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‘On no subject in physiology do we meet so many discrepancies in fact and in 

opinion as in the physiology of intestinal movement.’

Bayliss & Starling, 1899

‘Indeed it almost seems as if with the number of observers the multiplicity of 

the phenomena as well as that of their views has increased even more. ’

Fritz Schneller, 1925
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SUMMARY

The aim of this project was to develop a system using the methods and techniques of 

computerised image processing and analysis in order to quantitatively describe patterns of 

movement in smooth muscle. The algorithms developed have been applied to the 

investigation of the co-ordination of motility of rabbit colon in vitro.

The MAGISCAN 2 image processor used in this project is designed to analyse single 

still photographic images from a television camera. In the analysis of movement it is 

essential to process sequences of images with respect to time. These must be captured at 

a rate much faster than the period of the movements being investigated. To define 

precisely complex movements such as gut peristalsis large data sets must be used. 

Typically this requires the processing of several thousand photographs, the photographs 

being taken at a rate of three frames/sec over a period of half an hour. The most efficient 

way to achieve this is to capture, fully analyse and store the derived parameters of each 

image before the next image is captured.

Software was developed, in PASCAL and machine code, which gave sufficient 

sensitivity and speed to the MAGISCAN that measurement of the changes in position of the 

edges of the tissue and of transverse bands marked across the tissue, was possible under 

experimental conditions. These bands were marked on the tissue using a vital dye. The 

programs were designed to measure these two movements accurately even if the quality of 

the image varied.

Although the processing of each image reduces the amount of data that needed to be 

stored to a few numbers, the amount of data produced from a sequence of images is still 

immense and some form of synopsis is required. Summaries in the form of graphs of 

length and width changes were produced. Further analysis was provided by transferring 

the data from the MAGISCAN to a mainframe computer for univariate and bivariate spectral 

analysis.

Initial findings indicate that length and width changes in isolated rabbit colon could 

be measured accurately. These changes sometimes occurred at different frequencies 

within the same preparation. In preparations where the two changes occured at the same 

frequency there was no preferred phase difference.
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CHAPTER 1. INTRODUCTORY REVIEW OF THE 

LITERATURE: TECHNIQUES FOR INVESTIGATING THE 
MOTILITY OF THE GASTROINTESTINAL TRACT

SECTION 1.1 Early Investigations.

From the earliest times people have been curious about the nature of the gastrointestinal 

tract, probably because this organ was so large, and seemingly alive even after being 

taken from a recently killed animal. Indeed the positions and shapes made by ‘casting the 

entrails’ were regarded as a ‘proper method’ for prophecying the future. (This could be 

described as the first systematic investigation of aspects of gastrointestinal motility!)

Alcmaean was probably the first to describe the anatomy of the gastrointestinal tract 

(circa 500 BC) with Galen (130-200 AD) being the first to try and explain its function 

(cited by Singer, 1959). Since then physiologists have been developing various 

techniques and methodologies to record and measure the motility of the gastrointestinal 

tract. The first part of this thesis reviews briefly the history of the techniques of 

investigating gastrointestinal motility but it is not intended to be an extensive survey of the 

literature on function, control and motility of the gut. For this the reader is referred to one 

of the many reviews on these subjects and in particular to the review of the literature 

found in H.C. Mckirdy (Ph.D. Thesis, University of Glasgow, 1968) and to Volume 1 

of ‘Mediators and Drugs in Gastrointestinal Motility’ edited by G. Bertaccini (1982).

SECTION 1.2 Techniques of In Vivo Investigation.

Much of the early work on gastric and intestinal motility was purely descriptive, using 

very general terms. Many of the observations were opportunistic, such as seeing the 

intestine through an abscess or gastric fistula. Development from this type of investigation 

led to description of the movement of the intestine of anaesthetised animals whose 

abdominal cavity had been opened and the contents covered with a balanced salt solution. 

This work was first carried out in 1871 by Sanders (cited in Hightower, 1968) and has 

with modifications remained popular.

-1 0 -



e

Intestine

Fig. 2 Drawing of en terograp h  d e s ig n e d  by B a y liss  & Starling  

(1 8 9 9 ) .

Using enterographs similar to that designed by Bayliss and Starling (1899), 

basically two levers, at right angles to each other, attached to the tissue (Fig. 2), Elliot and 

Barcley-Smith (1904) exposed the colon of a number of species to perform what is 

perhaps the most comprehensive comparison of colonic motility between species. In this 

study various types of movement were found including anti-peristalsis (backward waves 

of constriction) repelling food from colon into the ileum. They noted differences in the 

structure and function of the colon between various types of animals and various 

positions along the colon.

‘The colon tends to show a division into three regions of different activities, 

proximal, intermediate and distal. These are completely distinct in the 

herbivorous mammal. Anti-peristalsis is constrained to the first region... ’

(Elliot & Barcley-Smith, 1904)

Care must be taken in extrapolating between different regions of the intestine, 

different species and between results obtained from pre-anaesthetised or anaesthetised 

animals, since some anaesthetics are known to cause changes in gastrointestinal motility 
(Johnson, 1976). Simply by opening up the abdomen and looking at the intestine 

Hukuhara and Neya (1968) observed a pacemaker region, which was a zone of pulsating 
contractions which initiating propagated contractions that could travel in both directions.
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In rats and guinea-pigs this region was located at the turn of the ascending to descending 

colon. Another development of the original ‘opportunistic’ approach was the surgical 

implacement of a celluloid window in the abdomen wall of experimental animals. Whilst 

this allowed more prolonged study than earlier studies, it produced little new and no 

quantitative data. This technique, developed by Sabotini (1909), was taken furthest by 

Hukuhara (1931) who took cine pictures of the cat intestine through the ‘window’ and 
later analysed the pictures by hand.

Intraluminal balloons, attached to manometers, have been used to measure 

pressures. The size and shapes of the balloons used can lead to extensive variation in the 

measured results and balloons have now been largely replaced with perfused catheter 

systems (Harris & Pope, 1964) and miniature pressure transducers (Millhon et al., 1968, 

Hollis & Castell, 1972). Singerman (1970) applied time series averaging to the pressure 

generated by intestinal contractions. The pressure readings from a number of 

manometers, at different points along the length of the intestine were recorded by the 

computer. Averaging of this data provided a ‘clean’ input signal. Similar work has been 

done on-line by Grundy, Scratchard & Scratchard (1983). Christensen et a l . (1971) 

used time series analysis on the data from four tubes implanted in vivo in human 

duodenum. This experiment included the recording of electrical activity and showed that 

physical and electrical activity were inherently linked. Since a pressure rise in one tube 

was not necessarily associated with pressure peaks in another tube it was deduced that the 
functional unit length of human duodenum was smaller than the 2 cm separation between 

the tubes.

Studying the motility of the intact animal can be done by implanting force 

transducers onto the extraluminal surface of the intestine (Jacoby, Bass & Bennet, 1963; 

Pascaud, Benton & Bass, 1978). Some human results have been obtained from patients 

who have had such transducers implanted during abdominal surgery (Nelsen & Angell, 

1979). Such surgical manipulations may have led to tissue damage and abnormal motility 

patterns. The results from this method were qualitatively similar to the results found 

from balloon methods, that is to say there were three basic patterns of motility:-

1) low intensity bursts of contraction,

2) general increase in tonus, and

3) an increase in tonus upon which is superimposed bursts of contractions of

a greater amplitude.

Raiford and Mulinos (1934a,b) found a novel way around the problem of 

maintaining an isolated intestinal section by transplanting it into the intact abdominal wall
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where it would be nourished by the blood supply and be visible to the investigators. 

Using a system of levers to record movements it was found that feeding altered the pattern 

of intestinal motility. In the unfed state the gut was quiescent, but changed to rhythmic 

contractions when fed. With no neural or physical connections with the rest of the 

intestine, other than the systemic blood supply, the response to feeding had to be 

mediated by some blood born agent. This agent would now be considered to be, at least 

partly, the hormone Gastrin. Raiford and Mulinos added their contribution to the debate 

on the nature of peristalsis; they found that applying a stimulus to their exteriorised 

section led to circular contraction both above and below the stimulus.

The use of X-rays to investigate gut motility, though non-invasive, is qualitative 

and descriptive. This method was introduced by Rontgen (1895, cited in Glasser, 1945) 

and furthered by Cannon (1902), Luboschez (1931), Steggerda and Gianturco (1936) and 

others. X-ray investigation is relatively unhelpful in describing motility since X-ray 

photographs indicate the position and shape of the contrast medium in the intestinal lumen 

at a given time without relating to times before or after (Fig. 3). Without good reference 

points on the X-ray image it was difficult to tell much about the movement of the bolus 

relative to the intestinal wall. (For example, except close to the stomach, it was hard to 

tell whether the bolus is heading orally or aborally). Cole and Einhom (1910) used serial 

Rontgen pictures to give information regarding the changes in contrast media over a given 

time. More modern radiological technique involving image intensifier systems, offered 

better resolution of images and lower radiation levels (Wolf & Khilnani, 1966). Despite 

difficulties results obtained from cinefluorography and digital recording of images began 

to approach quantitative measurement (Gebauer, Lissner & Schott, 1967; Wolf, Fleitman 

& Cohen 1968).

The rapid and widespread adoption of X-ray techniques for clinical investigation 

has led to the unusual situation where a large part of our knowledge of gastrointestinal 

motility is based on studies done on humans rather than experimental animals. 

Incidentally human intestine, which in most aspects seems similar to intestine taken from 

experimental animals (Bennett, 1968), is much less prone to degeneration (Bucknell, 

1966). An experimental X-ray technique not commonly used clinically is the 

implantation of small radio-opaque metal markers to the serosal surface of the intestine to 

record longitudinal movements of the intestine. Tasaki and Farrar (1969) measured 

intraluminal pressure while taking serial X-rays of intestine with this type of marker 

attached to it in order to correlate length changes with the pressure increases, which are 

generally associated with circular contractions. Attaching X-ray opaque substances to the 

intestine produced trauma, which interfered with normal motility patterns, but if sufficient 

time was allowed between implant and investigation the effects of trauma were apparently

-1 3 -



reduced. The presence of an intraluminal pressure recording balloon could cause 

abnormal contraction patterns. Although this technique gave some quantitative measure 

of length and width changes, any changes in orientation in the intestine leads to 
considerable difficulties in the interpretation of this data.

3 min 5 min

7 min 9 min 12 min

Fig. 3 Draw ings m ade from cin erad lograp h ic  s tu d ie s  of normal 

human colon  (Davenport, 1977, b ased  on R itchie, 1968). The

sequence shows barium- impregnated ileal contents entering the cecum and 

moving to the distal half of the transverse colon.

Other means of investigating motility of the intestinal tract or transit of intestinal 

contents in the intact animals have included the transportation rate of radioactive isotopes 

(Roswick, Stedford & Brooke, 1969; Walker, 1975; Harvey et al., 1970), radioactive 

beads (Hinton, Lennard-Jones & Young, 1969), seeds (Burnett, 1923), coloured dyes 

(Rothman & Katz, 1964), chemical markers (Wilkinson, 1971) which may be 

isotopically labelled (Hansky & Connell, 1962; Wingate, Sondberg & Phillips, 1972) 

and magnetic substances such as magnesium ferrite (Benmair et al. 1977a, 1977b).

SECTION 1.3 Techniques of in vitro in v estig a tio n

The complete picture of natural motility can be investigated only, if at all, in intact 

animals. It can be argued however that in whole animal experiments there are too many 

variables interacting, including the effects of various homoeostatic mechanisms, to easily 
elucidate the underlying physiological mechanisms. There are therefore advantages in
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undertaking an in vitro investigation as variables can be controlled to give a more precise 

and reproducible results. Obviously excised tissue may not have the same properties it 

had in situ. This approach was probably first used (in gastrointestinal investigations) by 

Haffter (1854), who kept excised bowel sections alive in Locke’s solution, but was made 

famous by the investigation by Bayliss and Starling (1899, 1900) in their well known 

study of gastrointestinal motility and by Paul Trendelenburg (1917) who did the first in  

vitro study of peristalsis. Since then many others have used isolated preparations in 
many areas of physiological investigation.

In 1899 and 1900 Bayliss and Starling carried out the first quantitative investigation 

of gastrointestinal motility, using excised sections of dog and rabbit intestine kept in a 

balanced salt solution. Using enterographs and kymographs they measured longitudinal 

and transverse movements. Stimulating the intestine led to contraction above the stimulus 

and relaxation below it. Various stimuli, including the presence of a bolus in the lumen, 

elicited this pattern of contraction which they proposed as the mechanism by which 

intestinal contents were propelled along the gut (‘the law of the intestine’). Bayliss and 

Starling did a number of experiments on these sections, including the effects of 

pre-anaesthetising the animals with morphia which they found made no difference to the 

intestinal motility. They also performed a limited investigation of the differences between 

species, noting that dog colon was generally quiescent while the rabbit colon was much 

-mere active. Similarly, in their preparations they looked at the differences between the 

small and large intestine and found that the small intestine was much more easily 

stimulated to move. They discovered also that inflating the intestine stimulated 

contractions to occur as did the more natural stimulus of an artificial bolus. They 

described pendular movements and occasional regions of circular contractions moving 

aborally preceded by a zone of relaxation (peristalsis). Bayliss and Starling also found 

that, within limits, the force of contraction was proportional to distending pressure. 

Langley and Magnus repeating the work in 1905, could not find the descending inhibition 
claimed by Bayliss and Starling. A further important factor observed by Bayliss and 

Starling in this thorough investigation was the effect of the experimental apparatus on the 
object of experimentation. They noted that the balloon-linked manometer they used to 

measure pressure in the section actually caused measurable contractions rather than 

passively recording those contractions already extant.

One of the most important features to arise from the work of Bayliss and Starling 

(perhaps the most important) was the realisation that their mechanical system for 

quantitatively measuring the movements of the intestine would lead to the elimination of 

two sources of variabilty in results: relying on visible inspection only, and allowing 

preconceived ideas to colour the perception of results. Their admission of and attempt to
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prevent experimental or observer error was a major addition to the methodology of 
biological science.

Trendelenburg (1917) performed his first study of peristalsis on guinea-pig ileum. 

His technique was later adapted to investigate colonic peristalsis and the technique is still 

used (Lee, 1960; Mackenna & McKirdy, 1972; Eley, Bennett & Stockley, 1977). 

Kosterlitz, Pierie and Robinson (1955, 1956) used isometric or isotonic transducers to 

measure the motility of guinea-pig ileum. The colon is harder to stimulate into peristaltic 

activity than the ileum but an appropriate stimulus is a semi-solid bolus (Frigo & 

Lecchini, 1970). In 1924 Alvarez and Mahoney decided, after reviewing the literature to 

date, that more work needed to be done since many workers had experienced difficulty in 

showing descending inhibition. Investigating the preceding inhibition using a series of 

enterographs they concluded that everything from marked contraction to marked 

relaxation could be found preceding either a bolus or some other form of intestinal 

stimulus. By cutting and rejoining an intestinal section so that no nerves or muscles were 

intact between the two parts they showed that apparently normal movement of a bolus 

could occur. Thus no input was needed from the section above, except for the luminal 

contents, and a myenteric reflex would seem to be involved. This finding seemed 

contrary to that proposed by Cannon (1902) who had argued against a pure myenteric 

reflex explanation of peristalsis and the polarity of the gut on the simple grounds that the 

food having been placed in the gastrointestinal tract would be rapidly passed through and 

out.

To investigate this further, Alvarez and Zimmerman (1927) developed a new 

method of measuring intestinal motility based on analysing images. They placed markers 

on a section of gut and photographed on cine film the preparation as it moved. Using 

calipers they measured the changes in position of these markers in a series of 320 

photographs which they took of each intestinal section. Thus a quantitative analysis of a 

whole area of intestine was obtained. From this study it appeared that there was a 

distension in the intestine in front of the bolus but they interpreted this as being due to 

liquid being pushed through in advance.

Klinge’s (1951) investigation of peristalsis used an interesting approach to 

measuring the activities of the sections. Shining a strong light on the preparation within a 

waterbath cast a shadow onto a screen. This shadow, which effectively magnified the 

preparation and its movements approximately eight times, was photographed and 

measurements were taken from the photographs.

-1 6 -



Brodie (1978), Elder (1980) and Moss (1981, 1982a, 1982b) improved the speed 

and accuracy of measuring photographs to analyse the movements of the gastrointestinal 

tract, by using video films and a digitising tablet linked to a mini-computer.

McKirdy (1968, 1972), Mackenna and McKirdy (1970, 1972) had a different 

approach to using isolated sections. They used a small section of the intestine opened up 

to make a flat sheet (Fig. 4). This preparation was isometric and therefore any 

mechanical interaction between width and length changes was removed. They found the 

two layers contracted in phase; whereas Trendelenberg (1917) had found, using an 

intestinal segment, that length and width changes were 90° out of phase. In general it is 

thought that measurements taken using in vitro muscle strips are less affected by 

mechanical interactions between longitudinal and circular muscle layers (Bortoff, 1976).

S in tered
g lass

bubbler
to s tra in  gauges 

via
pulley system

M odified h eart 
clip

— EK^-

cork

D ista l colon pins
(flat p repara tion )

Fig. 4 Drawing of intestinal fiat preparation (McKirdy, 1969). The flat 

preparation, mounted in a Palmer frog bath, is bathed in Krebs solution which 

is gassed and agitated by the glass bubbler. Two adjacent sides of the 

preparation are pinned to cork and only these two edges are in contact with 

cork. The other two sides are clamped along their lengths by small chucks 

made from Palmer frog-heart clips. The recording is isometric.

SECTION 1.4 Advantages of Image Analysis Investigation.

A review of the literature shows many methods of investigating gastrointestinal motility.

In addition the literature contains contradictory findings and interpretations of data. It is
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probable that some of the variation is due to taking measurements from different species, 

regions of the gut, preparations and the feeding state of the animal (Fig. 5).

Fig. 5 Drawings of intestinal t is su e  from different loca tion s In the 

intestine and different sp e c ie s  (Garry, 1934). A, in the rabbit: (R) 

ileum, (S) cecum, (T) appendix, (U) proximal colon, (V) distal colon. B, in man:

(R) ileum, (S) cecum, (T) appendix. C, in the dog: (R) ileum, (S) cecum.

As late as 1982, in a major review of the techniques of studying intestinal motility 

by Corazziari, it was claimed that there was no adequate way to describe peristalsis other 

than describing the rate of propulsion of contents, such as fluid or plastic balls (Ishizawa 

and Miyazaki, 1973a,b; 1975).

Most techniques for investigating motility of the intestine either measure some 

physical parameter, such as pressure or tension, created by a large segment of intestine or 

else measure from very small tissue samples or distinct points of the intestine. The claim 

is then sometimes made that the sum of a number of these small elements approximate the 

effects of a larger area of tissue. This is probably inaccurate since all tissues interact, 

especially those tissues like the gut which are linked by a nerve plexus. Recording from 
a larger section of gut may also limit the sensitivity of the data produced since activity in
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one part of the segment could be hidden from detection by the opposite activity elsewhere, 
thus contraction occurring in one region could mask relaxation in another.

From the time of Bayliss and Starling it has been accepted that the device used to 

measure motility, be it balloon manometers, enterographs or force transducers, may alter 

the pre-measured state (A biological ‘uncertainty principle’!). To overcome this image 

analysis of gastrointestinal motility in the quantitative sense was introduced by Alvarez 

and Zimmerman (1927). Segments of intestine in vitro were photographed and 

subsequently analysed manually. This early work demonstrated some of the main 
advantages of image analysis over other methods of investigation:

1) no contact is required between tissue being investigated and device
measuring it, and

2) the tissue can be treated as the sum of a number of smaller zones.

Image analysis can be applied to the gut by delineating a number of contiguous 

small areas on a larger segment of intestine. Each of these small elements is studied 

individually for detail whilst the sum of the actions of these elements indicates the 

response of the whole segment.

Both marking tissue and sectioning the intestine for in vitro experimentation may 

alter the normal characteristics of the tissue. Image analysis has the advantages that it 

does not require any mechanical link to the tissue and avoids any variability of the results 

caused by subjective measurements.

Increased detail from an analysis necessitates increased information handling. 

Therefore to take full advantage of the power of this technique, the analysis has to be 

faster. Initially this increase came about in using semi-automated methods with a 

computer-linked planimeter (Brodie, 1978; Elder & Trueman, 1980; Moss 1981, 1982a, 

1982b). Whilst these techniques offer the advantage of combining the ability of a trained 

observer to discriminate the features of an image with the speed of computerised ‘number- 

crunching’, it involves a large degree of subjective decision making.

The next stage forward in the image analysis of the gut came with television linked 

computerised image processors, such as the Magiscan used in this project. These 

devices receive input from a television camera, the images from which are digitised and 

analysed numerically. Various markers on the preparation are found without human 

intervention, and therefore avoiding possible observer bias. Appropriate programs were 

developed in this project in order to allow real-time analysis of data. This permitted the 

study of aspects of motility which previously could not be investigated.



CHAPTER 2. MATERIALS AND METHODS

Since the main thrust of this project has been to develop programs and apply the 

methodologies of image processing and analysis, this chapter on methods also includes 
discussion of these aspects.

SECTION 2.1 Fundam entals of Image Processing and Image Analysis.

The basic principle behind any digital imaging device (including the MAGISCAN II used in 

this project) is that an image can be uniquely described by a two dimensional function 

F(x,y), where x and y  denote spatial coordinates and the value of F at any point x,y is 

representative of some quality of image at that point; thus the image can be described in 

matrix form. In digitising visual grey images (black and white pictures) the row and 

column index of the matrix identify the location of a point in the image and the value 

stored in this matrix element represents the grey level, that is the light intensity at that 

point. The elements of this array are called picture elements or pixels and, using a 

conventional television camera, their values range from 0 (black) to 63 (white) (Fig. 6).
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Fig. 6 Digitised picture show ing pixel values. An example of a digitised 

image (a) the letter ‘A’ is constructed from pixels of different grey values, (b) 

the numerical representation is also shown; since the values range from 0-7 

this is 3 bit resolution.

Image Processing is the term used to describe altering an image by some process 

or system so as to make the data from the image either more readily available or available 
in more detail. An example is image enhancement in which features of the image are 
processed to make them more obvious to a human observer or to an analysis program. 
Another example is feature recognition in which the parts of the image fulfilling a group of
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criteria, such as small and round edged, are noted for possible subsequent action. This 
action may be further image processing or image analysis.

Feature recognition, also termed structural analysis, assumes that the image can be 

divided, by discontinuities in the image, into a number of regions or structural elements 

(Dixon, 1977). If these discontinuities are diffuse or ‘vague’ then processing must be 

done to identify their location. These processes, known as edge operators, are generally 

iterative in the case of grey images, that is each relevant element of the image is subjected 

to repeated processing until some value, possibly the calculated position of the 

discontinuity, is converged upon.

a) b)

Fig. 7 D raw in gs d er iv ed  from  m e a su r in g  p ic tu res  u s in g  a 

com puter-linked d ig itis in g  tablet, (a) Intestinal peristalsis (Moss, 

1982). (b) Peristaltic locomotion in the marine worm Polyphysia crassa  

(Hunter, Elder & Moss, 1983).
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Image Analysis is the term used for the extraction of numerical data from an 

image or part of an image. This could be, for example, the circumference of the round 

objects in the image (possibly found by feature recognition) or the percentage of dark 
stained objects to light stained objects in a microscope field.

The processing steps required in problem solving by man and machine are thought 

by some to be similar (Poggio, 1984; Ballard & Brown, 1982). Computerised image 

processing can be compared to the processing carried out by the eye and brain.

Most image analysis and processing used in experimental biology is for the analysis 

of histological preparations (Bradbury, 1979, 1983; Jenkinson, 1985). Image analysis 

and processing of the movement of smooth muscle tissue, introduced by Alvarez and 

Zimmerman in 1927, had to wait for computer assistance before it could be regarded as a 

efficient means of investigation. Semi-automatic imaging techniques (manual image 

processing coupled with automated analysis) have been applied to the movements of 

intestinal tissue (Moss, 1982b), the movements of marine worms (Hunter, Moss & Elder, 

1983) (Fig. 7) and the vas deferens (Moss, 1984), Only recently has the price of high 

speed image analysis equipment decreased sufficiently to allow laboratories access to 

real-time image processing and analysis fast enough to be usable in the analysis of 

movement (Bell, Boyd & Moss, 1982; Clarke & Moss, 1983; Boyd & Moss, 1984; 

Moss, 1984; Moss, 1985; Clarke & Moss, 1986; Brodie etal., 1987).

SECTION 2.2 Obtaining and Preparing Tissue.

Tissue was taken from adult New Zealand White rabbits of either sex weighing between 

1*5 and 4 Kg. Animals were never sacrificed solely for this work, tissue being obtained 

from rabbits sacrificed by various workers who did not use intestinal tissue in their work 

and whose experimental regimes were unlikely to effect the motility of the gut.

All animals were killed by stunning and bleeding from the neck. The abdomen was 

opened and a portion of colon dissected free. The colon was flushed with mammalian 

Krebs solution (Appendix A) to remove its contents and thereafter was kept moist with 

Krebs solution. Care was taken to avoid stretching the preparation. The colon was 

normally taken from a point near the caeco-colonic junction to a point 30 cm or so below 

this. Thus the experiments were done on the proximal and early medial colon (Garry, 

1933). Before dissecting the segment free care was taken to mark which end of the tissue 

was orad and which was caudad. This was done by coding the free ends with coloured 

threads. In determining the presence of anti-peristalsis it is critical to know how the 

tissue sample was orientated in vivo.
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A piece of gut about ten centimeters in length was chosen for further cleaning and 

use. The section had to be clear of any obvious damage and to be free of relatively large 

anatomical asymmetries, such as those caused by Peyer's patches, which might have led 

to difficulties in measuring width (any rotation of the preparation might be interpreted as a 

width change). The lumen of the section was cleaned by slowly inserting a graduated 

pipette (diameter 8 mm) from the orad end. As the pipette was gently pushed through 

the section Krebs solution was ejected from the pipette into the section lumen thus 

lubricating the passage of the pipette. Using this method it required very little force to 

push the pipette through the section thus minimising the damage to the gut. The pipette 

was then clamped horizontally so that any non-intestinal tissue still adhering to the section 

could be easily dissected clear.

Fig. 8 P h o to g ra p h  sh o w in g  m eth o d  of m arking b a n d s  on  

preparation. Rotating the pipette rolls the segment along dye soaked 

threads leaving stain rings on surface of segment.

The cleaned gut was inspected for any visible damage that may have occurred during 

this second dissection. If free from damage the section was marked transversely with 

bands of the vital dye Janus Green B. This involved adsorbing a concentrated aqueous 

solution of the stain onto a series of threads 5 mm apart. Excess moisture was removed 

from the surface of the preparation using absorbent paper and then rolled gently along the 

threads (Fig. 8). This left a series of bands of stain around the gut. The preparation
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was kept for a few minutes in a moist chamber to aid the fixing of the stain before the 
excess dye was washed away.

A ‘T-piece’ tube connector was inserted into the orad end of the preparation and tied 

securely. The lower, caudad, end was attached to a tube connecter weighted with enough 

plasticine (normally about 3 g) to seal the connector and cause the end of the section to 

sink. The preparation was suspended in Krebs solution, and gassed by a 95% oxygen 

5% carbon dioxide gas mixture, at 37°C. All openings to the lumen of the preparation 

were closed except one which was attached to a reservoir of Krebs solution. The height of 

this reservoir could be changed to adjust the intraluminal (and thus transmural) pressure if 
required (Fig. 1, 9).

95% CL 5% CO
Height of reservoir 
adjusted to change 

transmural pressure

Camera

37° Krebs

7° Water bath

Drain

Fig. 9 Diagram showing preparation In tissue bath, c.f. Fig. 1.

The tissue was illuminated as evenly as possible by a number of lamps such that the 

image of the preparation appeared brightly lit against a dark background. The bands of 

dye were seen as lines across the width of the preparation and changes in position of these 

bands reflect the contraction or elongation of the zones between bands. Changes in the 

distance between the edges of the preparation are changes in diameter. The image 

analyser uses a television image of this preparation to determine the changes in the width 

and length of each zone which reflect changes in the lengths of the longitudinal and 
circular muscle. In most experiments a gut preparation was analysed with about 14 lines 

marked on it (therefore 13 zones).
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SECTION 2.3 Image analysis and processing equipment used

The mage analyser used is the MAGISCAN 2 system (Joyce-Loebl), with input from a 

television camera with a Chalinicon tube (Bosh, T YK). This is capable of distinguishing 

64 different grey levels, i.e. has a ‘six bit’ resolution. Considered from a logical view the 

Magiscan consists of two parts. The first logical element is the image analyser running 

under the U.C.S.D. Pascal operating system, with its own macro-memory (128 KByte) 

for storage of programs and general data, and microcode-memory (24 KByte) which 

contains the P-code interpreter and other intrinsic machine code routines. The second 

element is the image memory (2 MByte) is used for the storing of image data, graphics 
and in our case also used for storing processed data.

The input from the camera to the image analyser is a standard television signal (25 

frame/second). This is converted via an analogue to digital converter to give a 512x512 

pixels image of 6 bits which is stored in the memory (Fig. 10).

512
lines

512 pixels from each line

Fig. 10 Diagram showing how a television frame is digitised.

Total data = 512 x 512 = 262,144 pixels. Each pixel represents a degree

(0-63) of light intensity.

One captured image takes up almost an eighth of the image memory so that holding 

more than eight images in memory simultaneously is impossible. The program was 

therefore designed to process and analyse each image for the data required before the next 

image is captured. Thus all ‘raw’ images can use the same part of the image memory, 
freeing the rest of the image memory to be used to store processed data and graphics. 
This processed data can be stored on floppy disks from where it can be retrieved and
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displayed on the MAGISCAN or transferred to some other device (Fig. 11).

P r i n t e r

D ig i ta l
p l o t t e r

F lo p p y
d i s c

M a i n f r a m e
c o m p u t e r

Television
Ca m e r a

Colour  m o n i t o r  
d i sp l ay

I n t e s t i n a l
p r e p a r a t i o n

M a g i s c a n  2 
I m a g e  a n a l y s e r

Fig. 11 Block diagram of hardware used in project.

SECTION 2.4 Image analysis and processing algorithm s used

In the analysis of movement the rate of data capture must be rapid relative to the speed of 

movement. The period of oscillation of rabbit colon is about five seconds and therefore 

images must be captured not less than two per sec. The programs developed can measure 

from an image the average widths and lengths of the zones between bands in about 

300 msec, since critical parts of the program are written in machine code (thus running 

ten times faster than if written in Pascal). This rate not only allows accurate analysis of 

movement but is also fast enough for real time image analysis.

The feature recognition routines were designed to determine the positions of the 

bands marked on the preparation and the positions of the edges of the tissue. The image 

analysis routines calculate the length, width and volume of each individual zone.

Since not all of the picture needs to be used in the analysis (the image of the 
preparation only filling part of the screen) two windows (regions) are selected (Fig. 12a). 
The first window W! is approximately filled by the image of the preparation, the second, 

larger window W2, contains the image of the preparation and a certain amount of dark
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background. The image processing uses Wj to identify the positions of the bands. 

These values, along with the image within W2, are processed to identify the positions of 
the edges of the preparation within consecutive bands.

a) b)
W2
 ►
Wi

Fig. 12 (a) Diagram of preparation and w indow s u sed  In analysis.

Wt is used in finding the position of the bands and W2 is used in finding the 

position of edges, (b) Histogram of grey values in which the positions of 

minima correspond to positions of bands, (c) Graph of first differential of grey 

values across a single zone; the positions of the maximum and minimum 

turning points correspond to the mean position of the edges within that zone 

( c.f. Fig. 1).

This criterion is inadequate to unambiguously locate bands since other features of the 

lighting or the preparation may also give minima. Generally minima corresponding to 

bands are pronounced so some criteria (d,w) is chosen which will differentiate between 

dye bands and ‘noise’ (Fig. 13). Only a minimum which has a value at least d grey 

tones less than the values found w pixels on either side is considered as a ‘potentially true 

minima’.
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Y

Y y. {Y(X' + d - X)} 
-  y ( x '  + d - x )

limit (d)

X ’
Light intensity

X

Fig. 13 Diagram show ing how the position  of a single minimum is 

calculated. The light intensity value X' is regarded as a potentially true 

minimum since the the light intensity values w on either side of it are more 

than d greater. The exact position of the minimum Y is calculated by the 

equation shown above.

The number of these minima is noted and the grey value sums are then smoothed, by 
applying the binomial formula:-

Again the number of potentially true minima is noted and the process repeated until 

the number of potentially true minima converged on a value. This iterative process is 

carried out to remove spurious minima which, though they fulfil the d,w  criteria, are not 

associated with bands. These spurious minima are relatively susceptible to erosion by 

cumulative smoothing. The minima remaining are regarded as true minima. Having 

identified these minima their precise positions are calculated.

Typically, the image of the preparation occupied most of the height of the frame, i.e. 

500 pixels; such that the average length of each zone is about 35 pixels. If the 

measurement is accurate to ±1 pixel then the smallest observable change in length is 3%. 

This resolution is insufficient to resolve small movements. An algorithm is implemented, 
which makes use of a weighted mean formula, so that the position of a band could be 

interpolated to a fraction of a pixel (Fig. 13).

Y i = 1/4 ( Y ,1 + 2 Y i + Y i+1).
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Y= £ Y ( X ' + d - X )
X ( X ' + d - X )

It is important to choose appropriate values of w and d. The parameter w is used 

only in rejecting spurious minima. The value chosen for w is typically half the smallest 

distance between bands. This means that the search routine does not overlap adjacent 

minima, and yet is wide enough to define the position of the minimum being tested. The 

value of d is typically half the average depth of the minima since this is a good 

compromise between accepting minima which are spurious and rejecting minima which 

are real but shallow. Provided the bands are marked clearly the value of d is not critical. 

However in interpolating the position of the minima the value of d must be carefully 

selected. If the value of d is too small then too few values contribute to the weighted 

mean for accurate interpolation. If the value of d is too large contributions to the mean 

will be accepted from outlying points which may distort the interpreted value.

In order to give the mean position of the edge in each zone of the preparation the 

total of the grey values for each column of the image within W2 is calculated between 

consecutive dye bands. As the background of the preparation was arranged to be darker 

than the preparation itself, a histogram of these values indicates the position of the 

preparation within the image as a region of relatively low grey value compared to the 

background. The location of the most rapid change indicates the edges of the preparation. 

This is most easily found by taking the first differential of the sums across W2. The 

edges of the tissue correspond to a maximum value of the differential at one edge of the 
tissue and a minimum at the other edge. To locate these it is sufficient to find the 

maximum and minimum values of the differential (Fig. 12c). (Generally the maxima and 

minima produced by uneven illumination of the preparation was not large enough to 

produce maxima and minima greater than those corresponding to the edges of the 

preparation.) If an edge is not exactly aligned with the analysis window the shape of the 

differential will change slightly, but the algorithm will still find the maximum and 

minimum. The position of the turning points are then extrapolated to a fraction of a pixel 

using the same algorithm as was used to identify the positions of the bands. The mean 

width of a zone is the difference in location between the position of the two edges.

The positions of the bands and edges found by the above algorithms are not changed 

by the intensity of illumination. This is in contrast to segmentation of a grey image by a 

threshold to give a binary image, which is the method commonly used to find features. 

Tests under most lighting conditions established that this system of algorithms would 

accurately and repeatedly detect the positions of the edges and the markers (Fig. 14,15).

-29-



P
o

si
ti

o
n

a) b) Cut off level

Co
COo
o.

10

“i
63 Light Intensity0 Light Intensity 63

Fig. 14 Diagram com paring the two m eth od s o f identifying th e 11 

bands. The algorithms used in this project correctly finds all the bands (a), 

whereas traditional binary segmentation (b) will fail to locate all the minima 

correctly, whatever cutoff level is chosen.

The positions of the bands and the edges are saved in memory. By using spare 

image memory for this purpose it is possible to save the data from up to 25,000 images. 

Data can also be stored on disk.

Before displaying the results, or further analysis is undertaken, the collected data 

must be checked and if necessary corrected for missing, extra or spurious bands. These 

errors rarely occurred but can be caused by gross movement of the preparation which can 

lead to bands moving into or out of the analysis window. This is particularly likely to 

occur if pharmacological agents, such as acetylcholine, are added to the bathing fluid. 

Other errors could be produced by anomalies in lighting, poor tissue marking, or gas 

bubbles from the Krebs solution.
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05 Width

Position
Fig. 15 Diagram com paring th e e ffec t of changing Illu m in a tio n  

intensity on the identification of e d g e s  by (a) finding the position of 

the inflection as used in this project and (b) binary segmentation algorithms.

The widths found using binary segmentation are altered by changing light 

conditions whereas the algorithms used in this project resist this influence.

The program copes with these errors in the following manner. The positions of 

bands in a frame are compared with the positions in the previous frame. Since the 

sampling rate is much faster than the period of movement of the gut, there should be 

relatively little change in the positions of the bands between images. Working from the 

top of the preparation, which is fixed, the program compares the distance between bands 

with the distance between the bands in the previous images. A band is considered to be 

true if the distance between it and the previous band is within 33% of the corresponding 

distance in the previous image. If necessary extra, spurious bands are ignored. Bands 
which are missed are compensated for by interpolating from the positions of bands which 

are regarded as being valid. If errors need correction this is noted. The corrected data 

can be stored on disk (Fig. 16).
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Fig. 16 Diagram show ing method for correcting data. The bands on 

image (b) are checked by comparing them with those on the previous image

in the sequence (a).

Band 1' taken to be the same as band 1.

Band 2' is approximately the same distance from band 1' as 2 is from 1, therefore
defined as being band 2.

Band 3' not found and not shown in diagram (possibly the band is not clear 
enough) therefore position is calculated using the ratio of distances measured 
in both directions, i.e. missing distance from 2' = b x e + (b+c).

Band 4' is approximately the same distance from band 2' as 4 is from 2, therefore 
defined as being band 4 and used to calculate position of band 3'.

Band 5' is approximately the same distance from band 4' as band 5 is from 4 
therefore defined to be band 5.

N.B. Object X in the second image (possibly some tissue debris in the waterbath) 
produces a minima of grey image but is not found to be band 2' because band 
2' is closer to the expected position based on band 1’ + distance a.

Though line 4' is closer in position than line 5' to the position that line 5 had the 
algorithm correctly associates line 5' with line 5.
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SECTION 2.5 Magiscan Operating Procedure

The program for image analysis and processing is menu driven with many options 

available (Table A). A usual way through these options was as follows:-

1. Program started: live T. V. image displayed on monitor.

2. Windows set: light pen used to adjust widths and heights of 
analysis windows (Wl5 W2).

3. Calibration set: light pen used to indicate reference length in 
image.

4. Slow analysis rate selected: 1 image per 5 sec.

5. Full graphics option selected: displays histograms as in Fig. 1.

6. Maximum number of bands to be analysed chosen.

7. Set discriminators: used for band and edge detection.

8. Collect test data: if not all bands/edges found then adjust 
lighting and discriminators (c.f. Fig. 1)

9. Stop test data.

10. Simple graphics selected.

11. Analysis rate selected: normally 2-4 image/sec., specify number 
of photographs.

12. Analysis started.

13. Stop analysis: automatically on limit or manually.

14. Check data for errors: if necessary correct or reject.

15. Save data to disk file.

16. Data or graphics displayed on screen.

17. Data or graphics sent to printer/plotter for hard copy.

18. Data transferred to mainframe computer for statistical analysis.



Table A. Options available within analysis program.

A begin/stop analysis

B band alignment and correction

C calibrate with scale bar or enter numerical value

D display results graphically on monitor, graphics terminal or digital
plotter

E erase all graphs

F fast analysis toggle ( graphics/no graphics)

G graphics toggle (full/partial graphics)

H help menu

I initialise system to defaults

M set criteria for band and edge finding

N set number of smooths

O output toggle for pseudocolour/monochrome images

P printer baud rate toggle 9600/1200 baud

Q quit program

R read data from disc file

T time interval between pictures

V values of data sent to console or printer

W Window setup

Z Colour/monochrome toggle (text and graphs)

: * show disk directories.
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CHAPTER 3. RESULTS

SECTION 3.1 Using Data from a Small Num ber of Experim ents

The following results were derived from the limited number of specimens used to test the 

system. Lengths and widths of zones were measured directly and volumes were 
calculated assuming the preparation had a circular cross-section. In general three zones 

were analysed statistically for each of the twelve tissue samples. Extrapolations to the 

whole population made from small number of data sets always run the risk of being 

inaccurate (the ability to collect large data sets being one of the reasons for developing this 

system). The results have been included to demonstrate the viability of the system and to 
point the way for some further investigations.

SECTIO N  3.2 G raphical Presentation of Results

The results of an experiment can be summarised graphically in a number of ways. A 

graphical display on the console of the image analyser (Fig. 17) or a digital plotter shows 

the time course of percentage changes in length or width of each zone, compared to its 

mean value. The derived parameters volume or length:width ratio can also be plotted. 

Pseudocolour images of the results, in which the colours show the changes within 

individual zones, can also be displayed on the console (Fig. 18). In both these displays, 

selecting a particular time and viewing vertically shows the percentages changes within 

the preparation at that time. Following one zone across a graph shows the percentage 

changes with time of that zone, compared to its mean value. Contractions are shown as 

negative values (yellow or red) whereas relaxations are positive (blue or magenta).

SECTIO N  3.3 Statistical Analysis of W idths, Lengths and  Volumes

The times of the cycle for the length or width movement on the twelve tissue samples 

were analysed statistically. The mean width period (± standard deviation) was 

5-52±0-16 sec and mean length period of 5-58+0-18 sec.

The effects of pressure on the preparation were investigated over the pressure range 

0 -1 0cm H20 . Increased pressure was associated with increased dimensions. The 

relationship of pressure to width was linear (r=0-46, 33df, P=l%  ) (Fig. 19). The 

influence of pressure on average length was also linear (r=0-70, 33df, P<0-1%) (Fig. 20) 

as was the relationship of pressure to average volume (r=0-70, 33df, P<0.1%) (Fig.21).
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a)

b)

Fig. 17 Graphical d isp lay  on the c o n so le  sh ow in g  the percen tage  

ch an ges in (a) length and (b) width.
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a)

&)

Fig. 18 P seudocolour d isp lay on the co n so le  show ing the percentage  

ch an ges in (a) length and (b) width. (These show part of the data from 

fig. 17).
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Fig. 19 Graph of average width (W) against intraluminal pressure (P).
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Fig. 20 Graph of average length (L) against Intraluminal pressure (P).
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Fig. 21 Graph of average volume (V) against intraluminal pressure (P).
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Using zones in which the length and width movements had the same period, the 

relationship between length and width was investigated. Using all the data recorded for 

each zone the best description from any set of data was found with a fourth order 
polynomial, giving the equation for this zone that:-

Width = 576xlength -  0- 184xlength2 + 2-6x10'4xlength3 -  l-37xl0'7xlength4 -  668 

(r= 0-632) [measurements in mm].

SECTION 3.4 Analysis of Period

The period of oscillation was analysed using univariate and bivariate analyses from the 

Biomedical Data Processing statistics package (B.M.D.P. Statistical Software Inc.). This 

gave the period for the width and length movements in each zone and the phase 

relationship between them. These statistics are outside the capabilities of small statistical 

packages. In order to carry them out the data was transferred to a large mainframe 
computer.

The length and width periodicities were similar within most zones. (r=0-87) 

(Fig. 22). Some zones had the same periods of movement in length and width, some 

had not. A zone with the same periodicity in length and width would have a constant 

phase difference between its two movements, but the phase difference could vary between 

such zones. Obviously in a zone, where length and width movements had different 

periods, the movements would occur in and out of phase over a given period of time. 

Different zones within a single specimen could have different patterns of motility.

The influence of pressure on both length and width periods was best expressed 

linearly with increased pressure tending towards decreased period for both the length 

period (r=-0-57, 33df, P<0-1%) (Fig. 23) and width (r— 0-52, 33df, P=0-1%) (Fig. 

24).

The differences in the length period and width period within a zone, expressed as 

the time for the movements to go out of and back into phase, ranged from the infinite 

(zones with length and width periods the same) through 647 sec to 15 sec. There was no 

clear relationship between pressure and this time (Fig. 25).
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Fig. 24 Graph of length period (LP) against intraluminal pressure (P).

-40-



SECTION 3.5 Activity of Zones.

It was noticed that different specimens of tissue had different degrees of. activity. In 
order to quantify this effect a ‘coefficient of activity variation’ was calculated, which was 

defined as the standard deviation of the measurement within a zone divided by its mean 

value. The activities along even a short stretch of intestine (each zone is approximately 

5 mm long) varied quite considerably (Fig. 26) and there was no strong relationship 

between length and width coefficients (Fig. 27). Pressure over the range investigated (0- 

10 cm H20 ) appeared to have little effect on either length or width coefficient.

SECTION 3.6 Discussion of Results

The general agreement between the results from the image analysis system with those 

used by earlier workers is reassuring.

Other investigators have noted the stimulating effect of intraluminal pressure on the 

intestine (Bayliss & Starling, 1900; Feldberg & Lin, 1949; Kosterlitz, Pierce & 

Robinson; 1955, 1956; Kosterlitz, 1956; Hardcastle & Mann, 1968; McKirdy, 1968 

and others) which in this project was found to reduce the period of contractions but not 

the ‘activity coefficient’. The period of contraction of the colon measured using image 

analysis during the course of this project (4-8~8-8 sec) also agrees with results obtained 

in other studies using different methods (Bayliss & Starling, 1900; Feldberg & Lin, 

1949; Eickholt et al., 1967; McKirdy & Mackenna, 1972).

Using univariate, bivariate and other statistical analyses with large data sets showed 

some interesting phenomena. Small differences in period of length and width movements 

could be quantified for each short zone. Some of the zones can take over ten minutes to 

move out of and into phase. Since many earlier investigators took measurements over 

relatively short periods of time, they would find, with the accuracy of quantification 

available to them, that length and width movements had the same period and a constant 

phase difference. It is possible that this may be the explanation of the differences in 

results found by different investigators, but it is curious that some investigators 

consistently found the same phase difference. Their preparations may have suffered less 

degeneration than the ones tested here and had retained a greater degree of co-ordination.
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The ability of the image analysis system to analyse in detail a length of intestinal 

preparation as a series of contiguous zones allows the detection of non-homogeneity in 

the intestine. Not only have differences in period been detected within and between 

zones from the same tissue sample, but variation in resting, and pressure-stimulated 

activity has also been measured. The intestinal activity along the length of the preparation 

does not seem to vary systematically, in the limited number of samples studied. Active 

zones were sometimes located next to quiescent ones and on occasions propagated activity 

was detected. Further study, using this system, is required to interpret these phenomena 
and to attempt to determine if these are artefacts of the preparation.
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CHAPTER 4: CONCLUSIONS

SECTION 4.1 Aims and Achievements of This Project.

The aim of this research was to develop a system which compared with earlier methods 
was an improvement in:-

Accuracy of measurement;

Speed of analysis;

Ease of data collection and quantitative analysis;

Ability to analyse over long periods of time whilst preserving temporal
resolution;

Ability to analyse the preparation as a series of contiguous small zones; 
Objectivity of measurement;

Flexibility of data handling for graphical display and statistical analysis; 
Minimum interaction between preparation and measuring equipment;

Values obtained independent of lighting intensity.

As has been described in the results section all these were achieved, and in testing 

the system various tentative statements about the nature of colonic motility in the rabbit 

could be made.

SECTION 4.2 Future Development

This image analysis technique has considerable potential in the analysis of muscle 

movement. In addition to analysing gut movements (Clarke & Moss, 1983, 1986; 
Brodie et al., 1987), programs using similar algorithms have been developed for the 
Magiscan 2 image analyser to investigate other aspects of muscular movement. Tissues 
studied include skeletal muscle (Bell, Boyd & Moss, 1982), vas deferens (Moss, 1984) 
and cardiac muscle (Moss, Miller & Lamont, 1986). Other smooth muscle preparations, 

such as esophagus or blood vessels, could be analysed by the existing program. The 
more complex movements of stomach and uterus could be analysed by developing the 

system further. To date only isolated preparations have been studied using this system, 

but in principle an in vivo analysis could be earned out.

The analysis of the locomotion of animals, such as segmented worms, could also be 

improved by the application of these techniques.
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The program developed during this project is suitable for the study of the actions of 
neurotransmitters and other pharmacological agents, electrical transmural stimulation and 

stimulation of the extrinsic nerves on the preparation. An important aspect which could 

be investigated is the observation reviewed by Bennett (1968) that the addition of drugs 

directly into the waterbath may give different results than agents delivered intraluminally 
or via the vascular system or in vivo. An examples of this is morphia which does not 

effect muscle strips when added to the bath but has inhibitory effects when perfused 

through the vasculature. The work of Klinge (1951) and Bulbring, Lin and Schofield 

(1958) showed that intestinal preparations were most active if the inside of the preparation 

was oxygenated. If the outside (serosal) surface was oxygenated and the inside was 

allowed to become anoxic, the activity decreased. These phenomena would be easily 

investigated since in the preparation used in this project the tissue effectively formed a 
chamber, the inside of which was the intestinal mucosa, which could be separately 

perfused.
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Appendix B: Composition of Krebs solution

Stock solutions

Sodium chloride 

Potassium chloride
90-0 g/l (1 Ox isotonic) 

11 -5 g/l (isotonic)

Sodium hydrogen carbonate 12-9 g/l (isotonic, gassed with C 02)

Potassium  dihydrogen phosphate 21-0 g/l (isotonic)

M agnesium sulphate (7H20 )  38-0 g/l (isotonic)

Calcium chloride (1 M solution) 110 ml/l (isotonic)

Krebs solution

80 ml of NaCI stock diluted to 800ml with distilled water.

Add 32  ml KCI

8 ml KH2P 0 4

168 ml N aH C 03 

G as for 15 min. with 5% C 0 2-95%  0 2 

Add 24  ml CaCI2

8 ml M g S 0 4

21 g g lu cose

Make up to 1 litre with water, warm to 37°C, gas with 5% C 0 2-95% 0 2.
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