s:= s + 1.

There are two weaknesses in sem aphores. Firstly, careless use 
involving more than one semaphore can cause deadlocks. Two processes 
are in a deadlock, for instance, when two sem aphores are seized in 
different order by each.

Secondly, the use of sem aphores is m erely a convention. The 
problem  w ith conventions is that they are often not enforceable. A 
process could sneak in by executing a V operation and throw  other 
processes into disarray. Apart from this, a matching pair of P and V 
opera tions could be applied  to d ifferen t sem aphore variables 
unintentionally without being detected.

The mechanism is not as grim as it looks. A language could support 
semaphores by allowing variables of some base type to be declared and 
providing two P and V like operations which act on variables of that 
type. The purpose of supporting semaphores as a base type is to let the 
compiler enforce the use of those semaphore variables (distinct from 
integer variables) with only the two operations permitted. Moreover, the 
compiler, in some cases, can enforce the consistent use of the two 
operations by static analysis. For example, it can ensure that P and V are 
always used in pairs and on the same semaphore. The implication of 
these rules is the loss of flexibility making programming more awkward. 
But the compiler checks can easily be bypassed by data dependent code so 
that the responsibility of accessing protected resources rests entirely with 
the programmers.
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We list below  three conventional languages th a t suppo rt 
semaphores or their variants:

Language
Algol68
Ada
Modula-24"

Type

none
sema

mutex

Operations
level, down and up 
pragma shared
acquire, release and InitMutex

The proposal on parallel processing by Dijkstra was adopted in 
Algol68 [van W ijgaarden et al. 76]. Consequently, Algol68 allows 
variables to be declared of type sem a which can be initialized using a 
standard function level. The function level takes an integer param eter 
and thus allows general semaphores. The two operations down and up 
are the P and V operations respectively.

In Modula-24" [Rovner et al. 85] monitors (see §3.2.3) are dropped in 
favour of synchronization facilities at a more primitive level. Variables 
can be declared of type m utex and they are initialized by the standard 
function In i tMutex  and used as binary sem aphores. The functions 
A cq u ire  and Release are supported  as the P and V operations 
respectively. However, for the sake of conveniency the language supports 
a lock  construct which ensures that Acquire and Release are called at 
the appropriate places. Thus the following statement,

lock aMutex do whatever() end

is a convenient shorthand for the following program  fragm ent in 
M odula-24",

var &t: POINTER TO Threads.Mutex;
&t = System.Adr(aMutex);
Threads. Acquire(&tA);
whateverQ;
Threads.Release(&tA);

In addition to mutexes, condition variables are also supported. The latter 
together w ith  wait,  broadcast and signal  operations tha t release 
mutexes under different circumstances, are meant to be used in avoiding 
deadlocks.

In Ada [ANSI 83], some (scalar and access) types of variables can be 
protected against uncoordinated concurrent accesses. This is achieved
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using pragm a shared  which is followed by the variable to be protected. 
An execution of a pragm a shared statem ent causes a semaphore to be 
attached to the variable. The semaphore convention is enforced in that 
the compiler generates the appropriate code whenever there is a read or 
an update access to such variables.

§3.2.2 Conditional Critical Region
An alternative to semaphores was proposed by Hoare in [Hoare 72].

The suggestion is considered more useful than semaphores in that it 
aids structured programming. The notations Hoare suggested were:

r: record... end; 

resource r;

with r when cond do Critical Region;

Here r is declared as a variable of some record type. The resource  
statement indicates that r is to be protected against concurrent accesses. 
The pragm a shared statement in Ada is reminiscent of this in that they 
serve the same purpose. However, r has to be accessed in a conditional 
critical region statement (CCR) where the scope of r together with its 
field is constrained to be within cond, a Boolean expression, as well as 
CriticalRegion in the example. The compiler makes sure that only when 
the condition expression cond, whose purpose is to peek at the state of r, 
is true does CriticalRegion get executed. Otherwise the executing process is 
blocked until the condition becomes true due to a change of state by other 
processes. Note that the condition expression cond is optional. By default, 
it is assumed to be true.

Given a low level semaphore support, the implementation of CCR is 
straightforward. A resource statement causes a semaphore to be created. 
For every CCR statement naming that resource, the object code of the 
critical region of a CCR statement is preceded by seizing the semaphore 
and is followed by releasing it. Moreover, the evaluation of the condition 
expression is perform ed only after the sem aphore is acquired. The 
situation when two processes finding their condition true and both 
entering into their critical regions is avoided. In any case, if the condition 
is false the executing process is suspended and the semaphore is released.

We demonstrate here the inter-definability between semaphores and 
CCRs. We have casually outlined a possible implementation of CCR
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using semaphores. We show here how to obtain semaphores using CCRs. 
In any language that supports higher order functions, semaphores can be 
obtained as instances of an abstract data type. Suppose we have the 
necessary facilities in PS-algol (cf. CPS-algol), a general semaphore ADT 
would then appear as:

structure semaphore(proc() P, V)

let Sema = proc(int range -> pntr) 
begh
structure Mutexfint capacity) 
if range <= 0 do raise NegativeNullException 
let mutex = resource Mutex(range) 
semaphoref

proc() ! P
with mutex when mutex(capacity) > 0 do 

mutex(capacity) := mutex(capacity) -1, 
proc() ! V

with mutex do 
if mutex(capacity) < range 

then mutex(capacity) := mutex(capacity) + 1 
else raise AbuseException

)
end

In the exam ple, the resource expression retu rns an object of a 
recognizable type which is used in the following CCR statements. This is 
in keeping with the tradition of strong typing in the language that every 
expression has a type. Also, the range check is in accordance with the 
definition of sem aphores. In particu lar, the second range check 
eliminates a potential misuse of the V operation though it still can be 
called inadvertently.

§3.2.3 M onitor
The invention of monitors is more-or-less a response to the need for 
structuring large and complex programs e.g. operating systems. Low level 
resources such as memory allocation m ust be centrally administered to 
prevent malicious uses while allowing concurrent accesses. In this 
respect, it would be a tiresome task to rely on semaphores or CCRs. A 
semaphore is meant to be a gateway to protected resources but it could be 
bypast intentionally or otherwise. CCR facilities put a fence up around 
protected resources but once the door is open the resources are liable to 
misuses. Furthermore both semaphores and CCRs are scattered all over 
program sources making debugging difficult.

The idea of m onitor was first outlined in [Dijkstra 72] and was
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further expounded in [Brinch H ansen 73, H oare 74]. A m onitor 
encapsulates resources and at the same time limits the ways in which 
they can be manipulated. This is achieved by disallowing direct accesses 
to the protected resources altogether. Instead they can only be accessed 
through procedures which are made visible. Synchronization is achieved 
by disallowing more than one process calling a monitor procedure.

Since the protected resources are completely hidden, it is not possible 
to peek at the state of the resources. But the nature of some concurrency 
problems such as i /o  buffering requires the state of the resources to be 
inspected before an operation can be carried out. For this reason, 
condition variables are introduced to serve as signals between processes. 
The idea is that if the condition does not permit, the calling process is 
suspended and the monitor is released for the benefit of other processes. 
A problem  in the early proposal [Hoare 74] is that a signal is not 
remembered so that a process may be suspended for a condition not 
knowing that it has already been made favourable by other processes. A 
taste of this can be found in the example below. The problem has been 
the subject of a score of proposals. These are further discussed in the two 
papers above and the following [Brinch Hansen 75, Rovner et al. 85, 
Lampson & Redell 80].

In the monitor paradigm  there is no global variables. Accesses to 
resources are always through monitor procedure calls. This means a 
monitor procedure may call other monitor procedures. Since a monitor 
procedure call is conducted in mutual exclusion, mutually recursive calls 
could result in deadlocks. The problems of monitor procedure calls are 
further discussed in [Lister 77].

Concurrency control with monitors is quite stringent. Only one 
process is allowed to be inside a monitor at any time. This could prove to 
be rather restrictive if a large collection of small objects such as records or 
relations is protected by a single monitor. Unless monitors are cheap, the 
degree of concurrent accesses to resources is not likely to be high.

The implem entation of monitors is again trivial given primitive 
semaphores. A binary semaphore suffices to ensure m utual exclusion to 
m onitor procedure calls. However an im plem entation of condition 
variables requires the support of a queue for suspended processes and the 
two operations wait and signal for suspending the executing process 
and resum ing an enqueued process respectively. The following is an 
example showing an ADT of a mutex monitor. The construction of the
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ADT capitalizes on Sema defined earlier.

structure MutexMonitor(proc() acquire, release)

let MMonitor = proc( -> pntr) 
begh
structure semaphore(proc() P, V) 
let notBusy = Sema(1) 
let Pp = notBusy(P) 
let Vv = notBusy(V) 
let mutex = Sema(1)
MutexMonitor(

proc()
begh
mutex(P)()
Pp()
mutex(V)()
end,

proof)
begh
mutex(P)()
Vv()
mutex(V)()
end

>
end

In the example, mutex is used to ensure that there is only one caller to 
either one of the two procedures. This is in accordance w ith the 
definition of monitors. The semaphore notBusy serves to realize a mutex 
being im plem ented here in a m onitor setting. This example is for 
didactic purposes only and serves to illustrate the fact that it is possible to 
obtain some general concurrency control devices based on simple, low 
level primitives.

We have show n here that m onitors can be constructed using 
sem aphores and vice versa. H ow ever, the exam ple above is 
unrealistically simple particularly in process scheduling. In this case, all 
processes calling acquire have to wait until release is called. It could be 
more appropriate to support explicit condition variables for the sake of 
program  clarity and to relieve the programmers from details irrelevant 
to their real problems.

§3.2.4 Path Expression
The provision of synchronization is to ensure reader and w riter 
processes do not interfere with one another. Reader processes which do 
not alter the state of the resources can execute in parallel whilst a writer
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process always executes in isolation. The way in which synchronization 
is achieved in monitors is to treat readers and writers alike. They all 
execute in isolation. In this way, it can be said synchronization is 
achieved at high expenses. M onitors are useful in dealing w ith 
concurrency and in structuring large, complex programs but they may 
not be the ideal tool.

An alternative approach towards synchronization was pu t forward 
by Campbell and Haberm ann [Campbell & Haberm ann 74]. In their 
approach, synchronization is expressed explicitly. The setting is similar to 
that in monitors in that resources are encapsulated and they can only be 
manipulated through visible procedures. The order or rather the lack of 
order of execution of these procedures is described by a set of relations.

Ordering and the lack of ordering are captured in the two kind of 
relations: sequencing '; ' and selection ', '.  For example, "P; Q" means the 
execution of Q should be preceded by P and "P, Q" means either P or Q 
can be selected for execution but not at the same time. In addition, 
association '() ' is possible so that "P; (Q, R); S" describes two possible 
sequences of execution viz. P then Q then S or P then R then S. 
Futherm ore, there are repetition 'p a th  ... e n d ' and simul taneous  
execution '{}'. These concepts and notations are more than sufficient to 
express multiple readers and single writers as in "path {read}, write end". 
In general, priority of execution and simultaneous execution of writer 
procedures which do not interfere with one another can be expressed.

Despite the attractiveness of this approach, it has not been adopted in 
any high level concurrent languages the author is aware of. One reason 
for this may be due to the fact that the state of the protected resources is 
completely left out. The problem is manifest in some intricate situations 
where there are two or more kinds of writer procedures operating on 
shared resources such as buffers. It is less than straightforward to find a 
set of path expressions that is flexible enough to allow these procedures 
to be called in mutual exclusion, arbitrarily and infinitely often without 
hitting the bounds of the buffer. The approach is a victim of its own 
descriptive pow er in that there can be no com pensatory auxiliary 
synchronization mechanism at the same notational level.

§3.3 Interprocess Communication Mechanisms
The contribution of monitors lies in the fact that both m odularity and 
process synchronization are achieved at the same time. There is little 
doubt that modularity is useful in structuring large, complex programs.
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But the synchronization side is not considered to be satisfactory as it is 
founded upon a very strict access regime which results in less parallel 
execution that is logically and practically achievable. The approach of 
path expressions represents an effort in trying to remedy that aspect but 
fails to take into account the state of protected resources. It is therefore 
not as versatile as one may have wished. The essence of path expressions 
is to describe some execution relations among procedures. It was 
observed that this could be achieved, in part, by granting autonomy to 
monitors and programmers are then responsible for organizing when 
and which call should be accepted. W hether or not two non-interfering 
calls can be executed in parallel depends on the process model which will 
be covered in a later section.

The observation gives rise to monitor-like entities that not only 
encapsulate data resources but also have a separate thread of control; just 
like processes. This idea was first employed in Distributed Processes 
[Brinch Hansen 78]. Since the only means to interact with such processes 
is by calling their procedures, they can be characterized as communicating 
processes. Com m unication through param eter passing is generally 
know n as m essage passing. A d istinctive feature here is that 
communicating processes need not necessarily be sharing the same store, 
which makes distributed programming feasible. It should be pointed out 
that communication and synchronization are two different concepts 
although they are often related in this context. The distinction will be 
made clear later.

This section discusses interprocess comm unication mechanisms 
designed a n d /o r  implemented hitherto for a num ber of program m ing 
languages. Each of these has its own emphasis which gives its flavour. In 
keeping with the underlying themes, we highlight the main features of 
individual mechanisms and avoid discussion of the languages wherever 
possible.

§3.3.1 Distributed Processes
In D istributed Processes (DP) [Brinch Hansen 78], the structure of a 
process is similar to that of a monitor. It encapsulates data and provides 
procedures which can be called upon to m anipulate the former. In 
addition, there is an initial statement which is executed on process start 
up.

Although a process has a thread of control of its own, the execution 
of procedures upon requests is by separate threads of control. In a sense, 
this is the same as a procedure being executed by whoever calls it. In DP,
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each process runs on a separate processor with local storage. But there is a 
surrogate process for each potential caller on each processor. When a 
request is received, the appropriate surrogate process is called in for the 
execution of the called procedure. These surrogates are transparent at the 
language level so that process communication can be thought to be 
accomplished by procedure calls.

Execution of procedures need not happen im m ediately upon 
requests. This is due to the need for synchronizing the process and the 
surrogates. Some form of CCRs are in troduced for that purpose. 
Synchronization is achieved as follows. On start up, the initial statement 
is executed. The execution either terminates or halts at a CCR statement. 
The surrogates which then executes is chosen non-deterministically. 
Again the execution either terminates or halts at a CCR statement. The 
process or one of the other surrogates then has a chance to run. This 
continues indefinitely as the processes are not m eant to terminate. One 
limitation is that the set of processes is statically determined.

§3.3.2 CSP, Occam, Ada and Amber
The communication style in CSP is modelled upon assignments. In fact 
the way processes communicate is reminiscent of the execution of an 
assignment. There are two complimentary actions involved viz. a ? for 
input and a ! for output mimicking the evaluation of the expressions on 
the left and right hand sides of an assignment. Two processes engaged in 
a communication are synchronized until both are ready and a value has 
been exchanged.

This concept of CSP brought the semantics of communication in 
p ro g ram m in g  lan g u ag es  in to  focal in te re s t. S ynch ronous 
com m unication as opposed to asynchronous comm unication has a 
simple and concise semantics. It has simple semantics because it does not 
require buffering of data and hence there is no "hidden" state associated 
with messages in transit, nor are there flow control problems. It has 
concise semantics because it is easier to reason about communicating 
programs as an event at one end of the communication channel triggers 
exactly one event at the other.

The elegance in which process communication is accomplished is a 
reason w hy CSP has such a profound influence on rendezvous 
communication mechanisms found in subsequent languages such as 
Occam, Ada and Amber.
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Occam [May 83] is a language subset of CSP. It takes the role of an 
assembly language for the INMOS transputers. An INMOS transputer is a 
computer made up of a CPU and local memory on a single chip with 
eight hardw ired channels for external communication. A cluster of 
transputers can be programmed in a variety of ways to carry out specific 
but concurrent computational tasks. Unlike CSP, processes in Occam do 
not name one another for the sake of communication. Instead they name 
channels which can be shared only between two processes mimicking the 
connectivity nature of transputers.

One of the most talked-about features of Ada is rendezvous; the 
process communication mechanism. It is the most comprehensive piece 
of language communication machinery ever designed covering as wide a 
spectrum as: timed and conditional calls, selective waits and extended 
rendezvous. Basically, rendezvous is a synchronous communication 
m echanism , just like that advocated originally in CSP. Processes 
communicate through entities known as entries. Entries are rather like 
procedures. They have headers and executable bodies similar to that in 
procedures. Messages are sent to entries where they are queued awaiting 
acceptance. A process can have more than one entry associated with it. A 
non-determ inistic selection of entries is possible. W hen an entry is 
selected, the longest waiting message will be selected and the body of the 
entry is executed by the callee. In comparison with CSP, callers and callees 
are synchronized for longer than just for the sake of exchanging values. 
Callers w ait until callees have finished execution of entry bodies. 
Extended rendezvous  (p. 370 [Watt et al. 87]) allows callers to be 
resum ed earlier than this. There is an arrangem ent for propagating 
exceptions to both processes if they are triggered during a rendezvous. 
The juxtaposition of all these facilities could lead to programs which are 
difficult to understand [Hoare 81].

The communication mechanism in Amber is very similar to that in 
Occam. In both cases, process communication is synchronous and is 
facilitated by channels. The difference between the two languages is that 
Occam is very close to the machine and Amber is a strongly typed high 
level functional language. In Amber, channels are typed first class objects 
and can be shared by an unspecified num ber of processes. Processes 
communicate by naming common channels and the CSP notations i.e. ? 
and ! are adopted which operate on channels and values whose types are 
restrained to that of the channels to which they are transm itted. For 
example, only integers can be sent down a channel of integer. It is 
interesting to note that channels are first class objects in the language so
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that a channel can be passed down another channel. Consequently, the 
communication capability of a process is not a static property.

§3.3.3 Mesa
Distributed Processes is one of the first languages to have supported 
remote procedure call (RPC) as the process communication mechanism. 
RPC differs from the communication mechanisms in CSP, Occam and 
Amber in that communicating processes do not name one another and 
the communication m edium  is transparent. These make RPC a more 
general com m unication m echanism  particu larly  in a d istribu ted  
environm ent. The modus operandi of the mechanism in DP is rather 
restrictive. Processes can communicate with one another only if they are 
parts of a single program. This is mainly because the targets aimed at 
were static systems whose structures seldom altered.

The communication mechanism in Mesa [Birrell & Nelson 83] is 
also RPC. But the model of computation is more general than that in DP. 
It is based on the concept that each communicating process can be 
regarded as either a client or a server. In the context of communication, 
servers do not know the identities of clients but the latter must name the 
former. This allows library server packages which are not possible in CSP. 
Furthermore, clients and servers may be compiled separately and on 
different machines.

The RPC in Mesa is seen to be an extension of the ordinary 
procedure call mechanism. The aim was to make RPCs appealingly 
similar to ordinary procedure calls. Consequently, it tries to hide network 
and machine failures. It was believed that such an approach contributes 
towards simplicity in distributed programming.

§3.3.4 Argus
Argus [Liskov 85b] is derived from of CLU but with particular emphasis 
on distributed systems which lead to a consideration of the manipulation 
and preservation of long-lived data. A distributed system is modelled as a 
collection of entities know n as guardians executing on different 
machines. A guardian is structured more-or-less like a monitor or a class 
in that data are encapsulated and can only be accessed by locally defined 
procedures known as handlers. Instances of guardians may be created at 
any site. Interaction between guardian instances is by invoking handlers 
which is akin to calling remote procedure.

C oncurrency is inheren t in the com m unication m echanism . 
Concurrency is therefore implicit. For every handler call, a process is
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spawned to serve it. These processes are synchronized only if they try to 
access global data. Concurrency control is built into the semantics of data 
types.

One interesting semantic aspect of handler calls is that the calling 
semantics is at-most-once. This is in keeping w ith the view that a 
handler call has the role of a transaction; either it succeeds or not and the 
caller is informed. This, they claim, makes the construction of reliable 
distributed systems less complicated than it would otherwise be.

An interesting aspect of Argus is that although it is for programming 
distributed applications, there is no concept of shared stores. It supports 
the construction of distributed transactions by means of handler calls. 
Each handler call is regarded as a transaction. Handlers may call one 
another or be mutually recursive. A distributed transaction is depicted as 
a tree whose nodes are sub-transactions scattered over machines on the 
network. A commit decision made at the root is rippled down through 
the leaves thereby causing local commits. Central to this theme is that 
images of transactions are saved on local storage media to get around the 
problem of node crashes during a global commit. It is then required that 
objects remain where they are. Consequently, the passing of objects in 
handle calls results in copies installed at the receiver ends. These copies 
are regarded as separate objects. Consistency among copies of an object is 
therefore not a responsibility of the system.

It is interesting to contrast this approach w ith that of Linda. In 
[Carreiro & Gelernter 86], Linda is described as a sub-language with a 
small number of parallel operators. A space of ordered tuples shared by 
processes running on different nodes on the S /N et [Ahuja 83] underlies 
its communication mechanism. Primitives are provided for the injection 
and extraction of tuples to and from the space. The tuple space is a logical 
transit area for holding messages exchanged among processes. The 
realization of the tuple space is by requiring each node on the S /N et to 
keep a complete copy of the space. So the injection of a tuple into the 
space causes the installation of a copy in each of the nodes. Similarly the 
extraction of a tuple causes the deletion of its copy from each of the 
nodes. The consistency among copies of the tuple space on each node 
appears to rely heavily upon the bus nature of the S /N e t and in 
particular the broadcast protocol used.

§3.4 Non-determ inism
Dijkstra was (again) responsible for introducing non-determinism  by
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means of guarded commands into programming languages [Dijkstra 75]. 
The intention was to allow a number of (trivially) different programs to 
be expressed succinctly in a single program.

A guarded command is a statement made up of a Boolean guard and 
a list of statements. It is only when a Boolean guard is evaluated to 
become true that the associated list of statements gets executed. Guarded 
commands are rather like the if-then construct in Pascal or the if-do in 
PS-algol. They alone are not m eant to introduce non-determinism. It 
comes from the alternative and repetitive constructs both of which have 
guarded commands as constituents.

alternative command> ::= if <guarded command> {[] <guarded command>) fi 
repetitive command> ::= do <guarded command> {[] <guarded command>} od 
<guarded command> ::= <Boolean expression> -> <statement> {; <statement>}

The if-then and the if-do constructs specify a left to right order of 
evaluation. The guards of the guarded commands in the alternative or the 
repetitive constructs are evaluated, so to say, in parallel. When a guard is 
evaluated to become true, the associated list of statements then has a 
chance to be executed. If there is more than one eligible list, an arbitrary 
choice is made. The difference between the alternative and the repetitive 
constructs is that the former will cause an error if there is no choice 
possible while the latter keeps evaluating until there is no choice and at 
which point it terminates with no effect.

An area in which non-determinism is found useful is in expressing 
the behav iou r of com m unicating processes. N on-determ in istic  
constructs allow a communicating process to be able to behave differently 
according to the pattern of external requests or conditions of some 
internal states.

However, in this connection non-determinism need not be explicit 
at the language level. Argus is a classic example: a flavour of non­
determ inism  can be introduced im plicitly through concurrency. A 
guardian, although executed like a process, does not dictate the 
acceptance of calls. Each call causes the creation of a new process to serve 
it. These processes are synchronized only when they interfere with one 
another.

CSP and DP were the first two languages to support non- 
deterministic constructs for the sake of communication. CSP adopted the 
alternative and repetitive constructs with minor syntactic alterations to those
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above. In DP, in addition to these, there are two constructs collectively 
called guarded regions. These are the when and the cycle constructs. They 
are similar to the other two in that the only constituents are guarded 
comm ands. The when construct specifies, subject to eligibility, the 
selection of only one of the guarded commands and this means the 
executing process may have to be suspended. The cycle construct specifies, 
subject to eligibility, the selection of the guarded commands one at a 
time. In either case, the executing process skips if no selection is possible. 
The other languages included in this survey do not adopt all four 
constructs in their repertoire.

The non-deterministic behaviours of a communicating process can 
be captured very neatly. For example, a sem aphore process can be 
expressed in CSP notations as follows:

Sema:: [ room : integer; 
room := 10;
*[ room > 0 -> [ Any ? V -> room := room + 1

[] Any ? P -> room := room -1]
[] Any ? V -> room := room + 1
i

i
The Sema process accepts P and V repeatedly and the choice of which is 
conditional on the state of the integer variable room using the repetitive 
construct. P is accepted only if room is non-zero. On the other hand, V 
can be accepted at any time. As it is shown here, input and output guards 
can be used in guarded commands.

Occam and Amber both chose to support the when construct which 
has exactly once semantics. The executing process is blocked if no 
selection can be made. It is a little confusing in Occam in that the 
construct is called the alternative construct. This may be due to the fact that 
only input guards are allowed in the construct. In Amber the construct is 
known as the select construct. In contrast to Occam, both input and output 
guards are allowed and can be freely mixed in the same statement.

By and large, the select construct in Ada has a far richer semantics 
than the one in Amber. Its effect is equivalent to the alternative and the 
when constructs combined. The construct takes several forms handling 
committed events, non-committed or conditional events (the else part) 
and timing of events (delay statements) thus allowing both clients and 
servers the necessary freedom to backoff an d /o r try again later.
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§3.5 Processes
Concurrency is introduced by means of processes each with a separate 
thread of control. Typically, the following questions can be asked:

1) Are processes explicit or implicit? If explicit, what form 
does a process take?

2) Can processes be dynamically created?
3) W hat is the relationship betw een paren t and child 

processes?

Answers to these questions characterizes the process structure of a 
concurrency model. The discussion here does not cover Argus not 
because it is the only one favouring the implicit approach but because 
this has already been done.

Algol68 is probably the first algorithm ic language to support 
concurrent programming. Concurrency is introduced through the use of 
collateral clauses or parallel clauses. There is a minor difference between 
them and that is the constituents of collateral clauses are a sequence of 
simple statements whereas constituents of parallel clauses are sequences of 
statem ents which m ay be synchronized by means of sem aphores. 
Moreover, collateral clauses may yield values but not parallel clauses. The 
execution of a collateral clause or a parallel clause causes the creation of child 
processes and the suspension of the parent process. The parent process is 
resumed only when all child processes have terminated. This style of 
concurrency seems to have little influence on later language designs.

In contrast to Algol68, there is a strong distinctive flavour of 
m odularity in processes in Concurrent Pascal [Brinch Hansen 75]. A 
process is a self-contained unit which has a private workspace which is 
initialized by local declarations with an independent thread of control. 
This mimics the CPU and local memory structure of a computer. A 
process is introduced as a template into the type system. This allows 
more than one instance of a process to be executed in parallel. The 
language construct in it is used to spawn new processes. Thus there is an 
element of dynamism  in the process structure. Child processes once 
started are independent from the parents.

As procedures or functions represent some sort of executable codes, a 
num ber of languages took a short cut in supporting  concurrent 
programming by simply introducing a concurrent operator which acts on
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procedures or functions. In Mesa, it is FORK and in Amber it is process. 
The purpose of such operators is to introduce a thread of control for the 
execution of the procedure or function in question. Since procedures or 
functions m ay produce results, it m ust be possible for the parent 
processes to synchronize with its child processes in order to obtain 
results. In Mesa, this is achieved with a JOIN operator which acts on the 
results of FORK and returns the result of the child process. In Amber, 
functions upon which processes can be launched are those that return 
void results and processes are expected to communicate using channels.

Tasks in Ada have similar structures to processes in Concurrent 
Pascal. The process structure in Ada is mostly static. A task is initiated at 
the point where it is declared and reached during execution. However, a 
task can be declared as one of the access types thus almost achieving the 
same degree of flexibility as in Concurrent Pascal in allowing more than 
one instance of the same task to be executed in parallel. Hence the 
num ber of tasks is not statically determinable. Child processes once 
started, execute in parallel with the parent processes. However, parent 
processes do not term inate until all child processes have terminated. 
This is mainly because child processes may reference variables in the 
parent's environment.

§3.6 Conclusions
Essential to a concurrency model are processes, synchronization 
mechanisms a n d /o r  communication mechanisms. There are variations 
on each one of these. For instance, whether processes should be explicit 
or im plicit or both. Should synchronization be bu ilt in to  the 
communication mechanism and not supported separately? In view of 
the store semantics of PS-algol and the desire for distribution, we come to 
the following observations.

We believe processes should be explicit so that program m ers are 
aware of where concurrency is introduced. It is intended that processes 
can be used as building blocks in constructing large, possibly distributed, 
programs.

We believe synchronization and communication are separate issues. 
On the other hand, it is not denied that synchronized communication is 
attractive. The separation offers room  to accom m odate different 
programming styles. Processes may be synchronized without appealing to 
the communication mechanism. This is true even if they do not share 
the same store as we are developing a shared store technology.
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We also believe processes should be dynamic so that programmers 
are allowed to specify when concurrency is to be introduced. The 
combination of explicit processes and dynamic process structure is 
believed to enhance the expressive pow er of a language given that 
communication is synchronous [Liskov 85a].

In facilitating the construction of distributed systems, we believe a 
rem ote procedure call mechanism is the desirable com m unication 
m echanism . This should enable processes executing on different 
machines to cooperate with one another in the most natural way. It also 
permits the components of the system to evolve and change as it is an 
interface which supports delayed type checked binding.

The successive improvements in synchronization mechanisms are 
motivated by the desire for structured programming. We believe this can 
be achieved through other means e.g. higher order functions. The 
drawback of monitors is in their strict access regime resulting in a lower 
degree of concurrency in some cases. We intend to support the more 
flexible mutexes for mutual exclusion and condition variables for process 
scheduling so that sophisticated synchronization mechanisms such as 
monitors can be realized. It remains a challenge in the language design to 
minimize problem s such as incorrect use of mutexes, by high level 
constructs which encourage the use of well defined simple cases in most 
instances.
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Chapter 4

Language Design

§4.1 Introduction
A language based on the distributed stores outlined in chapter 1 is 
described here. The technologies required in realizing such stores will be 
described in subsequent chapters. The principal features of the language 
are distribution and concurrency. Concurrency is adm itted through 
lightweight processes which are computational tasks that share the same 
address space. Distribution is supported by allowing pointers to remote, 
as well as, local data. The effect of manipulating both remote and local 
data is the same giving the illusion of shared address spaces. There is a 
language concept of locality to facilitate specific coding of distributed 
algorithm  to give higher performance computations when necessary. 
The language still allows program s to be w ritten according to the 
principle of locality transparency. Process communication comes in two 
varieties: store-based and message-based. Processes may interact across 
localities using a remote procedure call mechanism (chapter 5). On the 
other hand, they may also interact w ith one another through global 
environments which may be on remote stores. Process synchronization 
over accesses to shared  environm ents m ay be achieved using 
concurrency control prim itives provided. In addition to these, the 
language has a notion of non-determ inism  and supports separate 
compilation of communicating programs. The latter is characterized by 
the signature m atching algorithm so that changes in one software 
component has minimal impact on its dependencies thus reducing the 
amount of re-compilation necessary.

The language is a descendant of PS-algol, from which, persistence, 
higher order functions and other features of PS-algol are inherited.

§4.2 PS-algol
The new language is designed based on PS-algol. A brief introduction to 
the syntax and semantics of PS-algol is given in this section for readers 
not familiar with the language. PS-algol is described in detail in [PPRG 
87a].

PS-algol is one of the first algorithmic languages in which the 
concept of persistence is supported. Persistence is defined to be the length 
of time for which data exist and are usable. It is a property of data
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independent of its type. Any value in the language can be retained in 
secure storage media known as persistent stores for an arbitrary period. 
The notion of a store is much m ore general com pared w ith other 
conventional languages and is fundam ental to the semantics of the 
language. A PS-algol program is executed in a persistent store so that 
persistent data are always available. Moreover, there is no distinction in 
accessing, say, data created at the inner m ost block of a recursive 
evaluation, and data in a persistent store. This is in contrast with other 
approaches to long term data where the m anipulation of such data is 
facilitated by an embedded data manipulation language. Because of the 
generality on the concept of store and its implications on long term data, 
PS-algol is a very attractive tool in database applications.

Apart from persistence, the language is a powerful, general purpose, 
conventional language in its own right.

It is a strongly typed language. The type system is sound in the sense 
that it does not leave any loophole in it and every expression carries a 
type known to the type checker (in contrast to, say, variant records in 
Pascal). Type checking is performed mostly at compile time. Occasionally, 
type checking is also performed at runtime. The execution of a PS-algol 
program therefore may not be as efficient as, say, an ML program which 
is always statically typechecked. But runtim e typechecking is deemed 
necessary in PS-algol because of persistence [Atkinson et al. 88]. In 
general, a type error is always reported  at the earliest possible 
opportunity. The type system admits a rather limited form of (universal) 
polymorphism. This is achieved with the use of the data type p m tr 
which represents the union of all labelled cross products. Examples of the 
use of pmfar can be found in [Cooper 87].

The language is designed based on the principle of data type 
completeness; values of all types receive equal treatment as parameters to 
procedures, as results returning from procedures, as fields of structures, 
as elements of vectors etc. The result is a powerful yet simple to learn 
language.

The language supports higher order functions. They enjoy the same 
rights as integers, reals, boolean etc. In particular, functions can be 
returned as results of functions hence the term higher order functions. 
Higher order functions are very useful as a program m ing tool. A 
conventional language equipped w ith higher order functions may 
provide programmers with a richer set of program m ing utilities than
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otherwise. In the case of PS-algol, for instance, higher order functions 
together w ith structures and persistence perm it the construction of 
abstract data types and modules without any language support [Atkinson 
& Morrison 85a]. Examples on these concepts can be found in chapter 2.

The language has built-in graphic facilities in line with the wide 
availability of bitmap graphic terminals. Displaying graphical images is 
generally accepted to be an efficient way of communicating data between 
program s and users. Such facilities perm it the construction of, for 
example, graphical interfaces to databases, editors and window manager 
systems.

Flanked by a callable compiler, PS-algol can be considered as a total 
language in the sense that activities such as editing, linking, compiling 
and storing of long term  data can all be done w ithout resort to 
mechanisms outwith the language, e.g. operating systems.

§4.2.1 BNF Syntax and Type Matching Rules
The syntax rules of PS-algol specify a context-free grammar which is then 
restricted by a set of type rules. For the remaining part of this chapter, the 
shadow font style is used for the language types and the generic types, 
which are a meta-physical concept, to avoid confusion with some of the 
key words (shown in bold) in the language.

The number of data types in PS-algol is infinite. They can be defined 
recursively by the following rules.

1) The primitive data types are integer, real, boolean, picture, pixel, file 
and string.

2) #pixel is the type of an image made up of pixels arranged as a 
rectangular matrix.

3) For any data type T, *T is the data type of a vector with elements of 
type T.

4) The data type pointer comprises a structure with any number of fields, 
and each field consists of a binding of a name and a value of any type.

5) For any data types T i,..., Tn and T, proc(Ti,..., Tn -> T) is the data 
type of a procedure taking parameters of type Tj to Tn and producing a 
result of type T. The type of a similar result-less procedure is 
proc(Ti,..., Tn).

In addition to these data types there are other objects in PS-algol to which 
it is convenient to give a type in order that the compiler may check their 
use for consistency.

6) Clauses which yield no value are of type void.
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7) The class of a structure with fields of type T j,..., Tn is of type 
(T j,.. Tn)-structure and its fields are of type Ti-field.

The world of data types in PS-algol can be categorized. They are 
useful in the understanding of the enforcement of syntax rules by the 
typechecker in screening out some semantically meaningless programs. 
Generic types are used to identify type categories. Constancy of value is 
expressed at the level of type and is indicated by the letter ’c' preceding a 
type expression.

type
type

type 
type image 
type noxtvoid

is
is
is
is
is
is
is

I
prmtaMe I pntr I pr<oe I file

In the following syntactic rules syntactic categories, such as 
<identifier> that are obvious or the omission of which do not jeopardize 
the understanding of other rules, are automatically dropped from further 
discussion.

The structure of a PS-algol program  is governed by the following 
rules expressed in BNF notations in which [...] denotes zero or more 
occurrence.

<program> ::= <sequence>?
<sequence> ::= <declaration> [; <sequence>] I <clause> [; <sequence>]

A PS-algol program  is a sequence of declarations and clauses. Unlike 
Cobol, Algol60, Algol68, Pascal and Ada, declarations and clauses in PS- 
algol can be mixed freely. The advantage of this is that a declaration can 
be made where the binding is first used and the initializing expression 
can be evaluated, improving lexical locality.

<declaration> ::= <let_decl> I <structure_decl> I <handler>

<let_decl> ::= let <identifier> <init_op> <clause>
<init_op> ::= = !:=

<structure_decl> ::= structure <identifier>[(<field_list>)]

<handler> ::= when <ex_id_list> [as <identifier>] do <clause> 
<ex_id_list> ::= any 1 <identifier_list>
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A declaration permits the introduction of either a binding of a type-value 
pair, a labelled cross product or an exception handler. In the case of a 
binding, the type of the value is always inferred by the typechecker. A 
binding can be a value binding or a location binding depending on 
whether '=' or was used. A value binding means the identifier always 
denotes the same value and a location binding allows the denotable 
value to be changed. A structure declaration does not introduce any 
value. It is a means of introducing a labelled cross product type into the 
type system. A declaration can introduce an exception handler for the 
enclosing blocks. The terminal any  is for use as a catch-all exception 
identifier.

Types are inferred w henever possible. Type inference is not 
restricted to base types whose literals are known to the typechecker. It also 
applies to some compound types whose data constructors are defined in 
the language. Data constructors do not introduce new types.

The set of clauses in PS-algol is defined by the following syntactic 
rule:

<clause> ::= if <clause> do <clause> I
if <clause> then <clause> else <clause> I 
repeat <clause> while <clause> [do <clause>] I 
while <clause> do <clause> I
for <identifier> = <clause> to <clause> [by <clause>] do <clause> I
raise <identifier> [(<clause_list>)] I
case <clause> of <case_list> default: <clause> I
<raster> I <print> I <write> I
<name> := <clause> I abort I <expression>

The conditionals, the unbound recursion operator w h ile , the bound 
recursion operator fo r and the case constructs are fairly familiar. The 
more interesting ones include raster operations, exceptions and the 
device independent p rin t construct.

§4.3 Distributed PS-algol
Distributed PS-algol (DPS-algol), or DPS for short is a descendant of PS- 
algol. All features of PS-algol are retained so that a PS-algol program is a 
legal program in the language. The converse is not true. The object in 
designing the language has been to facilitate concurrent program m ing 
and at the same time adm it a flavour of distribution. The design is 
influenced by the desire to retain the flavour of PS-algol. Because of this, 
the basic principles of PS-algol are observed. The sim plicity and 
generality of PS-algol proved to be a constant source of inspiration as well
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as a guidance in the process. Many of the new features are more general 
than when first conceived. For instance, a communication port can be 
shared, though in a controlled fashion, by more than one process. A 
server process may thus delegate its functions to other processes in a neat 
manner and without client processes being aware of it.

In the language description below, w henever a term  w ith an 
unusual meaning is introduced a different font is used i.e. this Font.

§4.3.1 Entry
Processes can affect one another either by modifying global variables or by 
message passing. In general, message passing is the more attractive 
mechanism of the two in the context of distribution since it does not 
assume common stores. With it, messages can be exchanged through 
ports which can be addressed from any process anywhere over a network. 
Examples on the use of communication ports in process communication 
can be found in DP, CSP, Ada etc. The approach taken here represents yet 
another one although it is rather close to that in Ada. The differences 
will become clear later.

An entry is a bi-directional communication port. It is where a process 
receives messages and replies are sent. An entry can be constructed based 
on the following syntactic rules:

<entry> ::= entry([named_param_list] [<arrow> <type>]); <proc_clause>

<named_param_list> ::= <proc_param_type> [; <named_param_list>] 
<proc_param_type> ::= <typel> <identifier_list> I <structure_decl> 
<proc_clause> ::= <clause> I nullproc

The type rule for the syntactic category <entry> is simple.

t : type, entry([<named_param_list] [<arrow> <type> : t]); <clause> : t 
=> entry(frfl, . . . , t n -> t)

The interpretation of this type rule is as follows. If <arrow> <type> are 
specified, then the return type can be any nonvoid type t and the type of 
the entry body must be t as well. Otherwise the type of the entry body 
must be of type void. The resultant type is an entry type. Entry types are 
akin to procedure types and they share the same type matching rule. 
However, they are not compatible to one another. In particular a 
procedure can never be assigned to an entry or vice versa.
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let anEntry := entry( -> int); 3

anEntry in the example above denotes a communication port which, 
when a null message is received and accepted, returns an integer 3.

Entry variables and constants can be declared w henever and 
wherever they are needed just like any other values in the language but 
the entry literals may only appear in the scope of the process construct. 
For the reason of modularity entries then belong to one or a group of 
processes within whose scope they were created. Such m odularity is 
necessary since it is our desire to allow processes to be as independent as 
possible. This permits their distribution to be straightforward both from 
the programming and implementation point of view.

There is no limit as to the number of entries a process can associate 
with. An entry may take on different values. For example,

anEntry := entryf -> int); 103 
anEntry := x

As in the case of procedures, such assignments are possible only if the 
types on the left- and right-hand sides of the assignment match.

In essence, an entry resembles a procedure. It has a procedure-like 
header and an executable body. Like procedures, entries are first class 
values so that they can be shared. The prim ary reason for introducing 
entries is because procedures are abstraction over either statements or 
expressions and entries are for synchronous communication. They serve 
different purposes. Processes comm unicate using entries and are 
synchronized until the executions of the entries have been completed. 
This contrasts with procedure calls where callers are not suspended. One 
can argue, as a consequence of such semantics, that the degree of 
parallelism attainable with procedures in process communication can be 
higher. However, this can be achieved in the language. An example can 
be found in chapter 8.

§4.3.2 Process Template and Start
Concurrency is introduced by means of lightweight processes [Doeppner 
86, Rovner et al. 85]. Lightweight processes are those that share the same 
set of resources such as the heap and the i /o  streams. However, a 
lightw eight process is considered to be an independent activity in 
carrying out a specific com putation task. A lightw eight process is 
introduced based on a process template. There is a hint of the concept of
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class in process templates. A process template declaration results in a 
binding to a process template. A process template is a passive object. Such 
an arrangement permits a number of identical bu t distinct processes to 
operate in parallel. In this way, a concurrent program  may appear to be 
more concise than otherwise possible. Moreover, concurrency can be 
introduced when and where it is needed. A process template has the 
following form:

<process_template> ::= process [with <signature_list>] 
begin <clause> end 

<signature_list> ::= <identifier> <init_op> <entry_type>
[, <signature_list>]

<init_op> ::= = I :=
<entry_type> ::= entry([<proc_param_list>] [<arrow> <type>] 
<proc_param_list> ::= <proc_param_type> [, <proc_param_list>] 
<proc_param_type> ::= <typel> I <structure_decl>

A process template has an optional specification header and an 
executable body. The specification header is made up of a list of labelled 
entry types. This list is known as the signature of the process template. 
The behaviour of a process is specified partially by the signature of its 
process template. The presence of a signature indicates a willingness to 
communicate w ith other processes. In the absence of a signature, a 
process template mimics a PS-algol program.

The type rule for <process_template> can be specified as follows,

process [with <signature_list>] begin <clause> : v©id end 
=> processed! : t j , ..., idn :

The executable body m ust have the type void. The resultant type is a 
compound data type p rocess(id | : tj, ..., idn : tn) where id i, ..., idn are 
identifiers and t | , ..., tn are entry types. The type matching rule is the same 
as with procedure and entry types. The signature specifies a collection of 
entries some of which a process instance may listen to during the course 
of execution. Each of these entries m ust be defined in the body. The 
compiler verifies this.

A process template may reference data in an outer environment. 
This allows a very efficient and neat way of communicating data among 
concurrent processes which may or may not be sharing the same address 
space. On the other hand, data local to a process template cannot be 
shared. This allows a process to have overall control of its data.
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Process creation is dynamic. The num ber of lightweight processes 
that can be m ade to run is not statically determ inable because of 
conditional clauses, etc. As such the language does not impose an upper 
bound on the number of lightweight processes that can be created. The 
actual upper bound is determined by the availability of memory which is 
a runtime property. The syntax to spawn a process is:

<process_handle> ::= start <clause> [as <clause> [at <clause>]]

The type rule for <process_handle> is:

start <clause> : process(id^ : ..., idn : t n) [as <clause> : string
[at <clause>: string]]

=> ph(id j :k\ , ..., idn : tm)

If the type of the left-most clause is p rocess(id i: tj, ..., idn : tn) the resultant 
type is then a new compound data type phCid^ : ..., idn : tn). In other
words, the signature of a process template is inherited by its process 
instances. Values of the type p h  are known as process handles. The type 
matching rule for process handles is unusual and is based on a notion of 
inclusion. This can be illustrated as follows:

let p1 := p2

If p 1 is of some process handle type then p2 m ust also be of some process 
handle type. In addition, the signature of p2 must be a superset of that of 
p1. The idea is that an assignment of process handles such as the one 
above is allowed if and only if there is an enrichment of the signature 
concerned so that the new process handle can perform  all that was 
expected of the previous value.

The second clause in a start expression is taken to be the symbolic 
name of the lightweight process created. The lightweight process created 
is registered with this symbolic name at the locality specified by the third 
clause. By default, it is taken to be the local one. A registration is required 
if the process is to receive messages from processes outwith the address 
space it is executing. In the absence of the second (and therefore the third) 
clause, no registration will take place and the process created can only 
communicate with other processes in the same address space. In any case, 
the lightweight process is made to run wherever it happens to be. It could 
be in the local address space or on a remote machine. In general, a process 
can be created locally or remotely with or w ithout registration which
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could be on any machine. If for any reason a registration cannot succeed 
e.g. name clashes or machine failure, a system event is generated.

A DPS program consists of at least a top-level process which is made 
to run implicitly. All lightweight processes are children of it. A PS-algol 
program  w ould simply be run as a single top-level process. A DPS 
program  term inates w hen all processes have term inated. But the 
termination of parent and child processes is not conditional on one 
another. A num ber of separate DPS programs may interact as explained 
below.

The result of a start expression is a process handle. Process handles 
are immutable. They are used in denoting the target process in process 
com m unication.

§4.3.3 Communication
In order to facilitate process communication, the language supports a 
remote procedure call (RPC) mechanism. Such a m echanism allows 
processes to interact with one another wherever they happen to be. The 
use of the mechanism is not restricted to processes that are compiled 
together. They can be separately compiled and this could happen on 
remote machines. However, from a program m er's point of view, it 
makes no difference in communicating with a local or a remote process. 
In either case, the syntax is the same. The only notable differences are 
slower responses and possible m achine or netw ork failures in 
communication over a network.

An RPC is a synchronous activity. Processes which initiate RPCs are 
always suspended. They are resumed when some processes indicate a 
willingness to serve calls and the execution of entry bodies have 
terminated. There is no guarantee that suspended processes will ever be 
resum ed since the entries they are calling may be ignored or the 
execution of an entry body may go into an infinite loop. However, if 
there is machine or network failures or prem ature process terminations, 
system events are raised and suspended processes concerned are resumed 
in order to handle them.

§4.3.3.1 Remote Procedure Call 
The syntax for initiating an RPC is:

<rpc_call> ::= <clause> @ <clause> ([<clause_list>])
<clause_list> ::= <clause> [, <clause_list>]
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The type rule for <rpc_call> is:

<clause> : plfa @ <clause> : entry ([<clause_list>]) => type

where the type rule for <dause_list> is:

<clause> : nonvoid [, <clause_list>]

In the <rpc_call> category, the first clause m ust be of some process 
handle type. The second clause m ust be of an entry type which m ust 
correspond to a labelled entry type of the signature of the process handle 
denoted by the first clause. Typing of parameters is exactly the same as in 
procedure calls. The resultant type of an RPC is the return type of the 
entry or void.

The syntax for initiating an RPC is like a procedure call except that in 
addition a process has to be specified. It is convenient to call that process 
the server of the RPC and the executing process the client. The fact that the 
server may be a remote process is of no concern to the programmers. 
This is the basis for syntactic uniformity. Such syntactic uniformity is a 
convenience in distributed systems where the locality of a communicant 
may either vary over a period of time or simply be immaterial. We 
describe later how process handles to remote processes can be introduced 
into the environment.

The semantics of parameter passing is pass-by-value; the same as in 
procedure calls. Pass-by-value is different from pass-by-copy. In the latter 
case objects are always copied. Consequently, objects are considered to be 
bound to the locations where they were created. This we consider a 
hindrance in distributed programming. The main reason is that the 
propagation of side-effects, which is fundam ental in conventional 
programming, has to be the responsibility of the programmers. Primarily 
we w anted a program m ing style that is consistent w ith persistent 
program m ing. This was achieved in PS-algol in which the store 
semantics enables a blackboard view (— many processes or blocks of code 
determined by the scope rules may see a part of the store/blackboard 
simultaneously) over different types of physical storage. This blackboard 
view of the underlying object stores is extended in the language. Of 
course, even on a single processor machine the sim ultaneity is not 
realizable due to bus contention and store arbiters. In a distributed system 
the approximation to simultaneity is less achievable.
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§4.3.3.2 Accept
The occurrence of an RPC is in part initiated by a client and in part by the 
willingness shown by a server. A server expresses its willingness to 
communicate by accepting calls from its entries. The syntax for accepting 
calls is:

<accept > ::= accept <clause> [II <clause>]* [otherwise <clause>]

The type rule for <accept> is:

accept <clause> : entry(...) [II <clause> : entry(...) ]*
[otherwise <clause> : void] => void

The first and all the clauses, if any, following the 'II' symbol m ust be of 
some entry types. The clause following the terminal otherw ise m ust be of 
type void. The resultant type is void.

The semantics of the accept construct is less than straightforward and 
is given informally here in English. All the entry clauses are evaluated in 
parallel. An entry is said to be eligible for selection if it has a message. If 
there is more than one eligible entry, a non-deterministic choice will be 
made. The longest waiting message of the chosen entry is selected. The 
content of the message is pushed onto the stacks and the entry body is 
entered as if the server is making a procedure call. If a choice cannot be 
made and there is no o therw ise part, the current process is suspended 
until a m essage for any one of its entries has arrived w hen the 
evaluation of the accept clause is repeated. If there is an otherw ise part, it 
is executed and the process continues.

The accept construct is the only means whereby non-determinism 
can be introduced. It is considered to be less general than other non- 
determ inistic constructs in the literature in the sense that the only 
constituents allowed in the construct are entry clauses rather than 
guarded input and output commands. Apart from the consequence in 
the asymmetric treatment in communication of clients and servers, the 
construct is no less powerful than the alternative, repetitive, when and cycle 
constructs reported in the literature (see §3.4). The effects of these 
constructs can be simulated with the accept construct combined with the 
loop construct. Allowing a client to retract its call after the lapse of a 
certain period of time requires a global clock which is difficult to 
maintain on a distributed system. Some sort of timeout effect can be 
obtained using a local clock process. We supported a prim itive non-
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deterministic construct here in keeping with the simplicity tradition of 
PS-algol.

§4.3.4 Concurrency Control and Scheduling
The organization of the persistent store, which underlies the language, is 
in the form of a graph whose nodes are collections of local and remote 
data. Although data are guaranteed to be transactionally secured or 
stabilised in a persistent store, accesses to nodes require coordination to 
guarantee atomic changes. Primitive concurrency control is supported in 
the language. Our approach is oriented towards optimism. We do not 
wish to impose a strict access regime so that the degree of concurrency 
attainable may not be uniform. It is allowed to vary according to the 
nature of applications.

§4.3.4.1 Mutex and Lock
A sim ple data type and a construct are in troduced to facilitate 
concurrency control. It is intended that concurrency control is achieved 
based on conventions and it is the responsibility of the programmers to 
observe the conventions they chose. Because of higher order functions 
and persistence, it is believed that methods of accessing data can be 
packaged and users only need to know about interfaces.

The new data type is m u te x  and the only value of this type is the 
literal mutex. A mutex is generally known as a binary semaphore-

let x = mutex

In the declaration above, x is introduced as an object of type cm utex. As 
with other values in the language, mutex objects are first class. A mutex 
object is used in a construct whose syntax is:

<lock> ::= lock <elause> [, <clause>] do <clause>

The type rule for <lock> is:

lock <elause> : mutex [, <clause> : mutex] do <clause> : void 
=> void

The right-most clause m ust be of type void and other clauses m ust be of 
type mutex. The resultant type is void.

The evaluation of the right-m ost clause in a lo ck  statem ent is 
conditional upon the seizure of all the mutexes specified. The evaluation



of the mutexes follows a left to right order of evaluation. The executing 
process is suspended if any one of the mutexes cannot be seized. In this 
case, all the mutexes acquired hitherto are released. Subsequently, the 
release of any one of these mutexes triggers the re-evaluation of the lock 
statement. Upon completion of the right-most clause, all the mutexes are 
released. Any abnormal exit during the evaluation of the right-m ost 
clause, such as exceptions, will cause the release of all mutexes acquired.

If mutexes are always acquired in the same order (when in different 
nested lock clauses), the lock clause is useful in avoiding deadlocks. Note 
that a mutex may appear more than once in a lock clause but the effect is 
the same as if it appears once; no deadlock will result. Note also that the 
following two programs are not equivalent.

lock ml, m2 doS

and

lockml do 
lock m2 do S

The first program guarantees that ml and m2 are seized simultaneously 
whereas the second does not. In the second program, if m2 cannot be 
seized, m l is not released.

The familiar P and V operations are not supported in the language. 
Instead they are built into the semantics of the lock construct. They are 
not supported in the language because their uses are often subject to 
abuses. Since the two operations can be used in isolation, a process can 
force its way into a critical region by executing a V operation. Moreover, 
their erroneous uses can affect the proper working of other processes e.g. 
a matching pair of P and V operations are applied onto different mutex 
objects. The provision of the lock construct is intended to eliminate these 
problems. This is ensured in that 1) the P and V operations are always 
used in pairs and 2) a pair of these operations always acts on the same 
mutex object. Although these two rules can be ensured by the compiler, 
they can easily be by-passed by variable renaming so that supporting the P 
and V operations at the language level remains problematic.

The provision of only the lock construct does prevent some intricate 
use of mutexes. For instance, it is not possible to construct general 
semaphores which require isolated uses of the P and V operations as 
shown in the example below.
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structure semaphore(proc0 acquire, release) 

let makeSema= proc(tnt room -> pntr) 
begn 
let cond = mutex 
let atomic = mutex 
let wait = proc() 

becji
P(cond)
P(cond)
V(cond) 
end 

let signal = V 
semaphore! 

procQ
■ » -vegn 
if room = 0 do waitO
P(atomic)
room := room -1
V(atomic)
end,

P«>cO■---DKpl
P(atomic)
room := room +1
signalfcoml)
V(atomic)
end

)
end

In  the example, two different mutexes are used for different purposes. 
One is to ensure atomic changes to information concerning the num ber 
of processes allowed in their critical sections; the other is for blocking 
processes, if the limit on processes admitted has been reached, until some 
of the latter exits from its critical section. Blocking and resum ption of 
processes are achieved by the procedures wait and signal. Callers of wait 
are suspended and this is ensured by two calls of P on the same mutex 
object. O ne of those suspended callers is resum ed when some process 
calls signal w hich effectively provides an extra V to nullify die effects of 
the two F s . The solution does not always w ork, however. The subtlety 
here being that there is no guarantee that a process resumed by a signal 
w ill be first to execute a P on the mutex object atomic before others. After 
signal is called, room is greater than 0 and therefore any process could 
seize atomic w ithout calling the procedure wait A notion of priority is 
required, here. The provision of the sim ple data  type c o n d  and two

51



operations aims to alleviate situations like this. Should program m ing 
experience show that direct operations on mutexes are desirable then it 
would not be difficult to introduce them.

§4.3.4.2 Condition, Wait and Signal
The set of base types in the language is enriched with the data type cond. 
The only value of this type is the literal cond. An object of this type can 
be introduced into the environment as in:

let x = cond

Objects of this type are first class. A cond object is intended to be used to 
signal events e.g. changes of state of some resource. In addition to 
equality, there are two operators for cond objects viz. wait and signal.

<wait> wait <c!ause> : cond [, <elause> : cond] => void 
<signal> ::= signal <clause> : cond [, <clause> : cond] => void

The specification here is similar to that in Modula-2* [Rovner et al. 85].

The execution of a w a it clause may cause the suspension of the 
executing process if no signal has been received by any one of the cond 
objects in  the list. When this happens, all the mutexes, if any, of the 
inner m ost block are released. The process will only be resumed after a 
signal on the appropriate cond and all the released mutexes have been 
re-acquired.

The execution of a signal clause may cause the resumption of one or 
m ore suspended processes in the near future; there is no processor 
switch- A process suspended due to a w a it has higher priority in 
acquiring mutexes it may have released, A signal is remembered if no 
process can be resumed immediately.

structure semaphorefprocO acquire, release)

let makeSema = procfint room -> pntr) 
begjh
let iruotFul=cond 
let atomic = mutex 
semaphore!

procO
bck atomic do 
begpi
if room = 0 do wait nolFul 
room >  room - 1
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end,

proc()
lock atomic do 
begh
room := room +1 
signal notFull 
end

)
end

Because we have shared store semantics and access to remote entries, it 
would be possible to define a procedure "cond" which had in its block a 
m utex and a list of processes which yielded a pair of entries, signal and 
wait. This would have nearly the same semantics -- the difference being 
that the release of other mutexes and the higher priority restart would 
no t app ly . These differences com bined w ith  the program m er 
convenience justify the introduction of comd as a primitive type in DPS.

§4.3.4.3 Stop and Kill
Two operators are included to cause termination of some process. They 
are useful in discarding useless processes.

<termination> ::= stop I kill <clause>

The type rule for <termination> is:

stop I kill <clause> : ph <lsb> ... <rsb> => void

The operand to k ill must be of some process handle type. The resultant 
type is void.

stop causes the executing process to terminate, k ill is more general 
and it causes the termination of the process denoted by the operand. If 
the process has already terminated, it has no effect.

If there are outstanding messages when a process is terminated, an 
exception is propagated to each of the client processes concerned. 
Similarly, RPC communication with terminated processes will cause an 
exception to be propagated to the communicating processes. In general, 
s to p  and k i l l  are dangerous operators and should be used with 
considerable care.
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§4.3.5 Locality
The m ain concern in the design of the language is to hide away 
distribution as much as possible. The rationale for doing this is to keep in 
line with the style of persistent programming in which locality is never a 
program m ing concern. This is achieved in the language by supporting 
uniform  access to both local and remote data. The same syntactic 
constructs can then be used on both local and remote data. For example, 
it is possible to start a process running on a remote machine using the 
same construct to spawn a local process as in:

let remoteProcess = start remoteProcessTemplate 

where remoteProcessTemplate is a process template on a remote machine.

The lack of a notion of locality leads to a programming style in 
w hich d istribu ted  program m ing can be no m ore difficult than 
program m ing in conventional languages. This is certainly desirable as 
p rogram m ers are not d istracted by distribution. Besides being 
conventional, our language also has a notion of persistence. This leads to 
a realm where distributed database systems can be realized in much the 
same way as centralized database systems have been [Hepp 83, Kulkarni 
83]. Distributed stores are accessed in the same way a central store is 
accessed. In other words, distributed stores appear to be logically 
centralized. The crux of the matter here is that some interesting aspects of 
distribution are not addressed e.g. resilience and resource utilization. 
Thus the application domain of the language is not as rich as that which 
can be achieved. We want to introduce a notion of locality into the 
language but only in an unobtrusive manner. Thus programmers need 
not know the whereabout of data unless they wish to program an explicit 
version of resilience and resource utilization.

Two new base types are introduced. These are loca and node. They 
belong to the generic type locality . A node is a space where lightweight 
processes may be started. A loca denotes a collection of nodes and other 
locas. It is the intention that a loca mimics a machine or a network 
representing a distinctive set of resources such as persistent stores, 
processors or devices. There are a number of primordial loca values 
defined in the language. From time-to-time, new primordial loca values 
may be created or changed without logical impact on existing programs 
or data. N ode corresponds to a single address space and loca are an 
abstraction over these. From time-to-time we expect new loca to appear 
as machines are inserted (by means outside the scope of a programming 
language). Although this may have no impact on the semantics of
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program s, mechanisms m ust exist to a) allow such new locas to be 
discovered, and b) for nodes to be withdrawn.

The notion of locality is a relative one so that loca values that are 
not referenced and are not primordial (i.e. is in a 1 to 1 relationship with 
a loca) cease to exist. Consequently, nodes belonging to discarded loca 
values may become unreachable.

A loca value can be constructed or discovered. The syntax is:

<loca> ::= newlocality I locality <clause>

The clause following the terminal locality must be of type nonvoid. The 
resultant type is loca.

A hierarchical structure of localities can be composed w ith the 
following construct.

The result of the construct is void. In addition to those language defined 
loca values, there are two distinct points in the hierarchical structure viz. 
universe  which refers to the root and here which refers to the locality of 
the executing process.

As an example, locality 4 returns here. In general, immutable values 
exhibit the same characteristic.

Three relational infix operators are defined for loca values. These
are:

Two loca values are said to be equal if and only if their denotations are 
the same. A loca is said to be in another if and only if the former is a 
member of the collection of the latter. A loca is said to be within another 
if and only if there exists a sequence of loca values lj, l j , ..., In such that lj
in lj & \[ in  lj & ... & ... in I2.

<localities> ::= add <clause> : locality to <clause> : loca

[equality]
[in]
[within]

l l = l 2  
ll  in I2 
ll  within I2
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As an example, for any 1 of the generic type lo c a l i ty ,  1 w i th in  
universe always returns true.

A node value can be created or discovered. The syntax is:

<node> ::= newnode [in <clause>] I node <clause>

The clause after the terminal in  must be of type loca. The other clause 
m ust be of type nonvoid. The resultant type is node.

A node is always created in some locality; the default is here. A node 
can be in one or more localities at the same time. We assume that the 
operation new n o d e  either follows some external action introducing a 
m achine/address space or that action in some way happens at the same 
time. Node operations refer to actions external to the language and are 
part of its relationship with its environment whereas loca operations are 
defined and im plem ented within the language, n ew n o d e  may also 
declare a new loca which then matches the space correspond to the node.

The only relational operator defined for node values is equality. Two 
nodes are said to be equal if and only if their denotations are the same. 
Furthermore, a node value may appear as the left expression in in  and 
w ith in , the two relational operators for loca values.

Since we now have a proper notion of locality in the language, the 
type rule for <process_handle> can be augmented as follows:

start <clause> : pr©c©ss(...) [as <clause> : string 
[at <clause> : loca]] => pla(...)

The semantics of this construct remains unchanged. But if the locality 
specified is not in the hierarchy, the registration will fail.

§4.3.6 Transcopy and Assign
Two store-to-store operations are supported for the atomic physical 
transfer of data between localities.

The operation for copying a piece of data to a locality has the 
following syntax:

<copy> ::= transcopy <clause> [to <clause>]
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The type rule for <copy> is:

t : type, transcopy <clause> : t  [to <clause> : locality] => t  

where t belongs to the generic type type. The resultant type is t.

The polymorphic operation initiates the transfer of a copy of the data 
specified in the left-most clause to the designated node or loca specified 
in the right-most clause. The default locality is here.

The term  t r a n s c o p y  suggests a notion of atomicity and is 
distinguishable from the graphic construct copy which is used to update 
an image by another. The transcopy operation fails if for any reason a 
copy cannot be installed in the locality indicated. In this case, an 
exception is raised. If the destination is a loca no assumption can be made 
as to which node has the copy installed.

The am ount of data transferred is determined by the type of the 
expression to be copied.

1) Values of the base types are immutable. Some of them are transferred 
as if they were declared in the remote stores. These include integer, 
real, boolean, picture, pixel, and string. For loca and node, only 
pointers to them are copied. For mutex and cond, suspended processes 
are not copied.

2) Process handles are transferred as immutable values. Copies resulting 
from such transfer are handles to processes on remote machines. The 
referred processes and their entries are not copied.

3) Images are rectangular matrix of pixels and they are transferred in their 
entirety.

4) Vectors are always transferred with their top-levels installed in the 
remote stores. For example, transfer of *int could result in a vector of 
integers installed whereas transfer of **int could result in a vector of 
*int installed.

5) Procedures, entries and process templates are copied in such a way so 
that their environments remain at the original site and are sharable.

6) Structures are copied in a similar fashion to vectors.

The rules above are meant to avoid phantom copying. In particular, 
there is no danger of copying an entire persistent store w ithout 
programmers being aware of it. Copying of data structures several levels 
deep can be achieved by copying individual levels.

The tran sco p y  operation preserves the properties of the objects 
copied. The effects of the same sequence of operations when applied on 
copies and their originals should be identical. However, it is the
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responsibility of the programmers not to destroy circularity and sharing 
during the copying process.

There is a complimentary operation to transcopy. The syntax for this
is:

<assign> ::= assign <clause> to <clause>

The two clauses must be of the same type t where t belongs to the more 
restrictive generic type m u ta b le .  This is because the meaning of, for 
example, assign 3 to 4 is dubious. The resultant type is void.

The semantics of the construct is straightforward. It resets the value 
of the second clause to the value denoted by the first clause. The effect of 
assign is the same as transcopy; only the top level of an object is copied.

The two values in an assign  statement m ust occupy the same 
am ount of space in their immediate denotations. This means, for 
instance, the bounds of the first dimension of two multi-dimension 
vectors in a store-to-store assignment must conform to each other. The 
rest are immaterial. Access exceptions will be raised if objects no longer 
conform to the sizes expected. Replacing the first dimension vector 
altogether would require updating outstanding references on all process 
stacks. This is not possible in a distributed environment. If for any reason 
the operation fails, an exception is raised. The effect of such assignment 
takes place in the locality of the value of the second clause.

§4.3.7 Miscellaneous
In the context of communication, processes are either clients or servers. It 
is not suggested that a process cannot be both but only one at a time. In 
o rder that clients can communicate w ith servers, b inding  and 
typechecking m ust be resolved. Our approach to these matters is a static 
one but augmented with runtime support. The language does not specify 
any order of compilation of clients and servers. They can be compiled 
whenever and wherever it is deemed necessary. The rationale for this is 
because we do not have, nor do we think it is appropriate to have, the 
facilities outw ith the system to maintain information on types, names 
and locations of clients and servers on a distributed system.

Process communication is always initiated with the stipulation of a 
process handle to a server. A handle to a separately compiled process can 
be introduced into the environment by a construct whose syntax is.
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<install> for <identifier> = <clause> [at <clause>] 
with <signature_list> do <clause>

The accompanied type rule is:

for <identifier> = <clause> : string [at <clause> : loca] 
with <signature_list> do <clause> : void => void

The resultant type is void.

A process with the symbolic name specified in the string clause is to 
be found in the locality designated. If found, the signature of this process 
is matched against that specified. Type matching of signatures is based on 
a notion of inclusion. The signature specified is required to be a subset of 
the one expected. This allows servers to evolve independently between 
program  executions without affecting existing clients unnecessarily. If 
type matching succeeds, the identifier denotes the process handle to the 
server. Exceptions are raised if the process cannot be found or the type 
matching fails.

The scope of the identifier is basically confined to the clause 
following the terminal do. However, the process it denotes can be passed 
out to a global environment by assignments.

Once a handle to a process is installed, communication with it does 
not require further binding and typechecking. Thus the runtim e 
overhead of binding and typechecking is constant independent of the 
frequency of RPCs. This is achieved since the required typechecking and 
binding are already performed at compile time for the majority of code 
(i.e. after the do above) and the remaining delayed check occurs once at 
installation time.

§4.3.8 Summary
The universe of types of DPS can be described as follows:

type aritb is int I real
type comparable is antfe I string

is comparable I bool I pixel
type locality is loca I node
type literal is printable I locality I pntr I proc I file I

entry I pb I process I mntex I cond
type image 
type nonvoid

is #pixel I #cpixel 
is literal I image I *nonvoid
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type Hyp© is void I nonvoid

In addition, it is convenient to define the generic type rinui tab le  for store- 
to-store operations. However, it does not contribute anything new to the 
universe of types described above.

type mmtable is pntr I image I *nonvoid

Note p u tr represents the union of all labelled cross-products. The literal 
for this type n il is, however, immutable.

Language features on top of those found in PS-algol can be 
summarized by the following syntactic rules.

<clause> :: = ... I <accept> I <lock> I <termination> I <localities> I 
<assign> I <install> I <wait> I <signal>

<accept> ::= accept <clause> [II <clause>] [otherwise <clause>l 
<lock> ::= lock <clause> do <clause>
<termination> ::= stop I kill <clause>
<localities> ::= add <clause> to <clause>
<assign> ::= assign <clause> to <clause>
<install> for <identifier> = <clause> [at <clause>] with 

<signature_list> do <clause>
<wait> ::= wait <clause> [, <clause>]
<signal> ::= signal <clause> [, <clause>]

where the type rules for each of the constructs are,

<accept>:
accept <clause> : entry [II <clause> : entry] [otherwise <clause> 

:void]
. <lock> :

lock <clause> : mntex [, <clause> : mutex] do <clause> : void 
<termination>:

stop I kill <clause> : pb 
<localities>:

add <clause> : locality to <clause> : loca
<assign>:

assign <clause> ; mntable to <clause> : mutable 
<install>:

for <identifier> = <clause> : string [at <clause> : locality] 
with <signature_list> do <clause> : void 

<wait>:
wait <clause> : cond [, <clause> : cond]

<signal>:
signal <clause> : cond [, <clause> : cond]

In all cases, the resultant type is always void.
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<expression> <entry> I <process_handle> I <process_template> I
<rpc_call> I mutex I cond I <loca> I <node> I <copy> 

<entry> ::= entry([<named_param_list>][<arrow> <type>]); 
<proc_clause>
<process_handle> ::= start <clause> [as <clause> [at <clause>]] 
<process_template> ::= process [with <signature_list>] begin <clause> 
end
<rpc_call> <clauseXa) <clause>(<clause_list>)
<loca> ::= newlocality I locality <clause>
<node> ::= newnode I node <clause>
<copy> ::= transcopy <clause> [to <clause>]

where the type rules are,

<entry>:
for any t : type, entry([<named_param_list>][<arrow> <type> : t]); 

<proc_clause> : t => entiy 
<process_handle>:

start <clause> : process [as <clause> : strimg[at <clause> : 
locality]]

=> plh 
<process_template>:

process [with <signature_list>] begin <clause> : void end
=> process 

<rpc_call>:
<clause> : process @ <clause>: entry(<clause_list>)

=> type 
<loca>:

newlocality I locality <clause> : type 
=> loca 

<node>:
newnode I node <clause> : type

=> node 
<copy>:

t : type, transcopy <clause> : t  to <clause> : t 
=> t

For <rpc_call>, the second clause must be of some entry type which is in 
the signature of the process denoted by the first clause. The types of 
parameters of the entry must match with those in the call. The resultant 
type is the result type of the entry.
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Chapter 5

Remote Procedure Call

§5.1 Introduction
A rem ote procedure call (r pc) mechanism is understood here to be a 
synchronous process communication mechanism. It shares the idea of 
the conventional procedure call mechanism through which data can be 
conveyed betw een different parts of a program that is otherw ise 
im possib le  in the normal flow of control. An RPC m echanism , 
furtherm ore, enables processes to communicate with one another across 
address spaces. Since the mechanism does not require the introduction of 
a radically new concept into a programming language and because it is 
am enable to typechecking, it is an attractive basis on which process 
communication over a network can be realized within the confines of a 
conventional language. Our ultim ate goal is to induce a style of 
distributed programming into the realm of persistent programming.

O ur RPC mechanism is an essential element in the proposed 
concurrency m odel assisting processes to communicate w ith one 
another. It allows process communication to occur over a network, 
within the same machine as well as within the same address space. In 
any case, there is no syntactic difference and we try to hide semantic 
differences as far as possible. What we are trying to achieve is an 
arrangem ent whereby geographic differences need not be a concern in 
distributed programming. In fact, the term "distributed programming" is 
not a well-defined one in such a context. That is to say it is not apparent 
from the code of a program whether it or some part of it will be executed 
in a distributed or localized context.

The most unusual aspect of our RPC mechanism is in its semantics 
of param eter passing. It has to be pass-by-value whereby pointers are 
allowed to be exchanged. This is essential for the realization of 
distributed shared stores. Such a parameter passing semantics is possibly 
the first of its kind employed in a communication mechanism. An added 
bonus for such a semantics is that it conforms with that in ordinary 
procedure calls in PS-algol. There are other points of interest as well. 
These include:

1) the support for lightweight processes,
2) typechecking, binding and separate compilation,
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3) semantics of parameter passing,
4) calling semantics and exceptions,
5) the abstract machine, and
6) the communication protocol.

Each of these will be discussed in the present chapter. In the following 
discussion, the mechanism is understood to be referring to our RPC 
mechanism unless stated otherwise.

For the sake of efficiency and self-sufficiency, our RPC mechanism is 
implemented as an integral part of the host language abstract machine. In 
this case, the host language is DPS, a descendant of PS-algol (see chapter
4). M inimal additions and structural re-organization are m ade to the 
original machine. The mechanism is an orthogonal component so that 
changes to other components do not affect the mechanism and vice 
versa.

§5.2 Lightweight Process
The mechanism is an essential part of the proposed concurrency model. 
Its m ain function is to facilitate communication between processes 
wherever they happen to be. These processes may be within the same 
address space or different address spaces on the same machine or 
d ifferen t add ress spaces on different machines. M oreover, the 
concurrency model allows processes to be created dynamically. Thus a 
newly created process may communicate with any existing processes; 
they m ay even be on different address spaces on different machines. 
Although there is no assumption that the communication partners of a 
process are statically determinable, in some cases they are e.g. a child and 
a parent processes within the same address space only communicate with 
each o ther. We require that process com m unication is always 
accomplished, under such diverse circumstances, in a m anner that is 
transparent to the programmers. We described the approach taken to 
achieve this.

In order that processes can communicate with one another across 
address spaces, each will have to be associated with a reusable unique 
network address to which messages can be delivered. Because of the 
dynamic nature of processes, these addresses are allocated at runtime 
whenever a process is created. All processes of an address space belong to 
a fam ily of netw ork addresses. Note that whether a process will 
communicate cannot be statically determined. Note also that whether it 
is capable of communicating cannot be statically determined either. But
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as a consequence of persistence, a non-communicating process could 
extract from a persistence store a piece of code selected on data dependent 
computation which when executed starts a communication.

Each instance of the abstract machine has a single communication 
port. This is so that all incoming and outgoing messages can be 
channelled through this port. De-multiplexing of messages is done on 
the basis that the network addresses of processes are structured in such a 
way that they share the same denominator i.e. the network address of the 
port but differ by a process identifier. The allocation of network addresses 
to processes is simply assigning to each one of them a process identifier. It 
can be said that the network address of a process is composed of a low 
(communication port address) and a high (process identifier) address. In 
principle at least, the low address can itself be constructed in this way, 
and so on recursively, allowing various network architectures and 
dynamic change of network configuration.

The use of the network facilities in process communication local to 
an instance of the abstract machine is avoided. This is an efficiency 
consideration only. One way this can be achieved is to compare the low 
address of the network address of the target process with that of the 
communication port. If they are the same, the message is directed to the 
process immediately based on the process identifier of the target process' 
network address without resort to the underlying network. We chose a 
more efficient way -- optimization. Such a technique is supported with 
the provision of two opcodes. The compiler keeps track of the processes 
involved in communication whenever possible. It generates the opcode 
for local com m unication to accomplish the call when the static 
information indicates a local call. In case of doubt or known remote 
communication, the compiler emits the other opcode which involves 
the dynamic check anyway. Such optimization applies only to the calling 
but not the returning part of an RPC.

§5.3 Typechecking, Binding and Separate Compilation 
We require that any process can communicate with another process 
anywhere in the system provided it is running and reachable and that 
the type system is not jeopardized. The problems of typechecking and 
binding m ust be resolved prior to any process communication. Because 
of distribution existing compiler technologies are insufficient. In the 
context of communication, processes behave like servers or clients. It is 
not suggested that a process can only send messages or receive messages 
during its life time; it can do both, but one at a time. In a truly distributed 
environment, it m ust be possible for clients and servers to be compiled
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independently on different machines and perhaps in arbitrary order. In 
principle the two problems can be resolved with the help of some 
distributed database systems. Clients can be compiled in the context of 
servers whose type information and locations are kept in a distributed 
database system with consistency guaranteed. The use of such distributed 
database systems is out of the question in our case. They are exactly what 
we are trying to realize. The two problems have to be resolved by some 
other means.

Processes communicate with one another by exchanging messages 
through communication ports using RPCs. These ports known as entries 
(see §4.3.1) are not to be confused with that used by the mechanism itself. 
Entries are objects created as a result of declarations in user programs. 
They are rather like procedures in that they are first class objects and 
have procedure-like headers and executable bodies. There is a semantic 
difference betw een entries and procedures; that is: an entry is a 
synchronization point for two processes engaged in a communication 
and they are resumed only upon completion of its execution.

For the reason of modularity, an entry is associated with a particular 
process although it can be shared. There is no limit as to the number of 
entries that a process can associate with. In a sense, entries characterize 
the observable behaviour of a process. For this reason, the type of a 
process is taken to be a list of its labelled entry types which is known as a 
signature{%4.3.2). Signatures are the basis on which typechecking of 
messages and binding of communication ports are resolved.

Typechecking of messages is achieved by matching entry types with 
parameters to be passed similar to that in ordinary procedure calls. Due to 
the lack of a depository where type information can be kept, it may 
appear to be necessary to perform typechecking every time a message is 
received. We avoid this with the aid of a device provided in the language 
which allows typechecking to be performed mostly at compile time.

In the case of process communication local to an address space, 
typechecking is always performed statically at compile time. This is 
possible because the compiler keeps track of the signatures of all 
processes.

In the case of servers and clients being compiled separately, 
typechecking is split into two stages. First of all, clients wishing to 
communicate with a non-local server have to establish a context to allow
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the compiler to perform static typechecking on remote procedure calls. 
The language provides a construct for this purpose. The context is 
constructed by means of a to-be-verified signature. The extent of the 
context is limited by the normal scope rules and such contexts can be 
nested. The second stage involves a runtime verification. At runtime, 
the signature of the server is matched against the to-be-verified signature 
to ensure the validity of typechecking performed at compile time. An 
exception is raised if they do not match. Signature equivalence is further 
explained below. The advantage of such an arrangement is that the cost 
of typechecking is constant independent of the number of calls. More 
precisely, the dynamic cost of verifying message type compatibility is 
proportional to the number of interfaces used, not the number of times 
they are used. Furthermore, typechecking performed every time a new 
to-be-verified signature is encountered is an effective way of signalling 
changes in an evolving environment.

Binding of communication ports occurs at compile time whenever 
possible. In the case of remote servers, binding occurs after the runtime 
verification.

Signature equivalence required in the runtim e verification is 
unusual in that it has an element of flexibility to account for the 
dynamism of a distributed system. Recall that the behaviour of a server 
m ay be characterized by its signature. Changes in the observable 
behaviour of a server may affect its clients. The runtime verification will 
ensure those affected are notified by exceptions. However, there are 
changes which do not affect existing clients at all. These are re-ordering of 
declarations of entries, re-declaration of existing entries, and introduction 
of new entries. These changes can be accommodated easily with the use 
of indirection tables. There is one such table per remote process 
introduced in a context. The size of the table is directly proportional to 
the length of the to-be-verified signature or the number of interfaces 
used and is determined by the compiler. In compiling a to-be-verified 
signature , the compiler assigns to each entry in it a num ber 
corresponding to an entry to the indirection table. These numbers are 
used to index the indirection table to obtain the true stack addresses of 
the target entries required at runtime. The rule for signature equivalence 
is simple. For every labelled entry in the to-be-verified signature there 
must be a corresponding one of equivalent type in the signature of the 
server. If there is one, the stack address of that entry is put into the 
corresponding table entry. A type exception is raised otherwise. The stack 
addresses of target entries are deduced since they occupy the bottom
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addresses of the process' stack and are in the order they appeared in the 
signature.

The rem aining problem is how to locate a remote server? This is 
achieved with the use of a collection of process name spaces. We do not 
believe m aintenance of a global name space is manageable due to 
frequent dynamic changes in a large network. Our arrangement is to 
have a process name space per machine on the network. A server 
w ishing to communicate with processes outwith its address space 
registers itself with a process name space on start up; the default being the 
local process name space. The information required in a registration is:

• its signature,
• its network address, and
• a symbolic name.

A registration can be refused on the grounds of name clashes. A client 
names its server in a particular process name space. If the server exists in 
that name space, its signature and its network address are returned for 
the purpose of typechecking and binding. When a server terminates, its 
nam e becom es reusable in the appropriate process name space. 
Consequently, all previous bindings to its entries become invalid. Any 
attem pt in communication with that server results in a system event 
[Philbrow & Atkinson 86]. In principle, again, and independent of the 
architecture of the network, name resolution may be subdivided by a 
recursive structure of name spaces and name resolution agents.

§5.4 Semantics of Parameter Passing
The semantics of parameter passing is unusual as it supports pass-by- 
value for pointer values as well as pass-by-value for scalars. Logically 
speaking, referends are not copied though the implementation may 
make copies where this achieves an optimization without jeopardizing 
the sem antics. Interprocess communication mechanisms designed 
hitherto [Cardelli 84, Liskov 85b, Birrell & Nelson 83] implicitly copy data 
across address spaces. Our mechanism employs such a semantics for the 
purpose of emulating distributed shared stores.

Of course, it is not possible to pass ordinary pointers from one 
address space to another. They are context sensitive and their 
interpretation in a foreign address space would be catastrophic. Our 
solution to this problem is to introduce remote pointers which are 
universally recognizable. The representation of remote pointer requires 
more space on stacks than ordinary pointers as the former contains more
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inform ation on the location of data which can be anyw here on a 
netw ork. However, the seemingly necessary architectural change is 
avoided by introducing remote pointers in the heap rather than pushing 
them  directly onto the stack. Their existence is invisible to the 
program m ers, though. This is fundam ental to our approach towards 
distribution. The management of remote pointers and aspects of the 
distributed stores that arise are discussed further in chapter 7.

There are two types of pointers in the system: local pointers to 
objects in the same heap and remote pointers to objects outwith the local 
address space. All references that are represented by a local pointer could 
be represented by a remote pointer (as they are in System /38 [French et al. 
78], Poppy [Cockshott 85], Monads [Abramson & Keedy 85] and Thompson 
machines [Gallagher 85]). We therefore need to justify the complexity of 
supporting both representations. It is expected, and we later present 
preliminary evidence, that there are many more objects created for local 
computations than those addressed by remote processes. It will not be 
cost-effective to assign each object ever created a universally recognizable 
address, they will require additional bandw id th  on channels and 
additional de-reference time. But two address representations requires 
time in very de-reference to determine the type of pointer representation 
in use, and information per reference indicating the type. This will be 
explained in more detail in chapter 7. Since objects can be addressed 
remotely only if they had been exported, the mechanism is the only place 
where remote pointers can be introduced. A pass-by-value semantics 
allows these to be exchanged across address space boundaries.

An important motive for the encapsulation of remotely addressable 
data in remote pointers is that it avoids the need for a single addressing 
mechanism for both local and remote data. Consequently, this enables 
the interpretation of the locality information in a remote pointer to vary 
due to network re-configuration so that the remote referend remains 
addressable. Furthermore, it allows an easy adaptation without requiring 
any significant change in the addressing structure of a high level 
language.

§5.5 Calling Semantics and Exception
It is desirable that RPCs resemble, as far as possible, ordinary procedure 
calls. This can contribute towards the simplicity of the host language. 
Employing the same semantics of param eter passing in both cases 
represents a significant part of this. Although there is a difference in 
synchrony, callers of the two mechanisms always wait for the calls to
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return. The diagram below illustrates this concept.

PI P2 PI P2

i *

A Procedure Call A Remote Procedure Call

In the diagrams, the solid lines represent the flow of control in the 
direction indicated. Note that in the right diagram, there are two threads 
of control which are synchronized at the point of the upper dotted line. 
The lower dotted line represents the point where both the caller and the 
called may continue their execution depending on whether the result or 
a null value has been exchanged. In some situations, the difference in the 
time w aiting for the process P2 in the right diagram  to complete 
execution of the appropriate entry may not be significant from that in the 
left diagram.

A pragmatic difference between the two mechanisms is in reliability. 
In ordinary procedure calls, a call either succeeds w ith exactly one 
invocation of the procedure, fails with an exception being raised or never 
returns because of non-termination. The difficulty in accomplishing RPCs 
is that there is a plethora of low level, unreliable mechanisms involved. 
For instance, a packet may be corrupted due to electrical noises along the 
physical transmission medium before being received. Any hiccup of such 
nature will cause a message to be undeliverable. This is aggravated by 
m achine or netw ork failures. The chances of failure in an RPC, 
discounting  exceptions and non-term ination, are h igher than  a 
procedure call. Such failures are unpredictable and unpreventable. The 
best strategy is to bypass them by re-trial tactics (in the case of corrupted 
packets) or to detect and report them (in the case of machine or network 
failure).

The problem  caused by corrupted packets can be solved by re­
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transmission. Normally, each packet sent will have to be acknowledged. 
O therw ise, the same packet is transm itted repeatedly  un til it is 
acknow ledged. However, retransm ission by itself creates another 
problem. It will cause multiple delivery of messages. A consequence of 
retransmission of, for example, call messages is multiple invocations of 
the remote procedure with possible m ultiple side-effects only one of 
which is expected by the programmer. W hat is required here is that 
message delivery is not only reliable but also not duplicated. This can be 
achieved by assigning every message a sequence number and the receiver 
m aintaining a sequence counter. A message is received and acted upon 
only if its sequence number is greater than the sequence counter. The 
counter is then set to that sequence number. This scheme works on the 
assum ption that retransm itted packets carry the original sequence 
numbers assigned to them.

It is often possible to take advantage of a transport level protocol 
which meets some of these requirements [Postel 80]. Their design is not 
part of this work, though an efficient combination of transport protocols 
and RPC protocols may require that they are considered together. On the 
other hand, a fully-fledged RPC protocol may dispense the support of the 
underly ing  protocols. This may be more convenient as the RPC 
mechanism is not dependent on the availability of certain protocols.

The sequencing technique guarantees w hat is know n in the 
literature as at-most-once semantics. Such semantics ensures that an 
invocation is made once, if at all possible. Despite this technique, an RPC 
may still fail because of network or machine failure. The server and the 
client are notified. The means of notification is through exceptions. It is 
expected that server processes receiving such exceptions are responsible 
for undoing side-effects of entry invocations.

There is no notion of timeout in the mechanism. It is believed that 
timeout is inappropriate in this context since it is absent from procedure 
calls. Furthermore, a timeout mechanism would require a global clock 
which is hard  to maintain on a distributed system. The absence of a 
timeout facility is compensated for with several kinds of failure being 
detected and  the appropriate processes being inform ed through 
exceptions. Detectable failures include not only machine and network 
failures but also pre-mature process termination as well. Timeout can be 
achieved in the language by using a local clock process.

§5.6 Abstract Machine
The RPC mechanism is integrated into an abstract machine. A part from
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structural differences and the capability to communicate with the outside 
world, the resultant abstract machine is basically compatible w ith the PS 
abstract machine [PPRG 85a]. The PS abstract machine has:

• been designed for efficient execution of reverse Polish codes,
• two stacks: one for scalars and one for pointers,
• a heap for persistent objects,
• built-in graphics, and
• supports for higher order functions.

The provision of a heap for persistent objects characterizes one 
approach towards persistence. Persistent objects are copied between a 
heap and a persistent store incrementally on need. The movem ent of 
persistent objects occurs when either the heap is full after a garbage 
collection, a persistent identifier is dereferenced or a com m it is 
performed. Persistence is defined in terms of reachability consistent with 
the view that such a property of data is orthogonal to their types.

The separation of a scalar and a pointer stacks is for conveniency. 
This allows pointers to be found quickly w ithout resort to a tag 
architecture. The task of garbage collection retaining objects used by the 
current block is very much simplified because of this. As a consequence 
of the separation, the number of registers is slightly higher than usual 
and therefore the time and space required in dum ping and restoring 
during a context switch is relatively speaking more expensive.

The support for higher order functions significantly enhances the 
expressive power of the host language. The realization of higher order 
functions itself requires the abolition of stacks in favour of stack frames 
as heap objects. Stack frames are chained together to model the enter-exit 
nature of blocks and the call-return nature of procedures. As it turned 
out, such an arrangem ent renders the abstract machine suitable for 
implementing concurrency.

The concurrency model does not impose an upper bound on the 
number of processes that can be created. In reality, this is limited by the 
available space on the heap. Free space is returned by a compacting 
garbage collector which is invoked on a demand basis. Potentially objects 
in the heap are sharable by all processes. The scope rules of the host 
language governs the set of directly addressable objects of individual 
processes. A process can affect other processes either by modifying objects 
in situ or by RPCs.
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All processes share the same resources e.g. the heap, the I /O  streams, 
the screen and the mouse etc. Concurrency is realized by interleaving and 
a pre-emptive scheduling strategy. However, such a technique does not 
preclude the possibility of im plem enting the abstract m achine on 
m ultiprocessor machines with a common store. This is because the 
num ber of processors available cannot be assumed to be greater than the 
num ber of processes. Hence a scheduler remains necessary. However, it 
is then necessary to ensure the execution of some abstract machine 
instructions to be atomic.

Scheduling is basically pre-emptive which allows I /O  bound and 
com putation bound processes to be handled differently according to 
needs. On the other hand, there are instructions which may cause the 
suspension of the executing process and thereby yielding a processor. The 
overhead in context switch is comparable to procedure call since all 
processes are always kept on the heap.

The implementation of the mechanism and the concurrency model 
requires some 21 primitives to be added to the basic instruction set. The 
operational semantics in terms of the state of the abstract machine of 
these primitives is given below. The same technique can be applied to 
other instructions which are ignored here because they are not essential 
for the understanding of the mechanism and the concurrency model.

§5.6.1 States
The state of the abstract machine is determined by ten pointers, a system 
event register, a mutex register together with their denotations and the 
heap. The two registers are specific to certain instructions and they are 
not included in the general discussion below. The pointers are the Code 
Pointer, the Local Main Stack Pointer, the Local Main Stack Base, the 
Local Pointer Stack Pointer, the Local Pointer Stack Base, the Event Main 
Stack Pointer, the Event Pointer Stack Pointer, the Current Process, the 
Ready Processes Queue and the Suspended Processes Pool. System events 
are raised by the abstract machine if it is forced to abandon an evaluation 
whose result would cause inconsistency in the state e.g. stack overflows. 
Some system events can be caught and handled by user programs. System 
events are not exceptions which are raised and handled  by user 
programs.

The Code Pointer (CP) points to the next abstract machine instruction 
of the currently executing compilation unit. A compilation unit is either 
a block, a procedure or a process template.
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The Local Main Stack Pointer (LMSP) and the Local Main Stack Base 
(LMSB) point to the top and the bottom of the same stack which holds 
scalar values. LMSB is part of the m achinery in p rov id ing  the 
environment for the currently executing unit. It is reset on every context 
switch. The values between LMSB and LMSP are the denotations for some 
of the free variables of the current block. LMSP always point to temporary 
values; for example, parameters to be passed, results to be returned or 
results of subexpressions. LMSP can be raised, in which case the values 
below become permanent for the current block.

The Local Pointer Stack Pointer (LPSP) and the Local Pointer Stack 
Base (LPSB) point to the top and the bottom of the same pointer stack and 
behave and function in a similar fashion as the pair above. Values on the 
stack delimited by the two are pointers to objects in the heap.

The Event Main Stack Pointer (EMSP) and the Event Pointer Stack 
Pointer (EPSP) point to the stacks for holding excepted values which can 
be scalars or pointers. They are reset once the event has been handled. 
The stacks are shared by all processes.

The Current Process (CPr) points to a process handle representing the 
currently executing process. A process handle is a record of the state of 
the machine necessary for the resumption of a process.

The Ready Process Queue (RPQ) and the Suspended Process Pool 
(SPP) point to a queue of readily executable processes and a collection of 
suspended processes respectively.

For the rest of this docum ent, we take a som ew hat high level view 
of the state of the machine. We describe the following abstract m achine 
instruc tions in  term s of their effects on CPr, RPQ an d  S P P  only. 
U nnecessary  details have been  either abstracted  aw ay  or om itted  
altogether. In the figures below, the state of a process is represented by an 
ellipse and  any other object by a rectangle w ith a name. For instance, a 
process in  the state p  w ith  a vector on its execution stack w ill be 
represented as:
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vector

Fig. 5.1 A process with a vector

A process can be in one state at a time. But it is possible that a process 
suspends the present state and enters into a new state or resum es a 
previous state. In both cases there is a context switch but the processor 
remains allocated to the executing process. In the following figures, only 
the state of a process prior to entering into a new state is shown. In the 
same vein, it is understood that the current state is discarded (as far as 
that process is concerned) upon resuming a previous state. Moreover, a 
process handle with an italic character represents a foreign process not in 
the heap. The state identifier of a process is left out from m ost of the 
figures below if it is not necessary. In the diagrams below, a grey line 
indicates a separation of address space.

§5.6.2 Communication
There are ten communication related primitives. They can be divided 
into three categories: RPC call, RPC return and accept RPC. Operands that 
can be determined statically are embedded in the code stream e.g. the 
num ber of param eters in a procedure call. O perands that cannot be 
determined at compile time can be found on the top of the stacks. For 
example, the procedure to be called. Primitives in the RPC return category 
differ in the type of the operand on the stack but otherwise they have 
exactly the same operational semantics.

rpcLocal ms ps offset
This instruction  is for an optim ization  in RPC s. It is for 

accomplishing process communication local to an address space, ms and 
ps are the number of scalar and pointer parameters to be passed, offset 
specifies the stack offset required to locate the target entry. The stack on 
which entries are kept can be found down a chain of frames, if necessary. 
The top of these frames can be found from a process handle which is 
beneath the pointer parameters on the stack. A call packet containing the 
parameters and the local or network address, whichever is appropriate, of 
the caller is constructed and put at the back of the queue of the target 
entry, ms and ps number of param eters and the process handle are



popped  off from  the stacks. The executing process is p u t into the SPP. If 
the target process is in the SPP, it is p u t back onto the RPQ imm ediately. A 
process from  the RPQ is selected as the current process. In this case, there 
is alw ays a readily executable process that can be selected as the current 
process.

CPr

..moj
ms

pm...pl| |p0-

RPQ R

SPP

entrv

call pkt
pn...pl

Fig. 5.2 rpcLocal

rpcRemote ms ps offset
ms and ps are as above. In contrast with the instruction above, the 

offset here is not the stack address of the target entry. It is used to index 
an indirection table where true stack addresses of entries can be obtained. 
There is an indirection table associated w ith each rem ote process 
communicating with any one of the lightweight processes in the heap.



An indirection table can be accessed via the process handle which is 
beneath the pointer parameters on the stack. A call packet is generated for 
dispatch to the target abstract machine. However, the dispatch of the call 
packet does not involve the network if the receiver machine is the same 
as the sender machine. The distinction can be m ade by comparing the 
low  addresses of the communication port of the two instances (sender 
and receiver) of the abstract machine.

ms and ps num ber of parameters are popped off from the stacks. 
The executing process is pu t into the SPP. A process is selected from the 
RPP as the current process. If there is no selectable process, the control is 
passed to the protocol handler. It is guaranteed that when it returns, 
there is an executable process on the RPP. For this reason, we assume that 
it is always possible to select a process to be the current process. In 
extreme cases, the selected process is just the process suspended prior to 
the execution of this instruction. In the following discussion, we assume 
that there is always a process selectable as the current process on any 
context switch. The abstract machine terminates only when instructed to 
do so.

CPr

SPP

♦

76



CPr

RPQ
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entry

call pkt
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ms
• - mO

Fig. 5.3 rpcRemote

In the category of RPC return , there is one abstract m achine 
instruction for each of the data types understood by the abstract machine. 
They include integer, real, pointer, procedure and void. In each case, the 
same instruction is used for returning an RPC to a process both within or 
outw ith the address space. It is because the model allows a process to 
accept calls both from within and outwith the address space in which it is 
executing. The locality difference of callers cannot be determ ined at 
compile time. It can only be established at runtime. For didactic purposes, 
only one of the RPC return primitives is described here.

The only operand can be found at the top of the scalar stack. The 
return address can be found from the original call packet which is kept 
on the pointer stack. The return address can be either a local address or a 
network address. In the case of a local address, the caller must be in SPP. It 
is then put at the back of the RPQ. In the other case, a message containing 
the result is sent back to the caller. In the same vein, the caller is pu t back 
onto the RPQ of the abstract machine in which it resides. The process that 
owns the entry called is resumed via a dynamic link.

rpcRtnIB
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RPQ ---- ► . . .

Fig. 5.4 rpcRtnIB

acceptElse m
m is the number of entries at the top of the pointer stack. An entry is 

selected if it has a call packet. If there is more than one candidate entry, 
one is chosen at random . This is the only means whereby non­
determinism  is introduced. When an entry is selected, the executing 
process suspends its present state and enters into a new state to serve the 
call. This is akin to procedure calls. If there is no call packet in any one of 
the entries, the executing process continues. In any case, m entries are 
popped off from the pointer stack. The executing process continues either 
in its present state or a new state to serve the call.



or if there is no call packet on any entry,

CPr

Fig. 5.5 acceptElse

acceptm
This primitive behaves exactly the same as in the previous case. 

However, if there is no eligible entry, the executing process is suspended 
and another process is selected as the current process, m entries are 
popped off from the top of the pointer stack only if a call packet can be 
found among them.



CPr

▼ps

entry n

rcall pktl

RPQ

SPP

CPr

RPQ

SPP

CD'
or if there is no call packet on any entry, 

CPr -----

RPQ ----- 1

SPP ----- 1

call pkt2

q* P entry n

call pkt2

•■■■CD
Fig. 5.6 accept

§5.6.3 Concurrency
A process can be created dynamically. A process is created based on a 
process template whose structure is well-defined. Basically, it is a vector
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of codes. Apart from this, it has a vector of strings, a vector of indirection 
tables, a vector of procedures and entries together with an indication on 
how many entries there are to be initialized.

A process template, a symbolic name and a machine name are at the 
top of the pointer stack. A process is created and put at the back of the 
RPQ. If the symbolic name is not null, the process is m eant to be 
registered as a server preparing to accept calls outwith the address space. 
In this case, the signature and the network address of the process together 
with its name are sent to the name resolution agent specified. By default, 
it is the local one. A runtime error is reported if there is a name clash. 
Once a process is started, other processes can communicate w ith it 
immediately. It is therefore necessary to initialize the entries so that call 
packets are not lost. The number of these entries can be found in the 
process template. The process template is popped off the stack and the 
current process continues execution.

start

CPr

process template



There are three ways in which a process can be terminated. It is 
term inated upon completion, voluntarily, or by request from another 
process. In any case, if there is any outstanding call packet, the caller is 
notified through a system event. The term inated process is eventually 
garbage collected. For each program, there is a top level process, the two 
instructions -- endProcess and kill — do not apply to it although the other 
one stop does. The two abstract machine instructions will never be 
generated for the top level process. We will describe kill only. The other 
two are similar except that the operand to each one of them is always 
taken to be the current process, stop is useful for voluntary termination 
and the execution of endProcess signals the natural term ination of the 
current process.

kill
A process handle representing the process to be terminated is found 

at the top of the pointer stack. The process can be found either in the RPQ 
or the SPP of this or another instance of the abstract machine (Fig. 5.8 
shows one case only). It is discarded from whichever it is in. The process 
handle is popped off from the stack and the executing process continues. 
The operation is a dangerous one. It is supported to prevent useless 
processes from hogging the resources. Other processes communicating 
with the terminated process will be notified through a system event in 
due course. When the process is a registered server, a message indicating 
its name can be reused is sent to the process name server where it was 
registered.
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Fig. 5.8 kill 

§5.6.4 Load and  Assignm ent
We describe load and assignment of entries and process templates here. 
There are three pairs of instructions. The two instructions in a pair have 
exactly the same operational semantics. One instruction w ith a larger 
operand field (2 vs. 1 byte) is generated to handle exceptionally large 
num bers of entries or process tem plates. In essence, there is an 
assignm ent instruction for entries and two loading instructions for 
entries and process templates respectively. There is no special assignment 
instruction for process templates. An existing instruction suffices to 
handle this.

entryAss offset
offset is the stack address of the target entry. A closure i.e. a code 

vector and an environment is found at the top of the pointer stack. An 
entry is an object consisting of three fields viz. a queue of call packets, a 
code vector and an environment in which free variables can be resolved. 
The effect of this instruction is to replace the code vector and the 
environment parts of the target entry. The queue of call packets remains 
unaffected. The closure at top of the pointer stack is then popped off.



CPr

entry

Fig. 5.9 entry Ass

loadEntry offset
offset is used as an index into the vector of procedures associated 

with the process template of the current process. The closure found is 
then pushed onto the top of the pointer stack.

CPr

CPr cp
LE!_

Fig5 .10 loadEntry

§5.6.5 Miscellaneous
In order to communicate with processes outw ith an instance of the 
abstract machine, process handles representing such processes m ust be 
loaded onto the stack. On such an occasion, runtim e typechecking is 
performed and the indirection table for the current lexical level is filled 
with the true stack addresses of entries of the foreign process.

rpcGet itlndex
itlndex is used to locate the indirection table for the current lexical 

level in a vector of indirection tables. The dimension of the vector and 
therefore the degree of nesting of blocks where remote process handles 
are introduced is limited to 256. The process name, the machine name
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and a signature are at the top of the pointer stack. The protocol handler 
sends a m essage to a name resolution agent on the m achine specified. 
The reply  contains the network address and the signature of the target 
process. If this signature matches that on the stack, a process handle is 
created and pushed onto the top of the stack. The process nam e, the 
m achine nam e and the signature are popped off from  the top of the 
pointer stack. If the two signatures do not match, a runtim e type error is 
repo rted  as an  exception; otherw ise, the curren t process continues 
execution.

CPr

T ps
•  •  ■ r P IT S

CPr

Fig. 5.11 rpcGet

The signature m atching algorithm  is straightforw ard . It can be 
expressed formally as follows.

tbvSig = { n j: T j} 
retSig = { n f : Tj'} 
V (n : T) e tbvSig 3 (rV : T) e retSig : n = n’ and T  < T

The tw o signatures are: a to-be-verified signature and  the re tu rned  
signature of the remote process. The two signatures m atch if and  only if 
the form er is a subset of the latter. Note that the order w ithin a signature 
is not significant

The true stack addresses of each entry in the to-be-verified signature 
are deduced as follow. In searching for a corresponding type equivalent 
en try  in the other signature, the num ber of entries scanned so far
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including the current one is remembered. If one is found, the number is 
entered into the appropriate slot in the indirection table. It is the true 
stack address since all entries occupy the initial slots of the process stack 
in the order in which they were declared.

There are two instructions for acquiring and releasing mutex objects. 
These are Get and Release which are rem iniscent of the P and V 
operations of semaphores. Get takes only one operand and that is a 
mutex object which is at the top of the pointer stack. It sets the mutex 
register to point to the mutex it is operating upon. If the mutex is not 
currently in use, it is set to busy state and the Boolean value "true" is left 
on the top of the main stack. The mutex at the top of the pointer stack is 
not removed and the executing process continues. Release also takes a 
mutex operand which is at the top of the pointer stack. It resets the mutex 
to indicate it is free only if it has not been seized by a process. If there is a 
process waiting for the mutex, it is made runnable. The mutex at the top 
of the pointer stack is removed and the executing process continues.

Note that the Get instruction does not cause process suspension. It is 
caused by the execution of the Suspend instruction which suspends the 
current process on the mutex pointed to by the m utex register. The 
operational semantics of these instructions are a consequence of a 
compilation technique used for the lock clause in the language (§6.6).

§5.7 Communication Protocol
Any RPC m echanism  has to be realized upon som e kind  of 
communication protocol capable of message delivery. Some of the 
requirements on the underlying communication protocol have already 
been outlined above. A connection oriented or virtual circuit protocol is 
adequate to meet those requirements viz. reliable and un-duplicated 
message delivery. However, as Larus [Larus 83] observed a remote 
procedure call mechanism (in his case Courier) when realized upon a 
datagram  protocol has a considerable performance advantage over a 
virtual circuit protocol.

With a virtual circuit protocol, a substantial amount of time is spent 
in maintaining state information at both ends when transmitting a large 
number of messages. The benefits of virtual circuit protocol occur when 
large data volumes are to be transferred. High volume data transfers are 
rare in our system. They could only occur if strings were passed (by 
copying as they are immutable) to emulate file transfers or the language 
constructs tra n sc o p y  and a ss ig n  were used. Furtherm ore, w hen 
considering the fact that an RPC can be accomplished by the exchange of
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four messages, the cost of establishing and m aintaining a virtual circuit 
for every RPC seems rather unjustifiable. Given that the existing 
com m unication protocols (on Unix) are either datagram  or virtual 
circuit, it was justifiable to design and implem ent our own protocol 
which basically is datagram oriented but augmented with a m inim um  
housekeeping for the purpose of transferring large volumes of data. The 
main design goals were:

• Portability In a distributed system, it is unreasonable to 
assume a homogeneous environment. The mechanism 
and therefore to a certain degree the concurrency model 
are rendered  useless if a certain protocol is not 
supported on a particular machine.

• Flexibility Transm itting param eters whose num ber 
varies from call to call and copying parameters such as 
strings which have variable characters require messages 
to carry with them size information. The interfaces to 
the protocol do not place restriction on the num ber and 
size of parameters passed.

• Fragmentation Transparency A com m unication  
protocol often imposes an upper bound on the am ount 
of data that can be sent in a single transm ission. 
Transmitting large objects requires more than a single 
transmission. In our case, under normal circumstances 
this will not happen. But because of objects such as 
images which can be very large, fragmentation of data 
occurs when they are required to be transm itted for a 
rem ote image operation. A lthough complex logic is 
required in any case, it is more efficient to build it into 
the protocol. The senders and receivers are therefore not 
aware of fragmentation.

• Efficiency Our protocol can be tailored to our own 
needs. Although this m eans the protocol is highly 
specific, it is a worthwhile trade-off for efficiency. 
Efficiency is probably the m ost im portant factor in 
deciding w hether or not an RPC m echanism  is an 
acceptable one.



§5.7.1 The Protocol Handler
The protocol is designed for connectionless communication. All R P C  

messages are delivered using datagrams which can arrive in random  
order. The functionality of the protocol roughly subsumes that of the 
netw ork layer and the transport layer of the ISO 7-layer model. It is 
responsible for (re-) transmission, acknowledgement, fragmentation and 
addressing. Moreover, it is reliable and guarantees that all messages 
directed to processes are never delivered more than once. The overall 
aim of the protocol is to hide away low level communication mechanics 
and to make R P C s  indistinguishable as far as possible from ordinary 
procedure calls.

The interfaces to the protocol place no limit on the am ount of data 
that can be sent or received in a single attempt. There is no possibility of 
buffer overflow since the protocol handler has unrestricted accesses to 
the heap. All data can be passed to the protocol very efficiently through 
pointers. Furthermore, results are pushed directly onto the stacks of the 
appropriate processes.

The protocol is administered by a protocol handler. Control is passed 
to the handler from time to time. There are two interfaces to the handler. 
They are defined by the following C routines.

rpcWait()
{

int nread, rmask; 
struct timeval wait;

wait.tv_sec = Timeout; I* a universal constant 7

Again:
rmask = 1 «  sock; /* a global variable 7
nread = select(32, &rmask, 0, 0, &wait); 
if (rmask & (1 «  sock)) { 

if (getMsg() != 1) goto Again; 
} else { 

sleep(1); 

goto Again;
}

}

rpcTryf)

int nread, rmask; 
struct timeval wait;
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rmask = 1 «  sock; 
wait.tv_sec = 0; 

nread = select(32, &rmask, 0, 0, &wait); 
if (rmask & (1 «  sock)) 

getMsg();
}

The only difference between the two is that rpcWaitf) guarantees when it 
returns there is a readily runnable process for selection. It is called when 
there is no more runnable process but some process is suspended due to 
co m m u n ica tio n . rpcTryf) is called to ensure  fairness am ong 
communicating and non-communicating processes. It is called at regular 
intervals only when there is at least one process suspended due to 
communication. The routine makes an attempt to receive a message but 
it never waits. A process may become runnable as a consequence.

The protocol itself can be specified by the following C routines. The 
small number of interfaces can be attributed to the fact that it is highly 
specific. For instance, a client process, once made an RPC, is suspended 
and awakened automatically when the reply comes. In other words, there 
is never a need for a client process to attempt to receive messages. The 
same applies to server processes as well. They are suspended when there 
is no message available and automatically awakened when there is one.

int rpcGivePort(process) 
int ‘ process; 

rpcReleasePort() 

rpcGetProcess(itLevel) 
int itLevel; 

rpcSend(userPacket, offset, to) 
call_packet ‘ userPacket; 
int offset; 
rpc_addr ‘ to; 

rpcRegister(pname, mname, process) 
int ‘pname, ‘mname; 
proc_handle‘process; 

rpc Raise Exce pt(pkt) 
call_packet *pkt; 

rpcDeleteProcess()
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The protocol has a layered architecture. The above routines are 
called as a result of executing some abstract machine instructions. The 
following routines which constitute a lower layer are called by those 
above. This separation of layers arises out of functional requirements. 
The modification of the lower layer does not affect the one above and 
vice versa. The lower layer serves two functions. It is the only means 
w hereby m essages are sent and received. It also concerns the 
representation of packets transmitted over a communication medium. 
The representation of RPC messages is different from those actually sent.

ctlSend(from, to, type, len, off, tid, msg, keep) 
rpc_addr ‘ from, *to; 
int type, len, off, tid, keep; 
char *msg;

ctlRecv(msg, time) 
char *msg; 
int time;

Fragmentation occurs transparently at this layer. It happens w hen the 
message size is found to be too big to be transm itted w ith a single 
datagram. Moreover, messages are retained in case they need to be re­
transmitted.

§5.7.2 Packet Format
The layout of a protocol packet is given here as a C type definition, 

typedef struct {
u_short versionNo;
u_short fragment;
u_short totalSize;
ujn t checksum;
ujn t seqNo;
ujn t type;
rpc_addr src, dst;
u jn t pOffset;
ujnt tid;
char msg_buf[BUFFERSIZE];

) Packet;

The functionality of each field is explained below. First of all, the fragment 
field is further broken down into two subfields: fragmentBit and 
fragmentOffset. If the fragmentBit is set it indicates that the packet is a 
fragment of a large message. fragmentOffset indicates which section of the 
original message the fragment belongs to. Every fragm ented packet 
carries the size information of the entire message. U nder norm al
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circumstances, the size value should be equal to the num ber of bytes 
actually received. Otherwise, this is used to calculate the expected 
number of packets required for the transmission of the message. When 
all the expected packets have arrived, the message is re-constructed and 
the fragmentOffsets are used to establish the total order of the packets.

All packets carry a versionNo. This must occupy the first 2 bytes of the 
packet. A packet is discarded if it carries an out-of-date versionNo. A change 
in the format of the packet will be reflected by the versionNo it carries.

totalSize is the sum of the length of the header and the size of user 
data. Size information is always expressed in bytes.

checkSum is normally redundant because Interface Message Processors 
(IMPs) often perform Cyclic Redundant Code (CRC) checks to detect 
corrupted packets. But it is included here in case serial lines where no 
CRC check is performed are used.

A  message may be transmitted more than once. seqNo is used to 
prevent messages from being received more than once. This is important 
for an at-most-once semantics. The seqNo of a packet is normally unique. 
However, fragmented packets of a large message carry the same seqNo so 
that it can be determined they all belong to it.

The type field is used to determine how the packet is to be interpreted 
by calling upon the appropriate service. The services supported are listed 
below as manifest constants in C.

#define Declare 1
#define Confirm 2
#define Delete 3
#define Failure 4
#define Inquiry 5
#define IReply 6
#define CreateRequest 7
#define ReturnHandle 8
#define CreateProcess 9
#define Call 10
#define Ack 11
#define ReturnIB 12
#define Return R 13
#define RetumP 14
#define ReturnPr 15

92



#define ReturnV 16
#define RexRequest 17
#define RexReturn 18
#define Probe 19
#define Alive 20
#define Except 21
#define Im Request 22
#define ImReply 23
#define AckFrag 24

The src and dst are the network addresses of the sender and the 
receiver respectively. These addresses are protocol specific and are 
understood by the protocol handler only.

pOffset specifies an offset into the user data area w here pointer 
parameters can be found. This field gives the protocol a particular favour 
in the transmission of pointer and scalar parameters.

The tid field is for holding a transaction identifier. It is reserved for 
future use.

§5.7.3 Sem antics
The protocol handler that determines which service to call upon the 
receipt of a message, characterizes the functionalities of the protocol. It is 
where messages with the exception of certain types are acknowledged. 
Although its behaviour directly reflects the semantic requirements of the 
remote procedure call mechanism, it has no state. In particular, it never 
waits.

This appears to be contradictory to what is required, for instance, by 
the at-most-once semantics. A remote procedure call is accomplished by 
the exchange between the two sites of four messages of the following 
types: Call, Ack, Return, Ack in that order. After the transmission of a Return 
message, a process cannot continue until an Ack message has been 
received. This is explained below. The protocol handler cannot afford to 
wait since no assumption can be made about the time of arrival of an 
expected message. Other processes may be held up if the protocol handler 
waits. The solution is to require the process to remain suspended while 
other processes have a chance to run. If an Ack has arrived, the process 
concerned is then made runnable. On the other hand, it is guaranteed 
that a process is never suspended forever.
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Furthermore, in this case, both the Call and the Return messages are 
remembered for the purpose of retransmission. If the expected Ack did 
not arrive within a reasonable period, an exception is generated and 
propagated to the process concerned. The functionality of the second Ack 
is less than obvious. It is required since an execution caused by a Call 
message m ay have side-effects. Hence, if it d id not arrive in time an 
exception is propagated to the process (which causes the transmission of 
the Return message in the first place) for remedial actions.
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Chapter 6

Language Implementation

§6.1 Introduction
The im plem entation of DPS is in two parts: the com piler and  the 
in terpreter which sim ulates a hypothetical m achine designed for the 
efficient execution of programs written in the language. The designs of DPS 
and the hypothetical machine have been covered in two previous chapters. 
The present chapter describes an implementation overview of some of the 
intriguing features of the language.

The compiler is based on the PS-algol compiler which is a recursive 
descent compiler [Davies & Morrison 81]. The advantage of recursive 
descent compiling is that there is no need for the construction of explicit 
trees or tables for the different phases of a com pilation. Typically, 
recognition, typechecking and code generation for a construct are all 
together in a single routine and the structures that are currently being 
processed are represented by the nested set of frames of these routines. 
C onsequently  the recursive descent technique yields a com piler 
conveniently structured for development and experiment.

The compiler generates DPS codes of an abstract machine. The abstract 
m achine is implemented in C. The im plem entation is organized as a 
collection of modules; adding a new m odule or changing an existing 
m odule is relatively easy with automatic recompilation of dependencies 
facilitated by 'make'.

§6.2 Process Template
A process template can be considered to be a sequential PS-algol program 
which may be able to communicate either by remote procedure calls or 
through global environments. The compilation of a process tem plate is 
concerned w ith its com m unication capability  and is o therw ise  
straightforward.

The com m unication capability through R P C s  is indicated by the 
optional specification part. The name and type of every entry encountered 
in the specification part of a process template is remembered in a signature 
list. A stack address is allocated to each entry encountered so that all entries 
occupy the starting addresses of the stack of a process. The reason for this is 
to allow automatic deduction of stack addresses of entries required in the
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dynamic binding of separately compiled processes.

The declaration of an entry in the specification part is reminiscent of a 
forward declaration in S-algol. But an entry has to be defined before it can be 
referenced. The order in which entries are defined need not be the same as 
they were declared, though. Although it is not statically feasible to assure an 
entry will be used in interprocess communication, the compiler ensures 
that all entries declared are defined. If an entry does not match its type 
indicated in the specification, it is not considered to be defined. An error is 
raised in either case. The constancy of an entry binding is determined at the 
time it is defined.

The compilation of an entry is similar to that of a procedure except that 
codes generated are slightly different reflecting the semantic difference 
between the two.

The successful compilation of a process tem plate results in the 
generation of a code vector of a fixed format. The code vector consists of, in 
addition to the code for the body, an indication of the num ber of entries 
defined, a vector of procedures and entries defined in the body, a vector of 
string literals introduced in the body and a vector of indirection tables as 
arranged in the following diagram.

Code Proc String ITV No. of Vector of Vector of Vector of

Vector Start Start Start Entries Procedures Strings Indir Tables

Vector Sig

Fig. 6.1 Code Vector

An indication of the number of entries is required for the following 
reason. In order that communication may occur as soon as a process is 
spawned, it is imperative that messages sent to it are not lost. Messages are 
kept in queues which are associated with entries. Because entries always 
occupy starting addresses of a process stack and because the number of these 
entries is known, it is possible to initialize those queues during the creation
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o f  a  p r o c e s s .

In order to facilitate dynamic typechecking of comm unicating but 
separately compiled processes, the signature of a process has to be made 
available at run time. It is embedded in the code vector of the associated 
process template. It is placed as the last element of the vector of string 
literals for conveniency.

Indirection tables are used to obtain true stack addresses of entries of 
separately compiled communicating processes. This has already been 
covered (§5.6.2). There is a vector of indirection tables associated w ith a 
process in w hose environm ents handles to rem ote processes are 
introduced. The size of each table is proportional to the signature of the 
remote process concerned. These tables are initially empty and they are 
filled at run  time. For the sake of more compact codes, the vector of 
indirection tables is represented by a vector of integers containing size 
information of individual tables. These tables are then created at runtim e 
and the vector of integers is replaced by the vector of these tables.

§6.3 Remote Procedure Call
An RPC is initiated by the stipulation of a process handle expression, an 
entry expression and parameters to be passed. Depending on the locality of 
the process handle, different codes are generated. In the case of process 
communication within the same address space, messages can be directly 
queued without involving the underlying network. This is considered to be 
an optimization only since in general a message destined for a local process 
will be routed back by the underlying network. The compiler keeps track of 
locality information of process handle variables in the symbol table. A 
process handle assignment results in an update on the locality information 
in the symbol table. In case the locality of a process handle cannot be 
resolved statically, it is regarded as remote. The following is an example of 
such a case.

le t  ph := if boolExpr then localProcessHandle else remoteProcessHandle 

At runtime, calls to local processes are trapped and re-routed accordingly.

The type of a process is the signature inherited from the process 
tem plate upon which it is created. During compilation, a signature is 
represented by a list of nodes each of which contains information on an 
entry including name, type and an offset from the start of a stack. In the case 
of remote processes, the offset is deduced from a signature which is verified
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at run time.

For local communication, the typechecker ensures that the process to 
which a message is to be delivered supports the target entry by inspecting its 
signature list. If the signature list contains the entry named, the offset is 
used as an operand in the code generation so that the message can be 
directly queued. A type error is raised otherwise.

For remote communication, the same typechecking routine is applied. 
Although communicating processes may be separately compiled, there is 
enough type inform ation available at compile time. Because of this, 
typechecking of messages received at run time is factored out. This makes 
process communication over the network more efficient than otherwise 
possible.

The offset of a remote target entry is deduced from the signature of the 
rem ote process. Signature matching occurs w henever two separately 
compiled processes try to communicate with one another. It is based on a 
notion of inclusion to accommodate certain types of changes between 
program  executions. Although any such changes could require alterations 
to stack addresses of entries, this is overcome with the use of indirection 
tables as explained in a previous chapter. The offset of a rem ote entry 
established by the compiler is in fact an index into the appropriate 
indirection table where true stack addresses of entries can be found. The 
compiler keeps track of the indirection table for a remote process. This is 
accomplished simply by using an integer variable as only one remote 
process handle is introduced in one <install> statement. The variable is 
incremented when entering into such a block and decremented upon exit. 
The integer value is used as an index into the vector of indirection tables. 
The index to a particular table in the vector of indirection tables is generated 
as an operand to the instruction rpcGet. The execution of this instruction 
results in true stack addresses of entries being recorded in the appropriate 
indirection table prior to a handle to the remote process being pushed onto 
the stack.

The extent of a remote process handle is not limited to the block in 
which it is introduced. It can be passed to an outer environm ent by 
assignments or become persistent. Because of this, indirection tables are 
retained at all time.

§6.4 Install
In DPS, the separate compilation of communicating processes may occur
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autonom ously and w ithout appeal to an external m edium  for type 
information. In order to access type information distributed over a network, 
a compiler for DPS written in DPS itself will be required to take advantage 
of distribution provided in the language. The following arrangem ent is 
considered to be a means leading to the bootstrapping of DPS.

In order to communicate with a non-local process, a handle to it has to 
be introduced into the environment. This can be achieved with an <install> 
clause described in §4.3.7. In such clauses, the types of the remote processes 
have to be specified as signatures to be verified at runtim e. The type 
inform ation of these signatures is then used in the com pilation of 
subsequent clauses. In order that these signatures can be verified at run 
time, they are stored as string literals and loaded onto the stack prior to the 
execution of clauses which may depend on them. The true signatures of the 
remote processes which are received at run time are then matched against 
those on the top of the stack. If they match, handles to remote processes are 
then loaded into locations on the stack to effect the bindings. A run time 
type erro r exception occurs otherw ise. Strings are u sed  for the 
representation of signatures, even though another data structure could 
retain more of the parse information, because the signatures have to be sent 
over the network and using strings then avoids a bootstrap problem.

§6.5 Accept
A communicating DPS process receives messages by executing accep t 
statements which specify some collection of entries of interest during the 
course of computation. The effect of such executions is either the acceptance 
of exactly one message, the suspension of the process if there is no message 
or the continuation of the process even if there is no message. W hether or 
not a process is suspended when there is no message available depends on 
which one of the two forms of accept statement was used. Different codes 
are generated to produce the desired effect.

In order to ensure that any entry has the same right in respect of 
communication, the process of selecting an entry with messages cannot be 
biased. Non-determinism is used as a means to obtain a certain degree of 
fairness and is bu ilt into the sem antics of the construct. The 
implementation uses a simple method, which may be expensive in terms of 
space and time on rare occasions, to simulate the effect of non-determinism. 
However, the method always succeeds with the selection of a message in a 
single attem pt. The m ethod consists of two phases: collection and 
extraction. First of all, all entries which have at least one message queued 
are collected in a set. The cardinality of the set is then determined. In order
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to obtain a random number within the range of the cardinality, the number 
returned from a random number generator is multiplied by the cardinality 
of the set and a ceiling function is applied on the result. The random  
number is then used in picking out an entry from the set. If the cardinality 
is found to be zero at the end of the first phase, the second phase is not 
carried out. The executing process may then be suspended.

Parameters passed in an RPC are not directly pushed onto the stack as in 
the case of procedure calls. They are kept in data structures of a recognizable 
format which imitates the stack for efficient data transfer. Such structures 
cannot be directly queued at the target entry in the case of remote 
communication. They have to be transmitted in a linear form and are 
reconstructed at the target end into the appropriate format. Besides the 
parameter to be passed, the message transmitted also includes the network 
address of the target process and a stack address so that the target entry can 
be located. Architectural differences among machines on the network can be 
overcome by translation. Assuming a set of canonical representations of 
values, the translations to and from them occur at the sender and the 
receiver ends respectively. The format of the data structures containing 
parameters may vary from one machine to another.

§6.6 Lock
The lock  clause offers a tool for constructing atomic actions. Because of 
concurrency, the simultaneous execution of atomic actions may therefore 
result in deadlocks. A solution to the problem of deadlocks is deadlock 
avoidance. If some collection of atomic actions exhibit deadlockable 
behaviour, only one of them can be carried out at any one time. The use of 
the lo ck  clause over m utexes is a cost-effective means of reducing the 
probability of deadlock. Such a reduction makes it reasonably easy for the 
program m er to adopt a program m ing m ethod that cannot introduce 
deadlock, and is not as expensive as complete deadlock avoidance.

A m u tex  is represented by a queue of processes together w ith an 
indication as to whether or not it has been acquired. Processes that cannot 
acquire a m utex on behalf of some atomic actions are put onto the queue. 
Upon completion of an atomic action, including exceptions and errors, all 
the mutexes acquired for the executing process are released and a process in 
each of the queues concerned may then scheduled to run. If a process cannot 
acquire all the required mutexes in a single attempt, it is placed in the queue 
where the associated mutex cannot be acquired and all the mutexes acquired 
so far are released. A release of a m utex will, eventually, trigger one of the 
queued processes to make another attem pt in acquiring all m u te x e s
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required.

Two atomic instructions, Get and Release, are required in the code 
generation for the compilation of a lock  clause. The atomicity of the two 
instructions is realized in the current implementation by virtue of the fact 
that concurrency is implemented by interleaving. The codes generated 
illustrate the m ethod employed in effecting a simultaneous seizure of a 
collection of mutexes under such circumstances.

lockm-j,.... mndoS 

is translated into the following sequence of codes:

fjump(n)
release... release
suspend
m«| get

bjumpf(card0p(1)) 

mj get

bjumpf(cardOp(i))

I jump over release sequence and suspend 
I ( n - 1) releases 
I wait for a mutex to be released

I code sequence for getting m2 to m/.j 
I claim mutex m/ leave false if busy 

! jump to release mutexes claimed so far

mn get

bjumpf(cardOp(n)) ! if no jump then have claimed them all

release... release ! normal and exceptional exits pass this way

where S and m|s stand for the codes generated for S and m^s respectively. 
The function cardOp(i) returns an integer which is the total num ber of 
opcodes plus their operands generated so far with respect to the previous (n 
- i + I)**1 release instruction or the suspend instruction and there are (n - 1) 
release instructions generated prior to So that the compiled backward

jump, when executed, releases all the mutexes acquired so far and there can 
only be (n - 1) mutexes to be released in the extreme case. There is a m utex 
register holding the mutex a process is currently trying to acquire. It is set by 
the instruction Get. If a mutex cannot be acquired, the value false is pushed 
onto the stack. The instruction bjumpf removes the top element of the stack 
and if it is false, the control is transferred to the location specified. The 
instruction suspend deactivates the current process and places it in the queue 
associated with the mutex held by the m utex register. Any exception raised 
during  the evaluation of S will cause the control to transfer to the
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beginning of the following sequence of release instructions. This requires a 
proper model of finalization in the exception mechanism [Philbrow & 
Atkinson 87]. In practice more compact code is generated as just one release 
sequence is used via jumps.

§6.7 Locality
With locality as a programming concept, a machine on a network appears to 
be a nameable DPS machine. As in the case of any instance of the abstract 
machine, a process may thus start running on it as a result of a remote 
request. The process in question need not be known locally but a copy of its 
executable codes may have to be shipped prior to that request. The question 
is: where on a machine does the copy get installed?

The implementation keeps one or more perpetually running servers 
capable of launching concurrent processes. These servers are instances of 
the abstract machine but they never terminate automatically. Copies of 
values including process templates destined to a m achine bu t not a 
particular address space are installed in one of these servers. All subsequent 
requests on these copies are directed to w here they are installed. 
Consequently, a process started as a result of a remote request runs in one of 
these servers.

Localities exhibit hierarchical structure. A locality may be embedded in 
another locality representing the fact that a network may only be reachable 
from a gateway. The implem entation of the relational operations on 
locality-related values is based on structural inform ation used in the 
representation of network addresses. Recall that a network address contains 
a high and a low address. The high address is a process identifier and the 
low address is a communication port address which can further be broken 
down into network number, machine address etc. Relationship between 
localities can be discovered by comparing the network addresses of the two 
to a certain depth and by additional structural information which is made 
available as a result of embedding localities. The locality value un iverse  is 
represented by an entity which serves as a wild card. However, locality is a 
relative concept and therefore there is no absolute u n iv e rse . Hence the 
expression universe \ within universe2 yields true  only if the former has 
been embedded into the latter.

A locality is represented by one of the following two PS-algol data 
structures, and therefore required no new abstract machine instructions.
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Loca Machine List of

Address Loca/Node

Machine Port
Address Address

Fig. 6.2 Loca and Node

The relationship between locas and between locas and nodes can be 
established by inspecting a field or a combination of fields of the data 
structures and by the m ethod em ployed in a search over the list of 
loca/node.
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Chapter 7

Distributed Store Management

§7.1 Introduction
The distributed stores management system described in this chapter is a 
means to achieve the effect of shared persistent stores over a network. It 
differs from other approaches such as [Cockshott 85] and [Gallagher 85] in 
that it does not require architectural changes. Although it does address 
allocation, it is not meant to be a fully-fledged addressing mechanism. It 
takes a subsidiary role complementing existing persistent addressing 
mechanisms to locate data which may be on a local or a remote persistent 
store. Except for a minor change in the representation of objects, its 
existence is felt only w ithin the existing addressing  m echanism . 
Moreover, the existing addressing mechanism remains unchanged but 
enhanced. Thus the compiler has not been affected in any way. On the 
other hand, m any features in the language DPS are based on this 
addressing capability.

Notionally, the distributed store m anagement system makes the 
underlying network appear to be an extension of a memory bus. The 
effect is that the addressable scope of a process is unrestricted. Its 
addressable data include both local data and those on remote machines. 
The more volatile nature of the com m unication m edium  is m ade 
accountable by enriching the set of system events.

The allocation of universal addresses is a focal point of interest. 
There are two types of addresses; one for local data and the other for non­
local data. The addressing mechanism for remote data depends heavily 
on the addressing mechanism for local data. The main characteristic of 
address allocation is that objects are guaranteed to be addressable from a 
remote site and yet not every object is given a universal address. A 
process which references only local data pays a very small space penalty 
in the representation of objects and a small time penalty of a 1-bit test on 
every pointer dereference.

Persistence is essential to this type of work where the export of a 
universal address means data residing at that address m ust be kept as 
long as it is reachable from one of a local root, a local active process, or 
from a remote address space. We explain below how the universal 
addressing mechanism interacts with the persistent mechanism. Two
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methods of distributed garbage collection are also described here and each 
one is useful in reclaiming space occupied by obsolete objects no longer 
referenced from remote sites.

The manipulation of remote data is by sending requests to the sites 
where those data reside. This model of remote operation is elaborated 
further in a later section. The reasons for this choice were presented 
earlier (§1.2.1).

A potential weakness of the address m anagem ent system  is 
efficiency. A reason for this is the fact that it is sim ulated w ithout 
hardw are or micro-code support. As a deliberate design decision, the 
format of a remote address is an arbitrary length bit string with no locally 
known internal structure, to allow system evolution. This makes it 
difficult to provide hardw are support for its m anipulation. But the 
frequency of de-reference of remote pointers is observed to be a very 
small proportion of the total instructions and it is not yet clear that 
hardw are or microcode support is warranted, particularly as the de­
reference time is likely to be dominated by network delays. Perhaps the 
most useful place for hardware support is to aid the formation and 
handling of netw ork messages. Reasonable perform ance has been 
obtained on a cluster of Sun-3 workstations using only the standard Unix 
4.2 protocols and software written in C.

We begin by examining two approaches towards realizing shared 
persistent stores.

§7.2 Universal Addresses
In order to address data in store, the representation of pointers is 
normally encoded with some sort of locality information. This concept 
has so far been applied in a rather limited fashion. Traditionally, a 
process is constrained to access data within a dedicated virtual memory 
for reasons of security and protection [Organick 72]. Pointers are 
represented by virtual memory addresses which when given to an 
addressing mechanism yield the data residing at a corresponding location 
in the physical memory. Persistent addressing is similar as it takes 
pointer representations to be Persistent Identifiers (PIDs). Objects in store 
which includes both main and secondary memory can be addressed using 
these PIDs. Thus the addressable scope of a process now has a finer grain 
as it refers to objects. The benefit of this is that programmers see a one- 
level store without being distracted by the fact that objects addressed 
during the course of a computation may be resided in a random  access
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memory or on a sequential file store.

It is observed that the essence of persistent program m ing is in 
locality transparency. This facet is useful in distributed computations 
since there will be no difference in accessing local and remote data. In 
order to allow remote data to be addressed, the representation of pointers 
must be encoded with network addresses on top of object identifiers. In 
addition, a mechanism for the distribution of pointers is also required. 
One such mechanism has been described in chapter 5 and is therefore 
assum ed for the rest of the discussion. The receipt of these pointers 
represents a right to access the remote data they refer to so that the 
addressable scope of a process which has already included both main and 
secondary memory may further be expanded in a controlled manner.

The representation of pointers extended with network addresses is 
considered to be more general than those w ithout them. In realizing 
shared stores, a logical choice therefore will be to use them to represent 
pointers on stacks. Compilers at different sites will then generate such 
pointers w ith different network address values. This approach has a 
num ber of drawbacks. Firstly, the scheme calls upon a universal 
addressing mechanism that can interpret any pointers that can ever be 
generated. The w idespread use of persistent stores by more than one 
language is likely to be hampered by the imposition of a single addressing 
mechanism. Secondly, local and remote data are addressed using the 
same pointer representation. An error in the representation inflicted 
during transm ission over a netw ork may be disastrous. A lthough 
transmission errors can be avoided with checks, the overhead incurred is 
likely to be high.

Thirdly, there is a space overhead since the network addresses in 
pointers to local data are redundant. It is observed that the num ber of 
pointers to local data is much higher than pointers to remote data so that 
the space overhead is significant.

Finally, the approach is problem atic w ith respect to garbage 
collections. It was claimed that garbage collections may be avoided by 
providing address spaces so large that there is never a need to reclaim 
space. But this is unrealistic as the rate of object creation is not 
predictable. Assuming garbage collections can take place whenever and 
wherever necessary, a solution is to use indirection so that the exact 
whereabouts of data can be established at any time. How ever the 
attendant overhead is proportional to building on top of a virtual 
memory yet another virtual memory mechanism.
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A slightly different approach, which incurs less overheads and more 
flexible, is to permit different representations of pointers; one for local 
data and another for remote data. This approach is strongly influenced by 
the belief that in general the num ber of pointers to local data is much 
higher than to remote data. For the sake of clarity, pointers to remote 
data are known as remote pointers. The problem of representation on 
stacks due to the difference in sizes can be overcome by disallowing 
remote pointers on stacks altogether. Instead they exist only as objects in 
the heap. An implication that follows from this is the flexibility of the 
representation of these remote pointers.

The existence of remote pointers off the stack is of no concern to the 
program m ers. A slight m odification to the existing addressing  
mechanism suffices to present to the programmers a uniform view on 
pointers. When a referend happens to be a remote pointer, a subsidiary 
addressing mechanism is employed to locate the remote referend.

Remote pointers are heap objects. They can be made persistent and 
used subsequently; just like any heap object. Since the existence of remote 
pointers is of no concern to the programmers, it follows that a logical 
universal persistent store is obtained but participating persistent stores 
rem ain autonomous.

It is important to note that as long as a remote pointer exists, its 
referend must be available. Persistence provides the necessary facilities 
for keeping data referenced from remote sites.

For the rest of this chapter, it is understood that the representation of 
remote pointers contains three values:

• a network address,
• an object identifier and
• a persistent identifier.

The network address identifies an instance of the abstract machine on a 
particular machine in a network. The object identifier is used to locate a 
piece of data in the heap of that remote instance of the abstract machine. 
An instance of the abstract machine ceases to exist when all processes 
running on it have terminated. The persistent identifier is a key to locate 
the same piece of data in a remote persistent store if that particular 
instance of the abstract machine ceases to exist. It should be pointed out
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that the persistent identifier and the object identifier do not address the 
same object. This will be explained in due course.

The representations of each value and their space requirements are 
specific for an implementation and they can be changed without impact 
on existing programs. Indeed they are allowed to differ when different 
remote localities are addressed so that the network may be heterogeneous 
and may evolve. However, this aspect is immaterial for the discussion 
which follows.

§7.3 Address Allocation
It is implicit in the discussion above that remote pointers could not be 
generated by the compiler which only allocates pointers to data in the 
local heap. In fact, the compiler requires no adaption for remote pointers. 
Recall that pointers to non-local data can be obtained through a 
distribution mechanism, which in our case, is an RPC mechanism as the 
distribution of data is initiated under the control of the programmers. It 
follows that the only occasion when remote pointers are required is 
w hen data are exchanged in communication across address spaces. 
Ordinary pointers are replaced by remote pointers which are encoded 
w ith more locality information at foreign sites, but immutable values 
such as integers and strings are copied. The rationale for this is efficiency 
and we arrange that the semantics, including equality , rem ains 
unchanged.

There are pitfalls in this lazy generation approach. An object which 
is passed as a separate parameter or on different occasions could be given 
different remote pointers referring to the same referend. This conflicts 
w ith the store semantics in which each heap object is uniquely 
identifiable. If objects are uniquely identifiable, equality can be defined 
very cheaply in terms of references without requiring examination of the 
behaviour of objects. For instance, function equality can be defined, albeit 
not very satisfactorily, by comparing the closures. Although it is still 
possible to establish equality by inquiring at the original sites, this appears 
to be rather clumsy and expensive. A more efficient solution is to ensure 
that a unique remote pointer is associated w ith each object. Once a 
remote pointer has been generated for an object, it is rem embered and 
will be reused whenever a pointer to it is encountered again as a 
parameter or result in a communication.

There is still a further complication. A remote pointer is represented 
on the stack by a local reference and thus could be passed as a parameter
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in an RPC. If such is the case, a chain of remote pointers one referring to 
another could result. Consequently, an object can only be located, by 
tracing back the path through which it was imported. This leads not only 
to more messages, slower responses but also the situation w here an 
intermediate node along the path becomes in-accessible while the root 
where the referend resides is reachable. The problem is easily solved by 
copying remote pointers, when passed as parameters or results, as if they 
were immutable objects instead of generating new ones. This scheme 
works since remote pointers are m eant to be universally recognizable. 
This contrasts with Hurst's approach [Hurst 87] in which indirection is 
possible in case the root itself becomes unreachable.

An associative structure at the sender is used to keep track of remote 
pointers generated: Its used to prevent re-generation of remote pointers. 
This structure is shared by all processes within the same address space. 
Pairs of the form <xid, local reference>, where xid is a context sensitive 
object identifier, are held in the structure. Local references refer to data in 
the local heap. The validity of these local references is guaranteed despite 
garbage collections.

The structure at the sender end holds remote pointers generated and 
references with which they are associated. It is called the Export Table. 
The organization of the table is such that there is a partition for a group 
of comm unicating processes whose netw ork addresses refers to a 
common instance of the abstract machine. A communicating process 
here is the one to which a remote pointer was or is about to be exported. 
Such an organization is for the purpose of efficient searching and 
distributed garbage collection, and has no semantic implications. It is 
speculated that export of remote pointers exhibits a locality of reference 
similar to the one associated with paging systems.

A remote pointer may be exported m any times. Thus m ultiple 
occurrences of the same remote pointer may be found in the same heap. 
It is possible to keep track of remote pointers im ported in a table to 
reduce the number of identical copies of a remote pointer to one. This is 
not considered because of its im plication on d istribu ted  garbage 
collections. Distributed garbage collections are discussed in a separate 
section.

The algorithm for the generation of rem ote pointers works as 
follows. For every RPC made by a lightweight process, every pointer 
parameter X is used as a key in searching for an object identifier which 
may have been generated for it. The search is conducted first of all in the
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partition associated with the communicating process, if allocated, and 
then the rest of the Export Table. If found, a remote pointer based on the 
partition and the object identifier is constructed and then returned. 
Otherwise, a partition is allocated if necessary and X is entered into the 
first available slot in the partition and the offset of the slot relative to the 
partition is used as the object identifier in generating a remote pointer as 
above.

§7.4 Remote Store Operation
A remote pointer contains information to allow the identification of a 
referend at a remote site. In this section, we describe how  updates on 
rem ote referends are carried out. First two strategies that were 
investigated but rejected are described:

1) When a remote pointer is "dereferenced", the remote 
referend can be copied into the local address space. A local 
reference to a temporary object holding the copy is then 
used to replace the remote pointer and the execution of 
the dereferencing instruction is carried on this temporary 
object. The resultant copy is then sent back to the original 
store to effect the changes. This m ethod transfers a 
message containing the object in each direction every time 
it is required. This may affect performance in, for example, 
a tight-loop situation where the same object is iterated 
over again and again.

2) Instead of sending back the copies to effect the updates, 
they can be cached. This sort of approach has been used in 
various guises in different problem domains. The usual 
problem is multiple copies update. A number of solutions 
have been discussed in [Holler 81] for m aintain ing 
various degrees of consistency among copies. A simple 
one is not to allow more than one copy to be made at any 
one time by using a lock protocol. A request for a copy of a 
locked object is ignored until the lock on it has been 
released.

Note that copying an object at this level is less tricky than copying 
the referend of a pointer param eter in a rem ote procedure call. If a 
pointer parameter happens to be a root to a large database, the entire 
database m ight be copied across. On the other hand, a store level 
instruction always has a target object to operate upon. For example, the
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operands to a vector update instruction are a reference to the vector, an 
offset and a value to replace an existing element of the vector. The only 
value which needs to be copied is the vector. So there is no danger of 
copying data irrelevant to the computation.

The copying approach has no major engineering obstacles. However, 
it is considered to be less attractive compared to the rem ote store 
operation approach for the following reasons. Firstly, copying requires 
translation in a heterogeneous system, but a substantial am ount of 
translation work done is wasted as typically only one field of a data 
structure is the focus of interest. Secondly, the lock-copy-return-release 
approach is a questionable policy. The release of locks cannot be 
determined at the site where they are held. The return of a modified copy 
is subject to network partition or machine failures. The time elapsed 
before locks are released may be arbitrarily long thus holding up other 
requests. Furthermore, instructions requesting copies need not be eagerly 
executed as there may be processes waiting for execution. It is therefore 
impossible to impose a time-out period upon which locks can be released 
unilaterally.

Finally, there is an efficiency problem. A tight-loop manipulation of 
an object, say, incrementing individual elements of a sizeable, one 
dimensional array of integers, would require the sending to and fro of 
the same object over and over again. However, this may be overcome by 
cacheing as an optimization.

The remote store operation approach avoids copying. A similar 
model was described in [Spector 82]. Instead of copying operands, the de­
referencing instructions are sent and executed at the sites w here the 
referends reside. There is an assum ption here that the same set of 
instructions are used at all sites participating. This assum ption is not 
invalid even on heterogeneous systems since the same abstract machine 
can be used. This approach still requires some copying to be done but the 
am ount is insignificant. For example in the vector update instruction 
above only the operand to be used to effect the assignment is required to 
be copied. In keeping with the policy of not copying objects, the value 
may be replaced by a remote pointer. Indeed, what is interesting here is 
that a store operation can be seen as a primitive procedure supported by 
the store. A remote store operation resembles an RPC with exactly the 
same kind of semantics.

The remote store operation approach is attractive as there is only 
one copy of data at any time and therefore the problem of multiple copies
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inconsistency simply does not exist.

In the remote store operation approach, there is still a need for a 
locking protocol. A request for a store operation to be executed is not 
served unless the operand in question is not locked. Locks are acquired 
and released according to the execution behaviour of program s. The 
language described earlier does not support explicit locking of individual 
objects. The effect of locking is achieved by seizing and releasing mutexes. 
The idea is that such objects are meant to be keys the seizure of which 
perm its exclusive accesses to some collection of data. Accordingly, 
requests for store operations are carried out w ithout observing any 
locking protocol because it is assumed that appropriate interlocks have 
been arranged by the programmers' use of mutexes. If some data is meant 
to be accessed sequentially, it should not be exported on its own. They can 
be packaged up e.g. in an expression in which some locking convention 
is observed.

In terms of implementation, the remote store operation approach is 
appealingly simple in its own right. It has been observed that about 14% 
of the 256 abstrac t m achine in structions req u ire  a rem ote  
im plem entation. Of course, a m uch sm aller percentage of the 
instructions executed refer to remote store. It is believed that the small 
percentage is true in general since most machine instructions are for 
control jumps, loading literals, comparison and arithmetic, i /o  and stack 
manipulation. The 14% remote executable instructions, in the case of our 
abstract m achine, includes those m anipulating  heap objects eg. 
structures, vectors, and graphical objects. We outline the operational 
semantics of remote execution of store instruction on structures and 
vectors for didactic purposes. For images, it is slightly more complicated 
but the principle is the same.

O perands to those instructions are typically an object whose 
reference is near the top of the stack, an offset, and in the case of 
assignment another object whose reference is at the top of the stack. If the 
object in question is a remote pointer, the executing process is suspended. 
The dereferencing store instruction is identified which is the current 
value of the program counter. The program  counter is incremented to 
point to the next instruction and the stack operands are popped off. Now 
the state of the process is dumped for use in subsequent resumption. The 
remote pointer object contains the network address of where the referend 
resides together with a context sensitive object identifier. A message 
containing all the operands and an opcode which identifies the
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dereferencing instruction, is sent to the target m achine. All operands 
except those for identifying the target object and  field, are treated  the 
same as param eters of an RPC

The referend in question can be located through the Export Table. 
The object identifier in the remote pointer is m ade up of a partition 
num ber and an offset. The partition num ber is used to locate the 
partition in the Export Table and the offset is used to index into the 
partition to obtain a reference to the referend. The instruction requested 
is carried out as it would have been at the site where the remote pointer 
is dereferenced had the referend been available locally. The execution is 
carried out by some surrogate process of the instance of the abstract 
machine where the true referend resides. An RPC message is sent back 
upon completion of the instruction.

§7.5 Persistence
A remote pointer dereference may occur at any time. In particular, it may 
occur after the process which exports the remote pointer has terminated. 
It is therefore imperative that once a remote pointer to an object has been 
exported, the object should be kept available for as long as some other 
process has the capability of referring to this object. This requirement is 
easily met with the provision of persistence.

When an instance of the abstract machine terminates, all the objects 
reachable from the Export Table are sent back to a local persistent store. 
This is accomplished by making use of persistent facilities which already 
exist. Since an Export Table provides a context for locating an exported 
object, it is also kept in the persistent store as well. U nder norm al 
circumstances, a request for the execution of a store operation is sent back 
to the instance of the abstract machine where the referend resides. If this 
is not possible, the request is re-directed to a perpetual server process. 
Upon receipt of such requests, the server process pulls out the referends 
from a local persistent store and carries out the required operations as it 
would have done in the normal case.

The Export Table is not global to a persistent store for efficiency 
reasons. There is one per instance of the abstract machine. The persistent 
identifier in the representation of remote pointers is used to locate an 
Export Table in a persistent store. The persistent identifier is not 
redundant even when objects can be located w ithout resort to server 
processes. This is because network addresses are re-usable bu t the 
confusion over the identity of an instance of the abstract machine is
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avoided as persistent identifiers, which identify the Export Table that is 
(was once) associated with the process, are unique.

Once an Export Table is located, the object identifier can be used to 
locate the referend. It should be obvious that the PID for an Export Table 
is required to be obtained prior to any construction of remote pointers 
originating from an incarnation of the abstract machine.

§7.6 Distributed Garbage Collection
It has been m entioned that once an object is exported, it rem ains 
available as long as it is accessible. Persistence ensures that objects 
reachable from an Export Table are retained forever. Garbage collections, 
on the other hand, are used to free space occupied by obsolete objects. 
During the course of a distributed computation, garbage collections may 
occur autonom ously in the heaps at different sites. This m ethod of 
operation has a counterpart in some non-distributed garbage collection 
algorithms. For instance, Bishop [Bishop 77] proposed heap spaces to be 
separated into compartments in which objects are garbage collected if 
they are not referenced from objects in any other com partm ent. 
Distributed heaps with remote pointers referring to objects in them are, 
logically speaking, a form of com partm ent described in Bishop’s 
algorithm. In our case, garbage collectors at these sites retain objects 
reachable from the Export Tables in addition to those reachable from the 
stacks. Exported objects are purged from an Export Table only when all of 
their outstanding remote pointers are garbage collected at remote sites.

The number of remote pointers constructed in remote heaps is kept 
in a reference count on the Export Table. The count is incremented every 
time a copy of the remote pointer is installed at a foreign site. It is 
decremented on receipt of messages from garbage collectors at remote 
sites. Messages are sent (in batches, perhaps) at the end of a garbage 
collection when remote pointers which are no longer referenced are 
garbage collected. If the count drops to zero, all outstanding copies of the 
remote pointer have ceased to exist and therefore the referend can be 
garbage collected locally. Note that only exported objects are garbage 
collected based on reference counts. Other heap objects are garbage 
collected based on a constant space, pointer reversal, m ark-and-slide 
compacting algorithm.

Garbage collections based on reference count normally suffer from 
the problem of not being able to detect circular objects. Hughes [Hughes 
84] proposed a distributed garbage collection algorithm based on time- 
stamping which can detect circular objects spanning across sites. The idea
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is that each heap object is time-stamped with either the time it is created 
or the time which the local garbage collection is started if it is reachable 
from the stacks. The time-stamps of remote pointers are propagated to 
their referends. An object is considered marked if its time-stamp is later 
than or equal to the time which the current garbage collection is started. 
At some point in time, objects not referenced and in particular circular 
objects spanning across processors will lapse behind in time and 
therefore can be garbage collected. The algorithm requires a global clock 
which is hard to maintain on a distributed system, space per object to 
hold time-stamp information and a large num ber of messages to be 
exchanged between all sites and is therefore expensive if the occurrence 
of circular objects is rare. Also, in pathological cases, it may take a very 
long time before circular objects spanning across sites can be garbage 
collected. A reasonable approach is to run it occasionally to pick up 
circular objects not detectable in the other method of distributed garbage 
collections described.

Neither of these distributed garbage collection algorithm  has yet 
been implemented, though we recognize that it is ultimately necessary to 
avoid space creep.
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Chapter 8

Distributed PS-algol

§8.1 Introduction
Distributed PS-algol or DPS for short is a conventional, persisten t 
programming language with supports for concurrency and distribution. 
The sem antics of language constructs are concise w ith particular 
emphases on simplicity. The language is aimed at a wide audience. It 
inherits from PS-algol a rich set of data types, store semantics, persistence 
and higher order functions. With persistence in particular, programming 
efforts can be accumulated and made use of subsequently with relative 
ease. This chapter serves to illustrate the use of the language in the areas 
of concurrency, synchronization , process com m unication  and  
distribution. The programming style in the examples below is our initial 
idea as to how such languages may be used.

Measurements on process communication are described to give an 
indication on the performance of the RPC mechanism.

§8.2 Examples
§8.2.1 Concurrency and Process Communication
The following is an example of a program  that never terminates. It 
(always) contains a process that does nothing but spawn itself.

let forever := process 
begin 
erri

forever := process 
beg'n
let x = start forever 
end

let y = start forever

This simple program consists of two declarations and an assignment. The 
first declaration serves to introduce a forward reference. It is used in the 
body of the process template in the assignment. The second declaration 
introduces a process handle which is never used. The purpose of the 
second declaration is to initiate a chain of self-spawning processes.

A simple example of concurrency and process communication is 
given below.
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let sema=process 
with 

P = entry(),
V = entry() 

begh
let P = entry (); {}
let V = entry (); {}
while true do {accept P; accept V}
end

let Mutex = start sema 
let outfile = openf'afile", 1) 
let writer = process 

begh
Mutex@P() 
for i = 1 to 10 do 

output outfile, "This is meant to be a long sentence to be output'n" 
Mutex@V() 
end

for i = 1 to 10 do {let x = start writer}

In the example, output to a file is atomic with the use of a semaphore 
process. The semaphore process serves to illustrate the synchronous 
nature of process communication and is otherwise redundant since the 
language already supports m u tex . Com m unication betw een writer 
processes and the Mutex process is initiated by expressions such as 
Mutex@V() and accomplished with clauses like accept V. Atomicity is 
guaranteed by virtue of the fact that the semaphore process accepts a 
message from the entry P followed by a message from the entry V and 
the discipline exhibited in the writer processes. Note the way in which 
entries are specified in the accept statements; no brackets are required.

Concurrent processes can be created dynamically whenever the need 
arises. This facet can be utilized to create some sort of asynchronous effect 
in process communication. The concept of extended rendezvous in Ada 
is an example in which clients can be resumed earlier than otherwise 
possible. The same effect can be emulated in the language. The following 
simple example sketches the idea.
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let p =process 
with 

ep = entry(-> int) 
begh
let ep = entry(-> int) 

begh
let x = process 

begh
whatever()
end

let y = start x
3
end 

accept ep 
end

It is obvious that if an entry does not return any tangible result, clients 
can be resumed even earlier. It is interesting to note that in contrast with 
Ada, the server can be resumed earlier as well since the call is served by a 
third process.

It is possible to exploit dynamic processes further in this vein. A 
server may spread its workload to delegate processes. In extreme cases, it 
is even possible to create the impression that a server appears to be able 
to handle messages for different entries at the same time.

let p = process 
with 

ep = entry(...) 
begh
let ep = entry(...);... 
let x = process 

begh
while true do accept ep 
end

let y = start x
other()
end

It should be realized here that it is not possible to create a process just for 
the sake of serving an RPC because of the semantics of accept and in the 
absence of a facility to peek at the arrival of messages. On the other hand, 
there is not much gain in economy in doing so. This is because in the 
absence of messages, an a cc ep t causes the executing process to be 
suspended until a message has arrived. Moreover, a server process like y 
in the example above avoids the need to create a process every time a 
message arrives.
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The example below illustrates how a process can be started on a 
remote machine:

let p = process 
with

ep = entry(-> string) 
beg'n
let ep = entry(-> string); "hello from paama'n"
while true do accept ep
end

let rp = start transcopy p to paama 
print rp@ep()

where paama is a predefined loca value in the language. A process 
tem plate p is declared, and a copy of which is sent to the destinated 
locality. A process is started where the copy happens to be. The result of 
the start expression is a handle to a remote process. Communication with 
the process is by RPC.

In the exam ple above, the process denoted by rp can only 
communicate w ith the process which started it. In general, a server 
process may communicate with a host of processes some of which may be 
separately compiled. A public process can be declared as follows:

let rp = start transcopy p to paama as "server"

The effect of the start expression is the same as before but in addition the 
process created is known as "server". Any process can communicate with 
it as in:

for s = "server" at paama with ep = entry(-> string) do print s@ep()

A handle to the process known as server is introduced into the 
environment with a for clause. The remote process m ust support an 
entry named ep which does not take any parameter but returns a string 
as the result. If it does, a binding occurs so that s denotes a handle to that 
process. Communication with it can be accomplished as in the example 
above.

§8.2.2 A Concurrent Sorting Algorithm
The sorting of a sequence of comparable values can be accomplished by a 
network of concurrent sorting processes [Sheeran 85]. The idea is that the 
network of processes produces a sieving effect and the larger the value,
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the longer it stays in the network. Smaller values are sieved out through 
the low er echelon of processes of the netw ork. The num ber of 
comparisons required in such a sorting network tends to be higher than 
normal. But the main advantages are that there is no need to remember 
previous results and that hardware parallelism may be exploited.

The task of a sorting process is simple. Upon receipt of two values, it 
makes a single comparison and passes them  on to its neighbour 
accordingly:

A network of efficient sorting processes may be difficult to construct in 
general. The concurrent sorting netw ork presen ted  here can be 
constructed algorithmically according to the number of inputs because of 
its geometrical shape. For example, a network of sorting processes for an 
input of 4 values looks something like:

The following program implements a concurrent sorting algorithm 
using these sorting processes. The algorithm capitalizes on the first class 
nature of process handles.
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let sorter = process 
with 

in1 = entry(int), 
in2 = entry(int), 
init = entryjint, int) 

begh
let min := 0; let max := 0
let x := 0; let y := 0
let in1 = entry(int a); max := a
let in2 = entryfint b); min := b
let init = entry(int u, v); {x := u; y := v}
accept init
while max = 0 or min = 0 do accept in11| in2
if max <= min do {let tmp = max; max := min; min := tmp}
case true of

x = 1 and y = 1 
x = y

y = 1

default

: write min, max, "'nM 
: begin 

let s := select(x -1, y - 
s@in1 (max) 
s := select(x, y -1) 
s@in1(min) 
end 

• begh 
write min
let s = select(x -1, y) 
s<5>in2(max) 
end 

: begin 
let s := selectfx -1, y) 
s<2>in2(max) 
s := select(x, y -1) 
s@in1(min) 
end

D

aid

Each sorter process is made aware of its position in the network. The 
compared values are then either output directly or passed on to the 
appropriate neighbour. Note that a sorter process is not committed to 
receive a value from one particular entry. Any process in the network is 
thus allowed to fire off whenever two input values become available. 
The procedure select returns a process handle to the process at the 
specified position in the network. The network itself is held in a data 
structure.
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structure node(pntr this, that)
structure box(ph(in1=entry(int), in2=entry(int), init=entry(int, int) sort; 

pntr next)

let s := start sort 
s@init(1,1)
let network := node(box(s, nil), nil)

The sequence of comparable values is input to the network on the left 
where the number of processes is one less than the number of values in 
the sequence.

§8.2.3 D istributed  Programming
There is no restriction on the types and number of parameters that can be 
passed in an RPC. The effects on parameters passed in RPCs are consistent 
with that in ordinary procedure calls. The following example illustrates 
this concept:

let p = process 
with

ep1 = entry(**int), 
ep2 = entry(string -> string) 

begh
let ep1 = entry(**int x)

for i = lwb(x) to upb(x) do 
for j = lwb(x(i)) to upb(x(i)) do x(i, j) := x(i, j) + i + j 

let ep2 = entry(string s -> string); s ++ "n" 
while true do accept ep11| ep2 
end

let thisP = start p as "aServer"

Suppose thisP is running on paama.

let aVector := vector 1 ::10 of vector 1:: 20 of 0 
for thatP = "aServer" at paama with ep1 = entry(**int) do 

thatP@ep1 (aVector)

The effect of this program is the declaration of a one dimensional integer 
vector aVector whose elements are initialized to zero and it is passed to 
the entry ep1 of the process thisP. The integer vector, aV ecto r, is 
subsequently m odified so that ind iv idual elem ents have values 
identifiable to the sum of their indexes. This is the same kind of effect 
normally expected in procedure calls. It is safe to assume that address 
spaces of communicating processes are shared even if they are on 
different machines. The first program, in particular, does not contain any
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indication of distribution. Indeed, if the two program s are brought 
together on paama as separate programs or otherwise the same result can 
be obtained. Note that although thisP supports two entries, the program  
above merely uses one of them. In general, a program  is required to 
name those entries of interest only and in whatever order these may 
appear in the specified signature. This allows certain changes in servers 
between executions without any impact on existing clients.

Distributed programming in the language is not radically different 
from  conventional program m ing. The only requ irem ent is the 
establishment of a "link" between processes. This can be achieved by 
parameters passed in RPCs. Once a parameter is received it can be accessed 
as if it were local. The following program capitalizes on this fact. The two 
programs together realize distributed free-hand drawing. The objective 
here is to perm it whatever drawn on a screen of a machine to appear 
immediately on a screen of another. The two programs share the same 
free-hand draw ing package which is stored in a persistent store. In 
addition to setting up the screen into quadrants, the package provides a 
set of paint brushes and supports pop-up menu. The display uses two of 
the quadrants; one for local drawing and the other for displaying remote 
images. The main body of the package looks something like:

while true do begin
moose := locatorQ
if moose(the.buttons)(the.button) do begin 

let x = moose(X.pos) 
let y = moose(Y.pos)
if x < bum.r then if y >= bum.b do controls(x, y) else 
if inBrushSet() then change.brush() else 
if inLocalDisplayO do ror brush onto limit paper at x, y 
erd

copy their(the.paper) onto rpaper
oxl

Depending on the position of the cursor, the package performs various 
activities such as popping up menu, changing the brush or displaying the 
brush along the path of the cursor movement. The two display areas are 
represented by images of type #pixel. They are identified as paper for local 
drawing and rpaper for displaying remote images. Distributed free-hand 
draw ing is realized basically by running the package on different 
machines at the same time and that the expression their(the.paper) is made 
synonymous to paper of the other side. This is accomplished by the 
following two simple programs:
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let root = open.databasefdemos", "friend", "read")

let make = s.lookupf'sketch pad", root)(content) 
structure paper.box(#pixel the.paper) 
let their.paper := Image 1 by 1 of off 
let my.paper := image 1 by 1 of off
let their = paper.box(their.paper) 
let mine = paper.box(my.paper) 
let sketch = makeftheir, mine,...) 
my.paper := mine(the.paper)

let p = process 
with

init = entry(#pixel -> #pixel) 
begh
let init = entry(#pixel theirPaper -> #pixel) 

begh
their(the.paper) := theirPaper
my.paper
end

accept init 
end

let aP = start p as "server" 
sketch()

and

let root = open.databasef'demos", "friend", "read")
! same as above

my.paper := mine(the.paper) 
let x = process 

begh 
sketch() 
end

let y = start x

for p = "server" at vanuata with init = entry(#pixel -> #pixei) do 
their(the.paper) := p@init(my.paper)

Instances of the structure class paper.box, their and mine, are used to 
convey pointers to display areas between the programs and the package. 
The package is retrieved from a persistent store and is initialized with 
their and mine as two of the parameters. After the initialization, mine 
contains a pointer to the local drawing quadrant. One of the programs 
then initiates a communication with the other passing to it the pointer 
and the other responses by replying with the counterpart which is made 
synonymous with the expression their(the.paper).
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The free-hand drawing package is not oriented towards distribution. 
Indeed, if there is no communication between the two processes, free­
hand drawing is still possible except that the image will not be reflected 
on the other machine. The objective of the exercise is essentially 
accomplished simply by the clause copy their(the.paper) onto rpaper. Note that 
copy is the usual graphic construct in the language.

This concurrent program was constructed by making minor changes 
to a freehand draw ing package w ritten as a dem onstrator by Paul 
Philbrow. The whole programming task, design, and implem entation 
was done in a single day.

§8.2.4 Input and Output
Lightweight processes share the same set of resources of the underlying 
machine. In particular, they share the input (keyboard by default) and 
output (screen by default) streams together with the mouse. In some 
cases, the concurrent uses of these streams and the mouse need to be 
coordinated. This can be achieved with a lightweight process whose sole 
function is to regulate the uses of the two streams and the consumption 
of mouse events. Any other process wishing to perform  coordinated 
in p u t or o u tp u t activity  m ust com m unicate w ith  it. Because 
communication is synchronous, the sequential nature of inpu t and 
output is ensured. Because of graphics, however, the concurrent uses of 
(different parts of) the screen in some cases can only be organized by the 
programmers.
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let io = process 
with 

iStart = entry(), 
iStop = entry)), 
iLocator = entry(-> pntr), 
oStart = entry (), 
oStop = entry() 

begh
let i := false 
let o := false
let iStart = entry(); {i := true} 
let iStop = entry)); {i := false} 
let iLocator = entry(-> pntr); locator)) 
let oStart = entry)); {o := true} 
let oStop = entry)); {o := false} 
while true do begin 

accept iLocator || iStart || oStart 
if i do accept iStop || iLocator 
if o do accept oStop || iLocator 
end 

end
let ioController = start io

The function of the process ioController is to oversee the proper use of the 
input and output devices. Any coordinated input and output operation 
m ust be preceded with a Start request and followed by a Stop signal to 
the process. In the case of the mouse, the process guarantees that mouse 
events are not shared by more than one process.

§8.2.5 Dining Philosophers
Here is another solution to the ubiquitous dining philosophers problem:
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let fork = process 
with 

pickllp = entry(), 
putDown = entry() 

begh
let pickUp = entry (); {}
let putDown = entry(); {}
while true do {accept pickUp; accept putDown}
end

let Fork = start fork
let forks := vector 1 :: 5 of Fork
for i = 2 to 5 do (forks(i) := start fork}

let seats := vector 1 ::5 of true 
let x = mutex 
let ok= cond 
let join = proc(ints) 

begh
lock x do begin 

while ~(seats(s) and seats(s + 1 mod 5)) do wait ok 
seats(s) := false 
seats(s + 1 mod 5) := false 
end 

end
let leave = proc(int s)

lock x do begin 
seats(s) := true 
seatsjs + 1 mod 5) := true 
signal ok 
end

let think = proc();{...} 
let eat = proc(); {...}

let phil = process 
with 

init = entry(int) 
begh 
let s := 0
let init = entryfint seat); {s := seat} 
accept init 
while true do begin

think()
join(s)
forks(s)@pickUp(); forks(s + 1 mod 5)@pickUp() 
eat()
forks(s)@putDown(); forksfs + 1 mod 5)(5>putDown() 
leave(s) 
end 

end

for i = 1 to 5 do {let dum = start phil; dum@init(i)}
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The dining philosophers problem is a classical example of race condition 
with the usual pitfall of deadlocks. In the example above, the behaviours 
of identical forks and identical philosophers are captured by their 
respective process templates. A fork can either be picked up or pu t down. 
The life of a philosopher is either to think or to eat. In order to eat, she is 
given a seat at a round table. She also needs two forks and one of them is 
shared with her neighbour. Thus a philosopher cannot proceed with her 
meal until two forks can be acquired at the same time. The synchronized 
use of forks is achieved using the communication mechanism. Five 
forks are created whose identities are stored in the vector forks. These 
identities are required in determining which two forks a philosopher 
needs as each one of them is allocated a particular seat.

The deadlock situation where all philosophers dine together creating 
a shortage of forks is avoided. A philosopher will not join the table while 
her neighbour is still proceeding with her meal. This courtesy is observed 
by each philosopher by calling the procedure join before proceeding to 
pick up the two forks and the procedure leave upon finishing the meal. 
The procedure join may cause the caller to be blocked unless two forks in 
the vicinity of the seat required are free.

§8.2.6 Locality
The concept of locality is useful in a number of ways. For example, data 
can be replicated at various sites for resilience; processes can be 
downloaded to idle machines; files can be output to a particular printer 
on the network etc. There are other applications; efficiency and atomicity. 
The following program fragment has been used in a previous example:

let p = process 
with

ep1 = en try p n t) , 
ep2 = entryfstring -> string) 

begh
let ep1 = entry(**int x)

for i = lwb(x) to upb(x) do 
for j = lwb(x(i)) to upb(x(i)) do x(i, j) := x(i, j) + i + j 

let ep2 = entryfstring s -> string); s ++ ”'nM 
while true do accept ep11| ep2 
end

Here the assignments in the entry ep1 are the subject of concern. 
Assum ing it is called by a rem ote process, the evaluation of the 
expression on the right and the actual assignment in the inner most part
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of the for-loop cause 6 messages (3 for loading the vector element and 3 
for the assignment) to be exchanged. The total num ber of messages 
required for the entire operation is therefore 6 times the total num ber of 
elements in the vector. Moreover, each assignment is carried out as an 
atomic operation. A failure will invalidate previous assignm ents. 
Logically speaking, all the assignments should be carried out as a single 
transaction. The situation can be alleviated as follows:

let p = process 
with

ep1 = entry (**int), 
ep2 = entry(string -> string) 

begh
let ep1 = entry(**int x) 

begh
let y := vector 1:: 1 of vector 1:: 1 of 0 
if locality x = here 

then y := x 
else begh 

y := transcopy x
for i = lwb(y) to upb(y) do y(i) := transcopy x(i) 
end

for i = lwb(y) to upb(y) do 
for j = lwb(y(i)) to upb(y(i)) do y(i, j) := y(i, j) + i + j 

if locality x ~= here do assign y to x 
end

let ep2 = entry(string s -> string); s ++ '"n"
while true do accept ep11| ep2
end

The body of ep1 is slightly modified here. The locality of the parameter is 
discovered. If it originated from a remote address space, a copy of it is 
installed locally. Upon completion of the assignm ents, the copy is 
transferred back to where it originates. Except in abnormal circumstances, 
a copy of a reasonable size vector can be sent in a single message. Thus 
the entire operation requires 6 or more messages but the num ber is an 
order of magnitude less than the total number of elements in the vector. 
Furthermore, since the operations transcopy and assign are atomic, the 
assignments can be considered atomic as well.

§8.3 Performance Measurement
The measurements in this section are meant to give an indication on the 
perform ance of the R P C  mechanism . The m achines used in this 
experim ent are a Sun 3/260 and a Sun 3 /50  connected over a 10 
M Bits/sec ethernet. Both machines are running  Unix 4.2 BSD. In 
addition, the 3/260 also runs as a network file server. M easurements
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were taken under normal conditions but the machines were lightly 
loaded at the time the experiments were carried out.

Timing for 350 RPCs in a tight loop was made since the resolution of 
the clock 60Hz is considered low for our purpose. The timing for the 
tight-loop itself is negligible and is therefore ignored. Because of variance 
over the load of the machines, timing is performed repeatedly 25 times 
and the average is taken.

The test programs are a client and a server communicating over an 
entry which takes either no argument or one whose type for the purpose 
of the measurement is either in t or *int representing im m utable and 
m utable type respectively. In any case, the entry does not return  any 
result and the body of the entry is null. Since the R PC  mechanism is a 
very general communication mechanism, the test programs are run in 
the same address space, in different address spaces on the same machine 
(3/260) as well as on different machines (3/260 & 3/50). Times in the 
tables below are expressed in clock ticks. The figures in the brackets are 
the corresponding number of calls per second. Table 8.1 shows the figures 
for passing zero or one parameter in R P C s.

3/260 <-> 3/260 3/260 <-> 3/50 *

none 119.0 (176.4) 202.6 (103.7) 13.1 (1605.5)

mutable 123.6 (169.9) 213.0 (98.6) 13.6 (1539.6)

immutable 119.6 (175.6) 207.3 (101.3) 13.4 (1567.2)

Table 8.1

3/260 <-> 3/260 3/260 <-> 3/50 *

immutable 117.0 (179.6) 213.4 (98.4) 14.1 (1487.2)

mutable 134.5 (156.1) 204.4 (102.7) 14 (1500)

Table 8.2

Figures in Table 8.2 are the result of repeating the experiment. This 
time the entry takes no param eter and returns a result whose type is 
either mutable or immutable.
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The set of figures for making R P C s in the same address space is 
presented in the third column of the tables above. It shows a factor of at 
least 10 gain in stark contrast with others. The performance difference 
here is not surprising since communication within the same address 
space is accomplished without involving the network.

A num ber of observations can be made. The perform ance in 
communication across the network is between 50% - 80% worse than 
communication within the same machine. This is not unreasonable and 
the variation may be due to uneven loads on the machines concerned 
and the network at the time the experiments were carriedi out. There is 
also little difference in communicating values of difference types. This is 
mainly because mutable objects are not copied. Passing a mutable object 
costs no more than passing an immutable object. In the worse case, the 
num ber of R P C s that can be made is well beyond 60 per second. The 
figures obtained from this experiment may be contrasted w ith that of 
Courier [Larus 83] where the performance (obtained betw een a Vax 
11/780 and a Sun (M68000) connected by a 10 M bit/sec ethernet) ranges 
from 4  calls per second for an RPC with 4000 bytes argument and a result 
to 60 calls per second for an RPC with 0 bytes argument and no result.

The cost of loading or updating a field of a remote reference is 
roughly equal to making an RPC with no parameter and one result or one 
parameter and void result respectively. It is interesting to compare local 
pointer dereference with remote pointer dereference. This is not covered 
here because requests for loading and updating remote referends are sent 
in batchesl in order to reduce latency.

Requests are gathered together according to their destinations and are sent by the system which 

looks into these periodically.



Chapter 9

Conclusions

The idea of persistence has been accepted as a sound language concept 
[PPRG 85b, PPRG 87b]. The provision of a persistent store together with a 
set of b ind ing  and typing m echanism s provides an a ttractive  
program m ing environm ent for the construction of a rich repertoire of 
applications. Within the PISA project, these include a functional database 
system [Kulkarni & Atkinson 86], a relational database system [Hepp & 
Norrie 85], a bibliographic database [Cooper 86], an interactive browser 
[Dearie & Brown 87], and a callable compiler. The next step is to provide 
concurrency and distribution in persistent programming languages so 
that the larger scale, distributed systems such as office information 
systems, computer integrated manufacture, etc. can be implemented.

§9.1 Summary of Work
It was observed that the concept of persistence can be generalized to 
include distribution; in the sense that, just as a program m er may 
program  w ithout knowing whether data is on backing stores or in 
volatile stores, equally he or she may not know the geographic location 
of the data to be manipulated. Consequently, the facilities of persistence 
can be provided in a distributed environment. The idea of a universal 
persistent store as a logical space of objects in individual persistent stores 
reachable over networks is proposed. Programmers on a d istributed 
system see this logical space rather than distinct local stores. This thesis 
demonstrates that such an idea can be realized with the present day 
technologies show ing that universal addressing does not require 
architectural changes. Moreover, autonomy is not lost so that existing 
addressing mechanisms are not given away in favour of a single 
universal addressing mechanism.

An ideal universal persistent store provides a conceptual framework 
in which persistent data anywhere in a network can be accessed and 
manipulated uniformly and with a guarantee of consistent semantics. To 
approach this ideal, a distributed store design was proposed and 
demonstrated based on the strategy that data are never copied between 
machines except where efficiency can be obtained without compromising 
semantics. This is significant in a num ber of aspects. For instance, the 
size and number of messages required to be exchanged in accessing non­
local data are both sufficiently small to perm it im plem entation over
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existing local area networks. This strategy allows us to im plem ent 
sem aphores in v irtual m em ory w ithou t hardw are  su p p o rt in a 
distributed environment.

Data are never copied to satisfy rem ote dem ands. Instead, the 
demanding instructions are obeyed at the sites where the data are kept 
and results are sent back to produce the desired effect. This strategy is not 
new and was discussed in [Spector 82]. This approach was adopted 
because it has a neat semantics without requiring the m aintenance of 
consistent copies over a network, and because the technology developed 
for RPCs can be used to realize it.

In some circumstances the overall num ber of messages could be 
high com pared w ith that which could be achieved by an expert 
programmer who understood message costs. To allow such programmers 
to achieve efficiency the language concept of locality and the two 
constructs transcopy and assign are introduced. They allow the discovery 
of relative locality of data and then for copies of data to be made 
atomically between localities so the programmer may relocate data to 
achieve lower costs. A second motivation is of course to allow data to be 
replicated for resilience. W ith a good im plem entation of the basic 
mechanisms these facilities should be needed only rarely. It seems 
appropriate to allow the programmers to judge when this exceptional 
style of coding is needed.

Another m otivation for the introduction of locality is to avoid 
em bedding machine names in the codes for process communication 
(chapter 4). Machine names are interpreted by an external mechanism 
and therefore the language, which admits them, loses control over their 
use. Locality allows us to present to the program m ers the underlying 
network in a consistent manner.

The process model is designed to take advantage of networks. The 
separation of process declarations and their executions gives rise to the 
possibility of starting a process on any locality. This can be achieved by 
downloading a process template using transcopy and the result is used in 
a subsequent start. The transcopy construct does a one level copy and is 
sensitive to the type of data. For example, in this case it does not copy the 
environment of the process template but merely its code. This is chiefly 
because environments are shared in DPS. Changes in store can be seen by 
those processes concerned and their localities are irrelevant. There are 
outstanding problems with the definition of tra n sc o p y  and a ss ig n ,
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d is c u s s e d  la te r .

Coordinated accesses to shared resources in general can be achieved 
using semaphores. The choice of sem aphores as the store-based (vs. 
message-based) synchronization mechanism may be controversial. It is 
chosen to avoid imposing a single locking regime. Instead a primitive is 
developed out of which appropriate synchronization schemes may be 
built. These are outlined in chapters 2 and 8. Chapter 4 introduced 
syntactic support to discourage mistakes in the use of semaphores where 
they are being used in simple ways. For example, a block m ay be 
associated with a list of semaphores so that they are all claimed before it 
is entered, their claiming cannot cause deadlock, and however the block 
is left (by end of block, exceptions or machine events) none of them are 
inadvertently retained.

Rem ote p rocedure  calls p rov ide  synchronous transfer of 
computation. The calling process is halted immediately, and some time 
later the called process may run the called procedure. If it returns then 
the original process is resumed. This is a reasonable compromise 
between feasible implementation and achieving identical semantics for 
rem ote and local procedure calls. For instance, the sem antics of 
parameter passing was made consistent for local and remote procedures. 
The difference is that the called process may never accept the call (chapter 
8). Synchronous semantics has a counter-productive effect on the degree 
of concurrency achievable. Ada addressed this problem by introducing 
extended rendezvous. In DPS, no new concept is required since dynamic 
processes can be used to achieve an equivalent behaviour; examples can 
be found in chapter 8.

The rem ote procedure call mechanism  is part of the abstract 
machine. Its efficient implem entation is a most im portant factor in 
deciding whether or not the language is acceptable. Even w ithout 
microcode support, the statistics gathered in chapter 8 suggests that the 
performance is acceptable and at least as good as other RPC mechanisms 
[Larus 83]. Of course, as mutable parameters are not copied in RPCs the 
cost of the call is reduced.

Another factor which contributes towards the efficiency of the RPC 
mechanism is that typechecking is factored out by signature matching 
p rio r to any com m unication. S ignature m atching is perform ed 
dynamically and once only so that typechecking every message sent and 
received is avoided. Static signature matching is unacceptable for two 
reasons. One is to avoid using a distributed database to keep type
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information. This would require global coordination, contradicting the 
aim of utilizing only local evolving inform ation about behaviour of 
neighbouring processors. The other is to allow binding to be delayed so 
that software components may evolve independently [Atkinson et al. 88]. 
Moreover, there is an element of flexibility in the signature matching 
algorithm so that changes in one software component do not invalidate 
the type checks where they do not intersect the signature.

§9.2 Critique of Achievements
As powerful workstations and high speed networks are becoming more 
available, it is clear that paradigms, tools, program m ing languages or 
program m ing environments for distributed com putations will be in 
demand. Aspects of distribution have already been subjects of research in 
m any different areas. This thesis presents a dem onstration that 
distribution can be presented to the programmers in a manner consistent 
with persistence without requiring them to master new concepts. Larger 
scale experiments based on DPS are now required to assess whether such 
an approach is practical for typical applications and adequate to achieve 
performance when large scale systems are built.

The principle objective of this project is to demonstrate that it is both 
desirable and feasible to realize a universal persistent store. An 
implementation of such an idea exists which took about 8 man-months 
to construct w ith the kind of technologies already on hand. The 
language, DPS, the programmer view of that implementation in which 
the locality of data is hidden (but in which it may be discovered when 
necessary), was used in a number of demonstrations. Two of these -- 
concurrent spinners and a distributed free-hand drawing package (§8.2.3) 
— were demonstrated in the Alvey Conference in July, 1987. The two 
program s were written by a colleague, Paul Philbrow who had no 
experience in the use of a distributed language. The coding effort in each 
case was less than a man-day from an initial discussion to the finished 
program . The distributed free-hand draw ing package, in particular, 
confirms the view that distribution need not be a subject of concern and 
the programmer is able to concentrate on developing an algorithm in a 
simple and easy to understand framework.

A small num ber of language concepts and constructs were 
introduced in order to take advantage of distribution in a manner that is 
coherent with the programming paradigms advocated in PS-algol. The 
notion of a universal store is a novelty to most programmers but, they 
quickly learn to exploit its advantages in distributed programming since
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algorithm  definition can be insensitive to the locality of data. The 
experiments that have been possible since the im plem entation was 
complete have had programmers who were part of the encompassing 
PISA project. This is obviously not an unbiased group and they probably 
understand the model more readily than an average program m er. A 
student project has just started which will provide evidence from less 
experienced programmers. An im portant consequence of allowing the 
same constructs to be applicable on both remote and local data (and 
therefore consistent semantics) is that the coding effort required and the 
complexity of these algorithms are unchanged. However, it is possible to 
access the additional robustness of a distributed system by writing more 
complex algorithms utilizing explicit control of locality.

The concepts of dynamic lightweight processes and synchronous 
process communication are useful and permit easy programming. The 
concurrent sorting network (§8.2.2), for instance, was programmed in less 
than an hour once the problem was well-understood. The coding itself is 
small - about 40 lines of DPS. The algorithmic construction of a network 
of sorting processes constructs the geometric formation of the network of 
the appropriate scale. This depended on the ability to spawn processes 
when needed and the first class nature of process handles allowing 
freedom  to arrange dynam ically interprocess connections. Some 
examples in chapter 8 serve to illustrate the expressive power of the 
language capitalizing on the synergy of the two facilities.

The language design might benefit from a formal definition of its 
semantics. Most of the ideas are simple and easy to understand and are 
believed to be well defined in our inform al term s. But their 
shortcomings and any pathological interactions between them might be 
discovered by more formal definition. Although large scale experiments 
may provide valuable feedback in the long term (which is not necessarily 
going to be exposed by formal treatment), a formal theory is a more 
versatile, economic and efficient means of obtaining potentially different 
and strategically important verification of the design.

The concept of locality and the related constructs: tran sco p y  and 
a s s ig n  serve their purpose well for the present im plem entation. 
However, they will certainly be im proved by further research and 
experiment. Jack Campin [Campin 88] pointed out some of the debatable 
areas of the present model. For example, since loca can be defined as a 
collection of nodes (see chapter 4), the base type loca  is extraneous. But 
care is required to avoid allowing a node to be within another node
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leading to a situation which has no counterpart in the real world. The 
main motivation for providing the transcopy operator is for efficient and 
atomic transfer of data over the netw ork and to avoid the danger of 
pulling more data than that of which the programmer is aware. Hence 
transcopy does a one-level copy and falls short of a proper treatment of 
circular objects. (We noted that this was the compromise reached in FAD 
[Danforth et al. 87].)

The investigation of supporting  persistence in a netw ork  
environm ent has lead to the idea of a universal persistent store. This 
thesis has shown that such a store is both feasible to realize with the 
present day technologies and that distributed program m ing w ith a 
distributed language based on such a store need not be more difficult 
than the conventional style of program m ing. M oreover, w ith the 
concept of locality the advantages offered by the underlying network can 
be obtained w ithout jeopardizing the integrity of the fram ework 
underlying the language.

§9.3 Future Work
The following list illustrates some aspects of the system requiring further 
investigation:

• Iterator Although it was stressed that it is only necessary to 
pass the root to an object in communication, there is no 
provision of an iterator for the purpose of discovering what 
that root provides. There is a parallel developm ent on 
namespaces in Napier [Atkinson 86]. A polymorphic iterator 
construct is provided there for traversing hierarchical 
namespaces. It is envisaged that objects in store will be 
organized into such namespaces, and when that is done it 
will be possible to investigate whether this meets the need.

Another class of iterations is used by diagnostic and statistical 
tools on stores. So far these have not been considered, as the 
difficulty  is that they w ould  break pro tection  and  
information hiding. However, such tools will have to be 
built for any production system.

• Distributed Transactions This issue is not addressed in the 
present implementation. The author did not believe the 
requirem ents were sufficiently identified  to perm it a 
solution to be built into the system. Krablin [Krablin 85b] 
suggested that concurrent processes and the lock construct
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are sufficient to program  transactions m eeting  the 
requirem ents. This should be investigated by practical 
implementations using DPS. It is possible that this w ould 
in troduce cumbersom e code and  be onerous for each 
program m er. The problem seems to be w ith distributed 
commit. At the present stage, this can be done by the 
p ro g ram m ers  u sin g  the re liab le  com m u n ica tio n , 
synchronization and stable storage already provided. The 
research may be continued by building systems using these 
constructs and assessing the difficulty  p resen ted  to 
programmers. If it then appears to be too complex to require 
im plem entation out of prim itives, syntactic support to 
commonly coded cases could be investigated. This might 
lead to built-in optimizations.

• Locality The concept of locality is important in our system. 
It serves the purpose of allowing coding of transactions, 
archiving, m erging of persistent stores to form a new 
universal persistent store etc. The present version falls short 
of arranging for new locality values to be introduced without 
stepping outside the language. It serves to be used to develop 
an unders landing of the way programmers would use such a 
concept. W hen its benefits and deficiencies have been 
discovered a better notation or semantics may be developed.

• Canonical Representation of Values This is required in the 
context of transcopy . It was not a problem in the current 
im plem entation as a cluster of Sun-3s w ere used. To 
overcom e the heterogeneous problem , either a set of 
canonical representations of values of the base types is 
required so that the receiver end of a communication knows 
w hat to expect or automatic data translation. The latter 
(which is more efficient) can be invoked as a result of 
exchanging the appropriate messages. Fred Brown is working 
on canonical representation of values for PS-algol data types 
[Brown 87]. There remains the problem of representation of 
abstract data types. In [Herlihy & Liskov 82] Herlihy and 
Liskov described one possible approach.

• Transcopy  This construct is provided for the sake of 
transferring a copy of some piece of data from one locality to 
another in an atomic fashion. As explained above, it does a
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one level copy and falls short of proper handling of circular 
objects. Thus if a complete copy of a graph-like object is 
required, the programmer will have to traverse the entire 
g raph  and repeatedly  use t r a n s c o p y  on each node 
encountered. The point is that he or she will have to retain 
circularity by keeping track of all nodes copied so far. It may 
be appropriate to provide another construct to accomplish 
this. Even with structures that the programmer considers as 
'one-level' there is a difficulty, as the implementor may see 
many levels. A particularly difficult case is the procedure or 
the ADT because of shared environments. Furthermore we 
do not yet know how to give the programmer the power to 
construct traversals over these w ithout com prom ising 
semantics, scoping and protection.

• Store M anagem ent Finally, there is an in trigu ing  
engineering problem. The concurrency control mechanism 
is store-based so that all processes sharing the same resources 
can cooperate among themselves by employing conventions 
based on mutexes. The realization of one level store in the 
PS-algol system is by copying lazily the necessary data 
between the heap and the secondary store. Consequently, 
there is a momentary disparity between the state of data in 
the secondary store and the heap. It is a deliberate dichotomy 
so that there is always a copy of data in the stable store. But 
this also leads to situations w here some collection of 
processes observing the same convention is synchronized 
w hilst others are not, depending on w hether they are 
accessing the same version of data. Some variant of the 
Monads approach on this matter may be useful here.

The motivation behind the language concept of persistence is to factor 
out difficult tasks in the manipulation of data in different storage media 
so that coding effort can be reduced. By hiding the locality of machines in 
a netw ork, distribution can be subsum ed by persistence. As the 
investigation of this project has shown, it is necessary to relax the locality 
transparency requirem ent in persistence so that program m ers are 
allowed to arrange the appropriate strategy for their applications. There is 
a balance to be struck in providing the sort of facilities described in this 
thesis in a distributed programming language. It is expected that more 
research is required to confirm or revise this balance now that a working
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system is available.
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