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ABSTRACT

This thesis describes the development of a structural optimisation model for
warships designed to the MoD (N) NES 110 structural design code based on total
relative fabrication cost. Total relative fabrication cost is evaluated for a representative
portion of the midship section of a typical Royal Navy frigate and attempts to take into
account the costs associated with material purchase, subassembly, assembly and

erection of ship's structural components.

The inherent work content associated with modern day warship-building
techniques are estimated by generating construction task algorithms. Each construction
task algorithm can be regarded as a sequential activity list of elemental tasks which must
be undertaken to effect the completion of the overall task. Every individual elemental
task has an associated manhour value, this value having been derived by work study
methods. Thus incorporated in the program SHIPCOST is an appropriate database of
cost elements representing warship-building fabrication techniques, for the
subassembly and assembly of the major structural components, namely orthogonally

stiffened flat and curved panels.

The formulations used for longitudinal structural design embody the current
MoD (N) structural design code for surface steel ships while those for the transverse
structure are based on DnV Classification Society Rules. These "first principles" and
"Rules based" design methods are combined within the program FRIGATE to offer
the designer an opportunity to investigate the possibilities of optimising both
longitudinal and transverse warship structure with respect to total steel relative

fabrication cost.

Three individual studies were undertaken to investigate a basis model structure
for least relative fabrication costs. Two of these studies investigated orthogonally
stiffened flat panels deck structures while the third dealt with a typical frigate's double
bottom structure. The results of the flat panel studies, constrained to have constant
transverse panel section area together with either constant or varying transverse

structure and spacing, indicate that labour costs generally increase with a corresponding

(i)



increase in longitudinal stiffener numbers and decrease with transverse spacing. In
addition, when the Tee bar stiffeners of the basis model flat deck panel are replaced by
commercially available OBP and flat bar sections, savings of 9.0% and 10.2 %

respectively, are predicted.

The results from the double bottom study, when also constrained by constant
sectional area, indicate that savings can be made on the total relative fabrication cost of
the basis model by varying the plate thicknesses in relation to both section type and
numbers. It is also demonstrated that the fabrication sequence of elemental tasks
adopted in the construction of a double bottom has an important bearing on the
manhours needed to complete this particular structural component. These results
further demonstrate that labour cost dominates in the total relative fabrication cost
relationship. This is highlighted by one option that indicates a 40% saving in material
cost but only achieves a 14% saving in total relative fabrication cost. As with the flat
deck panel studies, savings on the relative fabrication cost can be achieved by replacing

the basis model Tee bar stiffeners by OBP and flat bar sections.

This thesis describes a basic working package of two independent computer
programs developed for the evaluation of alternative structural variants to a general
frigate arrangement. A limiting factor applying to the studies described has been the
fixed position of midship section neutral axis by virtue of a simplifying constant
sectional area constraint. It is reasonable to assume, that on removal of this constraint,
different structural optima would be obtained. Further investigation is required both to
demonstrate this and explore the full range of possible structural cost savings resulting
from variations in the vertical position of the neutral axis of the midship section even

though the neutral axis is not usually a free variable in structural design.

A present limitation of SHIPCOST is an inability to allow variations in the
construction task algorithms applied to the fabrication of any of the structural
components. Complete flexibility in this area would render SHIPCOST unwieldy,

cumbersome and time consuming - unwanted attributes of a preliminary design tool.
The basis of a useful preliminary design evaluation tool has been developed and

demonstrated. However, further effort is required to fully generalise the models to suit

any warship structural configuration.
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CHAPTER 1
INTRODUCTION

A good ship designer, whether in the employ of a national government or a
commercial enterprise, attempts to achieve a design that has been optimised to some pre-
determined criterion. This criterion may represent the cost of construction and
maintenance, least weight or a combination of these. In relation to the subject matter of
this thesis, the criterion for optimisation is the relative fabrication cost of a typical

warship structure.

In recent years the financing of Royal Navy vessels has become acute as
successive governments have resorted to every means at their disposal to reduce defence
costs, while the basic price of of many engineering commodities, including the warship,
have greatly outstripped the rate of inflation. As the operational requirements of a naval
vessel are a function of its intended capabilities in relation to the threat posed by hostile
nations while also satisfying the relevant government's maritime strategy, the final
product is a compromise between achieving these goals and the cost of the package. The
concept and the processes involved with the design of a structure that is intended to be
sent into "harms way" are very well described for Royal Navy ships by Bryson [1] and

for U.S. Navy vessels by Palermo [2].

In both these papers, it is made clear that the costs of the weapon platform (i.e.
the hull structure) and the weapon packages themselves are important and the need to
take cost into account at an early stage of the design is emphasised. In other words, a
structure that can be sent into "harms way", should the need arise, cannot be achieved at
any cost. Therefore, a preliminary design tool that enables the merits of alternative
structural configurations to be assessed in relation to initial fabrication cost criterion

would be of benefit to the structural designer.

Historically the structural configuration of a warship has almost invariably been
optimised to achieve minimum steelweight with little or no regard to fabrication cost.
This rationale may have been encouraged, and indeed may have been expected, if the

fabrication cost of the proposed structures was proportionally related to cost per tonne



rates in the ship designer's mind. This notional association of cost and weight of
structure has been shown [29, 30] to be an ill-advised and inaccurate method of
estimating the true build cost of ship and offshore structures. Consequently, a more
appropriate and accurate cost estimation method is required if fabrication costs are to be

reflected realistically.

1.1 Aim of the Thesis.

The objectives of the project to which this thesis relates were to develop
computer based methods, that would enable the structural designer to explore the
possibilities of optimising a warship structure with respect to steel fabrication cost. In
order that this could be achieved effectively, an appropriate database of cost elements,

representing warship-building fabrication techniques, had to be compiled.

The purpose of this thesis is to describe a computer based procedure that will
accurately predict the inherent work content of a defined structural topography, that can
be regarded as a typical midship section of a modern warship, and demonstrate that this
procedure is capable of being used as a design tool at the early stages of the design
process. For simplicity the structural models have been restricted to the mid-third length
of a vessel and the effects of fixed transverse structure, such as major transverse

bulkheads, have been assumed constant.

1.2 Layout of the Thesis.

The contents of the thesis explain how the two main areas of interest within the
context of the project were undertaken and indicates how the final computer based
package can be used at the preliminary design stage. To achieve the primary objective
outline in 1.1 above a secondary objective was identified, namely second objective was
the development of a structural design package that could interface with the relative

fabrication cost estimation package and would be capable of generating suitable




longitudinal structural alternatives while coping with design variation in the transverse
structure. It should be noted that these two requirements were developed concurrently
and that the two computer programs which have resulted can therefore operate either

individually or as a package.

In Chapter 2 a literature review on optimisation of ship's structure is presented
along with a review of the published material concerned with the estimation of

fabrication costs for steel structures, of both ship and offshore platform types.

In Chapter 3 a brief resume of the derivation of the existing database of elemental
task times is presented along with one of the construction task algorithms generated to
represent a build sequence of typical warship primary structure. The times associated
with each elemental task were derived using work study methods. Also included in
Chapter 3 is the rationale used in the development of these construction cost task
algorithms and a complete set of the construction task algorithms used in this study are
contained in Appendix 1. Furthermore, Chapter 3 explains the methods used and
assumptions incorporated within the program SHIPCOST by which the relative work
content inherent in the fabrication of typical warship structures is evaluated. For this
purpose, a typical frigate midship section is regarded as a combination of flat and curved
orthogonally stiffened panels. Work content is assessed for alternative predetermined
fabrication sequences in terms of manhours and this can be converted to cost through the
use of globally assumed labour rates. Material costs are assessed for both plate and

section materials and an explanation of the methods used is given.

In Chapter 4 the formulations used in both longitudinal and transverse structural
design of a typical midship section of a Royal Navy Frigate which are contained in the
Fortran 77 source code of the program FRIGATE are presented. The design
philosophy reflected in the longitudinal structural design is that of "first principles”
expressed in the current NES 110, design code [43] of MoD(N) for surface steel hulled
ships. In the absence of a suitable alternative, the design method for the transverse

structure uses the "rules based" approach of DnV [44], more generally associated with

commercial ship design.




In Chapter 5, the details and operational modes of the computer programs
developed throughout the course of this study are presented. Program FRIGATE
incorporates the strength formulations discussed in Chapter 4 for analyzing the strength
of both longitudinal and transverse structure. Program SHIPCOST contains all the
construction task algorithms generated to calculate the inherent workcontent of any

structure, an example of which is discussed in Chapter 3.

Chapter 6 presents the results of relative fabrication cost studies on individual
structural assemblies. The structural assemblies isolated for rigorous study were those
that could modelled as flat panels, the component of ships structure that was the principal
focus of attention during the earliest studies on structural optimisation of marine
structures. Variations on basis model deck panels and double bottom structures were
achieved by replacing the Admiralty preferred Tee bars by OBP and Flat bar sections in

conjunction with varying plating thicknesses.

In Chapter 7 the conclusions from these studies are presented and areas for future
work are indicated. It is concluded that savings on the relative fabrication cost of the
basis model structures studied can be achieved when the Admiralty preferred long stalk
tee bar longitudinals are replaced by commercially available rolled sections. A further
general conclusion that can be made from the studies undertaken is that their exists a
direct relationship between the relative fabrication costs of a structure and the number of

it's constituent piece parts.




CHAPTER 2
LITERATURE REVIEW

The rationale of optimised structural design, particularly that of British naval
ships has been, to date, based on the last best design. This approach, combined with
iterative judicial changes to the design founded on the combination of experience and
sound engineering judgement, was the normal pre-computer age optimisation technique.
As detailed structural cost consideration is time consuming and relies on extensive
rational databases, structural cost optimisation is therefore a relatively recent area of
investigation. Consequently, early technical papers on the optimisation of ship

structures were concerned only with achieving minimum structural weight.

The idea of optimising the component that can be considered as the bulk of ship's
structure, i.e. the gross panel, for minimum weight but still be capable of withstanding
various types of loading was tackled by Harlander [3]. The requirements for minimum
structural steelweight, in both merchant and naval ships, are numerous and include
greater deadweight for merchant ships and greater weapons fit and fuel capacity for naval
ships. However, Harlander was aware of the conflict between weight of structure and
the practicalities of it's fabrication, i.e. the structures that have minimum associated
steelweight are those with thinner plating in conjunction with closely spaced stiffeners
while minimum fabrication costs are associated with widely spaced stiffeners. Despite
this conflict, Harlander maintained that such considerations of producibility do not
invalidate the design trends that a designer should take advantage of to obtain a stiffened

panel optimised for steelweight while satisfying other structural requirements.

The increasing availability of powerful computing facilities has led investigators
to turn their attention to automating the discipline of ship structural design by adapting

the design spiral to computer application through the development and integration of

optimisation routines.




Evans and Khoushy [4] dealt with a midship section structure designed to
American Bureau of Shipping (ABS) Classification Rules. By defining an "equivalent
area", as the net weight of plating and sections divided by average thickness of plating, a
weight optimum solution was sought. However it was recognised that consideration
should be given to maintenance and repair costs and the compounded effects material
weight has on the material cost actually incurred and on through life costs and payload.
The resulting wide flat bottomed curve of the steelweight plotted against frame spacing
indicated the lack of a sharply defined optimum between the two, an effect termed "flat
laxity" by the authors. A significant conclusion from Evans and Khoushy is that the true
optimum structure lies somewhere between the structure with weight as the optimisation

criterion and that with construction cost as the optimisation criterion.

Mandel and Leopold [5] considered various optimisation techniques and
suggested that ship structural design would be best served by an exponential random
search technique. By applying such a technique to the following five design variables of
a cargo ship optimisation of annual running costs was attempted:

i) Displacement

i) Prismatic Coefficient

ii) Speed/Length Ratio

iv) Beam/Draft Ratio

V) Length/Depth Ratio

They concluded that as the optimal structural disposition is approached, the
principal dimensions of the vessel could vary greatly resulting in an insignificant effect

on the cost.

Moe and his collaborators [6,7] applied the concept of defining a mathematical
design function and subsequently used a Sequential Unconstrained Minimization
Technique (SUMT) to optimise in respect of specified parameters. The results contained
in [6] are the forerunners of similar results from other independent studies. The general
conclusion that thicker plating and large widely spaced stiffeners lead to least fabrication

costs but do not generally offer a least weight optimum solution is also indicated by



Summers [8], Caldwell and Hewitt [9] and Chalmers [10]. The cost estimation methods
employed in (6] and (7] include material costs and the labour costs associated with many
of the essential tasks involved in ship construction but exclude the fundamental task of
plate butt welding - thus rendering the results of limited use. However, despite this
reservation, it is recognised that these early studies provided a significant contribution to

the discipline of Ship Structural Cost Optimisation.

The value of the work of Moe and his contemporaries at Trondheim was
appreciated by Nowacki, Brusis and Swift [11]. They enhanced and generalised Moe's
technique for tanker preliminary design into a more general ship design technique.
These authors favoured the Direct Search technique of Hooke and Jeeves [12] to find a
specified optimum or optima in contrast to Powell's Direct Search method [13] favoured
by Moe et al. By adapting this direct search to the constrained problem, these authors
produced the Adapted Direct Search (ADS) technique. In common with the earlier
studies, the models considered were of tanker structure and the ADS technique was able
to demonstrate the sensitivity of these designs to a draft restriction. Furthermore, this
method was flexible enough to permit the studies of the sensitivity of the design to other

variations in technical requirements and economic conditions.

Further credence was given to the significance of the work at Trondheim by
Kitamura [14] when he extended it to cater for the detailed components of flat grillages.
This study involved the application of a SUMT to even smaller sub-divisions of the flat
grillage fabrication process while optimising for minimum cost. The total material and
fabrication costs were each calculated on a work station basis. This was to be
commended in principle but unfortunately the labour costs used were based on historical
data and therefore subject to the inclusion of inefficient practices and were also yard

dependent - these points will be discussed further in Chapter 3.

The earlier work discussed above has proved to be the stepping stone to more
sophisticated and integrated packages. Moe [15] with co-authors Muira and Kavlie,
developed a design - redesign package, affectionately known as BOSS, which
incorporated the extensive database and management system used in Norwegian

shipyards. A comparable systematic method is described by Lin, Hughes and



Mahowald [16] incorporating the ABS design criteria and known as SHIPOPT. Hughes
continuing in this field has devised MAESTRO [17] which is a rationally based design
and optimisation package for large complex thin-walled structures. Within MAESTRO it
is possible to define a measure of merit as any function of the design variables. In the
case of the fabrication cost associated with stiffeners welded to plating the expression
becomes a polynomial in terms of weld length and stiffener thickness. A term is
included in this expression to cater for the sharp increase in fabrication cost associated
with multiple pass welding and special edge preparation which in turn are functions of

the stiffener thickness [18].

The aforementioned optimisation suites generally deal with commercial merchant
ship design rules and criteria and a package to incorporate naval design criteria and
indicate areas of high fabrication cost in new ship construction would be of benefit to the
naval designer. This was provided by Furio [19] for the U.S. Navy in the form of the
Ship Structural Cost Program (SSCP) which has been used by Wiernicki et al [20] and
Nappi et al [21] to produce some interesting results when used in conjunction with the
U.S Navy's Ship Structural Design Program (SSDP). The SSCP can therefore be
described as a cost/weight trade off tool that can be used in conjunction with SSDP. The
U.K. Government Defence Design System for Ships (GODDESS), is described by
Pattison et al [22] and the computer package described by Holmes [23}, are used for the
design of Royal Navy ships in a similar way to SSDP. GODDESS currently
incorporates a cost estimation procedure based only on weld length. Although better
than weight as a criterion, weld length is not necessarily suitable when predicting build

costs of modern warships using alternative structural materials and configurations.

The first traceable attempt at fabrication cost estimation at the University of
Glasgow was carried out by Lee [24]. He attempted to evaluate the fabrication cost of
structurally optimised grillages by applying a series of curve fitted coefficients to the
elemental tasks of the construction sequence as well as the welding rates. The effect of
curve fitting these values is to smooth out any step change in costs associated with
particular elemental tasks, more particularly with the welding rates. The elimination of
these technically justifiable step changes can have significant effect on fabrication cost
calculations as welding is the major fabrication cost element. The total cost figure used

by Lee included overheads, materials, labour and welding consumables.
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A paper by Carryette [25] which outlines the approach traditionally used by
shipyard estimators for predicting fabrication costs is worthy of mention. In this paper
the labour cost is directly related to design parameters such as Cp and Lpp. The
equations published were derived from historical returns of previous ships built within a
specific shipyard. This data, as with Kitamura's [14], has all previous inefficient
practices of the construction sequences included in the equation. However, in addition,
the equations in this paper neglect a very important aspect needed to accurately estimate
the fabrication cost of any given structure as duly noted by Buxton [26] and Chalmers
[10]. This flaw is that the labour cost used by Carryette is related to the hull envelope of
any structure and totally ignores the internal configuration. This may not be so important
in large longitudinally or transversely framed commercial vessels but in the case of naval
ships with their high degree of lattice type grillages it would appear to be somewhat

inappropriate to implement this approach to predict fabrication costs of ship structures.

In the majority of the studies discussed above priority in the design optimisation
procedure has been given to strength and/or weight criteria with fabrication cost being
the secondary consideration. To give a fresh impetus to the problem several research
establishments have more recently turned their attention to designing structures that
would satisfy all the strength pre-requisites with optimum fabrication costs, most notably

in the U.K. at the Universities of Glasgow and Strathclyde.

Flat grillage structure predominates as the component of a ship which has
attracted most attention when optimisation procedures have been carried out with
strength and/or weight as the criterion. It would therefore seem a natural progression
that this structural component should feature when the emphasis of the optimisation
changed from strength and/or weight of structure to fabrication cost of structure. This
has been the case in recent papers by Kuo, MacCallum and Shenoi [27], MacCallum
(28] and Winkle and Baird [29]. The essence of these studies has been to provide a tool
which, in utilising method study derived elemental task times, is then able to assess the
merits of various designs on a basis of realistic fabrication cost criteria. The
methodology described in [29] is the one which has been subsequently developed and

expanded to provide the subject matter of this thesis.




In particular, Winkle and Baird [29] investigated several grillage designs
proposed by a U.K. warship builder as being structurally equivalent with the view of
evaluating the influence of the structural arrangement on relative fabrication cost. The
five grillage designs considered represented a range of extreme structural configurations,
from fully transversely framed to completely longitudinally stiffened. One conclusion
from these studies was that neither relative cost of fabrication or work content is
proportional to weight of structure, they both varied inversely to weight. In these
studies relative cost was normalised to a Cost Equivalent Relative Weight (CERW)
factor in a manner similar to that proposed by Moe and Lund [7]. This factor is a useful
device for representing the variability in labour rate and overhead cost and how these
factors affect the final relative fabrication cost of the structure but is difficult to employ

where component material costs vary widely.

A companion paper by Frieze et al [30] demonstrated an application of the
general methodology of the work content estimation procedure described in [29]. By
investigating several design codes and proposing a new formulation for the design of
large stiffened tubulars, optimisation was achieved with weight and safety as the
criterion. As a further means of comparison between each proposed design the work
content of each structure was estimated. The results from these studies indicated which
structures were least labour intensive and incurred least fabrication costs while also
identifying the weight penalties which arose from achieving minimum time or cost of

construction.

As is common when a subject progresses from initiation to a broader spectrum
there will be parallel and independent research carried out. This is indicated by the paper
by Shenoi and Emmerson [31] who have produced a computer based fabrication cost
assessment tool, which has similarities to the work presented in this thesis but has
concentrated more on production control and producibility applications related to

merchant ships.
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CHAPTER 3
STRUCTURAL FABRICATION COST ESTIMATION

In the current environment of keenly competitive independent shipyards vying
for a decreasing number of contracts there is ever increasing pressure that a yard's
contract tendered price must be correct. In this context, correct means low enou ghto be
attractive to the customer while still covering the costs that are likely to be incurred by
the shipyard during build and also being less than the price tendered by competitors.
This requires that the tendered contract price of a commercial or naval vessel must be
based on, amongst other things, an accurate and reliable procedure for estimating the

fabrication cost.

One application of such a procedure would be at the preliminary design stage,
where evaluation of the production kindliness, in terms of manhours required for
fabrication, of alternative structures could be performed. This would be consistent with
attempting to achieve the following ISSC design for production objectives :

"Design to reduce production costs to a minimum compatible with
requirements of the structure to fulfill it's operational functions with

acceptable reliability and efficiency."

3.1 Historical Structural Fabrication Cost Estimation

The function of putting a price on a contract has traditionally been performed
by the shipyard's estimating department. The basis of most estimating procedures is
historically recorded manhours of similar vessels built within the yard which are usually
analysed to give figures relating to cost per tonne of steelwork erected. Examination of
this type of data can lead to a degree of useful information in the form of empirical
relationships which will allow cost estimates to be made for vessels of a similar type
and structural arrangement. These empirical relationships relate manhours expended
during construction to some of the principal dimensions or design variables of the

structure being built.

11




The best recent examples of these types of empirical relationships are
published by Carryette [25] in the form of equations relating cost of structure to some
of the principal design parameters of the vessel, such as Cp and Lpp. The equation

given for steelwork manhours is :-

,3/WZL
Mhrs =275 PP

S8

(D

where :

Mhrsg = Steelwork manhours

W, = Steel weight
Lpp = Length between perpendiculars
Cy, = Block coefficient

However, despite the convenience of equations in this form there are several factors that
negate the usefulness of this approach when interest is centred on the influence of the

structural design details on the cost of fabrication;

i) Empirical derivations are based on historical data collated
from previous ships built within a given shipyard and should
therefore be regarded as unique to that shipyard and its

working practices.

ii) Empirical derivations usually relate to a series of similar
vessels being built in a particular fashion within a given
shipyard and are therefore "rigid", i.e. there is no mechanism
to allow for changes in build method or indeed to cater for
different types of vessels with differing structural

configurations.




if) The historical nature of the data and the methods used in
recording such data mean that they implicitly incorporate any
bad working practices and inefficiencies encountered during
the construction. Therefore any forecasts of inherent cost
resulting from such derivations will be inaccurate and tend to

lock ineffective working practices into future contracts.

iv) The level of detail that can be catered for in this type of
derivation is insufficient to indicate what effect variations of
structural scantlings and stiffener type and arrangement will

have on the final cost of the structure.

v)  There is no reflection of the complexity of structure involved
in any of these empirical formulations and therefore there is
no consideration of either the influence of number and degree
of integration of parts, or the effect that curved surfaces have

on the final cost of fabrication.

vi)  There is no means of quantifying the difficulties of working
with the lighter scantlings generally associated with warship
structures and the corresponding difficulties encountered in

assembling such structures that frequently require rework.

vii) There is no means ot quantifying the disadvantages of
fabricating orthogonal structures in which the use of

automatic continuous fillet welding is greatly reduced.

For these reasons it is necessary to forego the convenience of using historical work
records and investigate other more direct means of estimating the fabrication costs that

are likely to be incurred by a shipyard throughout the ship building cycle.




3.2 The Development of more Accurate Methods of

Structural Fabrication Cost Estimation.

The probable labour requirement for the fabrication of any structural
configuration would be best estimated by a method that is capable of accurately
predicting the inherent work content (aggregated manhours) involved with it's
construction. Such a prediction can be utilized in two ways. Firstly the total costs,
being the sum of labour, overhead and material costs, likely to be incurred are
estimated. Secondly accuracy permits the use of such methods for production
scheduling if the necessary manning levels for each stage of the build cycle are known.
Therefore, if this approach is to be used for estimating the relative fabrication cost of
ship structures, a database of standard times for given activities and related shipbuilding

tasks is required.

Such a database exists at the University of Glasgow and has been used to date
to estimate the relative fabrication costs of various structures including a range of
representative warship grillages [29] and ring and stringer stiffened cylinder options of
a North Sea Tension Leg Platform (TLP) {30]. While the main sources of these work
study derived task times were Govan Shipbuilders and Sunderland Shipbuilders there
has been some augmentation of the original database as other sources of similar data

became available throughout the course of this study.

The database consists of standard elemental task times related to steel
assembly and an extensive range of welding process times. The standard time of an
elemental task is the summation of a basic time and allowances. The basic time element
was recorded under controlled work study conditions by experienced work study
practitioners and subsequently factored by an efficiency rating to give the calculated
basic time. The allowances include time for normal recovery periods between
subsequent tasks, taking into consideration fatigue, posture, the use of force,
temperature and humidity and allow the worker a period of recovery from any
physiological or psychological effects of having performed the task. Thus, the standard
time of a task is the time taken by an experienced, properly motivated worker if he

follows an accepted method of carrying out the defined task.
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Welding process time consists of two components. One is a job constant
associated with receiving instructions, clearing the work area, moving the welding
equipment, setting the electrical current and joint preparation. The other component is a
rate per metre which includes an allowance for inspection of the weld, the actual
welding, changing of rods and finally cleaning the weld. Of the two sets of data that
make up the complete database of standard times, that associated with the welding

processes is the larger.

The main factors that influence the deposition rate of weld metal and
consequently the time taken to complete a weld are the type of process, the type of rod,
the edge preparation of the components to be welded, the physical orientation of the
joint and the access the operative has to complete the joint. The range of each of these

factors that can be catered for in the existing database is listed below :-

a) Type of Welding Process

i) Manual Fillet - various applications such as section to
plating, connection between transverse and longitudinal
members etc.

ii) Automatic Minideck - main application being flat panel
seam welds

iii) Manual Butt - applied when automatic plate butt
welding is not feasible, e.g. unit link ups in sub-

assembly areas or on building berth

b) Type of Welding Rod.
i) Rutile - generally used when thickness of the material
to be welded is not greater than 12mm
ii) Low Hydrogen - generally used when thickness of the
material to be welded is greater than or equal to 12mm
or where higher tensile steel is being welded
iii) Iron Powder - generally when fillet welding is the weld

process involved
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c) Assumed Positional Mode of the Joint.

i) Downhand - many applications in sub assembly areas
and on the building berth

i) Vertical - numerous applications in sub assembly areas
and on the building berth

iii) Overhead - mainly used when welding takes place on
the building berth when there is no practical alternative

iv) Horizontal - many applications in sub assembly areas

and on the building berth

d) Edge Preparation of Material
The range of preparations contained in the database is

shown in Fig.3.1

e) Access to the Weld Area
i) Unrestricted - easily accessible and ventilated
il) Restricted - when the operator is having to perform the
tasks in a confined space where movement and

ventilation are difficult e.g. in a ship's double bottom.

Although the elemental task standard times for plating activities and material
handling were derived using work study methods in commercial shipyards, the
activities involved are generally independent of scantlings and can therefore be applied
in relative terms at least to the lighter warship structures. Based on this assumption the
relative fabrication costs of typical warship structures could be investigated using this

database.
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3.3 The Relative Fabrication Costs and Work Content
of Typical Warship Structures

The total fabrication cost of any steelwork structure fabricated in any shipyard

can be regarded as the summation of three cost components:-

Total Cost = Material Costs + Labour Costs + Overhead Costs 2)

3.3.1 Material Costs.

When the British Steel Price Schedule [32] is studied it becomes apparent that
the most convenient method of calculating prices of steel plates would be to use a flat
rate per tonne for a specified grade of standard sized plate. This allows reasonably
accurate cost estimation of plate related costs without having to deal with the intricacies
relating to "extras" connected with order basing points and non standard plate sizes. As
the main object under consideration within the scope of this study is a typical warship,
the information u.sed in pricing the plate material relates only to those grades of steel that
are prepared for naval application. These grades are DGS 257A, DGS 207A and DGS
322BX. The plate cost output from SHIPCOST is the nett cost of plate, i.e. the cost
of the plate material used in the construction of the structure only with no consideration
of the cost of green material or gross tonnage of plate ordered to accommodate some
element of scrap. If it is desired to investigate the use of other steel grades, minor

modifications to the existing package would be required and could be easily dealt with.

As plate costs are only part of the total material costs, the costs of Long Stalk
Tees (LST), [33], Offset Bulb Plates (OBP) [34] and Flat Bars (Flat) [35] British rolled
sections are also calculated where appropriate. In the case of the LST's, currently used
by the Ministry of Defence (N) as the preferred type of rolled section for longitudinal
stiffeners and transverse members, it will be shown in Chapter 6 that the cost of
sections can have a significant influence on the total fabrication cost of a structure.

The cost of sections output from SHIPCOST relates to the length welded to
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any particular plate at the panel sub-assembly stage. This length of section is generally
taken as being 1 metre less than the length of the plate to which it is attached. This
relates to the fabrication practise witnessed by the author and as such permits more
accurate modelling of the overall fabrication technique employed in a modern day

warship-building yard and is discussed in greater detail in Section 3.3.2.5

When the design criteria stipulates that a structural member requires a section
modulus value greater than can be offered by any of the standard rolled sections then a
fabricated section must be used. There can be several combinations of flange and web
components used in the construction of a fabricated section :
i) Both the web and flange elememits consist of standard flat bar section.
ii) The web being made up of a plate material and the flange being a standard
flat bar section or vice versa.

ili) Both the web and flange elements consisting of plate material.

In those instances where the web and flange or one of these is a standard flat
bar the material cost can be easily calculated with due reference to the price list.
However, in those instances where plate material is used for either element of the
fabricated section material costs are not as easily calculated. The instinctive method of
calculating material cost in these instances would be to price the material as it would be
carried out for plates for use in panel construction and hence arrive at a plate material
cost value. However, due to British Steel's pricing policy with regard to plates, this
could lead to an inflated material cost for these types of fabricated sections because in
effect the material would be costed as a series of non-standard plates which incur
“"extras" i.e a cost per tonne additional to the basis rate per tonne, resulting in the price
per tonne of fabricated section material being abnormally high. Therefore the method
adopted to calculate fabricated section material costs is simply to apply the steelweight
of the plate material used for the fabricated section multiplied by the bas‘e rate per tonne

of steel.
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3.3.2  Labour Costs.

As shipyards are being compelled by the scarcity of new orders to submit
more competitive contract prices, the question "How accurate is the labour cost
estimation method?" is raised. In recent years it has been suggested in open literature
[10, 29, 30] that existing methods are not of the accuracy now demanded by market
conditions and as such other more accurate methods should be used, developed and

implemented.

The method developed to estimate the inherent workcontent of warship
structures throughout the course of this study had it's genesis in a project concerned
with offshore platform tubular structures [30] and was shown to be flexible enough to
estimate the relative fabrication costs of representative warship grillages [29]. The
method used for these comparatively simple grillages, has been extended and enhanced
in order that the total relative fabrication costs of a typical midship section of a Royal
Navy Frigate can now be estimated. In the context of this thesis, the total relative
fabrication costs of a midship section include the material cost in pounds sterling and a
fabrication cost in manhours which can be converted to cost by the use of globally
assumed labour rates. Throughout the duration of this project, a set of construction
task algorithms have been developed which are embedded in the Fortran source code of
the program SHIPCOST. These algorithms, the methods used and the assumptions
incorporated are transparent to the user of SHIPCOST but full a definition of each

construction task algorithm is contained in Appendix 1.

The scope of these construction task algorithms is such that the following list
of shipyard fabrication activities can be modelled and their related inherent work content
estimated :

1) Fabrication and assembly of structural blocks in a shop

environment.

2) Installation of each assembly on the building berth.

3) Integration and link up of adjacent assemblies on the building berth

in the vertical sense.
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4)  Shop fabrication of a second set of assemblies, identical to the first.

5) Installation of each assembly of the second set on the building berth.

6) Integration and link up of adjacent first and second set assemblies on
the building berth in the longitudinal sense.

7) Integration and link up of adjacent second set assemblies on the

building berth in the vertical sense.

Using the database of standard and basic times, derived from method study
analysis of the elemental tasks used in ship construction, it was possible to develop a
set of algorithms that could genuinely reflect the inherent work content of typical
warship structures. With the unit of measurement of the work content being in
manhours, it is simply multiplied by the appropriate labour rate to yield a figure in
pounds sterling for the cost of the labour involved in the fabrication of a particular ship
component. The results of the studies discussed in Chapter 6 employed a fixed labour
rate of £15 per manhour. This was thought suitable to reflect currently charged
shipyard labour rates (reflecting overheads). The following sections detail those
activities involved with ship construction that are modelled by SHIPCOST, and

explain why one method is preferred to another.

3.3.2.1 Flat panel fabrication

One specific component that predominates in a parallel sided midship section
of a typical frigate is the orthogonally stiffened flat panel. A flat panel comprises three
constituent parts, namely plates, longitudinal stiffeners and transverse frames. The
manner in which these individual items are collectively integrated is very much
dependent on the facilities available within any one shipyard. However, as one of the
prime objectives of this study was to model current fabrication techniques in a modern
warship-building yard, the treatment of flat panel fabrication assumes panel line

assembly procedures.

In order that a flexible but manageable relative fabrication cost algorithm for

orthogonally stiffened flat panel construction was developed, not all the parameters
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involved are variable. Also as a result of the recent abandonment of systematic work
study job duration recording within British Shipbuilding, no assessment is available of
some more recent fabrication techniques. Consequently some of the elemental tasks
assumed and presented in the Construction Task Algorithms may not be strictly
applicable in the absolute sense as reflecting current fabrication techniques. To illustrate

this point, consider the following examples :

Example 1 - Plate Marking.
With the introduction of C.N.C plate cutting equipment to
shipyards, it is now possible to automatically mark on the plate the
longitudinal stiffener and transverse frame positions by powder
marking, punch marking or simply inking techniques. Within the
set of construction task algorithms developed this activity is

modelled by assuming manual paint marking techniques.

Example 2 - Panel Plate Seam Welding.
As presented in the construction task algorithm for flat panel
production, a panel seam weld operation is performed using a semi-
automatic mini-deck welding machine. After the primary run of
weld is completed the panel is reversed and a second run of weld is
put down on the seam. Today this same panel seam weld could be
completed using single sided welding techniques employing glass
or ceramic backing strips. However, there is no information
available to the same level of detail and recorded under the same
controlled conditions as those times already existing in the welding
database, on the completion time of single sided welding
techniques. Therefore, single sided welding techniques cannot be

modelled at the present time.
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The inclusion of these traditional fabrication techniques in the construction
task algorithms does not invalidate the information yielded on the inherent work content
of a structure by such algorithms. By using more traditional fabrication processes the
final figure given for the estimated work content of a structure may exceed that would
be achieved using state of the art techniques, but as the emphasis of these studies is on
relative fabrication time (and cost) these minor variations in absolute work content
have little bearing on the search for cost minima among alternate structural designs of

broadly similar grillage configurations.

The welding method assumed for longitudinal stiffener and transverse frame
attachment to the plating is manual fillet welding. Although information exists in the
welding database for the process times of semi-automatic welding techniques such as
Gravimax, the thickness of the material (section web thicknesses) used in warship
structures is generally too thin to be dealt with efficiently and effectively by this
method. Thus with these assumptions applied, attention can now be paid to those

facets of flat panel fabrication that can be considered variable.

The activity that allows the major degree of variability in the fabrication of
orthogonally stiffened flat panels of fixed dimensions is the sequence in which the
structural sections are attached to the plating. Are the longitudinal stiffeners attached
before the transverse frames or vice versa ? Both these options are equally possible and

the reasons for the preferred method, as used in SHIPCOST, are given below.

In SHIPCOST, precedence in the attachment of sections to plating is given
to whichever member (longitudinals or frames) has the smaller overall height
dimension. Adopting this procedure allows the maximum opportunity for extended
runs of continuous, uninterrupted fillet welds to be used. This implies that the full
length of section can be welded to the plate without discontinuities in the weld run in
way of nothes cut in the section web which accommodate the passage of the smaller

penetrating member.




3.3.2.2 Grillage connections

It is often said that warship grillages incur greater fabrication costs than those
occasioned by the flat panel structure of a commercial ship to withstand the same
environmental loading. This is partly attributable to the large amount of lattice type
structure that exists in the warship grillage and the connections necessary to ensure
structural integrity between intersecting members. These connections, although
necessary, are expensive to complete on any grillage. In order that the costs associated
with grillage inter-connections can be identified and quantified, recommendations for
use in naval structures [45], were studied and the synthesis of the time taken to
complete standard connections between orthogonal members is incorporated within
SHIPCOST. Although the dimensions of a standard connection piece are derived on
the premise that two Tees sections are intersecting, the methodology for this derivation
is thought suitable for application when sections other than Tees are intersecting for the
purposes of this study. The range of grillage connections that can be modelled by
SHIPCOST is shown in Fig. 3.2. The dimensions which allow the associated work
content of these connections to be estimated are contained in Table 3.1. Other structural
connections that can be modelled are shown in Figs. 3.3 and 3.4 along with their

associated dimensions.

3.3.2.3 Curved panel fabrication

When a sub-assembly cannot be adequately modelled as an orthogonally
stiffened flat panel, such as in the case of the bilge structure, then a different
construction task algorithm is required. In the case of an orthogonally stiffened curved
panel, the same rationale applies to it's fabrication as was applied to the flat panel, i.e.
manual paint marking-off and the order in which the orthogonal members are attached
to the plating. However a significant change in the method of plate seam welding is
necessary due to the curvature of the individual plates. As a result of the plate contours
it is no longer suitable employ mini-deck welding to carry out the plate seam weld and
consequently this is done by a manual butt welding process. The number of weld runs

required to complete a satisfactory seam is a function of the plate edge preparation and
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the plate thickness and is dealt with automatically in SHIPCOST. Grillage

connections are dealt with in the same manner as for the flat panel.

3.3.2.4 Building Berth Installation and Integration

Once each of the assemblies has been individually fabricated in the workshop,
they must subsequently be installed on the building berth. There may again be
conflicting working practises in different shipyards at this stage of the build cycle
depending on the facilities available. For example, one shipyard may link up two or
more of these individual assemblies to form another structural unit in the work shop,
whereas the link up of the same sub-assembly types may be performed outwith the
work shop in another ship yard. This link up process is highly dependent upon the
nature and capacity of the mechanical handling equipment which govern the upper limit
of the number of assemblies that can be linked at this stage, the availability of
fabrication shop floor space and the overall construction method employed. All of these
factors will be unique to each shipyard and therefore in the context of SHIPCOST the
size and extent of assemblies are based on judicious judgement of what might be

generally acceptable in most shipyards.

In SHIPCOST, this area of the build cycle is modelled by assuming the
following method of assembly unit link up based on a bottom up build philosophy :

1) Shop fabrication of orthogonally stiffened outer bottom structure.

2) Shop fabrication of orthogonally stiffened tank top panel.

3) Workshop link up of the tank top to the outer bottom.

4) Installation of the double bottom unit on the building berth.

5) Shop fabrication of orthogonally stiffened plating of the bilge
structure (port and starboard).

6) Installation of the bilge structures on the building berth and it's

integration with the double bottom unit.
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7)

8)

9)
10)

11)
12)

13)
14)

Shop fabrication of orthogonally stiffened side shell structure (port
and starboard).

Installation of the parallel sided shell panels on the building berth
and their integration with the bilge structure.

Shop fabrication of N® 2 Deck panel assembly.

Installation of N2 2 Deck panel assembly on the building berth and
link up with the side shell structure.

Shop fabrication of N2 1 Deck panel assembly.

Installation of N2 1 Deck panel assembly on the building berth and
link up with the side shell structure.

Shop fabrication of N° 01 Deck panel assembly.

Installation of N2 01 Deck panel assembly on the building berth and
link up with the side shell structure.

Installation of the assemblies on the building berth includes activities such as

the use of building berth cranes, temporary shoring and overall securing of these

assemblies prior to the link welding. The term "link up" includes all those activities

associated with the :

a)
b)
C)
d)

fairing of adjacent structures, plates and sections

completion of plate butt welding

fitting and welding grillage marrying pieces

fitting and welding transverse frame web doubler plates
and/or knee brackets at deck/side shell transverse intersections
manual fillet welding of deck plating to the side shell plating
fitting and welding of collar plates where side shell transverse

frames penetrate the deck plating.

The butt welding of adjacent erection joints in plating is performed manually

using a standard plate edge preparation imposed on the plate within the Fortran source

code. This method, although it may be slightly dated, is assumed to apply at this stage

of the fabrication process, because no information is available on more modern

techniques such as orbital welding, at the level of detail required for compatibility with

the existing welding data-base.
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3.3.2.5 Grillage link up techniques.

As was mentioned briefly in Section 3.3.1, there is a deficit of 1 metre
between the length of the plate and the length of the attached longitudinal stiffener.
Similarily, there is a shortfall of 1 metre between the width of the panel and the length
of the section that is the transverse frame. This descrepancy in lengths is by design and
is necessary if true emulation of the fabrication techniques used in grillage link up
procedures is to be achieved. There are basically two methods used for grillage link
ups that are favoured in shipbuilding today and a brief descrition of each is given

below.

One method is to allow a shortfall of 0.5 metres at each end of the section in
relation to the plate length or width. This permits the fitting of a 1 metre long section
"marrying piece” when two adjacent grillages are being linked up to integrate their
collinear structural members particularly in the longitudinal direction, thereby ensuring
continuity. The other fabrication process that is employed is one where the rolled
sections of the grillage are allowed to overhang at one edge of the plate and fall short at
the opposite edge. If this overhang is taken as 0.5 metre (with a similar length left
unwelded to the plate), the weld length is the same in each of the fabrication procedures
and a similar section cost will result. However, this fabrication technique then requires
a different grillage link up procedure from that described above. In this case, the
structural sections of one grillage are "cut back" from their original overhang length
until they are sufficiently short to be butt welded to the shortfall edge of the adjacent
section. This results in only one butt welded connection between sections instead of the
two required when fitting a "marrying piece”. Examples of each grillage join up

procedure are shown in Fig. 3.5.

However within SHIPCOST only the "marrying piece" method is dealt with.
This results not from any personal choice but rather from a lack of elemental task details
with regard to the "cut back" method, specifically the burning times required to achieve
necessary cut back length. Thus as standard and basic times for fairing the flanges and
webs of sections are available within the work content database and the subsequent

welding times can be extracted from the welding database, an accurate estimation of the
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manhours required to fit and complete the welding of a grillage marrying piece is
possible, although superficially this would appear to be the method likely to incur the

greater labour cost.

Within the context of SHIPCOST, the link up of adjacent grillages occur
mainly on the building berth and as such a variety of different joint orientations have to
be catered for. As a consequence of the orientation and nature of the erection joints
(vertical or longitudinal) different subroutines are required to model the major
alternative erection procedures for adjacent grillage members. In broad terms there is a
range of three grillage joint orientations - vertical, horizontal and longitudinal. Vertical
applies to joints such as that between bilge and side shell grillages, longitudinal to the
joint between linear adjacent structures in the horizontal plane while horizontal applies
to the joints between grillage members of deck panel assemblies and the side shell, i.e.
connections between perpendicular sections. The cases of vertical and longitudinal
grillage joints involve fairing and tacking a 1 metre length marrying piece and butt
welding at either end of the marrying piece. However, in the case of the grillage joint
between deck structure and side shell structure (horizontal) the procedure is not as
straightforward as described above. The treatment of such a horizontal grillage joint
involves the following events :

1) A section marrying piece, 0.5 metres in length, is faired and tacked at
either side of the deck panel assembly ( 1 metre in total per transverse
frame).

2) Overhead manual fillet welding of marrying piece web to the underside
of the deck plating.

3) Manual overhead butt welding of the inboard end of the marrying piece
to the end of the deck panel transverse frame.

4) Manual overhead fillet welding of the outboard web and flange of the

marrying piece to the side shell transverse frame flange face.
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Steps (2) to(4) are repeated for the other 0.5 metre length of marrying piece and steps
(1) to (4) are repeated for each deck panel to transverse frame link up. Figs. 3.6 and
3.7 highlight the three orientations of grillage link up are be modelled in SHIPCOST.

3.3.3 Overhead Costs.

Although fixed overhead costs must be included in the contract price, their
omission can be justified in relative design studies when the sources of such costs are
identified. As in similar relative fabrication cost estimation studies [29, 30}, at the
University of Glasgow these fixed overhead costs are taken to include plate preparation
along with operation and maintenance of means of transport within the shipyard all of

which are assumed to maintain a constant labour resource.

Direct variable overhead costs are related to national insurance payments,
provisions of holidays and pension scheme payments and can be included for our
purposes within the labour rate used in these studies. Overheads not directly related to
direct labour manhours include supervisory staff and power supplies but are assumed to
vary as the variable overhead cost and treated in the same way. Indirect overhead costs
are those which are independent of the level of production and can be attributed to repair
and maintenance of plant and machinery along with their running costs, rates and staff
related costs and for the purposes of this study are ignored on the same basis as the

fixed overhead.

With overhead costs dealt with as outlined above the relative fabrication
cost of a structure can now be estimated in terms of the the total variable cost, defined

as:-

Total Variable Cost = Material Costs + Labour Costs

= 2 Weight x Material Rate + 2Manhours x Labour Rate (3)
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3.4 The Relative Fabrication Cost of a Typical Warship's
Double Bottom Unit.

As an example, to illustrate how the relative fabrication costs of a steel structure
are calculated, a typical warship's double bottom unit is highlighted and a construction

task algorithm is presented.

The structural nature of a double bottom unit leads to readily identifiable
structural assemblies. These assemblies being tank top plating and the outer bottom
plating and their respective attachments. It is a logical progression that, depending on
what are regarded as tank top attachments and what are considered as outer bottom
attachments, different construction sequences can be identified. In total four different
construction sequences have been identified for a typical double bottom unit.
Construction Sequence 1 is described below and all the construction task algorithms are

detailed in Appendix 1.

3.4.1 Typical Double Bottom Unit of a Modern Warship.

From structural drawings a typical warship double bottom can be considered to
consist of the following two structural assemblies :
1) Tank top plating with longitudinal stiffeners, plate longitudinals,
vertical keel, vertical floors and transverse frames.

if) Outer bottom plating and orthogonal stiffening.

With these two individual structures defined, Construction Sequence 1 is described

below and it's construction task algorithm developed in Appendix 1.

A major assumption applied to all the sub-assembly fabrication in this study is

that they are performed in a workshop environment.
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3.4.2 Double Bottom Unit Construction Sequence 1

The activity sequence shown in Fig. 3.8 indicates the order in which the double
bottom unit is fabricated when using Construction Sequence 1. Other activity
sequences developed using Construction Sequences 2 - 4 are shown in Figs. 3.9 - 11

respectively.

The first sub-assembly to be fabricated is the tank top flat panel. The
construction sequence is synthesised from elemental tasks taken from the workcontent
database. These elemental tasks are chosen as those that most closely emulated flat

panel assembly procedure in a present day warship building yard.

Having fabricated a fundamental flat panel, other sub-assemblies are attached
which subsequently identifies this flat panel as belonging to the tank top. Typical of
such sub-assemblies are the plate longitudinals. However, before a plate longitudinal
can be connected to the tank top it must first be fabricated. In reality, plate longitudinals
are fabricated from a series of small individual plate parts all connected together to form
a long plate girder. The size and number of these individual parts is multi-variable and
as such the following assumptions apply to plate longitudinal fabrication within the
context of this study.

) Each plate longitudinal is regarded as one piece of continuous plating,

equal in length to the tank top plate to which it is attached.

2) There are no lightening holes cut in the continuous plate.

3) In the absence of lightening holes there is no consideration of the time

required to fit flat bar riders as they exist on warship structures.

4) The plate longitudinal is stiffened asymmetrically with the number of

stiffeners equalling the number of transverse frames of the tank top flat
panel.

5) The material cost of the plate longitudinal is ignored.

After their fabrication, the plate longitudinals are fitted and welded to the tank

top flat panel.
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As warships are generally considered to be longitudinally stiffened, it is
necessary that the vertical floors are intercostal in relation to the continuous longitudinal
structure, primarily the plate longitudinals. This necessitates that each vertical floor
comprises individual piece parts, the number of which is dependent upon the number of
plate longitudinals. As with the plate longitudinals no consideration is given to the
effect of lightening holes, the fitting of flat bar riders on the fabrication cost or the
material cost. Once all the vertical floor piece parts are completely welded to the tank
top structure i.e. the tank top plating and plate longitudinals, then in terms of

Construction Sequence 1, the tank top sub-assembly is complete.

The next stage of the double bottom fabrication process is to construct the
orthogonally stiffened outer bottom sub-assembly. This sub-assembly may be regarded
as a curved panel or two adjacent flat panels butt welded at the ship's centre line.

Construction Sequence 1 treats the outer bottom as an orthogonally stiffened flat panel.

The subsequent step in the double bottom unit assembly is to rotate the the outer
bottom structure 180° about it's centreline and drop it onto the tank top structure.
Alignment of the respective sub-assembly components is then carried out. The final
join up activities include all welding activities to effect the completion of the double
bottom unit. It is worth noting here that these welding operations are carried out in
what can only be described as unfavourable conditions, i.e. overhead in confined

spaces where access is restricted, and where heat and fumes are likely to build up.

By reading the previous paragraphs of this section the reader may be lead to
believe that fabrication of the outer bottom is commenced once the tank top sub-
assembly is completed. This is not intended to be the case as more likely than not,
these two sub-assemblies will be fabricated in parallel or staggered production and not
in series as described. The amount of overlap in production depends on the relative
workcontent of each, the availability of shop floor space the the disposition of the

steelwork labour force within the yard at any particular time in the build cycle.
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The labour cost inherent to a steel structure is taken as the accumulation of
standard times relating to the elemental tasks used in its fabrication multiplied by a
labour rate. The labour costs calculated in this study relate to those activities that are
carried out by steel trades only. That is to say no attempt is made to estimate the labour
cost associated with the installation of equipment and electrical circuitry or pipework

systems.
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Edge Max
No | Symbol Preparation Thick Tasks
1] L || 13mm | Minor decks
| |3 mm and b/heads
1 J Decks, tank
19 mm | tops, flat panels
| |3 mm and b/heads
\ 40% Decks, tank
tops, flat panels
2 KM Y +8 26 mm and b/heads
mm
2 60
4| M ?i Y= 3mm | 38mm | UnitBuns
65
3mmy ) ¥ T Unit Butts
3 SK 5T | 19mm | decksand
7 0 tank tops
b 3 mm .
55 19 Positional
6 K mm | welding e.g.
3mml | * shaped shells
Fig. 3.1

Material Edge Preparations used in the Welding Database
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Z

Lip or Tongue

/ Weld

:
o
Y
|

Rigi nection

Table of Longnl Web of frame sloued
cut back to web o depth of Longl

Egg Box Lapped Collar

Rigi nection

Fig. 3.2

Typical Grillage Connections used in Warship Structres
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Depth of f)iercing member

Depth of main member

. Vertical cross sectional
Type of Connection Area
> 0.65 0.65-040 | <040
No lug plus bracket or _ * 0.9 *
direct weld Ap = LS*A, [12 A, | 9774,
Not *
One Lug Al _ recomm 2.0 *Aw 1.5 Aw
One lug plus bracket or A, = 0.8 *A 0.65 *A 05*A
direct weld w W w
- *
Al = 13*A, (L0 *A, |07*A,
Two lug Al = 1.0 * Aw 0.8 * Aw 0.6 * AW
= * 0.5*
Two lug plus bracket or Ab 0.8* Aw 0.65 Aw Aw
direct weld _ *
A = 05* A, |04 *AW 03 Aw

Two piece lapped collar

Collar plate thickness = Web thickness of main member

Ab =Vertical cross section area of bracket in way of weld to the main member web

Al = Vertical cross section area of EACH lug

A_ = Web area of piercing member

w

Dimensions of Brackets and Compensation Pieces

Table 3.1

used in Warship Grillages
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Deck Plating

Beam

iy

—"

| _’_2 d3

Frame

Shell Plating

Frame web doubler plate

used at upper decks

Frame web doubler plate
used at lower decks

Fig. 3.3
Typical Frame web Doubler Plate Connections

D $ 1143 | 12.7 |15.24 [17.78 {2032 [25.4
1143 0.533

12.7 0.317| 0.635

15.24 0317 [ 0457 0.762

17.78 * 0.317 | 0.635{ 0.889

20.32 * * 0.381| 0.635 | 1.016

25.4 * * * 0.381 | 0.635 | 1.143

Thickness of web doubler plate
All dimensions in centimetres
* No doubler plate required

Table 3.2
Doubler Plate dimensions
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Collar
‘\

Deck Plating / Deck Plating
Beam
K

Shell Plating
Standard bracket used Standard bracket used
at upper decks at lower decks
B = Bracket web thickness * 60
Bracket flange area = Beam flange area
Bracket web thickness = Thickness of beam web
Bracket flange breadth = b/30

Bracket flange thickness = Bracket flange breadth/30

Fig. 3.4
Typical Bracket Connections used in Warship Structures
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Grillage Marrying
Piece

J
= iy 4 |
/1 metre
Atc seam

Grillage structural section link up using section
"marrying piece" - requires two butt welds.

e /

— \ ‘ '.'.'".'.‘,;.'.'.i; [
/ /I -—>
] 0.5 metre
Section length overhang
adjusted to fit

Grillage structural section link up using
"cut back" method - requires one butt weld

Fig 3.5

Alternative link up methods for grillage structural section link up
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' I\L__);:-;
4.\ X b.SmetBQA/(

mw Horizontal Grillage Link-up
—_ on the building berth

1 metre
/«/ i
el

ol

A=

Vertical Grillage Link-up
on the building berth

Fig. 3.7

Horizontal and Vertical Grillage Link-ups
on the Building Berth
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Fig. 3.8 - Double Bottom Construction Sequence 1
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/" 7/
,%II/III/IIII W :
///li/uljlililﬁl/l, ;
‘/Iﬁ/ili/lil/i/iii/,/,m

7 /ll/l 1/
//;'ii/illj 77 /14 45\

AANEASNN AN

Fig. 3.9 - Double Bottom Construction Sequence 2
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I o

' =
l’/m /
/ //I I/

[ //i/l/l7i/l/./l7l/ﬂ /;[[

4/
///;4//7?/1//17////

BT YT
/’I’iiﬂilf/lﬁ'/z?’
/I]lll/ I TT
p %_iy/il/iiiim 7

Fig. 3.10 - Double Bottom Construction Sequence 3
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Fig. 3.11 - Double Bottom Construction Sequence 4
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STRUCTURAL DESIGN OF FRIGATE MIDSHIP SECTION

In order to give the structural designer maximum flexibility to propose
alternative structural arrangements, a large number of design parameters must be
considered as variables. These parameters include plating thicknesses, types of section
(rolled and fabricated) used as structural members, their scantling sizes, and the
spacings of longitudinal and transverse members. As these design parameters also
have a direct bearing on the ultimate strength of the structure, there must be some
means of assessing the global effect on the load carrying capacity of the structure
resulting from any localised changes to them. This requires design criteria to determine

the strength of the ship in response to both longitudinal and transverse loading

The longitudinal strength criteria incorporated in the overall strength
formulations are taken from the current Royal Navy Design Manual - NES 110 [43].
Transverse structural design is assessed according to Det Norske Veritas (DnV.)

Classification Society Rules for the design of flat plate grillages [44].

It is convenient to divide overall ship's structure into the three types as first

suggested by St. Denis [36] :

PRIMARY - The hull when it is considered in its totality.

SECONDARY- Stiffened gross panels of plating bounded by side-shell,
transverse and longitudinal bulkheads or other means of
vertical support

TERTIARY - Unstiffened plate elements supported by transverse and
longitudinal stiffeners.

This allows design assessment to be considered at the various levels corresponding to

the above breakdown of structural elements.

As a further convenience, secondary structure is defined as a GRILLAGE when
stiffened orthogonally and as a PANEL when stiffened in only one direction. In turn
these are made up of tertiary PLATE elements (bounded by neighbouring transverse

members and longitudinal stiffeners) as illustrated in Fig. 4.1.
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it

Ngu, Nis Loads per unit width applied to bottom structure by

design hogging and sagging bending moments.

D = Moulded depth

Bp = Load bearing width of upper deck allowing for the
presence of large holes.

Bg = Load bearing width of bottom structure (turn of bilge to
turn of bilge).

c = Design coefficient related to size and type of ship

The calculation of these line loads at the upper and lower flanges of the hull

girder shown in Fig. 4.2 allows the detailed design of these structures to begin.

4.2. Design of Secondary Structure.

The use of Long Stalk Tee (LST) rolled sections as longitudinal stiffeners is
standard practise in current Royal Navy ships. This is understandable as these sections
were designed to yield a better distribution of weight for a high moment of inertia
compared to other standard rolled steel sections. The use of LSTs thus allows the
design of lightweight stiffened panels with high collapse loads. However, when
weight is no longer the only constraint in structural optimisation other standard rolled
steel sections can be considered for structural members. In this study the use of Offset
Bulb Plate (OBPs) and Flats have been investigated as longitudinal and transverse

members as alternatives to the LSTs.

Various load actions must be taken into account when checking the strength of
deck structures, however during the design of structural sections it is generally

adequate to consider the following :-

i)  compressive in-plane loads that are a result of applied bending

moments (sagging)
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ii) the tensile in-plane loads that are a result of applied bending

moments (hogging)

iii) lateral loads imposed by normal environmental conditions.

4.2.1 Designing Against Interframe Panel Collapse Failure Mode.

To ensure that deck structures can carry the loads calculated in equations (5) and
(6), the interframe flexural compressive collapse stresses for longitudinals and their
associated plating must be predicted. These predicted compressive collapse stresses
must be at least an appropriate factor of safety greater than the actual applied

compressive stresses induced by hull bending.

In longitudinally stiffened structures where the transverse frame spacing is
greater than the longitudinal stiffener spacing (i.e.in Fig. 4.1, a > b, ), the plating loses
effectiveness immediately on application of in-plane loads because of initial
imperfections. However, for slender plate elements, (b/plating thickness > 60 for mild
steel), which have their unloaded edges constrained to remain straight there is
significant post buckling strength. This can be interpreted as elastic buckling, though
not in the critical sense, with the out-of-plane deformations increasing proportional to
compressive load. The stress distribution in the plate for any given load and an

illustration of the "effective width" concept b, are shown in Fig. 4.3.

Von Karman postulated that the maximum post buckling load such a plate can
sustain occurs when the edge stress G, reaches the yield stress Oy. Based on this and
the further assumption that the unloaded edges of a long "pinned" plate remain straight,

he derived an engineering solution for minimum effective width at failure -:
Pem_Om_19t [E _19
b o b c B
y y (7

longitudinal spacing

o
Il

minimum effective width of plating
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O, = maximum average stress at plate failure
Oy, = plate yield stress
t = plate thickness

E = Young's Modulus of Elasticity
b c
B =71 —Ey- = plate slenderness parameter

However, the effective width of plating said to be acting with an attached

(7a)

stiffener must be calculated at compressive stresses other than the yield stress Sy
Faulkner in his comprehensive review of the treatment of this concept [37] proposed an

alternative formulaton :-

Y (8)

This relationship, corrected for a residual stress factor n = 3 is used within the design
formulations of this study. These residual stresses result from the forming operations
the section undergoes to acquire its final shape or as a result of the heat input from the

welding operations during fabrication of sections and their attachment to the plate.

In order that the design of deck and side shell longitudinals can get underway a
"first shot" value of the ratio of Ru, the stress in the longitudinal at collapse to the
material yield stress must be assumed. Assuming Ru = 0.95, allows the effective plate

slenderness ratio to be calculated from :
b (o)
B = - J Ru  —
of t E ( 9 )

The effective width of plating said to be acting with the stiffener can now be

calculated from equation (8)

b, _ (_L_L)
b 2
Bdf eff
n=3 (10)



which allows the calculation of the effective longitudinal sectional properties for the

combination of stiffeners and effective plate as outlined below.

: 1. 3 ST 2 - 2
L ﬁbet *Asectl Yoot )+ DtV - yplatc)

(11)
I
k=_ [ —=
A
tat
where :
Ig =  second moment of area of stiffener and effective width of
plating!
Ieet =  second moment of area of stiffener only
be =  effective width of plating
Agr =  cross sectional area of stiffener only
f/sec . = height above datum of stiffener neutral axis
)'rplm = height above datum of plate neutral axis
y = height above datum of neutral axis of stiffener and effective

width of plating

A Y +b ty
= sect%ect e %late

+bt
sect e

Y

y +b ty
sect’sect e plate

tot

Ator = Asect+ bet
radius of gyration of effective section

=~
Il

plate thickness = nominal thickness - corrosion allowance.

-
]

f Note that I corresponds to effective width, be, rather than the
reduced effective width b,' from which I¢' is calculated.
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The column slenderness ratio, A, is defined as :-

A = 2 Sy
3 E (12)
where :
a = length of column, normally the transverse frame spacing
o, = material yield stress
E = Youngs Modulus of Elasticity.

In the absence of residual stresses, the critical stress 6, of a column with pinned
ends, (i.e. the axial stress at which it first shows signs of out-of-plane deformation) is

given by Euler's Theory for long perfectly elastic struts :-

2
o -ZE
L)
k

However, in columns made of rolled steel sections or a combination of plates

(13)

and sections fabricated by welding, residual stresses will be present, as noted above.
These residual stresses can be relieved by annealing after fabrication but this is
generally both costly and impracticable. Therefore, in the calculation of the critical
buckling stress of columns the effect of residual stresses must also be taken into
account. As the load on such a column increases, some of the material begins to yield
where the sum of the applied stress and the residual stress reach yield stress.  As the
applied stress is increased greater amounts of material reach the yield stress, thus
leading to the failure of the column at a stress lower than calculated from equation (13).
This results in a loss of effectiveness of the column as the applied stress reaches the
yield stress. The possible effects of residual stresses on the crippling loads of columns
have been examined both experimentally and theoretically in Refs. 38 and 39. Ref. 40

suggests that for practical ship structural systems the critical stress can be calculated

using Johnson's empirical formula :-

51



y (14)

or

(15)

When equations (14) and (15) are plotted non-dimensionally there is a common
point of tangency at which they merge, see Fig. 4.4 These relationships are suitable for

use in the design of practical steel beam-column structures used in ships construction.

Using values of A calculated from equation (12) in conjunction with Fig. 4.4
the ratio of collapse stress to yield stress, Ru, can be found. If this value of Ru is more
than 5% different from the "first shot" value of Ru used in equation (9) then re-iteration
of the design procedure is required, starting from equation (9) through to the stage just
described, until the difference between the value of Ru used in equation (9) and that

obtained from Fig. 4.4 is less than 5%.

Once this condition has been achieved the average compressive collapse stress

O,ve for the longitudinal stiffener and effective plating, in the absence of lateral loads
(assuming pinned connections to the frames), is then given by :-
_ Ru ALot Gy

Cave ™ A__+bt

sect (16)

This value 0, should be at least 20% greater than the maximum axial
compressive stress applied to the longitudinals of the strength deck, and 25% greater
than the maximum axial compressive stress applied to other longitudinals in deck, tank
top or outer bottom structures. If these safety factors are achieved, then this
combination of longitudinal type, scantlings, spacing and plating thickness is

potentially suitable for use in the design of deck and side shell structures.
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4.2.2 Design of Bottom Longitudinals

In practise, when bottom longitudinals buckle under the application of
combined end and lateral pressure loads, their deformed shape is similar to that of a
series of connected beams, having encastre ends at their points of connection. This
differs from the alternating half wave buckles of the deformed deck and side shell
longitudinals with no lateral loading, which maybe considered to be pinned at their
connections to the frames. Fig. 4.5 illustrates the deformed shapes of each type of

longitudinal.

The design procedure for bottom longitudinals is carried out in two stages.
Firstly, the method described in Section 4.2.1 is used to calculate pinned end
compressive collapse stress of a rolled section acting with an effective width of plating.
Secondly the procedure calculates the collapse stress when the ends of the longitudinal
are considered clamped at their connection to the frames. This is achieved by reducing

the slenderness ratio of the column, A to the value for encastre columns given by :

clamp

s [
d E
. Ikm (17)

Because of the combination of axial and pressure load systems that exists for
the bottom longitudinals, a means of describing their elastic behaviour and ultimate
failure loads is required. Exact theories exist for these phenomena but lead to
complicated and unweildly expressions. Hence an engineering approximation is
required. This assumes the form of a "reduction factor” which allows the easily

calculated effects of normal loads to be influenced by the end loads. This reduction

factor is defined as :-

h

1_—-
%o (18)

where :

P, = lateral pressure acting on the longitudinal

53



P, = three hinge plastic collapse pressure of the longitudinals assuming
they are clamped at the frames.

Using the value A in conjunction with Fig. 4.4, the average compressive

clamp
stress for a column clamped at its frame connections is given by :-

RuA ©
o = vy
damp ( A+ bt)
sect
clamp (19)
By multiplying Oclamp by the reduction factor given in equation (18), the
average collapse stress for a column with clamped ends under the actions of axial and

lateral loads is given by :-

(20)

The stress that the bottom longitudinals must be designed to withstand is the
lower of the values calculated from equations (16) and (20) and this should be at least

25% greater than the compressive stress applied to the bottom longitudinal in question.

The factor of safety stated in the previous paragraph only applies to longitudinal
stiffeners if they are of tee section. When OBP longitudinals are being considered an
increased safety factor is required. A supplementary partial safety factor of 1.1 (or a
reduction in permissible stress of 10%) is employed as suggested in Ref. 41. This
supplementary safety factor allows the OBP stiffeners to be designed on the basis of
simple beam theory ignoring the effects of asymmetry. If flat bars are being considered
then limiting the depth/thickness ratio to less than 10 is necessary to ensure avoidance
of tripping under conditions of elasto-plastic bending compression as recommended in

Ref. 42.
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4.3 Design of Tertiary Structure.

In the instances where the stiffener disposition is such that relatively large
unstiffened plate elements exist in the structure, there must be a design criterion by
which these tertiary elements are assessed. In this study these elements are designed
such that the minimum in-plane edge stress to initiate plate buckling is at least a factor
of safety (assumed 1.1, Ref. 46) greater than the actual in-plane edge stress that is
distributed along the edge of the plate element. The critical buckling stress for a long
plate element (i.e. one in which the in-plane edge stress is applied along the shorter
sides of the plate element) is given by :

; =£n_2_(t_)2
2\ \b
T 1231 <v9) 21)

and for a wide plate element (i.e. one in which the in-plane edge stress is applied along

the longer sides) the expression for the critical buckling stress becomes :

2
n’E (t) b’
LT A B Y

12(1 - vH) \P 2’

2

(22)

4.4 Design of Transverse Structural Members.

To allow a greater range of structural alternatives to be proposed by the
designer, there has to be an element of the design procedure where it is possible to
propose and assess changes in the transverse structure. The transverse structural
design procedure has to be capable of taking account of variations in plating thickness,
longitudinal stiffener spacing, transverse frame spacing and the type and scantlings of
the sections used as transverse frames and longitudinal stiffeners as well as their

influence on the global structural behaviour of the complete midship section structure.

Several studies throughout the course of the project have concentrated on

constant area, fixed transverse frame spacing structural alternatives of major elements
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of the midship section structure, namely strength deck and double bottom. The results
of these studies are discussed in Chapter 6. Consequently by maintaining a fixed
transverse frame member type, size and spacing, a severe limitation was imposed on
the range of possible structural alternatives that could be investigated. In order that a
wider range of structural possibilities could be investigated with a view to the ultimate
optimisation of relative fabrication cost, the design of the transverse structure had to
become an integral part of the overall structural design package - thus removing the

fixed transverse frame spacing constraint.

The need for a "Rules based" approach for the design of the transverse structure
became apparent after various attempts at establishing a "ready reckoner" type
algorithm, relating longitudinal material and stresses with their transverse counterparts
proved fruitless and the algorithm remained elusive, despite using a finite element
method of analysis. From a study of the applicability and ease of manipulation of
several Classification Societies' Rules to frigate transverse design. As a result, largely
through their well developed theoretical base, DnV Rules for the Design of Mobile
Offshore Units, Ref. 44, were found most suitable and have been incorporated as

program subroutines into a simple transverse structural design model.

Chapter 3 of these DnV Rules relates to Stiffened Flat Plates and is concerned
with the design of such structures to avoid failure by various buckling modes. These
failure modes include :-

Plate buckling - local plate buckling between stiffeners
Stffener buckling - buckling of stiffeners and attached plating between
girders (plate or stiffener induced failure)

Local buckling - of stiffeners and girders

Girder buckling - overall buckling involving bending of stiffeners and
girders with attached plating (plate induced or flange
induced failure)

It is this last failure mode that has been applied to the design of warship
transverse structure. The design criteria and formulations relating to girder buckling

have a tangible relationship to the longitudinal structure and can readily incorporate the
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design loads as specified in NES 110, [43]. These formulations are presented below as

the basis for the design of warship transverse structures adopted in this project.

The primary function of transverse structure is to offer the means of support to
the longitudinal structure and also to resist lateral pressure loads. Therefore it is
necessary to design a transverse girder that supports longitudinally stiffened plating to

resist a lateral pressure load pgy, which is equal to :-

Py=P+P, 23)
where:
04t +2) (o 2
P = s — (i) Oy
o H(l _i) E 1
S (24)
but:
(A)
p 2 0.02 s/|o
o X
: (25)
and :

p = design pressure head as defined in NES 110, Annexe 8A

t = plate thickness = nominal thickness - corrosion allowance

A = stiffener cross sectional area excluding effective flange of
plating

s = longitudinal stiffener spacing

H = web height of transverse member

S = Transverse member span

E = Young's Modulus of Elasticity

o, = material yield stress

o, = Axial compressive stress of longitudinal stiffeners (induced by
hull bending)

1 = length of longitudinal stiffener = transverse frame spacing
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The effective bending stress during buckling of an encastre beam is taken as :-

¢ : (26)

where :

Ze = effective section modulus of the transverse member calculated with

an effective flange of plating le

The effective plating flange width, le, is taken as the value required for flange

induced failure :-

(27)

Re-arranging (26) results in an expression which allows the calculation of a rule
determined minimum value for the transverse member section modulus:-

pd821

12 0'b

Z =

e

(28)

By allowing the maximum bending stress to reach oy, the final expression for
minimum section modulus of the transverse frame is given by:-

2

p,S°1
z =4
* 120
y (29)
or if a safety factor (SF) is to be employed then the expression becomes:-
2
p,S71
Z ——
¢ 12 0 (SF)
y (30)

The above formulations have been incorporated in Fortran subroutines
contained in the structural design program FRIGATE to be used in a number of ways

to assess the transverse strength of warship structures.
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Basically, two approaches are used within the context of this project when
dealing with the structural design of a typical midship section of a Royal Navy Frigate.
Firstly, the longitudinal and transverse structures are defined and the design package
proceeds to re-design the midship section in the longitudinal sense while the transverse
structure remains unchanged. Alternatively, by varying the transverse structure while
- maintaining the longitudinal structure as defined initially, this gives a second means of

designing alternative midship section structures.
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Deck Longitudinal Deformation -
Axial Compressive Load Only

W

Bottom Longitudinal Deformation -
Combined Lateral and Axial Loads

Fig. 4.5
Typical Longitudinal Stiffener Deformations
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In order for parallel development in both the structural design and relative
fabrication cost aspects of the project to be possible, two independent programs were
compiled in the Fortran 77 programming language. One program FRIGATE deals with
the structural design of a typical Royal Navy Frigate midship section and the other
program SHIPCOST deals with the algorithms and mechanisms necessary for

estimating the relative fabrication cost of a such a vessel.

§5.1. Structural Design of Typical Frigate Midship Section.

To maximize the benefits that can be gained by using a computer at the
preliminary structural design stage, the software must be written in a manner that enables
iteration of the design variables to be included, thus automating the design procedure
(spiral). Iterative re-calculation is needed to assess the effect of local changes in the
design parameters on the global acceptability of a structure in relation to the design

criteria that are applied in it's design.

The design criteria incorporated within the Fortran coding relates to two different
design philosophies. For the design of longitudinal structure, the design method is a
"first principles” approach and employs the design criteria that is currently applied to the
design of Royal Navy steel surface ships while for the transverse structure a
Classification Society Rules approach is used. The conclusions from an assessment of
the applicability of several Classification Society's Rules to the design of a frigate's
transverse structure indicated that the most suitable set of rules appeared to be DnV for

Mobile Offshore Units, Part 3, [44].

From the beginning, it was found that the design of a complete midship cross

section from first principles without some initial constraints was outwith the scope of the
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work. Consequently, in order that the design procedure can get underway, several of

the design parameters must be selected as constants. By studying the details of Ref. 48,

a basis model of a typical frigate midship section was built up of the following structure

as shown in Fig. 4.2.

1)
2)

3)

4)

All plating is taken as mild steel.

Ne. 01 deck structure :

2.1
2.2
2.3
2.4
2.5
2.6

10 mm plating

10 off 114 * 44 mm Tee bar longitudinals

2 off 152 * 76 mm Tee bar longitudinals

2 off 205 * 101 mm Tee bar longitudinals

2 off 254 * 127 mm Tee bar longitudinals

Transverse frames spaced at 1 metre intervals consisting of

152 * 76 mm Tee bar

N2 1 deck structure :

3.1
3.2
3.3
3.4
3.5
3.6

10 mm plating

10 off 114 * 44 mm Tee bar longitudinals

2 off 152 * 76 mm Tee bar longitudinals

2 off 205 * 101 mm Tee bar longitudinals

2 off 254 * 127 mm Tee bar longitudinals

Transverse frames spaced at 1 metre intervals consisting of

152 * 76 mm Tee bar

N¢ 2 deck structure :

4.1
4.2
4.3
4.4
4.5
4.6

10 mm plating

5 off 76 * 25 mm Tee bar longitudinals

2 off 127 * 53 mm Tee bar longitudinals

2 off 295 * 101 mm Tee bar longitudinals

2 off 254 * 127 Tee bar longitudinals

Transverse frames spaced at 1 metre intervals consisting of

127 * 53 mm Tee bar
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5)

6)

7)

8)

9

10)

Tank top structure :

5.1
5.2
5.3

10 mm plating
12 off 114 * 44 mm Tee bar longitudinals

Transverse frames consisting of 152 * 76 mm Tee bar

Outer bottom structure :

6.1
6.2
6.3

6.4

6.5

10 mm plating

12 off 114 * 44 mm Tee bar longitudinals

5 positionally fixed plate longitudinals with dimensions :
30off 20 * 0.0l m

20ff 1.15*%0.01 m

Plate floors existing between alternate transverse frame
members consisting of 152 * 76 Tee bar bracket floors.

Rise of floor taken as 10.2° from the horizontal

Bilge structure structure :

7.1
7.2
7.3
7.4

10 mm plating
8 off 114 * 44 mm Tee bar longitudinals
Fabricated transverse frames spaced at intervals of 1 metre

Bilge radius taken as 3.275 metres

Parallel side shell structure :

8.1
8.2
8.3

8.4

10 mm plating

9 off 114 * 44 mm Tee bar longitudinals

Transverse frames between No 01 deck height and No 2 deck
height taken as 152 * 76 mm Tee bar and spaced at 1 metre
intervals

Transverse frames between No 2 deck height and the
beginning of the bilge radius taken as 127 * 53 mm Tee bar

The total width of deck plating considered to be

longitudinally continuous is 8.6 metres except for the tank top

where width is 9.6 metres.

All decks are considered horizontal and parallel to the base line

i.e. no camber
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11)  Parallel side shell structure is considered vertical and
perpendicular to the base line.
12)  The superstructure is regarded as ineffective material providing

no resistance to longitudinal bending of the hull girder.

With this level of detail forming the basis structural model, the design bending moments
for the hull girder in the hogging and sagging conditions are required as further pre-
requisites for the design process to proceed. The data input sequence for FRIGATE is

shown in Fig. 5.1

5.1.1 Design Meth for a Midshi ionof a T
Frigate.

The program FRIGATE is designed to generate midship sections which are
structurally equivalent to the basis model midship section. The means by which
FRIGATE does this, is to develop structural components which have total area values
equivalent to those of the basis model area values but with the make-up of that total area
is altered by varying plating thicknesses, stiffener types and scantlings. These
structurally equivalent alternatives are required to satisfy the design criteria that govern
the longitudinal and transverse structural design and can be generated by maintaining a
fixed transverse structural arrangement while allowing the longitudinal structure to vary.
Alternatively, equivalent structures can be generated if the longitudinal structural
arrangement remains fixed while the transverse structure varies. Both of these methods
are used to develop structural alternatives to the basis model of a typical frigate's midship
section. As a further convenience in relation to data handling within the subroutines the
midship section is divided into the following seven identifiable structural components,

using a bottom up philosophy :

1) outer bottom
2) tank top

3) bilge

4) 2 Deck
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5 side shell

6) 1 deck
7 01 Deck.
5.1.2 ign Method 1 - Constant Transver re with Variabl

Longitudinal Structure.

In this design method the longitudinal material of each structural component is
optimised in terms of the minimum number of longitudinal stiffeners of any particular

type while the transverse structure remains unaltered.

As can can be seen from Fig. 4.2, there are three deck structures considered in
the basis structural model of a typical frigate midship section. In order that FRIGATE
operates with maximum flexibility, each deck structure is allowed to have a unique
structural arrangement of longitudinal stiffeners and transverse frames associated with it
so that a particular arrangement on one deck need not be repeated on either of the other
two. Through the diversity of structural components and different set of loading
conditions on each deck, it is unlikely that the optimum deck frame spacings will be the
same. Such a structure is impractical to fabricate and the minimum spacing within the
group will determine the most satisfactory frame spacing for the deck structures taken as
a group. This transverse frame spacing is then applied throughout the remainder of the

midship section.

With the basis model defined it is now possible to calculate various properties of
this particular structural definition of a midship section. These properties include the
position of the neutral axis for the midship section as a whole, the position of the local
neutral axis of each structural component, the second moment of area for the whole
midship section and the area contributions of plating and longitudinal stiffeners to the
area total of each structural component . Using these values and applying simple beam
theory to the hull girder, the compressive stresses induced by hull bending can be
calculated for each structural component. If these environmentally imposed loads do not

exceed the limit loads, adjusted for safety factors, in each structural component, then the
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design procedure can continue. The principal limit loads are those applied to the strength
deck with the hull girder in the sagging condition and the outer bottom by the hogging
condition. Conversely if the limit loads in any of the structural components are

exceeded, then the midship section must be re-defined before the design procedure can

continue.

Using a structurally acceptable longitudinal midship section structural definition
the procedure advances to checking the transverse structure in terms of scantlings and
spacings within each structural component. The assumed loadings on the transverse
members are those detailed in Appendices 8,9 and 10 of Ref. 43 in which the transverse
members are considered to be resisting bending loads only while offering structural

support to the longitudinal material.

The method employed in determining the transverse frame spacing for a

particular midship section is described below and is shown in Fig. 5.2: -

1) calculate the DnV Rule required minimum section modulus,
REQMOD, for N° 01 deck transverse member, under the
specified loading and an assumed transverse frame spacing

of 1 metre.

2) calculate the actual effective section modulus, ACTULZ, of
the transverse member acting with the Rule-determined

effective breadth of plating.

3) if the section modulus value calculated in step (2),
ACTULZ, is greater than or equal to REQMOD, calculated
in step (1), then this transverse member may be used in the

strength deck structure at the assumed transverse spacing.

4) maintaining these transverse member scantlings, increase
the transverse frame spacing incrementally until the actual

section modulus is still just greater than the required
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minimum allowed by DnV for this particular transverse

member under the specified loading conditions.

5) by increasing the frame spacing, the column length of the
longitudinals is increased, hence interframe panel buckling

must be reconsidered.

6) if the increased transverse frame spacing results in failure of
the longitudinal structure it is then necessary to calculate the
maximum column length of the smallest longitudinal of the
strength deck that can withstand the applied loading

conditions with the specified safety margin.

D the frame spacing (= longitudinal column length) calculated
in step (6) is the upper bound limit on the frame spacing
that satisfies the criteria for both the transverse member and

the longitudinal structure.

By following the procedure described in steps (1) to (7), above, for each deck
structure a maximum transverse frame spacing for each deck can be calculated. Only the
smallest of these frame spacings, applied to all three deck structures, will ensure that
both fabrication and structural design criteria are not being violated. Therefore, the
transverse frame spacing for the midship section is subsequently taken as the minimum
transverse frame spacing value calculated by following the procedure outlined in steps

(1) to (7) above after application to each of the deck structures in turn.

Once a transverse frame spacing has been rationally calculated and accepted in
accordance with the design criteria, the remaining transverse structural members must be
designed such that they can withstand the environmental lateral loading to which they are

subjected at this predetermined frame spacing.
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5.1.3 Design of Side Shell Transverse Members.

For those members that form the transverses at the side shell other simplifying
assumptions have been made. The first assumption is that one uniform member extends
from the height of N2 01 deck to the start of the bilge radius. This deviates from normal
ship structure where different sized sections are used to form the transverse member
between decks. In such cases, transition pieces are required to ensure continuity of the
structure. The second assumption is that each intermediate length of the side shell
transverse frame member between decks is considered to be pinned to it's adjacent
section at the intersection of the deck and side shell transverse members. As the height
between decks can be variable, the critical length of section governing the design of side
shell transverse frame members to the predetermined frame spacing, is therefore taken as

the maximum length between these pinned joints (i.e.the maximum 'tween deck height).

5.1.4 Design of Bilge Structure and Outer Bottom Transverse Members.

The design of the members forming transverse frames in the bilge and the outer
bottom structures is not as straightforward as for the other structural components. The
design load on these members takes into account the static head of seawater as well as
the contribution made by the dynamic head of seawater as the vessel moves through the
water. This implies a linearly varying lateral load which is directly proportional to the
draught of the vessel. This raises the problem of how best to deal with a linearly varying
lateral load on the transverse members of a particular structural component. The method
adopted in FRIGATE is to design the whole member so that it will not fail if the peak
load is applied uniformly over the total length of the member. This will result in a degree

of redundancy at those parts of the member close to the waterline.

5.1.5 Design of Fabricated Sections.

Due to the intensity of the applied load and the predetermined spacing of the

transverse members of the bilge and outer bottom structures, it may transpire that
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standard rolled sections, of a type specified by the user, cannot provide sufficient
scantling dimensions or section modulus to satisfy the design criteria. When situations
of this nature arise it is necessary to design a suitable fabricated section which for the
purposes of this study is assumed to be a tee. The scantlings of the web and flange of
these fabricated tees are determined by a procedure that stems from a subjective study of
the LST's currently used in Royal Navy design. By considering the dimensions of the
web and flange of the larger LSTs it was found that both the web depth to flange width
and the flange to web thickness ratios are approximately two. Maintaining these ratios
for the fabricated section, a section can be designed that when acting with the effective
breadth of plating will have at least the required section modulus value. To initiate this
design procedure, the web depth is taken as 250 mm (approximately the same as the
largest LST) and increased incrementally, together with the flange width, until the design
section modulus is attained. Checks on the geometry of the section are carried out in
accordance with the guidelines of NES 110, Vol 1, [43] for the design of large fabricated

sections, to ensure that web or flange buckling does not occur.

The subsequent steps in the design procedure involve altering the longitudinal
structure of the originally defined midship section. An effective means by which this can
be done is by maintaining a constant area value for each structural component in turn, but
vary the components that make up this constant area value. By evaluating the area of
longitudinally continuous material required in each structural component of the basis
model midship section and varying the contributions made to these areas by the plating

and stiffeners, different structural arrangements can be produced.

5.1.6 Longitudinal Stiffener Disposition.

From the details shown in Fig. 4.2 of the basis model midship section, it can be
seen that two panel types exist for each deck consisting of two identical wing panels and
a centre panel separated by engine uptake/downtake trunking. Varying dispositions of
plating and stiffener material must satisfy the total area constraint as well as the
longitudinal design criteria for each panel. Several previous studies, 8, 9, 10],
investigating the fabrication costs of ship structures, conclude that minimal fabrication

costs are incurred when the maximum longitudinal stiffener spacing is achieved across
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the width of a panel. Bearing this in mind, the sectional material is disposed across both
deck panel types such that a maximum longitudinal stiffener spacing is achieved in each
panel type. The wider of these spacing is taken as the critical spacing of the complete
deck structure in question for the calculation of the interframe panel collapse load of the
longitudinal stiffener and effective width of plating. If this interframe panel collapse load
is at least the specified margin of safety greater than the axially compressive, hull
bending induced load, the structural arrangement is considered as a structurally
acceptable alternative to the basis model longitudinal structure. Furthermore, when
dealing with these deck panel types, there are six positionally fixed longitudinals. This
arises from studying the details of Ref. 47 where these fixed girder positions are at the
hatch sides on the three panels (4 stiffeners) and at 0.5m distance inboard from the port

and starboard side shell.

When structural components other than the multi-panel deck structures are
investigated, the most convenient means of determining the critical longitudinal stiffener

spacing is simply to divide the total panel width by the number of stiffeners plus one.

It should be noted here that each alternative structural arrangement consists of
plating and the relevant number of uniform stiffeners. This may be regarded as an
additional design constraint in view of the fact that the basis model midship section
definition may have varied longitudinal sizes on each deck panel type. However,
various methods of allowing combinations of different sized longitudinals in any
structural component proved cumbersome and unwieldy and are therefore not

implemented.

During the search for the optimal structure for any of the structural components
(i.e. the alternative structure that has the least number of components) various checks are
performed to ensure that the fabrication of such a structure is not unnecessarily
complicated by the fact that the welder has limited accessibility to a particular joint.
Using an expression published in Ref. 20 the minimum spacing allowed between
symmetrical stiffeners can be calculated. By adapting this expression, this minimum
spacing check can also be extended to asymmetrical sections. Therefore, as long as any

alternative design spacing calculated for each structural component is not less than the
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minimum spacing, this ensures that proper fabrication techniques are possible and a

wholly acceptable structural alternative has been generated for that particular structural

component .

Another important geometrical check performed is to guarantee a minimum flange
clearance between intersecting grillage members. This minimum flange clearance is
taken as 40mm in accordance with section 6 of Ref. 43 in the case of OBPs and Flats.
However, in keeping with the basis model, using LSTs, this flange clearance is not
always attainable and therefore when using LSTs 35mm is taken as adequate. As the
longitudinals are regarded as being continuous, the transverses have a slot cut in their
webs. In order to retain structural strength of these penetrated members it is assumed

that all cutouts are bridged by compensation pieces.

5.1.7 The use of "curve fit" data .

In many design procedures reference is sometimes made to graphical
information. This aspect has been eliminated in FRIGATE by using polynomial

equations, fitted by a "least squares” approach, to the graphical in the design codes.

The first instance where such a polynomial expression is needed is in the
calculation of the effective width of plating that is considered to be acting with the
attached stiffener. In order to evaluate the effective width ratio be/b it is necessary to
estimate the plate slenderness ratio 3 (defined in Eqn. 7a) using Faulkner's plate strength
relationship, Eqn. 10, for a residual stress factor n = 3 (see Fig. 5.3). A 14th order
polynomial expression is used in this instance to provide the same accuracy as the
manual interpolation. A limitation on this expression is the necessity to keep it within the
same data range as the graph and therefore any plate thickness and stiffener spacing ratio

that causes B to exceed the value 5 is ignored.

A further occasion where the use of such curve fit data is useful is during the
calculation of the critical buckling stress of steel columns. In this calculation it is
necessary to determine the the ratio of the average crippling stress of un-annealed steel

columns (stiffener acting with an effective width of plating) to the material yield stress
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for various values of the column slenderness parameter A. In Fig. 4.4 the abscissa A is
related to the ordinates of the ratio cu/oy, a combination of the Euler hyperbola and
Johnson parabola merged at a point of common tangency. In this case, there is an upper
bound value to the data range A = 3.0. Therefore, if the column slenderness is greater

than 3.0 the design procedure is terminated and re-started using a new section.

5.2. Design Method 2 - Variations in the Transverse Structure.

In this design method, the transverse structure is considered variable in terms of
transverse frame member types, scantlings and spacing within each structural
component. Following a successful run of FRIGATE operating in this secondary
mode, to establish a satisfactory transverse structural design, the program automatically

enters the design procedure outlined as Design Method 1 in Section 5.1.1.

Both means of data input, i.e. from datafile or keyboard, are suitable in this
particular design method. Design Method 2 is flexible enough to allow different section
types to be used as transverse frames in each of the different structural components.
This may or may not be practicable from a fabrication viewpoint but it is a facility that is
available to the user which allows comprehensive exploration of the complete range of

available options.

Some features of Design Method 1 are repeated in Design Method 2, primarily
the need to define a complete midship section structural arrangement of longitudinal
material. The same basis model as described in paragraph 5.1.2 can be used to initiate
the design procedure or an alternative structural arrangement can be detailed by the user.
Progressing from the need to define a complete midship section, the user is asked to

input the following design parameters in order that the design of the transverse structure

can proceed :-
1) the nature of the hull bending moment, sagging or hogging.
2) the type of rolled section to be used as the transverse frame
member within each particular structural component .
3) the length and spacing, in metres, of the transverse frame.
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4) the design head of seawater considered to be acting on the

transverse frame.

5) the scantlings of a "first shot" transverse frame member.

After determining these input factors the design process continues by stepping

through the following procedure shown diagrammatically in Fig. 5.4..

1 calculate the DnV Rule-required minimum section modulus
, REQMOD, for N2 01 deck transverse member under the
user specified loading and frame spacing.

2 calculate the actual effective section modulus, ACTULZ, of
the transverse member acting with the Rule-determined

effective breadth of plating.

3 if the section modulus value calculated in step (2),
ACTULZ, is greater then or equal to REQMOD, calculated
in step (1), then this transverse member may be used in N°
01 deck structure at the user specified transverse frame

spacing.

4 if the section modulus value calculated in step (2),
ACTULZ, is less than REQMOD, calculated in step (1),
then FRIGATE asks the user to decide on one of the

options for the particular structural component under

investigation :

a) search out the next suitable available size of the section

type chosen ?
b) for the particular transverse frame member specified,
determine the transverse frame spacing that satisfies the

criteria being used for the design of the transverse

structure ?
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5 if after searching through all the available section sizes and
ACTULZ is still less than REQMOD, FRIGATE will
automatically calculate the maximum transverse frame
spacing allowed by DnV Rules, for the largest section of
the type specified by the user.

If step (4a) is answered in the affirmative, then a search is commenced for the
first section from the database that provides a combined section modulus value, greater

than that required by Dnv rules.

If the response to step (4a) is negative, FRIGATE will ask if the design
procedure should seek out a transverse spacing that, when used in conjunction with the
specified section type and size, will provide a suitable section modulus value for the
specified loading conditions. If at the end of this design loop, the section modulus value
still does not satisfy the design criteria then the program will suggest that the use of a
bigger section should be investigated. If after rejecting option (4a) and then (4b) is not
accepted, FRIGATE will stop and the complete design procedure has to be re-entered

from the very beginning.

Irrespective of which design method is used, FRIGATE will always search out
an alternative structure which has fewer fundamental components than the basis model
described by the user. The search sequence employed by FRIGATE is shown in Fig.
5.5.

§.3. Relative Fabrication Cost Subroutines

In broad terms, the fabrication of a complete midship section twin unit assembly
can be regarded as three distinct groups of related activities, from the initial stages of
sub-assembly through to the final stages of erection on the building berth. The program
SHIPCOST gives the structural designer a means of rapidly assessing the relative
fabrication costs associated with these three stages of the build cycle in the progressive

sequence they would form in reality. These three stages are :
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1) primary components and their fabrication into the structural
components detailed in section 5.1.1.

2) installation of each structural component unit on the building
berth and the link up and integration with adjacent structures in
their vertical sense to form a complete transverse structural
ring, e.g. side shell to bilge structure.

3) installation of a second transverse structural ring, identical to
the first, including the link up and integration to each structural
component counterpart on the building berth in the longitudinal
sense, e.g. double bottom unit to double bottom unit; bilge

structure to bilge structure; etc.

The input data required for SHIPCOST can be generated in two ways. Firstly,
as output from the structural design program FRIGATE or secondly as user response

to a menu driven structural topography definition procedure.

5.3.1 Data Input Requirements.

1) Using data from FRIGATE

The raw output from FRIGATE is only part of the data required as input to
SHIPCOST and consequently additional data is required. In structural design it is not
necessary to know how many panels and individual plates within panels go into the total
width of plating that is considered longitudinally continuous in any one structural
component. Similarily, it is not necessary to know the individual panel lengths or plate
widths when dealing with the structural design of of a midship section. However, this
additional data is required when dealing with the relative fabrication cost estimation of a
structure. Therefore, as is the case with FRIGATE, reference is made to a detailed
basis model midship section for SHIPCOST which is supplemented and updated as the

optimisation of the structure is carried out by FRIGATE.
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The basis model in this instance is sub-divided into the same structural

components as previously discussed together with the additional details listed below,

using the bottom up philosophy :

1) Outer bottom - 1 orthogonally stiffened flat panel with the

following plating dimensions :

Nooff  Length Width Thickness.

2 7.22 1.75 0.010
2 7.22 2.50 0.010
1 7.22 2.00 0.010

2) Tank top - 1 orthogonally stiffened flat panel with the following

plating dimensions :

Nooff  Length Width Thickness.
4 7.22 1.75 0.010
1 7.22 2.50 0.010

3) Bilge structure - 1 orthogonally stiffened curved panel with the
following plating dimensions :

Nooff Length Width Thickness.
1 7.22 2.75 0.010
1 7.22 2.00 0.010

4) Ne 2 Deck - 3 orthogonally stiffened flat panels with the
following plating dimensions :

Wing Panel Plates :
Nooff  Length Width Thickness.
2 7.22 1.95 0.010
2 7.22 1.65 0.010
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Centre Panel Plates

Nooff  Length Width
1 7.22 1.50

5) Side shell - 1 orthogonally stiffened flat panel with the following

plating dimensions
Nooff Length Width
1 7.22 2.50
1 7.22 2.15
1 7.22 1.90

Thickness.
0.010

Thickness.
0.010
0.010
0.010

6) N2 1 Deck - 3 orthogonally stiffened flat panels with the

following plating dimensions :

Wing Panel Plates :

Nooff  Length Width

2 7.22 1.95
2 7.22 1.65

Centre Panel Plates
Nooff  Length Width

1 7.22 1.50
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7 N2 01 Deck - 3 orthogonally stiffened flat panels with the

following plating dimensions :

Wing Panel Plates :

Nooff  Length Width Thickness.

2 7.22 1.95 0.010
2 7.22 1.65 0.010
Centre Panel Plates

Nooff  Length Width Thickness.
1 7.22 1.50 0.010

Using this format to define panel and plate sizes in each structural component
allows FRIGATE to post process it's datafile for input to SHIPCOST in terms of
plating sub-division, thicknesses and number and type of structural sections used in both

the longitudinal and transverse directions.

2) User Defined input to SHIPCOST

This means of data generation allows the relative fabrication cost of any mild
steel midship section, defined by the user, to be estimated assuming that there are no
radical changes to the construction method so that the relative fabrication cost algorithms
contained in SHIPCOST are still applicable. The data input sequence for
SHIPCOST is shown in Fig. 5.6

This method of data input to SHIPCOST is more flexible than that involving
post processed output from FRIGATE. This flexibility, however is gained at the
expense of speed in that the user defined input requires considerable time in preparation

and entry and thereby prolongs the execution time of SHIPCOST. This type of input
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can be entered to SHIPCOST by two methods, either directly from a datafile
previously prepared by the user or by prompting from a menu driven data generation
procedure during the program execution. Listed below is a sample set of the prompts

used in this method of a structural component structural detail definition.

Ship Area 2 - Tank Top (P > = Prompt , R > = User Response)

P>  How many orthogonally stiffened panels are there in the tank
top structure ?
R> 1
P>  Inputtype of sections used as i) Longitudinal Stiffeners
ii) Transverse Members
R > TEES_FAB
P>  Input number of plates in Tank top Panel number 1
R> 2
P> Input:
i) Length of Plate (m)
ii) Width of Plate (m)
iii) Thickness of Plate (m)
iv) Number of Transverse members
v) Number of Plate Longitudinals attached to this Plate
R> 10.0,5.0,0.010,9,1

P>  Input PLate Longitudinal Dimensions :
i) Plate Longitudinal Length (m)
ii) Plate Longitudinal Height (m)
iii) Plate Longitudinal Thickness (m).
R> 10.0,2.0,0.010
P> Input:
i) Length of Plate (m)
ii) Width of Plate (m)
iii) Thickness of Plate (m)
iv) Number of Transverse members
v) Number of Plate Longitudinals attached to this Plate
R> 10.0,2.5,0.010,9,0
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P>

R >
P>

P>

P>
R >
P>
R >
P>
R >
P>
R >

How many different sizes of section are being used as
longitudinal stiffeners.

2

Input longitudinal dimensions and number used.

i) Overall section height (m)

ii) Section stalk thickness (m)

iii) Number of this section being used on this panel.
0.1143,0.0056,10.

Input longitudinal dimensions and number used.

i) Overall section height (m)

ii) Section stalk thickness (m)

iii) Number of this section being used on this panel.
0.1778,0.0076,2

Input component dimensions of transverse fabricated section.
i) Web height (m)

ii) Web thickness (m)

iii) Flange width (m)

iv) Flange thickness (m)
0.450,0.010,0.100,0.006

Are there vertical floors to be considered as part of the tank top ?
Yes

Input :

i) Number of vertical floors

ii) Number of piece parts in each vertical floor.

2,4

Input length, height and thickness of each VF piece part.
2.0,1.5,0.010

Input length, height and thickness of each VF piece part.
2.0,1.5,0.010

Input length, height and thickness of each VF piece part.
2.0,1.5,0.010

Input length, height and thickness of each VF piece part.
2.0,1.5,0.010
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Similar sets of prompts are repeated for each structural component in turn to
supply the necessary details which enable SHIPCOST to estimate the relative
fabrication cost of fabrication and erection and the material cost associated with each
structural component structural block. However, this is not the limit of the detail input
that SHIPCOST can cater for. At that part of SHIPCOST which models the link up
and integration of structural component units on the building berth the program will
prompt the user for information regarding the use of brackets, collar plates where
structural sections penetrate plating, web doubler plates and whether one or two
connection lugs are used at major transverse bulkhead penetrations. In these instances
the user replies with a simple YES or NO. If the affirmative is entered, then all
dimensions of the collar plates, web doubler plates, brackets or connections are
automatically calculated in terms of the web depth, flange width and thickness of the

structural component member to which they apply.
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l Input Plate thickness J‘—

All plate
thicknesses entered

Deck height and Input Deck height and width

width correct

[ Input Longitudinal and Transverse section types J‘———
v

Input longitudinal scantlings and No off |g

All Longitudinal
scantlings entered

Input fabricated section
dimensions

Transverse member
standard rolled section

r Input transverse scantlings I

Input side shell longitudinal type
and scantlings

I

Input side shell transverse type
and scantlings

Midship structural definition complete

Start analysis

Fig. 5.1
Data Input Requirement for program FRIGATE
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| Input Midship Structural Definition |

!

See Fig. S.1

For

b)

Midship section calculate :

a ) For each structural component calculate :

i) Total stiffener area

ii ) Total plating area

Position of Neutral axis above baseline

c ) Second moment of area for the midship section

v

For each deck structure input :
a) Nature of applied bending moment (hogging or sagging)
.1 b) Longitudinal stiffener spacing

¢) Transverse member span and spacing
d) Applied lateral pressure

v

| Calculate REQMOD |

ACTULZ >REQMOD

I Calculate REQMOD ] Step 1
I Calculate ACTULZ ] Step 2
Yes No
v ACTULZ 2 REQMOD ¥
Increase Transverse spacing from J Decrease transverse spacing from J
to J +dx ¢ > o J-dx
Steps 3 + 4
1
| Calculate ACTULZ | o T [ Calculae ACTULZ |

| Calculae REQMOD |

ACTULZ >REOMOD

Decrease column length from
Jw]-dx

—{ Next Deck Suructure

REQMOD = Rule determined minimum
section modulus value

ACTULZ = Calculated section modulus
value

J = Initial oansverse member spacing
dx = Incremental change in J

Interframe panel collapse of longitudinal strucrure

Steps § + 6

Midship section transverse frame
spacing fixed at min. J

Fix wansverse spacing
for deck structure

Step 7

{ Design remaining transverse structure for spacing J )

( Start search for alternative longitudinal stmcrurQ See Fig. 5.5

Fig. 5.2

. Design Method 1 - Longitudinal Structural
Variations to the Basis Model
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Llnput Midship Structural Definition 1 See Fig. S.1
v

For Midship section calculate :
a) For each structural component calculate
i} Total stiffener area
il) Total plating area
b) Position of Neutral Axis above baseline
¢) Second moment of area for midship section

[ 7
For structural component input :
a) Nature of applied bending moment (hogging or sagging)
b) Longitudinal stiffener spacing ¢
¢) Transverse member span and spacing
d) Applied lateral pressure

-
| Calculate REQMOD | | Next Structural Component |
¥

D| Calculate AC’I'UIZJ

All transverse
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IDIE D F SULT

Using early versions of FRIGATE and SHIPCOST, initial studies were
carried out on the structural design and relative fabrication cost of typical frigate
structural components. Two types of structural component were principally involved,
namely flat panel deck structure and double bottom structure. By isolating these two
types of structure and generating structurally equivalent alternatives (by the method
described in Chapter 5, section 5.1.7) it was intended to establish trends, indicating the
direction a structural designer should take to achieve structures with optimum
associated relative fabrication cost while still meeting their operational requirements.
As these studies were undertaken prior to the development of the transverse design
analysis scheme, the following constraints were applied to the structural model
throughout :

a) fixed transverse member type (Tee)

b) fixed transverse member scantlings ( 76 * 127 mm)

¢) transverse frame spacing fixed at 1 metre

d) six positionally fixed deck panel side girders with basis model
scantlings

e) constant area value assumed equal to the basis model area for the

structural component under investigation

The implication of constraint (b) is that it eliminated some of sizes of replacement
sections due to minimum value of ABS(depth of transverse - depth of longitudinal) to
permit good fabrication procedures in terms of access for the welding operator. The
implications of constraint (e) are twofold, firstly the neutral axis position of the midship
section longitudinal material remains virtually unchanged. Secondly, the weight of the
midship section material also remains relatively unchanged. Minor variations to the
basis model values were inevitable due to integer stiffener numbers required to attain

the minimum area requirement of the structural component.
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Limitations of the relative fabrication cost assessment model at this particular
stage of the overall study were that additional work content associated with intercostal

grillages and the fitting of tripping brackets were not considered.

As discussed in more detail in Chapter 3 of this thesis, all fabrication costs
which can be considered as constant overheads are omitted from the final fabrication
cost figures. Hence the figures are only meaningful in a relative and not in an absolute
context. A basic labour rate of £15 per calculated manhour is assumed throughout

these design studies.

6.1 Relative Fabrication Costs of Flat Panel Deck Structures

The study of flat panel deck structures was undertaken in two stages. The
first attempts at generating alternative structural arrangements were restricted to using
Tees as the longitudinal members with constraints (a) to (e) effective. After
establishing the method of generating structurally equivalent deck structures, it was
used to replace the longitudinal Tees of the basis model flat panel structure by either
OBPs or Flats.

6.1.1  The Relative Fabrication f k ing Tee bar
Longitudinals.

The results shown in Fig. 6.1 and 6.2 indicate that for a constant deck area,
stiffener size has a major influence on the relative fabrication cost for any plate
thickness. Such a result is not unexpected as the Tee scantlings increase from 25 * 76
mm to 127 * 254 mm, the sectional area available per stiffener increases and the
number of longitudinals needed to meet the minimum area requirement decreases for a
given plate thickness. This results in a reduced stiffener fillet weld length and reduced
number of longitudinal to transverse connections. Hence, fewer manhours are required

for the completion of the orthogonally stiffened flat panel.
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Fig. 6.1 also shows that for each stiffener size, the local cost optima is
associated with the thickest plating (i.e. minimum number of stiffeners). It can also be
seen from Fig. 6.1, that for each stiffener size there is a minimum relative fabrication
cost associated with the boundary of a feasible design space. Taking cognizance of
constraint (b), the results shown in Fig 6.1 for the 76 * 127 mm Tee bar are optimistic
as the influence of intercostal grillage connections on the inherent work content are not
reflected in the aggregate relative fabrication cost figures presented. Similarily, the
results for the 25 * 76 mm Tee bar are also optimistic if the recommendations of Ref.

49 for tripping brackets are adhered to.

Fig. 6.2 clearly shows the cost optimum to be associated with the minimum
number of attached stiffeners regardless of plate thickness. Furthermore, near the
optimum, as the contribution from the plating to the constant area value increases (i.e.
as plating thickness increases) relative to the contribution made by the stiffeners, there
is a slight reduction in the relative fabrication cost of the deck panel. This reflects the
low material cost of the plating relative to that of Tee stiffeners. The reversal of this
trend associated with larger number of stiffeners and 8mm and 9mm plating is directly
related to the substantially lower cost per tonne of the two smallest sections used in
these options. Following the trend line from top right to bottom left for the 8mm
plating, each data point represents an increasing stiffener size. Thus as plating costs are
constant on this trend line, the step increase is directly associated with the step increase
in the cost per tonne of 5 largest Tee stiffener sizes. The close proximity of these trend
lines indicates that the material cost has a minor bearing on the total relative fabrication
cost of the structure in relation to the major influence of the number of component parts

used in construction which should clearly be minimised.

Fig. 6.3 indicates that although some options of stiffener size and plate
thickness show marked differences in the cost of each type of material, particularly in
relation to plate thickness, Fig. 6.4 indicates total material cost variations are much
smaller, the percentage variation between minimum and maximum being 15.2% while
the the corresponding variation in total relative fabrication cost is 115.7%. This serves
to further emphasise that the dominant influence on the relative fabrication costs of a

structure is the associated work content related to the number of component parts.
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6.1.2  Relative fabrication costs of Deck Structures using OBPs
Fl longitudinal

The trends shown in Fig. 6.2 indicate that a cost optimised structure is
unlikely to be associated with structural alternatives requiring greater than 40 stiffeners.
Furthermore, structures with less than 10 stiffeners are unlikely to satisfy the
longitudinal design criteria applied to deck panels. By incorporating these two
restrictions and releasing constraint (d) of the opening paragraph, flat panel deck
structures were investigated for least relative fabrication cost using longitudinal
stiffeners of either OBP or Flat Bar section. There is however one further point to
consider at this juncture. When the computer model was used to investigate feasible
structural alternatives to the basis model deck panel structure using both these section
types as longitudinals, the initial results could not be used to substantiate the trends in
Section 6.1.1 or indeed establish other different trends. This was because there were
too few structural alternatives to the basis model deck panel generated by the computer
model. The reason being simply, that the in-plane compressive stress loading (hull
bending induced) applied to the deck structure was at a level that prohibited the use of
OBPs and Flats, in the numbers required to maintain the constant area constraint, as
longitudinal stiffeners. Therefore, the following discussion relates to a deck panel
structure that is closer to the midship neutral axis and thus is subjected to less severe

hull bending induced compressive stresses.

The results shown in Tables 6.1 and 6.2 indicate that a wide range of feasible
designs for a constant area deck panel can be proposed using different types and sizes
of stiffeners in conjunction with varying plating thicknesses. As evidenced in these
Tables, the area per stiffener is inversely proportional to the number required for a fixed

plating area contribution in order to achieve the constant total area constraint.

When these results are presented in a graphical format there is a clearly
defined relationship between the number of stiffeners and the fabrication manhours and
hence ultimately the relative fabrication cost. Fig. 6.5 indicates that the inherent work
content related to flat panel construction is directly proportional to the number of flat bar
stiffeners used in it's fabrication. This association of increased stiffener numbers and
increased relative fabrication cost is shown to apply for different plate thicknesses.

This phenomena is emphasised by the "flatness” of those trend lines representing the
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material cost element of the total relative fabrication cost figure. Similar trends to those
of Fig. 6.5 are reflected in Fig. 6.6 for OBP stiffener types across a smaller range of
stiffener numbers. The structures using the thicker plating material invariably incur
greater material costs and this is reflected in slightly higher relative fabrication costs.
This is a significant result. Referring to Tables 6.1 and 6.2, when the structures using
8mm and 9mm plating and similar number of stiffeners are compared, in terms of
relative fabrication time, the deck panel using the lighter plating and the heavier stiffener
requires more manhours for completion than the heavier plated lighter stiffener
structure. Thus, when the heavier plated lighter stiffener structure incurs greater
relative fabrication cost, this reveals that the effect of plate material cost dominates that
of increased relative fabrication time when the labour rate of £15/manhour. This effect

would be lessened and indeed reversed if an increased labour rate is assumed to apply.

A further measure of merit presented in Figs. 6.7 and 6.8 is the relative
fabrication time against safety factor. In this instance , the safety factor is defined as
the ratio of the critical collapse stress of the effective columns in the deck panel to the
axially compressive hull bending induced in-plane deck stress. As described in Chapter
5, section 5.1.7, there are two individual panel types with independent stiffener
dispositions considered to represent a deck panel structure, wing panels and a centre
panel. The critical collapse load of the deck structure, is taken to be the collapse load
associated with the wider longitudinal spacing across the wing and centre panel types.
The general trends depicted in Figs. 6.7 and 6.8 is that as the factor of safety increases
so too does the associated work content of the completed deck panel, in other words -

increased safety levels incur fabrication cost penalties.

Fig. 6.9 is an overlay of Figs. 6.5 and 6.6 and includes data points indicating
the relative fabrication cost of those structural alternatives to the basis model of this
deck panel when Tee bars are used as the longitudinal stiffeners. Fig. 6.9 clearly
highlights the directly proportional relationship that exists between the number of
stiffeners and the relative fabrication costs, irrespective of stiffener type and plating
thickness. It is also indicated, by the individual data points relating to the Tee bar
Stiffeners, by inference of the number of stiffeners required to maintain the constant

area constraint, that structures stiffened with the smaller Tee bar sizes incur comparable
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relative fabrication costs to the other two section types. Whereas, when the larger size
of Tee bars are used, there is a distinct difference in the relative fabrication cost. Since,
the number of component parts used in each alternative structure is equal and only
minor differences in inherent work content can be expected due varying stiffener
scantlings, then the major difference in relative fabrication costs must be attributable to

the greater cost of large Tee bar sections when compared to the other two section types.

From Tables 6.1 and 6.2 it can be seen that there are several instances where
the same number of stiffeners of varying scantlings, attached to the same thickness of
plating result in different fabrication manhours and material cost. As the material
pricing policy of British Steel. is the major cause of this effect, accurate modelling of
material price structures must form part of any detailed optimisation although they are
outwith the control of a designer. Differences in the relative fabrication manhours
however needs further explanation. This is done separately for OBPs and Flat bars for

clarity, although the principle outlined below generally applies to both section types.

Firstly, consider the case of using Flat bar section types for the replacement
longitudinals of the basis model deck panel. When Flat bar sections, of the scantlings
detailed in Table 6.1, are welded to plating thicknesses of 8 and 9 mm, it is the lesser of
the material thicknesses that determines the fillet welding rate applicable for stiffener
attachment to plating. Therefore, in those cases using 40 * 35 mm and 45 * 30 mm,
where 28 in number are required, in addition with 9 mm plating, the welding rate
applied to the welding activities on each panel are identical in every respect - but there is
a difference in relative fabrication time. To explain this apparent paradox, the total
relative fabrication manhour figures require to be broken down into their constituent
values. The information presented in Tables 6.3 and 6.4 indicate where the differences
occur for two deck panel structures, identical in every respect other than the scantlings

of the longitudinal stiffeners.

If the deck panel to which the results presented in Tables 6.3 relate, is referred
to as Deck Panel No 1 and it's component panels referred to as Panels 1(a), 1(b) and
1(c) it can be seen that the flat bar stiffeners used as longitudinals have the dimensions
40 * 35mm. Using a similar notation, Panels 2(a), 2(b) and 2(c) have longitudinal flat

bar stiffeners with dimensions 45 * 30mm, as shown in Tables 6.4. On closer
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inspection it can be seen that the manhours expended on plating activities on Panels
1(a), 1(b) and 1(c) and on Panels 2(a), 2(b) and 2(c) are the same. Similarily, the
welding times expended on plate seams, longitudinal and transverse member attachment
to plating are the same across corresponding panels of Deck Panels No 1 and No 2.
However, there is a difference in the time it takes to complete the connections between
the orthogonal members of the grillage across these two Deck Panels. This can be
attributed to the fact that the dimensions of the lug used in connecting the orthogonal
members is a function of the ratio of the depth of the main member (transverse Tee bar)
to the depth of the piercing member (longitudinal flat bar) and the web thickness of the
main member. As on both Deck Panel No 1 and Deck Panel No 2, the transverse
member has the same dimensions then the difference in "connection time" can be
regarded as a function of the difference in depth (overall section height) between the
two flat bar stiffeners used. This result highlights the factors of the design detail that
ultimately have a bearing on the relative fabrication cost of the structure. Furthermore,
it emphasises the level of detail that needs to be examined, if the true optimum, in terms

of relative fabrication costs, is to be found.

Minor differences in relative fabrication time and ultimately in connection time
are shown in the situation where the same number of OBP stiffeners of different sizes
are attached to the same plating thickness. However, the magnitude of these
differences is somewhat less than in the Flat bar case. As explained above, the
dimensions of the lug used for connections between orthogonal members of the grillage
are primarily a function of the depth of the piercing members (in this particular design
study these are constant, i.e. the Tee bar transverses of the size stated in constraint (b))
and the thickness of the main member. Therefore, the minor variations in connection
time in this instance are attributable to the minor variations in the web thickness of the

main member.

6.1.3 Relative Fabrication Costs of Flat Panel Deck Structures of

varying Transverse Arrangement.

Having investigated and discussed the heavily constrained basis model flat
deck panel structure (Section 6.1.1) and proceeded with a less constrained model

(Section 6.1.2) the next study undertaken was to investigate a further model which was
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the least constrained of the structures discussed thus far. To this end the transverse
member was no longer regarded as having fixed scantlings, the frame spacing was no
longer maintained at 1 metre and the deck girders, previously regarded as fixed, were

allowed to vary in terms of scantlings but not in their positions.

Using DnV Classification Society Rules [44], the scantlings of the transverse
member were determined, while the applied load cases they were being designed to
resist were dictated by NES 110 [43]. Firstly, the basis model frame spacing was
maintained at 1 metre and alternative structures, both transverse and longitudinal, were
proposed by using different sizes of Tee section in conjunction with varying plating
thicknesses. This process was then repeated for 1.3m and 0.7m transverse frame

spacing and the relative fabrication costs compared.

The trends indicated in the earlier studies (Sections 6.1.1 and 6.1.2) suggest
that a direct relationship exists between the number of longitudinal stiffeners and the
relative fabrication cost, this relationship being independent of stiffener type. By
harnessing this fact, only Tee sections were considered in producing alternatives to the
basis model in this particular study. This limited the number of structures considered,
in relation to the possible number of feasible alternative designs, when constraints (b),

(c) and (d) of the opening paragraph were no longer applicable.

Fig. 6.10 shows the results of varying a basis model flat deck panel in terms
of transverse member scantlings, spacing and plating thickness. Fig. 6.10 re-
emphasises the trend apparent in the earlier studies that relative fabrication costs are
directly proportional to the number of longitudinal stiffeners. The other clear trend, is
that for any discrete number of longitudinal stiffeners, the relative fabrication cost is
inversely proportional to the transverse frame spacing. Fig. 6.11 indicates that
although the basis deck panel was probably optimised in terms of both weight and
strength initially, it also is the optimum in terms of relative fabrication cost. This is the
influence of the high material cost of the larger sizes of tee bars which dominates that of

the work content of structures using more component parts but smaller tee bar sizes.
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Furthermore, Fig. 6.10 shows that for a selected frame spacing and chosen
longitudinal arrangement (i.e. fixed number of longitudinal stiffeners), the relative
fabrication cost is directly related to the size of the transverse member. The vertical
increases in the relative fabrication cost correspond to discrete increases in the size of
the Tee section being used for the transverse member. Such an increase in relative
fabrication costs is the outcome of a combination of influences relating to both labour
cost and material cost. As the scantlings of the transverse member increase, the labour
costs associated with fillet welding the section to the plating and intersecting
longitudinal structure vary proportionally. Further, as the Tee section web and flange
dimensions increase, there is a corresponding increase in the material cost. Thus, this
combination of factors dictate that as the transverse member scantlings increase, for a
constant longitudinal structure, so does the relative fabrication cost for an orthogonal

flat panel grillage.

6.2 Design Study of a Typical Double Bottom Unit of a Royal Navy
Frigate

Suitable structural alternatives to the basis model double bottom unit as
described in Chapter 5, Section 5.1, were generated using the method described in
Chapter 5 with due reference to Ref. 48. As the structural elements in the transverse
sense were considered non-variable, restrictions were forced on the Tee bar sections

that could be considered as suitable longitudinals on the tank top and outer bottom.

Paragraph 0618, Clause d of Ref. 43 relating to flange clearance, eliminates
Tee bar longitudinals with dimensions 127 * 53 mm, 152 * 76 mm, 205 * 102 mm
when the transverse frame is a Tee bar with 205 * 102 mm dimensions. The cost
implications indicated in the study of deck panel structures of using Tee bars of
dimensions of 76 * 25 mm (tripping bracket requirement) and 178 * 89 mm (fully
intercostal grillage), also render these two options unsuitable for consideration as
longitudinal members for the tank top and outer bottom orthogonal panel structures of
the double bottom unit. For these reasons, the dimensions of the Tee bars that are
considered as suitable longitudinal members for the double bottom unit in this study are
114 * 44 mm and 254 * 127 mm.
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Paragraph 2301 of Ref. 50, does not permit the position of the longitudinal
plate girders to vary without incurring major design changes. Therefore, in this study,
the longitudinal plate girders are positionally fixed, and consequently their height is

fixed, thus only allowing their thickness to be considered as a variable.

With all the above factors taken into consideration, three variable parameters
could be established for the double bottomn unit, namely thicknesses of tank top, outer
bottom and longitudinal plate girders. This provided the means of obtaining a range of
suitable Tee bar sections to maintain a constant double bottom area while using each of

the options listed below :

OPTION A : The outer bottom plating and the tank top plating varys from
nominal thickness of 13mm to 8mm simultaneously. Within each step
change of outer bottom and tank top plating thickness the longitudinal plate

girders' thickness varys from 13mm to 8mm.

OPTION B : The outer bottom plating and the longitudinal plate girders
varys from nominal thickness of 13mm to 8mm simultaneously. Within
each step change of outer bottom and longitudinal plate girder thickness the

tank top thickness varys from 13mm to 8mm.

OPTION C : The tank top plating and longitudinal plate girders varys
from nominal thickness of 13mm to 8mm simultaneously. Within each step
change of tank top plating and the longitudinal plate girders the outer bottom
plating thickness varys from 13mm to 8mm.

The structural nature of the double bottom unit leads to two easily identifiable
structural assemblies. Namely, the tank top plating and attachments and the outer
bottom plating and attachments. It follows that depending what are referred to as tank
top attachments and what are referred to outer bottom attachments in conjunction with
the sequencing of the tasks involved in the construction of the double bottom unit,
different construction sequences can be identified. The following four construction

sequences were identified in this project :
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DOUBLE BOTTOM CONSTRUCTION SEQUENCE 1 -Fig. 3.8

In this case the tank top includes the sub-assembly of rolled sections being
used as longitudinals and transverses, plate longitudinals and vertical floors.
The outer bottom structure includes the rolled sections that are the
longitudinal stiffeners and the transverse members. This construction
sequence involves "dropping" the orthogonal outer bottom grillage onto the
tank top assembly.

DOUBLE BOTTOM CONSTRUCTION SEQUENCE 2 - Fig. 3.9

In this case the tank top sub-assembly includes the attachments of rolled
sections being used as the longitudinals and transverse, plate longitudinals,
vertical floors and the rolled sections of the outer hull. This construction
sequence involves "wrapping" the tank top assembly with the outer bottom

plating.

DOUBLE BOTTOM CONSTRUCTION SEQUENCE 3 - Fig. 3.10

In this case the tank top and outer bottom attachments are as described for
Sequence 1, above. However this construction sequence involves
"dropping" the tank top assembly into the orthogonal outer bottom grillage

assembly

DOUBLE BOTTOM CONSTRUCTION SEQUENCE 4 - Fig. 3.11

In this case the tank top attachments and the outer bottom attachments are as
described for Sequence 2, above. However this construction sequence
involves "dropping" the tank top assembly into the unstiffened outer bottom

plating sub assembly.

6.2.1  Double Bottom Relative Fabrication

The results of the double bottom fabrication costs study are plotted in Figs.
6.12 - 6.21.

When options A (as described above) were analysed, two very clear trends

were identified, as shown in Fig. 6.12. Firstly, increasing thickness of tank top and
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outer bottom plating result in decreasing relative fabrication costs for a particular
thickness of longitudinal plate girders. Secondly, as the the thickness of the
longitudinal plate girders increases for given uniform thickness of tank top and outer
bottom plating, decreasing relative fabrication cost result. A further trend that can be
seen is that lower fabrication costs can be achieved if the heavier of the two allowable
Tee bars is used. Fig. 6.12 also indicates that the local cost optimum for each
combination of plating thickness and stiffener types fall within a narrow band of

relative fabrication costs.

Fig. 6.15 shows identical trends to those in Fig. 6.12, but in this case
Construction Sequence 1 (Construction Task Algorithm 7, Appendix 1) was used in the

relative fabrication cost calculation.

Analysing options B, similar trends to those described above are evident (Fig.
3.8 - Construction Sequence 1, Fig. 3.9 - Construction Sequence 2). It can be seen
from Figs. 6.13 and 6.16 that increasing thicknesses of outer bottom and longitudinal
plate girders for a given thickness of tank top plating also produces a decreasing cost
trend. Furthermore, increasing the tank top thickness will also result in lower relative
fabrication costs for a given thickness of outer bottom plating and longitudinal plate
girders. Again, with the heavier Tee bar, the relative fabrication costs are lower than
when the lighter Tee bar is used, as might be expected. The local cost optima for each
combination of plating thicknesses fall within a narrow band of relative fabrication

costs, similar to those of options A.

Figs. 6.14 and 6.17 (Construction Sequences 1 and 2 respectively), show the
same trends that are evident for options A and B of decreasing relative fabrication costs
with increasing outer bottom plating thickness and uniform thickness of plate

longitudinal girders and tank top.

Fig. 6.13 (Construction Sequence 1), also shows that there are minor cost
savings that can be made for the same structure using the same construction sequence.
The savings results from different stiffener dispositions. When the number of

stiffeners required is such that different suitable dispositions can be formed, from a
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structural integrity viewpoint ( i.e. different numbers of longitudinals on the tank top
and outer bottom but the same total) the lower cost solution occurs when the majority of
the stiffeners are attached to the outer bottom plating. Construction Sequence - 2, also
indicates that similar savings associated with additional outer bottom stiffeners can be

achieved.

Fig. 6.18 depicts the local optima for each of the options using the 114 * 44
mm Tee bar. The abscissa indicates the third thickness variable and the option prefix
indicates the other two thicknesses. The general trend indicated is that as the third
thickness increases, the other two become thinner and reduced relative fabrication costs
result. It can be seen that all of the acceptable options pivot about the relative
fabrication cost of the basis model double bottom. It is not surprising that the basis
model has lower relative fabrication costs than some of the options, but as the options
approach the structural design criteria limit, some further reduction in relative
fabrication costs can be achieved. Fig. 6.19 shows the local optima for each of the
options using the heavier Tee bar, using the same format as Fig. 6.18. However, due
to the smaller range of suitable structural alternatives, general trends are not so easily

identified.

Combining Figs. 6.18 and 6.19 results in Fig. 6.20, which illustrates the
interaction of tee bar size and plating thicknesses. It can be seen that individual trends
of local optima are associated with constant double thickness options which have
significant steps associated with a reduction in this double thickness. The result is a
"saw-toothed" trend line with the best results associated at the bottom of each step. To
expand on this, consider the trend line for Options A and the 114 * 44 mm Tee. The
two points on the left hand side of Fig. 6.20 indicate a double thickness of 10mm. As
the third thickness increases fewer stiffeners are required for the constant area value to
be maintained, resulting in a reduction of the relative fabrication cost of the double
bottom unit. However, on reducing the double thickness, greater numbers of stiffeners
are required, resulting in increased relative fabrication costs. Therefore this "saw-
toothed" effect is the result of an increase in stiffener numbers required to meet the

minimum area requirement which thereby increases the inherent work content.
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The foregoing discussion of the results in this section have been related to
Construction Sequence - 1 and largely with the smaller of the two allowable Tee bars,
i.e. 114 * 44mm. Due to the scarcity of options when using the 254 * 127mm Tee bar
trends are less obvious. However, the local optima shown in Figs. 6.12 - 6.20 indicate
that by using these heavier sections, the relative fabrication cost of the structure

compare favourably with the best local optima when using the lighter sections.

The range of relative fabrication costs, when using the lighter sections, in
comparison to the basis model is +15.8% to -14.2%. The option which indicates the
cost saving of 14.2% on the basis model is the one having 13mm tank top plating and
the remaining two thicknesses as 9mm. The minimum area requirement is attained by 8
off 114 * 44mm stiffeners. Consequently, the crude structural analysis employed at the
preliminary design stage and used in these double bottom studies should be checked by
a more detailed structural analysis to ensure the validity of this particular arrangement.
When the heavier stiffener is used, the relative fabrication cost range is between -3.4%
and -12.7% of the basis model, i.e. all options using the heavier section incur less
relative fabrication costs than the basis model double bottom unit. Again, before
maximum savings can be realised, the option yielding them (all plating being 9mm)
should progress from preliminary design analysis to the more thorough detail design

stage to ensure the structural design criteria are not being violated.

6.2.2  The Effect Of Using Tee bars and Double Bottom Construction
Sequences 3 and 4 on the Relative Fabrication Costs.

Using Construction Task Algorithms 9 and 10 that were generated to
represent Double Bottom Construction Sequences 3 and 4, outlined in Figs. 3.10 and
3.11 respectively, the relative fabrication costs of the double bottom unit were
calculated using Tee bars that were compatible with the double bottom transverse

members ( i.e. satisfied flange clearance requirements).

Using the same format for curves developed for Construction Sequences 1
and 2, shown in Figs. 6.12 - 6.20, cost profiles can be generated for each feasible

structure and double bottom Construction Sequence. Fig. 6.21. indicates the general
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trends obtained for alternative structures being fabricated by Construction Sequences 1
and 3. Only values obtained by using two of the double bottom construction sequences
are shown in order that the figure remains clear while still indicating the savings
possible by using Construction Sequence 3 rather than using Construction Sequence 1.
Invariably the relative fabrication costs incurred when using Construction Sequences 3
and 4 are less than those incurred using Construction Sequences 1 and 2. Construction

Sequence 3 always incurs the least relative fabrication cost.

6.2.3  The Effect of Using OBPs as Longitudinal Stiffeners and Double

Bottom Construction Sequences 1, 2. 3. and 4 on the Relative
Fabrication Costs.

By adopting the same procedure for calculating the required number of
longitudinals to maintain the double bottom constant area and while considering the full
range of commercially available OBP sections, over 6000 structural configurations of
the basis double bottom unit were generated. Structural assessment led to only 27
being considered acceptable from longitudinal strength considerations. As with the Tee
bars, Construction Sequence 3 incurs the least relative fabrication cost. Table 6.5
shows the range of acceptable structural alternatives and the relative fabrication costs

associated with each construction sequence.

6.2.4  The Effect of Using Rolled Flats as Longitudinal Stiffeners and Double
Bottom Construction Sequences 1, 2, 3 and 4 on the Relative Fabrication
Costs,

The number of possible structural configurations of the basis model double
bottom unit using flat bars as longitudinal stiffeners was 22,000. Structural assessment
of these led to 38 being considered as structurally acceptable. As in the cases of Tee
bars and OBPs Double Bottom Construction Sequence 3 incurs the least relative
fabrication cost. Table 6.6 shows the range of the structurally acceptable double
bottom alternatives and associated relative fabrication costs of each Construction

Sequence.
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6.2.5 ive Relative Fabrication f the Douyble Bottom Unit f

Differing Section Types using Double Bottom Construction Sequence 3.

The relative fabrication cost of the basis double bottom unit with Tee bars as
the longitudinal stiffeners and using Double Bottom Construction Sequence 3 is 4%
less expensive than when using Construction Sequence 1. Replace the Tees with OBPs
and the relative fabrication cost of the double unit is 14% less expensive. This is
achieved with plate thicknesses of 8 mm for the outer bottom and tank top and 10mm
for plate longitudinals using 280 * 12 mm OBP longitudinals. With Flat Bars as the
stiffening members the relative fabrication cost of the double bottom unit is 14% less
expensive than the basis model double bottom unit. This is achieved with 8mm tank

top and plate longitudinals, 11mm outer bottom plating and 120 * 20 mm Flat Bars.

Summarising for the basis model double bottom unit and Construction
Sequence 3, a saving of 10.5% can be achieved on the relative fabrication costs if the
plating thickness are altered and OBPs are used. Similarly, a saving of 7.9% can be
realised if the Tee bars are replaced with Flat bars in conjunction with altered plating
thicknesses.
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Tables 6.3

ESTIMATED FABRICATION TIME, MATERIAL WEIGHT AND
COSTS OF A TYPICAL MIDSHIP SECTION OF A ROYAL NAVY
FRIGATE

Deck structure

DECK STRUCTURE CONSISTS OF 3 PANELS:

Table 6.3a - Wing Panel
Table 6.3b - Centre Panel
Table 6.3¢c - Wing Panel
Table 6.3d - Summary of Total Deck



Table 6.3a

THE DIMENSIONS OF EACH PLATE ON PANEL N? 1 ARE :

LENGTH (m) WIDTH (m) THICKNESS (m)
7.22 1.9 0.009
7.22 1.65 0.009
SECTION TYPE DIMENSIONS (m) N2 OFF
LONGITUDINALS FLAT 0.040 * 0.035 11
" TRANSVERSES TEES 0.1520 * 0.073 7
N2 OFF WELDING WELDING
METHOD TIME
MILD STEEL PLATES 2 MINIDECK 4.181
FLAT LONGITUDINALS 11 FILLET 16.190
TEE TRANSVERSES 7 FILLET 6.845
CONNECTIONS BETWEEN ORTHOGONAL MEMBERS 77 FILLET 31.069
SUMMARY OF TIMES
TOTAL PLATING TIME FOR THIS FLAT PANEL = 25.960
TOTAL WELDING TIME FOR THIS FLAT PANEL = 58.286
TOTAL FABRICATION TIME FOR THIS FLAT PANEL = 84.245
COMPONENT % FAB. TIME
PLATING 35.78
LONGITUDINALS 16.22
TRANSVERSES 8.13
CONNECTIONS 36.88
WEIGHT (Tonne) COST (&)
SECTIONS 0.752 203.02
PLATES 1.825 601.98
TRANSVERSES 0.297 169.02
TOTAL 2.873 974.02
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Table 6.3b

THE DIMENSIONS OF EACH PLATE ON PANEL N® 2 ARE :

LENGTH (m) WIDTH (m) THICKNESS (m)
7.22 1.50 0.009
SECTION TYPE DIMENSIONS (m) N2 OFF
LONGITUDINALS FLAT 0.040 * 0.035 6
TRANSVERSES TEES 0.1520 * 0.073 7
N2 OFF WELDING WELDING
METHOD TIME
MILD STEEL PLATES MINIDECK 0.000
FLAT LONGITUDINALS 6 FILLET 8.950
TEE TRANSVERSES 7 FILLET 3.011
CONNECTIONS BETWEEN ORTHOGONAL MEMBERS 42 FILLET 16.947
SUMMARY OF TIMES
TOTAL PLATING TIME FOR THIS FLAT PANEL =
14.078
TOTAL WELDING TIME FOR THIS FLAT PANEL =
28.908
TOTAL FABRICATION TIME FOR THIS FLAT PANEL = 42.986
COMPONENT % FAB. TIME
PLATING 32.75
LONGITUDINALS 20.82
TRANSVERSES 7.01
CONNECTIONS 39.42
WEIGHT (Tonne) COST (&)
SECTIONS 0.410 110.74
PLATES 0.760 255.45
TRANSVERSES 0.057 32.50
TOTAL 1.227 398.69
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Table 6.3¢
THE DIMENSIONS OF EACH PLATE ON PANEL N® 1 ARE :

LENGTH (m) WIDTH (m) THICKNESS (m)
7.22 1.9 0.009
7.22 1.65 0.009
SECTION TYPE DIMENSIONS (m) N® OFF
LONGITUDINALS FLAT 0.040 * 0.035 11
TRANSVERSES TEES 0.1520 * 0.073 7
N? OFF WELDING WELDING
METHOD TIME
MILD STEEL PLATES 2 MINIDECK 4.181
FLAT LONGITUDINALS 11 FILLET 16.190
TEE TRANSVERSES 7 FILLET 6.845
CONNECTIONS BETWEEN ORTHOGONAL MEMBERS 717 FILLET 31.069
SUMMARY OF TIMES
TOTAL PLATING TIME FOR THIS FLAT PANEL = 25.960
TOTAL WELDING TIME FOR THIS FLAT PANEL = 58.286
TOTAL FABRICATION TIME FOR THIS FLAT PANEL = 84.245
COMPONENT % FAB. TIME
PLATING 35.78
LONGITUDINALS 19.22
TRANSVERSES 8.13
CONNECTIONS 36.88
WEIGHT (Tonne) COST (&)
SECTIONS 0.752 203.02
PLATES 1.825 601.98
TRANSVERSES 0.297 169.02
TOTAL 2.873 974.02
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Table 6.3d

SUMMARY FOR DECK PANEL

WEIGHT (Tonne) COST (%)
SECTIONS 1.914 516.78
PLATES 4.410 1459.41
TRANSVERSES 0.650 370.55
TOTAL 6.974 2346.74
TOTAL FABRICATION TIME FOR DECK PANEL = 211.477 MANHOURS
TOTAL MATERIAL COST FOR DECK PANEL = 2346.74 POUNDS
% WEIGHT % COST
PLATES 63.23 62.19
LONGITUDINALS 27.45 22.02
TRANSVERSES 9.33 15.79
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Tables 6.4

ESTIMATED FABRICATION TIME, MATERIAL WEIGHT AND
COSTS OF A TYPICAL MIDSHIP SECTION OF A ROYAL NAVY
FRIGATE

Deck Panel structure

DECK STRUCTURE CONSISTS OF 3 PANELS:

Table 64a - Wing Panel
Table 6.4b - Centre Panel
Table 6.4c - Wing Panel
Table 6.4d - Summary of Total Deck
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Table 6.4a

THE DIMENSIONS OF EACH PLATE ON PANEL N? 1 ARE :

LENGTH (m) WIDTH (m) THICKNESS (m)
7.22 1.95 0.009
7.22 1.65 0.009
SECTION TYPE DIMENSIONS (m) N2 OFF
LONGITUDINALS FLAT 0.045 * 0.030 11
TRANSVERSES TEES 0.1520 * 0.073 7
N OFF WELDING WELDING
METHOD TIME
MILD STEEL PLATES 2 MINIDECK 4.181
FLAT LONGITUDINALS 11 FILLET 16.190
TEE TRANSVERSES 7 FILLET 6.845
CONNECTIONS BETWEEN ORTHOGONAL MEMBERS 77 FILLET 32.178
SUMMARY OF TIMES
TOTAL PLATING TIME FOR THIS FLAT PANEL = 25.960
TOTAL WELDING TIME FOR THIS FLAT PANEL = 59.395
TOTAL FABRICATION TIME FOR THIS FLAT PANEL 85.354
COMPONENT % FAB. TIME
PLATING 35.31
LONGITUDINALS 18.97
TRANSVERSES 8.02
CONNECTIONS 37.70
WEIGHT (Tonne) COST (£)
SECTIONS 0.725 188.52
PLATES 1.825 601.98
TRANSVERSES 0.297 169.02
TOTAL 2.846 959.52

TABLE 6.4b
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THE DIMENSIONS OF EACH PLATE ON PANEL N 2 ARE :

LENGTH (m) WIDTH (m) THICKNESS (m)
7.22 1.50 0.009
SECTION TYPE DIMENSIONS (m) N? OFF
LONGITUDINALS FLAT 0.045 * 0.030 6
TRANSVERSES TEES 0.1520 * 0.073 7

N? OFF WELDING WELDING
METHOD TIME

MILD STEEL PLATES 1 MINIDECK 0.000
FLAT LONGITUDINALS 6 FILLET 8.950
TEE TRANSVERSES 7 FILLET 3.011
CONNECTIONS BETWEEN ORTHOGONAL MEMBERS 42 FILLET 17.552
SUMMARY OF TIMES
TOTAL PLATING TIME FOR THIS FLAT PANEL = 14.078
TOTAL WELDING TIME FOR THIS FLAT PANEL = 29.513
TOTAL FABRICATION TIME FOR THIS FLAT PANEL 43.591
COMPONENT % FAB. TIME
PLATING 32.30
LONGITUDINALS 20.53
TRANSVERSES 6.91
CONNECTIONS 40.26
WEIGHT (Tonne) COST (%)
SECTIONS 0.395 102.83
PLATES 0.760 255.45
TRANSVERSES 0.057 32.50
TOTAL 1.213 390.78
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Table 6.4c

THE DIMENSIONS OF EACH PLATE ON PANEL N? 3 ARE:
LENGTH (m) WIDTH (m) THICKNESS

(m)

7.22 1.95 0.009
7.22 1.65 0.009
SECTION TYPE DIMENSIONS (m) N¢ OFF
LONGITUDINALS FLAT 0.045 * 0.030 11
TRANSVERSES TEES 0.1520 * 0.073 7
N2 OFF WELDING WELDING
METHOD TIME
MILD STEEL PLATES 2 MINIDECK 4.181
FLAT LONGITUDINALS 11 FILLET 16.190
TEE TRANSVERSES 7 FILLET 6.845
CONNECTIONS BETWEEN ORTHOGONAL MEMBERS 77 FILLET 32.178
SUMMARY OF TIMES
TOTAL PLATING TIME FOR THIS FLAT PANEL = 25.960
TOTAL WELDING TIME FOR THIS FLAT PANEL = 59.395
TOTAL FABRICATION TIME FOR THIS FLAT PANEL 85.354
COMPONENT % FAB. TIME
PLATING 35.31
LONGITUDINALS 18.97
TRANSVERSES 8.02
CONNECTIONS 47.70
WEIGHT (Tonne) COST (%)
SECTIONS 0.725 188.52
PLATES 1.825 601.98
TRANSVERSES 0.297 169.02
TOTAL 2.846 959.52
Table 6.4d
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SUMMARY FOR DECK PANEL

WEIGHT (Tonne) COST (&)
SECTIONS 1.846 479.87
PLATES 4.410 1459.41
TRANSVERSES 0.650 370.55
TOTAL 6.906 2309.83

TOTAL FABRICATION TIME FOR DECK PANEL 214.299 MANHOURS

TOTAL MATERIAL COST FOR DECK PANEL 2309.83 POUNDS

% WEIGHT % COST
PLATES 63.85 63.18
LONGITUDINALS 26.73 20.78
TRANSVERSES 9.42 16.04
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The general conclusion that can be made is that the original aims and
objectives, as described in Chapter 1, have been achieved. That is to say, that when
both programs developed throughout the course of this project are used in tandem, they
can be regarded as a program package which has the capability to integrate design of

structure with the cost of it's fabrication at the preliminary design stage.

The usefulness of the computer package as a design tool that can be used in a
design office environment has yet to be demonstrated. However, from the trends
demonstrated in Chapter 6, it is believed that the approach used and the method
developed could be used to the designer's advantage at the preliminary design stage, if

a cost optimum solution is sought.

The program FRIGATE offers the facility to generate alternative structural
designs of ship's structural components by simply re-defining the section type used as

structural members, albeit to one set of design rules.

The program SHIPCOST contains the database of cost elements identified
as representing general warship-building fabrication techniques. Further cost elements
relating to the detail of the structure (i.e. brackets, lugs etc) have also been developed.
This then allows the designer to quantify their contribution to the relative fabrication
cost of the structure when generally they have been neglected in this sense. At the
completion of this project there is a series of construction task algorithms available to
the designer which enable the relative fabrication cost of several structural components
to be calculated. Admittedly these could be enhanced by incorporating more modern

fabrication techniques and allowing greater flexibility in the sequencing of construction

tasks.
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When run as a package, the relative fabrication cost optimisation of a basis
model midship section, on average , could be available within the hour. This is of
course highly dependent on system availability and choice of replacement section type.
In percentage terms, FRIGATE occupies 70% of the run-time and for the remaining

30% SHIPCOST calculates the relative fabrication cost of the optimised structure.

As with most computer program suites there are limitations in their
application, FRIGATE and SHIPCOST are no exceptions to this general rule. As
ship structural design is a highly complex and involved process when approached from
first principles, it was decided that such a rigorous approach to the subject was outwith
the scope of such a general design evaluation tool. Consequently, various design
factors ( e.g. the design bending moments of the hull girder) must be evaluated by
other means and be available as input to FRIGATE. Also, the pre-requisite for a basis
model structural definition indicates that the general midship section topography has
been conceived and that FRIGATE cannot be used to generate the initial design which

would be then subject to further optimisation.

Those structures generated by FRIGATE as suitable alternatives to the basis

model are subject to the following constraints :

i the stiffeners of any ship structural component being of uniform size
i  fixed number of stiffeners on side shell panels

i  fixed number of stiffeners on the bilge structure

iv  fixed position of plate longitudinals

These factors are a function of the data handling processes used in FRIGATE and

should not be regarded as insurmountable.

To date, FRIGATE deals with the design of the mid-third length of a typical
Royal Navy frigate with no attempt being made to model other hull areas remote from
midships. It is assumed that the relative fabrication costs of the end hull regions will be
proportional to those of the near parallel mid-region. The midship section employed

comprised three deck structures,side shell, bilge, tank top and outer bottom. The
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existence of all these structural components (with the exception being N2 2 deck) is
required in any basis model different from the one described in Chapter 5 in order that
FRIGATE will operate in the manner described. The capacity to change the basis ship
model used rests with the user and his/her familiarity with the running of the program
and the format of the datafiles.

During each design run of FRIGATE, the user has the opportunity to change
the width and height above the baseline of the deck structures within an overall depth
envelope. To alter this overall depth envelope, changes to the bilge and side shell

plating dimensions must be carried out through revised datafiles.

One aspect of ship's structural design that appears to have been neglected at
the preliminary design stage, is the the provision of a rational design-redesign process
for the transverse structure. Available means of determing transverse structure
scantlings are design by Classification Society Rules and assessing suitability of chosen
scantling by finite element methods. The incorporation of a finite element analysis
appendage to FRIGATE was never considered possible, although it was used to try
and derive a useful general algorithm for the design of transverse members. Following
the lack of success in the area, the usefulness of Classification Society Rules was
appraised. The application of these types of Rules is a well established and accepted
practise. However, there are various aspects of such "design by rule" methods that
make them unwieldy when applied to the transverse structure of warships. In Lloyds
Rules for example, there are a large quantity of constants applied to the calculation of
scantlings. The derivations of such constants are vague and apparently unrelated to
warship structural design formulations. Consequently, the lack of background
information provided with these types of design rules indicates that a more rationally
based design regime would be more appropriate to apply when designing warship's
transverse structure. Ref. 43 appear to offer such a set of design formulations,
whereby the transverse structure is regarded as part of a grillage and is thus subject to
interaction with the longitudinal structure and loading. By applying these Rules to each
structural component's transverse members, a satisfactory design can be rapidly

achieved to withstand the loading expected of a warship structure.
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The construction task algorithms compiled during this project and
incorporated in SHIPCOST reflect the fabrication techniques and production practises
used in warship-building in recent years. As a consequence of the industry wide
decision to no longer record, by method study techniques, information relating to task
times these algorithms may appear to be slightly dated. However, they can be used to
compare the relative fabrication costs of alternative structures in order to establish
trends, which in turn should indicate to the designer those structures that will incur least

relative fabrication costs.

The welding methods assumed to be applied during fabrication of structural
components is an area where greater flexibility would be advantageous. However, due
to the intensity of manual input required in order to achieve this flexibility, it is not
currently permitted in the normal operation of SHIPCOST. If alterations to the
assumed welding procedures are considered desirable then this can only be done by
changing the Fortran source code of the program. Although work study techniques are
no longer generally applied in shipbuilding, more modern data could be used for state
of the art welding techniques. This information can be found in Technical
Specifications and publications from the Institute of Welding. However, this data is
"pure" data and does not contain any allowances for the human factor and therefore
requires careful consideration in application if the results are to be meaniful with respect

to results presented in Chapter 6.

7.1 Conclusions from Flat Deck Panel Studies.

For flat panel deck structures of constant longitudinal area and for cases of
both constant and varying transverse structure and spacing, clear trends of relative
fabrication cost for a variety of plate thicknesses and longitudinal stiffener types have
been demonstrated. In general, labour costs increase with a corresponding increase of

longitudinal stiffener numbers and decreasing transverse frame spacing.

In the studies using different Tee bar sizes, cost optima are all associated with
maximum plate thickness and the stiffener offering the greatest sectional area to satisfy

the required area. However, in this study, Section 6.1.1 and Fig. 6.2, the variation of

145



section costs is such that these effects can be seen to cancel out to produce optimum
relative costs with both the 114 * 44mm and the 254 * 127mm Tee bar sections when

the plating thicknesses are 11mm and 8mm respectively.

By replacing the Tee bars by commercially available rolled sections savings
can be achieved on the relative fabrication cost of the basis model flat deck panel
structure.However in these studies, cost optima are all associated with minimum plate
thickness and the largest stiffener size to satisfy the required area. This is a direct result
of the dominance of thicker plate material costs over the labour costs when the labour
rate is assumed at £15/manhour. At the same time, minimum relative fabrication cost is
also associated with the minimum acceptable values of interframe panel buckling
criterion. This can be expressed simply as, increased safety factors result in increased

relative fabrication costs.

The relative fabrication cost optimum when using OBP sections is 9.0% less
expensive than when Tee sections were used although in this case the structure is 2.7%
lighter than the basis model flat deck panel. This small weight variation is an accident

of rounding to integer stiffener numbers in a constant area study.

A saving of 10.2% on the basis inodel flat deck panel structure can be realised

when flat bars are used to replace the Tee sections.

7.2 Conclusions from Double Bottom Study.

For a double bottom unit of constant transverse area, clear trends have been
demonstrated for differing plate thickness of tank top, longitudinal plate girders and
mainly one size of Tee bar stiffener. The general trend for light Tee stiffened structures
is that as the single variable thicknesses increase the relative fabrication cost of the
double bottom unit decreases. The major influence on this decreasing is the labour
cost. This is so because, with a 4.3% increase in material costs between the basis
model and the least favourable alternative results in a 15% increase in total relative
fabrication cost. Similarly, a saving of 40% on material costs results in only a 14 %
saving on total relative fabrication cost when the optimum and basis model are
compared. This is then a clear indication that differences between the relative
fabrication costs of alternative double bottom unit structural configurations are highly

dependent on how labour intensive the options are. This can be extended further to say
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that as plating activities, such as marking off, rough positioning of sections etc, are
generally independent of material thickness, the difference in relative fabrication costs

are largely attributable to the amount of welding that is required on the structure.

In almost all selections of plate thickness, the structure using the heavier
section has lower relative fabrication costs than the structure using the lighter section.
The instances in which cost optima for light and heavy stiffened structure coincide are
those in which, the lighter stiffened structure, would require a more detailed structural

analysis to ensure the design criteria applied are not being violated.

It is possible to make savings on the basis model double bottom unit in some
instances when using the 114 * 44mm LST and in all cases when using the heavier 254
* 127mm LST.

Of the four Construction sequences identified, Sequence 3 invariably incurs
the least relative fabrication cost. Therefore, the greater proportion of work that can be
associated with both the tank top and the outer bottom positioned such that the welder is
working downhand, the greater the labour savings that can be achieved. Furthermore,
the more longitudinals that can be associated with the outer bottom rather than the tank
top, the greater the labour savings that can be achieved.

The results of the extensive investigation of the relative fabrication costs of a
constant transverse area double bottom unit indicate that savings on the cost of the basis
model can be achieved. The maximum savings of 10.5% on the cost of the basis model
(10mm plating thicknesses and 114 * 44mm Tee) can be achieved if the double bottom
is considered to have the following plating thicknesses and OBP dimensions -:

Tank top = 8mm

Plate Longitudinals = 10mm
Outer Bottom = 8mm

OBP dimensions =280 * 12mm

Although savings of 7.9% of the cost of the basis model double bottom unit
appear possible when a particular Flat Bar section is used as the longitudinal stiffener,
further investigation of the fabrication practicalities would be required. For the
purposes of this study, it is assumed that fillet welds of similar size and nature are used

on this structural arrangement of 20mm thick flat bar welded to 8mm thick plating as
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were used on the structural arrangement it is replacing. This is sufficiently unusual to

warrant evaluation tests on joint shock and impact load survivability.

Various Construction Sequences for a typical frigate's double bottom unit
have been demonstrated. The method of fabrication that always incurs least cost is
Sequence 3. However, a major assumption inherent with all the Sequences is that the
double bottom unit is completed in the fabrication shop prior to installation on the
building berth.

The use of the model to firstly generate equivalent structures and secondly to
evaluate alternative configurations and build methods, in terms of relative fabrication
costs, has been demonstrated. The results presented in Chapter 6 indicate the ability of
the model to demonstrate substantial relative savings on a panel by panel basis.
Advancing from the midship area where the main structural component is the flat panel
it is believed that similar savings can be shown for end regions of the hull when
subjected to a similar modelling procedure. Further savings maybe possible if the
midship section neutral axis position is allowed to vary and redistribution of the section

material is carried out.

7.2 Areas for Future Development.

A development of both programs compiled during the course of this project
would be to include structures removed from the mid-third length of the vessel. In
relation to FRIGATE this could involve the structural design of hull areas such as the

bow, where slamming loads would have to be taken into consideration.

In relation to SHIPCOST, dealing with structures such as the bow, would
require the generation of further construction task algorithms to take into account the
high degree of curvature normally associated with this particular hull component.
Furthermore, a means of rapidly assessing which welding process would yield the least
fabrication time would be an advantage. Also, data gathered under method study
conditions, relating to the manhours recorded against current fabrication techniques,
would enhance the existing database of elemental task times and would reflect

accurately the incurred fabrication cost of building warships in the present day.
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Hardcopy results from both FRIGATE and SHIPCOST are only available
by means of lineprinter output of the various files to which are written to during
execution. A graphical presentation of results from both FRIGATE and SHIPCOST
would be an advantage and would be a method by which design trends could be readily
identified. In general terms interaction from the keyboard needs to be improved in the

longer term.

The combined package of FRIGATE and SHIPCOST would benefit from
an interactive graphics facility at both the pre and post processing stage. This of course
would be enhanced if the graphics suite operational on a modern high performance
workstation. At present, the interface between the two programs requires some human
intervention and elimination of this by automating the interface would be an advantage.
The elimination of manual data checking to ensure integrity would also be an

enhancement on the operational aspect of the complete package.

For the expansion of FRIGATE, if other design code formulations could be
used, this would give the designer access to a greater selection of design criteria. In
terms of SHIPCOST, integrating individual shipyard cost element databases would

allow specific usage and application for the designer in a more direct sense.
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