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ABSTRACT

A folded plate analysis of the behaviour of core
structures subjected to torsional loading is presented.
In this method the core is assumed to consist of vertical
plates rigidly connected together along their edges, and
by using the engineering theory of bending in conjunction
with the continuous connection technique for panels
containing openings, the core behaviour has been
represented by a third order linear differential equation.
The method has been shown to be applicable to any core
which is totally open or partially closed with lintel
beams. The general governing equation is expressed in
terms of one unknown, the angle of rotation and a single
non-dimensional stiffness parameter aH, the core relative
stiffness. The influence of a stiffening element at the
top and flexibility of the foundations have been included.
Solﬁtions of the governing equation for three standard
load cases, a point torque at the top, a uniformly
distributed torque and a triangularly distributed torque
are given. A parameter study has been carried out to
show the interactive effects of the three fundamental
parameters on the primary core actions when subjected to
the standard load cases. Design charts have been
produced for the rapid evaluation of the core rotations
and internal forces, Consideration has been given to
core structures with stiffness variations throughout the
height, special emphasis being given to the effects of a

reduction of thickness of the walls at some level.
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The method has been extended to deal with core
sfructures undergoing post-elastic deformations by assuming
that plastic hinges develop at the connections between the
lintel beams and the adjacent walls when a limiting moment
is reached. A study of the development of plasticity
throughout the structure has been made and mathematical
expressions for the core overall equilibrium condition at
the various stages of plasticity are given.

A description is given of a series of associated
experimental investigations carried out on perspex and
micro-concrete models. The test results are compared with

the theoretical values for both stresses and displacements.
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CHAPTER 1

INTRODUCTION

1.1 TALL BUILDINGS

Tall buildings are one of the features of the modern
industrial city, dictated by reasons varying from a desire
to express power or prestige, to a functional, economical
or geographical necessity.

They may be used for commercial purposes to provide
an economical means of accommodating the huge amount of
office work involved with a big commercial company or the
various departments of a light manufacturing one in one
building which will result in smoothing the daily work and
increase the efficiency with less cost in communication and
transportation.

In some countries there is strong opposition to the
use of tall buildings for residential purposes, for various
social reasons. But the economical fact still stands,
that tall residential buildings form one of the most .
economical means of providing large numbers of people with
modern housing in big cities, considering the scarcity of
land and the cost of expanding or creating new cities,
with all their requirements of other services.

The arrangement and form of any tall building
structure depends mainly on its function, height and the
type of loading to which it may be subjected during its
useful life.

In general three basic vertical structural units,



namely rigidly-jointed frames, shear walls and structural
cores, may be used in a suitable combination to provide
the required strength and stability of a tall building.

As the height of the building increases, the lateral
loads as well as the gravity loads tend to control the
design. For medium height buildings up to say about
twenty storeys, a concrete rigid frame c¢ould be adequate
in providing the required lateral stiffness. For tall
buildings up to about forty storeys, a system of shear walls
may be used to increase the stiffness of the structure
whilst simultaneously serving as functional partitions and
giving adequate fire resistance between specific areas.  For
taller buildings, a tube-in-tube or multiple frame-tube
structure might be more economic and efficient in resisting
lateral loads (1,2).

Due to functional and practical requirements of
planning and constructing a multi-storey building, a group
of shear walls are frequently jointed together to form a
core which is used to accommodate lifts and other services.

These cores are usually considered to consist of
| thin-walled open section shear walls connected by floor
slabs or lintel beams at each floor level to form a
perforated box structure.

If the core axis does not coincide with the building
axis, the core will be subjected to torsion as well as to
shear and bending due to the applied uniform lateral
loading. In the case of earthquakes, torsion occurs when

the centres of mass and rigidity do not coincide. Torsion



may also occur due to asymmetry of the wind loading.

In the case of severe wind loading or earthquake
action, a core structure may deform beyond its elastic
limit and in this case failure will generally occur first
at the connections between the lintel beams and the core
walls, when the bending moment in the lintel beams reaches
its ultimate value.

Although winds and earthquakes produce in reality
dynamic loads on the structure, it has been common practice
tp replace them with an approximate equivalent static load
and solve the problem as a static problem.

In this study the elastic and elasto-plastic
behaviour of core structures subjected to torsional loading

have been examined.

1.2 PREVIOUS RESEARCH

Over the past three decades, a considerable amount of
research has been carried out to study the behaviour of
tall buildings and to provide the design engineer with
sufficient data to produce a safe and economic desigﬁ. In
the course of these studies, various methods have been
established to analyse tall building structural assemblies.

Initially most of the work was concerned with the
case of plane walls undergoing bending, but in the last
two decades work has been carried out on core structures
as a major component in resisting bending and torsiomnal
loading. The pubiished research work may be categorized
under four main methods of analysis, namely the Energy

method, Vlasov's theory, the engineering theory of bending



and the Matrix formation method.

The Energy method was used by Jenkins and Harrison
(3) to analyse core structures by assuming torsional dis-
placements and rotations in the form of polynomials and
applying the minimum potential energy theorem to determine
the unknown constants in the series for displacements and
r&tations. The analytical results did not compare
favourably with the experimental values from a perspex
model.

In Vliasov's theory (4), it is assumed that no cross-
sectional distortion may take place and the shear strain
is constant through the thickness of each wall. This
theory forms the basis for different approaches for the
solution of core structures containing openings. Stafford
Smith and Taranath (5,6) considered the warping displacements
as a seventh degree of freedom of the section, and the
effect of bracings was taken into account by adding their
warping stiffness to the warping stiffness of the open
section. In similar investigations by Heidebrecht and
Stafford Smith (7) a braced open section was solved by
taking into account the bracing effect by modifying the St.
Venant constant of the section, and graphical-analytical
solutions for a specific loading were given.

Based on the same theory, Khan and Stafford Smith (8),
converted a braced open section to an equivalent closed
section by introducing a continuous connection to allow
the shear flow to circulate around the profile of the core.

The procedure does not converge to the limiting case of an



open section. Rosman (9) studied the torsional behaviour
of concrete shafts perforated with openings by combining
Vlasov's theory with the continuous medium approach to
develop expressions for the internal forces and rotationms.
A mathematical analogy between a torsionally loaded shaft
and a laterally loaded shear wall was concluded.

Using the Engineering theory of bending Michael (10)
considered a simple doubly-symmetric core to be composed
of two equal separate channels and by applying closing
forces to the beams, he derived a second order differential
equation relating the bending moment in the walls and the
applied torque. His results showed a good correlation
with the experimental results obtained by Jenkins and
Harrison (3). However the accuracy of the method decreases
as the size of the openings decreases.

Similariy Tso and Biswas (1l1l) analysed the same core
by formulating the problem in terms of the direct
equilibrium of forces, and considering the rotation as the
unknown variable in the governing equation. In later
work (12), the method was refined by taking the shearing
strains and deformations of the channel walls into account.

Based on the same theorem and by considering the core
to consist of vertical plates rigidly connected together
along their edges and by using the continuous connection
method and the folded plate approach, Coull (13) derived
a third order equation for structures on fixed or flexible
foundations.

Based on matrix formulation, core structures subjected



to torsional loading were investigated by using the
transfer matrix method by Liauw (14,15),in which Vlasov's
theory was used to evaluate the matrix parameters. A
matrix was formed for each storey level and by matching the
compatibility conditions between each two successive
segments, starting from the base end conditions, a solution
was obtained.

Using a similar approach, Goodno and Gere (16),
solved the problem by assembling two-dimensional plane
stress and plate bending finite elements into a three-
dimensional finite element termed a super-element, and every
storey of the core was represented by a single super-
element. Core structures subjected to torsional loading
have also been analysed by using an analogous wide-column
frame structure proposed by Macleod and Hosny (17). Good
agreement has been claimed when compared with three other
examples analysed by the above three methods (3,6,13).

Most of the aforementioned work was limited to the
elastic range of the core behaviour. Although the elasto-
plastic behaviour of plane reinforced concrete coupled shear
walls have been investigated theoretically (18,19) and
experimentally (20,21,22), the only investigation to study
post-elastic behaviour of core structures subjected to
torsional loading was carried out by Irwin and Andrew (23)
by testing a micro-concrete model, although an analytical

solution to the problem was not considered.



1.3 SCHEME OF THE PRESENT WORK

The main object of the present research is to study
the elastic and elasto-plastic behaviour of core structures
in tall buildings, when subjected to torsional loading.

Using the folded plate and continuous connection
techniques, the derivation and solution of a general
governing equation for core structures have been achieved
and demonstrated in Chapter 2.

In Chapters 3 and 4, the effects of any foundation
flexibility and a top end restraint have been considered.
Non-dimensional parameters have been introduced to include
their effect on the elastic behaviour of core structures,
and design curves have been drawn for a quick evaluation of
the angle of rotation and the internal forces. A
numerical example has been used to illustrate the relative
influences of these parameters.

In Chapter 5, core structures with stiffness variations
throughout the height have been considered. A mathematical
solution has been achieved for the problem and the same
numerical example has been used to illustrate the effect of
reducing the thickness of the walls throughout the core
height.

In Chapter 6, a theoretical approach to the analysis
of core structures undergoing elasto-plastic deformations
has been demonstrated, and investigation of the plasticity
propagation throughout the core under various end
conditions and applied torques was carried out.

The implementation of the above methods of analysis



in a computer program is given in Chapter 7, with
illustration of the elasto-plastic behaviour of the
numerical example.

Two series of experiments were carried out to
substantiate the theoretical inveétigations. The first
series was carried out on perspex models to study the
elastic behaviour of stiffened and unstiffened core
structures. The second series was carried out on
reinforced concrete models to study the elasto-plastic
behaviour of unstiffened structures. A description of the
experiments, and a discussion of the results, are given in
Chapter 8.

In the last chapter, the conclusions drawn from the
above investigations and suggestions for future research

are given.
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CHAPTER 2

CORE STRUCTURES SUBJECTED TO TORSIONAL LOADING

GENERAL GOVERNING EQUATION

2.1 NOTATION

The following symbols are used in this Chapter:-

1

An = cross-sectional area of wall 'n'

B = core breadth

D = core length

E = modulus of elasticity

G = shear modulus

H = overall core height

h = storey height

In = moment of inertia of wall 'n' about its local axis
IC = moment of inertia of connecting beam
IW = core warping moment of inertia

GJ = St. Venant torsional rigidity

M# = in-plane bending moment in wall 'n'
Nn = normal force in wall 'n'

Q, = vertical shear flow along line n-n
S, = horizontal shear force in wall 'n’

T = applied torque of any cross-section
Tw = core warping resistance

TS = §St. Venant torsional resistance

t = applied distributed torque

thickness of wall 'n'

F
I

X,¥,2 = co-ordinate system



®» gnw N

displacement in x-direction of point
displacement in y-direction of point
displacement in z-direction of point
structural parameter

non-dimensional structural parameter
non-dimensional co-ordinate (= %)

connecting medium stiffness constant

10

(= aH)
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2.2 INTRODUCTION

Core structures for tall buildings consist of
assemblies of slender vertical wall elements connected
together along their vertical edges, either continuously
or through a series of connecting lintel beams at éach
floor level, to create an open box or cellular structure.
These walls may be arranged to create any core structural
layout, which serves to enclose lifts and other services,
and to resist floor and wind loads.

Due to an eccentric disposition of wind loads or to
an asymmetry of structural layout, the core is frequently
subjected to torsional loading, which produces warping
stresses as well as the usual bending, shear and normal
stresses in the core walls. The magnitude of the warping
stresses depends mainly on the shape and dimensions of the
core, and on the loading and restraints to which the core
is subjected.

By using the Engineer's theory of bending in
conjunction with the continuous medium technique, it -
becomes possible to describe the torsional behaviour of
the core structure by a third-order differential equation
which may be solved for different types of loading and
boundary conditions. In this chapter, a method of analysis
for core structures of unsymmetrical, singly- and doubly-
symmetrical cross-section has been presented and has been
proved to be represented generally by a third order
governing differential equation. Solutions for the
governing equation are presented for three standard load

cases,
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2.3 ASSUMPTIONS

The assembly of various structural elements in a

core produces a highly statically indeterminate structure.

In order to simplify the analysis of the structure so that

a closed-form solution may be obtained for the problem,

the following assumptions are made:

1.

The structural material is homogeneous, isotropic and
linearly elastic.

The floor heights and the sizes of the core openings
and the coupling beams are uniform within a specific
zone of the structure, but they may vary from one zone
to another.

The floor slabs behave as rigid diaphragms having
infinite stiffness in their own plane but negligible
stiffness out of plane. The diaphragm action constrains
the core cross-sections to undergo only rigid body
displacements in the horizontal plane.

The axial and shear deformations of the connecting beams
and the shear deformations and out-of-plane bending of
the walls can be neglected.l

The walls adjacent to the connecting beams deflect
equally; consequently, a point of contraflexure exists
at the mid-span position of each beam.

The discrete set of connecting beams can be replaced by
an equivalent uniform continuous medium with uniform
stiffness distributed over the storey height. The
discrete set of shear forces at the points of contra-

flexure may then be replaced by a shear flow or
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equivalent system of continuously distributed laminar
shear forces per unit height of the connecting medium.

7. The reference co-ordinate axes are assumed to follow a
left hand system with the origin at the centre of
rotation, which is taken as the shear centre of the
core at the base. -

8. The external applied load may be expressed as a point
load, or as a continuous function of the height, at

any level,

2.4 DERIVATION OF THE GOVERNING EQUATION

In order to derive the governing differential
equation for a core structure undergoing elastic
deformations when subjected to torsional loading, a segment
of height dx of each panel at any level is considered, with
the internal forées applied to it as shown in Figs. 2.1
and 2.3.

The internal forces on a solid wall segment consist
of the in-plane bending moment M, the axial force N, the
horizontal shear force S, and the vertical shear flo& q at
the corners. In the case of a wall element which contains
a number of continuous media, a vertical shear flow is
assumed to be distributed throughout the height at the lines
of contraflexure which divide the complete wall into a
number of panels.

The position of the shear centre is determined for
the open section disregarding the connecting beams, because
of the assumption that the connecting beams are shallow

lintel beams or floor slabs and the segments in which the
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horizontal shear will flow.around the perimeter will be
relatively small. The method of locating the shear centre
for common structural shapes is described in many text-
books on Strength of Materials as well as in some
published computer programs (24,25).

By considering the displacements whiqh arise as a
result of the core rotation about the shear centre, the
equilibrium of the internal forces on each segmenf, and
the compatibility conditions at the vertical lines of
interaction of the various panels, the overall governing
equation may be expressed in terms of a single function 6,
the angle of rotation about the shear centre. This
general procedure can be followed in the analysis of
various forms of core structures, producing in each case
the same form of governing equation as demonstrated in the
cases considered in the following sections, as well as some

other cases discussed in Appendix A.

2.4.1 UNSYMMETRICAL CORE STRUCTURES

In the case of an unsymmetrical core structure.as
shown in Fig. 2.1, the origin O is assumed to coincide with
the shear centre. The rigid body rotation about the
vertical axis OX will consist of three basic displacements,
displacement V in the y direction, W in the z direction,

and angular rotation ©, as shown in Fig. 2.2,

DISPLACEMENTS

In the displaced core shown in Fig. 2.1.II, the point

'CG' moves to the position 'CGl' on an arc of a circle with
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radius R where,

R = J F2 4+ (e + L)2

The horizontal displacements of point 'CG' in the z and y

directions are,

e2
WG = (e + L) -F - 2.4.1
92
VG = - FO - (e + L) - 2.4.2

Since in the actual structure, the angle of rotation 6 is

very small, the terms of second order in © can be

neglected without significantly affecting the calculations.
The final displacements of the core cross-section

can be achieved by adding the horizontal displacements

WG and VG to the displacements due to the rotation ©. The

final displacements of the significant points on the

perimeter of the core as shown in Fig. 2.1.I1 become

W, =¥, = Ws = -(e + B)®
2.4.3
W, =W, = -e0

V4 = V5 = —-(m + F)o

where the displacements V and W are in the directions of

the y and z axes respectiVely.‘

EQUILIBRIUM CONDITIONS

Considering the equilibrium of the internal forces

for a segment of height dx from each panel as shown in
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Fig. 2.3, the following relationships may be derived.

For panel 1
dMm

_ 1 d _ (d + a)
Sl . e + qz ] ql — 2.4.4
le
a; + Qg + |Jgx < 0o 2.4.5
For panel 2
dM
2 B B
Sz —H_JE - q2 2. - q3 2— 2.4.6
a3 2 ax
For panel 3
dM
_ 3 D D
S3" " BT Uz 2.4.8
4 ~ 93 dx e
For panel 4
dMm
= 4 B B
S4TIm tUuTtd 7 2.4.10
q - +E..N'_§. =O 2411
5 ~ 94 dx -
For panel 5
dM
_ 5 Cc (a + ¢) '
SS TTax TS 79 T 2.4.12
st
._dE - ql — qs = 0 2.4.13

By assuming that the walls behave as vertical slender

cantilevers, the elastic moment-curvature relationships
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for the given set of axes and positive directions of the
displacements may be written for each panel respectively

as follows:

a?w,
M. = EI 2.4.14
1 1 2
a?v, \
M, = EI .4.15
2 2 %
d2W3 .
= EI 2.4.16
Ma 3 22
d2V4
My = Bl, — 2.4.17
d2W5
M. = EI 2.4.18
5 5 7%

COMPATIBILITY CONDITIONS

From the conditions of vertical strain compatibility
along the lines of interaction between each two adjacent
panels, the following relationships may be derived. Along

line 1-1 at the mid-span positions of the connecting

mediums
X p.4
M M
1 (d + a) 5 (a + c)
S E; ~ 2z ** § ET, ~ 2 -
(o} (o]
c Ny ¢ N5 q
-\ —— ax - 2 _dx - = =0 2.4.19
EA; FA, B
0o o}

where the stiffness constant of the connecting beams
121

B = ;§;£ and Ic = the moment of inertia of a connecting



Along line 2-2 between panel 1 and 2

M|z
-

d
2'

E

Along line 3-3 between panel 2 and 3

E1 =
=l DN
[\V]

|

Along line 4-4 between panel 3 and 4

=

3

td

Along line 5-5 between panel 4 and 5

X
B
ng"'g

(o]

tﬂ =
|

|

g dx +

a

O S%—1NK

H o=

X X
ERTRE
(o] o

INTERNAL FORCES

=

| =

mlz
=13
2

= =

o =
[\

dx -

s dx -

dx

dx

O ««—N¥

O "N
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X
EAZ
(o]
2.4.20
X
| =
- E——dx
3
(o)
2.4.21
N
Eé—-dx -0
4
2.4.22
N
4
EA4
2.4.23

Substituting by the second derivatives of the

displacements from equation 2.4.3 into equations 2.4(14,

15, 16, 17 and 18),

the moment-curvature relationships of

the core panels may be written in terms of © as follows:

2
- d7e
X
2
M, = EI,(n - F) &3
dx
2
- . d“e
M3 EI3 5

2.4.24



2
M, = - EI4(m + F) 9—%
dx
2
d e
M. = - EI.(e + B)
5 5 dx2

Substituting for the bending actions from the above

19

equations into the compatibility conditions and solving

with the aid of equations 2.4(5, 7, 9, 11 and 13), t

axial forces in the core panels become,

2
B d“e
: X
2
_ d“e
dx
2
_ d“e
dx
N, = EA,(C, + C, = Cy = P) d%e
4 g\tqg T L3 — Lg - -
dx
Ne =-EA-(Cz + C = C; = Cy - P) a%
5 5\%5 t Lo = Ly = C3 - =2

The vertical shear distribution will be given by,

_ de
9 T - EBP) 3%
= 5gp, 39 _ gp d%e
as 1 dx - Py —3
dx
a, = 58P, 38 _ pp e
3 1 dx 3 d 3
X
a, = mep. 98 _ gp 470
4 1 dx 4 d 3
X
3

fo}
©

-
Q.
£18
i
=
g
9]
[o))
4

he

2.4.25

2.4.26
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where
Cl -~ —(e + B) (d + ga + C)
C, = - [e +B) §+ (n-F) 3]

B_ _D
C3 = (a-F) 5 - ey

Cy = (mF) 5 - ey

C:. = -[(m+F) B, (e + B) C]
5 2 2

and

P = [A2C2 + A3(C3-C2) + A4(C4 + 03 - Cz) - A5(C5-+C2-C4-CS)]/
[A1 + Ay + Ag + Ay + A5]

P2 = AlP

P3 = Py + A5(Cy + P)

Substituting for the first derivatives of equation 2.4.25
and equation 2.4,26 in equations 2.4.(4, 6, 8, 10 and 12),

will yield the horizontal shear forces as follows

3
_ d, d“e (2d+a) de
Sy = -E[Il(e + B) + Py 7] d—xg- + EBP; ~~——5—* %

_ B dve de
SZ = E[Iz(n—F) + -Z'(Pz + P3)] EX—S- - EB%’-B =



[ 42}
'y
il

D
- E[I3e - 5(P; + P,

3
d°e de
)] —= - EBP,D —
dx3 17 dx

da3e de

B
-E[I4(m+F) - 5(Py + Ps)] E;g + EBP{B g

C

= -E[Is(e + B) + 5 Pg

GOVERNING EQUATION

] dSG (2c+a) de

—3 + EBP) —— 3%

dx
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2.4.27

The internal torsional resistance of the core which

consists of the warping resistance TW and the St. Venant

torsional resistance TS’ must equal the external applied

torque T at the same level.

The overall equilibrium of

the core cross-section at any level, as shown in Fig. 2.4,

is

T=

where the core warping resistance TW is given by

Ty

and assuming that the walls are slender in form,

the St. Venant torsional resistance is given by

T

+ T

W S

'n‘l

= Sl(e + B) - Sz(n-F) + S3 e+ S4(m+F) + Ss(e + B)

(26),

overall equilibrium condition may then be written

- de
TS GJ =
where
3
;- éf Ln thn
= —y—
and
Ln = width of wall 'n'
thn = thickness of wall
The
as,
T=

Sl(e + B) = Sz(n-F)

+ Sge + S,(mtF) + S5(e +F) +

de
+
GJ =

2.4.28
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Substituting for the horizontal shear forces from equation

2.4.27 into the last equation yields

3
d”e dQ

where Iw is the core warping inertia given by

IW = Il(e+B)2 + Iz(n—F)2 + I3e2 + I4(m+F)2 + I5(e+B)2
+ Py(gBre) + Ba-m) + 2, B(a-m) - $P
- P (1; §(m+F)) + P (§(e+B) - g(m+F))
and
J =J+ 2% 8p.BD
o) G 1

Equation 2.4.29 is the governing differential equation of
a core structure subjected to torsional loading and may be

expressed in the form

o 2d0_ _ T
dx3 » dx EIw
where a = %%—

w

The parameter a« is a characteristic torsional relative
stiffness parameter which depends on the material
properties, structural geometry of the core and the

stiffness of the connecting beams.

2.4.2 SINGLY-SYMMETRIC CORE STRUCTURES

If the core contains only one axis of symmetry as
shown in Fig. 2.5, the shear centre will lie on the axis

of symmetry (y axis). The origin O is assumed to coincide
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with the shear centre at distance e from the centre line

of the back wall, and in this case

F=0
_ _ D
n=m=gy .
c=d
L = B/2
DISPLACEMENTS

In this case only two basic displacements need be

considered, the displacement in the z-direction, W and

G”
the angular rotation 6. Substituting for the above

dimensions into equations 2.4(1 and 3), the displacements

of the various points become

WG = (e + g)e

W1=W2=W5=-(e+B)9

_v _DB
Vo =V3 =56 2.4.30

Wg =Wy = -eo

. B
Vy = V5= -39

EQUILIBRIUM CONDITIONS

From symmetry, panel 1 and panel 2 are similar to
panel 3 and panel 4 respectively and the axial force in
panel 3 equals zero. Thus only three panels are
considered. The equilibrium conditions for panels 1, 2
and 3 are identical to equations 2.4(4, 5, 6, 7, 8 and 9)
when substituting N

3 = 0. The moment-curvature relation-

ships for the above panels are given in equations
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2.4(14, 15, and 16).

COMPATIBILITY CONDITIONS

In this case the vertical strain compatibility
condition along the line of contraflexure at the mid-span

position of the connecting medium will be

=

g _l_(d+a)dx -2 g E%“ dx - E% =0 2.4.31
L 1
O [o]

H

and the compatibility conditions along lines 2-2 and 3-3

are the same as given in equations 2.4.20 and 2.4.21.

INTERNAL FORCES

Solving the above equations yields

2

N, = EAI[%(B+e),+ g(B-e)] 5{%
dx
- 2
_ D ,B d”e
dx
N3 =0 2.4.32
a, = - 28EBD {2
a3e de
q,; = -EA [E(B+e) + Z(B e)] ———-+ 2BEBD
dx
3
_ d D D,B d°e dQ
S; = -E(I;(B+e) + A d% 2 48
1= - +e) + Ag g(g(B+e) + g(B-e)] 3 + BEBD” =

Sz = E[I2 g + AlB(g(B+e) + g(B—e)) + A BD(% - e)]

d3

O

~ 28EB%D gﬁ

2

-
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d D D2 B
S3 = —E[Ige - DAl(Q'(B+e) + Z(B_e)) - AZ -5 (2‘ -e)]

3
— 2BEBD? %g

o
©

2

X

GOVERNING EQUATION -

The overall equilibrium condition for the core at
any level is

~ de
T—281(B+e) +SBG—SZD+G’J3§

which may be written in the general form,

3

d e de
-EI, —= + GJ =T
w dx3 o dx
where

2 p? 2 A
-IW = le(B +e)” + I2 - + I3 e” + zr(d(B +e) +

2
D(B - e))2 + A2 %r (g-- e)2
and

_ E 2.2

The expression for Iw is identical to that for evaluating
the sectorial moment of inertia according to Vlasov's

theory (4).

2.4.3 DOUBLY-SYMMETRICAL CORE STRUCTURE

In the case of core structures with doubly
symmetrical cross-sections, such as that shown in Fig.2.6,

the shear centre coincides with the centroid of the cross-

section.
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DISPLACEMENTS

The rigid body movement of the cross-section will
consist of the angular rotation 6 about the vertical axis
0-X. The horizontal displacements of the various points

at the perimeter will then be,

_ _ - B.
_ _ D
Vo = V3 =38
2,4.33
= - B
_ _ D

EQUILIBRIUM CONDITIONS

In this case only two panels need be considered
namely panels 1 and 2. The equilibrium conditions and
moment-curvature relationships for the above panels are

given respectively by equations 2.4(4, 5, 6, 7, 14 and 15).

COMPATIBILITY CONDITIONS

The two compatibility conditions along the line of
contraflexure 1-1 and the corner line 2-2 are the same as

those given in equations 2.4.31 and 2.4.20.

INTERNAL FORCES

In solving the above equations, the internal forces

may be obtained as

d2

o

B
N]. EA]. '4- (d+D)

A

X
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a, = -BEBD g—g
B a3e de

qz = ‘-EAl '4‘ (d+D) ——3‘ + BEBD a;

: dx

B d a3e BD? de |
S; = -E 2[11 + A7 (d+D) ] 5;-3- + BE 35— o= 2.4.34
2 3

_ D B d“e 2 do

So = E[I, 5+ &) o (d+D) ] o BEB“D 1=

GOVERNING EQUATION

The overall equilibrium condition for the core

cross-section at any level is,

_— de

Substituting for 54 and S,, from equation 2.4.34, into

the above equilibrium condition yields

3
_ d e de
T = -EIW E—g + GJo =
, b4
~where in this case
2 2

2 D B 2
Iy = I;B” + Iy =5 + Ay =g (d_+ D)

g =2E382p2,;

o G

2.5 SOLUTION OF THE GOVERNING EQUATION

The general governing equation for any cross-

section;
-EI QE§.+ GJ de _ t 2.5.1
L o dx (x) o

in which t(x) is any continuous function of x, may be
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rewritten in non-dimensional form as,

3 3
d“e 2.2 de -H
- a H = =t 2.5.2
—§dg dg ETy "(8)
where
=X
5 H
and
a2 - qu
EI

The complementary function solution for equation 2.5.2,

e may be obtained from the homogeneous equation and

c?
expressed in terms of hyperbolic functions as

Qc = K1 + K2 cosh y& + K3 sinh y§ 2.5.3

where Kl’ Ko and K3 are constants dependent on the
boundary conditions. The particular integral solution
6. is dependent on the loading function t(x) and may be

p
obtained from the operational equation,

2 2 _
D‘D -7 )ep = T ETy Y(g)

where D is the operator é%

and y = aH

By writing

D )—1 H

o_ = (1 - * t
P E,;Z ;‘2‘ EI, (%)

2
And expanding the term (1 - 22)-1 as an infinite series
rd

the particular solution is given by

3
H -1 D D
O = —— (D7 + + =+ L...) T 2.5.4
GJ

p o yﬁ y3 (&)
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The complete solution for the governing equation may be
obtained as the sum of the complementary function and the

particular integral solutions, as,

© =6,+ Gp

H -1 D D3
K, + K, cosh y& + K; sinh y& + G?; (O~ + ;2 + = + cee)

ter)

2.6 LOAD CASES

The preceding governing equation has been expressed
in terms of a general twisting moment distribution which
may take the form of any continuous function t(x) over a
specific zone of the core height.

In this thesis three standard load cases are
considered, a point torque t at the top, a uniformly
distributed torque of intensity t per unit height and a
triangularly distributed torque varying linearly from zero
at the base to a maximum at the top. Uniformly
distributed load is usually used to simulate wind acfions
(27) and point load at the top with triangularly distributed
load are used to simulate earthquake actions (28). Due
to asymmetry of the wind loading or unsymmetrical
arrangement of the structural elements, the above actions
will produce torsional loading of similar forms. The
applied torque distribution and the resulting twisting
moment diagram are shown in Fig. 2.7 for each case of

loading.
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2.6.1 CONCENTRATED TORQUE AT THE TOP

In the case of a concentrated torque at the top,
the twisting moment diagram is shown in Fig. 2.7. The

applied torque T on the core at any height is

T = t(x) =t

In this case the particular solution of equation 2.5.4

becomes
tHE
8 = ==
p GJO

And the complete solution may be written as

tH

Jo

i

e = K1 + K2 cosh y§& + K3 sinh y&§ + 2.6.1

o

Assuming that the core is rigidly fixed at the base ana
free at the top, which is a realistic assumption for most
practical cases, the integration constants may be obtained
from the following boundary conditions.

At the base X=0o0r §=20

de _ -
0 and = - e' =0

e

At the top X =Hor £ =1, the bending moment in each

wall is zero and hence

the solution constants are then given by

- -tH

Ky, = VGJO tanh »
_ tH
K, = 7GJ tanh

(o]




31

-tH

K3 = 77

The general solution for a core structure fixed at the base
and free at the top, subjected to a concentrated torque t

at the top, may thus be written as

o = tH [(cosh y& - 1) tanh y - sinh y& + y&] 2.6.2
7Gd,

2.6.2 UNIFORMLY DISTRIBUTED TORQUE

The twisting moment diagram for a uniformly
distributed torque of intensity t is as shown in Fig. 2.7,

which can be expressed as a continuous function t(x) by

T =1t = t(H-x)

(x)

In non-dimensional form, this becomes,

T = t(g) = tH(1 - &)

The particular solution in this case is given by

tH2 2 1

0 = = (& - - i
p GJ, 2 7,2

and the complete solution will become,

tH2 2 1

e=K1+K2cosh;«g+K3sinhyg+63;(g--2--—2-)

Assuming the same end conditions, that the core is fixed
at the base and free at the top, the three integration
constants Kl’ K2 and K3 are obtained as

2

_ tH (1 + ¥ sinh y)
K, = (1 - )
1 YQGJO cosh y
tH2 1 i
Ky = — (1 + Z'ilnh ¥)
y2GJ, cosh y
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—tH2

Ko = —5—7
3 y GJ,
The general solution for a core structure fixed at the
base free at the top and subjected to uniformly distributed
torque is thus given by

_  t (1+y sinh y)
e = [(cosh y&-1)
72GJ0 cosh r

2 g2 '
- 7 sinh y& + 7 (& - 5] 2.6.4

2.6.3 TRIANGULARLY DISTRIBUTED TORQUE

In the case of a triangularly distributed torque of
intensity t, the twisting moment diagram is shown in
Fig. 2.7, which may be expressed as a continuous function
of the height x as

2

T =ty = ;-(H2 - x)

which may be recast in non-dimensional form as

2
- _ tH 2
Tty Tz (-8

Using equation 2.5.4, the particular solution becomes

o - (B 5%

p 2GJ 3 2

o e

and the complete solution becomes,

_ . tHS 3 3
© = K; + K, cosh y& + Ky sinhyg + 263;(5 + 5 - ;g)

2.6.5

Assuming again that the core is fixed at the base and free

at the top, the integration constants Kl, K2 and K3 are
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found to be

3

g oot 2 2y
K, = - Ky 2yGJ, (7 cosh 7 1 7) sinh y)
K, = - tn’ a1 -3

3 %G, 2

Hence the general solution for a core structure fixed at
the base, free at the top and subjected to a triangularly

distributed torque may be written as

3

tH 2 2 .
e = g;@jg[(cosh 7%-1)(;r33§57; + (1 = ;2)51nh r) -
2. . g3 _ 2¢
(1 - =) sinh y& + y (§ - 35 - _2)] 2.6.6
' 7 rd

Having obtained the rotation ©, the internal forces follow

from the equations derived earlier.

2,7 VALIDITY AND LIMITATIONS OF THE METHOD

Since most core structures in practice can be
approximated as a combination bf one or more of the
configurations considered in Section 2.4 and Appendix A,
the above method of analysis can be implemented to aﬁalyse
any core structure which is open or partially closed by
lintel beams and providing no segment is completely closed.
It is shown that one general form of equation applies to a
wide variety of core cross-sections of multi-cells and
multi-bays constructions. A closed form solution may
generally be developed for any type of loading in the form
of a continuous function as demonstrated in section 2.6.
Consequently, the rotation and the corresponding internal

forces may be evaluated in the given closed form.
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In the above method the core cross section has been
considered as an open section disregarding the connecting
beams in calculating the St. Venant torsional resistance.
But in reality the core is divided into a series of closed
zones where connecting beams exist and open zones where
wall openings are created for access. Consequently part
of the shear flow will circulate around the perimeter of
the core and the rest of it will circulate within the wall
thickness as shown in Fig. 2.8.11. Therefore the actual
St. Venant torsional resistance will be greater than the
calculated value. However, because St. Venant torsional
resistance is very small compared with the core warping
resistance, its effect would not be important.

In the case of unsymmetrical or singly-symmetrical
cores, the position of the shear centre of the core cross-
section has also been determined assuming an open section.
However due to the existence of the connecting beams the
position of the shear centre theoretically changes from
one zone to another as shown in Fig. 2.8.I. Any overall
shear centre will be positioned at a point between the S.C.
and C.G. positions, and e will have a value less than
that calculated by assuming a complete open section.

In the special case, which is unlikely to arise in
practice, where the core is totally open on one side and
connecting beams exist on the opposite side, the basic
assumption requires that the shear centre coincides with
the centroid of the cross-section. By considering the

equilibrium of a segment of each panel and the compatibility
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conditions for the core shown in Fig. 2.8.111, the
vertical shear in the connecting beams will be found to be
zero, which would not be true in practice.

The actual c¢ore resistance will then be greater than
the theoretical one. The discrepancy between the actual
and calculated results will depend on the depth of the
connecting beams, and will increase with an increase in the
depth. However, since the connecting beams in most core
structures consist of relatively shallow lintel beams
generally less than % the storey height acting in conjunction
with floor slabs, the discrepancy between the actual and
calculated results should be small and should not affect
greatly the.design calculations. Any design based on the
results obtained by the suggested method should thus be

conservative.
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CHAPTER 3

EFFECT OF END RESTRAINT ON THE ELASTIC
BEHAVIOUR OF CORE STRUCTURES
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CHAPTER 3

EFFECT OF END RESTRAINT ON THE ELASTIC

BEHAVIOUR OF CORE STRUCTURES

3.1 INTRODUCTION

In the preceding analysis, it was assumed that the
core is free at the top and fixed to a rigid foundation.
However, in many cases a shaft over-run exists to provide
space for machinery and other mechanical requirements,
which can create a stiffening action across the top of the
structure. By including this effect, the core efficiency
in resisting loads can increase considerably. A top
stiffening beam could also be employed to restrain the
warping at the top of the structure. On the other hand
the assumption of a rigid base is not strictly true in
all cases. The super-structure may be erected on a non-
rigid sub-structure or on a certain type of foundation or
soil which may allow some relative displacements.

A similar analysis based on the same basic
assumptions regarding the structural behaviour is presented
in an attempt to examine such influences on the stresses
and deformations of the structure. The elastic governing
equation remains the same, but the boundary conditions have
been modified by introducing two factors R and A
representing respectively the stiffness of the top beam

and the flexibility of the foundation.
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3.2 INCLUSION OF RESTRAINING ELEMENT AT THE TOP

The stiffened structure shown in Fig. 3.1.1I may be
simulated as shown in Fig. 3.1.1I1 by replacing the
connecting beams by a continuous medium as assumed earlier,
and the shaft over-run structure may be represented by a
stiffening element of the same stiffness, and included in

the analysis as an additional top beam.

3.2.1 THE RESTRAINING FACTOR R

By considering a segment of‘height dx of each panel
within the area of the top stiffening beam and following
the same procedure as before, the vertical shear force in
the top stiffening beams QS in the core shown in Fig. 3.1

is found to be

_ de

Qs ZBS Es BD dx

where

By = 12 Ics/as, ES is the modulus of elasticity of the

top beam material and Ics is the moment of inertia of the
stiffening element.

The bending moment at the top of the walls adjacent to the
connecting beams will be

M, = - Q (d + a)

And the moment-curvature relationship for the wall is,
as before,

B d%e

“W=-E1 5 5%

Hence, from the above equations,




45

2
4e-r %% 3.2.1
dx
where
E
D(d + a) s
r=- 2Bs T T

By recasting equation 3.2.1 in non-dimensional form, the

top end condition becomes,

a®e _ . do
dg dg
where
(d + a) Es
R=-rH=—ZBSD———I—— H-E— 3.2.2

1

3.2.2 EFFECT OF TOP END RESTRAINT ON BEHAVIOUR OF CORE

STRUCTURE

Due to the existence of the top stiffening element,
the boundary conditions will be altered to

At the base (g

I

0O) , =0 and 6' =0

At the top (g =1) , 6" = Re'

1. CORE STRUCTURES SUBJECTED TO A CONCENTRATED TORQUE
AT THE TOP

Solving the general governing equation 2.6.1 for the

above boundary conditions, the three integration constants

become

K. = - g = tH__ [R(cosh y~1)- » sinh r]
1 2 ~ ¥GJ_ Ty cosh y - R sinh ]

K, = tH
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The complete solution in this case then becomes

e = sinh y&+&]

tH [ (R(cosh y=1)- y sinh y)(1l-cosh y&) _ 1
GJ, y(y cosh y~R sinh y) %

3.2.3

2. CORE STRUCTURES SUBJECTED TO UNIFORMLY DISTRIBUTED

TORQUE

Solving equation 2.6.3 for the same boundary

conditions, the integration constants become

tH2 (1 (R cosh ¥ - ¥ sinh 7-1)]

1 yGJO;_;- ( csoh y - R sinh »)

_tH (R cosh ¥ - ¥ sinh y-1)

2 rGJd (y coshy~ R sinh y)
X tHz
3 rGd g

The complete solution is then,

tHz[(R cosh y—y sinh y-1)(1 - cosh §)

e = -
GJ,~ r(y cosh y - R sinh y)

- L sinn (E gz)] 3.2.4
)—, ny§+ -—2— ol

3. CORE STRUCTURES SUBJECTED TO TRIANGULARLY DISTRIBUTED
TORQUE

For the same boundary conditions, the integration

constants of equation 2.6.5 become,

| . 2 R
_ tH3 (R cosh y=y sinh »)(1 - ;z)-z(l - ;2)

K, = - K., =
g 2GJo v(y cosh y-R sinh y)

3
- tH 2
K3 "'2';7(}7;(1';2')
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The complete solution in this case then becomes

3 [(R cosh y=y sinh »)(1 - 2%)-2(1 - j%)][l - cosh y&]
e rd

0 = +h [
QGJo y(y cosh y-R sinh ¥)
2 _ 2 3 gg
- (Z;_;g_) sinh y & + (§ - %y - ;Z)]

3.3 EFFECT OF FLEXIBLE FOUNDATIONS ON THE ELASTIC

'BEHAVIOUR OF CORE STRUCTURES

3.3.1 ASSUMPTIONS

In the case of a core structure supported on a
flexible foundation, the walls undergo settlements due to
the base stresses under each wall. In order to simplify
the problem and to present the relationship between the
structure and the supporting foundation by a single
parameter, the following assumptions have been introduced.
1 - The supporting foundation is homogeneous, isotropic

and linearly elastic.

2 ~ The wall/base stiffness ratio n is constant throughout
the core walls.

3 - The normal stresses and settlements are distributed
uniformly and in proportional to the imposed axial force
at the base.

4 - The bending moment stresses and settlements vary
linearly and in proportional to the imposed bending
moment at the base.

Following the aforementioned assumptions, the compatibility
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condition along the line of contraflexure at the middle
of the connecting medium as shown in Fig. 3.2.1 may be

written as

61 + 62 + 63 + 64 + 65 =0 3.3.1

where

2 EA]
- a3h
%3 % TI2ET,
N
_ 10
6y = - 2 22
\'4
s - 2@+3a) Mo

5 2 Ky,
and Kv and Kq, are the axial and rotational flexibility
parameters respectively of the foundation.

The first three terms have been used earlier in
section 2.4 and represent the vertical displacements due
to bending moments, normal forces and flexural deflections
'of the connecting beams as shown in Fig. 3.2.(2,3 and 4).
The last two terms represent the settlements at the base
due to the normal forces and bending moments on the two

walls as shown in Fig. 3.2(5 and 6).
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3.3.2 THE FOUNDATION FLEXIBILITY FACTOR A

The approach followed allows a simultaneous
consideration of the core displacements and settlements and
makes it possible to represent the relative foundation
flexibility as a single parameter.

For simplicity the derivation of the analytical method
is illustrated for singly- and doubly-symmetrical forms of
core structures, but it may readily be introduced to the
other cores considered earlier in Section 2.4 and Appendix

A.

1 - SINGLY-SYMMETRIC CORE ON FLEXIBLE FOUNDATIONS

The singly-symmetric core shown in Fig. 2.5 is
considered to be supported on flexible foundations. The
equations of the displacements, the equilibrium condition
for the internal forces and the moment-curvature relation-
ships are the same as in section 2.4.2.

Because of the foundation flexibility, the core base
will undergo five simultaneous settlements which may be
illustrated as follows;

(1) Vertical settlement of Panel 1 due to the normal force
N1 which may cause rotation of panel 2 and panel 3 as
shown in Fig. 3.3.1 or cause vertical settlement of
panel 2 and rotation of panel 3 as in Fig. 3.3.2.

(2) Rotation of panel 1 due to the bending moment Mi which
may cause rotation of panel 2 and 3 as shown in Fig.
3.3.3, or cause vertical settlement of panel 2 and

rotation of panel 3 as in Fig. 3.3.4.
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(3) Vertical settlement of panel 2 due to the normal force
N2 which may cause panel 1 and panel 3 to rotate as
shown in Fig. 3.3.4, or cause a vertical settlement of
panel 1 and rotation of panel 3 as in Pig. 3.3.2.

(4) Rotation of panel 2 due to the bending moment M2,
which may cause rotation of panel 1 and 3 as shown in
Fig. 3.3.3, or cauée vertical settlement of panel 1
and rotation of panel 3 as in Fig. 3.3.1.

(5) Rotation of panel 3 due to the bending moment M3 which
may cause any of the aforementioned deformations which
are shown in Fig. 3.3(1, 2, 3, and 4).

The final deformed shape of the base will be a super-

position of the aforementioned five cases as in Fig. 3.3.5.

Consequentiy, the vertical compatibility conditions

along lines 1-1, 2-2 and 3-3 may be written respectively

as follows

b. 4 b4
! Ny 4G,
S Ef'i- (d + a)dx - 2 S EKI dx - B—lE' - =0 3.3.2
(o} o}
X X X X
M M N N
1 d 2 B 1 2
g Fi- T dx - S F i 7T dx + ‘g FA dx - S EA dx +
1 2 1 2
(o} o} o ' o
Y0 a4 Yo Mo B Noo _ 333
s+g. "%k, z -k ~O© -3
Kw v 1) v
X X X
- YIE_ D dx id.z_. E. dx + }12__ dx -
Ei, 2 B EI 2 EA
3 2 2
) o 0]
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where

6 =106, - Gs_zzm ::10 (d + a) 3.3.5
v %]

and

Kv - CunAl

K? = CunI1

K¢ = CunI2

Kn = CunI3

where Cu is the elastic strain constant of the foundation
material N/mm% Substituting for the bending moment and
axial force from equations 2.4.24 and 2.4.32 into equations

3.3.2 and 3.3.5 yields

4%
qQ; = - BE[2 g BD —5 dx + 6] 3.3.6
dx
o}
and
6=2u BD[ ] ' 3.3.7
where
_ E
k= ac
u

From the displacement conditions 2.4.30, and the
settlements, Fig. 3.3, the following relationships may be

derived at the base:-

¢ = -(B + e)[ ] | 3.3.8

_ D [de
g =5 ], 3.3.9
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n = - e [g%]o 3.3.10

The force-displacement relationships at the base are

given by
M 2
10 d”e
(P = r = - IJ'(B + e) [_2']0 3.3.11
Y dx -
M ‘ 2
2 N D d7e _
g =g =1y l—5l] 3.3.12
M 2
3 d e
N =g =~-pe | ] 3.3.13
Kﬂ dx2 (o}

From equation 3.3(8 and 11) or 3.3(9 and 12) or 3.3(10 and

13), the boundary condition at the base may be written as

2

d

21 = w13, 3.3.14
X

Substituting from equation 3.3(14 and 7) into equation

3.3.6 and integrating yields

d
a; = - 28EBD[F2]_
Equation 3.3.14, which represents the boundary condition

at the base, may be rewritten in non-dimensional form as

follows
2 ,

g%= xde 3.3.15
dg

where A is the non-dimensional flexibility parameter of

the foundation defined by %.

2 - DOUBLY-SYMMETRIC CORE ON FLEXIBLE FOUNDATIONS

The single-cell doubly-symmetric core shown in Fig.
2.6 is assumed to be based on flexible foundations. The

displacement equations and the equilibrium conditions of
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the internal forces for each panel are the same as in

section 2.4.3. Due to the foundation flexibility the

core panels will undergo three simultaneous settlements as
follows: -

(1) Vertical settlement of panel 1 due to the nérmal force
Nl’ which will cauéé rotation in panel 2, as in Fig.
3.4.1.

(2) Rotation of panel 1 due to the bending moment Ml’
which will cause rotation in panel 2, as in Fig. 3.4.2.

(3) Rotation of panel 2 due to the bending moment M2, which
will cause vertical settlement and rotation of panel 1,
as shown in Fig. 3.4(1 and 2).

The compatibility conditions along the lines 1-1 and 2-2,

may be written respectively as follows.

X X
M N a
1 (d+ a) 1 1 -
SE—I—].-———Z—-—— dx - 2 g E—l'dx—'B———é 0]
(o] (o]
X X X
e B Mg - Y2 B4y, 3.3.16
ET, 2 EA I, 2 i
o (o] (o]
Jo d, 172 B_,
K? 2 KV K¢

Solving the above equations with the internal equilibrium
conditions 2.4 (4, 5, 6 and 7) and the moment curvature

relationships 2.4.24, yields

X d2'

a; = - BE[ g BD &3 dx + 6] 3.3.17

dx

[0

and
2

= d7e
6 u.B.D.[—-Z]O 3.3.18

dx
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where B and p are as defined before.
From the displacement conditions 2.4.33, and the
settlements Fig. 3.4 the following relationships may be

derived at the base

B [do
g =212 3.3.20

The last two equations may be rewritten using the force-

displacement relationships as

M 26
10 B
=== - [ ] 3.3.21
hg K? z 1 o
M 2
2 D [d“e
@ =—KO=“Z[—2‘]0 3.3.22
a dx

From equation 3.3.(19 and 21) or equation 3.3.(20 and 22),

the base boundary condition may be written as follows.

2

(21, =« [‘—:;g]o 3.3.23

Substituting from equation 3.3 (23 and 18) into equation

3.3.17, the shear flow in the connecting medium becomes

The boundary condition at the base 3.3.23, may be rewritten

in non-dimensional form as,

2
[$2], = A5 3.3.24
ag? |

where A is as defined before.
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3.3.4 EFFECT OF FOUNDATION FLEXIBILITY ON THE BEHAVIOUR

OF CORE STRUCTURES

For core structures based on flexible foundations

and restrained at the top, the boundary conditions will be

At the base (E =0) , © =0 and 6' = A0"

At the top (& 1) , ©" =Re'

1 - CORE STRUCTURES SUBJECTED TO CONCENTRATED TORQUE AT

THE TOP

The general solution of the governing equation is
given in equation 2.6.1. From the above boundary

conditions, the constants of integration become

K. = - K. = - tH_[R(1-cosh y)+ y sinh y]
1 2 GJ v1 (> cosh y-R sinh y)-yA(R cosh y-y sinh )]
_ _ tH
K3 lez ;53;

and the complete solution becomes

[[yl sinh y§ + cosh yE-1][R(1l-cosh y)+y sinh r]
L (> cosh y-R sinh y)-yA(R cosh y-) sinh )]

- % sinh y& + §] 3.3.25

2 - CORE STRUCTURES SUBJECTED TO UNIFORMLY DISTRIBUTED

TORQUE

In this case, the general solution of the governing
equation is given in equation 2.6.3. The boundary

conditions yield

K. o TH [1 [1-(1+1) (R cosh y-y sinh 3) ] ]

1 7GJ [(> cosh »-R sinh y)-yA(R cosh y-y sinh y) ]

K, = 2K, - ti (1 + A)
3 7 A R TGJ,
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K. = tH2 [1-(1+A) (R cosh y—r sinh y)]

2 »GJ, TG cosh y-R sinh y) - yA(R cosh y—y sinh y) ]

giving the complete solution as;

o = tHz[[yl sinh yE+cosh y£-1]1[1-(1+A)(R cosh y=y sinh y)]

GJ,'r[(y cosh y-R sinh y)- yX(R cosh y—y sinh y)]
%2 1+ d)
* & - g - === sinh yg] 3.3.26

3 - CORE STRUCTURES SUBJECTED TO TRIANGULARLY DISTRIBUTED
TORQUE

The general solution of the governing equation for
this case is given in equation 2.6.5. The boundary

conditions yield

tH

s (21 - B)-1 - Z) @R cosh y— sinh )]
- r 4
2yGJ, [(; cosh y-R sinh y)-=yA(R cosh y—y sinh y) ]

tH3

_ 2
K3—-7AK2—27G-J:(1-;2')
and the complete solution becomes
o -

'QGJO

[2(1-350—(1-J%J(R.cosh y=y sinh y)][yA sinh y&+cosh y&-1]
z 7
[ y[(y cosh y-R sinh y)=-yA(R cosh y-y sinh y)]

(1 - 2)
3 2
- ___TZ__ sinh y§&)] 3.3.27

(g - 5 -

S

3.4 SIGNIFICANCE OF THE PARAMETERS R AND A

3.4.1 TOP RESTRAINT FACTOR R

The values of the non~dimensional top restraint factor

R depend on the core dimensions as well as the stiffness BS
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and the elastic modulus ES of the top element. In the
limit when R is very small, (i.e. R—=0) the core will
behave as if it is free at the top and equations 3.2 (3, 4
and 5) will be identical to equation 2.6(2, 4 and 6)
respectively. As the Qalues of R increase, the freedom

of the core to warp and rotate is more restrained. In the
other limit when R is very large, (R——=o0) the core will
tend to behave as fully restrained at the top.

- In the case of an unsymmetrical core, or a multi-bay
core structure, there will be more than one value for the
top end restraint R. It indicates that there is more
than one boundary condition at the top and a closed form
solution cannot be achieved. To allow for such solution
an average value could be taken as the top end restraint
R, but the resulting forces and displacements could then

only be regarded as approximate and of doubtful accuracy.

3.4.2 THE FOUNDATION FLEXIBILITY FACTOR A

In the case of a core structure supported on flexible
foundations, the flexibility factor A is independent of the
core shape and dimensions, other than the height H. It,
depends mainly on the elastic properties of the core
material and on the supporting foundations.

For a very rigid foundation, the values of A tend to
be very small. At the limiting case when A approaches
zero the core will behave as if it is fixed at the base
and equation 3.3 (25, 26 and 27) will be identical to

- equation 3.3(3, 4, and 5) respectively. In the other
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limit when A is very large, or as A approaches infinity
the core will behave as if it is free at the base which
is not possible practically.

The above spectrum of A values allows for a wide
fange of foundation conditions to be considered. In
reality it will lie within a particular range depending
on the nature of the sub-base material and the type and

configuration of foundation system.
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PARAMETER STUDY AND NUMERICAL EXAMPLES
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CHAPTER 4

PARAMETER STUDY AND NUMERICAL EXAMPLES

4,1 INTRODUCTION

In this chapter, a numerical study is presented of
the effects of the non-dimensional parameters demonstrated
in Chapters 2 and 3, namely, the core relative stiffness
constant «H, the top end restraint R and the foundation
flexibility A, on the elastic behaviour of the structure.

Design charts have been introduced to give a quick
assessment of the rotation and internal forces in the core,
when subjected to the three standard load cases considered
in Chapter 2, for various values of aH and end conditions.

Two practical examples have been presented to
demonstrate the effect of the aforementioned parameters on

a singly-symmetric andsdoubly-symmetric structure.

4.2 GENERAL FORM OF SOLUTION OF THE GOVERNING EQUATION

The solution of the governing equation illustrated in
section 3.3.4 may be recast as a function of non-dimensional

parameters U, Ul and U2 for each case of loading as follows:

1 - POINT TORQUE AT THE TOP

The elastic behaviour of core structures based on
flexible foundations and provided with a stiffening element
at the top, subjected to a point torque at the top, is
given in mathematical form in equation 3.3.25, which may

be expressed in the form,
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tH

—-— U 4.2.1
GJO

g=

The derivatives are

tH

o' = 2= Ul
GJ,
tH
" = &= U2
GJ,
where
v = lxA sinh yE + cosh y& - 1][R(1-cosh y)+ y sinh y]
[(y cosh y - R sinh y) = A (R cosh y - » sinh »)]
-1 sinh y& + §
¥ v
2
Ul= U and vz =9 v
dg

2 - UNIFORMLY DISTRIBUTED TORQUE

Equation 3.3.26 describes the elastic behaviour of
core structures subjected to a uniformly distributed
torque, and may be expressed as,

2

_ tH
e = 63; U | %.2.2

The derivatives are

2
tH
' = =— Ul
GJo
2
tH
e" = —— U2
GJo
where

U = lrX sinh y& + cosh y& - 1][1 - (1 + A)(R cosh y-y sinh »)]
v[y cosh ¥ + R sinh y) = yA(R cosh y - y sinh y)]

2
+g_%._—__—(1;l) sinh &
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and
2
_d _d

3 - TRIANGULARLY DISTRIBUTED TORQUE

The elastic behaviour of core structures subjected
to a triangularly distributed torque is given by equation
3.3.27, which may be rewritten in the form,

3

tH
e = gaj—'U 4.2.3

The derivatives will be

3
y — tH
® = zay; U
3
w - tH
where
U =

[2(1 - -g) -(1 - —2)(R cosh y-y sinh y) ][yA sinhyf + cosh yg-1]

y[(y cosh y - R s1nh ¥)=rA(R cosh y - » sinh y)]
1 - "Z)

g2 2¢
+ & ——3—-;2-————7L— sinh ;’E,
and
2
Ul a-g-U ’ U2 —2-U.
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4.3 EFFECT OF VALUE OF aH ON BEHAVIOUR OF CORE STRUCTURES

It was demonstrafed in Chapter 2 that core structures
subjected to torsional loading may be described by a single
parameter aH, which depends on the core material,
configuration and dimensions. The most significant
factors are the core height H which varies linearly with aH
values and the depth of the connecting beams which varies
as a cubic function with a2 values. The results of a
study of the relationship between the maximum angle of
rotation at the top represented by the parameter Umax and
the stiffness parameter «H is shown in Fig. 4.1 (1, 2 and
3) for the three standard loading cases, for a core fixed
at the base and free at the top. It shows that as the
core stiffness parameter aH increases, its relative effect
on the maximum angle of rotation Umax decreases.

The variation between the maximum values of the shear
flow in the connecting lamina represented by the non-

dimensional parameter Ul and aeH is shown in Fig. 4.2

max
(1, 2 and 3). It shows the same form of variation, with

the relative change of Ul decreasing as aH increases.

max

The maximum bending moment and normal force in the wall

pranels represented by the parameter U2 varies linearly

max’
with aH as shown in Fig. 4.3 (1, 2 and 3) for the three

forms of torsional loading.

4.4 DESIGN CHARTS

It was shown that the core behaviour depends on the

core relative stiffness constant aH together with the end
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condition parameters R and A. Design charts drawn up
using equations 4.2 (1, 2 and 3), for the variation of the
non-dimensional parameters U, Ul and U2 with height &, are
given in Appendix B.

These sets of graphs allow for a semigraphical
evaluation of the angle of rotation and the internal forces
of core structures for a range of values of aH between 1
and 6, of R between‘o and 10 and of A between O and 2.5,
which cover most of the significant range of practical

values of the three variables.

1 - ANGLE OF ROTATION

The angle of rotation ©. at any level of the core

2
may be evaluated by obtaining the value of U from the
relevant chart at the desired level, then substituting into
equation 4.2 (1, 2 or 3) according to the form of loading

under consideration.

2 - SHEAR FLOW IN THE CONNECTING LAMINAE

The shear flow in the connecting lamina a; is a
function of the first derivative of the ahgle of rotation
e'. It may be calculated at any level by obtaining the
corresponding value of Ul for the type of loading in
question, then substituting into the appropriate'formula
from Chapter 2. The shear force in a particular beam
can be evaluated by integrating the corresponding area

under the curve.
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3 - BENDING MOMENTS AND NORMAL FORCES IN THE WALL PANELS

The wall bending moments and normal forces are
functions of the second derivative of the angle of rotation
e'. It may be evaluated by obtaining the relevant value
of U2 for the type of loading under consideration at the
required level and substituting into the appropriate

formula from Chapter 2.

4.5 DISTRIBUTION OF THE INTERNAL FORCES THROUGHOUT THE

CORE HEIGHT

The vertical distribution of the internal forces,
namely, the connecting lamina shear and the bending moments
and normal forces in the walls, depend on the form of the
applied torque, the core stiffness constant «H and the end

restraint parameters R and A.

4.5.1 VERTICAL DISTRIBUTION OF THE SHEAR FLOW IN THE

CONNECTING LAMINAE

The vertical distribution of the shear flow in the
connecting laminae is given in Appendix B as a relationship
between £ and U} for the standard load cases. The values
of Ul are always positive throughout the core height. The
position of the‘maximum value varies according to the form
of loading and end conditions, and moves downwards as the

values of R and A increase.

4.5.2 VERTICAL DISTRIBUTION OF BENDING MOMENT AND NORMAL

FORCE IN THE WALLS

The vertical distribution of the bending moment and

normal force in the core walls is given in Appendix B as
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a relationship between £ and U2 for the standard load cases.
The maximum values of U2 are always positive fo} structures
fixed at the base and free at the top. As the values of
R and A increase, the negative values of U2 increase near

or at the top until the maximum value of U2 will be

negative.

4.6 INFLUENCE OF END RESTRAINT PARAMETERS R AND A ON THE

ELASTIC BEHAVIOUR OF CORE STRUCTURES

In order to investigate the effect of the end
condition parameters R and A on the elastic behaviour of
core structures subjected to torsional loading, a numerical
study was carried out on structures with stiffness values
of aH between 1 and 6, top end restraint values of R between
O and 40, and foundation flexibility factors A between O
and 4, subjected to each of the three standard load cases.
The interaction effect of the above parameters on the
maximum angle of rotation and internal forces are preSented

in three-dimensional plbts.

4.6.1 INFLUENCE OF END RESTRAINTS ON THE MAXIMUM ANGLE

OF ROTATION emax

The influence of the end factors R and A on the maxi-
mum angle of rotation, which is proportional to, and may
be represented by the non-dimensional parameter Umax’ are
illustrated in the three-dimensional plots of Figs. 4.4
4.5 and 4.6 for the three standard load cases respectively.
The Figures show that the effects of the end

condition parameters R and A on the maximum angle of
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rotation decrease as «¢H increases, and the maximum

rotation of the structure increase with an increase of the

foundation flexibility factor A. The increase in the core
rotation may be partially restrained by providing a top

end restraint, but the effect of the foundation flexibility

parameter A is more significant than R.

4.6.2 INFLUENCE OF END RESTRAINTS ON THE MAXIMUM VALUES

OF LAMINAR SHEAR

The interaction effects of the end conditions
parameters R and A on the maximum values of laminar shear
represented by the non-dimensional parameter Ulmax are
shown in Figs. 4.7, 4.8 and 4.9 for the three standard
load cases. They show that the maximum laminar shear
increases as the foundation flexibility factor A increases.
The increase in Ul values may partially be controlled by

increasing the top end restraint R, but the effect of both

parameters A and R is very limited for high values of aH.

4.6.3 INFLUENCE OF END RESTRAINTS ON THE BENDING MOMENTS

AND NORMAL FORCES IN WALL PANELS

Figs. 4.10, 4.11 and 4.12 show the combined effect of
the end condition parameters A and R on the absolute
maximum values of bending moments and normal forces
represented by Uzmax.

They indicate that, for a core structure erected on
a fixed foundation, the values of maximum bending moment
and normal force in the walls will always be positive and

vary linearly with the value of «H. For structures based
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on flexible foundationg, the negative values of the bending
and normal forces will increase and their positive values
will decrease as A increases, until they reach the same
value. This is represented by the vertical discontinuity
from the positive to‘the negative sides of the U2 __ axis.
As A .values continue to increase the maximum bending

moments and normal forces in the wall panels will be

negative.

4.7 NUMERICAL EXAMPLE

In order to illustrate the influence of the significant
parameters on the structural behaviour, the particular
example of the twenty-storey core shown in Fig. (4.13) is
employed. It is termed a Doubly-Symmetric core (D.S.) when
provided with two sets of openings on opposite faces, and
a Singly-Symmetric core (S.S.) when provided with one set
of openings on the front face only. The basic
dimensions are shown except for the depth of the connecting
beams, the top stiffening beam depth and the foundation
flexibility factor. These are given various values‘to
study their numerical influence on the core under the three
standard torsional load cases. The modulus of elasticity
and Poisson's ratio for the core material are taken to be
E =30 kN/mm2 and Y= 0.1 respectively.

The effect of varying the depth dc of the connecting
beams, with the core fixed at the base and free at the top
is shown in Table 4.1. The influence of a stiff top beam
and the foundation flexibility factor A are illustrated in

Tables 4.2 and 4.3 respectively for a constant connecting
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beam depth dc of 0.5 m.

The results indicate that the core stiffness constant
aH is a constant function of the connecting beam depth dc
‘to the power 1.5. The rotation of the doubly-symmetric
core is almost twice as much as the rotation of the singly-
symmetric core of the same dimensions and end conditions.
The values of the maximum shear in the connecting lamina is
sligﬁtly higher in the case of the singly-symmetric

configuration.

Providing a stiff top beam to the structure reduces
the rotation and the shear flow in the connecting beams, but
it does not show a significant effect on the bending
moments and normal forces in the wall panels.

The increase of the flexibility factor A slightly
increased the maximum angle of rotation and the maximum
value of shear flow, but it did reduce the maximum bending

moment and normal forces in the wall panels significantly.
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CHAPTER 5

ELASTIC BEHAVIOUR OF CORE STRUCTURES WITH

STIFFNESS VARIATIONS THROUGHOUT THE HEIGHT

5.1 INTRODUCTION

In modern multi-storey structures, the dimensions of
the core may be changed at certain levels for economic or
architectural reasons.

To simulate the problem, the core is assumed to
maintain the same cross-sectional shape, but is composed
of various zones of different properties. A theoretical
analysis for core structures consisting of more than one
zone of construction or loading properties, as shown in
Fig. 5.1, is considered. |

Numerical examples have been examined to demonstrate
the effect of changing the wall thickness from one zone to
another and the influence of the specific level at which
Athe change occurs, when the core is subjected to any of the
standard load cases and end conditions considered
previously in Chapters 2 and 3. A comparison with the
frame element method of analysis proposed by Macleod and
Hosny (17) has been carried out to check the accuracy of

the results.

5.2 TYPES OF CHANGE IN STRUCTURAL PROPERTIES

The different properties between one zone and another

may take place as dimensional or material changes. The
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most common forms of dimensional change are a reduction of
the thickness of the walls either on one or both sides of
the wall centre line as shown in Fig. 5.2 (II and III), or
a reduction in the depth dc of the connecting\beams as in
Fig. 5.2.1V; the change in the core material may be in
the concrete strength or reinforcement or in the pre-

stressing forces for structures built of prestressed

concrete.

5.3 ANALYSIS OF CORE STRUCTURES CONSISTING OF VARIOQOUS

ZONES

The general governing equation derived in Chapter 2
is applicable for each zone of a core structure consisting

of different zones and subjected to torsional loading,

namely
w1, 99 cr. 8- ¢ 1< i< n 5.3.1
wi o8 7 dx T P(xi) S isS e
where

i = the zone number

n = total number of zones

t(xi) = the twisting moment distribution in the
particular zone.

Solving the above equation for each zone and using the

cohpatibility and equilibrium conditions between each two

adjacent zones, which are the angle of rotation 6, the

slope ©' and the Wail bending moment or normal forces,

which must be equal for both zones at the line of

discontinuity, a solution may be achieved.
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A core structure consisting of 'n' zones, will
involve 'n’ third order differential governing equations and
n-1 lines of discontinuity. An exact solution for such

a system will yield 3n constants of integration K to Kn

11
These may be evaluated by considering the available three

3-

boundary conditions, two at the base, one at the top, and
the 3(n-1) compatibility and equilibrium conditions at each
line of discontinuity.

The governing equation of zone i may be rewritten as

\

3
O 2 %O Pewi 5.3.2
dxg i dx EIwi

with the solution given by,

e. =K

i i1 Ki2 cosh ;X + Ki3 sinh aiX+ P(xi) 5.3.3

the derivatives become

de.
t = 1 _ . .
©; = @& = %3K;p Sinh oyX 4 ¢;K; 5 cOSh @ X + Py,
dzei 2 1"
"o o= = .
e E;g— a;K;, cosh a;x + a;K,4 sinh a;x + P (x1)
where
2 _ GJ3
a; = g7 — » and K34, K;o and K;5 are the general solution
wi
constants,

P(xi) is the particular solution and a prime denotes

differentiation with respect to X.

A similar set of expressions may be obtained for each zone.

The following boundary conditions apply:

At x = 0 €, = 0 and 6] = uey 5.3.4

1



92

At the top x =H 9; =r ea ‘ 5.3.5

At the line of discontinuity between any two zones i

and i + 1,

At x = H, 6. =0

i i i+l 5.3.6

Y — ' [T 1
» 85 = 05,4 and &7 = vel 4

wheré v is a discontinuity ratio between the two zones,
which may be determined from the moment equilibrium
conditions. Particular values are given later for specific
situations.

Solving the above equations for the unknown constants
of integration and substituting for their values in each

zone will yield the angle of rotation and internal forces.

5.4 CORE STRUCTURES COMPOSED OF TWO ZONES OF DIFFERENT

WALL THICKNESSES

For economic advantages, a reduction in the thickness
of the walls with the height is the most common form of
change in core structures. It may take the form of
stepped changes with more than one line of discontinuity
or only one step at height L as shown in Fig. 5.2.1.-

A closed-form solution may be obtained for a core
structure consisting of two zones of different wall
thicknesses, subjected to any of the three standard load

cases under consideration as follows:

5.4.1 POINT TORQUE AT THE TOP

For a core structure consisting of two zones and
subjected to a concentrated torque at the top, the

governing equation for each zone will be
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a%e, de, |
—EIW]--?X?-F GJ].TE:t 0<X<L
a’e, de,

And the solutions in terms of el and 92 are

91 = K1 + Kz cosh a1x+ K2 sinh alx + G—:T-l- oL x KL
= . tx
8y = K4 + K5 cosh a,x+ Kg sinh a,x + G, LS xKH
where
GJ GJ

2 1 2 2

ay = == and A, = =——

1 le 2 EIW2

From the boundary conditions, the constants of integration

become
K, =-Ky
as,r cosh a.L
- t . vt 2 2
Ky = SKg + ggg- @1 Sinh @4l + g5~ §(a. cosh ¢.H = © Sioh .0
1 2 2 2 2
t
K, = a, g K, -
3 1 # %2~ ger;

- . tL
K4 K1 + K2 cosh alL + K3 sinh alL + E?I

- [K5 cosh ayL + Kg sinh eyl + g%E

(r cosh agH - a, sinh a2H) %

Ks = K6 (az cosh azH - r sinh azH) + GJ2

5

r
az(a2 cosh azH - r sinh azH)
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a
B 1. 1
Kg = t[(5F sinh a;L - z(cosh a,L - 1))/
. Va,r cosh a,L
GJ, + (552 2
1 W(a2 cosh aoH - r sinh azﬁ)
1 r sinh azL
V4 1 +(a2 cosh @oH - r sinh azH)))/GJZ]/(A - 8)
where
v = tz/t1
W= az(cosh a,L + a.p sinh a.L)
1 1 1 1
2 .
va, (r cosh asH - ag sinh a2H) cosh azL
S = —= [sinh a,L + - ]
W 2 (a2 cosh a2H - r sinh azH)

Z = al(sinh a;L + a;p cosh alL)

aq (r cosh aH - a, sinh aZH)sinh ayL
- [cosh agL +

>
]

(a2 cosh a2H - r sSinh azH)

5.4.2 TUNIFORMLY DISTRIBUTED TORQUE

The governing equations for the two zones of a core
when subjected to a uniformly distributed torque of

intensity t, may be written as follows

d391 de,
- Bl R GJ, gz = t(H - %) oL L
d392 de,
The solutions become
2
9, =K, + K K, sinh £ [mx - E- - &)
°1 1 + Ky cosh a;x + Kg sinh ayx + GJl 5 ;g
1
o< gL
t x2 1
92 = K4 + K5 cosh a,X + K6 sinh a,x + 535 [Hx - 5 - ;gq
<<
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where
K, = 5— - K
1 - P2
alGJ1
K, = SK, + t (1 + a;(¢ + H) sinh a,H) + iv
2 6 WGJ1 1 1 WGJ2
(“2 cosh azL 1)
aq coSH a2H - r sinh aéﬁ?
Ky = @y o Ky = —o (u + H)
3 1 H B2 gy B
1771
, 2
K, = K, + K, cosh a-L + K, sinh a:L + mo—(HL - Z- - 1)
4 1 2 1 3 1 GJl 2 ;7
1

- [K5 cosh ayL + Kg sinh a,L +

2
t L 1
—— (HL - 5 - __)]
GJZ ag

(r cosh a,H - a, sinh a,H)
= K 2 2 2 +
5 6 (Eé cosh azH - r sinh azH)

t 1
Cﬁz “2(“2 cosh a2H - r sinh aZH)

@l
]

t[[(1 + a;(p + H) sinh a;L)/W + (H - L -(¢ + H) cosh

alL)/Z]/GJl +

a, cosh a,L
2 2 - 1)-

[Wgaz cosh apH-r sinh ayH)

sinh @9 L _
(B-L +(a2 CoSh a,fl - r sinh a2H))/Z]/GJ2]/(A S)
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and @y, Qg A, S, V, W, and Z are as defined before.

5.4.3 TRIANGULARLY DISTRIBUTED TORQUE

In this case, the governing equations for the two

zones are

3
d“e de
1 1 _ t 2 2
_EIW1dx3 +GJ1——--dx —Q-(H - x7) oL x LKL
3
d“e de
2 2 _ t 2 2
—EIwz—3 +GJ23——x —2-(H - x7) LLxgKH

And the solution may be expressed as

= .b t 2 2x
©;, = K, + K; cosh e¢;x + K3 sinh a;x + ZGEI ("% - = = ;2)
1

o xg L

o, =K, + K h a: K. sinh t (Hzx_x3_2x)

2 g4 t R cosh agx + Rg SiD “2X+2G—Jz 3 ;2'

1

L xKH

where

K, =K,

K, = SK. + nt [(2L + « (H2 --2—)sinh<zL)/

2 6 7 2GW 1 @ 1

r
2a2(H - ;2) cosh azL
J +_V( 2 —ZL)]

17 J (29 cosh a,H-r sinh agH)

= t 2 2
K3 = oy kb Ky + ggygr (3 - B
1°1 oy
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3

_ . t 3 L 2L
K4 Kl + K2 cosh alL + K3 sinh alL + Eﬁjz(H L - - - 5
a3
- [K. cosh @,L + K, sinh a,L + st(mr - Lo _ 2L
5 2 6 2+2‘G'J2H -5 - )]
a9
c - x (r cosh asH - a, sinh azH) t
5 6 Tay cosh a,H - T simh a i) © GJ,
= - '
29
@,(2y COSh ayH - r sinh ayH)
K, = mmps [[2L + a, (82 - 2) sinh a.L)/W +
6 3G(A-S) 1 ;2 : 1
1
2
@ -2 - 2 - @& -2 cosh a;1)/2)/,
a a
1 1
| ZaZ(H - ié) cosh azL
;"‘_‘v 2 .
+[W(a2 COSh anH-r sinh a,H - 2L)-
2(H - 55) sinh azL
2.2 2 29
-(B"-L"- )/Z1/3,

+ -
;g @, cosh ayH - T sinh a,H

and ay, @y, A,S,v, W and Z are as defined before.
The corresponding internal forces may be evaluated

from the appropriate equations from Chapter 2.

5.5 NUMERICAL EXAMPLE

A numerical study has been carried out on the
particular core structure considered in Chapter 4. The

core was assumed to consist of two zones of different
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wall thicknesses and subjected to the magnitudes of the
standard load cases and end condition considered previously.
The effect of the type of change, size of change, level of
change and the same end restraints on the actions of the
doubly-symmetrical case subjected to a uniformly
distributed torque are illustrated in this section. The
effect of the above changes on the actions of the core
structure when subjected to any of the standard load cases

are given in Appendix C,

5.5.1 EFFECT OF TYPE OF CHANGE

The change in wall thickness may take any of the two
forms described in section 5.2. If the change is assumed
to occur on both sides of the centre line, there will be

almost no difference between the values of «, and a,

1
(section 5.3.1), as the corresponding wall thickness will
appear in both numerator and denominator in each of them,
provided that the St. Venant torsional constant is neglected
as being very small.

If the reduction in the thickness of the walls takes

place on one side of the centre line only, the core cross-

t,-t
section dimensions will change by —12—3. In this case the

effect on the value of a is very small as may be observed
in Table 5.1, which shows the values of a obtained when
reducing the wall thickness at one side of the wall centre

line.
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5.5.2 EFFECT OF SIZE OF CHANGE

The effect of a reduction in the wall thickness at
mid-height is illustrated in Fig. 5.3 and Figs. C.1 to
C.5, for a core structure free at the top and built in at
the base.

It can be observed that the maximum angle of rotation
increases as the thickness of the walls decreases. The
shear flow in the connecting lamina suffers a sudden change
at the line of discontinuity, its value increases rapidly
and reaches the maximum just below the line of discontinuity,
then drops sharply just above the line and increases
gradually according to its original pattern. The ratio
between the two values of the shear flow a, and a5 below

and above the line of discontinuity is

dg = V a4

where v is the ratio between the thicknesses of the wall
above and below the line tz/tl.

A redistribution of the internal forces will tgke
place due to the sudden change in the shear in the connect-
ing lamina. It will cause a discontinuity in the
distribution of the bending moments and normal forces at the

level of change.

5.5.3 EFFECT OF THE LEVEL OF CHANGE

A change in the thickness of the walls may take
pPlace at any level L of the height H. Its relative effect

will remain the same as may be observed from Figs. 5.4 and
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C.6 to C.10, which show the core actions under the same
loads and end conditions, while reducing the thickness by
50% at L/H values of 0.25, 0.5, 0.75 and 1.0. The
maximum angle of rotatibn increases as the line of
discontinuity moves downward. The shear flow in the
connecting lamina will undergo the same type of
discontinuous behaviour with a constant ratio between its
values below and above the level of change, and the bending

moment will vary accordingly.

5.5.4 EFFECT OF END RESTRAINTS

It may be perceived that the core will suffer a
similar effect due to a reduction in the thickness of the
walls by 50% at mid-height, compared to its original
pattern of behaviour, while it is subjected to top end
restraint as shown in Figs. 5.5 and C.11 to C.15, or if it
is supported on flexible foundations in Figs. 5.6 and C.16

to C.20.

5.6 COMPARISON OF RESULTS WITH FRAME IDEALISATION

In order to check the accuracy of the results
obtained using the proposed method, the same examples were
reanalysed using the frame element method proposed by
Macleod and Hosny (17).

In the frame method of analysis, walls and connecting
beams are idealised by a series of line elements with
stiffnesses in the plane of the walls and no stiffness
out of plane. The elements are connected together by

nodes at the corners at each storey level. The same
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degrees of freedom are assumed for the same nodes, and a
stiff diaphragm joining the nodes at each storey level
resists any distortionlin cross—~sectional shape.

The analysis of the above example when subjected to
a uniformly distributed torque was carried out using a
standard GENESYS program in Paisley College of Technology.
Since in-plane shearing deformations were omitted in the
present method, these were also neglected in the formulation
for the analysis by the frame analogy.

The results are shown in Figs. 5.8 and 5.7 for
singly~- and doubly-symmetrical cases respectively. The
curves indicate a close agreement between the results
obtained from both methods in calculating the angle of
rotation © and the vertical shear in the connecting beaﬁs.
However, there were considerable differences in a
comparison between the bending moments and normal forces
in the wall panels. It was claimed (29) that the accuracy
of the results can be improved by increasing the number of
nodes for each storey level, because in the frame element
method, the walls are connected only at discrete poiﬁts on
each storey level and not connected continuously as in the
actual structure. Another run was carried out after
doubling the number of nodes, but the results did not
improve. It appears possible that the frame analogy does

not model accurately the true behaviour of the core.

5.7 DISCUSSION

The above example demonstrates that reducing the

thickness of the core walls will significantly increase
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the vertical shear force in the connecting beams below

the line of discontinuity. This effect is most
undesirable as the connecting beams are the weakest element
of the core.

The actual reason for the discontinuity is the
reduction in the connecting beam stiffness factor B.
Another change needs to be carried out to achieve the
economical advantage of reducing the amount of material
to be used and maintain the original distributions of the
internal forces throughout the core. The depth of the
connecting beams above the line of discontinuity should be
increased so that the connecting beams stiffness factor B
will be constant throughout the core height. This will
result in increasing the stresses in the walls rather

than the beams.
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CHAPTER 6

ELASTO-PLASTIC ANALYSIS
OF
CORE STRUCTURES
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CHAPTER 6

ELASTO-PLASTIC ANALYSIS OF CORE STRUCTURES

6.1 INTRODUCTION

It is now widely recognised that the existence of
strong points such as éhear cores in tall buildings erected
in seismically disrupted areas is essential for the
stability and safety of the building (32). In thevcase
of severe wind loading or earthquake actions, the core
itself may deform beyond its elastic limit. In this case
rlastic hinges are assumed to form at the connections
between the lintel beams and the adjacent‘shear walls, if
the bending moments in the lintel beams reach their ultimate
values. These plastic hinges will develop according to
the severity and type of loading, core shape and dimensions,
and end conditions.

In this Chapter a theoretical method of analysis,
based on the continuous approach, has been proposed to
study core structures undergoing post-elastic deformations.
In this method the plasticity is assumed to commence at a
certain level where the bending moment in the lintel beams
reaches its ultimate value. If the load continues to
increase, the plastic hinges are assumed to spread
throughout the height creating zones where the lintel beams
afe connected to the édjacent walls through plastic hinges.
These zones are termed elasto-plastic zones.

A study of the formation and the sequence in which
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the plastic hinges develop throughout the core is presented.

A mathematical simulation for core structures consisting

of elastic and elasto-plastic zones is proposed and

expressions for the various stages of plasticity, under the

three standard load cases and end conditions, are given.

The ductility requirements and the limits of the proposed

method have been discussed..

6.2 ASSUMPTIONS

In addition to the assumptions given in Chapter 2,

the following assumptions have been made to achieve a quasi-

closed-form solution for core structures undergoing post-

elastic deformations.

1

A plastic hinge will develop at each end of a connecting
beam when the end moment reaches the ultimate moment
capacity Mcu of the bean.

The connecting beams are designed to fail in a flexural
mode (21).

The discrete hinges in the beams may be replaced by a
continuous equivalent hinge connection for the -
continuous laminas and the ultimate shear intensity

will be q, = Q,/h.

The plasticity will develop only in the connecting

lamina (and the top stiffening beam if it exists).

“The rotations of the connecting laminas are assumed

to be within the ductility of the plastic hinges.
If the strain in the walls exceeds the ultimate
limit (30), the walls are no longer linearly elastic

and the analysis will no longer be valid.
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6.3 POSITION OF THE FIRST TWO PLASTIC HINGES IN THE

CONNECTING LAMINAS

The level of the first two plastiq_hinges to develop
in a connecting lamina may be determined by differentiating
the expression given in Chépter 2 for the shear flow a4,
and equating to zero, which will locate the level of the

stationary value,

d _ d“e _
aiql_AE;E 0] 6.3.1

where A is a constant which depends on the stiffness of
the connecting beams and core dimensions, and need
not be given explicitly here.

The following condition must also be satisfied,

[gzg] > o0 6.3.2
X=-AX

which identifies the level of the proper extreme values
of the vertical shear flow. It may otherwise be
determined approximately from an inspection of plot of the
vertical shear distribution in the connecting laminas.

If the core contains more than one set of connecting
laminae, the plasticity will commence in the most highly

stressed one at the above level.

6.4 SPREAD OF PLASTICITY THROUGHOUT THE CORE

6.4.1 VERTICAL SPREAD

The plasticity may commence at any level in the

connecting lamina where the vertical shear flow q equals
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the lamina ultimate shear capacity a,- It will develop

throughout the core height according to the type of loading,

the core stiffness constant a«H, and the end conditions R

and A as follows:

1 - The plasticity may commence at an intermediate height

and spread upwards and downwards creating a three zoned
structure with a middle elasto-plastic zone and upper
and lower elastic zones as shown in Fig. 6.2.1. The
limits of the elasto-plastic zone may first reach
either the top or the bottom according to the values
of the above parameters.

If the plasticity starts at the top (as it will for a
core structure free at the top and subjected to a
point torque at the top), it will produce a two zoned
structure with an upper elasto-plastic zone and a
lower elastic zone as shown in Fig. 6.2.II. In this
case the zone of plasticity will move downwards only.
It may also commence at the bottom, (in the case of a
core supported on very flexible foundations and
provided with a very stiff top beam if subjected to a
uniformly distributed torque), which will generate a
two-zoned core with a lower elasto-plastic zone and an
upper elastic zone. The zone of plasticity will only
move upward, as shown in Fig. 6.2.IV.

In the case ofacore structure with stiffness variations
throughout the height, such as a reduction in the
thickness of the walls or in the depth of the

connecting beams, the plasticity will commence at the
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line of discontinuity, Fig. 5.3, and move downwards
until the shear in the connecting lamina of the upper
part reaches its value of q,- The zone of plasticity
will then move’both upwards and downwards. The way
in which plasticity may spread throughout the height
of a uniform connecting lamina is demonstrated in the

chart of Fig. 6.3.

6.4.2 HORIZONTAL SPREAD

The case of a core structure with more than one set
of openings or set of connecting laminas (i.e. a multi-bay
core), the plasticity will commence at the most stressed
lamina when the vertical shear reaches the lamina ultimate
shear capacity. It will then spread to any other lamina
which reaches the same stage.

In the special case when the stiffness B is constant
for all the connecting beams, plasticity will commence at
the perimeter nearest to the corners and spread inwards

towards the major axes.

6.5 METHOD OF ANALYSIS

For example, the unsymmetrical core structure
considered in Chapter 2 is assumed to undergo post-elastic
deformations with a central elasto-plastic zone extending
from heights L to V, with upper and lower elastic zones as
shown in Fig. 6.1.1. The core rigid body rotation is
shown in Fig. 2.1.II, and the displacements of the
significant points on the perimeter are the same as those

given in equation 2.4.3.
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ELASTIC ZONES

As the equilibrium conditions for the internal forces
and the vertical strain compatibility conditions for the
elastic zones 1 and 3 are unaltered, the governing equation

will remain the same as that developed in Chapter 2,

namely
-EI_ dx3 + o Ix (x) where <X<L

and VLX<H 6.5.1

ELASTO-PLASTIC ZONE

For the elasto-plastic zone the equilibrium conditions
of the internal forces of each panel will be the same as
in Chapter 2 except for panel 1 and 5. In this case the
vertical shear flow a4, in the connecting laminas equals
the shear capacity a4, of the lamina as shown in Fig. 6.1.II.
The equilibrium conditions for panel 1 and panel 5

will then be as follows:

Panel 1
S = iy + d _ (d+a)
1 dx 4 7 - Y 2
dNi 6.5.2
Q + A + g = 0°
Panel 5
dM
_ 5 c (a+c)
S5 ax Tt 9% 7~ Y
st 6.5.3
— - - =O
dx a5

In this zone only four compatibility conditions exist as
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the line of contraflexure in the laminas does not exist.
The compatibility conditions at the four corners are the
same as those given in equation 2.4 (20, 21, 22 and 23).
Following the same procedu?e as in Chapter 2, solving
the above equations will yield the axial forces in the
panels as given in equation 2.4.25, and the vertical shear

at the corners will be

3
_ d“e
92 = 9y - EPp 3
b4
6.5.4
3
_ d- e
43 = 4y -~ EP3 3
b4
3
_ d-e
Q = 9, - EPy d 3
, X
6.5.5
3
d“e
- = q . - EP; —=
5 u 5 xS
where Pl’ P2, P3, P4‘apd P5 are _as given in Chapter 2.

Substituting from the above expressions into equation
2.4(6, 8 and 10) and 6.5.(2 and 3), the horizontal shear

forces are found to be,

i, d°e (2d+a)
1 —3
d

8; = -E[1;(e + B) + Py 5] —x + q, —35—

a3e

Sg = -E[I,(n - F) + 5(Py + Py)] 3" WP

3

- D d”e
S3 = —E[13 e - T (PS + P4)] ;;2?’- - quD 6.5.6
B 430
Sy = -E[1,(m + F) - 5(P, + Pg)] el + q,B
c a3e (2¢ + a)
S5 = -E[Ig(e + B) + g Pl —3 + 9y — 3

dx
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Substituting from equation 6.5.6 into the overall
equilibrium condition for the core cross-section in

equation 2.4.28, yields
T = -EI +a1. % _cgq LLXLV 6.5.7
w dx3 p dx u A Rl +9.

where Iw is as defined in Chapter 2 and

Jp = J and C = 2BD.
The same method may be followed to analyse any core
structure undergoing elasto-plastic deformations, which
will yield the same forms of governing equations. In the
case of a singly-symmetric core the constant C is the same

as giveﬁ above, but for a doubly-symmetric core as shown

in Fig. 2.6, it becomes, C = B.D.

6.6 QUASI-CLOSED-~-FORM SOLUTION FOR ELASTO~PLASTIC

BEHAVIOUR OF CORE STRUCTURES

A core structure undergoing elasto-plastic
deformations may be considered as a multi-zoned core, the
behaviour in each zone being represented by a third order
differential equation as described in section 6.5.

The complete solution for the governing equation of
the elastic zones is given in equation 2.5.5 in non-
dimensional parameters «H and relative height E£. It may
be rewritten for zone 1 and zone 3, Fig. 6.1, in terms of
a and X as follows:

For zone 1.

-1 D D
91 =Ky + K, cosh aX + Kq sinh aX + (D + ;2 + ;Z + e..)

T

(x)
o, ST

L

N
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And for zone 3

3
= . -1 D D
65 = K, + Kg cosh aX + K4 sinh X + (D7~ + ;E + ;E + ...)
T
(x)
GT_ VS EKH

where a is as defined before (section 2.4) and the
operator D represents é; .

Following the same procedure as in Section 2.5 to
solve the governing equation 6.5.7, the general solution
for an elasto-plastic zone is found to be

3

_ . -1 D D
©, = K, + Ko cosh pX + Kz sinh pX + (D~ + =5 + —¢ + ...)
, P P
(T + C q.)
(x) u
a7, LX LV
where
GJ.
2 _ P
P ET_
w

For a core structure subjected to a point torque at the
top, the complete solution for zomnes 1, 2 and 3 (Fig. 6.1)

will be given respectively as follows.

. t
©, = K; + K, cosh X + K3 sinh oX + %—(—)— oLXLL

6.6.1

. tX CquX
4 + K5 cosh_pX + K6 51nh_pX +,GJ +

p p
LEV 6.6.2

®;, = K

™

. t
93 K7 + Ks cosh aX + K9 sinh aX +

o

JO

v X<H 6.6.3

N
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If the core is subjected to a uniformly distributed

torque, the complete solution for each zone is

B . t 2 1
91 = K1 + Ko cosh aX + K3 sinh aX + Gj; (HX - 5 - ;Z)
oLXLL 6.6.4
t X2 1
92 = K4 + K5 cosh pX + K6 sinh pX + 53; (EX - 5 -.;2)
G q, X
eI LLXLY 6.6.5
2

3 . t X 1
93 = K7’+ Kg cosh aX + Kg sinh eX + ng (KX - 5 - ;2)

VL<XLH 6.6.6

In the case of a triangularly distributed torque the
solution is

Q%K K h aX + K inh aX t (Hzx_x3_2x)
1 1+ ZCOS a+351na+2—GJo 3 :2'

oL XL 6.6.7
6. = K, + K . t w2x - X _ 2%,
9 4 T Kg cosh pX + K6 sinh PX + 2@3; - ~pz
C a, X -
L cs pumn LXLYV 6.6.8
p
O = K, + K inh aX N S
3 4 + 5 cosh aX + K6 sinh X + 553; 3 a2
'V<§}(<;H 6.6.9

The constants of integration and the limits L and V of
the elasto-plastic zone in the above equations may be
defined by considering the boundary conditions at the top
and at the base as given in equation 5.3 (4 and 5) in

addition to the compatibility and equilibrium conditions
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between each two adjacent zones. At the boundaries
between the elasto-plastic and the elastic zones, the
angles of rotation ©, the slope ©'and the bending moments
and normal forces in the walls are equal for both zones;
whilst the laminar shear 44 equals the ultimate shear
capacity of the lamina q,- These conditions may be

written as follows for the boundary between zones i and

(i: + I)
9i = 9i+1
! =
gi i+1
6.6.,10
" - 11
e; = 9in
q; = qu

Using the above equations, expressions for the elasto-
plastic behaviour of core structures have been achieved for

the following cases using a step-by-step computation.

6.6.1 CASE I: THREE-ZONED CORE WITH AN ELASTO-PLASTIC

ZONE IN THE MIDDLE

In a three-zoned core shown in Fig. 6.2.I, the limits
of each zone and the applied torque can be found most
conveniently by first locating the level of the first two
plastic hinges. Then, by assuming values for either the
lower or the upper limit of the middle zone below or above
the first value, the other limit and the corresponding
value of the applied torque can be calculated from the
following expressions for the three standard load cases.
This is simpler than increasing the torque above that to

cause first yielding and then determining both upper and
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lower limits of plasticity.

1 - POINT TORQUE AT THE TOP

For a three-zoned core subjected to a point torque
at the top, the condition of overall equilibrium of the
core'can be obtained by.solving equations 6.6.(1,2 and 3)
for the boundary conditions given by equations 5.3(4 and 5)
and the compatibility and equilibrium conditions in
6.6.10. The limits of each zone may be obtained by
satisfying the first equality (i.e. equating the first
two terms in equation 6.6.11) and the applied torque value
t from the second equality of the condition (i.e. equating
"any of the above terms to the applied torque t).

Sl/(A/Jp + a((cosh aL-1)(cosh alL + ap sinh al)/

(sinh alL + ap cosh al) - sinh aL)/JO) = Sz/(Z/Jp +

(ra cosh aV/(a cosh aH - r sinh aH) -

W(l + r sinh aV/(a cosh aH - r sinh aH)))/Jo) = t

where (6.6.11)

S un((a(cosh al. + ap sinh ¢L)/(sinh aL + ap cosh-aL)-A)/

1
BEBD - CA/GJO)

Sy = Ga,(W/BEBD - Z(1/BEBD + C/GJ))

g
i

p(sinh pL + (cosh pV - cosh.pL) cosh.pL/(sinh_pL -
sinh pV))/(cosh pV - cosh pL) sinh PL/(sinh.PL-sinh_pV))

W = a(sinh aV + (r cosh ¢H - a sinh aH) éosh aV/(a cosh aH
- r sinh aH))/(cosh aV + (r cosh a¢H - @ sinh aH)
sinh aV/(a cosh aH - r sinh aH))

The constants for the solutions are then given by
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K, = —Kz

K, = t(cosh aL-1)/(aGJ_(sinh aL + ap cosh aL)) - a,/

(aBEBD(sinh aL + ap cosh aL))
Ky = apk, - t/aGJo

K4 = K1 + K2 cosh al. + K3 sinh al + tL/GJ0 -

(K5 cosh pL + Kg sinh pL + (tL + CquL)/GJp)
K. = Kg(cosh pV - cosh pL)/(sinh pL - sinh pV)

Kg = -q,(1/BEBD + C/GJ,)/(p(cosh pL +(cosh pV - cosh pL)
sinh pL/(sinh pL - sinh pV))) - t/
(pGJp(cosh_pL + (cosh pV - cosh pL)sinh pL/

(sinh pL - sinh pV)))

K, = K4 + K5 cosh pV + K6 sinh pV + (tV + Cun)/

GJp - (K8 cosh aV + K9 sinh oV + tV/GJo)

Ko = Kg(r cosh aH - a sinh aH)/(acosh aH - r sinh aH)

+ tr/(aGJo(a cosh ¢H - r sinh aH))

Ko = =(t(l+r sinh aV/(acosh ¢H -~ r sinh aH))/aGJo + qu/
aBEBD)/(cosh aV + (r cosh qH - a sinh aH)sinh aV)/

(¢ cosh aH - r sinh aH)

2 - UNIFORMLY DISTRIBUTED TORQUE

Solving equations 6.6(4,5 and 6) for the above end
conditions, the overall equilibrium condition for three-
zoned core subjected to a uniformly distributed torque
can be expressed as:

GS;/((a(cosh oL + ap sinh aL)((H+p)cosh aL + L-H)/

(sinh aL + ap cosh aL) - (1 + a(H+p)sinh aL))/
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Jo + (A(H-L+(L-V)sinh.pL/(sinh pL - sinh.PV))

- p(L-V)cosh pL/(sinh pL-sinh pV)+ 1)/Jp) = GSy/
((p(L-V)cosh_pV/(sinh_pL - sinh pV) - Z(H-L+(L-V)

sinh pL/(sinh pL - sinh_pV))—l)/Jp + (W(H-V)*(W sinh aV-

a cosh aV)/(a cosh ¢ - r sinh aH)+ 1)/J0) =t

where in this case

S q,(a(cosh aL + ap sinh aL)/(BEBD(sinh al. + ap cosh alL))

1
- A(1/BEBD + C/GJp)

W
|

= a,(Z(1/BEBD + C/GJ,) - W/BEBD)

A =.P(sinh_pL + (cosh pV - cosh_pL)cosh~pL/(sinh~pL -
sinh pV))/(cosh pL + (cosh pV - cosh pL)sinh pL/

(sinh pL - sinh PV))

W = a(sinh aV + (r cosh aH - a sinh aH)cosh aV/(a cosh aH -
r sinh aH))/(cosh aV + (r cosh aH - a sinh aH)
sinh aV/(a cosh aH - r sinh aH))

Z = p(sinh pV + (cosh pV - cosh‘pL)cosh_pV/(sinh_pL -

sinh pV))/(cosh pL + (cosh pV - cosh_pL)sinh_pL/

(sinh pL - sinh pV))

The constants of integration are then given by

=
[}

2

e
N
l

= t((H+p) cosh aL + L-H)/(aGJ (sinh eL + ap cosh al))

- q,/(aBEBD(sinh aL + ap cosh aLl))

K3 = auk, - t(H+u)/aGJO

2
K4y = K, + K, cosh aL + K; sinh aL + t(mL-L2/2 - 1/2%)/
2 2
B i - 2 -1 )Y/

GJ - (K5 cosh pL + Kg sinh pL + t(HL - L%/ /p

GJ
p * CquL/GJp)
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K; = Kg(cosh pV - cosh pL)/(sinh pL - sinh pV) + t(L-V)/
QpGJo(sinh_pL - sinh pV))

K. = -t(H-L + (L—V)sinh‘pL/(sinh.PL - sinh‘pV))/

(pGJp(cosh_pL + cosh pV - cosh.PL)sinh'PL/(sinh.PL -

sinh pV))) - q,(1/BEBD + C/GJ)/(p(cosh pL +

(cosh pV - cosh pL)sinh pL/(sinh pL - sinh pV)))

. 2 2
K, = K4 + Kg cosh pV + Kg sinh pV + t(HV - V7/2 - 1/p")/
GJp - (K8 cosh aV + Kq sinh aV + t(HV - V2/2 - l/az)/
GJO) + Cun/GJp
Kg = Kg(r cosh a¢H - a sinh aH)/(a cosh aH - r sinh aH)

+ t/(aGJO(a cosh aH - r sinh aH)

K, = -(t(H-V + sinh aV/(a cosh aH - r sinh aH))/
GJo + qu/BEBD)/(a(cosh aV + (r cosh ¢H - a sinh aH)

sinh aV/(a cosh aH - r sinh aH)))

3 - TRIANGULARLY DISTRIBUTED TORQUE

In this case the overall equilibrium condition of the
core can be obtained by solving equations 6.6(7,8 and 9)

for the above end conditions. It is found to be

Sl/((A(H2 - 2/d®) (cosh aL-1)+ 1L%) - 2L - aa? - 2/a°)
sinh aL)/Jo + ((L2 - Vz)(Z sinh pL - p cosh pL)/
(sinh pL - sinh pV) + Z(H2 -2 - 2[92) + 2L)/Jp)
= 52/(((L2-V2)(p cosh pV - W sinh pL)/(sinh pL -

sinh pV) - W(Hz_- L2

- 24p2) - 2V)/Jp - (2(H - r/az)
(¢ cosh aV - S sinh aV)/(a cosh gH - r sinh aH) -
sm? - v2 - 2/42) - 2V)/3) = t

where
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0]
i

2Gq (A/BEBD - Z(1/BEBD + C/GJp))

S, = 2un(W(1/BEBD + C/GJp) - S/BEBD)

S = a(sinh aV +(r cosh aH - a sinh aH) cosh aV/
(a cosh aH - r sinh aH))/(cosh aV +(r cosh aH - a sinh «H)
sinh aV/(a cosh aH - r sinh aH))

A = a(cosh aL + ap sinh aL)/(sinh alL + ap cosh al)

Z =_p(sinh.pL +(cosh.pV - cosh.pL)cosh-pL/(sinh.pL -

sinh pV))/(cosh pL + (cosh pV - cosh pL)sinh pL/

(sinh pL - sinh_pV))

W = p(sinh pV +(cosh pV - cosh pL)cosh pV/(sinh pL -
sinh pV))/(cosh pL + (cosh pV - cosh pL)sinh pL/

(sinh pL - sinh pV))

The integration constants of equations 6.6(7,8 and 9) are

then found to. be
K, =-K
_ 2 2 2 .
K, = t((H°-2/a“)(cosh aL-1) + L )/(ZGJOa(51nh al. + ap

2
cosh alL)) - qu/(aBEBD(sinh al. + au cosh al))

Ky = apk, - t(H2 - 2/a2)/2aGJo

K, = K1 + K2 cosh al + K3 sinh al + t(HzL - L3/3 - ZL/az)/
. 2
ZGJO - (K5 cosh pL + Kg sinh oL + t(HzL - L3/3 - 2L/p%)

/2GJp) + €qy L/GJp)

K5 = K (cosh pV - cqsh.pL)/(sinh_pL ~ sinh pV) + t@w2-v2)/
(2pGJ (sinh pL - sinh pV))

Kg = ft((Lz - v?)sinh pL/(sinh pL - sinh pV) + H2-L2-24pz)/

267, + q,(C/GJ, + 1/BEBD))/(p(cosh pL +(cosh pV -
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cosh_pL) sinh.pL/(sinh‘PL - sinh.pV)))

. 2 3
K., = K4 + K5 cosh pV + K6 sinh pV + t(HV - V7 /3 - ZV[pz)/
2GJp + Cun/GJp - (K8 cosh aV + Kq sinh aV +
t(®@v - /3 - 2v/4%)/263)

K =’K9(r cosh aH - a sinh aH)/(e¢ cosh aH - r sinh aH)

+ t(H - r/az)/(aGJo(a cosh aH - r sinh aH))

K, = =(t(H - r/az) sinh aV/(a cosh ¢H - r sinh aH) +
2

(H2 - v - 2/a )/2)/GJO) + q,/BEBD)/(a(cosh aV +

(r sinh aH - a sinh aH) sinh aV/(a cosh aH =~

r sinh aH)))

6.6.2 CASE II: TWO-ZONED CORE, WITH AN ELASTO-PLASTIC

ZONE AT THE TOP

As the plasticity spreads upward and downward, the
upper limit of the elasto-plastic zone may reach the top
first. It will then create a two-zoned core with an
upper elasto-plastic zone and a lower elastic zone as shown
in Fig. 6.2.11. Solving the governing equation of the
above two zones for the boundary condition in equation
5.3(4 and 5) and the compatibility and equilibrium
conditions 6.6.10, the overall equilibrium condition of

the core can be obtained for the three standard load cases.

1 - POINT TORQUE AT THE TOP

Solving equations 6.6.(1 and 2) of zone 1 and zone 2
for the above end conditions, the overall equilibrium
condition of the core is found to be
t = S/((Z(cosh aL-1) - a sinh aL)/Jo + (W + r(sinh pL -

p cosh pL)/(p cosh pH - r sinh pH))/J,)

where
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S = un((Z-W)/BEBD + Cr(p cosh pL - W sinh_pL)/(GJp
(p cosh pH - r sinh PH)) - CW/GJP)

W =_pz(sinh‘pL + (r cosh.pH -p sinh_pH) cosh.pL/
(p cosh pH - r sinh pH))/A

A = p(cosh pL +(r cosh pH - p sinh pH)sinh pL/
(p cosh pH - r sinh pH))

Z = a(cosh aL + ap sinh aL)/(sinh aL + ap cosh aL)

The integration constants of zone 1 and zone 2, are then

found to be

K; = -Ky

K, = t(cosh aL - 1)/(aGJ_(sinh oL + ap cosh aL)) - q,/

(aBEBD(sinh aL + ap cosh aL))
K3 = auKz - t/aGJO
K4 = K1 + Ky cosh al + K3 sinh oL + tL/GJ0 -
(K5 cosh pL + K; sinh pL + (t + Cqu)L/GJp)
K5 = Ks(r cosh pH - p sinh PH)/(p cosh pH - r sinh.pH)
+ r(t + Cqu)/(pGJpr cosh pH - r sinh pH))
Kg = -t(1 + r sinh pL)(p cosh pH - r sinh‘pH))/AGJp - q,

(1/BEBD + C(1 + r sinh.pL/(p cosh pH - r sinh_pH))/

GJp)/A

2 - UNIFORMLY DISTRIBUTED TORQUE

The equilibrium condition for the core in this case
can be obtained by solving equations 6.6.(4 and 5) of zone
1 and zone 2 for the aforementioned end conditions, which

will yield
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t = Sl/((A(H—L) + (A sinh pL - p cosh pL)/(p cosh pH -

whe

S1

A=

The

[s2]

r sinh pH)+ 1)/Jp - (H + p)(a sinh aL - Z cosh alL)
+ Z(H-L) + 1)/Jo)
re
=_un((Z—A)/BEBD + C((pr cosh pL - Ar sinh pL)/(p cosh
pH - r sinh pH) - A)/GJp) .
p(sinh pL +(r cosh pH -p sinh.pH)cosh_pL/
(p cosh pH - r sinh_pH))/(COSh_pL + (r cosh pH -
P sinh.PH)sinh_pL/Qp cosh pH - r sinh_pH)
p(cosh pL +(r cosh pH - p sinh pH) sinh.pL/
(p cosh pH - r sinh pH))

a(cosh aL + au sinh aL)/(sinh aL + ap cosh al)

integration constants of zones 1 and 2 are then given

— 2
= t/a GJo - K,

t((H+p)cosh al. + L - H)/(aGJO(sinh al. + au cosh al))

- 4,/ (eBEBD(sinh aL + ap cosh al))
= apK, - t(H + p)/aGJ

= K; + Ky cosh alL + K3 sinh aL + t(HL - L2/2 - l/az)/

1
. 2 2
GJ, - (K5 cosh pL + Kg sinh pL + t(HL - L /2 - 1/p%)/

GJp + CquL/GJp)

= KG(r cosh pH - p sinh pH)/(p cosh pH - r sinh pH) +
(quu + t)/(pGJpr cosh pH - r sinh pH))

==(t(H-L+sinh pL/(p cosh pH - r sinh.pH))/GJp + a,
(1/BEBD + C(1 + r sinh_pL/(p cosh pH - r sinh_pH))/

GJp))/W
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3 -~ TRIANGULARLY DISTRIBUTED TORQUE

If the core is subjected to a triangularly
distributed torque, the overall equilibrium condition can
be obtained by solving equations 6.6.(7 and 8) for the

above end condition. It is found to be

t = S/(((H2 - Z/az)(Z cosh aqL. - a sinh aL. - Z) + ZL2 - 2L)/

2Jo - (H - r[pz)(p cosh pL + W sinh.pL)/(p cosh pH -

r sinh pH) + W(H® - L% - 2/p%)/2-1)/3)
where
S = un((Z+W)/BEBD + C(r (W sinh pL + p cosh.PL)/

(p cosh pH - r sinh.PH) + W)/GJp)

=
]

-p(cosh PL+(r cosh pH - p sinh‘pH)sinh_pL/(p cosh pH -

r sinh pH))

W ='pz(sinh_pL + (r cosh pH -p sinh_pH)cosh_pL/Qp cosh pH

-T sinh.pH))/A

Z

a(cosh al. + ap sinh aL)/(sinh alL + ap cosh aL)

The integration constants are then given by

K, = K

K, = t((H2 - 2/a2)(cosh al.-1) + Lz)/(z GJoa(sinh al. +

ap cosh al)) - qu)/(BEBDa(sinh al. + ap cosh alL))
2 2
K, = apk, - t(H° - 2/a )/2aGJO

‘ 2
Ky = Ky + Ky cosh oL + K3 sinh aL + t(HzL - L3/3 - 2L/a”)/

2GJo -(K5 cosh pL + K6 sinh pL + t(HzL - L3/3 -
21/p%) /263 )
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K, = Kz(r cosh pH - p sinh pH)/(p cosh pH - r sinh PH)
+ t(H—rzpz)/ngJp(p cosh pH - r sinh.PH)) + Cqur/
‘ (GJpPQP cosh pH - r sinh pH)) |

Kg = t((H-r[pz)sinh_pL/(p cpsh_PH - T sinh_pH) + (H2 - L2

- 2[Pz)/z)/GJpA) + q,(1/BEBD + C(r sinh pL/(p cosh. pH
-T sinh‘pH) + 1)/GJp)/A

6.6.3 CASE III: TWO-ZONED CORE, WITH PLASTIC HINGES

DEVELOPED IN A TOP STIFFENING BEAM

As the applied torque may continue to increase, the
elasto-plastic zone will expand downwards and the shear
force in the top stiffening beam QS will reach the bean
ultimate capacity qu. Thus - two hinges will develop at
its ends. They will impose a constant bending moment at
the top of the adjacent walls, equal to qu times the
distance between the point of contraflexure and the
centroidal axes of the walls, which may be included as a
top end condition by equating the expression for the wall
bending moment from equation 2.4.24 to the above fixed
value at the top, which will yield

2

d
en = [ ] = M 6.6.12
H de H u
where
Mu = a constant which depends on the core dimensions,

configuration and the stiffness of the top beam BS.
In the case of the doubly-symmetric and singly symmetric
cores shown in Figs. 2.6 and 2.5,Mu will be given

respectively by
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M, = qu(d + a)/(E I, B)

and

M, = qu(d + a)/(E Il(B + e))

For the unsymmetrical core shown in Fig. 2.1, Mu could be
taken approximately as an average of its values at the

top of the two adjacent walls, namely,

- (a +c¢), (a + d)
M, = qu[ T + T 1/2E(B + e)

Thus the overall equilibrium condition of the core and the
constants of integration of the governing equation for
"each zone can be obtained for the load cases under

consideration as follows.

1 - POINT TORQUE AT THE TOP

The overall equilibrium condition of the core
structure shown in Fig. 6.2.III1, when subjected to a point
torque at the top can be obtained by solving equations
6.6.1 and 6.6.2 for the base end condition given by 5.3.4
and the boundary conditions given in 6.6(10 and 12). It

is found to be
t = S/((Z(cosh aL-1) - « sinh aL)/J0 - W/Jp)

where
S = G(q,(CW/GJ  + (Z + W)/BEBD) + M (W sinh pL + p cosh pL)/

P cosh_PH)

=
|

= -p(cosh pL - sinh pL tanh pH)
W = Pz(sinh pL - cosh pL tanh pH)/A

Z = a(cosh oL + ap sinh alL)/(sinh oL + ap cosh L)
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and the constants of integration are then given by
K1 = -K,
Ky = t(cosh aL—l)/(aGJo(sinh al + ap cosh alL)) - qu/

(aBEBD(sinh aL +‘ap.cosh al))

X, = K, - t/eGJ_

K4 = K; + Ko éosh al + K4 sinh aL + tL/GJo -(K5 cosh pL +
Kg sinh pL +(t + Cqu)L/GJp)

K5 = M /p° cosh pH - K, tanh pH

Kg = t/AGJp + qu('C/GJp + 1/BEBD)/A + M, sinh_PL/AP cosh pH

2 -~ UNIFORMLY DISTRIBUTED TORQUE

In this case the overall equilibrium condition of
the core can be obtained by solving equations 6.6(4 and 5)

for the above end conditions, which will yield,

t = S/(((H+p)(Z cosh aL. - a sinh alL)+ Z(L-H-l)/Jo -

((W sinh pL + p cosh pL)/p cosh pH + W(H—L)-l)/Jp)

where

S = G(qu((Z+W)/BEBD + CW/GJP) + M (W sinh pL + p cosh pLY/

p cosh pH)
A = -p(cosh pL - sinh pL tanh pH)
W-=.pz(sinh_pL - cosh pL tanh pH)/A
Z = a(cosh al. + ap sinh aL)/(sinh ¢L + ap cosh al)

The integration constants of equation 6.6.(4 and 5) for

zone 1 and zone 2 respectively are given by

_ 2
K, = t/a"GJ, - K,
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t((H+p)cosh aL + L - H)/(aGJo(sinh al. + ap cosh al))

- qu/(aBEBD(sinh al. + ag cosh al.)

= apKy = t(H+u)/aGJo

K, + K, cosh oL + K, sinh oL + t(HL - L2/2 - 1/a%)/

1 3
‘GJO - (K5 cosh pL + K6 sinh_pL + t(HL - L2/2 - 1(92)/

C
GJp + quL/GJp)

t/gszJp cosh_pH) + Mu[pz cosh pH - Kg tanh pH
qu(l/BEBD + C/GJO)/A + t(H - L + sinh.pL{p cosh.PH)/

AGJp + Mu sinh.pL(pA cosh pH

3 -~ TRIANGULARLY DISTRIBUTED TORQUE

In this case the overall equilibrium condition of the

core can be achieved by solving equation 6.6.(7 and 8) for

the above end conditions, which will yield

t = as/((z12/2 + (#? - 2/a®)(Z(cosh aL-1)- a sinh aL)/2-L)/
J, - (H(p cosh pL + W sinh pL)/p cosh pH - L + W
w? - 1% - 2/p%)/2)/3)

where

S = M (p cosh pL + W sinh pL)/p cosh pH + q,((Z + ﬁ)/
BEBD + CW/ GJp)

A= -p(cosh pL - sinh pL tanh pH)/A

w =_p2(sinh pL - cosh pL tanhQPH)/A

Z = g(cosh aL + ap sinh qal.)/(sinh aL + ap cosh al)

The constants of integfations are found to be

K

1- " Ky
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K, = t((H2 - 2/a2)(cosh alL-1) + Lz)/(ZGJOa(sinh al + ap

cosh alL)) - qu/BEBDa(sinh al. + ap cosh al))
2 2
K, = apKy - t(H® - 2/a )/ZaGJ0

K, = K, + K, cosh aL + K, sinh oL + t(8°L - L%/3 - 21/4%)/

- . 2 3
2GJo - (K5 cosh pL + K; sinh pL + t(H°L - L°/3

6
- 2L[Pz)/2GJp + CquL/GJp)

Ks = tH/GJp_P cosh.pH + Mu‘P cosh_PH - K6 tanh_PH
Ky = qu(l/BEBD + C/GJp)/A + M, sinh.pL/AP cosh pH +

t(H sinh pL/p cosh pH + (Hz’- Lz - 2(p2)/2)/AGJp)

6.6.4 CASE IV: TWO-ZONED CORE, WITH A LOWER ELASTO-

PLASTIC ZONE

If a core is based on a very flexible foundation and
provided with a stiff beam at the top, plasticity may
theoretically commence at the base or at some intermediate
height and spread upwards and downwards, in which case the
Jower limit may reach the base first. In each case, a
two-zoned core is obtained, with a lower elasto-plastic
zone as shown in Fig. 6.2.1IV. Solving the governing
equation of each zone and including the boundary conditions
given in 5.3.(4 and 5) and the compatibility and
equilibrium conditions in equation 6.6.10, the overall
equilibrium condition of the core and the constants of
integration can be found for the three particular cases of

loading.

1 - POINT TORQUE AT THE TOP

The overall equilibrium condition can be found by
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solving equation 6.6.(2 and 3) for the above end conditions,
which will yield
t = S/(r(a¢ cosh aV+W sinh aV)/(a cosh aH - r sinh aH) + W)/

Jo - (Z(1 - cosh.PV) - p sinh fV)/Jp)

where

S = Ga, ((Z-W)/BEBD + C(Z(1 - cosh pV) - p sinh pV)/GJ)

A = —-a(cosh aV + (r cosh aH - a¢ sinh qH) sinh aV/(a cosh aH

- r sinh aH))

W = az(sinh aV + (r cosh aH - a sinh aH) cosh aV/
(@ cosh aH - r sinh aH))/A
Z = -p(cosh pV + pp sinh pV)/(sinh pV + pg cosh pV)
The constants of integration of the elasto-plastic zone

and the elastic zone are given respectively as

K, = - K5

Kg = -(q,(1/BEBD + C(1 - cosh‘pV)/GJp) + t(1 - cosh pV)/GJ )/
(p(sinh pV + pp cosh pV))

K =.puK5 - (t + Cgu)[pGJp

K, = K4 + K5 cosh pV + Kg sinh pV +(t + Cqu)V/GJp -
(K8 cosh aV + Kg sinh aV + tV/GJO)

K8 = Kg(r cosh aH - a sinh aH)/(a cosh ¢H - r sinh aH)

+ tr/(aGJo(a cosh aH - r sinh aH))

Kg = t(H - V + sinh aV/(a cosh aH - r sinh aH))/AGJ

+ qu/BEBD




138
2 - UNIFORMLY DISTRIBUTED TORQUE

In this case the overall equilibrium condition of
the core can be found by solving equations 6.6(5 and 6) for

the above end conditions, which will yield.

t = SG/((W(H=-V) + (W sinh aV + a cosh aV)/(a cosh aH -
r sinh aH)-l)/Jo + (1-Z(H-V)+(H+p)(p sinh pV +

Z cosh pV))/J )
where
S = q,((Z-W)/BEBD-C(p sinh pV + Z(cosh pV-1))/GJ,)

The functions A, W and Z are as given above.
The constants of integration of the solution for each zone

are found to be

K

I

2
4 t[p GJo - K5

Kg -t(H-V-(H+u)cdsh_pV)/QpGJp(sinh.PV + pp cosh pV))
- q,(1/BEBD + C(1 - cosh pV)/GJ)/(p sinh pV -

qu cosh pV)
K. = puK; - t(H+u)(pGJp - Cqu(pGJp

. 2 2
K7 = K4 + K5 cosh pV + K sinh pV + t(HV - V /2 - 1[p Y/
GJp + Cq, V/GJp - (K8 cosh aV + Kg sinh aV +

t(av - v2/2 - 1/4%)/63,)

K8 = K9(r cosh aH - @ sinh aH)/(a cosh qH - r sinh aH)

+ t/(aGJo(a cosh aH - r sinh aH))

~
]

9 t(H-V + sinh aV/(a cosh aH - r sinh aH))/AGJ,

+ qu/ABEBD
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3 - TRIANGULARLY DISTRIBUTED TORQUE

In this case the overall equilibrium condition for
the core is obtained by solving equations 6.6.(8 and 9) for

the above end conditions, and yields.

t = GS/(((H - r/az)(W sinh aV + a cosh aV)/(a cosh aH -
r sinh af) + W(E - V2 - 2/4%)/2)/3 ) - (& - 2/p%)

(Z(1 - cosh pV) - p sinh pV) - V(ZV + 2))/2J))
where
S = qu((Z—W)/BEBD + C(Z(1 - cosh pV) -p sinh_pV)/GJp)

The functions A, W and Z are as given above.
The constants of integration are given by

Ky = K5

Ky = ~t((H> - 2/p°)(1 - cosh pV) - V2)/(2pGJ (sinh pV +

5
P cosh pv)) - qu(lfBEBD + C(1 - cosh.pV)/GJp)/
(p sinh pV +_p2u cosh pV)

RKg = p i Ky - t(H? - 2/p®)/2p GI_ - Ca /pGJ,

K, = K, + K5 cosh pV + K; sinh pV + t(BV - V°/3 - 2V[p2)

4 5
. 2
+ Cun/GJp - (K8 cosh aV + Kg sinh aV + t(HV -

/3 - 2V/a2)/2GJO)

K8 = Kg(r cosh aH - a sinh aH)/(a cosh ¢H - r sinh aH)

+ t(H-r/az)/(aGJo(a cosh aH - r sinh aH))

A
|

9 = t((H2 - V2 - 2/a2) + 2(H-r/a2) sinh aV/(a cosh aH -

r sinh aH))/ZAGJO + q,/ABEBD
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6.6.5 CASE V: CORE STRUCTURE WITH THE PLASTICITY SPREAD

OVER ALL CONNECTING BEAMS EXCEPT THE TOP STIFFENING

BEAM

In this case, the core is considered to consist of
one elasto-plastic zone as shown in Fig. 6.2.V. The core
behaviour is governed by equation 6.5.7, when extending
the limits so that LL = O and V = H. The general solutions
of the above equation is given in equations 6.6.(2,5 and 8)
for the standard load cases. The constants of integration
may be obtained by including the boundary conditions given

in 5.3(4 and 5) for each loading case as follows.

1 - POINT TORQUE AT THE TOP

If the core is subjected to a point torque at the

top, the integration constants of equation 6.6.2 are given

by
Kg = K5
K; = (t + Cq )(r - (r cosh pH - p sinh'pH))/AGJp

Ke =pp Ky - (t + Cqu)[pGJp
where

A =p((p cosh pH - r sinh‘pH) - p p(r cosh pH - p sinh.pH))

2 -~ UNIFORMLY DISTRIBUTED TORQUE

In this case, the integration constants-of equation
6.6.5 are found to be
_ 2
Ky = t/p GJ, - K
K

5 = t(1-(H+p)(r cosh pH - p sinh pH))/AGJ_ + Cq,

p

(r-(r cosh pH - p sinhﬁpH))/AGJp
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Kg =p b Ky - (t(H+p) + Cqu)[pGJp

3 - TRIANGULARLY DISTRIBUTED TORQUE

In this case, the integration constants of equation

6.6.8 may be expressed as follows

5 t(H—r/_p2 - (H2 - 2[p2)(r cosh pH —.P'sinh_pH)/Z)/

[
I

AGJp + Cqu(r—(r cosh pH - p sinh_PH)/AGJp

2 2
Kg =P 1 Ky - t(H” - 2/p )/%pGJp - Cqu[pGJp

6.6.6 CASE VI: CORE STRUCTURE WITH THE PLASTICITY SPREAD

OVER ALL CONNECTING BEAMS AND THE TOP STIFFENING

BEAM

If the shear force in the top stiffening beam Qs

reaches the beam ultimate capacity Q the beam will yield,

su’
developing a plastic hinge at each end as shown in Fig.
6.2.VI. In this case, the core behaviour is governed by
equation 6.5.7 and its general solutions for the three
standard load cases are given in equations 6.6(2,5 and 8).
The constants of integration may be obtained by including
the top boundary condition given in equation 6.6.12 and

the boundary condition of a core structure based on flexible

foundation given in 5.3.4 as follows:

1 - POINT TORQUE AT THE TOP

If the core is subjected to a point torque at the

top, the integration constants of equation 6.6.2 become
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K (P(t + Cqu) sinh\pH/GJp + Mu)/A

5

Kg = p B K5 - (t + Cq )/pGJ,
where

A =_92(cosh~pH - p 1 sinh pH)

2 - UNIFORMLY DISTRIBUTED TORQUE

In this case, the constants of integration of
equation 6.6.5 become

Ky = t/pGJ, - Kj

e
]

5 = (t(1 + p(H + u)/GJp) + Cq, p sinh‘pH/GJp + M, )/A

Kg =p 1 K5 - t(H + p)/pGJ, - Cq, /pGJ,

3 - TRIANGULARLY DISTRIBUTED TORQUE

In this case, the integration constants of equation
' 6.6.8 are found to be

K, = -K

4 5

]

K5 (t(H +_p(H2 - 2[p2)sinh_pH/2)/GJp + Cqu_p sinh pH/

GJp + Mu)/A

Kg =p 1 Ky - t(H2 - 2/{p2)/2GJp - CqulpGJp

By evaluating the constants of integration for eaéh zone
for any of the above cases, the behaviour being traced in
a step-by-step manner from the development of the first
plastic hinge, subsequently, the angle of rotation © and
the internal forces in the core walls and connecting

beams can be found.
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6.7 DUCTILITY REQUIREMENT AND LIMITATION OF THE METHOD

6.7.1 ROTATIONAL DUCTILITY OF THE PLASTIC HINGES

In the above cases it was tacitly assumed that the
hinges contain sufficient ductility to allow the plasticity
to spread throughout all the connecting beams and the top
stiffening bean. In practice the rotational ductility of
the hinges depends on the beam depth, type and arrangement
of the reinforcement in the beams. Thus it is necessary
to check the rotation of the plastic hinge ﬂp against its
maximum allowable rotation ﬁpu’ so that the calculation
will be stopped if this maximum value were reached. By
evaluating the wall rotations and axial deformation, it

can be shown from Fig. 6.4 that the plastic lamina rotation

¢p at any height in the elasto-plastic zone is given by

¢p=¢+q) -¢y 6.7.1

where
¢p is the plastic laminar rotation

¢y is the maximum elastic rotation of the lamina
# 1is the angle of slope of the lamina at mid-Span

% is the elastic rotation of the wall

Substituting for the above deformations in terms of the

forces will yield,

Pl
=
»
[o}
3

b4 X
M N q
g = L2 ngx- S—l—dx—u 6.7.2
o o
On substituting for M1 and N1 in the above equation, it
can be proved that for both doubly and singly symmetric

cores,
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_B.D do
#, = =2 dx ~ aBE

For the unsymmetrical core, ¢p values could be taken
approximately as the average of the following two values
as a rough.guide

de qu

+ P)] ix * aBE

%) =’%[(c+a)(e+B) - 2(c5 + ¢, -¢Cc, - ¢C

P 2 4 3

9y

1 do
¢p = E[(d+a)(e+B) - 2P] ax T 2BE

The level of the maximum plastic laminar rotation is the
same as the level of the first plastic hinge given by

equation 6.3 (1 and 2).

6.7.2 LIMITS OF THE EXISTING METHOD

1 - FAILURE OF THE CONNECTING BEAMS

If the rotations of a plastic hinge reach its
ultimate allowable rotation, a failure will occur and the
beam will no longer play any part in resisting the applied
torque. In this stage the above analysis is no longer
valid. However the same method of analyéis can be used
considering an additional zone where a, equal zero as

represented by zone 4 in Fig. 6.2.VII.

2 - NON-LINEAR BEHAVIOUR OF THE CORE WALLS

In the above analysis it was assumed that the walls
will remain linearly elastic throughout all the stages of
loading and plasticity. However, as the applied torque
increases from one stage to another, the stresses in the
walls increase, which will have certain effects on the

performance of the walls. This effect will take the form
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of tensile cracks on some parts of the walls and will
eventually reduce the strength of the walls. In this
case the analysis may continue assuming a new zone with
walls having less strength than the others, as shown in
zone 5 Fig. 6.2.VII. :

With the continuous increase of the applied torque,
either hinges may develop in the tension side of the walls,
if they are under-reinforced or a compression crysh will
occur in the compression sides in the case of over-
reinforced walls. In these two cases, the above analysis
will no longer be valid.

Any of the above limits may be set to terminate the

analysis according to the accuracy required and type of

walls involved.
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Fig. 6.4 geforﬁations of connecting lamina and
~adjacent walls in the elasto-plastic zone
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CHAPTER 7

NUMERICAL COMPUTATION

7.1 INTRODUCTION

The present chapter is concerned with the
application of the methods of analysis presented in the
previous chapters in order to achieve numericai values
for the displacements and internal forces of core
structures undergoing elastic and elasto-plastic defor-
mations.

Although the mathematical modelling of the behaviour
of core structures have been achieved, a full utilisation
requires the use of a computer. This is due to the fact
that the core behaviour passes through different stages
where the core equilibrium condition may only be satisfied
by making some assumptions and testing them through a
trial and error procedure. Thus, the author resorted to
computer programming to achieve numerical values for the
mathematical expressions of the elastic and elasto-plastic
behaviour of core structures.

The core structures employed in Chapter 4 have again
been used as an illustrative example for singly and doubly
symmetrical cases with different relative stiffness and end
conditions, whilst subjected to the standard cases of
loading under consideration. The stages of computation
have been explained, the logic sequential order of the
computer program used is demonstrated, and illustrations

and discussions of the results obtained are presented.
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7.2 COMPUTER PROGRAMMING

Some programs were developed according to the
requirement of specific tasks such as calculating and
plotting the non-dimensional design curves or solving core
structures with stiffness variations throughout the height,
or to study the effect of the core relative stiffness
parameter oH and the boundary conditions parameters R and
A on the elastic and elasto-plastic behaviour of core
structures.

The above programs were written in FORTRAN for
implementation on the I.C.L. 1904S computer of the
University of Strathclyde. The main functions of each
program are discussed in the following sections and the
source programs are available in the Department of Civil

Engineering, University of Glasgow.

7.2.1 PROGRAMS FOR DEVELOPING DESIGN CHARTS (PREC 1, 2

and 3)

The main function of these programs is to calculate
the values of U, Ul, U2 for given values of aH, R and A,
according to the expressions given in Chapter 4 for the
three standard load cases. The calculated results are
stored and plotted against the relative height & as shown

in Appendix B.

7.2.2 PROGRAMS TO STUDY THE ELASTIC BEHAVIOUR OF CORE

~ STRUCTURES WITH STIFFNESS VARIATIONS (PRTH 11, 12

and 13)

These programs were developed to study the elastic
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behaviour of core structures with stiffness variations
throughout the height according to the method given in
Chapter 5. They were designed to calculate the constants

GJo’ I_ and a for each zone and the end condition

w
parameters R and A from the given core dimensions, material
properties and end conditions. Substituting from the
above values into the mathematical solutions given in

Chapter 5, the core rotations and internal forces are

calculated, stored and plotted in the required form.

7.2.3. STUDY OF THE ELASTIC AND ELASTO-PLASTIC BEHAVIOUR

OF CORE STRUCTURES (PREPS)

The program PREPS was developed to study the elastic
and elasto-plastic behaviour of core structure. It was
built up of a series of subroutines each performing a
distinct function, which are run by a master driving
program. The program was used to study the example
structure considered in Chapter 4, but it can be used to
study any core configuration by modifying the subroutine
STR. |

The computation of the displacementsand internal
forces for a core structure undergoing elastic and elasto-
plastic deformations may be divided into four main stages

carried out within the program PREPS as follows.

i - CORE PROPERTIES AND APPLIED LOADING

The following parameters are provided as input data;
the core height H, the storey height h, core type and

configuration, the dimensions of the walls and connecting
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beams a, B, D, d, dc, the thickness of the walls th, the
material properties given by Young's modulus E and

Poisson's ratio Yy , the end conditions given by the depth

of the top stiffening beam ds and the foundation flexibility
factor A, type of loading and the density of the applied
torque t.

The following core parameters are then calculated;
the shear modulus G, St. Venant torsional rigidity GJ, the
stiffness of the connecting laminas B, torsional rigidity
of the core GJO, the warping moment of inertia Iw’ the
core relative stiffness constant «H, the ultimate shear
capacity of the connecting lamina and the top stiffening
beam 4, and qu, the ultimate allowable strain of the
walls STN, the top end restraint r and the foundation
flexibility parameter p. The above parameters are then

stored and recalled in further stages of computation.

ii - ELASTIC BEHAVIOUR OF THE STRUCTURE

The above parameters are used to calculate the
integration constants, the rotations and the internal
forces from the expressions given in chapters 2 and 3 for
the required loading. The results obtained are printed
and stored to be plotted if needed. The calculated
shear flows in the connecting laminas are checked against
the i;minas ultimate capacity a,’ and if it exceeds the
assigned value, thelcalculations will proceed to the

elasto-plastic behaviour stage.
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iii - PLASTICITY PROPAGATION THROUGHOUT THE CORE HEIGHT

In these stages of computation the behaviour of the
core is followed from the purely elastic state through the
appropriate elasto-plastic cases according to the core
properties, type of loading and end conditions as
illustrated in chapter 6. The density of the applied
torque t, the limits of the elasto-plastic zone L and V and
the constants of integration for each zone Ki are

evaluated, printed and stored for each case accordingly.

iv - CALCULATION OF THE CORE ANGLE OF ROTATION AND

INTERNAL FORCES

At any stage of loading, it is possible to calculate
the core angle of rotation © and the internal forces in the

N S. at any level for design

core elements q, dg > M i Sy

i?
requirements and to check for the safety of the structure
according to the British Code CP 110. From the calculated
results, the maximum angle of rotation emax’ the density

of the applied torque t and the limits of the elasto-
plastic zones, L anv V, are stored and plotted by using an
automatic graph-plotter instructed by "GHOST" plotting
routines from the I.C.L. computer software library. The

logic sequential order of the above program is given in

Appendix D.

7.2.4 COMMAND SYSTEM FOR RUNNING THE PROGRAMS

A1l the above programs and separate data files were

stored in the 1904S I.C.L. computer. A general system of
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instructions was stored in the computer which is known as
"MACRO". Only the desired program and the corresponding
data file are called and compiled by stating their names

in calling the MACRO. The compiled program is executed

and the results printed and stored in another file. If

the results are correct and reasonably arranged, it is

ordered to be plotted using the graph plotter.

7.3 NUMERICAL RESULTS

The particular core structure shown in Fig. 4.13 have
been used as illustrative examples to study the effect of
the structural parameters aH, R and A on the elasto-plastic
behaviour of core structures.

As the pattern of behaviour is independent of the
core configuration, only the doubly symmetrical case was
considered. The above parameters were given the same
values as in Chapter 4, while the core was considered to
be subjected to the three standard load cases. The
development of the plasticity throughout the core height
and the corresponding maximum angle of rotation are drawn
against the applied torque in Fig. 7.1 to 7.9 for the
above cases. At any stage of loading the limits of the
elasto-plastic zone and the corresponding maximum angle of
rotation could be found by drawing a vertical line passing

through the value of the applied torque.
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7.3.1 EFFECT OF THE PARAMETER aH ON THE ELASTO-PLASTIC

BEHAVIOUR OF CORE STRUCTURES

Changes in the values of the parameters aH were
achieved by assigning different values to the depth of the
connecting beams as shown in Table 4.1. Consequently the
ultimate shear, and corresponding bending moment,
capacities of the connecting laminas have increased linearly
with the depth. The values of the required applied torque
to cause formation of the first plastic hinge with the
corresponding level and maximum angle of rotation are given
in Table 7.1. The variation in values of the required
applied torque is due to the difference in the increase
between the ultimate capacity and the vertical shear of the
connecting laminas.

The patterns in which the plasticity have developed
throughout the core height and the corresponding maximum
angles of rotation are shown in Figs. 7.(1, 2 and 3) for
the three standard load cases. The above patterns have
followed the modes which were predicted from the distribution
of the vertical shear in the connecting lamina, given in
Appendix B, for the core end conditions and type of loading.

It can be concluded that the core maximum angles of
rotation will decrease as the values of aH increase, but
the rate of the plasticity development throughout the core

height will increase.
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7.3.2 EFFECT OF THE TOP END RESTRAINT PARAMETER R IN THE

ELASTO-PLASTIC BEHAVIOUR OF CORE STRUCTURES

To study the effect of the top end restraint
parameter R, the same core structure was provided with a
top stiffening beam with variable depth and stiffening
factor as shown in Table 4.2, The depth of the connecting
beams was fixed at O.5m. The load at which the first
plastic hinges have developed, the level concerned, and
the corresponding maximum angle of rotation for the various
values of R, are given in Table 7.2. The propagation of
plasticity throughout the core height and the corresponding
maximum angle of rotation are shown in Figs. 7. (4, 5 and
6) for the three load cases.

It is seen that the existence of a top stiffening
beam increases the torque required to form the first
plastic hinge, moves its level downwards and decreases the
corresponding maximum angle.of rotation. The rate of the
above effects decreases with the increase in value of R.
The rate of the development of plasticity throughout. the
core height and the core maximum rotation decrease with the

increase of the top restraining parameter R.

7.3.3 EFFECT OF FOUNDATION FLEXIBILITY PARAMETER A ON

ELASTO-PLASTIC BEHAVIOUR OF CORE STRUCTURES

The same core structure was assumed to be erected on
flexible foundations with different flexibility parameters
A having the range of values given in Table 4.3. In this

case the required torque to form the first plastic hinge
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decreases and its level will move downwards as the
flexibility parameter A increases, but in the meantime

the corfesponding core rotation will increase as is shown
in Table 4.3. The rate of propagation of plasticity
throughout the core height and the corresponding maximum
angle of rotation increases as the flexibility parameter A
increases, as shown in Figs. 7.(7, 8 and 9) for the three
standard load cases. This is because the connecting beams
will be more active in resisting the warping of the core to

compensate for the weakness of the foundation.
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aH 1.506 4,128 7.560 |11.628
t x 10°
0 13.58 15.21 21.96 29.20
s | N.m., ,
o
£lx. m. [|60.00 60.00 60.00 60.00
+
ST 3 , -
o{6 x 10
& 2d 0.01236 |0.003508 [0.001729 |{0.001024
t x 106
2 |xom./m. 0.6950 0.5719 0.6087 0.6923
B o )
RalX. m. [37.98 21.67 16.09 12.66
?ié -3 '
2 |° §d1° 0.01456 |0.003286 |0.001279 |0.0006715
s |t x10% | oo lo.01382 |o.01566 |0.01865
2 IN.m./m. . . : -018€
Q(D
wo{X. m. |41.52 24.99 19.39° - |15.87
58 3 —
£ |® X" |o.o1421 [0.0034 |0.00138 |0.000749

Table 7.1 Effect of value of o¢H on the formation of

the first plastic hinge
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CHAPTER 8

EXPERIMENTAL INVESTIGATION

8.1 INTRODUCTION

In order to substantiate the methods of analysis
demonstrated in chapter 2 and chapter 6 for the elastic and
elasto-plastic behaviour of core structures subjected to
torsional loading, two sets of experimental investigations
were carried out. The first‘set of experiments was
conducted on perspex acrylic models to study the elastic
behaviour of core structures in the following situations.

1 - Singly-symmetric core, fixed at the base, free at the
top and subjected to a point torque at the top.

2 - Singly-symmetric core, fixed at the’base, restrained
at the top and subjected to a point torque at the top.

3 - Doubly-symmetric core, fixed at the base, free at the
top and subjected to a point torque at the top.

4 - Doubly-symmetric core, fixed at the base, restrained
at the top and subjected to a point torque at the top.

The second set of experiments was carried out on
microconcrete models, which were built and tested to study
the elastic and elasto-plastic behaviour of core structures
for the first and third cases of the above set.

The various aspects of the experimental investigation,
comparison between the experimental and theoretical
results and discussion of results are given in this

chapter.
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8.2 EXPERIMENTAL STUDY OF THE ELASTIC BEHAVIOUR OF CORE

STRUCTURES

8.2,1 CHOICE OF MATERIAL

The selection of a suitable material for models
designed to simulate the elastic response of core
structures depends upon several requirements. The chosen
material must show a linear stress-strain relationship, the
strains induced by a reasonable test load should be of
sufficient magnitude to be measured accurately and the
material should be isotropic and homogeneous.

In addition to the above requirements, the material
must be available, relatively inexpensive and not
difficult to be machined and fabricated.

Therefore, it was decided to construct the models
from perspex acrylic sheets, as it satisfies the afore-
mentioned requirements.

The perspex has some disadvantages as a modelling
material. Its properties are affected by changes in room
temperature and humidity, and it creeps under loads."
However, if the necessary precautions are taken during
testing, results of reasonable accuracy may be obtained

using perspex models.

8.2.2 MODEL CONFIGURATIONS AND DIMENSIONS

Two perspex models were constructed to simulate
twelve-storey singly and doubly symmetrical cores. The
configurations and dimensions of the models are shown in

Fig. 8.1, and their geometrical properties are given in
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Table 8.1.

Each model was cemented into a relatively rigid base
of 25 mm thick perspex plate. The cross-sectional shape
of each core was held undistorted by using circular plates
fitted at each second level, the top plate was used to
tranémit the torsional loading to the core as shown in
Plates 8.1 and 8.2, After the initial series of tests
were completed, two aluminium plates were cemented and
bolted through four holes to the top connecting beams to

simulate a top end restraining beamn.

8.2.3 TEST FRAME FOR PERSPEX MODELS

The test frame in which the perspex models were mounted
during the test is shown in Plates 8.1 and 8.2. It
consists of a heavy horizontal I beam at the floor level,
two vertical columns welded to it at each end and a
rectangular base fixed at mid span of the horizontal beam.
Two 50 mm diameter pulleys, fixed at the tops of two
opposite columns, one on each side were employed to
transmit horizontal loads to the models. The horizontal
I beam was 310 x 205 mm and 1150 mm length; the first two
columns were made of two equal angles 150 x 150 mm and the
second two columns were made of two equal channels 102 x 51
mm. The rectangular steel base was made of four square
hollow sections 60 x 60 mm welded together and fixed to
another two square hollow sections 100 x 100 mm. which in
turn were welded to the I beam. The perspex base of the
model was further strengthened by placing another steel

diaphragm above it. The steel diaphragm, the perspex base
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and the fixed base were firmly clamped together by % inch
diameter screwed rods to form a fixed end condition at the
.base.

A secondary frame was built around the model of light
aluminium bars to attach the dial gauges for the measure-

ments of the displacements.

8.2.4 MEASUREMENTS OF STRAINS AND ROTATIONS

i - STRAIN MEASUREMENTS

Electrical resistance strain gauges type "EA-41-
600BH-120" were used to measure the strains induced on the
models by the applied torque. Four sets of strain gauges
were fixed to each model. The first set was placed at the
top tension side of each connecting beam to assess the
shear forces in the beams. The second set was fixed at
mid-height of the first storey at 5 mm. from the corners.
The third set was fixed near the top of the walls to
measure the effect of the top end restraint. The last set
of strain gauges was placed on the inner face of the walls
at the same level and position as the second set to provide
a check on any out-of-plane bending. The positions and
numbers of the strain gauges of the first three sets are
shown in Fig. 8.2 for the two models.

All the strain gauges were glued to the model by
"M~-BOND-200" adhesive and covered by a coat of "M-COAT-D"
for insulation and pfotection. The resistance of each
gauge was checked by "AVO-METER'" to ensure that there were

no faults in the gauges or the connections. Then the
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strain gauges were wired to a switch and balance unit
model "SB-1"; each unit provides a means of monitoring the
output of ten strain gauges, which in turn were connected
in parallel to a portable strain indicator model "P-350A".
Both of them were made by "Vishay Instruments".

| For each switch and balance unit, a dummy gauge was
provided by a perspex model not under test, which has the
same properties as the perspex of the test model, fitted

with identical strain gauge to those on the test model.

ii - ROTATION MEASUREMENTS

During the tests the displacements of the models
were measured by "MERCER" dial gauges with a maximum travel
of 26 mm. and a sensitivity of 0.01 mm per division, which
were attached to the light aluminium frame surrounding the
model. The dial gauges were positioned at the ends of the
circular diaphragm arms a distance L apart, (where L was
nominally GOO.mm.), at each second floor level as shown in
Plate 8.1 and 8.2,

The angle of rotation © and the position of the shear
centre at the levels given in Fig. 8.2 have been
calculated by taking the readings g, and gy 28 shown in
Fig. 8.3 and substituting in the following cases.

The angle of rotation © for the singly symmetrical

model was evaluated from the expression

S L-S
where

L = the distance between the dial gauges at the same level
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g1 and gg = the dial gauge displacements measured
simultaneously.

glL

S=___._-._.—-
gl + €9

The distance e of the shear centre from the back wall will
be given by

g
€= LC% T g 2 ) - g

17 82
In the case of the doubly symmetrical model, © was

evaluated from the expression

gy + 89

0= —1

8.2.5 DETERMINATION OF THE ELASTIC PROPERTIES OF PERSPEX

In order to evaluate the stresses induced in the
models from the strain gauge readings and to compare the
experimental results with the calculated results using the
proposed theoretical analysis, the elastic properties of
the perspex, namely Young's modulus E and Poisson's ratioY
were evaluated. Two test specimens, 5 x 37.5 x 305 mm.,
were cut from the same sheets of perspex as were the walls
of the models. Three electrical resistance strain gauges
were fixed on each specimen, two longitudinally on the
centre line at mid-span on opposite faces and the third in
the perpendicular direction at a distance of 12.5 mm. from
the mid-span positibn. The specimens were tested in
bending between two level supports, 240 mm. apart, two

equal loads being applied at the third points of the span
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to produce a constant bending moment and no shear in the
region of the strain gauges. Specimens were loaded
gradually by small increments and the readings of a dial
guage positioned at mid-span of the specimen and the strain
gauges were recorded. The same number of readings were
recofded during the gradual unloading, each specimen being
tested four times, twice on each face.

Young's modulus was evaluated from the results of the
deflection readings and strain readings separately by
using a desk calculator to perform a least squares linear
regression, which is designed to minimise the sum of the
squares of the deviations of the actual points from the
straight line of best fit. Poisson's ratio was evaluated
by dividing the strain of the lateral gauge by the
corresponding strain of the longitudinal gauge.

The average values of Young's modulus and Poisson's
ratio, which were used in the theoretical analysis of the
perspex models and for the evaluation of stresses are

given in Table 8.1.

8.2.6 TEST PROCEDURES

The model was fixed to the test frame by screwed
rods passing through its base. The surrounding light
frame was fixed in position and the dial gauges were
positioned at the right levels and touching the arms of the
horizontal plates at the required length L. Two extra
dial gauges were positioned on two opposite corners at
the top of the model in an attempt to measure the warping

displacements. Two screw nails were fixed to the top
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horizontal plate with two cords attached to them and
running over the two side pulleys; a hanger was attached
to the end of each cord on which weights could be placed.

Prior to eaéh test, the model was loaded to half the
intended maximum load and unloaded. The actual test
usuaily started 30 minutes after the unloading to ensure
that all the components were fully settled.

Before starting to load the model for the test, the
reading of each strain gauge was recorded and the dial
gauges were set to zero. The weights were placed on the
hangers almost at the same time with care to avoid any
impact effects, in increments of 5 1b. A time interval of
10 minutes was allowed after each load increment before the
readings were taken to permit the gaugés to settle to
reasonably stable values. Six increments of loadings were
applied in each test, and the rotations and strains were
recorded in the same order throughout.

In order to minimise the errors due to creep in the
perspex, after recording the readings of the last load
increment, the model was unloaded by equal decrements and
a separate set of readings were recorded. The mean of
the two results obtained from loading and unloading was
used in comparing the experimental with the theoretical

results.

8.2.7 THEORETICAL ANALYSIS

The models were analysed theoretically to provide

a comparison between the experimental and the theoretical
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reSults. In the theoretical analysis, the models were
considered to be fixed at the base, free at the top in the
first case and restrained at the top in the second case.
The values given in Table 8.1 were incorporated into
the solutions given in Chapter 2 and 3 to evaluate the
intefpal forces and rotations of the models when subjected

to the corresponding values of point torque at the top.

8.2.8 COMPARISON BETWEEN EXPERIMENTAL AND THEORETICAL

RESULTS

The results of the experimental investigation carried
out on the perspex models as described before are presented
graphically and compared with the analytical solutions

corresponding to each particular test as follows:

i - ROTATIONS

The core maximum rotation when the models are
restrained and unrestrained at the top are calculated from
the measured displacements and plotted against the applied
torque in Figs. 8.5 and 8.9 for the singly and doubly
symmetrical models respectively. The angles of rotation
at the maximum applied torque are calculated in the same
way at different levels throughout the height of the models
and compared with the corresponding theoretical values for
both models in Fig. 8.6 and Fig. 8.10.

The results show good agreement for both models
where there is no end restraint at the top. When a stiff

top beam has been provided to the models, a small
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reduction in the rotation of the singly symmetrical model
has been recorded, but the theoretical results have been
reduced significantly due to the effect of the top end
restraint. However in the doubly symmetrical model the
good agreement has been maiptained although the experimental

results are slightly greater than the theoretical results.

ii - VERTICAL SHEAR IN THE CONNECTING BEAMS

The vertical shear in each connecting beam is deduced
from the bending moment calculated from the readings of the
strain gauges for the maximum applied torque and plotted
with the theoretical shear force distribution for both
models in Fig. 8.7 and 8.11.

The plots of the experimental values follow the same
characteristic form of curve obtained from the theoretical
calculations. The existence of a top end restraint did
reduce the theoretical values of the shear force
significantly. However the same effects have not been
verified to the same degree experimentally, and may have
been due to the difficulty of determining these relafively

small forces.

iii -~ STRESSES IN THE WALLS

The stresses in the walls were evaluated from the
readings of the strain gauges and plotted together with
the theoretical stress distribution at the levels of the
strain gauges in Figs. 8.8 and 8.12 for the two models.

The correspondence between the experimental and
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theoretical results appears to be good in all the cases at
the lower levels. In the cases when a top stiff beam is
present the stresses at the top of the walls are greater
than the theoretical values near the beams and in the

opposite sense at the adjacent corners.

8.2.9 DISCUSSION OF RESULTS

To draw any sound conclusions from a comparison
between the experimental and the theoretical results, the
various possible sources of error should be identified,
eliminated if possible or accounted for, in both sides.

In the experiments, the errors in the experimental
results may be attributed to three main sources, the
modelling material, the accuracy in constructing and testing
the models, and the deficiencies in obtaining and analysing
the results. |

The properties of perspex are affected by changes in
room temperature and humidity. To compensate for these
effects dummy strain gauges were attached to a perspex
model not under test and connected to the switch and
balance unit. However, these errors are not expected to
be significant as the entire test used to take an average
of two hours inside a reasonably controlled laboratory
under atmospheric conditions.

Although the loads were increased and decreased by
a fixed increment and readings were taken at fixed time
intervals after each increment or decrement and the two
values averaged, the readings taken at the last stages of

loading are greater than the actual values. Because of
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the tendency of perspex to creep under loads, the models
continued to creep under the existing loads, so that the
rotations did not decrease after the first two decrements
of loading. In some tests it continued to increase after
the first decrement. The models were cut and constructed
accurately but a complete symmetry may not be achieved
because of possible variations in the thickness of the
walls and the local restraining effect of the external
diaphragms. The applied torque was created by hanging
two equal weights at the ends of two cords passing over
two pulleys which may have different frictional resistances
and will result in two unequal applied loads at the model.
However, in all the tests fairly symmetrical conditions
were achieved as indicated by displacement and strain
measurements.

The perspex base of the model may suffer local strains
due to the actions of the walls. This will increase the
measured rotations and decrease the stresses in the walls.

The top added stiffening beams were bolted to the
model through four bolts, two at the third points of the
top connecting beam and one at the centre line of each wall.
It may have resulted in four axial forces at the top rather
than the usual connecting beam actions.

The strain gauges and the strain indicator were
carefully checked before performing each test to detect
any errors due to defects in them. The accuracy of the
readings measured from strain gauges may be affected by
the local stiffening effect of the strain gauge and the

adhesive on the perspex especially in such small sections
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as the connecting beams. The errors involved in these
cases are expected to be very small.

The dial gauges located at the ends of the two arms
of the circular diaphragms showed higher values of rotation
@ in the earlier tests, due to the flexibility of the arms.
The tests were repeated after reducing the distance between
the dial gauges at each level and adding another two dial
gauges around the model itself near the top as a further
check.

Two dial gauges were located above the model on two
opposite corners to measure the warping strains on the
walls, but they did not give any meaningful readings.

This was not unexpected due to the very small deflections
concerned.

Each test was carried out twice with 24 hours differ-
ence in time and the results of the tests were averaged and
compared against the theoretical values.

Any inaccuracy associated with the theoretical
analysis can be attributed to the following sources;

In the theoretical analysis the transverse stiffness
of the walls was neglected by idealising the walls as thin
plates. This will result in an underestimation of the
torsional resistance of the models. However, in the models
tested the thicknesses of the walls were relatively small
compared to the other dimensions of the models and the
errors due to that source should be small.

The second source of errors comes from neglecting

St. Venant torsional resistance of the closed cross-section
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parts of the models at each connecting beam, which would

result in an underestimation of the stiffness of models.
Another source of error which arises from replacing

the discrete connecting beams by a continuous medium.

‘The accuracy of the above approach increases with an increase

of the number of connecting beams. Considering the number

of the connecting beams to the overall dimensions of the

models, the errors in this case should be quite small.
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8.3 EXPERIMENTAL STUDY OF THE ELASTO-PLASTIC BEHAVIOUR

OF CORE STRUCTURES

The aim of this investigation was to check the
validity of the proposed method of analysis of the elasto-
plastic behaviour of core structures, as well as to study
the crack pattern of such partially closed box structures.

Testing models constructed from materials having a
linear elastic behaviour is unsatisfactory as concrete is
known to have a nonlinear stress-strain characteristics
even in the range of the working loads. Therefore, to
conduct investigations into the behaviour of real concrete
structures up to the state of failure, tests must be
carried out on small concrete models to provide a pattern
of behaviour as close as possible to that of real
structures.

It was not required to simulate a specific prototype
structure. The basic requirements were to construct a
core which would have substantially the same haterial
properties as any reinforced concrete structure, and which
would have a shape and dimensional ratios which could be
scaled up to give a real core structure. It was also
required to allow a realistic study of the core overall
behaviour, cracking propagation and mode of failure. Two
models were built of singly and doubly symmetrical forms,

to study the complete behaviour to failure in each case.

8.3.1 DESIGN OF THE MODELS

It was considered desirable to make the models as
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large as possible in order to minimise the size and
shrinkage effects and to reduce the percentages of
tolerances connected with the construction processes, but
this was limited by the loading equipment and the space
available in the laboratory. A controlling factor was
the thickness of the walls which would allow two cages of
reinforcement and the aggregate particles to pass through.
The core dimensions were chosen in reasonable proportions
with the chosen thickness as shown in Fig. 8.13. The
design of the models was Based on the assumptions that:-
1 - The concrete does not resist tension.
2 - The distribution of the concrete strain is linear
across each wall.
3 - A rectangular stress bloék is appropriate for the
concrete in compression.
4 - The strain in the steel is the same as that in the
concrete surrounding it.
The beams and walls were designed to be under-reinforced
to allow the steel to yield first, prevent sudden failure,
allow for large deflection and crack propagation, and for

the full strength of the structure to be realised.

8.3.2 MATERIALS FOR CONSTRUCTION OF THE MODELS

1 - CONCRETE MIX DESIGN

A local HYNDFORD sand with grading as shown in Fig.
8.14 was chosen along with ordinary Portland Cement to
construct the models. Three trial mixes were made and

tested for compression and indirect tension by using cubes
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of 37.5 mm for compression tests and 37.5 x 75 mm cylinders

for indirect tension tests. The mix proportions and the

averages of the results of the tests are given in Table 8.2.
The first mix was chosen as the most suitable one,

considering its workability, fcu/ft (ratio of compression

strength to tensile strength) and its setting time to

allow for the casting of the whole model before the initial

setting time is reached.

2 - REINFORCEMENT OF THE MODELS

The model reinforcement was required to have a
stress-strain relationship as close as possible to the
short term design stress-strain curve for reinforcement
given in The British Standard Code of Practice CP 110.
Four different types of reinforcements were considered so
that a suitable one or a combination of more than one of
them could be incorporated in constructing the models.

These were,

1 - Plain rods

2 - Threaded rods

3 - Deformed bars similar in appearance to the hot rolled
ribbed high yield reinforcing bars used in practice.

4 - Small diameter wire ropes consisting of seven wires

twisted around one of them.
The second and third types of reinforcement proved
Suitable to provide sufficient bond and crack patterns
which were reasonably close to the prototype which they

wvere meant to simulate as found in other experiments (31).
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However they were omitted because of the high cost involved
in buying the threaded rods, which were not available in
the required lengths, or manufacturing a deforming machine
to produce deformed bars. Therefore the choice was limited
to the first and last types, both of them being cold rolled
mild.steel having a stress-strain behaviour reasonably
close to the required pattern, but which do not have a
definite yield point.

The discriminating factor was their bond character-
istics, since it was required to provide sufficient bond to
cause complete yield failure without any slip between the
reinforcement and the concrete, as well as an overall
cracking pattern similar to what would occur in a real
structure. Thus, three sets of experiments were carried

out to provide information about their bond characteristics.

I - CONCENTRIC PULLOUT TEST

This test was carried out on four groups of
reinforcements, 3 mm diameter plain rods and 7 x 0.7 mm,
7 x 1.0 mm and 7 x 1.25 mm diameter twisted wire ropés
embedded in 37.5 x 75 mm cylindrical specimens as shown in
Plate 8.3. The average of the best four results of each
group are given in Table 8.3, expressed as a pull-out

force per millimetre of the embedded length.

11 - ECCENTRIC PULLOUT TEST (Bending Bond Strength)

A - STRAIGHT BEAMS

A set of five beams of dimensions 30 x 50 x 300 mm

were symmetrically reinforced with two plain rods of 3 mm
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diameter on each side and provided with vertical double
links of 1.2 mm diameter every 25 mm. They were simply
supported on a 200 mm clear span and tested with a point
load at the centre.

All the beams failed due to slipping of the rods
with‘one major crack under the loading point because of

lack of bond between the concrete and the plain rods.

B - U-SHAPED BEAMS

Another set of three beams were designed to simulate
the actual conditions of reinforcement length and detailing
in the models. The beams were constructed in a U-shape
with a cross-section of 30 x 50 mm, 400 mm main span and
200 mm in each leg as shown in Plate 8.3. The first beam
was reipforced by plain rods and vertical links as before,
fhe second beam was reinforced similarly, but was provided
with extra aluminium angles fixed to the rods at the
corners, and the last beam was reinforced with 7 x 1.0 mm
twisted wires, two in each side and the same number of
links. The beams were tested under a central point‘load
on the span of 200 mm. The first two beams failed due to
lack of bond with a major crack under the loading point,
concrete failure at the inner corners due to the pulling
out of the reinforcement and yield failure of the steel
in the outer corners due to the concentration of tensile
stresses at the corners. In the third beam the failure
was clearly due to yield of the reinforcement with one

major crack under the loading point and some minor cracks
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in the surrounding Zone; no cracks were observed near the
corners. In the meantime no diagonal tension cracks were
observed in any of the above tests due to the existence of
the vertical stirrups.

As a result, it was decided to use wire ropes for

reinforcing the models according to the design requirements.

8.3.3 CONSTRUCTION OF THE MODELS

Each of the models was constructed in four stages

as follows.

i -~ PREPARING THE FORMWORK

The shuttering was made of two main parts, a fixed
part composed of a horizontal board with Polystyréne blocks
arranged in distances equal to the depth of the connecting
beams to create the openings in the front wall, and two
vertical wooden shutters to determine the outer faces of
the side walls,_as shown in Plate 8.4. The second part
was in the shape of a closed box as shown in Plates 8.5 and
8.6 (for the singly and doubly symmetrical sections
respectively) to be placed inside the outer part as shown
in Plate 8.7 to create the core hole and the side and back

walls.

ii - ARRANGING THE REINFORCEMENT

Two different sizes of wire ropes were used in
reinforcing the models. The connecting beams were
symmetrically reinforced with three wire ropes 7 X 0.7 mm

on each surface and provided with vertical stirrups of



191

1.2 mm plain rods every 25 mm. The walls were reinforced
with 7 x 1.25 mm diameter wire ropes and provided with
horizontal links made of 7 x>0.7 mm diameter wire ropes
spaced at every 50 mm.

The reinforcements for the connecting beams were
placed to a high degree of accuracy to ensure sufficient
cover through its full length. The same accuracy could
not be achieved in locating the reinforcement for the walls
due to the flexibility of the wires and their long lengths,
as well as the larger spacing between the stirrups.

The reinforcement for the walls was extended outside
the formwork to create hangers at the top and to allow for
a sufficient anchorage length for embedment in the base.
The detailing of the model reinforcement is shown in Fig.
8.16. The base was reinforced with 10 mm diameter deformed

bars as shown in Fig. 8.17.

iii - CASTING THE MODEL

The outer shuttering was fixed to a vibrating table
to ensure good compaction all through the model during
casting. The front wall was concreted first up to its
full thickness and partially vibrated. The inner
shuttering was then placed inside the outer part and fixed
by nailing its top and bottom to the side walls of the
outer shuttering as shown in Plate 8.7. The concrete was
then poured in to create the two side walls and the back
wall. The whole model was vibrated until air bubbles

failed to appear.
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jv - CASTING THE BASE OF THE MODEL

After 24 hours the outside shuttering was struck and
the model was kept under wet conditions for one week. The
inner shuttering was then removed and the model lifted
using the top hangers and placed on a steel chair to support
the ﬁodel during casting the base. The extra lengths of
‘the reinforcement of the walls were embedded in the base.

The base was provided with four rods of one inch
diameter each near the corners to fix the model to the
laboratory strong floor. Plate 8.8 shows the adjustment
of the doubly symmetrical model during casting the base.
Control specimens were taken from the same batch during
the casting of each model, and kept ahd cured under the

same conditions as the models.

8.3.4 LOADING AND SUPPORTING SYSTEMS

The models were tested under a concentrated torque
at the top by using two hydraulic jacks to impose two
equal and opposite forced on the model. The jacks were
supported against two steel columns with a load celln
behind each one as shown in Plate 8.9. The loads were
produced by a hydraulic pump forming part of a system
capable of providing four independently controlled pressure
points although only two points were used.

A steel diaphragm consisting of two separate parts
built of 75 x 75 mm square hollow sections and joined
together by two % inch threaded tie rods, to fit exactly

around the model, was fixed around the core at the top.
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The two rounded ends of the hydraulic jacks were arranged
to meet the top diaphragm at two opposite sides and at
equal distances from the centre line of the core.

A reinforced concrete roof slab was fitted at the top
of the model to ensure that the top end will rotate as one
unit'and create only torsional loading. Another four
steel diaphragms made of 25 x 25 mm square hollow sections
were firmly tied around the core at four different levels
to prevent any out of shape distortions during the test.
The diaphragms consisted of three sections welded together
to formaU-shape, and the fourth was bolted across to form
the closed section, through threaded rods welded to the
ends of the arms of the U-section.

The model base was fixed to the laboratory strong
floor slab by four threaded tie rods, each of one inch
diameter, through the holes created in the base during

casting.

8.3.5 INSTRUMENTATION, MEASUREMENTS, AND DATA PROCESSING

Three different types of measurements were required
to be recorded during the test, namely, the load applied
at each jack unit, the displacements of the model in the
two major (Y and Z) coordinate directions at four different
levels, and the strains at chosen points on the beams and
walls of the model.

For load measurements, two N.C.B./M.R.E. load cells
(type 403 manufactured by W.H. MAYES & SON (WINDSOR) LTD)
were positioned behind the hydraulic jacks.  They were

connected to a digital computer (type PDP-8/L) which in
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turn was connected to a remote data display to give
instantaneous readings of the actual loads applied to the
model. The model displacements were measured by NOVATECH
(type RR-102S) electrical transducers with two inch

strokes. They were fixed at chosen points at four
différent levels to a metallic frame erected around the
model to measure the displacements in the Y and Z directions
as shown in Fig. 8.4.

Strain gauges (type EA-06-500BH-120 with 120 f 0.15%
Ohms resistance and 2,04 pa 0.5% gauge factor at 75°F) were
used to measure the strains in the model at chosen points.
The positions of the strain gauges and the levels of the
transdﬁcers are shown in Fig. 8.18 for both models.

All the instruments and their readings were contrblled
and recorded by the PDP-8/L digital computer through a
remote controller which allowed the readings to be taken
at any stage during testing of the models.

Data processing comprises three stages, firstly,
taking the initial readings for the above measuremenﬁs,
subtracting them and setting zero initial readings for
the following stages. The second stage was carried out
with the aid of the remote data display, when the applied
loads were equal to the required values at bpoth jacks, a
new scanning for the measurements was ordered to be
carried out and recorded by the remote controller. In
the third stage, thé recorded data were converted and
Printed out in the form of KN, for loads, mm,for displace-

ments, and microstrains, for strains.
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8.3.6 TEST PROCEDURES

Prior to each test, the loading equipment, the
measuring instruments, and the connections were checked to
be in working order and an initial reading was taken. The
loads were applied through the two hydraulic jacks and
increased by increment of 100 1b on each jack until the
core ultimate strength was attained. There was a time
lag between the two jacks in reaching the required load in
every increment due to the fact that they were independently
controlled.

After each increment the computer recorded and printed
the required measurements which take an average of 58
seconds to complete. The surface of fhe model was
examined and all the observed cracks were marked and
numbered in correspondence to the applied load.

In the first (singly symmetrical)model, the first six
increments appeared to be within the elastic limit, as
cracks were only observed after the seventh increment and
continued to develop thereafter with the load increases.
For the second (doubly symmetrical) model, the first
crack appeared without being able to record any readings
due to fault in the channel connected to the load cells,
but the loads were released immediately. The model was
reloaded again after ensuring that the system was working

normally.

8.3.7 THEORETICAL RESULTS

The two models were analysed theoretically by

incorporating the properties of the models given in Table
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8.5 in the computer program described in Chapter 7. The
calculated results were compared with the experimental
. results obtained from the model tests and discussed in

the following sectiomns.

8.3.8 EXPERIMENTAL RESULTS AND COMPARISON BETWEEN THE

EXPERIMENTAL AND THEORETICAL RESULTS

1 - CONTROL SPECIMENS

The control specimens taken during the casting of the
models were tested 24 hours before testing the corresponding
core model.

The compressive strengths of the concrete, f and

cu

£ were obtained from the average of the results of

cc’
testing 8 cubes of 37.5 mm and 4 cylinders of 37.5 x 75 mm
respectively. The indirect tensile strength ft was
obtained from the average of the results of testing 4
cylinders of the above sizes. The modulli - of elasticity
were obtained from testing 150 x 300 mm c&linders according
to B.S. 188-1952. The above results are given in Table
8.4 for each model.

The stress-strain characteristic of the concrete used
for the models and its corresponding modulus of elasticity-
strain relationship are given in Figs. 8.19 and 8.20.

These curves were drawn from tests on cubes of 37.5 mm.

A similar attempt to draw the same relationships by testing
cylinders of 37.5 xA75 mm failed due to the difficulty of
achieving two smooth and parallel faces. A typical stress-

strain characteristic relationship for 7 x 0.7 mm wire
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rope used in reinforcing the connecting beams is given in
Fig. 8.15. The value of the modulus of elasticity E
was taken as an average of the best 8 results of tests

carried out on 7 x 0.7 mm and 7 x 1.25 mm wire ropes.

ii - ROTATIONS

The measured rotations are compared with the
corresponding theoretically calculated values in Figs.
8.21 and 8.22 for the singly-symmetric model and in Figs.
8.27 and 8.28 for the doubly-éymmetrical core. In the
first case, good agreement has been achieved within the
elastic and elasto-plastic limits, but as the cracks in
the walls increased the discrepancy between the two values
increased. In the second case the measured rotations
were greater than the theoretically calculated ones,
because of the initial cracks developed in the model before
unloading and reloading it and the distortion of the cross-
section of the model. The intermediate diaphragms proved

to be too flexible to prevent as distortions.

iii - VERTICAL SHEAR AND DEVELOPMENT OF PLASTICITY IN THE

CONNECTING BEAMS

The vertical shear in the connecting beams was
assessed by measuring strains on the compression faces of
each beam. The measured shear distributions are
compared with the theoretically calculated values in Fig.
8.23 and Fig. 8.(29 and 30) for the singly and doubly
symmetrical models respectively. In the first case the

measured shear was less than the theoretically calculated
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values. In the second case a meaningful shear pattern
could not be achieved in the two sets of connecting beams
because of lack of symmetry due to unsymmetrical cracks in
the walls and distortion of the core cross-section. A
comparison between the theoretical and actual sequence of
plasticity development in the connecting beams are given
in Figs. 8.24 and 8.31 for the two models. - In both cases,
the plasticity commenced at an intermediate height and not
at the top as expected theoretically, probably because of
the restraining effect of the top diaphragm. In the
doubly-symmetrical model the plasticity did not follow the
same sequence in both sides because of the aforementioned

reasons.

iv - STRESSES IN THE WALLS

Stresses calculated from the measured strains at the
outside faces of the walls at different stages of loading
are compared with the corresponding theoretical stress
distributions in Figs. 8.25 and 8.32 for the two models.
For the singly-symmetric model, good agreement was
obtained at the shown three stages of loading, shown for
the completely uncracked model, at the first crack observed
in the connecting beams and after the plasticity had
developed in all the connecting beams.

In the doubly-symmetrical model most of the measured
strains were less than the theoretically calculated values

because of the release of stresses due to the wall cracks.
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v - CRACK PATTERN AND MODE OF FAILURE

The crack patterns in the outside faces of the model
walls are shown in Plate 8.(11 and 12) and Plate 8.(13 and
14) for the singly and doubly symmetrical models
respectively.

In the first model, cracks were observed in beam
numbers 3, 4, 5 and 6 at a torque of 1.411 x 106 N.mm,
at a torque equal to 1.82 x 106 N.mm cracks appeared in
beams 1 and 2. The first horizontal tension cracks were

observed in wall panel 1 at a torque equal to 2.85 x 106

N.mm. At a torque equal to 3.439 x 106 N.mm, torsion
cracks were observed in the two side walls and at a torque
equal to 3.978 x 106 N.mm cracks appeared in the back wall.
In the later stages of loading, cracks were observed in the
opposite directions in the interior faces of the back wall
and two side walls to those on the exterior faces. The
crack patterns in the exterior and interior sides of the
unfolded model are shown in Fig. 8.26.

In the second model, the initial cracks which occurred
before the actual test were marked in red as may be seen
in Plates 8.(13 and 14). In the actual test cracks
continued to develop throughout the model. Tension cracks
formed the dominating pattern at the front and back walls
under the loading points, however torsional cracks covered
all the walls. In the interior sides the cracks were

mainly in the opposite directions to those on exterior

sides as shown in Fig. 8.33.




8.3.9 DISCUSSION OF RESULTS

The results obtained from the above tests were
influenced by various factors which should be accounted
for if the results are to be correctly interpreted. These
factors may be summarised as, the accuracy in constructing
the models, the properties of the models materials, the
end conditions, the applied loads and the reactions of
the models.

Although great care was taken during constructing the
models, there were some differences in the thickness of
the walls. In the first (Singly-Symmetrical) model the
thickness of the front wall was 32 mm., in the back wall
it varied from 30 mm. near the corners to 33 mm. at the
middle and the two side walls were 30 mm, In the second
(Doubly-Symmetric) model, the front wall was 33 mm, the
back wall was 30 mm. and the two side walls were 29 mm in
thickness. The above differences in the dimensions of
the models were not expected to affect their overall
behaviour sigﬁificantly.

In the above comparisons, the theoretical values were
calculated for a constant elastic modulus for the concrete.
The discrepancy between the stresses calculated from the
measured strains and the corresponding theoretically
calculated values increased with the applied load because
of the non-linear Variation of the stress-strain relation-
ship of the model material as shown in Fig. 8.19. An
accurate assessment of the stresses at any stage of loading

must take into account the actual value of the modulus of
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elasticity at each particular stage as it varies
considerably within the limits of allowable strain as
shown in Fig. 8.20.

Each model was built into a very heavy concrete base
which waé considered to provide to a good degree of
accﬁracy a fixed end condition. No relative movements
between the concrete base and the laboratory floor were
recorded. However the top steel diaphragm did impose
vertical warping restraints on the models which probably
affected the rotations and the internal force distributions.

Since the two hydraulic jacks were independently |
controlled, they gained the required load increment at
different times in each torque increment. These resulted
in the models being subjected to both torsion and bending
actions for short periods between the stages of loading.
These intervals were short and the actual readings were
only recorded after the two jacks had settled at the
required load in each stage, so that these effects were
ignored.

During testing of the models, a certain amount of
cross-section distortion was observed from the measured
displacements and the directions of cracks. These
distortions were more pronounced in the doubly-symmetrical
model, for which its two channels displaced in two opposite
directions as shown in Fig. 8.35. Therefore the rotations
calculated from the'measured displacements will be greater

than the predicted values.

The cracks observed in the models during the tests
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were due to three different actions. Spiral cracks
occurred around the models on the outside perimeter due

to the torsional shear flow around the walls and connecting
beams. In the interior sides of the walls, the cracks
were developed in two opposite directions, the first
cracks developed in the same directions as in the outer
sides because of the same action; the second cracks
developed after the beams had cracked and only a St.
Venant torsional shear was circulating within the thick-
ness of the walls. This action created shear forces in
the opposite direction to the former in the interior sides
as shown in Fig. 8.34. Horizontal cracks were observed
near the base on the walls subjected to the thrust of the
jacks, because of the out of plane bending effects

produced by the applied '‘loads on normal panels.
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MODEL PROPERTIES Nota-)Singly | Doubly
tion | Symmetric| Symmetric
Total height H 730 mm 730 mm
Core width D 150 mm 200 mn
Core depth B 150 mm 120 mm
Clear span of the connecting beams a 80 mm 80 mm
Width of the adjacent walls d 35 mm 60 mm
Storey height h 60 mm 60 mm
- Wall thickness th 5 mm 5 mm
Depth of connecting beams dc 10 mm 10 mm-
Depth of the top stiffening elements ds .20 mm 20 mm
Thickness of the top stiffening element ths 9.4 mm 9.4 mm
Modulus of elasticity of the perspex E 3260 3260
: p N/mm 2 N/mm 2
Poisson's ratio of the perspex 0.395 0.395
Modulus of elasticity of the stiffening ES 70150 70150
element : N/mm 2 N/mm 2
Connecting beam stiffness factor B 0.1627 0.1627
‘ : 10-3 10-3
Top end restraint constant r -2.0977 -1.046
mm=—1 mm-
St. Venant's torsional rigidity GJ 2.531 7.008
107. 107
- 8
Core constant of rigidity ~ GJ 10.933 6.81 10
10
Core warping moment of inertia 1 5.6979 8.8704
| ¥ 11010 mm® {1010 mm®
Core constant a 0.002433 1 0.001535
mm—1 mm—1

Table 8.1 Geometrical and material properties of perspex

models
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. feu f¢
Mix No. w/C A/C N/mm'z N/mm-z
1 0.6 3 43 .6 3.8
2 0.75 4 40.2 4.1
3 0.6 4 31.3 | 3.1

Table (8.2) Results of trial concrete mixes

Type. of 3 mm |7 x0.7]7 x 1.0 x 1.25
reinforce- |rods mm mm m

ment wires |wires wires
Ultimate |18.32 ® ¥ | 44.85
bond N/mm y y N/mm

® Steel yield before bond failure

Table (8.3) Bond strength of the trial

reinforcement
Property
Mode? fcuM&M fccﬂ%# ftM%m’ %M@M y’
Singly
Symmetrical 35.41 24.067 2.85 19.75 | 0.0566
Doubly g
Symmetrical |29-08 20.94 | 2.72 17.5 | 0.0623

Table (8.4) Properties of the concrete ﬁsed to
construct models
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) Nota+Singly Doubly
MODEL PROPERTIES tion|{Symmetric| Symmetric
: |
Total height H |1400 mm |1400 mm
: |
Core width D 400 mm 400 mm
Core depth B 200 mm 200 mm
. |
Span of the connecting beams a -200 mm 200 mm
Width of the adjacent walls d | 100 mm | 100 mm
Storey height h 200 mm 200 mm
' ‘ |
Wall thickness th 30 mm 30 mm
Depth of the connecting beams dc 50 mm 50 mm
Modulus of elasticity of concrete E 1975 175
KN/mm 2 | KN/mnf
Poisson's ratio b e 0.056 0.056
Connecting beam stiffness factor B 4,687 x |4.687 x
10-3 10-3
Top end restraint r 0.0 0.0
St. Venant's torsional rigidity GJ 8.416 x {5.965 x
1010 1010 -
- Torsional rigidity of core GJ 131.85 x |60.65 x
4 : %1 1010 1010
Warping moment of inertia of core I 10.75 x 9.20 x
w 1012 1012
Core constant a [2.442 x [1.902
10-3 10-3

Table 8.5 Geometrical and material properties of micro-

concrete models




Plate 8.1 Perspex model in test frame

Plate 8.2 Model under test
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Plate 8.3 Control specimens and beams
for primary tests

Plate 8.4 Outer shuttering and reinforcement of

the front wall
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Plate 8.7 Shuttering of doubly symmetrical model

Plate 8.8 Casting of base of model
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Plate 8.9 Loading system to create point
torque at top

Plate 8.10 Model under test
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CHAPTER 9

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

9.1 CONCLUSIONS

A theoretical method has been presented for the
analysis of core structures subjected to torsional loading.
In the method, the core is considered to consist of |
vertical plates rigidly connected together along their
edges, and, by using the engineering theory of bending in
conjunction with the continuous connection technique the
core behaviour is represented by a third order governing
differential equation. The governing equation is
expressed in terms of a single variable 6, the angle of
rotation and a single non-dimensional parameter «H, the
core relative stiffness. The method can be implemented
to analyse any core structure which is open or partially
closed by lintel beams providing no segment is completely
closed. The accuracy of the method must be expected to
decrease with an increase of the depth of the connecfing
beams. Closed-form solutions of the governing equation
are given for three standard load cases, a point torque at
the top, a uniformly distributed torque and a triangularly
distributed torque. Solutions in similar forms can be
obtained for any other form of loading expressed as an
integrable function of the height.

The restraining effect of a stiff element at the top
has been included in the analysis by introducing a non-

dimensional parameter R as a restraining end condition at
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the top, whose value can vary theoretically from zero for
a core free at the top to infinity for a totally restrained
end. The method used tends to over estimate R values
since it treats the restraint as acting on a line at the
top. In the case of unsymmetrical or multi-bayed cores
the R value cannot be defined.

The effect of the flexibility of an elastic
foundation on the core behaviour have been considered and
expressed in terms of a single non-dimensional parameter A2,
which can vary theoretically from zero for a core structure
totally fixed at the base to infinity for the unrealistic
case of a core free at the base. The above spectrﬁm of A
values allows a wide range of foundation conditions to be
considered. However, in reality, this value will be
within a particuiar range depending on the nature of the
sub-base material and the type and configuration of the
foundations. Solutions are given for the governing
equation for the above end conditions when the core is
subjected to any of the three standard'load cases considered.
A numerical study of the interactive effect of the
parameters aH, R and X has been carried out, which showed
that their relative effects on the primary actions of core
structures decreases as their values increase.

The above solutions have been used to draw design
charts for core structures subjected to any of three
standard load cases.within the practical limits of the
above parameters. They can be used to calculate the angle

of rotation, the vertical shear in the connecting laminas
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and the normal forces and bending moments in the walls at
any level of the coré height. They are presented in
general terms and are applicable to any core configuration
providing that the core relative stiffness «H has been
evaluated using the method proposed in Chapter 2 and the
parameters of the end conditions havé been estimated as
shown in Chapter 3f Numerical examples have been
presented to illustrate the various effects of the above
parameters on the maximum angle of rotation and the internal
forcg distributions in the cases of singly and doubly
symmetrical cores. Although in both cases the parameter
aH increases as an exponential function to the power 1.5 of
the connecting beam depth, the internal force distributions
have different forms. The parameter R is a cubic

function of the depth of the stiff top beamn. The
flexibility of the foundation has a very significant

effect on the values of bending moments and normal forces
in the walls, the reduction in these values exceeding 90%
of the original values of a fixed base when A has a value
of 2, and the internal forces are redistributed in a way
vhich a greater resistance against loading is assigned to
the connecting beams .

A solution for core structures with stiffness
variations throughout the height waé achieved by considering
the core to consist of various zones and satisfying the
conditions of equilibrium and compatibility between each
two successive zones. Expressions are given for the

elastic behaviour of core structures consisting of two
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zones and subjected to the standard load cases. The
same numerical example was used to illustrate the
influence of a stiffness change, with particular emphasis
on reducing the thickness of the walls. The method is
1imited to certain types of changes and cannot be applied
directly to other variations such as changing the width of
openings or the configuration of the core.

A comparison between the proposed method and frame
analysis method was carried out using the example structure
used in Chapter 4. Good agreement was achieved when
comparing the results obtained from both methods for the
rotations and the vertical shear in the connecting beams.
However, the same agreement could not be achieved when
comparing the bending moments and normal forces in the
valls.

The method was extehded to study core structures
undergoing post-elastic deformations by assuming that
plastic hinges will develop in the connections between the
lintel beams and the adjacent walls when the moment in the
beams reaches an ultimate value. In this case the core
is considered to consist simultaneously of elastic and
elasto-plastic zones. An investigation of the sequence
in which the plasticity will commence and develop in core
structures is presented. Mathematical expressions for
the overall equilibrium condition in each stage of
Plasticity are giveﬁ for a single bay core subjected to
the standard load cases.

The above expressions were employed in a computer
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program and the same numerical example was used to study
the effect of the parameters aH, R and A on the develop-
ment of plasticity throughout the core height. The
results obtained followed the mode predicted from the
shear distribution in the connecting lamina. However,
the method is not very accurate as it does not account for
the effects of cracks in the walls and beams on the
stiffness of the core, and considers the beams either fully
elastic or fully plastic. Although the method is
applicable for any core configuration considered, it is
very lengthy and impractical to be used in mbre complicated
cases considering the number of equations involved. In
such cases some other numerical technique may be attempted.
The results of the experimental investigation on
perspex models féllowed the same pattern as predicted in
the analytical solutions.' Good agreement was achieved in
comparing the values obtained from the experimental and
theoretical investigations, although the effect of a stiff
top beam was over estimated theoretically being more
pronounced in the singly symmetric case. The effects of
the cracks on the behaviour of the reinforced concrete
models were very significantr In general, the behaviour
and the internal force distribution showed a reasonable
agreement with the analytical solutions within the elastic
and elasto-plastic limits. The method presents a
reasonably accurate.tool to designers to analyse the
elastic behaviour of most core structures subjected to

torsional loading which only requires the use of the widely
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known engineering theory of bending and the solution of a
third order differential equation. All the calculations
for the elastic and elasto-plastic behaviour of a core can

pe carried out with a desk calculator or a small computer.

9.2 SUGGESTIONS FOR FUTURE WORK

In addition to thé factors considered to affect the
core behaviour, a number of related factors need to be
examined. In a tall building the core is seldom
subjected to pure torsion, but is generally subjected to
bending, shear and torsion actions. The combined effect
of the above loadings on the core behaviour needs to be
examined. The load applied to the core results from the
redistribution of the external applied loads on structural
elements of the building, which needs to be determined as
part of an overall analysis of the entire building.

The existence of floor slabs outside and inside the
core shaft which are in many cases connected to the beams
and walls of the core, impose a warping restraint against
torsional deformations of the core. It would be
desirable to assess this effect on the core behaéiour.

The method will be more accurate if the effect of
the connecting beams is considered when locating the
position of the shear centre.

A study of the detailing of the joints between the
connecting beams and the walls is needed to give a more
Practical assessment of the plastic moment and ductility

of the hinges.
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The prospects of a complete failure of the core

and the mechanisms associated with it need to be examined.
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APPENDIX A

The method illustrated in Chapter 2 has been
utilised to study other more complex core configurations
which do not fit directly into the simple general cases
considered there. Expressions are given to evaluate the

relevant stiffness parameter agH for each particular case.

I - MULTI-CELL, MULTI-BAY, SINGLY-SYMMETRIC CORE

A multi-cell, multi-bay, singly-symmetric core as
shown in Fig. A.1.I will rotate about its shear centre at
distance e from the centre line of the back wall as shown
in Fig. A.1.11, from which the displacements of various
points may be obtained. The equilibrium conditions for
the internal forces of a segment of height dx from each
panel may be derived from Fig. A.2.

In this case, six vertical strain compatibility
conditions must be considered, at the mid-span positions
of the connecting mediums along lines 0-0 and 1-1, at the
end corners along lines 2-2 and 3-3, and at the interaction

of the cross panel 6 with the front and back walls along

lines 4-4 and 5-5. These give respectively
X X X
M M N q
4 (c+L) 5 (F+L),. _ S 4 _ o _
gE—er’H ) 5z Gax EA, "B E " °
4 5 o
0 o o
I-1
X X X
M M N
1 (d+a) 4 (c+a),  _ g 1 4x +
g Bl g ax + S FT, 2 & EA; %
(o] 1 lo) 4 (o]
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X X x
EI, 2 ET. 7 9x + FgA— 94X
1 2 1
0 (o] o
X N2
- g EZ—Z- dx = 0 I-3
(o]
X X x
M M N
2 B 3 D 2 _
2 3 2
(o] o] e}
X X X
s B Ng Ny
5T T dx + dx - =— dx = 0 I-5
Ig EAg EAy
(o) (o] [o]
X X X
M M N
3 c+F 6 B 6 _
S ET—B-(L -—2—) dx + g —Iaz-dx— S E———-6 dx = O
(o] (o] (o]

On solving the above equations, in conjunction with the
moment-curvature relationships forvthe core panels,
expressions for the internal forces can be obtained.
“ponsidering the overall equilibrium condition of the core
cross-section as shown in Fig. A.3, it can be proved'that

the core behaviour will follow the general governing

equation
3
d“e de _

- EIW E—§-+ GJO ix = T
b4

where

2 3 Ig o192
I, = (B + e) (214 + 21, + I5) + I3 e + o (c + F + 2L)

2 2 p° B 2
+ I, %F + Al(g(B + e) + g(B -e)" + Ay 5(5 - e)

A
2 2
+ AG(C + F + 2L)2(§ - e)2 + 1; (c + F + 2L)7(B - e)
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and

2
2EB 2
I, = "G—_'[Bl(za +2d + ¢)” + B (c + F + 2L)2]»+ J

where

121 121
B = _—EEE' and B, = 3°a
o L"h a‘h

In these expressions IcL and Ica are the moments of inertia

of the connecting beams of lengths L and a respectively as

in Fig. A.1l. -

IT - MULTI-BAY, SINGLY-SYMMETRIC CORE

By omitting the inner cross-walls from the core shown
in Fig. A.1, a single cell, multi-bay core is obtained as
shown in Fig. A.7. This core will have the same
displacements as the multi-cell one. The equilibrium
conditions for a segment of height dx of the existing
panels could be obtained from Fig. A.2.

In this case, only the first four vertical strain
compatibility.conditions need to be considered, which are
given in equations I.(1,2,3 and 4). Following the same
procedure as before, the parameters in the same general

governing equation are found to be

2 2 D2

_ 2 D
I,=((3B+e) (214 + 21, + I) + Ig o + Ize” + Ay >

(g - e)2 + AlD(B - e)(g(B + e) + g(B - e))

and

3= 8y E[((2a + 2d + o) BF 4 5 (B-e) - B
(D(B-e) + (B+e)(c + 2a + 2d))] + B, g
[((c + F + 2L)(§§3)+ K)(B+e)2L + c + F)]1 + J
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where

K = (clc3 + c4cz)/(c3 - cz)

and

_ (B+e) D BD Bo
c; (22 + 2d + c¢) —a— 't 5 (B - e) - E;_I_ﬁg

BO
Cy = (1 - m)/BIE :
o)
cq = l/E(B1 + Bo)
B, BD
- (B + e) 1

IIT1 - MULTI-CELL, MULTI-BAY, DOUBLY-SYMMETRIC CORE

In these cases the core will rotate about the
centroid of the cross-section C.G. as shown in Fig. A.4.1I,
from which the displacements of various points may be
obtained. The equilibrium conditions for the internal
forces of a segment of height dx from each panel could be
derived from Fig. A.5.

The conditions of vertical strain compatibility along
the lines of contraflexure O-0 and 1-1 at the mid-span
positions of the connecting mediums, and along the lines
of interaction between the cross panels with the side
walls, 2-2 and 4-4, may be written respectively as follows,

§ U3 (erl) g L }g( Yy wmy, !g{ N3 b _,
El, 2 : 2

o 3 o o
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X X X
M M N
1 (d+a) . . 3 (c+a)y, 1 x4
E 1 .13 EA1
0o ) 0
X
N q
3 1
gr— dX - == =0 II1-2
S EA3 BlE
(o]
X X
M M N
1 d 2 B 1 _
g B E-dx - g BT 5 dx + S FA dx =0 ITI-3
1 2 1
0 ) 0
X X
Y5 B dx - N3 dx = 0 ITI-4
EI5 2 EI3
(o] o

On solving the above equations in conjunction with the
moment-curvature relationships for the core panels,
expressions for the internal forces can be obtained.
Considering the overall equilibrium condition of the core
cross-section as shown in Fig. A.6 will yield the same
general governing equation with the parameters IW and Jo

expressed as follows.

I 2 2
.2 4 (c + F + 2L) D
IW =B [Il + IS + -’2-) + 15 5 + Iz g

2 2
B 2 B 2
+ Al 7;-(d + D)° + A4 x (c + F + 2L)

and

2 2 27
o= & BY[B (2d + 22 + ©) + B (c + F + 2L)°] + J

where BO and B1 are as defined before.
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IV - MULTI-BAY, DOUBLY-SYMMETRIC CORE

If the inner cross walls in the above core structure
are removed, the core cross-section will be as shown in
Fig. A.8. The core displacements, the equilibrium
conditions for the internal forces and the vertical strain
compatibility between the existing panels are the same as
before. Following the same procedure as before, the

parameters of the general governing equation are found to

be
I 2 2 2
2 4 D B“D B“d
I, = B (I1 + I + -) + I, 5 + Ay _Z—'(d + D) + A3 —Z—(d+D)
and
J =B E-B(2L + F + c)(B(ZL + c+ F)+K)+8B E B
0 oG 4 1G

(2d + 2a + ¢ + D)(%(Zd + 22 + ¢c +D)-K) +J
where

K = -(clc4 + 0203)/(02 - c4)

i

c %(Zd + 22 +c+ D - ZBO D/B1 + Bo)

1
B
1 0
Ch = —— (1 - )
2 BlE B1 + BO
28,D
¢ = (2L + ¢ + F - E—%E—)
170

c 1
4 E(B1 + BO)

V - MULTI-CELL, SINGLY-SYMMETRIC CORE

In this case a singly-symmetric core structure with

an intermediate wall having a set of openings at a distance
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¢ from the back solid wall is assumed to rotate around

its shear centre S.C. as shown in Fig. A.9. Following
the same procedure as before, the core displacements, the
equilibrium conditions of the internal forces and the
moment curvature relationships of the core panels may be
derived from Fig. A.9. . The vertical strain compatibility
conditions along the lines of interaction between the core

panels 0-0, 1-1, 2-2, 3-3 and 4-4 will be given respectively

by
X b:4
My Ny 9,
= (L + M)dx = 2 = dX = —— =0
EI4 E 4 Bo
o o
X X
M N q .
g gr- (dra)dx - 2 @ gi- 4% - gg = O
1 1 1
o] o
b4 X X b'<
M M N N
2 B 1 d 2 1 -
g BT- O dx - S 1= T dx + g E——-dx - S EK—dX 0]
2 1 2 1
o 0 o o
X X X
M N
2 B 3 1 2 _
g - 3 dx + g BT g-dx - g A dx 0
2 3 2
0 o o
b:4 X X
M N M
4 L 4 2 B
g ET. 7 dx + g E-A-— dx - g Bl (-2- - c)dx
4 4 2
o] o o

From the above conditions, expressions for the internal
forces can be obtained. Considering the overall
equilibrium of the core cross-section, the parameters in

the same general governing equation are found to be
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2

2 2 2
Iw = 2Il(B+e) + 214(c+e) + I,D7 + Al(d(B+e) + D(B-e))

2 A
+ A2 %r(g - e)z + 3;-(L(c+e) + D(c—e))z

2

. E 2 2
J = 4 gD (BlB + B_c ) + J

VI - MULTI-CELL, DOUBLY-SYMMETRIC CORE

In the case of a multi-cell, doubly-symmetric core
consisting of two solid side walls and four cross-walls
with openings arranged as shown in Fig. A.10, rotation
will occur about its centroid. The core displacements,
the equilibrium conditions for the internal forces and the
moment-curvature relationships for the core panels can be
derived from Fig. A.10. The vertical strain compatibility
conditions between the core panels along line 0-0, 1-1,

2-2 and 3-3 are found to be

X X
fi— (L+m)dx - 2 ﬁﬁ_ dx - o _ . 0
R EA B_E
3 3 o)
(o] (o)
X X
M N q
1 1 !
S ET—-(a+d)dx -2 S ga- X -ggE -0
1 1 1
(o] [o]
X X X
M M N
2 B 1 d 1 _
gﬁgfdx'gﬁ‘;zdx' SE——ldx 0
(o] le) (o]
p:4 X
M M N
2 3 L 3 =
SW“‘X‘ gE’T‘?dx- §EA dx =0
2 3 3
[o) le) o

Substituting from the solution of the above equations into
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the overall equilibrium condition of the core cross-section,
the parameters Iw and Jo in the same general governing
equation are found to be

2 2 2
_ 2 D 2 B 2 C
I, = IPB + Iy & + 4130 + A2 Tf(d + D)7 + Ay ?F(L + D)

and

2E 2

2 2
Jo——G—D[BlB +BOC]+J

VII - SINGLY-SYMMETRIC CORE WITH UNEQUAL SIDE CHANNELS

Under torsional loading, a core structure composed of
two unequal channels will rotate about its shear centre at
point O as shown in Fig. A.1ll. Considering the
displacements of the core, the moment-curvature relation-
ships of the core panels and the internal forces
equilibrium conditions of the panels of the core, the
vertical strain compatibility conditions along the line

0-0, 1-1 and 2-2 can be written respectively as follows

X X X
M (i), - it S 53 (eradg
ET, "2 EA4 Is
(o] (o] o
X
N q
- g E_S— dx - BlE =0
3 1
(o)
X X X
M N M
1 d 1 2 B .. _
STEd"*gm—dx' QE gdx =0
1 1 2
(o] (o) o]

O—"N
I =
>

N o
[o}
e
+

Q"N
‘ =
w

N O
[o}

b
+

O

3
[oR
o

[l
o
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Solving the above equations for the internal forces and
substituting in the overall equilibrium condition of the
core cross-section will yield the same general governing
equation with the parameters Iw and J, expressed as follows

2 2

_ B 2 2 B d .2

Iw = 5 (I1 + 13) + I4(p-e) + Ize + A1 TT'(Z + e)
2
B c 2
+A3-2—(D+2--e)

and

_ E 2.2
Jo = 281 c B°D” + J

VIII - CORE STRUCTURE WITH CONNECTING BEAMS AT THE CORNERS

If a core structure with four sets of openings at the
corners and four solid walls at its sides, is subjected to
torsional loéding, it will rotate about the core centre of
gravity at point O as shown in Fig. A.12. Following the
same procedure in deriving the core displacements, the
moment-curvature relationships of the core panels and the
equilibrium conditions of the internal forces, the vertical
strain compatibility condition along the line 1-1 can be

written as follows

X
o g |
0o

o
Considering the overall equilibrium condition of the cross-

=

\V)
=

=
o]

-

N O
[o})
»

|
.
-
+
"

I

o

|

=
=1
i

Iy

section of the core, and substituting from the above
equations for the horizontal shear forces, it is found
that the core behaviour will follow the same general

governing equation, with the relevant parameters defined as,
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where

1 1
= = e 4
B By B‘O'

IX = CORE STRUCTURES WITH INCLINED WALLS

The above method can be utilised to study core
structures with walls inclined on plan by considering the
in-plane components of the displacements of the inclined
wall in evaluating the moment-curvature relationship.
Following the same procedure to study the core structure
shown in Fig. A.13, the displacements of the core, moment-
curvature relationships of the core panels and the
equilibrium condition of the internal forces can be
derived from the above Figure. The vertical strain
compatibility conditions along the lines 0-0, 1-1 and 2-2

in this case are given by

X My X N, a,
X m (d+a)dx - 2 g E'—l' dx - E—lf =0
) o
X X X X

M M N N

1 d 2 n o _ g 2 4 S 1 4x=0

g El; 2 dx - g El, 2 dx EA, &7 EA,
o o 0 o

My
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Solving the above equations and substituting for the
horizontal shear forces in the overall equilibrium
condition of the core cross-section, the parameters Iw and
Jo of the same general governing equation are found to be

2 2 2

B R D
Iw = IlB + 12 —3 cos ¢‘+ 13 -5 + cle + 2nR(c1 + cz)

+ mD(c; + ¢gy)
and
_ E
I, = K E[B(Zd +a) + 4nR + Dm] + J

where

Bd D
c; = Al[TT'+ nR cos @ +-£E]

A [nﬁ cos B + %?]

2

K, = Bl[g (d+a) + 2(2? + nR cos @ + %?)]
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APPENDIX B

DESIGN CHARTS

The expressions presented in Chapter 4 for the
parameters U, Ul and U2 for the three standard load cases
have been used to produce design charts. These allow a
semigraphical evaluation of the angle of rotation, the
vertical shear forces in the connecting beams and the
bending moments and normal forces in the walls over the
height E£. The curves are presented for a range of values
of aH between O and 6, and end conditions R between 1 and
10 and A between O and 2.5.

The charts are presented in three main sets in the

following figures:-

B.I1.1 to B.I.16 : Variations of the parameters U, Ul and U2
with height £ for a core subjected to a
point torque at the top.

B.II.1 to B.II.16: Variations of U, Ul and U2 with & for
a uniformly distributed torque.

B.II1.1 to B.III.16: Variations of U, Ul and U2 with & for

a triangularly distributed torque.
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EFFECT OF REDUCTION IN WALL THICKNESS ON
| PRIMARY CORE ACTIONS
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APPENDIX C

The following graphs show the effects of reducing
- the thickness of the walls on the primary actions of the
particular core example considered in Chapter 4. They

are arranged as follows:

Fig. C.1 to Fig. C.5 shows the effect of size of reduction.

Fig. C.6 to Fig. C.10 shows the effect of level of reduction.

Fig. C.11 to Fig. C.15 shdws the effect of reduction on
restrained core.

Fig. C.16 to Fig. C.20 shows the effect of reduction on

elastically supported core.
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FLOW CHART OF THE PROGRAM (PREPS)
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APPENDIX D

FLOW CHART OF THE PROGRAM (PREPS)

~The following flow chart demonstrates the logic
sequence of the computer program used to calculate and
plot the primary actions in the elastic and elasto-plastic
behaviour of singly and doubly symmetrical core structures.
The sequence of the programs are joined through numbers

in the following bages.
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INPUT CORE DIMENSIONS AND MATERIAL : (
. PROPERTIES
H,B,D,d,a,h,th,dc,ds,E,V.

ZQNPUT STRUCTURE TYPE AND LOAD TYP77

INPUT END CONDITIONS
R& A

CALCULATE STRUCTURE PARAMETERS

IW,JOSJ Ii’A.i’qu’qsu?Mu’STN’a’o' -

3

p’

CALL CASE E

Calculate Kl’ KZ’ K3.,

- |CALL ZONE 1

X=X+1

asto-Plastic Anal-
ysis Required

( stoP )

Calculate q . and L

Fig. D=1



X=

349

CALL CASE II
Calculate L,t

CALL ZONE 1

Calculate e,q,Mi,Ni,STN.
Store t,L,6

i X=X+1

NO IF X=L

Calculate O,Mi,Ni,qS,

S
Store t,L,gN

X=X+1

Fig. D-2
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CALL CASE III

—

CALL CASE V.

Calculate K,,K

4’757

6

CALL: ZONE 2

4

Calculate e’Mi’Ni’STN’qs

Store t,6

X=X+1

Fig. .D-3

N
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CALL GRAPH PLOTTER

YES : ‘
n=5
I=T+1 N
IT=1
n=2%p
t=1t¥t
CALL CASE VI
Calculate K4,K5,K6.
CALL ZONE 2
- X=0
Calculate e,Mi,Ni,STN
Store t,®6 '
X=X+1I NO IF x=H
YES

© O

Fig. D-4




YES

CALL GRAPH PLOTTER

( STOP )

o

IF STN>0.003

352

11

It=It+1

—»

12

Fig. D=3
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X=

Calculate K,KZ,K3,K4,K5,K7K@K9

CALL CASE I

3

¢
CALL ZONE

Calculate e,q,Mi,Ni,

Store L,V,t,6

STN

NO IF X=L

X=X+1
YES
CALL ZONE2
T=
Calculate e,Mi,Ni,STN.
{Store L,V,t,0
X=X+1

Fig. D-6

=



CALL ZONE 3

l

o Calculate o,M;,N; ,q,,qS,STN
~ |store L,v,t,0 ’

—| X=X+1

CALL GRAPH PLOTTER

( STOP )

354

X=X-1

Fig. D-7




355

CALL CASE IV

Calculate'K4,K5,K6,K7,K8:

K

9

CALL ZONE 2

Calculate e,Mi,Ni,STN
Store t,V,6

X=X+1 —
CALL ZONE 3
X=V
Calculate e,q,Mi,Ni,qS,STN
Store t,V,8
NO X=X+1
YES

IF STN>0.003

CALL GRAPH PLOTTE]

(" stop)



