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ABSTRACT

This thesis describes the development of a structural optimisation model for 

warships designed to the MoD (N) NES 110 structural design code based on total 

relative fabrication cost. Total relative fabrication cost is evaluated for a representative 

portion of the midship section of a typical Royal Navy frigate and attempts to take into 

account the costs associated with material purchase, subassembly, assembly and 

erection of ship's structural components.

The inherent work content associated with modern day warship-building 

techniques are estimated by generating construction task algorithms. Each construction 

task algorithm can be regarded as a sequential activity list of elemental tasks which must 

be undertaken to effect the completion of the overall task. Every individual elemental 

task has an associated manhour value, this value having been derived by work study 

methods. Thus incorporated in the program SHBPCOST is an appropriate database of 

cost elem ents representing w arship-building fabrication techniques, for the 

subassembly and assembly of the major structural components, namely orthogonally 

stiffened flat and curved panels.

The formulations used for longitudinal structural design embody the current 

MoD (N) structural design code for surface steel ships while those for the transverse 

structure are based on DnV Classification Society Rules. These "first principles" and 

"Rules based" design methods are combined within the program FR IG A T E  to offer 

the designer an opportunity to investigate the possibilities of optimising both 

longitudinal and transverse warship structure with respect to total steel relative 

fabrication cost.

Three individual studies were undertaken to investigate a basis model structure 

for least relative fabrication costs. Two of these studies investigated orthogonally 

stiffened flat panels deck structures while the third dealt with a typical frigate's double 

bottom structure. The results of the flat panel studies, constrained to have constant 

transverse panel section area together with either constant or varying transverse 

structure and spacing, indicate that labour costs generally increase with a corresponding

Oil



increase in longitudinal stiffener numbers and decrease with transverse spacjng. In 

addition, when the Tee bar stiffeners of the basis model flat deck panel are replaced by 

com m ercially available OBP and flat bar sections, savings of 9.0% and 10.2 % 

respectively, are predicted.

The results from the double bottom study, when also constrained by constant 

sectional area, indicate that savings can be made on the total relative fabrication cost of 

the basis model by varying the plate thicknesses in relation to both section type and 

numbers. It is also demonstrated that the fabrication sequence of elemental tasks 

adopted in the construction of a double bottom has an important bearing on the 

manhours needed to complete this particular structural component. These results 

further demonstrate that labour cost dominates in the total relative fabrication cost 

relationship. This is highlighted by one option that indicates a 40% saving in material 

cost but only achieves a 14% saving in total relative fabrication cost. As with the flat 

deck panel studies, savings on the relative fabrication cost can be achieved by replacing 

the basis model Tee bar stiffeners by OBP and flat bar sections.

This thesis describes a basic working package of two independent computer 

programs developed for the evaluation of alternative structural variants to a general 

frigate arrangement. A limiting factor applying to the studies described has been the 

fixed position o f midship section neutral axis by virtue of a simplifying constant 

sectional area constraint. It is reasonable to assume, that on removal of this constraint, 

different structural optima would be obtained. Further investigation is required both to 

demonstrate this and explore the full range of possible structural cost savings resulting 

from variations in the vertical position of the neutral axis of the midship section even 

though the neutral axis is not usually a free variable in structural design.

A present limitation of SH IPC O ST  is an inability to allow variations in the 

construction task algorithms applied to the fabrication of any of the structural 

components. Complete flexibility in this area would render SH IPC O ST  unwieldy, 

cumbersome and time consuming - unwanted attributes of a preliminary design tool.

The basis of a useful preliminary design evaluation tool has been developed and 

demonstrated. However, further effort is required to fully generalise the models to suit 

any warship structural configuration.
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■CHAPTER I 
INTRO DUCTIO N

A good ship designer, whether in the employ of a national government or a 

commercial enterprise, attempts to achieve a design that has been optimised to some pre­

determ ined criterion. This criterion may represent the cost of construction and 

maintenance, least weight or a combination of these. In relation to the subject matter of 

this thesis, the criterion for optimisation is the relative fabrication cost of a typical 

warship structure.

In recent years the financing of Royal Navy vessels has become acute as 

successive governments have resorted to every means at their disposal to reduce defence 

costs, while the basic price of of many engineering commodities, including the warship, 

have gready outstripped the rate of inflation. As the operational requirements of a naval 

vessel are a function of its intended capabilities in relation to the threat posed by hostile 

nations while also satisfying the relevant government's maritime strategy, the final 

product is a compromise between achieving these goals and the cost of the package. The 

concept and the processes involved with the design of a structure that is intended to be 

sent into "harms way" are very well described for Royal Navy ships by Bryson [1] and 

for U.S. Navy vessels by Palermo [2].

In both these papers, it is made clear that the costs of the weapon platform (i.e. 

the hull structure) and the weapon packages themselves are important and the need to 

take cost into account at an early stage of the design is emphasised. In other words, a 

structure that can be sent into "harms way", should the need arise, cannot be achieved at 

any cost. Therefore, a preliminary design tool that enables the merits of alternative 

structural configurations to be assessed in relation to initial fabrication cost criterion 

would be of benefit to the structural designer.

Historically the structural configuration of a warship has almost invariably been 

optimised to achieve minimum steelweight with little or no regard to fabrication cost. 

This rationale may have been encouraged, and indeed may have been expected, if the 

fabrication cost of the proposed structures was proportionally related to cost per tonne
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rates in the ship designer's mind. This notional association of cost and weight of 

structure has been shown [29, 30] to be an ill-advised and inaccurate method of 

estimating the true build cost of ship and offshore structures. Consequently, a more 

appropriate and accurate cost estimation method is required if fabrication costs are to be 

reflected realistically.

1 .1  Aim of the Thesis.

The objectives of the project to which this thesis relates were to develop 

computer based methods, that would enable the structural designer to explore the 

possibilities of optimising a warship structure with respect to steel fabrication cost. In 

order that this could be achieved effectively, an appropriate database of cost elements, 

representing warship-building fabrication techniques, had to be compiled.

The purpose of this thesis is to describe a computer based procedure that will 

accurately predict the inherent work content of a defined structural topography, that can 

be regarded as a typical midship section of a modem warship, and demonstrate that this 

procedure is capable of being used as a design tool at the early stages of the design 

process. For simplicity the structural models have been restricted to the mid-third length 

of a vessel and the effects of fixed transverse structure, such as major transverse 

bulkheads, have been assumed constant.

1 .2  Layout o f the Thesis.

The contents of the thesis explain how the two main areas of interest within the 

context of the project were undertaken and indicates how the final computer based 

package can be used at the preliminary design stage. To achieve the primary objective 

outline in 1 .1  above a secondary objective was identified, namely second objective was 

the development of a structural design package that could interface with the relative 

fabrication cost estimation package and would be capable of generating suitable
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longitudinal structural alternatives while coping with design variation in the transverse 

structure. It should be noted that these two requirements were developed concurrently 

and that the two computer programs which have resulted can therefore operate either 

individually or as a package.

In Chapter 2 a literature review on optimisation of ship’s structure is presented 

along with a review of the published material concerned with the estimation of 

fabrication costs for steel structures, of both ship and offshore platform types.

In Chapter 3 a brief resume of the derivation of the existing database of elemental 

task times is presented along with one of the construction task algorithms generated to 

represent a build sequence of typical warship primary structure. The times associated 

with each elemental task were derived using work study methods. Also included in 

Chapter 3 is the rationale used in the development of these construction cost task 

algorithms and a complete set of the construction task algorithms used in this study are 

contained in Appendix 1. Furthermore, Chapter 3 explains the methods used and 

assumptions incorporated within the program SH IPC O ST by which the relative work 

content inherent in the fabrication of typical warship structures is evaluated. For this 

purpose, a typical frigate midship section is regarded as a combination of flat and curved 

orthogonally stiffened panels. Work content is assessed for alternative predetermined 

fabrication sequences in terms of manhours and this can be converted to cost through the 

use of globally assumed labour rates. Material costs are assessed for both plate and 

section materials and an explanation of the methods used is given.

In Chapter 4 the formulations used in both longitudinal and transverse structural 

design of a typical midship section of a Royal Navy Frigate which are contained in the 

Fortran 77 source code of the program F R IG A T E  are presented. The design 

philosophy reflected in the longitudinal structural design is that of "first principles" 

expressed in the current NES 110, design code [43] of MoD(N) for surface steel hulled 

ships. In the absence of a suitable alternative, the design method for the transverse 

structure uses the "rules based" approach of DnV [44], more generally associated with 

commercial ship design.
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In Chapter 5, the details and operational modes of the computer programs 

developed throughout the course of this study are presented. Program F R IG A T E  

incorporates the strength formulations discussed in Chapter 4 for analyzing the strength 

of both longitudinal and transverse structure. Program SH IP C O S T  contains all the 

construction task algorithms generated to calculate the inherent workcontent of any 

structure, an example of which is discussed in Chapter 3.

Chapter 6  presents the results of relative fabrication cost studies on individual 

structural assemblies. The structural assemblies isolated for rigorous study were those 

that could modelled as flat panels, the component of ships structure that was the principal 

focus of attention during the earliest studies on structural optimisation of marine 

structures. Variations on basis model deck panels and double bottom structures were 

achieved by replacing the Admiralty preferred Tee bars by OBP and Flat bar sections in 

conjunction with varying plating thicknesses.

In Chapter 7 the conclusions from these studies are presented and areas for future 

work are indicated. It is concluded that savings on the relative fabrication cost of the 

basis model structures studied can be achieved when the Admiralty preferred long stalk 

tee bar longitudinals are replaced by commercially available rolled sections. A further 

general conclusion that can be made from the studies undertaken is that their exists a 

direct relationship between the relative fabrication costs of a structure and the number of 

it's constituent piece parts.
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CHARTER 2 

LITERATURE REVIEW

The rationale of optimised structural design, particularly that of British naval 

ships has been, to date, based on the last best design. This approach, combined with 

iterative judicial changes to the design founded on the combination of experience and 

sound engineering judgement, was the normal pre-computer age optimisation technique. 

As detailed structural cost consideration is time consuming and relies on extensive 

rational databases, structural cost optimisation is therefore a relatively recent area of 

investigation. Consequently, early technical papers on the optimisation of ship 

structures were concerned only with achieving minimum structural weight.

The idea of optimising the component that can be considered as the bulk of ship's 

structure, i.e. the gross panel, for minimum weight but still be capable of withstanding 

various types of loading was tackled by Harlander [3]. The requirements for minimum 

structural steelweight, in both merchant and naval ships, are numerous and include 

greater deadweight for merchant ships and greater weapons fit and fuel capacity for naval 

ships. However, Harlander was aware of the conflict between weight of structure and 

the practicalities of it’s fabrication, i.e. the structures that have minimum associated 

steelweight are those with thinner plating in conjunction with closely spaced stiffeners 

while minimum fabrication costs are associated with widely spaced stiffeners. Despite 

this conflict, Harlander maintained that such considerations of producibility do not 

invalidate the design trends that a designer should take advantage of to obtain a stiffened 

panel optimised for steelweight while satisfying other structural requirements.

The increasing availability of powerful computing facilities has led investigators 

to turn their attention to automating the discipline of ship structural design by adapting 

the design spiral to computer application through the development and integration of 

optimisation routines.
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Evans and Khoushy [4] dealt with a midship section structure designed to 

American Bureau of Shipping (ABS) Classification Rules. By defining an "equivalent 

area", as the net weight of plating and sections divided by average thickness of plating, a 

weight optimum solution was sought. However it was recognised that consideration 

should be given to maintenance and repair costs and the compounded effects material 

weight has on the material cost actually incurred and on through life costs and payload. 

The resulting wide flat bottomed curve of the steelweight plotted against frame spacing 

indicated the lack of a sharply defined optimum between the two, an effect termed "flat 

laxity" by the authors. A significant conclusion from Evans and Khoushy is that the true 

optimum structure lies somewhere between the structure with weight as the optimisation 

criterion and that with construction cost as the optimisation criterion.

M andel and Leopold [5] considered various optimisation techniques and 

suggested that ship structural design would be best served by an exponential random 

search technique. By applying such a technique to the following five design variables of 

a cargo ship optimisation of annual running costs was attempted:

i) Displacement

ii) Prismatic Coefficient

iii) Speed/Length Ratio

iv) Beam/Draft Ratio

v) Length/Depth Ratio

They concluded that as the optimal structural disposition is approached, the 

principal dimensions of the vessel could vary greatly resulting in an insignificant effect 

on the cost.

Moe and his collaborators [6,7] applied the concept of defining a mathematical 

design function and subsequently used a Sequential Unconstrained Minimization 

Technique (SUMT) to optimise in respect of specified parameters. The results contained 

in [6 ] are the forerunners of similar results from other independent studies. The general 

conclusion that thicker plating and large widely spaced stiffeners lead to least fabrication 

costs but do not generally offer a least weight optimum solution is also indicated by
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Summers [8 ], Caldwell and Hewitt [9] and Chalmers [10]. The cost estimation methods 

employed in [6 ] and [7] include material costs and the labour costs associated with many 

of the essential tasks involved in ship construction but exclude the fundamental task of 

plate butt welding - thus rendering the results of limited use. However, despite this 

reservation, it is recognised that these early studies provided a significant contribution to 

the discipline of Ship Structural Cost Optimisation.

The value of the work of Moe and his contemporaries at Trondheim was 

appreciated by Nowacki, Brusis and Swift [11]. They enhanced and generalised Moe's 

technique for tanker preliminary design into a more general ship design technique. 

These authors favoured the Direct Search technique of Hooke and Jeeves [12] to find a 

specified optimum or optima in contrast to Powell's Direct Search method [13] favoured 

by Moe et al. By adapting this direct search to the constrained problem, these authors 

produced the Adapted Direct Search (ADS) technique. In common with the earlier 

studies, the models considered were of tanker structure and the ADS technique was able 

to demonstrate the sensitivity of these designs to a draft restriction. Furthermore, this 

method was flexible enough to permit the studies of the sensitivity of the design to other 

variations in technical requirements and economic conditions.

Further credence was given to the significance of the work at Trondheim by 

Kitamura [14] when he extended it to cater for the detailed components of flat grillages. 

This study involved the application of a SUMT to even smaller sub-divisions of the flat 

grillage fabrication process while optimising for minimum cost. The total material and 

fabrication costs were each calculated on a work station basis. This was to be 

commended in principle but unfortunately the labour costs used were based on historical 

data and therefore subject to the inclusion of inefficient practices and were also yard 

dependent - these points will be discussed further in Chapter 3.

The earlier work discussed above has proved to be the stepping stone to more 

sophisticated and integrated packages. Moe [15] with co-authors Muira and Kavlie, 

developed a design - redesign package, affectionately known as BOSS, which 

incorporated the extensive database and management system used in Norwegian 

shipyards. A comparable systematic method is described by Lin, Hughes and
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Mahowald [16] incorporating the ABS design criteria and known as SHIPOPT. Hughes 

continuing in this field has devised MAESTRO [17] which is a rationally based design 

and optimisation package for large complex thin-walled structures. Within MAESTRO it 

is possible to define a measure of merit as any function of the design variables. In the 

case of the fabrication cost associated with stiffeners welded to plating the expression 

becomes a polynomial in terms of weld length and stiffener thickness. A term is 

included in this expression to cater for the sharp increase in fabrication cost associated 

with multiple pass welding and special edge preparation which in turn are functions of 

the stiffener thickness [18].

The aforementioned optimisation suites generally deal with commercial merchant 

ship design rules and criteria and a package to incorporate naval design criteria and 

indicate areas of high fabrication cost in new ship construction would be of benefit to the 

naval designer. This was provided by Furio [19] for the U.S. Navy in the form of the 

Ship Structural Cost Program (SSCP) which has been used by Wiemicki et al [20] and 

Nappi et al [21] to produce some interesting results when used in conjunction with the 

U.S Navy's Ship Structural Design Program (SSDP). The SSCP can therefore be 

described as a cost/weight trade off tool that can be used in conjunction with SSDP. The 

U.K. Government Defence Design System for Ships (GODDESS), is described by 

Pattison et al [22] and the computer package described by Holmes [23], are used for the 

design of Royal Navy ships in a similar way to SSDP. GODDESS currently 

incorporates a cost estimation procedure based only on weld length. Although better 

than weight as a criterion, weld length is not necessarily suitable when predicting build 

costs of modem warships using alternative structural materials and configurations.

The first traceable attempt at fabrication cost estimation at the University of 

Glasgow was carried out by Lee [24]. He attempted to evaluate the fabrication cost of 

structurally optimised grillages by applying a series of curve fitted coefficients to the 

elemental tasks of the construction sequence as well as the welding rates. The effect of 

curve fitting these values is to smooth out any step change in costs associated with 

particular elemental tasks, more particularly with the welding rates. The elimination of 

these technically justifiable step changes can have significant effect on fabrication cost 

calculations as welding is the major fabrication cost element. The total cost figure used 

by Lee included overheads, materials, labour and welding consumables.



A paper by Carryette [25] which outlines the approach traditionally used by 

shipyard estimators for predicting fabrication costs is worthy of mention. In this paper 

the labour cost is directly related to design parameters such as C5  and Lpp. The 

equations published were derived from historical returns of previous ships built within a 

specific shipyard. This data, as with Kitamura's [14], has all previous inefficient 

practices of the construction sequences included in the equation. However, in addition, 

the equations in this paper neglect a very important aspect needed to accurately estimate 

the fabrication cost of any given structure as duly noted by Buxton [26] and Chalmers 

[10]. This flaw is that the labour cost used by Carryette is related to the hull envelope of 

any structure and totally ignores the internal configuration. This may not be so important 

in large longitudinally or transversely framed commercial vessels but in the case of naval 

ships with their high degree of lattice type grillages it would appear to be somewhat 

inappropriate to implement this approach to predict fabrication costs of ship structures.

In the majority of the studies discussed above priority in the design optimisation 

procedure has been given to strength and/or weight criteria with fabrication cost being 

the secondary consideration. To give a fresh impetus to the problem several research 

establishments have more recently turned their attention to designing structures that 

would satisfy all the strength pre-requisites with optimum fabrication costs, most notably 

in the U.K. at the Universities of Glasgow and Strathclyde.

Flat grillage structure predominates as the component of a ship which has 

attracted most attention when optimisation procedures have been carried out with 

strength and/or weight as the criterion. It would therefore seem a natural progression 

that this structural component should feature when the emphasis of the optimisation 

changed from strength and/or weight of structure to fabrication cost of structure. This 

has been the case in recent papers by Kuo, MacCallum and Shenoi [27], MacCallum 

[28] and Winkle and Baird [29]. The essence of these studies has been to provide a tool 

which, in utilising method study derived elemental task times, is then able to assess the 

merits of various designs on a basis of realistic fabrication cost criteria. The 

methodology described in [29] is the one which has been subsequently developed and 

expanded to provide the subject matter of this thesis.
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In particular, Winkle and Baird [29] investigated several grillage designs 

proposed by a U.K. warship builder as being structurally equivalent with the view of 

evaluating the influence of the structural arrangement on relative fabrication cost. The 

five grillage designs considered represented a range of extreme structural configurations, 

from fully transversely framed to completely longitudinally stiffened. One conclusion 

from these studies was that neither relative cost of fabrication or work content is 

proportional to weight of structure, they both varied inversely to weight. In these 

studies relative cost was normalised to a Cost Equivalent Relative Weight (CERW) 

factor in a manner similar to that proposed by Moe and Lund [7]. This factor is a useful 

device for representing the variability in labour rate and overhead cost and how these 

factors affect the final relative fabrication cost of the structure but is difficult to employ 

where component material costs vary widely.

A companion paper by Frieze et al [30] demonstrated an application of the 

general methodology of the work content estimation procedure described in [29]. By 

investigating several design codes and proposing a new formulation for the design of 

large stiffened tubulars, optimisation was achieved with weight and safety as the 

criterion. As a further means of comparison between each proposed design the work 

content of each structure was estimated. The results from these studies indicated which 

structures were least labour intensive and incurred least fabrication costs while also 

identifying the weight penalties which arose from achieving minimum time or cost of 

construction.

As is common when a subject progresses from initiation to a broader spectrum 

there will be parallel and independent research carried out. This is indicated by the paper 

by Shenoi and Emmerson [31] who have produced a computer based fabrication cost 

assessment tool, which has similarities to the work presented in this thesis but has 

concentrated more on production control and producibility applications related to 

merchant ships.



CHAPTER 3

STRUCTURAL FABRICATION COST ESTIM ATION

In the current environment of keenly competitive independent shipyards vying 

for a decreasing number of contracts there is ever increasing pressure that a yard's 

contract tendered price must be correct. In this context, correct means low enough to be 

attractive to the customer while still covering the costs that are likely to be incurred by 

the shipyard during build and also being less than the price tendered by competitors. 

This requires that the tendered contract price of a commercial or naval vessel must be 

based on, amongst other things, an accurate and reliable procedure for estimating the 

fabrication cost.

One application of such a procedure would be at the preliminary design stage, 

where evaluation of the production kindliness, in terms of manhours required for 

fabrication, of alternative structures could be performed. This would be consistent with 

attempting to achieve the following ISSC design for production objectives :

"Design to reduce production costs to a minimum compatible with 

requirements of the structure to fulfill it's operational functions with 

acceptable reliability and efficiency."

3 .1  H istorical Structural Fabrication Cost Estimation

The function of putting a price on a contract has traditionally been performed 

by the shipyard's estimating department. The basis of most estimating procedures is 

historically recorded manhours of similar vessels built within the yard which are usually 

analysed to give figures relating to cost per tonne of steelwork erected. Examination of 

this type of data can lead to a degree of useful information in the form of empirical 

relationships which will allow cost estimates to be made for vessels of a similar type 

and structural arrangement. These empirical relationships relate manhours expended 

during construction to some of the principal dimensions or design variables of the 

structure being built.
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The best recent examples of these types of empirical relationships are 

published by Carryette [25] in the form of equations relating cost of structure to some 

of the principal design parameters of the vessel, such as C5  and Lpp. The equation 

given for steelwork manhours is

However, despite the convenience of equations in this form there are several factors that 

negate the usefulness of this approach when interest is centred on the influence of the 

structural design details on the cost of fabrication;

i) Empirical derivations are based on historical data collated 

from previous ships built within a given shipyard and should 

therefore be regarded as unique to that shipyard and its 

working practices.

ii) Empirical derivations usually relate to a series of similar 

vessels being built in a particular fashion within a given 

shipyard and are therefore "rigid", i.e. there is no mechanism 

to allow for changes in build method or indeed to cater for 

d ifferen t types o f vessels with d iffering structural 

configurations.

b
( 1)

w here:

Mhrss = Steelwork manhours

W s = Steel weight

Lpp = Length between perpendiculars

Cfo = Block coefficient



iii) The historical nature of the data and the methods used in 

recording such data mean that they implicidy incorporate any 

bad working practices and inefficiencies encountered during 

the construction. Therefore any forecasts of inherent cost 

resulting from such derivations will be inaccurate and tend to 

lock ineffective working practices into future contracts.

iv) The level of detail that can be catered for in this type of 

derivation is insufficient to indicate what effect variations of 

structural scantlings and stiffener type and arrangement will 

have on the final cost of the structure.

v) There is no reflection of the complexity of structure involved 

in any of these empirical formulations and therefore there is 

no consideration of either the influence of number and degree 

of integration of parts, or the effect that curved surfaces have 

on the final cost of fabrication.

vi) There is no means of quantifying the difficulties of working 

with the lighter scantlings generally associated with warship 

structures and the corresponding difficulties encountered in 

assembling such structures that frequently require rework.

vii) There is no means ot quantifying the disadvantages of 

fabricating orthogonal structures in which the use of 

automatic continuous fillet welding is greatly reduced.

For these reasons it is necessary to forego the convenience of using historical work 

records and investigate other more direct means of estimating the fabrication costs that 

are likely to be incurred by a shipyard throughout the ship building cycle.
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3 .2  The Development of more Accurate Methods of

Structural Fabrication Cost Estim ation.

The probable labour requirem ent for the fabrication of any structural 

configuration would be best estimated by a method that is capable of accurately 

predicting the inherent work content (aggregated manhours) involved with it's 

construction. Such a prediction can be utilized in two ways. Firstly the total costs, 

being the sum of labour, overhead and material costs, likely to be incurred are 

estimated. Secondly accuracy permits the use of such methods for production 

scheduling if the necessary manning levels for each stage of the build cycle are known. 

Therefore, if this approach is to be used for estimating the relative fabrication cost of 

ship structures, a database of standard times for given activities and related shipbuilding 

tasks is required.

Such a database exists at the University of Glasgow and has been used to date 

to estimate the relative fabrication costs of various structures including a range of 

representative warship grillages [29] and ring and stringer stiffened cylinder options of 

a North Sea Tension Leg Platform (TLP) [30]. While the main sources of these work 

study derived task times were Govan Shipbuilders and Sunderland Shipbuilders there 

has been some augmentation of the original database as other sources of similar data 

became available throughout the course of this study.

The database consists of standard elemental task times related to steel 

assembly and an extensive range of welding process times. The standard time of an 

elemental task is the summation of a basic time and allowances. The basic time element 

was recorded under controlled work study conditions by experienced work study 

practitioners and subsequently factored by an efficiency rating to give the calculated 

basic time. The allowances include time for normal recovery periods between 

subsequent tasks, taking into consideration fatigue, posture, the use of force, 

temperature and humidity and allow the worker a period of recovery from any 

physiological or psychological effects of having performed the task. Thus, the standard 

time of a task is the time taken by an experienced, properly motivated worker if he 

follows an accepted method of carrying out the defined task.
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Welding process time consists of two components. One is a job constant 

associated with receiving instructions, clearing the work area, moving the welding 

equipment, setting the electrical current and joint preparation. The other component is a 

rate per metre which includes an allowance for inspection of the weld, the actual 

welding, changing of rods and finally cleaning the weld. Of the two sets of data that 

make up the complete database of standard times, that associated with the welding 

processes is the larger.

The main factors that influence the deposition rate of weld metal and 

consequently the time taken to complete a weld are the type of process, the type of rod, 

the edge preparation of the components to be welded, the physical orientation of the 

joint and the access the operative has to complete the joint. The range of each of these 

factors that can be catered for in the existing database is listed below

a) Type of Welding Process

i) Manual Fillet - various applications such as section to 

plating, connection between transverse and longitudinal 

members etc.

ii) Automatic Minideck - main application being flat panel 

seam welds

iii) Manual Butt - applied when automatic plate butt 

welding is not feasible, e.g. unit link ups in sub- 

assembly areas or on building berth

b) Type of Welding Rod.

i) Rutile - generally used when thickness of the material 

to be welded is not greater than 1 2 mm

ii) Low Hydrogen - generally used when thickness of the 

material to be welded is greater than or equal to 1 2 mm 

or where higher tensile steel is being welded

iii) Iron Powder - generally when fillet welding is the weld 

process involved
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c) Assumed Positional Mode of the Joint

i) Downhand - many applications in sub assembly areas 

and on the building berth

ii) Vertical - numerous applications in sub assembly areas 

and on the building berth

iii) Overhead - mainly used when welding takes place on 

the building berth when there is no practical alternative

iv) Horizontal - many applications in sub assembly areas 

and on the building berth

d) Edge Preparation of Material

The range of preparations contained in the database is

shown in Fig.3.1

e) Access to the Weld Area

i) Unrestricted - easily accessible and ventilated

ii) Restricted - when the operator is having to perform the 

tasks in a confined space where m ovem ent and 

ventilation are difficult e.g. in a ship's double bottom.

Although the elemental task standard times for plating activities and material 

handling were derived using work study methods in commercial shipyards, the 

activities involved are generally independent of scantlings and can therefore be applied 

in relative terms at least to the lighter warship structures. Based on this assumption the 

relative fabrication costs of typical warship structures could be investigated using this 

database.
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3 .3  The Relative Fabrication Costs and Work Content

of Typical W arship Structures

The total fabrication cost of any steelwork structure fabricated in any shipyard 

can be regarded as the summation of three cost components:-

Total Cost = Material Costs + Labour Costs + Overhead Costs (2 )

3.3.1 Material Costs.

When the British Steel Price Schedule [32] is studied it becomes apparent that 

the most convenient method of calculating prices of steel plates would be to use a flat 

rate per tonne for a specified grade of standard sized plate. This allows reasonably 

accurate cost estimation of plate related costs without having to deal with the intricacies 

relating to "extras" connected with order basing points and non standard plate sizes. As 

the main object under consideration within the scope of this study is a typical warship, 

the information used in pricing the plate material relates only to those grades of steel that 

are prepared for naval application. These grades are DGS 257A, DGS 207A and DGS 

322BX. The plate cost output from SH IPC O ST is the nett cost of plate, i.e. the cost 

of the plate material used in the construction of the structure only with no consideration 

of the cost of green material or gross tonnage of plate ordered to accommodate some 

element of scrap. If it is desired to investigate the use of other steel grades, minor 

modifications to the existing package would be required and could be easily dealt with.

As plate costs are only part of the total material costs, the costs of Long Stalk 

Tees (LST), [33], Offset Bulb Plates (OBP) [34] and R at Bars (Flat) [35] British rolled 

sections are also calculated where appropriate. In the case of the LST's, currently used 

by the Ministry of Defence (N) as the preferred type of rolled section for longitudinal 

stiffeners and transverse members, it will be shown in Chapter 6  that the cost of 

sections can have a significant influence on the total fabrication cost of a structure.

The cost of sections output from SH IPCO ST relates to the length welded to
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any particular plate at the panel sub-assembly stage. This length of section is generally 

taken as being 1 metre less than the length of the plate to which it is attached. This 

relates to the fabrication practise witnessed by the author and as such permits more 

accurate modelling of the overall fabrication technique employed in a modem day 

warship-building yard and is discussed in greater detail in Section 3.3.2.5

When the design criteria stipulates that a structural member requires a section 

modulus value greater than can be offered by any of the standard rolled sections then a 

fabricated section must be used. There can be several combinations of flange and web 

components used in the construction of a fabricated section :

i) Both the web and flange elememts consist of standard flat bar section.

ii) The web being made up of a plate material and the flange being a standard 

flat bar section or vice versa.

iii) Both the web and flange elements consisting of plate material.

In those instances where the web and flange or one of these is a standard flat 

bar the material cost can be easily calculated with due reference to the price list. 

However, in those instances where plate material is used for either element of the 

fabricated section material costs are not as easily calculated. The instinctive method of 

calculating material cost in these instances would be to price the material as it would be 

carried out for plates for use in panel construction and hence arrive at a plate material 

cost value. However, due to British Steel’s pricing policy with regard to plates, this 

could lead to an inflated material cost for these types of fabricated sections because in 

effect the material would be costed as a series of non-standard plates which incur 

"extras" i.e a cost per tonne additional to the basis rate per tonne, resulting in the price 

per tonne of fabricated section material being abnormally high. Therefore the method 

adopted to calculate fabricated section material costs is simply to apply the steelweight 

of the plate material used for the fabricated section multiplied by the base rate per tonne 

of steel.
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3.3.2 Labour Costs.

As shipyards are being compelled by the scarcity of new orders to submit 

more competitive contract prices, the question "How accurate is the labour cost 

estimation method?" is raised. In recent years it has been suggested in open literature 

[10, 29, 30] that existing methods are not of the accuracy now demanded by market 

conditions and as such other more accurate methods should be used, developed and 

implemented.

The method developed to estimate the inherent workcontent of warship 

structures throughout the course of this study had it's genesis in a project concerned 

with offshore platform tubular structures [30] and was shown to be flexible enough to 

estimate the relative fabrication costs of representative warship grillages [29]. The 

method used for these comparatively simple grillages, has been extended and enhanced 

in order that the total relative fabrication costs of a typical midship section of a Royal 

Navy Frigate can now be estimated. In the context of this thesis, the total relative 

fabrication costs of a midship section include the material cost in pounds sterling and a 

fabrication cost in manhours which can be converted to cost by the use of globally 

assumed labour rates. Throughout the duration of this project, a set of construction 

task algorithms have been developed which are embedded in the Fortran source code of 

the program SH IPC O ST. These algorithms, the methods used and the assumptions 

incorporated are transparent to the user of SH IPC O ST  but full a definition of each 

construction task algorithm is contained in Appendix 1.

The scope of these construction task algorithms is such that the following list 

of shipyard fabrication activities can be modelled and their related inherent work content 

estimated:

1) Fabrication and assem bly o f structural blocks in a shop 

environment

2) Installation of each assembly on the building berth.

3) Integration and link up of adjacent assemblies on the building berth 

in the vertical sense.
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4) Shop fabrication of a second set of assemblies, identical to the first

5) Installation of each assembly of the second set on the building berth.

6 ) Integration and link up of adjacent first and second set assemblies on 

the building berth in the longitudinal sense.

7) Integration and link up of adjacent second set assemblies on the 

building berth in the vertical sense.

Using the database of standard and basic times, derived from method study 

analysis of the elemental tasks used in ship construction, it was possible to develop a 

set of algorithms that could genuinely reflect the inherent work content of typical 

warship structures. W ith the unit of measurement of the work content being in 

manhours, it is simply multiplied by the appropriate labour rate to yield a figure in 

pounds sterling for the cost of the labour involved in the fabrication of a particular ship 

component. The results of the studies discussed in Chapter 6  employed a fixed labour 

rate of £15 per manhour. This was thought suitable to reflect currently charged 

shipyard labour rates (reflecting overheads). The following sections detail those 

activities involved with ship construction that are modelled by S H IP C O S T , and 

explain why one method is preferred to another.

3.3.2.1 Flat panel fabrication

One specific component that predominates in a parallel sided midship section 

of a typical frigate is the orthogonally stiffened flat panel. A flat panel comprises three 

constituent parts, namely plates, longitudinal stiffeners and transverse frames. The 

manner in which these individual items are collectively integrated is very much 

dependent on the facilities available within any one shipyard. However, as one of the 

prime objectives of this study was to model current fabrication techniques in a modem 

warship-building yard, the treatment of flat panel fabrication assumes panel line 

assembly procedures.

In order that a flexible but manageable relative fabrication cost algorithm for 

orthogonally stiffened flat panel construction was developed, not all the parameters
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involved are variable. Also as a result of the recent abandonment of systematic work 

study job duration recording within British Shipbuilding, no assessment is available of 

some more recent fabrication techniques. Consequently some of the elemental tasks 

assumed and presented in the Construction Task Algorithms may not be strictly 

applicable in the absolute sense as reflecting current fabrication techniques. To illustrate 

this point, consider the following examples :

Example 1 - Plate Marking.

W ith the introduction of C.N.C plate cutting equipm ent to 

shipyards, it is now possible to automatically mark on the plate the 

longitudinal stiffener and transverse frame positions by powder 

marking, punch marking or simply inking techniques. Within the 

set of construction task algorithms developed this activity is 

modelled by assuming manual paint marking techniques.

Example 2 - Panel Plate Seam Welding.

As presented in the construction task algorithm for flat panel 

production, a panel seam weld operation is performed using a semi­

automatic mini-deck welding machine. After the primary run of 

weld is completed the panel is reversed and a second run of weld is 

put down on the seam. Today this same panel seam weld could be 

completed using single sided welding techniques employing glass 

or ceramic backing strips. However, there is no information 

available to the same level of detail and recorded under the same 

controlled conditions as those times already existing in the welding 

database, on the com pletion time of single sided welding 

techniques. Therefore, single sided welding techniques cannot be 

modelled at the present time.



The inclusion of these traditional fabrication techniques in the construction 

task algorithms does not invalidate the information yielded on the inherent work content 

of a structure by such algorithms. By using more traditional fabrication processes the 

final figure given for the estimated work content of a structure may exceed that would 

be achieved using state of the art techniques, but as the emphasis of these studies is on 

relative fabrication time (and cost) these minor variations in absolute work content 

have little bearing on the search for cost minima among alternate structural designs of 

broadly similar grillage configurations.

The welding method assumed for longitudinal stiffener and transverse frame 

attachment to the plating is manual fillet welding. Although information exists in the 

welding database for the process times of semi-automatic welding techniques such as 

Gravimax, the thickness of the material (section web thicknesses) used in warship 

structures is generally too thin to be dealt with efficiently and effectively by this 

method. Thus with these assumptions applied, attention can now be paid to those 

facets of flat panel fabrication that can be considered variable.

The activity that allows the major degree of variability in the fabrication of 

orthogonally stiffened flat panels of fixed dimensions is the sequence in which the 

structural sections are attached to the plating. Are the longitudinal stiffeners attached 

before the transverse frames or vice versa ? Both these options are equally possible and 

the reasons for the preferred method, as used in SHIPCO ST, are given below.

In SH IPC O ST, precedence in the attachment of sections to plating is given 

to whichever member (longitudinals or frames) has the smaller overall height 

dimension. Adopting this procedure allows the maximum opportunity for extended 

runs of continuous, uninterrupted fillet welds to be used. This implies that the full 

length of section can be welded to the plate without discontinuities in the weld run in 

way of nothes cut in the section web which accommodate the passage of the smaller 

penetrating member.
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3.3.2.2 Grillage connections

It is often said that warship grillages incur greater fabrication costs than those 

occasioned by the flat panel structure o f a commercial ship to withstand the same 

environmental loading. This is partly attributable to the large amount of lattice type 

structure that exists in the warship grillage and the connections necessary to ensure 

structural integrity between intersecting members. These connections, although 

necessary, are expensive to complete on any grillage. In order that the costs associated 

with grillage inter-connections can be identified and quantified, recommendations for 

use in naval structures [45], were studied and the synthesis of the time taken to 

complete standard connections between orthogonal members is incorporated within 

SH IPCO ST. Although the dimensions of a standard connection piece are derived on 

the premise that two Tees sections are intersecting, the methodology for this derivation 

is thought suitable for application when sections other than Tees are intersecting for the 

purposes of this study. The range of grillage connections that can be modelled by 

SH IPC O ST is shown in Fig. 3.2. The dimensions which allow the associated work 

content of these connections to be estimated are contained in Table 3.1. Other structural 

connections that can be modelled are shown in Figs. 3.3 and 3.4 along with their 

associated dimensions.

3.3.2.3 Curved panel fabrication

When a sub-assembly cannot be adequately modelled as an orthogonally 

stiffened flat panel, such as in the case of the bilge structure, then a different 

construction task algorithm is required. In the case of an orthogonally stiffened curved 

panel, the same rationale applies to it's fabrication as was applied to the flat panel, i.e. 

manual paint marking-off and the order in which the orthogonal members are attached 

to the plating. However a significant change in the method of plate seam welding is 

necessary due to the curvature of the individual plates. As a result of the plate contours 

it is no longer suitable employ mini-deck welding to carry out the plate seam weld and 

consequently this is done by a manual butt welding process. The number of weld runs 

required to complete a satisfactory seam is a function of the plate edge preparation and

23



the plate thickness and is dealt with automatically in S H IP C O S T . Grillage 

connections are dealt with in the same manner as for the flat panel.

3 .3 .2 .4  Building Berth Installation and Integration

Once each of the assemblies has been individually fabricated in the workshop, 

they must subsequently be installed on the building berth. There may again be 

conflicting working practises in different shipyards at this stage of the build cycle 

depending on the facilities available. For example, one shipyard may link up two or 

more of these individual assemblies to form another structural unit in the work shop, 

whereas the link up of the same sub-assembly types may be performed outwith the 

work shop in another ship yard. This link up process is highly dependent upon the 

nature and capacity of the mechanical handling equipment which govern the upper limit 

of the number of assemblies that can be linked at this stage, the availability of 

fabrication shop floor space and the overall construction method employed. All of these 

factors will be unique to each shipyard and therefore in the context of SHIPCOST the 

size and extent of assemblies are based on judicious judgement of what might be 

generally acceptable in most shipyards.

In S H IP C O S T , this area of the build cycle is modelled by assuming the 

following method of assembly unit link up based on a bottom up build philosophy :

1) Shop fabrication of orthogonally stiffened outer bottom structure.

2) Shop fabrication of orthogonally stiffened tank top panel.

3) Workshop link up of the tank top to the outer bottom.

4) Installation of the double bottom unit on the building berth.

5) Shop fabrication of orthogonally stiffened plating of the bilge 

structure (port and starboard).

6) Installation of the bilge structures on the building berth and it's 

integration with the double bottom unit.
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7) Shop fabrication of orthogonally stiffened side shell structure (port 

and starboard).

8) Installation of the parallel sided shell panels on the building berth 

and their integration with the bilge structure.

9) Shop fabrication of N2 2 Deck panel assembly.

10) Installation of N2 2 Deck panel assembly on the building berth and 

link up with the side shell structure.

11) Shop fabrication of N2 1 Deck panel assembly.

12) Installation of N2 1 Deck panel assembly on the building berth and 

link up with the side shell structure.

13) Shop fabrication of N2 01 Deck panel assembly.

14) Installation of N2 01 Deck panel assembly on the building berth and 

link up with the side shell structure.

Installation of the assemblies on the building berth includes activities such as 

the use of building berth cranes, temporary shoring and overall securing of these 

assemblies prior to the link welding. The term "link up" includes all those activities 

associated with th e :

a) fairing of adjacent structures, plates and sections

b) completion of plate butt welding

c) fitting and welding grillage marrying pieces

d) fitting and welding transverse frame web doubler plates 

and/or knee brackets at deck/side shell transverse intersections

e) manual fillet welding of deck plating to the side shell plating

f) fitting and welding of collar plates where side shell transverse 

frames penetrate the deck plating.

The butt welding of adjacent erection joints in plating is performed manually 

using a standard plate edge preparation imposed on the plate within the Fortran source 

code. This method, although it may be slightly dated, is assumed to apply at this stage 

of the fabrication process, because no information is available on more modern 

techniques such as orbital welding, at the level of detail required for compatibility with 

the existing welding data-base.
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3.3.2.5 Grillage link up techniques.

As was mentioned briefly in Section 3.3.1, there is a deficit of 1 metre 

between the length of the plate and the length of the attached longitudinal stiffener. 

Similarily, there is a shortfall of 1 metre between the width of the panel and the length 

of the section that is the transverse frame. This descrepancy in lengths is by design and 

is necessary if true emulation of the fabrication techniques used in grillage link up 

procedures is to be achieved. There are basically two methods used for grillage link 

ups that are favoured in shipbuilding today and a brief descrition of each is given 

below.

One method is to allow a shortfall of 0.5 metres at each end of the section in 

relation to the plate length or width. This permits the fitting of a 1 metre long section 

"marrying piece" when two adjacent grillages are being linked up to integrate their 

collinear structural members particularly in the longitudinal direction, thereby ensuring 

continuity. The other fabrication process that is employed is one where the rolled 

sections of the grillage are allowed to overhang at one edge of the plate and fall short at 

the opposite edge. If this overhang is taken as 0.5 metre (with a similar length left 

unwelded to the plate), the weld length is the same in each of the fabrication procedures 

and a similar section cost will result. However, this fabrication technique then requires 

a different grillage link up procedure from that described above. In this case, the 

structural sections of one grillage are "cut back" from their original overhang length 

until they are sufficiently short to be butt welded to the shortfall edge of the adjacent 

section. This results in only one butt welded connection between sections instead of the 

two required when fitting a "marrying piece". Examples of each grillage join up 

procedure are shown in Fig. 3.5.

However within SH IPCO ST only the "marrying piece" method is dealt with. 

This results not from any personal choice but rather from a lack of elemental task details 

with regard to the "cut back" method, specifically the burning times required to achieve 

necessary cut back length. Thus as standard and basic times for fairing the flanges and 

webs of sections are available within the work content database and the subsequent 

welding times can be extracted from the welding database, an accurate estimation of the
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manhours required to fit and complete the welding of a grillage marrying piece is 

possible, although superficially this would appear to be the method likely to incur the 

greater labour cost.

Within the context of SH IPC O ST , the link up of adjacent grillages occur 

mainly on the building berth and as such a variety of different joint orientations have to 

be catered for. As a consequence of the orientation and nature of the erection joints 

(vertical or longitudinal) different subroutines are required to model the major 

alternative erection procedures for adjacent grillage members. In broad terms there is a 

range of three grillage joint orientations - vertical, horizontal and longitudinal. Vertical 

applies to joints such as that between bilge and side shell grillages, longitudinal to the 

joint between linear adjacent structures in the horizontal plane while horizontal applies 

to the joints between grillage members of deck panel assemblies and the side shell, i.e. 

connections between perpendicular sections. The cases of vertical and longitudinal 

grillage joints involve fairing and tacking a 1 metre length marrying piece and butt 

welding at either end of the marrying piece. However, in the case of the grillage joint 

between deck structure and side shell structure (horizontal) the procedure is not as 

straightforward as described above. The treatment of such a horizontal grillage joint 

involves the following events :

1) A section marrying piece, 0.5 m etres in length, is faired and tacked at 

either side of the deck panel assembly ( 1 metre in total per transverse 

frame).

2) Overhead manual fillet welding of marrying piece web to the underside 

of the deck plating.

3) Manual overhead butt welding of the inboard end of the marrying piece 

to the end of the deck panel transverse frame.

4) Manual overhead fillet welding of the outboard web and flange of the 

marrying piece to the side shell transverse frame flange face.
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Steps (2) to(4) are repeated for the other 0.5 metre length of marrying piece and steps 

(1) to (4) are repeated for each deck panel to transverse frame link up. Figs. 3.6 and 

3.7 highlight the three orientations of grillage link up are be modelled in SHIPCOST.

3.3.3 Overhead Costs.

Although fixed overhead costs must be included in the contract price, their 

omission can be justified in relative design studies when the sources of such costs are 

identified. As in similar relative fabrication cost estimation studies [29, 30], at the 

University of Glasgow these fixed overhead costs are taken to include plate preparation 

along with operation and maintenance of means of transport within the shipyard all of 

which are assumed to maintain a constant labour resource.

Direct variable overhead costs are related to national insurance payments, 

provisions of holidays and pension scheme payments and can be included for our 

purposes within the labour rate used in these studies. Overheads not directly related to 

direct labour manhours include supervisory staff and power supplies but are assumed to 

vary as the variable overhead cost and treated in the same way. Indirect overhead costs 

are those which are independent of the level of production and can be attributed to repair 

and maintenance of plant and machinery along with their running costs, rates and staff 

related costs and for the purposes of this study are ignored on the same basis as the 

fixed overhead.

With overhead costs dealt with as outlined above the relative fabrication 

cost of a structure can now be estimated in terms of the the total variable cost, defined 

as:-

Total Variable Cost = Material Costs + Labour Costs 

= XW eight x Material Rate + ^M anhours x Labour Rate (3)
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3 .4  The R elative Fabrication Cost o f a Typical W arship's

Double Bottom  Unit.

As an example, to illustrate how the relative fabrication costs of a steel structure 

are calculated, a typical warship’s double bottom unit is highlighted and a construction 

task algorithm is presented.

The structural nature of a double bottom unit leads to readily identifiable 

structural assemblies. These assemblies being tank top plating and the outer bottom 

plating and their respective attachments. It is a logical progression that, depending on 

what are regarded as tank top attachments and what are considered as outer bottom 

attachments, different construction sequences can be identified. In total four different 

construction sequences have been identified for a typical double bottom unit. 

Construction Sequence 1 is described below and all the construction task algorithms are 

detailed in Appendix 1.

3.4.1 Typical Double Bottom Unit of a Modem Warship.

From structural drawings a typical warship double bottom can be considered to 

consist of the following two structural assemblies :

i) Tank top plating with longitudinal stiffeners, plate longitudinals, 

vertical keel, vertical floors and transverse frames.

ii) Outer bottom plating and orthogonal stiffening.

With these two individual structures defined, Construction Sequence 1 is described 

below and it's construction task algorithm developed in Appendix 1.

A major assumption applied to all the sub-assembly fabrication in this study is 

that they are performed in a workshop environment.
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3.4.2 Double Bottom Unit Construction Sequence 1

The activity sequence shown in Fig. 3.8 indicates the order in which the double 

bottom  unit is fabricated when using Construction Sequence 1. Other activity 

sequences developed using Construction Sequences 2 - 4 are shown in Figs. 3.9 - 11 

respectively.

The first sub-assembly to be fabricated is the tank top flat panel. The 

construction sequence is synthesised from elemental tasks taken from the workcontent 

database. These elemental tasks are chosen as those that most closely emulated flat 

panel assembly procedure in a present day warship building yard.

Having fabricated a fundamental flat panel, other sub-assemblies are attached 

which subsequently identifies this flat panel as belonging to the tank top. Typical of 

such sub-assemblies are the plate longitudinals. However, before a plate longitudinal 

can be connected to the tank top it must first be fabricated. In reality, plate longitudinals 

are fabricated from a series of small individual plate parts all connected together to form 

a long plate girder. The size and number of these individual parts is multi-variable and 

as such the following assumptions apply to plate longitudinal fabrication within the 

context of this study.

1) Each plate longitudinal is regarded as one piece of continuous plating, 

equal in length to the tank top plate to which it is attached.

2) There are no lightening holes cut in the continuous plate.

3) In the absence of lightening holes there is no consideration of the time

required to fit flat bar riders as they exist on warship structures.

4) The plate longitudinal is stiffened asymmetrically with the number of 

stiffeners equalling the number of transverse frames of the tank top flat 

panel.

5) The material cost of the plate longitudinal is ignored.

After their fabrication, the plate longitudinals are fitted and welded to the tank 

top flat panel.
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As warships are generally considered to be longitudinally stiffened, it is 

necessary that the vertical floors are intercostal in relation to the continuous longitudinal 

structure, primarily the plate longitudinals. This necessitates that each vertical floor 

comprises individual piece parts, the number of which is dependent upon the number of 

plate longitudinals. As with the plate longitudinals no consideration is given to the 

effect of lightening holes, the fitting of flat bar riders on the fabrication cost or the 

material cost. Once all the vertical floor piece parts are completely welded to the tank 

top structure i.e. the tank top plating and plate longitudinals, then in terms of 

Construction Sequence 1, the tank top sub-assembly is complete.

The next stage of the double bottom fabrication process is to construct the 

orthogonally stiffened outer bottom sub-assembly. This sub-assembly may be regarded 

as a curved panel or two adjacent flat panels butt welded at the ship's centre line. 

Construction Sequence 1 treats the outer bottom as an orthogonally stiffened flat panel.

The subsequent step in the double bottom unit assembly is to rotate the the outer 

bottom structure 180° about it's centreline and drop it onto the tank top structure. 

Alignment of the respective sub-assembly components is then carried out. The final 

join up activities include all welding activities to effect the completion of the double 

bottom unit. It is worth noting here that these welding operations are carried out in 

what can only be described as unfavourable conditions, i.e. overhead in confined 

spaces where access is restricted, and where heat and fumes are likely to build up.

By reading the previous paragraphs of this section the reader may be lead to 

believe that fabrication of the outer bottom is commenced once the tank top sub- 

assembly is completed. This is not intended to be the case as more likely than not, 

these two sub-assemblies will be fabricated in parallel or staggered production and not 

in series as described. The amount of overlap in production depends on the relative 

workcontent of each, the availability of shop floor space the the disposition of the 

steelwork labour force within the yard at any particular time in the build cycle.
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The labour cost inherent to a steel structure is taken as the accumulation of 

standard times relating to the elemental tasks used in its fabrication multiplied by a 

labour rate. The labour costs calculated in this study relate to those activities that are 

carried out by steel trades only. That is to say no attempt is made to estimate the labour 

cost associated with the installation of equipment and electrical circuitry or pipework 

systems.



Max
Thick

Edge
PreparationSymbolNo Tasks

Minor decks 
and b/heads

13 mm
mm

Decks, tank 
tops, flat panels 
and b/heads

19 mm
3 mm

Decks, tank 
tops, flat panels 
and b/heads26 mmKM

mm

38 mm Unit Butts3 mm

3 mm Unit Butts 
decks and 
tank tops

19 mm
SK

3 mm
Positional 
welding e.g. 
shaped shells

19 mm
3 mm

Fig. 3.1

Material Edge Preparations used in the W elding Database
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One-lug Connections

Lip or Tongue

Two-lug Connections

Bracket •Weld

Rigid Connections

Table of Longnl Web of frame slotted 
cut back to web 1° depth of Longl

Egg Box Lapped Collar

Rigid Connections

Fig. 3.2

Typical G rillage Connections used in W arsh ip  S tru c tre s
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Type of Connection
Vertical cross sectional 

Area

Depth of piercing member 
Depth of main member

> 0.65 0.65 - 0.40 < 0.40

No lug plus bracket or 
direct weld \  ■ 1.5* A w

1.2 * Aw
0.9*  Aw

One Lug
Ai ■

Not
recommended

2.0 * Aw 1.5 *A w

One lug plus bracket or 
direct weld Ab ■ 

Ai ■

0 .8*  A w

u  * Aw

0.65 * Aw

1.0 * Aw

0 .5*  A w

0.7 * A w

Two lug
Ai = >-0*A w 0.8 * Aw 0.6 * Aw

Two lug plus bracket or 
direct weld

Ab = 

A. ■

0.8 * A w

0.5 * Aw

0.65 » A
w

0.4 * Aw

0.5*  Aw

0.3 * A w

Two piece lapped collar Collar plate thickness = Web thickness of main member

= Vertical cross section area of bracket in way of weld to the main member web

Aj = Vertical cross section area of EACH lug 

Aw = Web area of piercing member

Table 3.1

Dimensions of Brackets and Compensation Pieces 
used in Warship Grillages
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Collar

Deck Plating Deck Plating

BeamBeam

> d/3 > d/3

Frame
Frame

Shell Plating1

Frame web doubler plate Frame web doubler plate
used at upper decks used at lower decks

Fig. 3.3

Typical Frame web Doubler Plate Connections

11.43 12.7 15.24 17.78 20.32 25.4

11.43 0.533

12.7 0.317 0.635

15.24 0.317 0.457 0.762

17.78 0.317 0.8890.635

0.381 0.63520.32 1.016

0.381 1.1430.63525.4

Thickness of web doubler plate 
All dimensions in centimetres 
* No doubler plate required

Table 3.2 
Doubler Plate dimensions
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Collar

Deck PlatingDeck Plating

BeamBeam

Frame Frame

Shell Plating

Standard bracket used 
at upper decks

Standard bracket used 
at lower decks

B = Bracket web thickness * 60

Bracket flange area = Beam flange area 

Bracket web thickness = Thickness of beam web

Bracket flange breadth = b/30

Bracket flange thickness = Bracket flange breadth/30

Fig. 3.4
Typical Bracket Connections used in W arship Structures



Grillage Manying 
Piece

1 metre

Plate seam

Grillage structural section link up using section 
"marrying piece" - requires two butt welds.

0.5 metre 
overhangSection length 

adjusted to fit

Grillage structural section link up using 
"cut back" method - requires one butt weld

Fig 3.5

Alternative link up methods for grillage structural section link up
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0.5 m etre^r

Horizontal Grillage Link-up 
on the building berth

1 metre

Vertical Grillage Link-up 
on the building berth

Fig. 3.7

Horizontal and Vertical Grillage Link-ups 
on the Building Berth
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Fig. 3.8 - Double Bottom  C onstruction  Sequence 1
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Fig. 3.9 - D ouble Bottom  C onstruc tion  Sequence 2



9.

mrwwmffmram

Fig. 3.10 - Double Bottom Construction Sequence 3
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Fig. 3.11 - Double Bottom Construction Sequence 4
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CHAPTER 4

STRU CTU RA L D ESIGN O F FR IG A T E  M ID SH IP  SEC TIO N

In order to give the structural designer maximum flexibility to propose 

alternative structural arrangements, a large number of design parameters must be 

considered as variables. These parameters include plating thicknesses, types of section 

(rolled and fabricated) used as structural members, their scantling sizes, and the 

spacings of longitudinal and transverse members. As these design parameters also 

have a direct bearing on the ultimate strength of the structure, there must be some 

means o f assessing the global effect on the load carrying capacity of the structure 

resulting from any localised changes to them. This requires design criteria to determine 

the strength of the ship in response to both longitudinal and transverse loading

The longitudinal strength criteria incorporated in the overall strength 

formulations are taken from the current Royal Navy Design Manual - NES 110 [43]. 

Transverse structural design is assessed according to Det Norske Veritas (DnV.) 

Classification Society Rules for the design of flat plate grillages [44].

It is convenient to divide overall ship's structure into the three types as first 

suggested by St. Denis [36] :

PRIMARY - The hull when it is considered in its totality.

SECONDARY - Stiffened gross panels of plating bounded by side-shell,

transverse and longitudinal bulkheads or other means of 

vertical support

TERTIARY - Unstiffened plate elements supported by transverse and

longitudinal stiffeners.

This allows design assessment to be considered at the various levels corresponding to 

the above breakdown of structural elements.

As a further convenience, secondary structure is defined as a GRILLAGE when 

stiffened orthogonally and as a PANEL when stiffened in only one direction. In turn 

these are made up of tertiary PLATE elements (bounded by neighbouring transverse 

members and longitudinal stiffeners) as illustrated in Fig. 4.1.
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Nbh» Nbs = Loads per unit width applied to bottom structure by 

design hogging and sagging bending moments.

D = Moulded depth

Bd = Load bearing width of upper deck allowing for the

presence of large holes.

Bb = Load bearing width of bottom structure (turn of bilge to

turn of bilge).

c = Design coefficient related to size and type of ship

The calculation of these line loads at the upper and lower flanges of the hull 

girder shown in Fig. 4.2 allows the detailed design of these structures to begin.

4 . 2 .  Design of Secondary Structure.

The use of Long Stalk Tee (LST) rolled sections as longitudinal stiffeners is 

standard practise in current Royal Navy ships. This is understandable as these sections 

were designed to yield a better distribution of weight for a high moment of inertia 

compared to other standard rolled steel sections. The use of LSTs thus allows the 

design of lightweight stiffened panels with high collapse loads. However, when 

weight is no longer the only constraint in structural optimisation other standard rolled 

steel sections can be considered for structural members. In this study the use of Offset 

Bulb Plate (OBPs) and Flats have been investigated as longitudinal and transverse 

members as alternatives to the LSTs.

Various load actions must be taken into account when checking the strength of 

deck structures, however during the design of structural sections it is generally 

adequate to consider the following

i) compressive in-plane loads that are a result of applied bending 

moments (sagging)
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ii) the tensile in-plane loads that are a result o f applied bending 

moments (hogging)

iii) lateral loads imposed by normal environmental conditions.

4.2.1 Designing Against Interframe Panel Collapse Failure Mode.

To ensure that deck structures can carry the loads calculated in equations (5) and 

(6), the interframe flexural compressive collapse stresses for longitudinals and their 

associated plating must be predicted. These predicted compressive collapse stresses 

must be at least an appropriate factor of safety greater than the actual applied 

compressive stresses induced by hull bending.

In longitudinally stiffened structures where the transverse frame spacing is 

greater than the longitudinal stiffener spacing ( i.e.in Fig. 4.1, a > b , ), the plating loses 

effectiveness immediately on application of in-plane loads because of initial 

imperfections. However, for slender plate elements, (b/plating thickness > 60 for mild 

steel), which have their unloaded edges constrained to remain straight there is 

significant post buckling strength. This can be interpreted as elastic buckling, though 

not in the critical sense, with the out-of-plane deformations increasing proportional to 

compressive load. The stress distribution in the plate for any given load and an 

illustration of the "effective width" concept be are shown in Fig. 4.3.

Von Karman postulated that the maximum post buckling load such a plate can 

sustain occurs when the edge stress o e> reaches the yield stress a y. Based on this and 

the further assumption that the unloaded edges of a long "pinned" plate remain straight, 

he derived an engineering solution for minimum effective width at failure -:

b a  1 Q rem m i . y  t

y (7)

where :

b = longitudinal spacing

bem = minimum effective width of plating

48



Gm = maximum average stress at plate failure

o y = plate yield stress

t = plate thickness

E = Young's Modulus of Elasticity

P = 7 plate slenderness parameter
(7a)

However, the effective width of plating said to be acting with an attached 

stiffener must be calculated at compressive stresses other than the yield stress Gy 

Faulkner in his comprehensive review of the treatment of this concept [37] proposed an 

alternative formulation

This relationship, corrected for a residual stress factor r\ = 3 is used within the design 

formulations of this study. These residual stresses result from the forming operations 

the section undergoes to acquire its final shape or as a result o f the heat input from the 

welding operations during fabrication of sections and their attachment to the plate.

In order that the design of deck and side shell longitudinals can get underway a 

"first shot" value of the ratio of Ru, the stress in the longitudinal at collapse to the 

material yield stress must be assumed. Assuming Ru = 0.95, allows the effective plate 

slenderness ratio to be calculated from :

2  1 m ^  1

( 8 )

(9)

The effective width of plating said to be acting with the stiffener can now be 

calculated from equation (8)



which allows the calculation of the effective longitudinal sectional properties for the 

combination of stiffeners and effective plate as outlined below.

rs = ‘‘sec t+ l l V 3 + Asect( y '  ysect >* + V (y ’ yplate)2

k =

( 11 )

w here:

Is = second moment of area of stiffener and effective width of

plating1

Isect = second moment of area of stiffener only

be = effective width of plating

Aggct = cross sectional area of stiffener only

ysect = height above datum of stiffener neutral axis

Opiate = heiSht a^°ve datum of plate neutral axis

y = height above datum of neutral axis of stiffener and effective
width of plating

A y + b  ty  ,
_  s e c f s e c t  e p l a t e

A + b t 
sect e

A y + b ty  
sect  s e c t  e p l a t e

A
tot

^ to t = ^ sec t+
k = radius of gyration of effective section 

t = plate thickness = nominal thickness - corrosion allowance.

1 N ote that Is corresponds to e ffec tiv e  w idth, be, rather than the

reduced e ffective  width be' from  w hich Is ' is calculated.
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The column slenderness ratio, X, is defined as :-

X

w here:

a = length of column, normally the transverse frame spacing

ciy = material yield stress 

E = Youngs Modulus of Elasticity.

In the absence of residual stresses, the critical stress a c of a column with pinned 

ends, (i.e. the axial stress at which it first shows signs o f out-of-plane deformation) is 

given by Euler's Theory for long perfectly elastic struts :-

However, in columns made of rolled steel sections or a combination of plates 

and sections fabricated by welding, residual stresses will be present, as noted above. 

These residual stresses can be relieved by annealing after fabrication but this is 

generally both costly and impracticable. Therefore, in the calculation of the critical 

buckling stress of columns the effect of residual stresses must also be taken into 

account. As the load on such a column increases, some of the material begins to yield 

where the sum of the applied stress and the residual stress reach yield stress. As the 

applied stress is increased greater amounts of material reach the yield stress, thus 

leading to the failure of the column at a stress lower than calculated from equation (13). 

This results in a loss of effectiveness of the column as the applied stress reaches the 

yield stress. The possible effects of residual stresses on the crippling loads of columns 

have been examined both experimentally and theoretically in Refs. 38 and 39. Ref. 40 

suggests that for practical ship structural systems the critical stress can be calculated 

using Johnson's empirical formula

(12)
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a = a
c

(14)

or

a =c

(15)

When equations (14) and (15) are plotted non-dimensionally there is a common 

point of tangency at which they merge, see Fig. 4.4 These relationships are suitable for 

use in the design of practical steel beam-column structures used in ships construction.

Using values of X calculated from equation (12) in conjunction with Fig. 4.4 

the ratio of collapse stress to yield stress, Ru, can be found. If this value of Ru is more 

than 5% different from the "first shot" value of Ru used in equation (9) then re-iteration 

of the design procedure is required, starting from equation (9) through to the stage just 

described, until the difference between the value of Ru used in equation (9) and that 

obtained from Fig. 4.4 is less than 5%.

Once this condition has been achieved the average compressive collapse stress 

a ave for the longitudinal stiffener and effective plating, in the absence of lateral loads 

(assuming pinned connections to the frames), is then given by

This value a ave should be at least 20% greater than the maximum axial 

compressive stress applied to the longitudinals of the strength deck, and 25% greater 

than the maximum axial compressive stress applied to other longitudinals in deck, tank 

top or outer bottom structures. If these safety factors are achieved, then this 

combination of longitudinal type, scantlings, spacing and plating thickness is 

potentially suitable for use in the design of deck and side shell structures.
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4.2.2 Design of Bottom Longitudinals

In practise, when bottom longitudinals buckle under the application of 

combined end and lateral pressure loads, their deformed shape is similar to that of a 

series of connected beams, having encastre ends at their points of connection. This 

differs from the alternating half wave buckles of the deformed deck and side shell 

longitudinals with no lateral loading, which maybe considered to be pinned at their 

connections to the frames. Fig. 4.5 illustrates the deformed shapes of each type of 

longitudinal.

The design procedure for bottom longitudinals is carried out in two stages. 

Firstly, the method described in Section 4.2.1 is used to calculate pinned end 

compressive collapse stress of a rolled section acting with an effective width of plating. 

Secondly the procedure calculates the collapse stress when the ends of the longitudinal 

are considered clamped at their connection to the frames. This is achieved by reducing 

the slenderness ratio of the column, to the value for encastre columns given by :

Because of the combination of axial and pressure load systems that exists for 

the bottom longitudinals, a means of describing their elastic behaviour and ultimate 

failure loads is required. Exact theories exist for these phenomena but lead to 

complicated and unweildly expressions. Hence an engineering approximation is 

required. This assumes the form of a "reduction factor" which allows the easily 

calculated effects of normal loads to be influenced by the end loads. This reduction 

factor is defined as

(17)

c (18)

where :

P h = lateral pressure acting on the longitudinal
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Pc = three hinge plastic collapse pressure of the longitudinals assuming 

they are clamped at the frames.

Using the value in conjunction with Fig. 4.4, the average compressive

stress for a column clamped at its frame connections is given by

damp

Ru A a
 tot v
A + bt 

sect
d” * (19)

By multiplying <Jclamp by the reduction factor given in equation (18), the 

average collapse stress for a column with clamped ends under the actions of axial and 

lateral loads is given by

a = alateral damp
£ i
P

I - - * -
c (2 0 )

The stress that the bottom longitudinals must be designed to withstand is the 

lower of the values calculated from equations (16) and (2 0 ) and this should be at least 

25% greater than the compressive stress applied to the bottom longitudinal in question.

The factor of safety stated in the previous paragraph only applies to longitudinal 

stiffeners if they are of tee section. When OBP longitudinals are being considered an 

increased safety factor is required. A supplementary partial safety factor of 1.1 (or a 

reduction in permissible stress of 10%) is employed as suggested in Ref. 41. This 

supplementary safety factor allows the OBP stiffeners to be designed on the basis of 

simple beam theory ignoring the effects of asymmetry. If flat bars are being considered 

then limiting the depth/thickness ratio to less than 1 0  is necessary to ensure avoidance 

of tripping under conditions of elasto-plastic bending compression as recommended in 

Ref. 42.
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4 .3  Design o f Tertiary Structure.

In the instances where the stiffener disposition is such that relatively large 

unstiffened plate elements exist in the structure, there must be a design criterion by 

which these tertiary elements are assessed. In this study these elements are designed 

such that the minimum in-plane edge stress to initiate plate buckling is at least a factor 

of safety (assumed 1.1, Ref. 46) greater than the actual in-plane edge stress that is 

distributed along the edge of the plate element. The critical buckling stress for a long 

plate element (i.e. one in which the in-plane edge stress is applied along the shorter 

sides of the plate element) is given by :

and for a wide plate element (i.e. one in which the in-plane edge stress is applied along 

the longer sides) the expression for the critical buckling stress becomes :

4 .4  Design of Transverse Structural Members.

To allow a greater range of structural alternatives to be proposed by the 

designer, there has to be an element of the design procedure where it is possible to 

propose and assess changes in the transverse structure. The transverse structural 

design procedure has to be capable of taking account of variations in plating thickness, 

longitudinal stiffener spacing, transverse frame spacing and the type and scantlings of 

the sections used as transverse frames and longitudinal stiffeners as well as their 

influence on the global structural behaviour of the complete midship section structure.

Several studies throughout the course of the project have concentrated on 

constant area, fixed transverse frame spacing structural alternatives of major elements

ff 12(1 -\)2) Vb / ( 2 1 )

(22)
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of the midship section structure, namely strength deck and double bottom. The results 

of these studies are discussed in Chapter 6 . Consequently by maintaining a fixed 

transverse frame member type, size and spacing, a severe limitation was imposed on 

the range of possible structural alternatives that could be investigated. In order that a 

wider range of structural possibilities could be investigated with a view to the ultimate 

optimisation of relative fabrication cost, the design of the transverse structure had to 

become an integral part of the overall structural design package - thus removing the 

fixed transverse frame spacing constraint.

The need for a "Rules based" approach for the design of the transverse structure 

became apparent after various attempts at establishing a "ready reckoner" type 

algorithm, relating longitudinal material and stresses with their transverse counterparts 

proved fruitless and the algorithm remained elusive, despite using a finite element 

method of analysis. From a study of the applicability and ease of manipulation of 

several Classification Societies' Rules to frigate transverse design. As a result, largely 

through their well developed theoretical base, DnV Rules for the Design of Mobile 

Offshore Units, Ref. 44, were found most suitable and have been incorporated as 

program subroutines into a simple transverse structural design model.

Chapter 3 of these DnV Rules relates to Stiffened Flat Plates and is concerned 

with the design of such structures to avoid failure by various buckling modes. These 

failure modes include

Plate buckling - local plate buckling between stiffeners 

Stiffener buckling - buckling of stiffeners and attached plating between 

girders (plate or stiffener induced failure)

Local buckling - of stiffeners and girders

Girder buckling - overall buckling involving bending of stiffeners and 

girders with attached plating (plate induced or flange 

induced failure)

It is this last failure mode that has been applied to the design of warship 

transverse structure. The design criteria and formulations relating to girder buckling 

have a tangible relationship to the longitudinal structure and can readily incorporate the
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design loads as specified in NES 110, [43]. These formulations are presented below as 

the basis for the design of warship transverse structures adopted in this project.

The primary function of transverse structure is to offer the means of support to 

the longitudinal structure and also to resist lateral pressure loads. Therefore it is 

necessary to design a transverse girder that supports longitudinally stiffened plating to 

resist a lateral pressure load p^, which is equal to

w here

but:

Pd = P + P0 (23)

0.4(t + — )

H I - r
(24)

p > 0 .0 2

(25)

a n d :

p = design pressure head as defined in NES 110, Annexe 8 A 

t = plate thickness = nominal thickness - corrosion allowance 

A = stiffener cross sectional area excluding effective flange of 

plating

s = longitudinal stiffener spacing 

H = web height of transverse member 

S = Transverse member span 

E = Young's Modulus of Elasticity 

Cy = material yield stress

a x = Axial compressive stress of longitudinal stiffeners (induced by 

hull bending)

1 = length of longitudinal stiffener = transverse frame spacing
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The effective bending stress during buckling of an encastre beam is taken as 

b 12 Z
(26)

w here:

Ze = effective section modulus of the transverse member calculated with 

an effective flange of plating le

The effective plating flange width, le, is taken as the value required for flange 

induced failure

S
1 =

(27)

Re-arranging (26) results in an expression which allows the calculation of a rule 

determined minimum value for the transverse member section modulus:-

p S2 1
z  -----

e 12 C.
(28)

By allowing the maximum bending stress to reach ay , the final expression for 

minimum section modulus of the transverse frame is given by:-

p S2 1
z  -----

e 12  a
(29)

or if a safety factor (SF) is to be employed then the expression becomes:-

pd S2 1
z  = ------ ------------

e 12 a  (SF)
y (30)

The above formulations have been incorporated in Fortran subroutines 

contained in the structural design program FRIGA TE to be used in a number of ways 

to assess the transverse strength of warship structures.
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Basically, two approaches are used within the context of this project when 

dealing with the structural design of a typical midship section of a Royal Navy Frigate. 

Firstly, the longitudinal and transverse structures are defined and the design package 

proceeds to re-design the midship section in the longitudinal sense while the transverse 

structure remains unchanged. Alternatively, by varying the transverse structure while 

maintaining the longitudinal structure as defined initially, this gives a second means of 

designing alternative midship section structures.



Longitudinal Stiffeners

Plate Element

Transverse Members

Fig. 4.1 
Idealised Secondary structure

No 01 Deck
I L L  1 — 1 ,-t — I " 'ITT r L I L— X

i  L a x-

Wing Panel Centre
Panel

Wing Panel

No 1 Deck .
1  i *  * yl  I 1 X i.

No 2 Deck 
= 1

Turn of 
Bilge

Tank Top
y l  11 1 1 1 ' 1 1 i  l i t i r

I, X

Fig. 4.2
Primary Effective Longitudinal Structure
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cr Edge 
e Stress Ca Average 

Stress

b a n

° e < ° y

General Case Max Ave 
Stress at plate 
failurem,

b e = Effective Width of Plating 
a

=  L .b in General Case when c  < Ov
a  e y

e

a
_ — E? .b at plate failure when O = Ov 
“ a  e "

y

^b = Elastic Buckling Stress

Fig. 4.3
Effective Width of Plating Concept
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Deck Longitudinal Deformation - 
Axial Compressive Load Only

Bottom Longitudinal Deformation - 
Combined Lateral and Axial Loads

Fig. 4.5
Typical Longitudinal Stiffener Deform ations
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CHAPTER 5 

COMPUTER SUBROUTINE SUITES

In order for parallel development in both the structural design and relative 

fabrication cost aspects of the project to be possible, two independent programs were 

compiled in the Fortran 77 programming language. One program FRIGATE deals with 

the structural design of a typical Royal Navy Frigate midship section and the other 

program  SH IPC O ST  deals with the algorithms and mechanisms necessary for 

estimating the relative fabrication cost of a such a vessel.

5 . 1 .  Structural Design of Typical Frigate Midship Section.

To maximize the benefits that can be gained by using a computer at the 

preliminary structural design stage, the software must be written in a manner that enables 

iteration of the design variables to be included, thus automating the design procedure 

(spiral). Iterative re-calculation is needed to assess the effect of local changes in the 

design parameters on the global acceptability of a structure in relation to the design 

criteria that are applied in it's design.

The design criteria incorporated within the Fortran coding relates to two different 

design philosophies. For the design of longitudinal structure, the design method is a 

"first principles" approach and employs the design criteria that is currently applied to the 

design of Royal Navy steel surface ships while for the transverse structure a 

Classification Society Rules approach is used. The conclusions from an assessment of 

the applicability of several Classification Society's Rules to the design of a frigate's 

transverse structure indicated that the most suitable set of rules appeared to be DnV for 

Mobile Offshore Units, Part 3, [44].

From the beginning, it was found that the design of a complete midship cross 

section from first principles without some initial constraints was outwith the scope of the
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work. Consequently, in order that the design procedure can get underway, several of 

the design parameters must be selected as constants. By studying the details of Ref. 48, 

a basis model of a typical frigate midship section was built up of the following structure 

as shown in Fig. 4.2.

1) All plating is taken as mild steel.

2) N2. 01 deck structure :

2 . 1  1 0  mm plating

2.2 10 off 114 *44  mm Tee bar longitudinals

2.3 2 off 152 * 76 mm Tee bar longitudinals

2.4 2 off 205 * 101 mm Tee bar longitudinals

2.5 2 off 254 * 127 mm Tee bar longitudinals

2.6 Transverse frames spaced at 1 metre intervals consisting of 

152 * 76 mm Tee bar

3) N2 1 deck structure :

3.1 10 mm plating

3.2 10 off 114 * 44 mm Tee bar longitudinals

3.3 2 off 152 * 76 mm Tee bar longitudinals

3.4 2 off 205 * 101 mm Tee bar longitudinals

3.5 2 off 254 * 127 mm Tee bar longitudinals

3.6 Transverse frames spaced at 1 metre intervals consisting of 

152 * 76 mm Tee bar

4) N2 2 deck structure :

4.1 10 mm plating

4.2 5 off 76 * 25 mm Tee bar longitudinals

4.3 2 off 127 * 53 mm Tee bar longitudinals

4.4 2 off 295 * 101 mm Tee bar longitudinals

4.5 2 off 254 * 127 Tee bar longitudinals

4.6 Transverse frames spaced at 1 metre intervals consisting of 

127 * 53 mm Tee bar



5) Tank top structure :

5.1 10 mm plating

5.2 12 off 114 * 44 mm Tee bar longitudinals

5.3 Transverse frames consisting of 152 * 76 mm Tee bar

6 ) Outer bottom structure :

6 . 1  1 0  mm plating

6.2 12 off 114 *44  mm Tee bar longitudinals

6.3 5 positionally fixed plate longitudinals with dimensions :

3 off 2 .0*0 .01  m

2 off 1.15* 0 .01m

6.4 Plate floors existing between alternate transverse frame 

members consisting of 152 * 76 Tee bar bracket floors.

6.5 Rise of floor taken as 10.2° from the horizontal

7) Bilge structure structure :

7.1 10 mm plating

7.2 8 o f f l l 4 * 4 4  mm Tee bar longitudinals

7.3 Fabricated transverse frames spaced at intervals of 1 metre

7.4 Bilge radius taken as 3.275 metres

8 ) Parallel side shell structure :

8 .1  1 0  mm plating

8.2 9 o f f l l 4 * 4 4  mm Tee bar longitudinals

8.3 Transverse frames between No 01 deck height and No 2 deck 

height taken as 152 * 76 mm Tee bar and spaced at 1 metre 

intervals

8.4 Transverse frames between No 2 deck height and the 

beginning of the bilge radius taken as 127 * 53 mm Tee bar

9) The total width of deck plating considered to be 

longitudinally continuous is 8 .6  metres except for the tank top 

where width is 9.6 metres.

10) All decks are considered horizontal and parallel to the base line 

i.e. no camber
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11) Parallel side shell structure is considered vertical and 

perpendicular to the base line.

12) The superstructure is regarded as ineffective material providing 

no resistance to longitudinal bending of the hull girder.

With this level of detail forming the basis structural model, the design bending moments 

for the hull girder in the hogging and sagging conditions are required as further pre­

requisites for the design process to proceed. The data input sequence for FRIGA TE is 

shown in Fig. 5.1

5.1.1 Design Methods used for a Midship Section of a Typical Roval N aw

Frigate.

The program FR IG A T E  is designed to generate midship sections which are 

structurally equivalent to the basis model midship section. The means by which 

FR IG A TE does this, is to develop structural components which have total area values 

equivalent to those of the basis model area values but with the make-up of that total area 

is altered by varying plating thicknesses, stiffener types and scantlings. These 

structurally equivalent alternatives are required to satisfy the design criteria that govern 

the longitudinal and transverse structural design and can be generated by maintaining a 

fixed transverse structural arrangement while allowing the longitudinal structure to vary. 

Alternatively, equivalent structures can be generated if the longitudinal structural 

arrangement remains fixed while the transverse structure varies. Both of these methods 

are used to develop structural alternatives to the basis model of a typical frigate's midship 

section. As a further convenience in relation to data handling within the subroutines the 

midship section is divided into the following seven identifiable structural components, 

using a bottom up philosophy :

1 ) outer bottom

2 ) tank top

3) bilge

4) 2 Deck
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5) side shell

6 ) 1 deck

7) 01 Deck.

5.1.2 Design Method 1 - Constant Transverse Structure with Variable

Longitudinal Structure.

In this design method the longitudinal material of each structural component is 

optimised in terms of the minimum number of longitudinal stiffeners of any particular 

type while the transverse structure remains unaltered.

As can can be seen from Fig. 4.2, there are three deck structures considered in 

the basis structural model of a typical frigate midship section. In order that FRIGATE 

operates with maximum flexibility, each deck structure is allowed to have a unique 

structural arrangement of longitudinal stiffeners and transverse frames associated with it 

so that a particular arrangement on one deck need not be repeated on either of the other 

two. Through the diversity of structural components and different set of loading 

conditions on each deck, it is unlikely that the optimum deck frame spacings will be the 

same. Such a structure is impractical to fabricate and the minimum spacing within the 

group will determine the most satisfactory frame spacing for the deck structures taken as 

a group. This transverse frame spacing is then applied throughout the remainder of the 

midship section.

With the basis model defined it is now possible to calculate various properties of 

this particular structural definition of a midship section. These properties include the 

position of the neutral axis for the midship section as a whole, the position of the local 

neutral axis of each structural component, the second moment of area for the whole 

midship section and the area contributions of plating and longitudinal stiffeners to the 

area total of each structural com ponent. Using these values and applying simple beam 

theory to the hull girder, the compressive stresses induced by hull bending can be 

calculated for each structural component. If these environmentally imposed loads do not 

exceed the limit loads, adjusted for safety factors, in each structural component, then the
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design procedure can continue. The principal limit loads are those applied to the strength 

deck with the hull girder in the sagging condition and the outer bottom by the hogging 

condition. Conversely if the limit loads in any of the structural components are 

exceeded, then the midship section must be re-defined before the design procedure can 

continue.

Using a structurally acceptable longitudinal midship section structural definition 

the procedure advances to checking the transverse structure in terms of scantlings and 

spacings within each structural component. The assumed loadings on the transverse 

members are those detailed in Appendices 8,9 and 10 of Ref. 43 in which the transverse 

members are considered to be resisting bending loads only while offering structural 

support to the longitudinal material.

The method employed in determining the transverse frame spacing for a 

particular midship section is described below and is shown in Fig. 5.2: -

1) calculate the DnV Rule required minimum section modulus,

REQMOD, for N2 01 deck transverse member, under the 

specified loading and an assumed transverse frame spacing 

of 1 metre.

2) calculate the actual effective section modulus, ACTULZ, of 

the transverse member acting with the Rule-determined 

effective breadth of plating.

3 ) if  the section modulus value calculated in step (2 ),

ACTULZ, is greater than or equal to REQMOD, calculated 

in step ( 1), then this transverse member may be used in the 

strength deck structure at the assumed transverse spacing.

4 ) maintaining these transverse member scantlings, increase 

the transverse frame spacing incrementally until the actual 

section modulus is still just greater than the required
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minimum allowed by DnV for this particular transverse 

member under the specified loading conditions.

5) by increasing the frame spacing, the column length of the 

longitudinals is increased, hence interffame panel buckling 

must be reconsidered.

6 ) if the increased transverse frame spacing results in failure of 

the longitudinal structure it is then necessary to calculate the 

maximum column length of the smallest longitudinal of the 

strength deck that can withstand the applied loading 

conditions with the specified safety margin.

7 ) the frame spacing (= longitudinal column length) calculated 

in step (6 ) is the upper bound limit on the frame spacing 

that satisfies the criteria for both the transverse member and 

the longitudinal structure.

By following the procedure described in steps (1) to (7), above, for each deck 

structure a maximum transverse frame spacing for each deck can be calculated. Only the 

smallest of these frame spacings, applied to all three deck structures, will ensure that 

both fabrication and structural design criteria are not being violated. Therefore, the 

transverse frame spacing for the midship section is subsequently taken as the minimum 

transverse frame spacing value calculated by following the procedure outlined in steps 

( 1) to (7 ) above after application to each of the deck structures in turn.

Once a transverse frame spacing has been rationally calculated and accepted in 

accordance with the design criteria, the remaining transverse structural members must be 

designed such that they can withstand the environmental lateral loading to which they are 

subjected at this predetermined frame spacing.



5.1.3 Design of Side Shell Transverse Members.

For those members that form the transverses at the side shell other simplifying 

assumptions have been made. The first assumption is that one uniform member extends 

from the height of N2. 01 deck to the start of the bilge radius. This deviates from normal 

ship structure where different sized sections are used to form the transverse member 

between decks. In such cases, transition pieces are required to ensure continuity of the 

structure. The second assumption is that each intermediate length of the side shell 

transverse frame member between decks is considered to be pinned to it's adjacent 

section at the intersection of the deck and side shell transverse members. As the height 

between decks can be variable, the critical length of section governing the design of side 

shell transverse frame members to the predetermined frame spacing, is therefore taken as 

the maximum length between these pinned joints (i.e.the maximum 'tween deck height).

5.1.4 Design of Bilge Structure and Outer Bottom Transverse Members.

The design of the members forming transverse frames in the bilge and the outer 

bottom structures is not as straightforward as for the other structural components. The 

design load on these members takes into account the static head of seawater as well as 

the contribution made by the dynamic head of seawater as the vessel moves through the 

water. This implies a linearly varying lateral load which is directly proportional to the 

draught of the vessel. This raises the problem of how best to deal with a linearly varying 

lateral load on the transverse members of a particular structural component. The method 

adopted in FR IG A TE is to design the whole member so that it will not fail if the peak 

load is applied uniformly over the total length of the member. This will result in a degree 

of redundancy at those parts of the member close to the waterline.

5.1.5 Design of Fabricated Sections.

Due to the intensity of the applied load and the predetermined spacing of the 

transverse members of the bilge and outer bottom structures, it may transpire that
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standard rolled sections, of a type specified by the user, cannot provide sufficient 

scantling dimensions or section modulus to satisfy the design criteria. When situations 

of this nature arise it is necessary to design a suitable fabricated section which for the 

purposes of this study is assumed to be a tee. The scantlings of the web and flange of 

these fabricated tees are determined by a procedure that stems from a subjective study of 

the LST's currently used in Royal Navy design. By considering the dimensions of the 

web and flange of the larger LSTs it was found that both the web depth to flange width 

and the flange to web thickness ratios are approximately two. Maintaining these ratios 

for the fabricated section, a section can be designed that when acting with the effective 

breadth of plating will have at least the required section modulus value. To initiate this 

design procedure, the web depth is taken as 250 mm (approximately the same as the 

largest LST) and increased incrementally, together with the flange width, until the design 

section modulus is attained. Checks on the geometry of the section are carried out in 

accordance with the guidelines of NES 110, Vol 1, [43] for the design of large fabricated 

sections, to ensure that web or flange buckling does not occur.

The subsequent steps in the design procedure involve altering the longitudinal 

structure of the originally defined midship section. An effective means by which this can 

be done is by maintaining a constant area value for each structural component in turn, but 

vary the components that make up this constant area value. By evaluating the area of 

longitudinally continuous material required in each structural component of the basis 

model midship section and varying the contributions made to these areas by the plating 

and stiffeners, different structural arrangements can be produced.

5.1.6 Longitudinal Stiffener Disposition.

From the details shown in Fig. 4.2 of the basis model midship section, it can be 

seen that two panel types exist for each deck consisting of two identical wing panels and 

a centre panel separated by engine uptake/downtake trunking. Varying dispositions of 

plating and stiffener material must satisfy the total area constraint as well as the 

longitudinal design criteria for each panel. Several previous studies, [8 , 9, 10], 

investigating the fabrication costs of ship structures, conclude that minimal fabrication 

costs are incurred when the maximum longitudinal stiffener spacing is achieved across
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the width of a panel. Bearing this in mind, the sectional material is disposed across both 

deck panel types such that a maximum longitudinal stiffener spacing is achieved in each 

panel type. The wider of these spacing is taken as the critical spacing of the complete 

deck structure in question for the calculation of the interframe panel collapse load of the 

longitudinal stiffener and effective width of plating. If this interframe panel collapse load 

is at least the specified margin of safety greater than the axially compressive, hull 

bending induced load, the structural arrangement is considered as a structurally 

acceptable alternative to the basis model longitudinal structure. Furthermore, when 

dealing with these deck panel types, there are six positionally fixed longitudinals. This 

arises from studying the details of Ref. 47 where these fixed girder positions are at the 

hatch sides on the three panels (4 stiffeners) and at 0.5m distance inboard from the port 

and starboard side shell.

When structural components other than the multi-panel deck structures are 

investigated, the most convenient means of determining the critical longitudinal stiffener 

spacing is simply to divide the total panel width by the number of stiffeners plus one.

It should be noted here that each alternative structural arrangement consists of 

plating and the relevant number of uniform stiffeners. This may be regarded as an 

additional design constraint in view of the fact that the basis model midship section 

definition may have varied longitudinal sizes on each deck panel type. However, 

various methods of allowing combinations of different sized longitudinals in any 

structural component proved cumbersome and unwieldy and are therefore not 

implemented.

During the search for the optimal structure for any of the structural components 

(i.e. the alternative structure that has the least number of components) various checks are 

performed to ensure that the fabrication of such a structure is not unnecessarily 

complicated by the fact that the welder has limited accessibility to a particular joint. 

Using an expression published in Ref. 20 the minimum spacing allowed between 

symmetrical stiffeners can be calculated. By adapting this expression, this minimum 

spacing check can also be extended to asymmetrical sections. Therefore, as long as any 

alternative design spacing calculated for each structural component is not less than the
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minimum spacing, this ensures that proper fabrication techniques are possible and a 

wholly acceptable structural alternative has been generated for that particular structural 

com ponent.

Another important geometrical check performed is to guarantee a minimum flange 

clearance between intersecting grillage members. This minimum flange clearance is 

taken as 40mm in accordance with section 6  of Ref. 43 in the case of OBPs and Flats. 

However, in keeping with the basis model, using LSTs, this flange clearance is not 

always attainable and therefore when using LSTs 35mm is taken as adequate. As the 

longitudinals are regarded as being continuous, the transverses have a slot cut in their 

webs. In order to retain structural strength of these penetrated members it is assumed 

that all cutouts are bridged by compensation pieces.

5.1.7 The use of "curve fit" data .

In many design procedures reference is sometimes made to graphical 

information. This aspect has been eliminated in FRIG ATE by using polynomial 

equations, fitted by a "least squares" approach, to the graphical in the design codes.

The first instance where such a polynomial expression is needed is in the 

calculation of the effective width of plating that is considered to be acting with the 

attached stiffener. In order to evaluate the effective width ratio be/b it is necessary to 

estimate the plate slenderness ratio (3 (defined in Eqn. 7a) using Faulkner's plate strength 

relationship, Eqn. 10, for a residual stress factor r\ = 3 (see Fig. 5.3). A 14th order 

polynomial expression is used in this instance to provide the same accuracy as the 

manual interpolation. A limitation on this expression is the necessity to keep it within the 

same data range as the graph and therefore any plate thickness and stiffener spacing ratio 

that causes (3 to exceed the value 5 is ignored.

A further occasion where the use of such curve fit data is useful is during the 

calculation of the critical buckling stress of steel columns. In this calculation it is 

necessary to determine the the ratio of the average crippling stress of un-annealed steel 

columns (stiffener acting with an effective width of plating) to the material yield stress
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for various values of the column slenderness parameter X. In Fig. 4.4 the abscissa X is 

related to the ordinates of the ratio c u/Cy, a combination of the Euler hyperbola and 

Johnson parabola merged at a point of common tangency. In this case, there is an upper 

bound value to the data range X = 3.0. Therefore, if the column slenderness is greater 

than 3.0 the design procedure is terminated and re-started using a new section.

5 . 2 .  Design Method 2 - Variations in the Transverse Structure.

In this design method, the transverse structure is considered variable in terms of 

transverse frame member types, scantlings and spacing within each structural 

component. Following a successful run of FRIGATE operating in this secondary 

mode, to establish a satisfactory transverse structural design, the program automatically 

enters the design procedure outlined as Design Method 1 in Section 5.1.1.

Both means of data input, i.e. from datafile or keyboard, are suitable in this 

particular design method. Design Method 2 is flexible enough to allow different section 

types to be used as transverse frames in each of the different structural components. 

This may or may not be practicable from a fabrication viewpoint but it is a facility that is 

available to the user which allows comprehensive exploration of the complete range of 

available options.

Some features of Design Method 1 are repeated in Design Method 2, primarily 

the need to define a complete midship section structural arrangement of longitudinal 

material. The same basis model as described in paragraph 5.1.2 can be used to initiate 

the design procedure or an alternative structural arrangement can be detailed by the user. 

Progressing from the need to define a complete midship section, the user is asked to 

input the following design parameters in order that the design of the transverse structure 

can proceed

1 ) the nature of the hull bending moment, sagging or hogging.

2 ) the type of rolled section to be used as the transverse frame 

member within each particular structural component.

3 ) the length and spacing, in metres, of the transverse frame.
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4) the design head of seawater considered to be acting on the 

transverse frame.

5) the scantlings of a "first shot" transverse frame member.

After determining these input factors the design process continues by stepping 

through the following procedure shown diagrammatically in Fig. 5.4..

1 calculate the DnV Rule-required minimum section modulus 

, REQMOD, for N2 01 deck transverse member under the 

user specified loading and frame spacing.

2 calculate the actual effective section modulus, ACTULZ, of 

the transverse member acting with the Rule-determined 

effective breadth of plating.

3  if  the section modulus value calculated in step (2 ),

ACTULZ, is greater then or equal to REQMOD, calculated 

in step (1), then this transverse member may be used in N2 

0 1  deck structure at the user specified transverse frame 

spacing.

4  if  the section modulus value calculated in step (2 ),

ACTULZ, is less than REQMOD, calculated in step (1), 

then F R IG A T E  asks the user to decide on one of the 

options for the particular structural component under 

investigation :

a) search out the next suitable available size of the section 

type chosen ?

b) for the particular transverse frame member specified, 

determine the transverse frame spacing that satisfies the 

criteria being used for the design of the transverse 

structure ?
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5 if after searching through all the available section sizes and 

ACTULZ is still less than REQMOD, FR IG A TE will 

automatically calculate the maximum transverse frame 

spacing allowed by DnV Rules, for the largest section of 

the type specified by the user.

If step (4a) is answered in the affirmative, then a search is commenced for the 

first section from the database that provides a combined section modulus value, greater 

than that required by Dnv rules.

If the response to step (4a) is negative, FR IG A T E  will ask if the design 

procedure should seek out a transverse spacing that, when used in conjunction with the 

specified section type and size, will provide a suitable section modulus value for the 

specified loading conditions. If at the end of this design loop, the section modulus value 

still does not satisfy the design criteria then the program will suggest that the use of a 

bigger section should be investigated. If after rejecting option (4a) and then (4b) is not 

accepted, FRIGATE will stop and the complete design procedure has to be re-entered 

from the very beginning.

Irrespective of which design method is used, FRIGATE will always search out 

an alternative structure which has fewer fundamental components than the basis model 

described by the user. The search sequence employed by FRIGATE is shown in Fig. 

5.5.

5 . 3 .  Relative Fabrication Cost Subroutines

In broad terms, the fabrication of a complete midship section twin unit assembly 

can be regarded as three distinct groups of related activities, from the initial stages of 

sub-assembly through to the final stages of erection on the building berth. The program 

SH IPCO ST gives the structural designer a means of rapidly assessing the relative 

fabrication costs associated with these three stages of the build cycle in the progressive 

sequence they would form in reality. These three stages are :
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1) primary components and their fabrication into the structural 

components detailed in section 5.1.1.

2 ) installation of each structural component unit on the building 

berth and the link up and integration with adjacent structures in 

their vertical sense to form a complete transverse structural 

ring, e.g. side shell to bilge structure.

3) installation of a second transverse structural ring, identical to 

the first, including the link up and integration to each structural 

component counterpart on the building berth in the longitudinal 

sense, e.g. double bottom unit to double bottom unit; bilge 

structure to bilge structure; etc.

The input data required for SH IPCO ST can be generated in two ways. Firstly, 

as output from the structural design program FR IG A TE or secondly as user response 

to a menu driven structural topography definition procedure.

5.3.1 Data Input Requirements.

1) Using data from FRIGA TE

The raw output from FR IG A TE is only part of the data required as input to 

SH IPCO ST and consequently additional data is required. In structural design it is not 

necessary to know how many panels and individual plates within panels go into the total 

width of plating that is considered longitudinally continuous in any one structural 

component. Similarily, it is not necessary to know the individual panel lengths or plate 

widths when dealing with the structural design of of a midship section. However, this 

additional data is required when dealing with the relative fabrication cost estimation of a 

structure. Therefore, as is the case with FR IG A T E , reference is made to a detailed 

basis model midship section for SHIPCOST which is supplemented and updated as the 

optimisation of the structure is carried out by FRIGATE.
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The basis model in this instance is sub-divided into the same structural 

components as previously discussed together with the additional details listed below, 

using the bottom up philosophy :

1) Outer bottom -1  orthogonally stiffened flat panel with the 

following plating dim ensions:

No off Length Width Thickness

2 7.22 1.75 0.010

2 7.22 2.50 0.010

1 7.22 2.00 0.010

No off Length Width

4 7.22 1.75

1 7.22 2.50

2) Tank top -1  orthogonally stiffened flat panel with the following 

plating dimensions:

Thickness.

0.010
0.010

3) Bilge structure - 1 orthogonally stiffened curved panel with the 

following plating dim ensions:

Thickness.

0.010

0.010

4) N2 2 Deck - 3 orthogonally stiffened flat panels with the 

following plating dimensions :

Wing Panel P lates:

Thickness.

0.010
0.010

No off Length Width

1 7.22 2.75

1 7.22 2.00

No off Length Width

2 7.22 1.95

2 7.22 1.65
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Centre Panel Plates

No off Length Width Thickness.

1 7.22 1.50 0.010

5) Side shell -1  orthogonally stiffened flat panel with the following 

plating dimensions

No off Length Width Thickness.

1 7.22 2.50 0 . 0 1 0

1 7.22 2.15 0 . 0 1 0

1 7.22 1.90 0 . 0 1 0

6 ) N2 1 Deck - 3 orthogonally stiffened flat panels with the 

following plating dimensions:

Wing Panel P lates:

No off Length Width Thickness

2 7.22 1.95 0.010

2 7.22 1.65 0.010

Centre Panel Plates

No off Length Width Thickness.

1 7.22 1.50 0.010
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7) N2 01 Deck - 3 orthogonally stiffened flat panels with the 

following plating dimensions :

Wing Panel P lates:

No off Length Width Thickness.

2 7.22 1.95 0.010

2 7.22 1.65 0.010

Centre Panel Plates

No off 

1

Length

7.22

Width

1.50

Thickness.

0.010

Using this format to define panel and plate sizes in each structural component 

allows F R IG A T E  to post process it's datafile for input to S H IP C O S T  in terms of 

plating sub-division, thicknesses and number and type of structural sections used in both 

the longitudinal and transverse directions.

2) User Defined input to SHIPCO ST

This means of data generation allows the relative fabrication cost of any mild 

steel midship section, defined by the user, to be estimated assuming that there are no 

radical changes to the construction method so that the relative fabrication cost algorithms 

contained in S H IP C O S T  are still applicable. The data input sequence for 

SH IPC O ST  is shown in Fig. 5.6

This method of data input to SH IPC O ST is more flexible than that involving 

post processed output from F R IG A T E . This flexibility, however is gained at the 

expense of speed in that the user defined input requires considerable time in preparation 

and entry and thereby prolongs the execution time of SHIPCOST. This type of input

81



can be entered to S H IP C O S T  by two methods, either directly from a datafile 

previously prepared by the user or by prompting from a menu driven data generation 

procedure during the program execution. Listed below is a sample set of the prompts 

used in this method of a structural component structural detail definition.

Ship Area 2 - Tank Top (P > = P rom pt, R > = User Response)

P > How many orthogonally stiffened panels are there in the tank 

top structure ?

R > 1

P > Input type of sections used as i) Longitudinal Stiffeners

ii) Transverse Members

R > T E E S_FA B

P > Input number of plates in Tank top Panel number 1

R > 2

P > Inpu t:

i) Length of Plate (m)

ii) Width of Plate (m)

iii) Thickness of Plate (m)

iv) Number of Transverse members

v) Number of Plate Longitudinals attached to this Plate 

R > 1 0 . 0 ,5 . 0 ,0 . 0 1 0 ,9 , 1

P > Input PLate Longitudinal Dimensions :

i) Plate Longitudinal Length (m)

ii) Plate Longitudinal Height (m)

iii) Plate Longitudinal Thickness (m).

R > 1 0 .0 ,2 .0 ,0 .0 1 0

P > Inpu t:

i) Length of Plate (m)

ii) Width of Plate (m)

iii) Thickness of Plate (m)

iv) Number of Transverse members

v) Number of Plate Longitudinals attached to this Plate 

R > 1 0 .0 ,2 .5 ,0 .0 1 0 ,9 ,0
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P > How many different sizes of section are being used as 

longitudinal stiffeners.

R > 2

P > Input longitudinal dimensions and number used.

i) Overall section height (m)

ii) Section stalk thickness (m)

iii) Number of this section being used on this panel.

R > 0 .1 1 4 3 ,0 .0 0 5 6 ,1 0 .

P > Input longitudinal dimensions and number used.

i) Overall section height (m)

ii) Section stalk thickness (m)

iii) Number of this section being used on this panel.

R > 0 .1 7 7 8 ,0 .0 0 7 6 ,2

P > Input component dimensions of transverse fabricated section.

i) Web height (m)

ii) Web thickness (m)

iii) Flange width (m)

iv) Flange thickness (m)

R > 0 .4 5 0 ,0 .0 1 0 ,0 .1 0 0 ,0 .0 0 6

P > Are there vertical floors to be considered as part of the tank top ? 

R > Y es  

P > Inpu t:

i) Number of vertical floors

ii) Number of piece parts in each vertical floor.

R > 2 ,4

P > Input length, height and thickness of each VF piece part.

R > 2 . 0 ,1 . 5 ,0 . 0 1 0

P > Input length, height and thickness of each VF piece part.

R > 2 .0 ,1 . 5 ,0 . 0 1 0

P > Input length, height and thickness of each VF piece pan.

R > 2 .0 ,1 . 5 ,0 . 0 1 0

P > Input length, height and thickness of each VF piece pan.

R > 2 . 0 ,1 . 5 ,0 . 0 1 0
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Similar sets of prompts are repeated for each structural component in turn to 

supply the necessary details which enable S H IP C O S T  to estimate the relative 

fabrication cost of fabrication and erection and the material cost associated with each 

structural component structural block. However, this is not the limit of the detail input 

that SH IPC O ST can cater for. At that part of SH IPC O ST which models the link up 

and integration of structural component units on the building berth the program will 

prompt the user for information regarding the use of brackets, collar plates where 

structural sections penetrate plating, web doubler plates and whether one or two 

connection lugs are used at major transverse bulkhead penetrations. In these instances 

the user replies with a simple YES or NO. If the affirmative is entered, then all 

dimensions of the collar plates, web doubler plates, brackets or connections are 

automatically calculated in terms of the web depth, flange width and thickness of the 

structural component member to which they apply.
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C Start )

Input Midship Structural Definition See Fig. 5.1

For Midship section calculate :
a) For each structural component calculate:

i) Total stiffener area
ii) Total plating area

b) Position of Neutral Axis above baseline
c) Second moment of area for midship section

For structural component input:
a) Nature of applied bending moment (hogging or sagging)
b) Longitudinal stiffener spacing
c) Transverse member span and spacing
d) Applied lateral pressure______________
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C H A PTER  6

D ESIG N  STU DIES AND D ISCU SSIO N  OF RESU LTS

Using early versions of F R IG A T E  and S H IP C O S T , initial studies were 

carried out on the structural design and relative fabrication cost o f typical frigate 

structural components. Two types of structural component were principally involved, 

namely flat panel deck structure and double bottom structure. By isolating these two 

types of structure and generating structurally equivalent alternatives (by the method 

described in Chapter 5, section 5.1.7) it was intended to establish trends, indicating the 

direction a structural designer should take to achieve structures with optimum 

associated relative fabrication cost while still meeting their operational requirements. 

As these studies were undertaken prior to the development of the transverse design 

analysis scheme, the following constraints were applied to the structural model 

throughout:

a) fixed transverse member type (Tee)

b) fixed transverse member scantlings (76  * 127 mm)

c) transverse frame spacing fixed at 1 metre

d) six positionally fixed deck panel side girders with basis model 

scantlings

e) constant area value assumed equal to the basis model area for the 

structural component under investigation

The implication of constraint (b) is that it eliminated some of sizes of replacement 

sections due to minimum value of ABS(depth of transverse - depth of longitudinal) to 

permit good fabrication procedures in terms of access for the welding operator. The 

implications of constraint (e) are twofold, firstly the neutral axis position of the midship 

section longitudinal material remains virtually unchanged. Secondly, the weight of the 

midship section material also remains relatively unchanged. Minor variations to the 

basis model values wrere inevitable due to integer stiffener numbers required to attain 

the minimum area requirement of the structural component.
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Limitations of the relative fabrication cost assessment model at this particular 

stage of the overall study were that additional work content associated with intercostal 

grillages and the fitting of tripping brackets were not considered.

As discussed in more detail in Chapter 3 of this thesis, all fabrication costs 

which can be considered as constant overheads are omitted from the final fabrication 

cost figures. Hence the figures are only meaningful in a relative and not in an absolute 

context. A basic labour rate of £15 per calculated manhour is assumed throughout 

these design studies.

6 .1  Relative Fabrication Costs of Flat Panel Deck Structures

The study of flat panel deck structures was undertaken in two stages. The 

first attempts at generating alternative structural arrangements were restricted to using 

Tees as the longitudinal members with constraints (a) to (e) effective. After 

establishing the method of generating structurally equivalent deck structures, it was 

used to replace the longitudinal Tees of the basis model flat panel structure by either 

OBPs or Flats.

6.1.1 The Relative Fabrication Costs of a deck structure using Tee bar

Longitudinals.

The results shown in Fig. 6.1 and 6.2 indicate that for a constant deck area, 

stiffener size has a major influence on the relative fabrication cost for any plate 

thickness. Such a result is not unexpected as the Tee scantlings increase from 25 * 76 

mm to 127 * 254 mm, the sectional area available per stiffener increases and the 

number of longitudinals needed to meet the minimum area requirement decreases for a 

given plate thickness. This results in a reduced stiffener fillet weld length and reduced 

number of longitudinal to transverse connections. Hence, fewer manhours are required 

for the completion of the orthogonally stiffened flat panel.
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Fig. 6.1 also shows that for each stiffener size, the local cost optima is 

associated with the thickest plating (i.e. minimum number of stiffeners). It can also be 

seen from Fig. 6.1, that for each stiffener size there is a minimum relative fabrication 

cost associated with the boundary of a feasible design space. Taking cognizance of 

constraint (b), the results shown in Fig 6.1 for the 76 * 127 mm Tee bar are optimistic 

as the influence of intercostal grillage connections on the inherent work content are not 

reflected in the aggregate relative fabrication cost figures presented. Similarily, the 

results for the 25 * 76 mm Tee bar are also optimistic if the recommendations of Ref. 

49 for tripping brackets are adhered to.

Fig. 6.2 clearly shows the cost optimum to be associated with the minimum 

number of attached stiffeners regardless of plate thickness. Furthermore, near the 

optimum, as the contribution from the plating to the constant area value increases (i.e. 

as plating thickness increases) relative to the contribution made by the stiffeners, there 

is a slight reduction in the relative fabrication cost of the deck panel. This reflects the 

low material cost of the plating relative to that of Tee stiffeners. The reversal of this 

trend associated with larger number of stiffeners and 8 mm and 9mm plating is directly 

related to the substantially lower cost per tonne of the two smallest sections used in 

these options. Following the trend line from top right to bottom left for the 8 mm 

plating, each data point represents an increasing stiffener size. Thus as plating costs are 

constant on this trend line, the step increase is directly associated with the step increase 

in the cost per tonne of 5 largest Tee stiffener sizes. The close proximity of these trend 

lines indicates that the material cost has a minor bearing on the total relative fabrication 

cost of the structure in relation to the major influence of the number of component parts 

used in construction which should clearly be minimised.

Fig. 6.3 indicates that although some options of stiffener size and plate 

thickness show marked differences in the cost of each type of material, particularly in 

relation to plate thickness, Fig. 6.4 indicates total material cost variations are much 

smaller, the percentage variation between minimum and maximum being 15.2% while 

the the corresponding variation in total relative fabrication cost is 115.7%. This serves 

to further emphasise that the dominant influence on the relative fabrication costs of a 

structure is the associated work content related to the number of component parts.
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6.1.2 Relative fabrication costs of Deck Structures using QBPs 

and Flats as longitudinals.

The trends shown in Fig. 6.2 indicate that a cost optimised structure is 

unlikely to be associated with structural alternatives requiring greater than 40 stiffeners. 

Furthermore, structures with less than 10 stiffeners are unlikely to satisfy the 

longitudinal design criteria applied to deck panels. By incorporating these two 

restrictions and releasing constraint (d) of the opening paragraph, flat panel deck 

structures were investigated for least relative fabrication cost using longitudinal 

stiffeners of either OBP or Flat Bar section. There is however one further point to 

consider at this juncture. When the computer model was used to investigate feasible 

structural alternatives to the basis model deck panel structure using both these section 

types as longitudinals, the initial results could not be used to substantiate the trends in 

Section 6.1.1 or indeed establish other different trends. This was because there were 

too few structural alternatives to the basis model deck panel generated by the computer 

model. The reason being simply, that the in-plane compressive stress loading (hull 

bending induced) applied to the deck structure was at a level that prohibited the use of 

OBPs and Flats, in the numbers required to maintain the constant area constraint, as 

longitudinal stiffeners. Therefore, the following discussion relates to a deck panel 

structure that is closer to the midship neutral axis and thus is subjected to less severe 

hull bending induced compressive stresses.

The results shown in Tables 6.1 and 6.2 indicate that a wide range of feasible 

designs for a constant area deck panel can be proposed using different types and sizes 

of stiffeners in conjunction with varying plating thicknesses. As evidenced in these 

Tables, the area per stiffener is inversely proportional to the number required for a fixed 

plating area contribution in order to achieve the constant total area constraint.

When these results are presented in a graphical format there is a clearly 

defined relationship between the number of stiffeners and the fabrication manhours and 

hence ultimately the relative fabrication cost. Fig. 6.5 indicates that the inherent work 

content related to flat panel construction is directly proportional to the number of flat bar 

stiffeners used in it's fabrication. This association of increased stiffener numbers and 

increased relative fabrication cost is shown to apply for different plate thicknesses. 

This phenomena is emphasised by the "flatness" of those trend lines representing the
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material cost element of the total relative fabrication cost figure. Similar trends to those 

of Fig. 6.5 are reflected in Fig. 6 . 6  for OBP stiffener types across a smaller range of 

stiffener numbers. The structures using the thicker plating material invariably incur 

greater material costs and this is reflected in slightly higher relative fabrication costs. 

This is a significant result. Referring to Tables 6.1 and 6.2, when the structures using 

8 mm and 9mm plating and similar number of stiffeners are compared, in terms of 

relative fabrication time, the deck panel using the lighter plating and the heavier stiffener 

requires more manhours for completion than the heavier plated lighter stiffener 

structure. Thus, when the heavier plated lighter stiffener structure incurs greater 

relative fabrication cost, this reveals that the effect of plate material cost dominates that 

of increased relative fabrication time when the labour rate of £15/manhour. This effect 

would be lessened and indeed reversed if an increased labour rate is assumed to apply.

A further measure of merit presented in Figs. 6.7 and 6 .8  is the relative 

fabrication time against safety factor. In this instance , the safety factor is defined as 

the ratio of the critical collapse stress of the effective columns in the deck panel to the 

axially compressive hull bending induced in-plane deck stress. As described in Chapter 

5, section 5.1.7, there are two individual panel types with independent stiffener 

dispositions considered to represent a deck panel structure, wing panels and a centre 

panel. The critical collapse load of the deck structure, is taken to be the collapse load 

associated with the wider longitudinal spacing across the wing and centre panel types. 

The general trends depicted in Figs. 6.7 and 6 .8  is that as the factor of safety increases 

so too does the associated work content of the completed deck panel, in other words - 

increased safety levels incur fabrication cost penalties.

Fig. 6.9 is an overlay of Figs. 6.5 and 6 .6  and includes data points indicating 

the relative fabrication cost of those structural alternatives to the basis model of this 

deck panel when Tee bars are used as the longitudinal stiffeners. Fig. 6.9 clearly 

highlights the directly proportional relationship that exists between the number of 

stiffeners and the relative fabrication costs, irrespective of stiffener type and plating 

thickness. It is also indicated, by the individual data points relating to the Tee bar 

Stiffeners, by inference of the number of stiffeners required to maintain the constant 

area constraint, that structures stiffened with the smaller Tee bar sizes incur comparable
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relative fabrication costs to the other two section types. Whereas, when the larger size 

of Tee bars are used, there is a distinct difference in the relative fabrication cost. Since, 

the number of component parts used in each alternative structure is equal and only 

minor differences in inherent work content can be expected due varying stiffener 

scantlings, then the major difference in relative fabrication costs must be attributable to 

the greater cost of large Tee bar sections when compared to the other two section types.

From Tables 6.1 and 6.2 it can be seen that there are several instances where 

the same number of stiffeners of varying scantlings, attached to the same thickness of 

plating result in different fabrication manhours and material cost. As the material 

pricing policy of British Steel, is the major cause of this effect, accurate modelling of 

material price structures must form part of any detailed optimisation although they are 

outwith the control of a designer. Differences in the relative fabrication manhours 

however needs further explanation. This is done separately for OBPs and Flat bars for 

clarity, although the principle outlined below generally applies to both section types.

Firstly, consider the case of using Flat bar section types for the replacement 

longitudinals of the basis model deck panel. When Flat bar sections, of the scantlings 

detailed in Table 6.1, are welded to plating thicknesses of 8 and 9 mm, it is the lesser of 

the material thicknesses that determines the fillet welding rate applicable for stiffener 

attachment to plating. Therefore, in those cases using 40 * 35 mm and 45 * 30 mm, 

where 28 in number are required, in addition with 9 mm plating, the welding rate 

applied to the welding activities on each panel are identical in every respect - but there is 

a difference in relative fabrication time. To explain this apparent paradox, the total 

relative fabrication manhour figures require to be broken down into their constituent 

values. The information presented in Tables 6.3 and 6.4 indicate where the differences 

occur for two deck panel structures, identical in every respect other than the scantlings 

of the longitudinal stiffeners.

If the deck panel to which the results presented in Tables 6.3 relate, is referred 

to as Deck Panel No 1 and it's component panels referred to as Panels 1(a), 1(b) and 

1 (c) it can be seen that the flat bar stiffeners used as longitudinals have the dimensions 

40 * 35mm. Using a similar notation, Panels 2(a), 2(b) and 2(c) have longitudinal flat 

bar stiffeners with dimensions 45 * 30mm, as shown in Tables 6.4. On closer
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inspection it can be seen that the manhours expended on plating activities on Panels 

1(a), 1(b) and 1(c) and on Panels 2(a), 2(b) and 2(c) are the same. Similarily, the 

welding times expended on plate seams, longitudinal and transverse member attachment 

to plating are the same across corresponding panels of Deck Panels No 1 and No 2. 

However, there is a difference in the time it takes to complete the connections between 

the orthogonal members of the grillage across these two Deck Panels. This can be 

attributed to the fact that the dimensions of the lug used in connecting the orthogonal 

members is a function of the ratio of the depth of the main member (transverse Tee bar) 

to the depth of the piercing member (longitudinal flat bar) and the web thickness of the 

main member. As on both Deck Panel No 1 and Deck Panel No 2, the transverse 

member has the same dimensions then the difference in "connection time" can be 

regarded as a function of the difference in depth (overall section height) between the 

two flat bar stiffeners used. This result highlights the factors of the design detail that 

ultimately have a bearing on the relative fabrication cost of the structure. Furthermore, 

it emphasises the level of detail that needs to be examined, if the true optimum, in terms 

of relative fabrication costs, is to be found.

Minor differences in relative fabrication time and ultimately in connection time 

are shown in the situation where the same number of OBP stiffeners of different sizes 

are attached to the same plating thickness. However, the magnitude of these 

differences is somewhat less than in the Flat bar case. As explained above, the 

dimensions of the lug used for connections between orthogonal members of the grillage 

are primarily a function of the depth of the piercing members (in this particular design 

study these are constant, i.e. the Tee bar transverses of the size stated in constraint (b)) 

and the thickness of the main member. Therefore, the minor variations in connection 

time in this instance are attributable to the minor variations in the web thickness of the 

main member.

6.1.3 Relative Fabrication Costs of Flat Panel Deck Structures of

varying Transverse Arrangement.

Having investigated and discussed the heavily constrained basis model flat 

deck panel structure (Section 6.1.1) and proceeded with a less constrained model 

(Section 6.1.2) the next study undertaken was to investigate a further model which was
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the least constrained of the structures discussed thus far. To this end the transverse 

member was no longer regarded as having fixed scantlings, the frame spacing was no 

longer maintained at 1 metre and the deck girders, previously regarded as fixed, were 

allowed to vary in terms of scandings but not in their positions.

Using DnV Classification Society Rules [44], the scantlings of the transverse 

member were determined, while the applied load cases they were being designed to 

resist were dictated by NES 110 [43]. Firstly, the basis model frame spacing was 

maintained at 1 metre and alternative structures, both transverse and longitudinal, were 

proposed by using different sizes of Tee section in conjunction with varying plating 

thicknesses. This process was then repeated for 1.3m and 0.7m transverse frame 

spacing and the relative fabrication costs compared.

The trends indicated in the earlier studies (Sections 6.1.1 and 6.1.2) suggest 

that a direct relationship exists between the number of longitudinal stiffeners and the 

relative fabrication cost, this relationship being independent of stiffener type. By 

harnessing this fact, only Tee sections were considered in producing alternatives to the 

basis model in this particular study. This limited the number of structures considered, 

in relation to the possible number of feasible alternative designs, when constraints (b), 

(c) and (d) of the opening paragraph were no longer applicable.

Fig. 6.10 shows the results of varying a basis model flat deck panel in terms 

of transverse member scantlings, spacing and plating thickness. Fig. 6.10 re­

emphasises the trend apparent in the earlier studies that relative fabrication costs are 

directly proportional to the number of longitudinal stiffeners. The other clear trend, is 

that for any discrete number of longitudinal stiffeners, the relative fabrication cost is 

inversely proportional to the transverse frame spacing. Fig. 6.11 indicates that 

although the basis deck panel was probably optimised in terms of both weight and 

strength initially, it also is the optimum in terms of relative fabrication cost. This is the 

influence of the high material cost of the larger sizes of tee bars which dominates that of 

the work content of structures using more component parts but smaller tee bar sizes.
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Furthermore, Fig. 6 .10 shows that for a selected frame spacing and chosen 

longitudinal arrangement (i.e. fixed number of longitudinal stiffeners), the relative 

fabrication cost is directly related to the size of the transverse member. The vertical 

increases in the relative fabrication cost correspond to discrete increases in the size of 

the Tee section being used for the transverse member. Such an increase in relative 

fabrication costs is the outcome of a combination of influences relating to both labour 

cost and material cost. As the scandings of the transverse member increase, the labour 

costs associated with fillet welding the section to the plating and intersecting 

longitudinal structure vary proportionally. Further, as the Tee section web and flange 

dimensions increase, there is a corresponding increase in the material cost. Thus, this 

combination of factors dictate that as the transverse member scantlings increase, for a 

constant longitudinal structure, so does the relative fabrication cost for an orthogonal 

flat panel grillage.

6 .2  Design Study of a Typical Double Bottom Unit of a Royal Navy 

Frigate

Suitable structural alternatives to the basis model double bottom unit as 

described in Chapter 5, Section 5.1, were generated using the method described in 

Chapter 5 with due reference to Ref. 48. As the structural elements in the transverse 

sense were considered non-variable, restrictions were forced on the Tee bar sections 

that could be considered as suitable longitudinals on the tank top and outer bottom.

Paragraph 0618, Clause d of Ref. 43 relating to flange clearance, eliminates 

Tee bar longitudinals with dimensions 127 * 53 mm, 152 * 76 mm, 205 * 102 mm 

when the transverse frame is a Tee bar with 205 * 102 mm dimensions. The cost 

implications indicated in the study of deck panel structures of using Tee bars of 

dimensions of 76 * 25 mm (tripping bracket requirement) and 178 * 89 mm (fully 

intercostal grillage), also render these two options unsuitable for consideration as 

longitudinal members for the tank top and outer bottom orthogonal panel structures of 

the double bottom unit. For these reasons, the dimensions of the Tee bars that are 

considered as suitable longitudinal members for the double bottom unit in this study are 

1 1 4  * 4 4  mm anci 254 * 127 mm.
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Paragraph 2301 of Ref. 50, does not permit the position of the longitudinal 

plate girders to vary without incurring major design changes. Therefore, in this study, 

the longitudinal plate girders are positionally fixed, and consequently their height is 

fixed, thus only allowing their thickness to be considered as a variable.

With all the above factors taken into consideration, three variable parameters 

could be established for the double bottom unit, namely thicknesses of tank top, outer 

bottom and longitudinal plate girders. This provided the means of obtaining a range of 

suitable Tee bar sections to maintain a constant double bottom area while using each of 

the options listed below :

OPTION  A : The outer bottom plating and the tank top plating varys from 

nominal thickness of 13mm to 8 mm simultaneously. Within each step 

change of outer bottom and tank top plating thickness the longitudinal plate 

girders' thickness varys from 13mm to 8 mm.

OPTION B : The outer bottom plating and the longitudinal plate girders 

varys from nominal thickness of 13mm to 8 mm simultaneously. Within 

each step change of outer bottom and longitudinal plate girder thickness the 

tank top thickness varys from 13mm to 8 mm.

OPTION C : The tank top plating and longitudinal plate girders varys 

from nominal thickness of 13mm to 8 mm simultaneously. Within each step 

change of tank top plating and the longitudinal plate girders the outer bottom 

plating thickness varys from 13mm to 8 mm.

The structural nature of the double bottom unit leads to two easily identifiable 

structural assemblies. Namely, the tank top plating and attachments and the outer 

bottom plating and attachments. It follows that depending what are referred to as tank 

top attachments and what are referred to outer bottom attachments in conjunction with 

the sequencing of the tasks involved in the construction of the double bottom unit, 

different construction sequences can be identified. The following four construction 

sequences were identified in this project:
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DOUBLE BOTTOM CONSTRUCTION SEQUENCE 1 -Fig. 3.8 

In this case the tank top includes the sub-assembly of rolled sections being 

used as longitudinals and transverses, plate longitudinals and vertical floors. 

The outer bottom structure includes the rolled sections that are the 

longitudinal stiffeners and the transverse members. This construction 

sequence involves "dropping" the orthogonal outer bottom grillage onto the 

tank top assembly.

DOUBLE BOTTOM CONSTRUCTION SEQUENCE 2 - Fig. 3.9 

In this case the tank top sub-assembly includes the attachments of rolled 

sections being used as the longitudinals and transverse, plate longitudinals, 

vertical floors and the rolled sections of the outer hull. This construction 

sequence involves "wrapping" the tank top assembly with the outer bottom 

plating.

DOUBLE BOTTOM CONSTRUCTION SEQUENCE 3 - Fig. 3.10 

In this case the tank top and outer bottom attachments are as described for 

Sequence 1, above. However this construction sequence involves 

"dropping" the tank top assembly into the orthogonal outer bottom grillage 

assembly

DOUBLE BOTTOM CONSTRUCTION SEQUENCE 4 - Fig. 3.11 

In this case the tank top attachments and the outer bottom attachments are as 

described for Sequence 2, above. However this construction sequence 

involves "dropping" the tank top assembly into the unstiffened outer bottom 

plating sub assembly.

6.2.1 Double Bottom Relative Fabrication Costs.

The results of the double bottom fabrication costs study are plotted in Figs. 

6.12  -  6 . 21 .

When options A (as described above) were analysed, two very clear trends 

were identified, as shown in Fig. 6.12. Firstly, increasing thickness of tank top and
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outer bottom plating result in decreasing relative fabrication costs for a particular 

thickness of longitudinal plate girders. Secondly, as the the thickness of the 

longitudinal plate girders increases for given uniform thickness of tank top and outer 

bottom plating, decreasing relative fabrication cost result. A further trend that can be 

seen is that lower fabrication costs can be achieved if the heavier of the two allowable 

Tee bars is used. Fig. 6.12 also indicates that the local cost optimum for each 

combination of plating thickness and stiffener types fall within a narrow band of 

relative fabrication costs.

Fig. 6.15 shows identical trends to those in Fig. 6.12, but in this case 

Construction Sequence 1 (Construction Task Algorithm 7, Appendix 1) was used in the 

relative fabrication cost calculation.

Analysing options B, similar trends to those described above are evident (Fig. 

3.8 - Construction Sequence 1, Fig. 3.9 - Construction Sequence 2). It can be seen 

from Figs. 6.13 and 6.16 that increasing thicknesses of outer bottom and longitudinal 

plate girders for a given thickness of tank top plating also produces a decreasing cost 

trend. Furthermore, increasing the tank top thickness will also result in lower relative 

fabrication costs for a given thickness of outer bottom plating and longitudinal plate 

girders. Again, with the heavier Tee bar, the relative fabrication costs are lower than 

when the lighter Tee bar is used, as might be expected. The local cost optima for each 

combination of plating thicknesses fall within a narrow band of relative fabrication 

costs, similar to those of options A.

Figs. 6.14 and 6.17 (Construction Sequences 1 and 2 respectively), show the 

same trends that are evident for options A and B of decreasing relative fabrication costs 

with increasing outer bottom plating thickness and uniform thickness of plate 

longitudinal girders and tank top.

Fig. 6.13 (Construction Sequence 1), also shows that there are minor cost 

savings that can be made for the same structure using the same construction sequence. 

The savings results from different stiffener dispositions. When the number of 

stiffeners required is such that different suitable dispositions can be formed, from a
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structural integrity viewpoint ( i.e. different numbers of longitudinals on the tank top 

and outer bottom but the same total) the lower cost solution occurs when the majority of 

the stiffeners are attached to the outer bottom plating. Construction Sequence - 2, also 

indicates that similar savings associated with additional outer bottom stiffeners can be 

achieved.

Fig. 6.18 depicts the local optima for each of the options using the 114 * 44 

mm Tee bar. The abscissa indicates the third thickness variable and the option prefix 

indicates the other two thicknesses. The general trend indicated is that as the third 

thickness increases, the other two become thinner and reduced relative fabrication costs 

result. It can be seen that all of the acceptable options pivot about the relative 

fabrication cost of the basis model double bottom. It is not surprising that the basis 

model has lower relative fabrication costs than some of the options, but as the options 

approach the structural design criteria limit, some further reduction in relative 

fabrication costs can be achieved. Fig. 6.19 shows the local optima for each of the 

options using the heavier Tee bar, using the same format as Fig. 6.18. However, due 

to the smaller range of suitable structural alternatives, general trends are not so easily 

identified.

Combining Figs. 6.18 and 6.19 results in Fig. 6.20, which illustrates the 

interaction of tee bar size and plating thicknesses. It can be seen that individual trends 

of local optima are associated with constant double thickness options which have 

significant steps associated with a reduction in this double thickness. The result is a 

"saw-toothed" trend line with the best results associated at the bottom of each step. To 

expand on this, consider the trend line for Options A and the 114 * 44 mm Tee. The 

two points on the left hand side of Fig. 6.20 indicate a double thickness of 10mm. As 

the third thickness increases fewer stiffeners are required for the constant area value to 

be maintained, resulting in a reduction of the relative fabrication cost of the double 

bottom unit. However, on reducing the double thickness, greater numbers of stiffeners 

are required, resulting in increased relative fabrication costs. Therefore this "saw­

toothed" effect is the result of an increase in stiffener numbers required to meet the 

minimum area requirement which thereby increases the inherent work content.
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The foregoing discussion of the results in this section have been related to 

Construction Sequence - 1 and largely with the smaller of the two allowable Tee bars, 

i.e. 114 * 44mm. Due to the scarcity of options when using the 254 * 127mm Tee bar 

trends are less obvious. However, the local optima shown in Figs. 6.12 - 6.20 indicate 

that by using these heavier sections, the relative fabrication cost o f the structure 

compare favourably with the best local optima when using the lighter sections.

The range of relative fabrication costs, when using the lighter sections, in 

comparison to the basis model is +15.8% to -14.2%. The option which indicates the 

cost saving of 14.2% on the basis model is the one having 13mm tank top plating and 

the remaining two thicknesses as 9mm. The minimum area requirement is attained by 8 

off 114 * 44mm stiffeners. Consequently, the crude structural analysis employed at the 

preliminary design stage and used in these double bottom studies should be checked by 

a more detailed structural analysis to ensure the validity of this particular arrangement. 

When the heavier stiffener is used, the relative fabrication cost range is between -3.4% 

and -12.7% of the basis model, i.e. all options using the heavier section incur less 

relative fabrication costs than the basis model double bottom unit. Again, before 

maximum savings can be realised, the option yielding them (all plating being 9mm) 

should progress from preliminary design analysis to the more thorough detail design 

stage to ensure the structural design criteria are not being violated.

6 .2.2 The Effect Of Using Tee bars and Double Bottom Construction

Sequences 3 and 4 on the Relative Fabrication Costs.

Using Construction Task Algorithms 9 and 10 that were generated to 

represent Double Bottom Construction Sequences 3 and 4, outlined in Figs. 3.10 and 

3 . 1 1  respectively, the relative fabrication costs of the double bottom unit were 

calculated using Tee bars that were compatible with the double bottom transverse 

members ( i.e. satisfied flange clearance requirements).

Using the same format for curves developed for Construction Sequences 1 

and 2, shown in Figs. 6.12 - 6.20, cost profiles can be generated for each feasible 

structure and double bottom Construction Sequence. Fig. 6.21. indicates the general
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trends obtained for alternative structures being fabricated by Construction Sequences 1 

and 3. Only values obtained by using two of the double bottom construction sequences 

are shown in order that the figure remains clear while still indicating the savings 

possible by using Construction Sequence 3 rather than using Construction Sequence 1 . 

Invariably the relative fabrication costs incurred when using Construction Sequences 3 

and 4 are less than those incurred using Construction Sequences 1 and 2. Construction 

Sequence 3 always incurs the least relative fabrication cost.

6.2.3 The Effect of Using OBPs as Longitudinal Stiffeners and Double 

Bottom Construction Sequences 1. 2. 3. and 4 on the Relative 

Fabrication Costs.

By adopting the same procedure for calculating the required number of 

longitudinals to maintain the double bottom constant area and while considering the full 

range of commercially available OBP sections, over 6000 structural configurations of 

the basis double bottom unit were generated. Structural assessment led to only 27 

being considered acceptable from longitudinal strength considerations. As with the Tee 

bars, Construction Sequence 3 incurs the least relative fabrication cost. Table 6.5 

shows the range of acceptable structural alternatives and the relative fabrication costs 

associated with each construction sequence.

6.2.4 The Effect of Using Rolled Flats as Longitudinal Stiffeners and Double 

Bottom Construction Sequences 1. 2. 3 and 4 on the Relative Fabrication 

Costs.

The number of possible structural configurations of the basis model double 

bottom unit using flat bars as longitudinal stiffeners was 22,000. Structural assessment 

of these led to 38 being considered as structurally acceptable. As in the cases of Tee 

bars and OBPs Double Bottom Construction Sequence 3 incurs the least relative 

fabrication cost. Table 6 . 6  shows the range of the structurally acceptable double 

bottom alternatives and associated relative fabrication costs of each Construction 

Sequence.
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6 .2 .5  Comparative Relative Fabrication Costs o f the Double Bottom Unit for

Differing Section Types using Double Bottom Construction Sequence 3.

The relative fabrication cost of the basis double bottom unit with Tee bars as 

the longitudinal stiffeners and using Double Bottom Construction Sequence 3 is 4% 

less expensive than when using Construction Sequence 1. Replace the Tees with OBPs 

and the relative fabrication cost of the double unit is 14% less expensive. This is 

achieved with plate thicknesses of 8  mm for the outer bottom and tank top and 1 0 mm 

for plate longitudinals using 280 * 12 mm OBP longitudinals. With Flat Bars as the 

stiffening members the relative fabrication cost of the double bottom unit is 14% less 

expensive than the basis model double bottom unit. This is achieved with 8 mm tank 

top and plate longitudinals, 11mm outer bottom plating and 120 * 20 mm Flat Bars.

Summarising for the basis model double bottom unit and Construction 

Sequence 3, a saving of 10.5% can be achieved on the relative fabrication costs if the 

plating thickness are altered and OBPs are used. Similarly, a saving of 7.9% can be 

realised if  the Tee bars are replaced with Flat bars in conjunction with altered plating 

thicknesses.
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Tables 6.3

ESTIMATED FABRICATION TIME, MATERIAL W EIGHT AND 
COSTS OF A TYPICAL MIDSHIP SECTION OF A ROYAL NAVY 

FRIGATE

Deck structure

DECK STRUCTURE CONSISTS OF 3 PANELS:

Table 6.3a Wing Panel

Table 6.3b Centre Panel

Table 6.3c Wing Panel

Table 6.3d Summary of Total Deck



Table 6.3a

THE DIMENSIONS OF EACH PLATE ON PANEL Na 1 ARE

LENGTH (m) WIDTH (m) THICKNESS (m)
7 .2 2

7 .2 2
1.9

1.65
0 .0 0 9

0 .0 0 9

SECTION TYPE DIMENSIONS (m) N9 OFF
LONGITUDINALS FLAT 0.040 * 0.035 1 1

TRANSVERSES TEES 0.1520 * 0.073 7

Nfl OFF WELDING WELDIN

METHOD TIME
MILD STEEL PLATES 2 MINIDECK 4.181
FLAT LONGITUDINALS 1 1 FILLET 16.190
TEE TRANSVERSES 7 FILLET 6.845
CONNECTIONS BETWEEN ORTHOGONAL MEMBERS 77 FILLET 3 1. 0 6 9

SUMMARY OF TIMES

TOTAL PLATING TIME FOR THIS FLAT PANEL = 25 .9 6 0

TOTAL WELDING TIME FOR THIS FLAT PANEL = 58 .2 8 6

TOTAL FABRICATION TIME FOR THIS FLAT PANEL = 84 .24 5

COMPONENT % FAB. TIME

PLATING 35.78

LONGITUDINALS 16 .22

TRANS VERSES 8.13

CONNECTIONS 36 .88

WEIGHT (Tonne) COST (£)

SECTIONS 0 .7 5 2  2 0 3 .0 2

PLATES 1 .825 60 1 . 98

TRANSVERSES 0 .29 7  169 .02

TOTAL 2 .873  9 7 4 .0 2
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Table 6.3b

THE DIMENSIONS OF EACH PLATE ON PANEL N® 2 ARE :

LENGTH (m) WIDTH (m) THICKNESS (m) 

7 .2 2  1.50 0 .0 0 9

SECTION TYPE DIM ENSIONS (m) Nfl OFF

LONGITUDINALS FLAT 0.040 * 0.035 6

TRANSVERSES TEES 0.1520 * 0.073 7

Na OFF W ELDING WELDING
METHOD TIME

MILD STEEL PLATES 1 MINIDECK 0.000
FLAT LONGITUDINALS 6 FILLET 8.950
TEE TRANSVERSES 7 FILLET 3.011
CONNECTIONS BETWEEN ORTHOGONAL MEMBERS 4 2 FILLET 16.947

SUMMARY OF TIMES

TOTAL PLATING TIME FOR THIS FLAT PANEL 

14.078

TOTAL WELDING TIME FOR THIS FLAT PANEL 

28.908

TOTAL FABRICATION TIME FOR THIS FLAT PANEL = 4 2 .9 8 6

COMPONENT % FAB. TIME

PLATING 32.75

LONGITUDINALS 2 0 . 82

TRANSVERSES 7.01

CONNECTIONS 39 .4 2

WEIGHT (Tonne) COST (£)

SECTIONS 0 .4 10  110 .74

PLATES 0 .7 60  255 .45

TRANSVERSES 0 .057  32.50

TOTAL 1.227 398 .69
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Table 6.3c
THE DIMENSIONS OF EACH PLATE ON PANEL N9 1 ARE

LENGTH (m)

7 .2 2

7 .2 2

WIDTH (m) 

1.9  

1.65

THICKNESS (m) 

0 .0 0 9  

0 .0 09

SECTION TYPE DIMENSIONS (m) N9 OFF
LONGITUDINALS FLAT 0.040 * 0.035 1 1

TRANSVERSES TEES 0.1520 * 0.073 7

N9 OFF WELDING WELDIN
METHOD TIME

MILD STEEL PLATES 2 MINIDECK 4.181
FLAT LONGITUDINALS 1 1 FILLET 16.190
TEE TRANSVERSES 7 FILLET 6.845
CONNECTIONS BETWEEN ORTHOGONAL MEMBERS 77 FILLET 31 .0 6 9

SUMMARY OF TIMES

TOTAL PLATING TIME FOR THIS FLAT PANEL = 25 .9 6 0

TOTAL WELDING TIME FOR THIS FLAT PANEL = 5 8 .2 8 6

TOTAL FABRICATION TIME FOR THIS FLAT PANEL = 84 .245

COMPONENT % FAB. TIME

PLATING 35.78
LONGITUDINALS 19 .22

TRANSVERSES 8.13

CONNECTIONS 36 .88

WEIGHT (Tonne) COST (£)

SECTIONS 0 .7 5 2  2 0 3 .0 2

PLATES 1.825 601 .9 8

TRANSVERSES 0 . 297  169 .02

TOTAL 2 .873  9 7 4 .0 2
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Table 6.3d

SUMMARY FOR DECK PANEL

SECTIONS

PLATES

TRANSVERSES

TOTAL 6 .9 7 4  2 3 4 6 .7 4

WEIGHT (Tonne) COST (£)

1 .914 516.78

4 .4 1 0  1459.41

0 .6 5 0  370.55

TOTAL FABRICATION TIME FOR DECK PANEL = 211.477 MANHOURS

TOTAL MATERIAL COST FOR DECK PANEL = 2346.74 POUNDS

% WEIGHT %COST

PLATES 63 .2 3  6 2 .1 9

LONGITUDINALS 27 .45  2 2 .0 2

TRANSVERSES 9.33 15.79
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Tables 6.4

ESTIM ATED FABRICATION TIM E, M ATERIAL W EIGHT AND 
COSTS OF A TYPICAL M IDSHIP SECTION OF A ROYAL NAVY 

FRIGATE

Deck Panel structure

DECK STRUCTURE CONSISTS OF 3 PANELS:

Table 6.4a - Wing Panel

Table 6.4b - Centre Panel

Table 6.4c - Wing Panel

Table 6.4d - Summary of Total Deck
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Table 6.4a

THE DIMENSIONS OF EACH PLATE ON PANEL Na 1 ARE :

LENGTH (m)

7 . 22

7 .2 2

WIDTH (m)

1.95

1.65

THICKNESS (m) 

0 .0 0 9  

0 .0 0 9

SECTION TYPE DIMENSIONS (m) Na OFF
LONGITUDINALS FLAT 0.045 * 0.030 1 1

TRANSVERSES TEES 0.1520 * 0.073 7

Na OFF WELDING WELDINC
METHOD TIME

MILD STEEL PLATES 2 MINIDECK 4.181
FLAT LONGITUDINALS 1 1 FILLET 16.190
TEE TRANSVERSES 7 FILLET 6.845
CONNECTIONS BETWEEN ORTHOGONAL MEMBERS 77 FILLET 32 .178

SUM M ARY OF TIM ES

TOTAL PLATING TIME FOR THIS FLAT PANEL = 2 5 .9 6 0
TOTAL WELDING TIME FOR THIS FLAT PANEL = 59 .3 95

TOTAL FABRICATION TIME FOR THIS FLAT PANEL 8 5 .3 5 4

COMPONENT % FAB. TIME

PLATING 35.31
LONGITUDINALS 18.97

TRANSVERSES 8.02

CONNECTIONS 37.70

WEIGHT (Tonne) COST (£)

SECTIONS 0 .725 188.52

PLATES 1.8 25 601.98

TRANSVERSES 0 .297 169.02

TOTAL 2 .846 95 9. 52

T A B L E  6.4b
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THE DIMENSIONS OF EACH PLATE ON PANEL N9 2 ARE :

LENGTH (m) WIDTH (m) THICKNESS (m)
7 .2 2 1.50 0 .0 09

SECTION TYPE DIM ENSIONS (m) N9 OFF
LONGITUDINALS FLAT 0.045 * 0.030 6

TRANSVERSES TEES 0.1520 * 0.073 7

N9 OFF WELDING WELDING
METHOD TIME

MILD STEEL PLATES 1 MINIDECK 0.000
FLAT LONGITUDINALS 6 FILLET 8.950
TEE TRANSVERSES 7 FILLET 3.011
CONNECTIONS BETWEEN ORTHOGONAL MEMBERS 4 2 FILLET 17 .552

SUMMARY OF TIMES

TOTAL PLATING TIME FOR THIS FLAT PANEL = 14 .078

TOTAL WELDING TIME FOR THIS FLAT PANEL = 29 .5 13

TOTAL FABRICATION TIME FOR THIS FLAT PANEL 43 .591

COMPONENT % FAB. TIME

PLATING 32 .30

LONGITUDINALS 20 .53

TRANSVERSES 6.91

CONNECTIONS 4 0 .2 6

WEIGHT (Tonne) COST (£)

SECTIONS 0 . 395  102 .83

PLATES 0 . 7 6 0  255 .4 5

TRANSVERSES 0 .05 7  32.50

TOTAL 1.213 390 .78
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Table 6.4c

THE DIMENSIONS OF EACH PLATE ON PANEL N9 3 ARE:

LENGTH (m) WIDTH (m) THICKNESS (m)
7 .2 2

7 .2 2
1.95

1.65
0 .0 0 9

0 .0 0 9

SECTION TYPE

LONGITUDINALS FLAT

TRANSVERSES TEES

DIMENSIONS (m) NB OFF

0.045 * 0.030 1 1

0.1520 * 0.073 7

N» OFF W ELDING WELDING

METHOD TIME
MILD STEEL PLATES 2 MINIDECK 4.181
FLAT LONGITUDINALS 1 1 FILLET 16.190
TEE TRANSVERSES 7 FILLET 6.845
CONNECTIONS BETWEEN ORTHOGONAL MEMBERS 7 7 FILLET 3 2. 178

SUMMARY OF TIMES

TOTAL PLATING TIME FOR THIS FLAT PANEL = 25 .9 6 0

TOTAL WELDING TIME FOR THIS FLAT PANEL = 59 .3 9 5

TOTAL FABRICATION TIME FOR THIS FLAT PANEL 85 .3 5 4

COMPONENT % FAB. TIME

PLATING 35.31

LONGITUDINALS 18.97

TRANSVERSES 8.02

CONNECTIONS 4 7 .7 0

WEIGHT (Tonne) COST (f)

SECTIONS 0.7  25 188 .52

PLATES 1.8 25 6 01 . 98

TRANSVERSES 0 .29 7  169 .02

TOTAL 2 .84 6  9 5 9 .5 2

T ab le  6.4d



SUMMARY FOR DECK PANEL

SECTIONS

PLATES

TRANSVERSES

WEIGHT (Tonne) 

1.846

4. 41 0  

0 .65 0

COST (£) 

479.87 

1459.41  

370.55

TOTAL 6 .90 6 2 3 0 9. 83

TOTAL FABRICATION TIME FOR DECK PANEL 214.299  MANHOURS

TOTAL MATERIAL COST FOR DECK PANEL 2309.83 POUNDS

PLATES

LONGITUDINALS

TRANSVERSES

% WEIGHT 

63.85  

26.73  

9.42

%COST

63 .18

20 .78
16.04
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CHAPTER 7

C O N C L U SIO N S FR O M  R EL A T IV E FA B R IC A T IO N  CO ST STU DIES 

AND AREAS FO R  FU TU RE D EV ELO PM E N T ,

The general conclusion that can be made is that the original aims and 

objectives, as described in Chapter 1, have been achieved. That is to say, that when 

both programs developed throughout the course of this project are used in tandem, they 

can be regarded as a program package which has the capability to integrate design of 

structure with the cost of it's fabrication at the preliminary design stage.

The usefulness of the computer package as a design tool that can be used in a 

design office environment has yet to be demonstrated. However, from the trends 

dem onstrated in Chapter 6, it is believed that the approach used and the method 

developed could be used to the designer's advantage at the preliminary design stage, if 

a cost optimum solution is sought.

The program FR IG A TE offers the facility to generate alternative structural 

designs of ship's structural components by simply re-defining the section type used as 

structural members, albeit to one set of design rules.

The program SH IPC O ST contains the database of cost elements identified 

as representing general warship-building fabrication techniques. Further cost elements 

relating to the detail of the structure (i.e. brackets, lugs etc) have also been developed. 

This then allows the designer to quantify their contribution to the relative fabrication 

cost of the structure when generally they have been neglected in this sense. At the 

completion of this project there is a series of construction task algorithms available to 

the designer which enable the relative fabrication cost of several structural components 

to be calculated. Admittedly these could be enhanced by incorporating more modem 

fabrication techniques and allowing greater flexibility in the sequencing of construction

tasks.
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When run as a package, the relative fabrication cost optimisation of a basis 

model midship section, on average , could be available within the hour. This is of 

course highly dependent on system availability and choice of replacement section type. 

In percentage terms, FR IG A TE occupies 70% of the run-time and for the remaining 

30% SH IPCO ST calculates the relative fabrication cost of the optimised structure.

As with most computer program suites there are lim itations in their 

application, F R IG A T E  and SH IPC O ST are no exceptions to this general rule. As 

ship structural design is a highly complex and involved process when approached from 

first principles, it was decided that such a rigorous approach to the subject was outwith 

the scope of such a general design evaluation tool. Consequently, various design 

factors ( e.g. the design bending moments of the hull girder) must be evaluated by 

other means and be available as input to FRIGATE. Also, the pre-requisite for a basis 

model structural definition indicates that the general midship section topography has 

been conceived and that FRIGATE cannot be used to generate the initial design which 

would be then subject to further optimisation.

Those structures generated by FRIGA TE as suitable alternatives to the basis 

model are subject to the following constraints :

i the stiffeners of any ship structural component being of uniform size

ii fixed number of stiffeners on side shell panels

iii fixed number of stiffeners on the bilge structure

iv fixed position of plate longitudinals

These factors are a function of the data handling processes used in F R IG A T E  and 

should not be regarded as insurmountable.

To date, FRIGA TE deals with the design of the mid-third length of a typical 

Royal Navy frigate with no attempt being made to model other hull areas remote from 

midships. It is assumed that the relative fabrication costs of the end hull regions will be 

proportional to those of the near parallel mid-region. The midship section employed 

comprised three deck structures,side shell, bilge, tank top and outer bottom. The
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existence o f all these structural components (with the exception being N2 2 deck) is 

required in any basis model different from the one described in Chapter 5 in order that 

FRIGATE will operate in the manner described. The capacity to change the basis ship 

model used rests with the user and his/her familiarity with the running of the program 

and the format of the datafiles.

During each design run of FRIGATE, the user has the opportunity to change 

the width and height above the baseline of the deck structures within an overall depth 

envelope. To alter this overall depth envelope, changes to the bilge and side shell 

plating dimensions must be carried out through revised datafiles.

One aspect of ship's structural design that appears to have been neglected at 

the preliminary design stage, is the the provision of a rational design-redesign process 

for the transverse structure. Available means of determ ing transverse structure 

scantlings are design by Classification Society Rules and assessing suitability of chosen 

scantling by finite element methods. The incorporation of a finite element analysis 

appendage to FRIGATE was never considered possible, although it was used to try 

and derive a useful general algorithm for the design of transverse members. Following 

the lack of success in the area, the usefulness of Classification Society Rules was 

appraised. The application of these types of Rules is a well established and accepted 

practise. However, there are various aspects of such "design by rule" methods that 

make them unwieldy when applied to the transverse structure of warships. In Lloyds 

Rules for example, there are a large quantity of constants applied to the calculation of 

scantlings. The derivations of such constants are vague and apparently unrelated to 

warship structural design formulations. Consequently, the lack of background 

information provided with these types of design rules indicates that a more rationally 

based design regime would be more appropriate to apply when designing warship's 

transverse structure. Ref. 43 appear to offer such a set of design formulations, 

whereby the transverse structure is regarded as part of a grillage and is thus subject to 

interaction with the longitudinal structure and loading. By applying these Rules to each 

structural component's transverse members, a satisfactory design can be rapidly 

achieved to withstand the loading expected of a warship structure.
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The construction task algorithm s com piled during this project and 

incorporated in SH IPCO ST reflect the fabrication techniques and production practises 

used in warship-building in recent years. As a consequence of the industry wide 

decision to no longer record, by method study techniques, information relating to task 

times these algorithms may appear to be slightly dated. However, they can be used to 

compare the relative fabrication costs o f alternative structures in order to establish 

trends, which in turn should indicate to the designer those structures that will incur least 

relative fabrication costs.

The welding methods assumed to be applied during fabrication of structural 

components is an area where greater flexibility would be advantageous. However, due 

to the intensity of manual input required in order to achieve this flexibility, it is not 

currently permitted in the normal operation of S H IP C O S T . If alterations to the 

assumed welding procedures are considered desirable then this can only be done by 

changing the Fortran source code of the program. Although work study techniques are 

no longer generally applied in shipbuilding, more modem data could be used for state 

o f  the art welding techniques. This inform ation can be found in Technical 

Specifications and publications from the Institute of Welding. However, this data is 

"pure" data and does not contain any allowances for the human factor and therefore 

requires careful consideration in application if the results are to be meaniful with respect 

to results presented in Chapter 6.

7 .1  C onclusions from  F la t Deck P anel S tudies.

For flat panel deck structures of constant longitudinal area and for cases of 

both constant and varying transverse structure and spacing, clear trends of relative 

fabrication cost for a variety of plate thicknesses and longitudinal stiffener types have 

been demonstrated. In general, labour costs increase with a corresponding increase of 

longitudinal stiffener numbers and decreasing transverse frame spacing.

In the studies using different Tee bar sizes, cost optima are all associated with 

maximum plate thickness and the stiffener offering the greatest sectional area to satisfy 

the required area. However, in this study, Section 6.1.1 and Fig. 6.2, the variation of
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section costs is such that these effects can be seen to cancel out to produce optimum 

relative costs with both the 114 * 44mm and the 254 * 127mm Tee bar sections when 

the plating thicknesses are 11mm and 8mm respectively.

By replacing the Tee bars by commercially available rolled sections savings 

can be achieved on the relative fabrication cost o f the basis model flat deck panel 

structure .However in these studies, cost optima are all associated with minimum plate 

thickness and the largest stiffener size to satisfy the required area. This is a direct result 

o f the dominance of thicker plate material costs over the labour costs when the labour 

rate is assumed at £15/manhour. At the same time, minimum relative fabrication cost is 

also associated with the minimum acceptable values of interframe panel buckling 

criterion. This can be expressed simply as, increased safety factors result in increased 

relative fabrication costs.

The relative fabrication cost optimum when using OBP sections is 9.0% less 

expensive than when Tee sections were used although in this case the structure is 2.7% 

lighter than the basis model flat deck panel. This small weight variation is an accident 

of rounding to integer stiffener numbers in a constant area study.

A saving of 10.2% on the basis model flat deck panel structure can be realised 

when flat bars are used to replace the Tee sections.

7 .2  C onclusions from  D ouble B o ttom  S tudy .

For a double bottom unit of constant transverse area, clear trends have been 

demonstrated for differing plate thickness of tank top, longitudinal plate girders and 

mainly one size of Tee bar stiffener. The general trend for light Tee stiffened structures 

is that as the single variable thicknesses increase the relative fabrication cost of the 

double bottom unit decreases. The major influence on this decreasing is the labour 

cost. This is so because, with a 4.3% increase in material costs between the basis 

model and the least favourable alternative results in a 15% increase in total relative 

fabrication cost. Similarly, a saving of 40% on material costs results in only a 14 % 

saving on total relative fabrication cost when the optimum and basis model are 

compared. This is then a clear indication that differences between the relative 

fabrication costs of alternative double bottom unit structural configurations are highly 

dependent on how labour intensive the options are. This can be extended further to say
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that as plating activities, such as marking off, rough positioning o f sections etc, are 

generally independent of material thickness, the difference in relative fabrication costs 

are largely attributable to the amount of welding that is required on the structure.

In almost all selections of plate thickness, the structure using the heavier 

section has lower relative fabrication costs than the structure using the lighter section. 

The instances in which cost optima for light and heavy stiffened structure coincide are 

those in which, the lighter stiffened structure, would require a more detailed structural 

analysis to ensure the design criteria applied are not being violated.

It is possible to make savings on the basis model double bottom unit in some 

instances when using the 114 * 44mm LST and in all cases when using the heavier 254 

* 127mm LST.

O f the four Construction sequences identified, Sequence 3 invariably incurs 

the least relative fabrication cost. Therefore, the greater proportion of work that can be 

associated with both the tank top and the outer bottom positioned such that the welder is 

working downhand, the greater the labour savings that can be achieved. Furthermore, 

the more longitudinals that can be associated with the outer bottom rather than the tank 

top, the greater the labour savings that can be achieved.

The results of the extensive investigation of the relative fabrication costs of a 

constant transverse area double bottom unit indicate that savings on the cost of the basis 

model can be achieved. The maximum savings of 10.5% on the cost of the basis model 

(10mm plating thicknesses and 114 * 44mm Tee) can be achieved if the double bottom 

is considered to have the following plating thicknesses and OBP dimensions 

Tank top = 8mm

Plate Longitudinals = 10mm

Outer Bottom = 8mm

OBP dimensions = 280 * 12mm

Although savings of 7.9% of the cost of the basis model double bottom unit 

appear possible when a particular Flat Bar section is used as the longitudinal stiffener, 

further investigation of the fabrication practicalities would be required. For the 

purposes of this study, it is assumed that fillet welds of similar size and nature are used 

on this structural arrangement of 20mm thick flat bar welded to 8mm thick plating as
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were used on the structural arrangement it is replacing. This is sufficiently unusual to 

warrant evaluation tests on joint shock and impact load survivability.

Various Construction Sequences for a typical frigate's double bottom unit 

have been demonstrated. The method of fabrication that always incurs least cost is 

Sequence 3. However, a major assumption inherent with all the Sequences is that the 

double bottom unit is completed in the fabrication shop prior to installation on the 

building berth.

The use of the model to firstly generate equivalent structures and secondly to 

evaluate alternative configurations and build methods, in terms of relative fabrication 

costs, has been demonstrated. The results presented in Chapter 6 indicate the ability of 

the model to demonstrate substantial relative savings on a panel by panel basis. 

Advancing from the midship area where the main structural component is the flat panel 

it is believed that similar savings can be shown for end regions of the hull when 

subjected to a similar modelling procedure. Further savings maybe possible if the 

midship section neutral axis position is allowed to vary and redistribution of the section 

material is carried out.

7 .2  A reas fo r F u tu re  D evelopm ent.

A development of both programs compiled during the course of this project 

would be to include structures removed from the mid-third length o f the vessel. In 

relation to FR IG A TE this could involve the structural design of hull areas such as the 

bow, where slamming loads would have to be taken into consideration.

In relation to SH IP C O S T , dealing with structures such as the bow, would 

require the generation of further construction task algorithms to take into account the 

high degree of curvature normally associated with this particular hull component. 

Furthermore, a means of rapidly assessing which welding process would yield the least 

fabrication time would be an advantage. Also, data gathered under method study 

conditions, relating to the manhours recorded against current fabrication techniques, 

would enhance the existing database of elemental task times and would reflect 

accurately the incurred fabrication cost of building warships in the present day.
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Hardcopy results from both FR IG A T E  and SH IPC O ST  are only available 

by means of lineprinter output of the various files to which are written to during 

execution. A graphical presentation of results from both FR IG A T E  and SH IPCO ST 

would be an advantage and would be a method by which design trends could be readily 

identified. In general terms interaction from the keyboard needs to be improved in the 

longer term.

The combined package of FR IG A T E  and SH IPC O ST would benefit from 

an interactive graphics facility at both the pre and post processing stage. This of course 

would be enhanced if the graphics suite operational on a modem high performance 

workstation. At present, the interface between the two programs requires some human 

intervention and elimination of this by automating the interface would be an advantage. 

The elim ination of manual data checking to ensure integrity would also be an 

enhancement on the operational aspect of the complete package.

For the expansion of FR IG A T E , if other design code formulations could be 

used, this would give the designer access to a greater selection of design criteria. In 

terms o f S H IPC O ST , integrating individual shipyard cost element databases would 

allow specific usage and application for the designer in a more direct sense.
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APPENDIX 1

CONSTRUCTIO N TASK ALGORITHM S  

USED IN »SH IPC O ST”

1. Orthogonally Stiffened Flat Panel

2 . Orthogonally S tiffened Curved Panel

3. Fitting and Welding Grillage Marrying Piece

4. Fitting and Welding Knee Bracket

5. Fitting and Welding Transverse Frame web Doubler Plate

6 . Fabricating Large Tee Structural Members

7. Double Bottom Unit Assembly - Sequence 1

8. Double Bottom Unit Assembly - Sequence 2

9. Double Bottom Unit Assembly - Sequence 3

10. Double Bottom Unit Assembly - Sequence 4
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