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UMMARY

The problems tackled in this thesis fall into two mnin sections, Part I
deals with and develops a method of solving steady=-state thermoelastic problems
and Part II gives a method of solving crack problems for elastic bodies of
cylindrical form.

Part I develops a nethod first sugpested by Lur'e (1955) for the solution of
the equations of thermoelastic equilibrium, The first feow sections state and
explain how this solution is derdived. Taking the simplest forms of functions wivch
can be used in Lur'e's solution, we sclve the problen of a thick elastic plate having
stress free boundaries and deformed by a known temperature distribution on its
surfaces. A special case of this solution is showm to be equivalent to a special
case of a solution derived by Sneddon and Lockett (1960), who solved the same
problem using integral transform methods, It is shown alsc that elementary solations
mey be used to solve the problem of a2 heat source placed at a point outside an
elastic material. Using Fourdier transform technicues we show that, using the sane
basic solution, we can solve a mumber of problems concerning semi-infinite media,
thick plates, and thick nlates on yrigid foundations, where in each case the exterior
bounding surfaces are free from stress and are deformed by known temperature
ddstributions. The solutions derived by Mukdi (41957) for an unsymnetricel temperature
distribution are derived using this simpler method. The basic solution is applied,
in the form of double Pourler series to solve a class of problems dealing with
rectangular parallelepipeds. ‘e conclude Part I with a discussion of the applicotion
of Hankel transforms and Dini series to the basic solution, and show thnt a muber of
problems concerning syrmetrical elastic bodies, embedded in a rigid mate:dal, in-
pervious to the flow of heat and where the free surface of the clastic material is
deforned by a known temperature distribution, may be solved in the form of a serios
solution, Numerical work was carried out for one special case,

In Part II, we deal with the problems of cracks in cylinders. /e consider
an infinitely long cylinder, of finite redius ¢, containing a penny shaped crack of
radius 1, on the centrel plane z = O. The crack is assuned to be subjected to an
internal pressure =p{p) over ite surface, and we assume also that the problem is
symnetrical about the z axis, The two problems of greatest interest are the cases
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in which the walls of the cylinder p = ¢, are

(1) free fron stress i.e. there is no shear nor normal stress

(2) clamped i.e. there is no shear stress nor normal displacement.,

Use is made of two forms of solution given by Sneddon (1954 and 1961), and by
combining these, together with the use of integral transform theory, the equations
are reduced to the solutiom, in both cases, of a single Fredholm integral equation
of the second kind, In the case of the cylinder with clamped walls, two methods of
solution of the integral equation are suggested, Numerical e2lculations are carried
out for the case where the pressure across the crack is constant,

[

Publication : “On Lur'e’s Solution of the Equations of Thermoelastic Equ,‘{fbrl'uml.
(in"Problems of Centinuum Mechanrcs : Soc. Ind. App. Math
PhiLedc(fbie, 196l, pp. 497-512.



PREFACE

The problems considered in this thesis fall into two main
sections, The first part, contained in paragraphs 9 to 15, is
concerned with several problems in the theory of thermoelasticity.

A simple solution of the mathematical equations, first derived by the
Russian mathematician A.I.Lur'e, is developed in this section. The
method is shown to solve, simply, several problems considered by other
authors and solved by them using a variety of conmplicated methods. The
method is also shown to be applicable to a number of other problems.,

In the second part of this work our interest is centered on crack problems.
We consider the problems of cracks in a thin elastic strip and in
cylinders of finite radius, In each case it is shown that the problem
can be reduced to the solution of an integral equation, and for a
particular case we solve this numerically.

I should like to express my thanks to Professor 1.l.Sneddon who
suggested most of the problems considered, and under whose supervision
the work was carried out. I am indebted also to Dr. R.P.Srivastav and
Professor Sneddon for allowing me to examine their as yet unpublished
work on dual series, referred to in paragraph 16 as Sneddon and Srivastav
(1962). All the numerical work was carried out on the LsUCL electronic

computer at Glasgow.

GLASGOW UNIVERSITY
JUNE 1962
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L, INTRODUCTION

§1,. Analysis of strain.

If we consider a body of length L in some direction, and extend it, in that direction,
to length L + AL, then we say that the body is under a strain ﬁ’AL/L.We wish to
generalize this concept and, following Sokolnikoff (1946), we define a body to be strained
When‘béer" the relative positions of pointe in the body are altered.

, | Let us teke d rectangular set of axes (x1, X s Xs) to describe the position of any
point P of a body. Let the position of P before deformation be (x1 s X, xs) = x and let
ity in the strained case be x' = (x;, x!, x!) as shom in Fig.1.1 ”

f\x3

P‘(x:, %, x}')

]?(x1 3 xz, x})

*q
Figa 1 Q1

Let us assume that we can comnect the new position co-ordinates x' with the old ones

~

X by means of contlnuous functions x:',L such that

x}_:x&(x1,xz, xj),(i=1,2, 3) (1.1)

If this can be done, then physical conditions demand that there is a (1-1) corres-
pondence betwsen P and P and so there must exist single valued inverse functions Xi such
that -

x; = x(xly x), xL) (4 = Uy 2, 3) (1.2)
Let us make the assumption that these functions are linear. Then, write

X = a4 (84 aij)f'xjs(i,jz*l,?.,.B) (1.3)

where we have taken the ai,j(i»-’ J=1, 24 3)_ to be the constant goefficients and & 13 is
the Kronecker delta function which takes the values

1= {1 1= (1.4)
0 i * 3

We have also adopted the summatien convention.




N

Since we shall deal only with infinitesimal deformations we may assume that the
a‘ij(i’ J=1, 2, 3) are small and that products of them are negligible. If this is so

and we apply two successive transformations to the point x as folliows
~

ot
X5 = o, +(6i3”+ “i,j)x'

10 J
e

I

Yo + (8yg + vya)x}
then

"o 4 T - 2 \

Ke = (g vy ) + (8,5 + ag g+ ykj)xj,@, i=1,2,3/ (1.5)

it follows .that we may superimpose any number of successive deformations, -
Consider now any quantity in the elastic material which can be written as a vector A

say. Then
O
A= (A1, A AB), =4, = (xi - xi)

and it follows immediately from Fig,q1.2 and equations (1 .3) and (1 95) that

AL (i,,j=1,2, 3) (1.6)

]
- =04, .
A=A i 3 J

1
Q

for a single deformation and

I

" OA,
i

(L 3=1,23) (1.7)

. s cs) Al
(ags+ vy3) Ay

13 J

for two successive deformations,

A X

%0
PA
x 1
Fig, 1.2
If we consider only rigid body motion § lél = 0 and since
2
AT=Ay o Ay
‘ﬁl 8 lﬁl =4 8A; = ay A, J8,9=1, 2, 3).

it follows that

(01 = [0 (

iy =~ jia\isj=1s2»5) (1.8)




since A is arbitrary.
Then the general transformation may be written

U ot G Gy, = Gy
I! - ‘I-:—v "‘:l Sl . .
6Ai= 2 A,j+ 5 AJ. N (l,J:1, 2,3)
=Cighyr Tagh 5 (1’3=1’2’3)
1
where eij = 2( aiJ + aji)

Wij =E( aij - aji) .
It is then easily seen that the W‘ij'(i’j =1, 2 3) represent a rigid body motion and that
if we consider pure deformation only

A, =, A, LGy 521, 2, 3) (1.9)

The nine components eijgi’ J=1, 2, 3) form a tensor called the stress tensor,

Consider now what we mean by the displacement of a point, Consider the point P° ()_g °)
and after deformation let it take up the position P (x'°), We denote the vector lio_iP' ;
by u’= (u1 PRI u3) and call this the displacement of P °.

i:ti = x:'f- xj(? (1.10)

In Fig. 1.3 consider the points Po(zc,o) and P(E) joined, before deformation by a vector A,

~

AN
3 Pk o At

Fige 143
Then, we may write

o o o
= U, A . x A . x A ) =x! -x,
U’i(x1 s X, xs) u:_(X1 R K, H R,y X+ 3) i 1

1}

t 0 - - (4]
6Ai (x::_ - ) (Xi xi)

u, () - uy () ©

i
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Thus,

SA, =uw, .| A, (i, 3=1,2,3)
. 1 =%, 5| 5,k d=1,2,3, (1.11)
where u, , = === and we have used .Taylor's expansion.
iy J ox.

Thus provided all deformations are infinitesimal, the preceding theory is valid and,
comparing equations (1.11), (1.6) and (1.9) we deduce

_'1_ . s
€55 = 2_(ui’ j s, i) )6., J=1, 24 3.) (1.12)
It remains only to discuss what conditions we require to ensure continuity of displace-

ment, This question is dealt with in Sokolnikoff (1946 s PPo2k, 27) and he derives the
following equations of compatibllity

Y , 23 (_623 )1 -p-e_”j 2 '“'61233):1

e22)31 =(“631)2 23 %, 1)92

3 y 12 ('812 )3 ¥ % 0 S, 233 ' (1.13)
2612)12 =.¢11322 + €2 a4
2623}23=822,33+633-‘22

Ci1y 31 T %35 501 T Oy 53 ‘ °

§2. Analysis of stress,

We begin by differentiating between the two types of force which exist in an elastic
body.
(a) As the mass is continuously distributed, so is any force stemming from the mass,

When referred to the unit of mass this type of force is called the unit-body force.

(b) In stress analysis, we consider the surface force distributed over surfaces drawn in
the material, while the body forces are distributed throughout the volume,

These aré the two types of force present as given in Prager (1961).

If we write e; as the unit vector along the X, axis and take 5’ =8 Fi to represent the

body force per unit volume, the resultant R = &5 Ri may be written

Ri:fTFidT o (i=1,2,3) (2.1)

and similarly the resultant moment M = e Mj. may be written

M, = /T €3 ijde:’G.z:‘l,Z, 3) (2.2)

Consider now an element of material as shown in Fig, 2,1 with volume AV and surface
area A 0, Let the surface force per unit area at any point with normsl v be represented

by (V) T or generally T where (v) T is not necessarily in the direction v .

~s




\
bid (WT
A3 ~

—
4
Av

v
7 X
2

Ao

Fig. 2.1

Then E_ is called the stress vector,

Consider any point P(x) of the medium and draw a parallelipiped as shown in Fig., 2,2.

T

33
N
lr*.'XZs
T
~N32
T
23
T ‘ T
22<_ 22
y
T &
12 21
(=] - S
L4

1 Fig. 2,2

W




Let (1) T denote the stress vector acting on the face perpendicular to the X axis and

write ~
(1) ¢

= gj Tij ) (i’ j = 1’ 2’ 3) (2'2>

where Tij is the component of (l) T in the x, direction. 7

i,j:(i" j=11, 2, 3) define nine
quantities called the components of stress_tensor and when these are known, so is the state

of stress at any point in the body.

The arrows in Pig. 2.2 indicating the vectors

€. T 43 €& T 5 ceceee €T
~1 117 2 12 ~~3 33

represent the direction of the forces that, for positive T 130 are exerted by the material
exterior to the parallelipiped on the matter within it., Draw normal v to any face., Then
if the normal has the direction of positive direction of Xy the positive T ij act in the
direction of positive Xss whereas if the normal has direction of negative Xss the positive

T i3 act in the direction opposite to the positive directions of X . Tensile stresses are
thus positive and compressive ones negative.

T i3 (2 =1 s 2y 3) are called normal components of stress and

T 13 (1 F Jsedls, 3 =1, 2, 3) are chlled shear components of stress.

Now censider the Fig, 2.3,

1 Fig, 2.3




We shall apply the equilibrium principle, which states that: In a continuum, at rest or
in motion, the surface forces transmitted onto the continuum inside any volume V are at each
instant in equilibrium with the body forces acting on this part of the continuum (provided
that, for moving body, inertia forces are included in the body forces).

If we write the area of the face ABC to be ¢ , it is easily seen that, for the equilibriunm

principle to apply, in direction X, (i =1, 2, 3)

. ( (H)T:L + €i)0' + (—?'Jl + € .)Gva._ + (Fi+ Gi)%ho-z 0

iJ

V. = cos(x. v and €, € .. /.
where N ( <9 Y ) 39 ij0 ‘1

Wo _ 7 o
< 32 3
Thus if Tij('i’ J =14 24 3) are known, the state of stress at the point P is known,

tend to zero as h —> 0, Then as h-—=>0,

(i, 3 =1, 2, 3) (2.3)

It remains to determine the equations of equilibrium, Suppose we consider an arbitrary
volume 7T with surface area ¢ ; of a continuous medium which is in equilibrium. Then

/ F_.( ar + ] (V)Ti do =Oji:1’293
T -~ o

which means, using the Divergence Theorem, that

F, + 7., )aT =0
_/T(1+ JlsJ)

and that since the volume 7 is arbitrary,

F. T.o. .:0. 20 ’
i+ 31, 3 (2.4)

Similarly, from a consideration of the moments, we may derive

Ci5x Tk =0

which means that
T,.= T, (2,5)

and so the stress tensor is symmetric.
The principle stresses occur when the three normal stresses are finite but all the

others are zero. They may be determined from the equation in T

Tij" Bijrl,zo (2.6)

The maximum shearing stress, of importance in practical applications is equal to one half

the difference between the greatest and least principal stresses.

8 3. Stress-—strain relations,

It was first noted by Hooke, and enunciated as a law by him, that the extension of a rod

was proportional to the applied force, If the tmnsion in the rod T is plotted against its




extension e , a graph is obtained similar to Fig. 3.1

Fig 3.

In the region denoted by OP, Hooke's law holds and we may write
T=Ee (3.1)
where E is known as Young's Modulus. It is in this region that we are interested and the
equations of elasticity which we shall use are based on Cauchy's generalization of +his law.,

If we write

T ST 5 T =T 537 =T T =T T =T 4T =T
1 114 2 22 3 33 4 23 5 31 6 12

| (3.2)
[~ = € = = = = =
4 11 % 3 = €5, € = €455 €259 &5 Cs¢9 €2

then Cauchy made the assumption that
T. =C ,. €. (i’ j = 1 9 2 ceo 6) (305)
i ij 73 5

~where the c 135 aTe constants.
If it is further assumed that the elastic material is homogeneous and isotropic, then

from considerations of symmetry it may be deduced that

c = C = C = C = C = C = A say
12 13 23 32 31 2%
C = C = C
33 22 11
1
] = C = 5\C - = Sa,
55 44 2( 11 012) H say,

and that all the other coefficients are zero. The constants u and A are called Lame's
constants after G. Lame/( 1852 ), and since the equations (3.3) must possess a unique

inverse we have that

nho, (3n +2u) 0. (3.4)
The equations (3.3) now reduce to the form
Ty = héijA +2yeij ,(i:j=1a29 3) (3.5)




where A = e ., t e +e. . and & 13 is the Kronecker delta.
We may now collect the various equations governing the state of strain and stress in
an elastic body.
Pron (3.5) above, we have

T = ?\.SiJ.A +2pei,

1J dJd
and from the equations of equilibrium (44)
Tj—j, J +Fi =0 - (ig vj = 19 %5 3) (306)
Further we know from equation (1)
e;g = %(U.i; J B uj" i) ,("i, J = 1, 2,. 3) ° (307)
On the surface of the body we must have z )
: Vi, (3.8)
Teso V.o = pN
id Jd
and from the equations of compatibility (143)
°i50d * €kl — €kl — egik = o (3.9)

It can then be shown that if we find a solution satisfying equations (3,,5) and (3.,6)
subject to equation (3.9), then that solution is unique,

We then have a system of nine equations in Tij, uy ,(i, Jd=1, 2, 3) to solve,
The differential equations of motion of an elastic solid can be obtained from

equation (306) by adding the forads of motion to the body forces giving

+F.=pu. (i,j=15 29 3) (5010)

13, 3 %71 i

where p 1is the density of the body.
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§4 Basic equations of thermoelasticity

In the previous paragraphs we have considered the deformations and stresses set up in a
classical elastic body by surface and body forces, It has been assumed that the elastic bodies
being deformed are kept at a constant temperature. Howevery, when an elagtic solid is subjected
to a non-uniform temperature distribution, neighbouring elements will tend to contract or expand
by varying amounts. The elastic properties of the material will cause these extensions or
contractions to be reversed, and by expending an amount of energy in docing this, will cause a

change of temperature, Thus, the resultant dsformation must be considered as the sum of the

thermal and elastic effects.
Let us make the assumption that the total strain component eij ’(i, j=1, 2, 3) is compos-

ed of two separate strains stJ ,(:‘;’L57 3 =1, 2 3), the thermal strain and ei .s the elastic strain,
e
| Then

t € s
ij = ’i“j +eij 4 (l, J :".19 2’ 3) (4.:1)

We have already, in a previous paragraph, considered the strain tensor ezj N (i, =1, 2, 3
- and its conneections with the stress tensor Ti,j‘(i’ =1, 2, 3)o Consider now the thermal

strain tensor efj s(is 3 =152, 3),

Under frse thermal expansion an isctropic body expepriences the strain e?.j which, referred

to a rectangilar set of axes (x 9 X, X ) are given by

t A
ei,j =ab 613 5(19 d = 1} 29’ 3) (21“02)

iwhez‘e @ is the temperature change from T, the temperature of the solid in a state of zsro siress
iand strain, o dis the ccefficient of linear expansion and & 54 is the Kronecker delta, We

assume that 0 dis sufficiently small for the thermal properties to remain constant throughout

the times in which we are interested,

i
§
]

We return now to equation (3.5) which gives the stress-strain relation
€ . '
| Tij:xAé‘ij-"zueij 3 (193=132y5) (4«3)
‘~» &
!Where A = eii"

Substituting in this equation from equations (4.2) and (L4.1) we obtain the relation

ry3= (A =y 6)8 s +2ue;5, (4, 51,2, 3) (it
where A\ , i are Lame's constant, y = (3 .,.2;1)«]_311&,
A = €.: o
ii

BEquation (L4.4) is known as the Duhammel-Neumarn Law, and was discovered independently by
Neumann {1885) and Duhammel (1838).

Since we have introduced temperature 6 to our equations we must add a further equation

to our set of equations goverming the behaviour of the elastic body viz, the equation describing

the behaviour of € . In the case in which we are most interested viz., the steady state, the



"

equation for 6 “*akes the form
Kvio+q-=0 (2.5
where K is the conductivity of the material, and Q is related to the quantity of hea® generated

per unit volume g by the equation

Q=dpc (4.6)
where p is the density, c the specific heat per unit mass of the material, and we have written
VO = 6,4 (1=1,2,3) (4.7)
where we have used the convention that %";%" = 6 ..
: X , i

R
For completeness we consider the equations when time must also be considered,

By the methods of reversible thermodynamics, Biot (1956) has shown that the eukrot:n/ 5
per unit volume of the sokid is given by
s = ¢ plog(t +-§‘) +yl (i+48)
where the additive constant inwvolved in the definition of entfopy has been chosen so tha’ ik
is zero in the reference state. (T + 6 ) is the absolute temperature and 6 , T, p, ¢, v
and A are as defined above, If 6 is small compared with T we may write

s = 2—-%«9* +yh (4.9)

- for the entfopy per unlt volume. The quantity of heat absorbed by unit volume of the solid in

. the course of small deformations and small variations in temperature is given by the relation

h=Ts=pcd +yTA (4,10)
From the thecry of conduction of heat in solids; it is known that the variation of heat

4 within an isotropic body is governed by the equation

ah 2

=Ko « ! (o1)
Substituting in equation (4.141) from (4.10) we have

96 3l
pogi+ VT3 =K@ e +a

. which may be written

[ [ V
(=)o +2=6+ yrd (4012)
Where we have written 6 to desnote -g-%— s K is the conductivity, p the density and c¢ the

.i@specific heat of the material., V' has been written for y1/ p ¢ where ¥ :(3?\, +2u )0(.

' The set of sixteen equations denoted by equations (1.1.‘,1 2), (3.7), (4.4) and (3‘.8) is
pufficienty when taken with the appropriate boundary conditions to determine the temperature
é;'variation, and the companents of stress and displacement when the heat sources and body forces

“are prescribed,
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§ 5. Dimensionless form of the equations. !

In working with the equations of elasticity it is often more convenient to use a
dimensionless form of equation, If we take a typical length 1 and typical time g as units
of length and T and _pas the units of temperature and stress respectively as suggested by
Sneddon and Berry (1958,p.123) we may write the equations im the following form

Tij']'FXi: = e | (5.1)
) .
Ty = [([ﬁz —-2)a —bte-i By + 205 (5.2)
1
ey = ;‘(. U‘l,J + .uj_,_ (5.3)
@ +V% = fo + gi (5.4)

where

u v
X, . —2L1 | p
1 H I
2
@__L
= = kT 2 2
1 “\2 - T 17¢ 1
0 p oo L. o _ LXes 1y
T \v. 7 [ TR R T Kz’
S .

@ It is perhaps of interest to compare the relative sizes of a, b, £, g, as given in the
. folllling fable from Eason and Sneddon (1959) for 1 =1 cm., T =1 sec., T = 293° K,

Alupinium Copper Iron N Lead
a 1,034 x 10 1 2,166 x 10 1 £.532 x 10 ] 2,034 x 10 10
b 0.0639 0.0417 0.0089 0.,2320
£ 1.168 04899 5.208 bk 152
g 24687 1.497 8;035 12.25
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86, Integral transforms,

We have, in the previous paragraphs, derived a set of martial differential equations
describing the behaviour of an elastic body. We now wish to solve these equations, subject
to certain boundary values. One method of doing this, in certain cases, is by the use of
integral transforms.

Suppose that we have a function ¢§x) defined k¥ a differential equation and certain
boundary conditions, Then it is often simpler to translate the boundary value problem for
f(x) into one for the function F(§ ), where

b
FE) - E{/ﬂx) K@ , x)ax (6.1)

(¢ ) is obviously a function £ and is called the integral transform of f(x). X( gz, x) is
known as the kernel of the transform since we wish to find a solution f’pr £(x) we will be

interested in kernels K( &, x) for which we can f,a;nd a kernel H( £, x) suich> that

£(x) = f‘(&:)H(a , %) AE (6.2)

In certain cases the kernels H( E s x) and K( g, x) take simple forms and we list the

CA

particular cases in which we are interested.

(2) Fourier Sine Transform:

Iir

T(E) = (2/77)% ff(x)sin?*;x ax

o (6.3)
then )
£(x) =( 22 ff(@ sing x 4g
o}
(b) PFourier Cosine Transform:
Ir ] o0
&) = (o/n ) [ 2(x) cos x ax
then (6o4)
£(x) = 1%) ff(g) cos gx dg
( c) Fourier Complex Transform: |
Ir 1 > .
’i"(g) = (2 w)-EJ f‘(x)el £x dx
(6.5)

then o

£(x) =(2 ﬂ)‘%_mf £(z) oL EE g
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(d) Hankel Transform:

<O

(E) = fx £(x) J,(E x) ax

’ (6.6)
£(x) = f‘E £(&) JV(E, x) 4§
(=]
where J v (z) is the Bessel function of the first kind of order V .
(e) Laplace Transform: .
_ - Ex
(&) = f f(x)e ax
° (6.7)

CHigo
s T &
f(x) = 7T f(E) e da&é
~ c-lo
where ¢ is greater than the real part of all singularities of F(&),
‘he idea of the integral transform may be extended to functions of more than cne

variable. If we take a function ¢ (x, y) in x and y, we may write

b
~'$(E’sy)= j¢(x:Y)K(€’X)dX
a
and = —_
$(E:n)= ¢(€9Y)G'(nQY)dy
4
where K(& s x) and G(n , ¥) are two suitable kernels, If we choose the Fourier complex
transform we have o0 «© .
. 1 n
T, n) -5k j‘b‘j ay ¢ (x, y)e(E% +73) (6.8)
-0 - o0
To see precisely what is happening, consider the solution of the equation
2 o¢ = log
D+ 1_9¢
’5%'? m E-a-jé- (6.9)
where ¢ ——30as p —px 4, ¢( P, 0) = ¢ a prescribed function.
Multiplying each side by P J_ (&p ) and integrating from O to * , we find
o]
~ke2s -3¢ (6.10)
where w0
7 - [ 0 J(e0) ool (6.11)

0
-r2
Then $=AegKtandatt=Oz$=A= j(popJo(Ep)d.p.
o
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Using the inverse transformation to equation (6.11) we get the resuls

© 0
$(ps t) = jsbo (w)au j ug g (gu)y (e e KE® 2z (6u2)
. ) Q =t
The uses of integral transforms are explained and exploited fully by Sneddon (1957)
and Tranter (1951).

87. Solutions of the equations of equilibrium,

All of the problems considered in this work arve:steady-state ones, and in order to
solve them, we have used in both Part I and Part II, potential solutions together with the
theory of integral transforms which we have already discussed. In general, there are a
number of methods available for attacking steady-state problems and, in this paragraph, we
note a number of them. We begin by writing the equations of equilibrium in vector form,
Bguations in vector form.

It follows from equation (3.5), with the quantities eij (i, J =1, 2, 3) expressed in

terms of the displacement vector u as in equation (3,7) that the equations of equilibrium

of an elastic body may be written in the form
Tij”‘j +Fj. =0 5(1’ Jd = 1, 29 3) (7-1)

where in the purely elastic case

le = N’&ij A + 'u(ui, .j + uj,< i) (702)
and in the thermo-elastic case
— - 9 . o . . e
YR l,sij (A Yo ) + u (.ul’ 5y ;) (7.3)
and A = u. . ]
i, 1 _
We recall, from equation (3.8) that on the.b?u);ndaly .
v .
Tij Vj = 1 - (704)

where the v 3 are direction cosines,
If we write
o - vB.
Pi__Fi Yo

@ o
B, =T, +Y0; (7.5)

then it easily follows. that the steady-state thermoelastic problem is equivalent to the
elastostatic problem with the body forces Pi and the boundary forces Bif Thus we can study

both thermoelastic and elastic problems simultaneously.
If now we substitute from equation (7.2) into equation (7.1) and re-errange the terms

we see that we have.

(7.6)



16

which may be written vectorially as

(™ + u)grad;A + uVPu 4 E = 0 (7.7)

~

We‘ can also express equztion (7.7) in the alternative form

(N +2u) grad div u= pcurl curl u + P - 0 (7.8)

o~ o

Kelwin's Solutiom, .

In this form of solution , the displacement wector- L is expressed in terms of
a sezlar potemtizl ¢ and a vector potentisl f in the manner

u = grad @ 4 curl £ (7.9)
We: suppose fu-rthgr that the body force f may be expressed in. the form
f = grad® + curl f“ (7.10)
If we now substitute from equations (7.9) and (7.10) into .equation (7.8), we find that

g;-ad,[(?\. +'2.u)V2¢ R .‘5] + curiuV¥F « F] = 0 (7.11)

from which it follows that we can ohtain a set of particular solutions of the equilibrium
equations from particular solutions of the equations in ¢ , & , ¢ , F ,

(M +2u) V¢ + 3 = O (7.12)
#V%’ -+ F = O
¢\" —~
If we now write
1 4
) o L) oma iy
~ - (7.13)
i < L sy

so that equation (7.,10) is satisfied , it is known from: potential theeory that once & and

F are determined by means of equations (7.13) , we may find ¢ and £ to be

~
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¢ (f) = 4'"’(7\ + 2,uj / — r:l (7o’l)+)

Boussinesqg ~ Papkovitch Potentials. ’

If in equation (7.8), we write

El' = A gr‘ad (¢ + r'(/f) + B ¢' (7-15)

~

where r- is the position vector of a field point and A and B are constants, we find

that the equation becomes

(A + 20 Agrad ( V¢ +z2%) & [(» +2u)( B + 24) = pB|grad div ¢ (7.16)
+ BuViy 4 -}(5 - 0

The scalar quantity ¢ and the vector quantity ¢ are known as the Boussinesq -

~

Papkovitch potentials.
It may be shown that if the constants A and B are chosen such that

A =1, B ~AMg 24) (7.17)

(M + u)

while the potentials ¢ , ¢ satisfy the equations

2;19‘——““—2—&)%;5 & 1P = 0

(x4 ) ~ (7.18)
u("———-)“fz“vzw - P -0
that the displacement u may be written as
. 2
u = grad (¢ + ru4 ) ~2. 0+ 2u )¢ (7.19)

-~ o+ W)~

If now the equations given in (7.18) can be solved for ¢ and 4 5 we may solve
the elastic problem, Several simple cases of this solution are discussed by Sneddon and
Berry (1958). |

It follows from equation (7.18) that in the abscence of body forces, the elastic

probzem reduces to the solution of Laplace's equation, simce o

V¥¢ = V¥ = O

L




Sneddon's Solutiorn.

It has been shown by Sneddon (1961) that a solution of the equations of

thermoelastic equilibrium may be obtained in terms of three potential functions ¢ 5 ¢
0

in terms of these functions as follows, where we have taken rectangular co-ordinates

and x , by writing the temperature

(X,sz)
.
u = ox
S
w = aZ
where

% 2 _ 0% ay
ox + (’8 1) Z8x0z * Z’ax)
2% 2 _ d 3
2 0¢_ 2 _ 8% _ Ll
ﬁ az + (ﬁ 1>Z azz + zZ az
2 9y
9 = T’
— - ﬁ-t
A = 2622

, the displacements (u,v, w) and the stresses

The components of stress are then given by

I

a =
y
[+ =
z
and.
3
2
Tyz = 2([9 1) Z-E;?r_-%.z-z
2 L 2o
T, = 2(B 1) = P
- P 2 .-
TKY = Zax ay * 2(p 1)

Several applications of these solutions are discussed by the author mentioned above,

82:

+zzayaz

2%y

+2Z8xaz

z BEQS__
ox dy oz

82 82 ’ aZ a3 2
o 23-%—+26—-%z - 2(p% - 2)—5—2’% +.2(p% = 1)2?}('?5;#2%—}%!‘2%

0% . 50%.  _ (g2 - oZ 2 o7 %y _ ., B
28—33;—: + 257 2(p 2) g'%: +2(p 1)za—y%z-+228ya 25
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s

(7.20)

(7.21)

(7.22)

-

o 94
0z

(7.23)

(7.2)
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§8 Literature,

In this paragraph we shall give an indication of the work being carried out in +he
field of thermoelasticity. We shall leave +ill later the background literature f.r +he
crack problems,

Interest in thermoelastic steady - state problems dates back many years, An
explanation of what is meant by a thermoelastic problem and @ method of tackling them
is described by Love (1944)0 Goodier (1957) has developed a method of attacking *heses
problems by reducing the thermoelastic problem to an elastic one at conmstan® temperature,
In his book,Lun”e:(1955) derives a method of solutirn of thermielastic problems in. terms
of potential functions and this is the method developed kere, The prohlems of the iafinite
4and.semi-in£ini+evmediums together with the problems of the thick plats have attracied
attention, Sterrverg and McDowell (1955) solved the problen of the semi-infin’te medium
witih the surface free from stress and with a known temperature distributicn on the
surface, The method used was a cocmbinziion of the Boussinesq-Papkowitch potential scluticn
and Green's function, Using the same msthod M:Dowell (1957) obtained the cmrrespmndlng
sclution fcr the thick plate, The solutkions cbtained are in the form of elliphic integrals.

The two problems of the semi-infinite solid and thick plate with stress free
boundaries and imposed tzmperature distributicns on the surfaces were solved by Muk: (196@)
in the case in which axial symme*ry is not present., The temperature disiributicr is +aken

in the form

[22]
6(pyz) :Zem(p)cosmqb
Mm=0

Knops (1959) was able to determine the solution of some particular problems by taking the
difference between two isothermal elastic soluticns, Using a direct integratiua of the
governing equations , Sharma (1956) obtained a solution for the plate problem. Nowacki
(1957,1 and.1957,2) derived the solufions of the infinite and semi-infinite ma‘terials,
subject to a known temperature field, by using a thermoelastic displacemerit puiential,
Assuming axial  symmetry, Sreddon and Locket(1960, )9 used ‘two dimensicral integral
transform methods to find the solukions of *he semiulnflnlteAsvikd.and,th~@k plaite problens, -
The scluticns derived by %hem are given in the form of inverse transforms, Special cases
are considered and for these par+1uular solutions, numerical calculations are carried =
andthe lines along which the difference in principal stresses is comstant, are plotied,
These lines correspond to the iscchromatic lines used in photoelasticity, The same
authors (1960 ) discussed the case of the thick elastic plate lying on a rigid founda’iur,
Olesiak and Sneddon.(1960) have found a solution of the problem of detsrmining the thermal
stress in an infinite elastic sclid containing a penny shaped crack.

The 'classical! equations of +ime depsndent thermoelasticity and the 'fully llnied'

equations do not concern us in this work, However, there are several text-books which
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deal with the subJect to a much fuller extent., Early work is sumnarised by Melan and
Parkus (1953), while more recent developments are described fully by Nowacki (1960),
Gatewood (1957) deals with technical applications in the introduction of his book, The
equations of thermoelasticity are also described fully by Boley and Weiner (1960).
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II. PRCBLEMS IN THERMOELASTICITY

89 The thermo-elastic equations of equilibrium,

. We consider the equations of elasticity derived in part I in the case where there is
no time dependence, body forces, or heat sources, Thus for steady state thermo-elastic
problems, the equations of equilibrium referred to rectangular co-ordinate axes (x, y, z)

in dimensionless form are

60: arw E)Tm3
ox *73 v +z T ©
oT 3] oT

Laxdi522 o0 (9.1)

where the stresses are related to the displacement vector (u, v, w) or (uac s 1;3 s ua) by the

(a,o ,o)_[(ﬁ - 2)A - 1b6 +2(ax’6;rr’8z) (9.2)

equations

ro= T . L (9.3)
sy Oy T ox? g3~ 0z Tay? T,,TexTm ’

In these equations y is the unit of stress and we have written T(1 + 6) to denote the

tempqratu;re variation where 6 satisfies the epguation.

3% 9% 2% |
VZG = + + = O (904)
.aXZ ayZ aZZ

and T is a constant.

In terms of the Lam& constants ), u and the coefficient of linear expansion &, Wwe can

express 82 and b as N ‘ \
) 2 _ + 2U ' _ (é + 2U 2aT
ﬁ - w 2 b = U (905)

In equation (9.2) we have written 4 ror

Oy
A =733 +5-3'>,+ 3 (9.6)

In all the above equations we have considered rectangular co-ordinates (x5 55 2)e
If we write x =p cos ¢, y =9 sin¢, z = z, then in terms of the cylindrical polar co-

ordinates (p , ¢, z) the equations become




— Z
ap -|.p a¢ + Az + P} =0 f (907)

oT 1 0T oo T
z _ _ ¢z Z 0
ap + ) a¢ + oz + P = J

and the relations (902) and (9,3) become

. aup u, 1 du auz
(C’ps"gssf’z) =(B*-2)b-Dbo+ 2 B0 D *5 % 0 B (9.8)
du, 1 09u du du ou 1 ou u
T a2 ——2 g B L . 7% _Tp_ 3 (59
¢z ~ 9 p 9P zPp~ op "9z Pe 9 p B

where the temperature 6 will satisfy

926 1 86 1 2%9 038
— g e f e e = () (9.10

% pap p26¢ 822

and the dilatation A is given by

2u u 19 ou
____..£,+-£, -ﬁ_,.-—.éo (9011‘
ap P p 3¢ 0z

If we wish symmetry about the z-=ax1_s then we must have u ¢ = 0 and differentiation with

respect to ¢ will be a null operator vi Z°6¢ = Oo

§1O The basic solution,

We shall now formulate a solution of the equations of §9 which is a modification of one
first used by Lurfe (1955) P-191-199, This solution will be the basic solution and will be
used in varying forms in the following sections,

In terms of a potential function (/:(x, Vo z) we tske a solution for rectangular axes

(X,. Vs z) in the form

o v-% W:‘g'%'i- x(z) (1041)

uﬁaxy

where (u, v, w) are the displacements of the medium in the (x, y, z) directions respectively.

We choose also

be = =2(B%=1) a-z-% + B (z) (10,2)

Jz

where ¢(x, ¥s ) is a harmonic function so that
2 2 2

a¢+a¢+a¢,zo (10.3)
ax*® 09y? o9z?

vty =




and x(z) is a quadratic function of z, such that

x(z) = f2% +gz +h (10,5
where £, g, h are constants,

Ther it is easally shown that

0O =7 =T =0 (10"5
x3 ya

: 3
everywhere, and that the stress-strain relations become
., -
¢ = =2 a"‘?" + Xﬂ(z>
oy?

_,aa = |
O = =2 -’l’ o+ X' (Z) (10064

Y 9x?
s e

_ o 2
Txu =2 axay‘

It then follows easily that the equations of equilibrium (9.,1) are satisfied.
It therefore follows that the solution given by equations (10.1) o (_1 0.4) and (10,6) is
appropriate to any problem in which the conditions (10.5) are satisfied at a boundary. It
alsc allows the solution of such prcblemg where we have a given surface temperature distrib-
ution or given heat flow distribution,
In terms of cylindrical polar co-crdinates (@ , ¢, z) with the corresponding displacement

( up, u ¢’ u, ) we may take the solution in the form

U.p Zg%, U.¢ ‘:%%9 QZZ‘"%%'F X(Z) (1Oo7>

where X is given by equation (1C.4) and the appropriate form of equation (10.3) to determine
¢ becomes
z, 2 2
M+l%+—LM+M=O (1008)
op% p dp p% 8% 0z°
The temperature fluxuation is again given by (10,2) and we now have

Gy = Tpz = Tez=0 (10.9)

at every point, The stress-strain relations now assume the forms

2 2
2(?,.‘.{ +g.£) - ZXI(Z)

Q
I

P 9p2 9
(10.10)
9® .
O¢ = =2 3—;2— 2 X (Z)

J 9 [4 @
Tp¢"'2°5'5(ﬁ?5$">
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so that the solution given now by equations (10.,7), (10,8) and (10,10) is suitable for
solving problems in which (10,9) are satisfied at a boundary.,

In the case of axial symmeiry, we have T _, = O everywhere and

pd
ZPi(l%) (10.11)

g
dp \p Op

-0, =
P (]

B11 Elementary soliitions.

In the last pafagraph it was shown that if we chose a harmonic function ¢ together
with a particular type of solution of the thermeo-elastic equations we could solve a class of
problems with stress free boundaries. Suppose now that ¢ is a simple harmonic function,
Then in this section, we show that from this simple harmonic function we can construct by
summation or integration, solutions of problems of physical interest.

Consider the harmonic function

4(py 2) = log {ﬁﬁ%ﬁ | (41.1)

By a simple summation procedure we have the following solution
=P r - (z +a
¢(p, 2) = ——" Gnlog{: . . (11.2)
5 (p2 "1) n T +(z+an

where now § , a are constants and r® = p? 4+ (2 +2a )2,
n n n

where r’a = 92 + (z + #)2.

Choose x(z) = 0, and it follows easily that

6(p, o).=26n #n/(ip? + af)s/a (11.3)

n

If we take the solution given above and substitute in (10011) we find

. N ) ‘
0 = 0§, = =————— 6 (z +a){ + } (11.4)
Pt (g - ) Z i "Ur2 por

As a particular case of the function given by (11.2) we shall consider the solution

given by . b r =(z +a) Cr - (z+a)
¥(py2) == ' {ﬂlog . i+ 0 ,log 2 . } (11.5)
w(p2-1) r, +(z +2) r, +(z +a)

‘ - 2 2 )2
vhere x (z) = 0 and ri=Pp + (z +35_)~
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Now if’ we choose values of the constants as follows

(k% - 2)%0
skt a =-(k-1), g - 6, =~ = (11.€)
we have
( ) (kz--ll—)zbee3 N/p +(K+1+z)2\-(k+1+2)
¢lp s 2) = y
321{(,32-‘1) r/p (k+1+z)2+(k+1+z) ( )
- \ 1107
et + (k-1 -2)2- (k-1 ~2z)
=log k> 2

Vo2 4 (k=1 -2)24 (k-1 - z)

It follows that, with the constants given by equation (11 .6), equation (11 ,7) becomes

' (,kfa-iy)zeo k~1=-z k+1 +32 7

6( p, 2) = - (11.8)
. 8% [p +(k—1=z)]3/2 [p2+(k+1 +Z)rils/z |

From equation (l 8) we see that
6(p,1) =£(p) , 6(p,~) =0 (11.9)

where we have taken the function f(p) to be
(k2 - 4)%0 (x - 2) (x + 2)

£(p) = - - (11.10)

8k [pz + (x - 2)2‘13/2 [p2 + (x + 2)2] 3/2
The solution given by equation (11.7) thus solves the problem of a thick plate4 <z <1
whose planey stress free surfaces are deformed by means of the temperature distributions
given by equation (11.9),

The situation is as shown in F:‘lgo(’l’! o’l)

Az o=r7(p)

Y
////////// s

Fig. 1141
The solution given here was obtained by other methods by Sneddon and Lockett (1960

P.145-153),

The quantities of physical interest in this problem are given as follows

(11.47%)

b(k®~-4)20 1 2 1
(a -o): £ (z+k+1)—"+‘ +(z-k+1) - 4+
P rg p2r

7 Br(p? - 1) ry e

2

Where I"12 =P% 4+ (z +k +1)3, r:=9-2+(z-k+1)2o




b(k" - 1) %9

-@*k-F'l) (z =k +1)

2€

Ty = - . (11.12%)
P 16pk(p2-1) r
b i 2
b(e® -4)%0 1
Yy = 2 el K (11.137)
Z 16k(p2=1) | » |
=
Values of u p 2nd u, on the faces z = + 1

166(8% 1) .
'b(ka _ 4)260 o

2\? 0 .2 ok .6 -8 1 2 5
k = 2,

+ 1 0 0351 0535 -585 «568 0529 0340 2106
k=5

+ 1 0 009 .018 029 032 L0400 » 06l . 060
16k (g2 - 4)-azz
b(k® - 4)% ¢

0

z\” 0 .2 ol .6 .8 1 2 5
k=2,
2 =41 12,202 | 1,968 | 1.673 | 1.390 | 1.169 |41.002 | o557 | 280
zZ = = .8 J797 « 794 778 765 o Th3 0+639 0358
k=5 :
Z o= 41 JL76 o475 L7k 69 k65 458 oL16 o2
Z = =1 ok 4399 399 2398 396 2392 372 .283
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1 2 3 L 5 5
Graph of up on faces of plate for k = 2.5, 5.

k=bh, =z ==1

Graph of u_ on faces of plate for k = 2.5, 5.
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in'the case k = 2,5

> 2| 1.0 0.8 0.6 0.d 0.2 0,0 0.2 04 +0.6 |—C.8 |=1.0
0.0 0,0 0,0 0.0 0,0 {r0,0 0,0 0,0 0.0 0.0 0.0 |£0,0
0.2 0.3919 0.2979| 0.2287] 0.176CG] 0,1355| 0,1033 0,0767| 0,054 0.0348| 0.0170| 0,0
Oulr 1,5314 1.16801 0,8983| 0.6934] 0.5340 0,40700 0,3082| 0.,2148| 0.1376| 0.,0672:| 0.0
0s6 3.3199 2.5424 | 1.,9617] 1.5183) 1.1718] 0,8945 0,6665| 0,4732] 0.,3034| 0.,1482| 0.0
0.8 5.6099 43193 3.3L741 2.5999] 2.012L| 1.5398] 1.1494 0.8170| 0.5244| 0.2563| 0.0
1,0 | B.2280 6.3762| 4,9677| 3.8751| 3.0101{ 2.3097 1.7279] 1.2304 0,7906] 0.3867| 0.0
1.2 | 10,9972 8.5847| 6.,7288) 5.2752] L.1143| 3.1673 2.3756| 1.6949] 1.0905| 0.5338] 0.0
1ok | 13.7559 10,8236 | 8.5398| 6.7316] 5.2738| 4.0746] 3.0649| 2.1914 1.4120| 0.6918| 0.0
1.6 | 16.3711]12.9884 [10.3192] 8.1815] 6,4405] L.9953 3.7690| 2.7011| 1.7433| 0.8549| 0.0
1.8 | 18.7438] 14,9966 [12.0000] 9.5711| 7.5720) 5.8968| 4.4634] 3.2067] 2.,0732| 1.0177| 0.0
2,0 | 20,8096/ 16,7898 [13.5313{10.8581| 8.6336] 6.7515| 5.1273] 3.6928] 2.,3917| 1.1753| 0.0
2o [ 23.911519.6067 16.023413.0118]10.4503) 8.2400 6,2993| 14,5600, 2.9639| 1.4596| 0.0
2,8 | 25.672421.3631 17,6855 14.5225)11 . 77L8 9635794 7.1997] 5.2374 3.4160] 1.6857| 0.0
302 | 26,2990|22,1703 118.5660(15.3995]|12,5940 10,0817 7.8023| 5,7016] 3.7308| 1.8446]| C.0
3.6 | 26,0655 22;2200'18979A5 15.7270112.9603110.44201 8,1237| 5.9608| 3.9118| 1.9374| 0.0
4,0 | 25.,233L4|21.7154 18:5250115.6193112,956810.4978| 8.2047| 6.0419| 3.9752| 1.9718} 0.0
Values of 1OOJ_;QF<_YA_€&EF =.constant, for the thick plate — £ z <€ 1
- in the case k = 5,0
Va 1.0 0,8 0.6 0.k 0,2 0,0 1=0,2 |=0J +0,6 +0.8 41,0
0.0 | 0.0 0.0 0.0 0.0 0,0 0,0 0,0 0.0 0.0 0,0 0.0
0.2 | 9.,4782) 2,7722 {1.0653| 0.4880] 0,2517 | 0.1406| 0.,0825| 0,0.90 0,0278| 0.0126] 0.C
Ool 21,1180 7.8685 |3.,413711.6730| 0.8985 | 0.5152] 0,3074| 0.1848] 0,1056| 0,0482| 0,0
0.6 24,0179 11.2250 15,5935 | 2,9886 | 1,6972 | 1.,0099| 0.6180| 0,3778| 0.2482| 0,1001 | C.0
0s8 22,0760 12,2284 |6.8925 | 40148 | 2,4218 | 1.5035| 0.9477| 0.5915] 0.3461| 0.,1601 | 0,0
1.0 18,8860 111.8005 |7.3423 | 46168 | 2,9499 | 1.9111| 1.2427| 0.7929| 0.4709| 0.2196| 0.0
192 |15,8145 h0,7634 |7.2282 | 4.8443 | 3.2575 | 2,1960| 1.4715| 0.9597 005785; 0.,2722| 0,0
Tolh 11302118 | 9.5655 |6.8108 | 4.,8067 | 3.3760 | 2,3577| 2.6242| 1,0814] 0.6612| 0,3137 0,0
166 11,0929 | 8.4081 |6.2622 |L.6063 | 3.3548 | 2.4152| 1.7050| 1.1566| 0.7165| 0.3426| 0.0
1.8 9.3848 | 7,3648 |5.6801 | 4.3188 | 3.2406 | 2.3938| 1,7260| 1,1902| 0,7460| 0.,3592| 0,0
2,0 | 8,0052 | 6.4528 |5.1151 | 3.9936 |3.0706 | 2.3174] 1,7013| 1,1899| 0.7535| 0,3651| 0,0
2ot 509622 | 4.9911 (o114 13,3382 |2,6612 | 2,0747) 1.5658] 1.1198| 0.7206| 0.3526] 0,0
2:8 | 4.5625 13.9137 |3.3090 |2.7536 |2.2488 |1.7922] 1.3787| 1.0014| 0.6518 | 0.3212.{ 0.0
302 13,5699 |3.1123 |2.6763 [2.2651 |1.8801 |1.5209| 1.1853| 0.8701| 0.5709 | 0,2826| 0,0
3.6 | 2,804 12,5075 [2.1810 |1.8671 |1.5669 |1.2804| 41,0068 | 00744 0.4911 | 0.2439| 0,0
40 | 2,3011 l2.0040 [1.7919 |1.5061 |1.3072 |1.0756] 0.8509 | 0.6323| 0.4186| 0,208k | 0.0
- Values of 100]9 ﬂ‘;ﬂ_—%'g; onstant, for the thick plate — € » <1
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Suppose now that we return to the simple harmonic function which we considgred in
equations (11.1). Now, instead of a summation procedure we apply an integration one,

If we integrate over the parameter a ;, we obtain a potential function of the form

(p,2) =—=— [y(a)r0g|E@=(zxa)],, (11
et 4(ﬂ2-1)~/ 150 + (2 +0) e

1/2

where r(a) = [p2 +(z + a)z] and the function ¥ is arbitrary. It follows that, for

this potential function, the temperature distribution will be given by

9( 3 Z) = (¥ (a) —'é’:-’g-_-,-’ do \ "«(’H,oﬂz;
’ f r(a) ‘

The difference in stresses (the quantity of physical interest) is given by

(0 -0,) = —= Ha) (z +a) 1 2 da (11.13)
pe </a2-1>f ((2)° o ()

The components of the displacements are given by

» /q,(a)(Z__+_§) da *(“’-"14’

P o(p? = 1)p

o]
]

1}

b Lae (1.
2= T 1) f\p(a) - ¢ ~ (11.15)

We now consider a particular case, If we take ¥ (a) to be given by

0 _ cx<-(k+1)
v(a) = (k% ~ 1)a. ~(k +1) <a <k =1 , \(11;16)1
L 0 a > (k-—‘l)

then it follows. from. equation (11.12) that

(11.17)

6(py2) ==K -1)e,

- 4
[92 + (& + 1i- z)ia/a E2+ (k_1+z)j3/2



Por this solution it is easily seen that

G(p,’l)

=0
6(p,0) =glp)
where |
glp) = Hx?-1)e ] 1

] [pz+(k_1)2]1/a -[pz +(k+1)2]1/:

3

(11418)

If we now substitute the value of ¥(a) given by equation (11.16) into equation (11.13)
we find that the difference in principal stresses in a plate O € z < 1 whose surfaces are free
fron applied stress and whose surface temperatures are defined by the equations 6(p , 1) = O,
6(p s 0) = g(p), where we have dgfined g(p) in equation (11.1 8),,is given by the equation

b(k” = 1)@, 1 2
Up-a¢= 2 (pa-pf) e
2(p% =1) pp, P

where p::pz + (k=1 +2)2 and p? = p2 4+ (k 41 ~2)2,
a 2 .
Similarly the displacements are given by

w(k®-1)6 -]
Uy = : 2 ,,/pa + (= +k—-1)2l‘-eb‘/pz +(z -k -1)2
2(B* - 1)p , o
b(kz“‘”ea (z +%k = 1) +o,
u = 1o

3
*oupr =) (z-%w1) +p

The situation is as shown ip Fig.11.2.

(11.19)

(11.20)

(11.21)
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We now take a second particular case of ¥ (), viz.

¥(a) = Zg%; gBla- 8) (11.22)
where 8 > O and we choose the lipits of integration to be (& , ),
Theny in this case, we have the potential function
-BbQ - (= & Jh ,
#( p 5 2) = " fe BT 08 qog| AL LZ 3 8 | gy (11.23)
16mk(p2=1)J8 r(a) + (z +
which immediately leads.to the temperature distribution
hd peo ~ha .
e(p,Z):‘Q'ie"——/ (zz«:--ee)le2 da3/ (11.28)
haw IO L(z +a ) 4 pz] #
The value of the temperature on the surface z = 0 s 1s given by
hd pe ~ha
o(p,0) 8o [ 2el” g, (11.25)
hak 48 (a? 4 p?)3/2

Nowy it has been shown by Thomas (1957, p.4B2~493) that the temperature field given by
(11.25) is just the surface temperature distribution produced by a heat source of strength Q
placed at the point (O, 0, - 8) above the semi-infinite solid z 2 O with the boundary
eondition . ' '

hg =-22 = Qb s On z

3z #”K‘(62+p2),3/2

(11.26

i
(@]
°

'The situation is as shown in Fig.11.3.
Q. -

e

Pige}1.3
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242 Application of Fourier techniques.,

In this section we shail make use of the techniques of Fourier analysis to derive
solutions of certain problems for the semi-infinite solid and thick plates, As usual we
shall denote the Fourier transform of a function f(x, y) by (g s 7 ). TWe consider, in
this paragraph only rectangular co-ordinates and write

conts (&, n) =f / £(x, DelEx +15) 4 4 (12.1)
80 =00 d =00

£(x, y) =37 f f F(g, n)e HEX+1 Vagay (12.2)

If we consult the equations of paragraph 10 we see that the potential function
¢,(x, Vs z) must satigfy the equation

2 2 2
V.2¢‘ :a ¢ + 9 $+ 8 ¢ = 0
9x® ay? 0z?

86 that an elementary form of* ¢ would be

o - - : : (ii-3)
¢(x, 7, z): e(1(€x+77y),e gz
vwhere we must take (%= E%4 n?2

If we apply an integration procedure to the simple solution (12.3) we have the function

¢'(x9 Ts. z) =

[ /’ [@ xn ) MEx +13) -, (12.4)
. 7T(/3 e1) aw o
which gives immediately from 810 that 03 = sz = T = 0., In equation (12,4) F( g n) is
the Fourier transform of an arbitrary function f(x, y) '

For this potential function it is easily seen, by substituting from (12. L) into

equatlon (10.2) that the temperature distribution is given by

0(x, 5, =) =Tz17f.w [Fe, n)etl8x+ 1) =2 agay (12.5)

8o that, if we choose X (z) = O, we find the following conditions on. 6

g —=» 0 a8 2 -«

(1246
8 (x, y, 0) = £(x, y) )




3k

These functions lead to the consideration of the problem shown in Fig.12.1

Fige 12.1
with boundary conditions
0'=T3 ua = 0, 6=f(x,y) onz =0
0 > 0as 2 Do (12‘7)

All physical quantities tend to 0 as z =P wy Xx->% w0, y> % »

The physical quantities of interest are then given by

u, = ——t Jmf?léﬂéfii'eﬁ(gx*”y)‘52d6dn (12.8)
p(B” = 1)Yewd ¢

o = b )/‘oo 00 iTI?(E, n ) e—i(EX +77y) -{z dEdn (1209)
oy (pr= g2

. . -~ f”f’“ fl &, 1) | e-i(EX +1y) - quéa,gdn (12.10)
TIPS U

] f f n2 ¥ g and HEx+ ) -dzg.4, (12.11)
: 2w(ﬁz—1)

= /:fa:éa F{ E s ) ‘é"‘i(gx + 1 Y)"(gz aEdn (12912)

Y 27(B%F-1)ds £z

- wEn F( & . n ) e-i(EX +Ny) =~ ¢z ag dn (12.13)
T W(ﬁ - 1)l;nf -

These are the physicalvaqué;ntities required for the discussion of the semi-infinite
solid., Now let us consider the problem of a thick plate =1 s z < 1 whose traction free
surfaces are deformed by the temperature distributions 6 = f(x, y) on z =1 and
8 =g(x,5) onz =

T T T,
77 I

o = glx, y)
Fige 12.2
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Choose the potential function ¢ (x, ¥, 2) to be

o(xs 75 2) = -b foo * &, n)sinh(1 + 2)¢ + B(E, n)sinh(1 - z)gs—i(5x+ny)d€dn (12.12)
La(f2=1) Jocoduwo £ 2 sinh 2¢ '
and X (Z) =

Then it follows that the temperature distribution is given by

inh - -
6(x, 75 2) =1 f _(ﬁgﬂ)s (1 + z)§ + g(E. n)sinh({ = )¢ 1( EX + ny) agan (12.15)
=00 sinh?2 §
Since—i_'-( E, 1N ), g( E, N ) are the Pourier transforms of f(x, y) and g(x, y) respectively, it
follows. that

6 =7f(x, y) on =z

H

1

1}

(12,16)

6 =g(x, y) on z =

it
1}

The following boundary conditions are thus satisfied by the function given in (412.1k4)

c = T_ = T =0, -8 f(x,y) on z

3 x3 Y3

(12.17)

o, =7 =T =0, 6 g(X,.V)V on z

3 x3 ¥a

1}

Expressions for the physical quantities involved, similar to these given in eguations
(12.8) to (12.13) are then easily derived.,

Consider a third problem as shown in Fig 12, 3

Y. 3
0 = f(x, y)

LS XL L

\\\\\\\\\\\k@\\\\\”

Pig.12.3
with boundary conditions . —
03 = Tx3 = T'ga = O, 6 = f(X, y) on z =1
06 '
5, = W= 0 onz =0 (129;18)

all quantities finite as X, = * «.

The third condition given will be satisfied, in most cases, provifed f(x, y) is a
suitably chosen function,
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A suitable potential function is

= F h
b (%, 7s z) = /' j TE n)cosh ¥z :"(E'X"'ny)-dadn (12919)
14—”(13 - 1) Jaw deoo 2 cosh(
and we take X(z) = O,
With the usupl procedure we find that

6(x, v, 2) g_i_f f £(ganjoosh{z ~i(Ex+My) gpqn (12.20)
2 T )

cash {

from which it is easy to find the following expressions

.. j(.x,f * 1g(&.n)ooshl g ~i(Ex+73) gy, | (12.21)
ra(g® - 1) { 2 cosht
. f“f‘” 1inf(Es ncoshl z ~i(€x + ny) agdn (12.22)
v ba(B2-1) i ¢ ®cosh ¢
. _ fwfw "f"(g . 7 )Sinhgz e-,-i(?-;x-i- le) agdn (12023)
3 hgﬂ,(ﬁa_ll) cod § cosh {
. _ foofw 772 F(g o T])GOSth e—-i(aX'l' ny) dEd 1 (12021}-)
= 2g(gf-1)i ¢ “cosh ¢

33 =
¥ 2w (B®-1)

Jf:”f““ £75( gonleoshz ~i(Ex + 1Y) geq, (12.25)

L %cosh

T fw " i’l,ilﬁ_é_a.ﬂ)_[ -i( &x + ny) dgdn [ cosh Bz (12.26)
Wo24(8% - 4)d- £ %cosh ¢

a8 =_1__f°°f * LF(E,msinhlz i Exeny) azan (12427)
dz cosh {

from which the conditions (12,18) follow.
Thus the function given by equation (12.19) gives the stress field in an elastic
layer 0 € z < 1 which is resting on a rigid foundation z < O, whose boundary z = O is impervious
to the flow of heat, The layer is deformed by the application of a temperature field
0 = f(xg y) on the stress free boundary z = 1.

Eﬁ Application of Fourier techniques (cont.).

In 842 3¢ was shown that by using the basic solutlon in conj{znction with the theory of
Fourier techniques that we could solve a certain class of problems in rectangular coordinates,

The question now arises as to whether we can apply the basic solution to the analogous set
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of problems in cylindrical co=-ordinates (p s P z) when we have symmetry about the z=axis,

In this case we make use of Hankel transform techniques, If we denote the Bessel function of
order V by J l"(z) and denote the Hankel transform of the function f'(p) by_f’-(g) then we have,
from the Hankel inversion theory (Sneddon, 1951) that if

&) :[""pf’( p) I (Ep)dp (13.1)

then
£(p) :f £ () J (Bp)ar (13.2)

The case with which we are mainly concerned here is ¥ = 0,
Tg return to the equations for the basic sclutions in the axially symmetric case as

given in B0 we see that a particular harmonic function is

‘/J(Psz) ’azJ(aP)
It follows that a potential function satisfying the equations in 810 and also suitable
for fitting boundary conditions in this case is

/ (&) 5 (e 8% ag (13.3)

$(py z) =
2(p? - 1)

where we have again taken X (z) =
From equation (1 0,2) it is easily shown that the temperature distribution is given by

e(p,z)=f”aR®JJaM§§Zaa (13.4)
o
from which it follows that 6 —= 0 as z—)w

and G(P,O)zf(P) on z =20 (1395)

Thus the function given in (13.3) gives the solution to the problem for a semi=infinite
.8olid z » O whose stress free surface z = O is deformed by the temperatuie distribution

8(p, 0) = £(p).

///////////(////// v

Fige 13.1
The quantities of physical interest are then given by
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u € E,Z o
0= _.1)[ HE) I (8 p)e =" ag (13.6)
- | F e—EZ ®
u, = 2</32~1>f H(g) 7 (g p)e” & ax (13.7)
%" % =""l"°‘" g f(a)[J (o) - 2J(pa) / (;:a&] e~ 3% az (13.8)
BZ-1

. These are the solutions derived by Lockett and Sneddon (Q.Appl.M. July, 1960) who
consider the stress distribution in detaill and give some particular problems.,
Another suitable potential function solution is

$( ). Z) - » ( _,(ﬁ) su1h§(1 4+ z) +ﬂg 81nh§(1 - Z)J (E, p)dE (13‘9)
2(p2=-1) ¢ E sinh?2 &
with X(Z) =
The temperah:re distribution in this case is given by
6 p,z) = _g_(,g) sinh& (1 +z) +Eg(E) sinh & (4 ”Z)J(Ep)da (13.10)
A sinh 2§
so that on the boundaries z = + 1 we have the conditions
6(p, 1) =2(p)
(13.11)
9 (ps~1) = g(p)

It follows that the function given by equation (13.9) proF'idea the solution to the
problem for a thick plate =| s z < 1 to whose stress free boundaries z = *+ 1, are applied

~the temperature distributions given by equations (13¢11).  The quantities of physical.
interest viz, s

u - f £(g) sinhE (1 +2) + g(8) sinh&(1 = 2) ; (gp)ag (13.12)
2(,[-}2 -1) sinh2 g

U o B __(é) coshZ (1 + z) “M—f_&l!}(gp)ag (13.13)

to2(pr -1) sinh2 &

¢ mg ot [TpE(E) sihE (1 s 2) +£15-3—S—i-1-m—§-ﬂ-='—-z—l[mo(g,o) - 3‘5-(-‘22]:&@ (13.14)
T % (g2 ) sinh2 & ) ()
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are in agreement with the values given by Sneddon and Lockett ( Q.A.M., July 1960) when
g(p) is taken to be zero to agree with the temperature distribution teken by them,

|
!

Az

B L

07/// ///7//////////zm
LT LD

\—-//9:—;)

Fig, 13.2

Z=~

; Angther pi'oblem which is of interest is that of an elastic layer O < z < 1 ?’.resting on a

rigid fouridation z < O whose boundary z = O is impervious to.flow of heat.

AAZ

_ fﬁﬁw//wwﬁ\iiimr -
TN
\5¥$§&X\\VQQQQQ§§§<

B
i Figo 133

To solve this. problem we choose our potential function

4(p 5z) = - —2 [ f(g)sﬂﬁ-«r(pa)aa (13.15)
2(p% = 1) gcosh &

and x(z) = 0.
With the solytion (13.15) we find the follorwing quantities on substituting in the
equatlops of 810

a( p, 2) fj gF(g’)E—Z%h;h%Jo(pE) ag (13.16)
CNROF - LAVOLE (1347

o (e - e 1’_4)[ f(a)—w-eE‘-J(pz)aa - (13.18)
3 (6 2) = 2 Fe) S2Et g, (2p) g (13.19)

N T

i il
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sg that

@(931) f(P)

W =

(13.20)

=0 onz =0

5

The conditions (13.20) are those required for the solution of the problem,

The solution.given above was first derived by Sneddon and Lockett (1960, Pe309-31 7)
using a different method, and they discuss it in some detail,

In the three problems considered in this paragraph we have demanded only a known
temperature distribution 6(p s z) on the stress free surfaces. Suppose we prescribe the
heat flux instead. Let us begin with the solution discussed by Lur'e ( 1 955) who
considered in some detail the following problem

AL

QJ

q (p)

//////////////777
LTI

b:l

Z==]
were q(p) = (27wp)'Q 8(p), B
Let us take our potentlal function ¢ ( p, z) to be
4( p,y2) = L. f Ue) sinhE(1 2 2) 5 (Ep)ag S (13.29)
Z(ﬁ 221) E 2 cosh2E !
and x(z) =0
Then the temperature distribution is given by
) sinh& (1 + z) -
o(ip, 2) = [ SE)sinel sa) 5 (5 ;) ag | (13.22)
S0 that we have ‘ ‘
%%(p » 1) =dalp)

Where we have written Q(£) to be the Hankel transform of gq(p). [,
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FPurther if we consider a linear combination of €( p > z) and its normal derivative
with respect 10z to give us our boundary condition we may consider problems of the type
gonsidered in B1f and solved by equations (11.22) to (11.28) of a heat source placed at a
point above the seml=infinite solid z = O,

Q- T

T

zZ
Fig. 1305

The boundary conditicrn on the stress free force z = 0 is

il Q5 | | |
ho aZ=L,,1r‘,K(52+p2)3/2 (13.23)

A suitable potential function for this problem would be ¢r( Ps z) where

(¢ o]
-0 ( z4+d
6¢f ) +ban j - ( )
8z 8(p% - 1)mk , (h+a)
which reduces to the solution given in (11 ,,zq)_ for the temperature field if we write

; (ap) da (13.24)

. | = ® -e-(h +G.)t ﬂ'ﬁ
h+ o .

o]
and interchange the order of integration.

Let us now consider the effegt of plaoing a Neat source @ at a distance & above the
stress free surface z = = of a plate -1 < z § 1, whose other surface z = + 1 is maintained at
& temperature g(P). . To faclll’oaté the expressions useds le‘b us teke g(p) = O and choose

#(py2) = - f = 9, (Ep)dE (13.25)
81m(/32~1) [hsinhZE + ; V13

x(z) = o;




\
\
™

T

Q

Then we have the following ex_pressidns for the quantities of physical interest.

-hE
inh -
0( o 5 2) =z-°;—,cf°. T bk - J(E0)aE (13.26)
. hE .
u, = L1V smh%(" =2) g (&p ) ag (13.27)
8w p2=1) h51nh°€+€eosh2€
u Poomne(s - ) 5 J(&p) g | (13.28)
z 81(K(/32~1) hs:thE,-x-gcoshZE
and
© hE . ' A
(¢, = €stmi( =2l 5 (gp)ax | (13.29)

P9 =4HK(/3251) o hsinh 2& +&cosh2g

A further problem of interest is that of a point source place outside an elastic layer
02z > - lying on a rigid foundation z 2 O whose boundary z = O is impervious to heaf. A
suitable potential function in this case would be

o _hE ) |
4(p,z) =~ 1) f e-coshBr . g (£p)ag (13.30)

8(p2=1)wk Jo &(hcoshg 4+Esinhg)
x(z) = 0. |
The temperature field set up in this case wouj.cl be
©
| o o,z =ﬁ[o ﬁosh‘?f%mg 5,(gp)at (13.31)
%0 tat on 2 ~ 0’ %‘»(p, 0) =0y andonz= <1, he “% ) lu-'lr16(82Q~1-§102)2‘/2

It follows from tha equation (13.30) that the quantities of physical interest are given
—_— ' | »
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) ~h g
u =____.}29g.___._, € cosh& z J1(EP) aE (13532)
p 81nc(,82-1) © h coshg + & sinh &
R [ SH 5 (&p)ak (13.33)
z 8uk(p?=1)J, h coshE 4+ EsinhE
G- g, = L1 / e~ coshfz J (gp)4aEg (13,3L)
6 h cosh +E sinh& ¢

% wre(p%-1)

)

e
Ts

TR L.
AR

Z

Z =~

Fig. 13.7

In this paragraph; up till now, we have discussed only problems with symmetry about
the z-axis, The basic solutioz can be extended ta cope with problems which do not ptssess
this symmetry. We shall now use co-ordinates (p s P g %), The relations in which we are
interested will now be given by equations (10.7) to (10,1 where ¢ (p, ¢ , z) will now
satisfy the equation

2 o) 2 az
v2¢r=u+‘1" . RO A (13.35)
op p 3p pZ a¢?® a8z’

n

A simple solution of this equation is

tEg

=Vcosk¢ J,l-«:( Ep)e_‘: (13.36)

80 that we can apply a summation and integration procedure to i%. to yield the potential
function suitable for our purpose

| = a (8)7 (8p) . _.,
b cos‘m(ﬁf" w > T wl B g (13.37)
° 13

(. Py ¢y ) = = e
’ 2(p2=1)
with x(z) = o, m=0




If we substitute (13.37) into the equations of HM0we find

o

6(p s ¢52) = E cos m¢f g2 (2) 7 (Ep)e =" ag (13.38)

m=o0

From (13.38) it follows that -3 O as z -y o and that on the boundary z = O,

6(p s ¢40) = Z cos m¢/ Eam(E)Jm(Ep)dE (13.39)
m=e N

If we now consider the problem of a semi-infinite solid z 2,0, with its boundary
z = 0y free from applied stressg and with an asymetric temperature distribution on the

surface which can be expanded in a series of cosines as follows
o
—\

6(p s P, 0) =,,;>:a‘9m (p)cos m ¢ (13.40)
then (13,37) gives the solution prowided that, when we compare the coefficients of the
series (13.39) and (13.40) we take

*© —
| 2 (8= [ 00 (0) 5, (s8)a0 = 7 (8) (13.51)
where we are using the m h order Hankel transform,

Let us now write

N 09_ —_—
Imq(p,Z):/ 53 (pg)efar (13.42)

m IFH-CJ'
0 3
Then on substituting from equation (13.37) into the equations given by 810 we have,

for the problem shown, in Fig.13.8

/.

Z

6 :2—, Gm(p)chSfm o]

i

Fig, 13.8
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oo
b —
u, = 51 z cos m$p|I - Im-] (13.43)
m=0
o0
e E— i I I
¢~ A—(B 2 _ 1) sin m ¢ me1 ¥ Tmey (13‘1"4)
m=o0
u cos m¢ I (13.45)
7" 2(/3 z " -
m=o
poE ) e, ety (3.9
(ﬁz - ) o p 2p ma 1
after sultable arrangement of the Bessel functions involved using relations gifren in
Watson (494 ). The above results are in agreement with those obtained by Muki

(1957, p.42=b5l) using different methods.,

Prom the above analysis, the solutions of 810 are applicable to the problem of a semi=
infinite solid deformed by an asymmetrical temperature distribution. It is of interest to
see whether we can apply them to the problems of thick plates.

We consider firstly the thick plate =1 < z g 1 with the stress free surfaces z = 1,
deformed by the application of asymmetrical temperature distributions £(p , ¢ ) and

g(p s 9) respectively, where we assume that there may be expanded in cosine series as.

e 2(p, ¢) = :;e 1’&,(,)) cos m¢ o
glpy, ¢ ) = Zez’m(p) cos m ¢
77 // / V7 777
/ S/ / / / /)

Flg. 13.9
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A sultable solution in this case would be

-b 4 =G, (£)sinhg(t +z) + &, (2)sinhg(1 - z) ;

' z o8 m‘i’f ; * 5 (pg)ag (13.48)

2( ,52 - 1) For "0 m :
0 3

1

¢(P 5¢9 Z)
. gsinh 2g

x(z) =
: where we have denoted the mth order Hankel transforms of 6 , m(p) and 62 m(p) by E: m(s:;),
> 2 ]

9 m(?:;) respectively,
It follows that the temperature distribution in the plate is given by

| 3 "7 (E)simpE(1 +z) 40, (E)simnE(1 - z2)
(p 05 2) = z cos mqﬁf : * g7 (Er)ag (13.49
= o sinh 2§ m

The temperature conditions (13947) are then easily seen to be satisfied, on the

boundaries z = + 1,
If we substitute from equation (13.48) in equation (10.,7) we find that the first two

- components of the displacement vector Uy 5 Uy are again given by (13.43) and (13.L4)

i respectively provided that we now write

% J (p,E)
Imq(p s 2) =/o ﬁsm(g)sim€(1 +2Z) + 5"2,m(<§)sinh€(1 - zﬂ——s—:fm dg (13.50)

“while the third component u is given by
=h. vi‘?\ / F (E)coshi(*] +2Z) - 9 (E)coshg('l - z)
U gz — cos m ¢
2 2(B%-1) Z_/ sinh 2&

These results are sgain in agreement with those stated by Muki.
€ 1 resting on an impervious rigid

Jm(ré)dé (13.51) |

: Now, consider the problem of an elastic layer O < z
{fomdation z < O and being deformed by the application of an asymetric temperature distribution

~on the surface z = 1, given by

6(p s ¢51) = 6, (p)cos m¢ (13.52)

[~

3
I
o

" where the boundary z = 1 i1s stress free,

6 = f 6 (p )cosmqb

'on

///////// V/ St/ )]
AR

o Pig. 13.10
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| In (13.48) write 51 (3;‘,) ='é‘2,m(g) = é—m(g) 50 that equation (13.48) becomes

m

[

4P, ¢, ) = —2 Z cos m¢f 6 (&) cosh 2z 5 (pglag (13.53)
2(p® = 1) L Eéoshg "
x(z) =0,

When we substitute from equation (13.53) into equation (10,7) we find the following

| quantities

o (b, = Z cos ng| £7,(2) LLER 7 (p )az (13.54)
m=0

. while the first two components of the displacement vector (u p ¥ u ) are given by equations
] (13.43) and (13.44) respectively again providing that we now take

_ — cosh&z
Tl P s 2) _/o 6,(8) oont Ine(PEIAE (13.55)

3 and the third component u ” is given by

Z cos qu/ 6 _(g) ——-—-g*'-J (p E)AE (13.56)

cosh &

u =
2 2(p*-1)

It immediately follows from equation (13.54) that on the stress free boundary z = 1,

6(ps s 1) =:Z em(p)cos m¢

4 a8.required and also that on the boundary z = O

W === =0,

3
2

The potential function. given by equation (13.53) thus gives 4 solution of this problem.

" 31_4 Solutions for rectangular parallelepipeds.

We now consider the application of the basic solution of §1O to problems which are
~ bounded in the x and y directions as well as in the z direction. For the cases in which the
medium was unbounded in directions perpendicular to the z gxis we found that Fourier and
Hankel transform techniques were suitable, It therefore seems possible to apply either
‘f’ Pourier series (_When we. are dealing with rectangular co=-ordinates) or Dini series (when we are
- Using polar co-aordinates) to solve the problems for regions bounded in the x and y or ﬁ

directions,



Consider the problem of a rectangular parallelepiped. In order to keep the formal

galculations as simple as possible we shall assume that the parsallelepiped has one pair of

- faces in the form of a square, the length of whose edge is twice our unit of length, We

- assume that the faces of the parallelepiped, perpendicular to these faces are impervious

 to heat and that the normal displacement on these faces vanishes, The solutions we derive

|

. therefore give the stresses in an elastic plug embedded in either a rigid semi-infinite medium o

in a rigid plate, We employ double Fourier series.

Firstly consider the problem shown.

6 = f(X, y)
//% IV >
yz
Pigo 1401
with boundary conditions
OZ=TKLJ=TyZ:O’ sz(x,y) onz =0,
9 —_— 0 as Z2 % o ( )
u =0, x=4%1, uy:O,y=i1 1401
29 20
-a—;f‘:O’X:i.'l’ay:O’y:ill
Prom equation (10,3) . , .
oY 8y 9
(A Surh St
ox oy dz
& suitable simple solution is '
u(x, ¥, 2) = e*P% cos ax cos fy (1242)

Whez'e p.2= az "'ﬁa °
If we apply a summation procedure to this solution we obtain the potential function

- — <N & cosmmXcosnwy
. \v e mn -'P Z
(1*'(3’-;.')7;.2) =E E o e ~mn .
mee n=o mno . (1%4.3)

x(z) =0




49

. yhere now :’m = 7°(n® +n?) and (m, n) £ (0, 0),
Then it follows that

o2
a—y

[+
6(x,y v, 2) = ) ; a . COS MTX COS DTy e
A

n=0

Tt (1hak)

v which tends to O as z tends to of 2
Using the equations of 840 it follows easily that the boundary conditions (1k4.1) are all

(=] oa.

|

»a' satisfied provided that @ (x, Vs 0) = f(x, y) can be expanded in a series as follows,
|
!

r"‘q
9(x,y,0)=f(x,y)=2_/ z 8,,Co8 nTX cos nwy =1 < X<
| m=0 n=o -1 sy<1.
This will in general be possible, for even functions of temperature, to within an a
constant, There is no.term a e However, this is a matter of deciding on the scale for

temperature. From the theory of double Fourier series we may find the constants a

Mg 0O
:a 3a as follows
Ogh mn
4 v
& . :g[/f(x, y) cos mwx dxdy
a .= %—/[f(x, y) cos. nmy dxdy (1445)
)
a .= ‘//\f(x, y) cos mT x cos. nwy dxdy m;!O, nfo
?

i where the field of integration is the square =1 € x €1, =] €y € 1.
Bquation (14.3) thus. gives the formel solution of the problem as expressed.by the
L boundary conditions (1k4.1). ‘ ]
’ If we wish to solve the corresponding problem for a thick plate =& s z< 8§ where the
tempprature distribution on the stress free faces z = + § and z = - § are given by f(x, y)

: and g(x', y) respectively then the situation is as shown in Fig, 14.2

] \ Z

6 = f(X, Y)

— . z= §
TLE
0 > - > X
4 Elastic Atg{d

. <z - = 6

0 = g(x, Y3)

Fig. 1462
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with the boundary conditions

—_
c =7 =7 =03 0(x, 5,8 ) =f(x,y) on z =8 '
zZ X% vz
%’—&—*9 u=0, %%20 on X = +1
&= 20 _ (14.6)
V:O) aa~o on y:i
e 0(x, 3, -8 =8 y) om ze-b |
|

We now consider a poten{ial function - ‘

a S:th(ﬁ + z)p si'nh(5 - Z)P
Z Z B cosmyxcosngy (1d4e7)

p: s:thZ 5_‘9

(xs ’Z)
ey 2(B% = 1)

vhere we now take the quadratic function x to be

a bb
x(z) = ~—== (6 + 2)? = =2 (§ = 2z)% (14.8)
4p% % 4828

It follows immediately from 810 that,

6(x, ys 2) =% 2 0(1.+§')+%b0( "?
=& inh( 6 + z) b sinh(§ = z)
a s +2)p _+ S = 2/p
" Z Z mn nn ng —Bl cosmax cosnay (14.9)
el - sinh?2 E’Pmn

It ’\ﬁi.s then easily seen that the conditions given by eqhation (#4.6) are satisfied provided

that we choose a such that .
[+¢] o0 '
g -
a +Z./ Z a  COS MTX COS nTy

f(xs y) =
mEo  pzo (14+10)
g(x, y) = b+ Z Z b oS mmX cos nwy

The a  are given by equation (14.5) if m £ O, n £ 0 and

a, = %/ff(x, y) &x dy (14011)

The b, are given by similar expression with g(x, y) written for f(x, y).

The stresses induced are as follows

a . bbo
0 ==|=—(8+3) += (5 = z)

* B B
b = . a sinh(8 + z)p. , + b sina(b- 2B,
n® 7? B - i cosnmx, cOSnLTY
(g% = 1) m=e  n=e Ppp SRR 20p

(14e12)



|
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'baa ( ) bbo ( )
=== (0 +2) +—(8~12
’ 2§ %
- D ) amnsinh(é +z) Py + bmnsinh(éi - z)pmn
T m2q pana COSI fXCOS N Y
(g2 -1) & & p? sinh 26p
(-] [+ . .
: b Z z "~ L %nn sinh(§ + z)pmn + bmns:mh(?) - z)pmn ] .
T == ' m 7~ . sin mgxsinmmgy
2 _ : s -
el (ﬁ 1) m=0 n=e Pan sinh 2 5'x)mn
As a very simple case let us assume that on the face z2 = 1, 6= 90(1 - xz) and that
fomz==141, 6 =0, Then we have
=
. .2
o 3 e
L e
. R+ 1
am ,0 = m2 ("‘1)
for the values. of the constant terms.
an ;0 =0 )
am,n :O)
-0 =0. -
o v, bvﬂ,n 0

1 6 = £(x, y)
/ / z=0
// Elastic Ra.gl{
_ / (AYa

Fng’ 114'-3

(14413)

1
i

(12014) |
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i
|
i with the boundary conditions

-1
O'zz TXZ= :)TZ:O; G(X, Y 6) =f(‘X’ y’) onz = 3§
06 20 on
Ut =0, — =0 on x=1l;vs=0, —:ogngﬁaaag.y = +1 (1%415)
oxc : J = =
36
W = =0 onz =0,
zZ

The potential function appropriate to this problem is

oo

=+ a_coshp z ,
Z Z L e cos m7 X COS NEY (14.16)

2
coshp §
m=o n=o mn mn

¥ (X, Vs Z)="
2(p% - 1)

| The function given by (1L4.16) in conjunction with a value of

ba =z
Haz) = —=
=Tge (1217)
i glve, with the use of the equations of 840
- = cosh p. =z
6(x, vy, z) = a, + z z a m_ﬂL—coshpm" - COS I WX cos nmy (124.18)
m=0 n=o ’

i It is then easily seen from the equations of §10, (14.17) and (14.18) that the conditions
I (1415) are satisfied provided that

£(xs y) =a_+ i

m=0

a ©COS I 7X COS nwy (14.19)

g

3

=0

The coefficients a mn 2T€ then found from equations (14,.5) and (14.11),
: The solution as we see above refers to an elastic parallelepiped inserted into a rigid
- material, impervious to heat,with a given temperature distribution on its surface.

The displacements and stresses are given by

hd o0
b amncoshpmn z
u =+ nIv-— . sin m wx cos nwy (12:420)
2(5 # - 1) m=o0 n=0 Pmn CQSh-Pmn a
(=] o
b amn'coshp mn 2
uy: n7— cos mwx sin nqgy (14.21)
2 : .
2(p2-1) (- L p coshp a0
baor b % . a _slnhpmn z '
u, = zZ + . AL COS M X COS. WY (14422)
2 2 _ :
B 2(p 1) L LLp nOBShpmn )
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2ba' b — = 2 2 & l"coshp« z
g, == - z z n-mT Z B0 cos. m 7 X COS nwy (14;.,23)
2 2 .
ﬂ ( ﬁ 1) m=0e n=9o pmnCOShPmn,&
: Zbao b = = amncoshp,mn z
oy == - : Z 2 m? 7 -—-;--——-P-—-- COsS mMTX COS NAY (12.24)
2 2 o
g (‘8 1) m=6  n=o P mncos'h'pmn ®
b = = .2 coshp 2z
Ty = z ;‘ nnw —'-n;"'-—-—-ﬂ-'w— sin mrx sinnwy . (14.25)
(p2-1) L P " coshp &
m=o n=e mn mn .

/

§15. Solutions for finite cylinders .

In this section we shall consider several problems which are similar to those considered
in §1‘l;.,, but we shall now attempt to solve several problems in cylindrical polars, ( p, b3 z)
and we shall assume that there is symmetry about the z-axis. In 844 it was shown how the basic
solution could be ex‘cgnded by the use of double Fourier series, In this section Wef shall use
Dini series.
. The Dini expansion of a function £(t) is given by
0

£(t) = Z a, J,(n t) (15.1)

m=1
where 7\,1 s A 22 7\3, eoe are the positive zeros Grranged in ascending order of magnitude) of

23!(z) + £J (z) (15.2)

where H, v are real constants and v+ 3% 20.
In the cases we consider we choose H = O and v =0, so that A , A 4 A , oee are the

positive zeros of J1 (z). The coefficients in efjuation. (15.1) are then given by

)
i

2 11’0 £(t) dt
/" (15.3)

> 1
a = J:(M") fo t£(t) Jo()\m t)dt, m 31
Wiere we have included.a term a  because this is the special case quoted in Watson (1944)
ofH+p» =0,

A suitable solution of equation (10.3) in the case when we are considering axial symmetry
is

i-?\.z
$(py2)= ¢ Jo(kp).



e

5k

If we apply a summation procedure to this we obtain a potential function of the form

-b = as:mh(8+z)7\ +D s:mh(&-z)?\
4(p s 2) = ). — 3 (% p) (15
2(pz-1) : Ris:.nh(Z xms)

where the sum has been taken over the positive zeros ’A s 7\ s )\ s oo Of the function

7 (2).

For X (z) we take the quadratic function

x(z) =

4p2 : [ao( 8 +2)° - bo( S - Z)E! . | . (1549

From the equations given in 8410 and using equations (15.4) and (15.5) .we find that the
temperature distribution is given by

' 'a z ) z =2, J(?» )
6(ps z) ='2'9'[j +§]+-§Q[ --5] +> [a sinh( 8 + z)N_ +% s:l,-nh(ii--2)7\]31111127\P8 (15.6)

m=4
while the components of the displacement vector are given by

b = asinh(6+z)7\ + B s:th(6-z)7\ o
B (n,0) - {1547

U, =
P 2
2(p2-1) 'Z” Ay s;.nh(zxma)

i u¢=0

]

b
Mz—'—-—'[a(8+z) -5 (6-2)7 +—
L p*8 2(g% -

) Zaa cosh(d + z) - b cosh(d - zh J(')\, )
m I’) 8
) ? LA (15.8)

).msinh(Z'}»m&)

A Now consider the problem as drawn selow

A z
o =(p)
// .
0’ t £ > p
Rigi. Elastic. / Rigld
Z / L L 5
(o)

Pig, 151
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with boundary conditions

; o= Tp =03 6(p, 8)=1(p) onz==5, ,

aram Al s (o, -8) =g(p) onz=-3 (15.9)
| 26 _' . _

U =3 =0, onp=15,

These conditions are easily satisfied as is seen from eguations (15.6) s eee (15.8)
s b, of equations (1_5.6) such that

l[ provided. that we choose the constants a5 85 b

|
\
!

6(p, 5) == +> ad (A p)=2(p)
¢} L1 m o m
m;:to (15010)
&(p,,-8)=b0+ thJo(kmp):g(P)o
m=| .
Now from the theory of Dini series and equation (15,3) we must have
1 1
a = 2/ t£(t) at , LI 2/ tg(t) dt
0. o]
(15411)
2 1 2 i
= tP(t) J (N t)at, » = tg(t) T (N t)dt., m 1
i ) do o g () o o
o m [+] m
The expression for the differences in stresses
b L a sinh(s +z)A + b sinh(s = z)
Oy = Ty = B M * P " o J ().mp) : (15018)
(B2=1) ‘m sinh(23 5) g

Consider now a situation as shown

/ // Z= §

s/
Elaskic . Rigid

s

Fig. 15.2
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‘ where the boundary conditions will now be

Uzz sz =0 3 @ = f(p) on z = 9§
20 .
u =====0 =
T z =0 (15413)
90
up=—a"5=:.-0 p =1

The situation then is of a plug of elastic material embedded in a rigid foundation which

is impervious to the flow of heat. To solve this problem we choose a potential function

-b 2, a cosh) z
#(p s 2) = > e 3 (a ) (15.12)

2(p%=1) Ml 7\2@‘3311 ?"ma

vith X (z) = -%-'6, where 85 &5 8, oo aTE defined by equations (15.3). The quantities of
physical interest listed below are easily obtained by substituting from (15.14) in the equations
of 840

o0
>—\ a coshd z . Lo |
8(p,2) =/, SosE T 5 J(x _p)* 13 - (15.15)
m=q
b 2, acoshh z »
u, = : 2 4 - T (N p) (15.16)
2(B#~1) &£, coshn 8 m
an b ﬁ\ a sinh\_2z
u, === 4+ > L - J(h_») | (15.17)
B2s 2(p® -1) = kmcosh-%mﬁ
b = am@osh Lmz ( ) ( )
P - J ?\. p - 15018
¢
$" %% (g2-1) 2_, cosha & * "
m= 4

| It is then easily seen that conditions (15.13) are satisfied, As a special case consider
| what happens when we take £(p) = 8, (1 p%) and & =1,

A
)"
7]

[

° 5—




Then .
. 2 7]
ao—_-ZGO[ t(1~=t)dt=—§-9=

o
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' (1501 9)
B = i '
m " 2 »
A g (2)
so that we may write
-2%0 =2 cosh) z J&(, A, P)
u, = > o : (15.20)
B2=1 [ coshh @ 2*J (n-)
m=q m m O m
g,z 28 & sinh)_z J@(?\mp) |
U, = = . > . =t (15.21)
2876  (p2-1) L cosh A & ?x,mJG(kn'i)
290 = coshh z J (A p)
[¢] m 2 m
2o~ q5) = 2 z : (15.22)
\9 ™ % BE=1 = cosh.?LmS )‘mJ@()”fn)
The series given by equation (15022) was. summed over the first fifty terms for various
values of z ranging from O to 1, The graph is as shown
p [ o] .05 o A5 .2 225 o3 035 odr 45 .5
10 0] 0005 | 0012 | <0028 | 0050 | 0078 | .Q100| 053] .,0200 | .0254 | 0313
o9 0| .,000k | .0C11 | .0024% | 0041 | L0063 § 0092 | M24| 0165 | 0205 | 0250
.8 0] 0003 | 40009 | .0Q018 | ,0034 | 0051 | 0073 | .0098| .0129 | 0158 | 0192
o7 0 | .0003 | 40008 | .08 | 0025 | ,0034 | 40051 | .0073| .0097 | 0118 | 0144
o6 o | .o002 | .0007 | o3 | ,0019 | ,0030 | 0043 | .0056| .0072 | .0087 | .0105
5 0 | «0001 | o000k | ,0009 | 0014 | 0022 | 0031 | OO} ,0052 | ,006L4 | .OO76
0.0 0 { ,0000 | ,0004 | ,0002 | .000L | 0008 | ,001Q ] .0O13| ,0018 | .0021 | ,002%
‘Z_P 055_“ 06 065 n7 975 08 085 09 ’ 095 1
L0378 | JO45C | L0527 | L0613 | 0706 | 0800 | L0901 <1112 | 1132 | »1250
20300 | ,0349 | L0405 | .0u66 | L0521 | L0577 | .0623| 0658 | 0665 | .0632
.0228 | 0266 | .0304 | .0338 | 0371 | .0398 | 05| L0422 | QM5 | .0378
0168 | 0194 | .0218 | 0239 [ 0259 [ 0271 | 0277 .0276 | 0266 | +0247
0122 | 0138 | L0154 | L0167 | L0179 | 0187 | .m88] .83 | L0175 | .0163
.0087 |.0099 | ,0109 | 0148 | 0125 | 3127 [ 0127 0123 | 0117 | 0108
.0028 | ,0030 | .0031 | .0032 | .003% [ ,0035 | 0033 . Q032 | .0031 | .0028
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If on the other hand we plot a graph for o) = g | = constant, i.e. the isochromatis

lines we obtain a solution as shown.

W

&\

2 N W W W N W W W W W W W W W W W N R N N

VAT e e e A

p —>

N

Graph of lUp - "f'qsl = constant,
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1 So far we have dealt with problems in which the temperature field was defined on the stressj

" free surfaces. Suppose now that we consider the problem of cylindrical shaped elastic materialj
enclosed by a rigid material impervious to the flow of heat, where the heat flow across the

#| stress free faces is prescribed. Then we have the situation shown.

0 ' / > p
Elastie. Rigid

NN
N

Figo 1504
with boundary conditions
. 89 -
GZ-=TPZ=O’ az:f‘(p) onz =90
96
iz 7 A D) onz==8 (15.23)
30 _
up=8p=o o p =1
If we take a potential function
) = a coshA (8 +2) -b coshh (§ - z)
o, z) = > S i 3,( %, p) (45.24)
3 2 °
, 2(B -1)m_=J1 M sinh 2xm5
l 'baoz2
soamd x(z) = m——,

I 282
In the usual way we obtain

a_cosh (8 42) =b coshr (8- z)
m m n

EX
m
0(p ,2) =232+ 2_, o 6 g (r ) (15.26)
m

: m=
N
o6 =
—a s )

[

0z °

amsinhhm (6+z) +“bm s:i.nh?\m (8- 2)

Jo( A mp). (15.27)

1}

sinh 2 A m6
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fhen we attempt to equate the derivative of 6 ( Py z) to the functions f(p) and. g(p) we

find the following equations

@

—a—%= a  + Z-, amJO(xmp) = £(p) on.z =98 (15.28)
ms1

36 > '

5 = aU+ZJ lmJo(?\m p) =g(lp) onz=-=2, (15429)
m=4q

If we find the coefficients.an PRI ‘bo s “bm in the usual way by using equations

(15.3) we have
a, = 2/1 t£(t) at = 2[€ tg(t) at . (15.30)
0 o

The solution described by equation (15.24) is therefore only applicable to problems in which
(15.30) holds.

The total flux or flow of heat passing out through the boundary (z = 5 ) is easily shown
to be .

Q, :21ric/ p £(p) dp

€] .
and the total flux of heat flowing into the elastic material through the face z = = & %o be

1
Q2=2m<[ pelp)dp.

. o
Thus since no heat can pass into the rigid material , it follows that the total amount

of heat entering through one face of the plug must fdow out through the other face, This is
the physical fact expressed by equation (15.30).

Suppose on the other hand that we take a radiaticn condition over one stress free
surface and prescribe the temperature distribution over the other. To make the problem

slightly less complicated we assume that on z = + 0, @(p s O ) =0, While on z = - 5
ho - 96 _ Q5
0z = 4mk (8% + pryp/Ez

hé ~'2'%=‘“(p)
/ //
/) / g

A 4
. Z

Figo 1505

N
8}
A




We choose our potential funcetion in this case to be

( ) b = a  sinhh z 6 )
¢r p s Z) = o> o o ')\p
: 2(~1) ‘s A*(hsinmhA 4N coshr ) ° "
m= q m m m m
bao 2
md  X(z) = - ——
2B%h +1)
It follows immediately that
o0
a z NI a sinh\ =z
NPT P S YL
(b +1) S(h sinhd  +1_coshh )
o6 a, = kma mcoshlmz
= - - — — o I, (n p)
9z h +1 (h sinhN 4\ cosh A.:)
M= | m m
Thus on the surface z_= =1 we have,
@
26
hg -3 =2, +> a, « J,(n,p)
L
mz!

and 6(p ,0) =0, onz =0,

The values of a o3 &, are given by equations (15.3) to be

o
n

2[1t. Q0
° 0 )+1TK(82 +t2)3/2

il

. 2 f’ Q8 ,
" aAn) Jo nmi(8® 4 67

ST I,
o oT K 83 (1 +82)3/2
4

Q8 / 53 (A T)at
am = 2 2 2\3/2
2wxag(xm) A (8% + t3)

o Jo(hmt)~dt.
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(15.31)

(15.32)

(15.33)

(15.34)

(15.35)

(15.36)

(15.37)
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III, CRACK FPROBLEMS

A great deal of work has been carried out in the investigation of stresses and
gtrains in the vieinity of cracks and holes of various shapes in elastic media. The
garliest calculations of the distribution of stress in the neighbourhood of cracks appears
to be due to Inglis (1913) » who considered the case of an elliptic crack in an infinite
elastic plate. Interest in the problems of crack theory seems to stem, however, from the
péper by Griffith (1921) in which he discusses the fracture strength of glass and introduces
the idea of the dependence of this strength on the prescence of a crack, In the study of
the two dimensional theory of elasticity, the major development has been Muskhelishvili's
work on the equations of Kolosov (1909)._ Using complex variable theory, he solves (1953)
many problems of cracks and holes in an elastic material. The solution obtained by
Westergaard (1939) s in which the author showed that a special class of problems can be
solved by the introduction of a complex variable function, can be shown to be a particular
case of Muskhelishvili's solution., The methods of complex variable theory have also been
used by Wigglesworth (1957) to examine the problem of a notched plate., Using Fourier
transform methods, Sneddon and Elliot (1946) have also discussed problems of this type.
Koiter (1960) has considered the problem of the infinite elastic sheet containing a
doubly~ periocdic set of holes. Afull account of the work carried out in this field has
been given by Savin (1951) and by Green and Zerna (1954) .

In three dimensional analysis, the analogue of the Griffith crack is the penny shaped
crack, Theimggoriyy of the papers on this type of problem, assume that the crack is
circular in shape, and that it deformed by an internal pressure p(‘O). Sack (1946) , using
oblate spheroidal co-ordinates and a solution given by Neuber (1934), solved the equations
of elastic equilibrium, An exhaustive treatment of the penny-shaped crack in an”infinite
nedium has been carried out by Sneddon (1946) , using the methods of integral transforms.
The quantities of physical interest are evaluated in this paper and graphs showing the
variations of these quantities in the vicinity of the crack are plotteds A solution of the
/8ame problem has been given by Green (1949). Collins (1964) using a method of the same type
a8 Green's has solved the problem of the crack in an infinite medium, when not only do we
consider a variable normal pressure across the erack but also a shearing stress. Payne
(1953) has also reduced the problem of the crack in an infinite medium to the determinztion
.of a harmonic function, which he determines in terms of an integral, The problem of finding
the thermal stresses in the neighbourhood.of a Griffith crack has been solved by Olesiak and
Sneddon (1960)., while Lowengrub (1961) has determined the elastic stresses for the casg of a
Crack in a thick plate, The plane of the crack is taken parallel to the surfaces of the
Plate, The problem of the external circular crack has been tackled by Ufliand (1959).

A full review of the problems in crack theory is given by Sneddon (1961) and also by
Green and Zerna (1954).
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816, A discussion of a two dimensional crack problem.

We begin the consideration of crack problems by considering the problem of a crack in
an infinitely long elastic strip. In terms of rectangular co-ordinate axes (X, y) we write
the ddsplacement components in the x and y dirgction& as u_ and uy respect:?.vely., We considen
a strip of material, = @ s x Sw@, - 7Sy <7, with a crack in the interior of the material
on the line x = Oy stretching from - ¢ ‘to + Co  The pressure exerted by the crack is taken
to be p(y) and we assume that on the edges of the strip the shear stress and normal dis—

placement vanish

WA s

|
|
|

7777777 T

Since we have symmetry about the line y = O, we may take the boundary conditions in the

forn -
T = u = O’ Om' y = ’n’ 2
Xy J
T = 0, ‘ '
v : (1641)
o x = —(y) 0< y < cy onx = O,
U.x = 0 ,' c < N <. H

. If we consider the solutions of. the equations of elastic equil_ibriumAas described in
87, given by Sneddon (1961),we see that a suitable choice of the potential functions would be




P

oesey gy

Ty

65

:-—'—‘Ef— (16.2)

= _1_1?% %}éos ny e (16.3)

It then follows gasily that

o0

2 2 ) X . 2
u = - 5.11 an[ﬁ + (B%-1)ndcos ny e + B a  (16.4)

n=1
®

W == ay [1 = (8= 1) nx] sin ny (16.5)
A E=XD) nZln

while
o
¢ = = /)n an( 1 +1nx ) cos ny e ¥ (16.6)
nat
o _ :
o = -Znaa(‘l-“@nx)@osnyem (16.7)
J n '
h=1
»
T = =x ana sin'ny e . (1648)
Xy n
) nN=1
The boundary conditions (16.1) are then satisfied, previded that we choose the a,
" such that
!w "
Zn an cQos ny = P(y) 3 0< y <c F (1609)
h=1 '
1 S |
E*éco + Zamaosny ="-Q, e< y <@ (16.10)
n=1

Bsfore attempting to solve these dual trigonometrig sgries it is of:interest to notice
the importance of the inclusipn of the term %a, . Suppose that we omit it and considgr the
dual series " , .
Zn a, ©0S 1y = p(y), < ¥ < C 3 (16.11)
hel

w .
Z a cOs ny = 0, c< y <7 (16.12)
| ‘
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On integrating these equations, the first from O to y and the second from y to w,

we obtain the dual series ( where we have written An = a r/ n),

o

¥
ZnAnsinny = Jp(y)d,y =P(y) , 0 <y <¢ (16.13)
"%
ZAnsin ny = 0 C <y <7 (16.1L)
hsi

the solution of which has been given by Tranter (1959)%o be

]
2 3
a, = %nsinlz'c JD\SX(S)ZF,I(’I +n, 1 —nj 23 s"s:l.nz%_c)ds
where (16.15)
S, . =1 A ]
x(s) - Gf tP[Zs:Ln(t sin 5c ) at
: (Sz - ;bz)(,l _ fzsjnzacz
If we take
| p(y) = cos ¥ (16416)
then
%n = sin412’@.m FO +n,1-m;3; sin’Z ) (16.17)
n

substituting from equation (16.17) into equations (16.,11) and (16.12), we obtain the

expressions
od
. a4l 3 —_ e - 6.18
O’X xeo™ —-sin’ze ‘nst.(1 +n, 1 ng 3 3 sin ¢ ) cos ny (1 o )
2
S ' £
- sin*lc Y n®F (1 #n, 1 —n3 33 sﬁﬂzlz"’) cos 1y “(z '—1) (16.19)
Uxlxeo 2 £ 2 i 7 A
|

Gonsider equation {16.18). Writing

.1
z%c) =4(J2n(t).J2(tf sin /ZC)dt

o .
o
from Watson, p.401, where O <c< @ and using the fact that

sinzjz-c,n,ZFi( 1 +n, 1 —=n; 3 3 sin

S o T N N in &

A=

Where we have used the series given in Watson, p.22.
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we may, on changing the order of integration, write equation (16.18) as

. 2C1 1 s . 2 . /
o xlxeo = —81n‘2§-‘:§' cosﬁE jt Jz(t sin %) cos(t ,sm% ) at (16.20)
, o

-% sin L OJ'JZ(t sin ) sin (t sin %5 ) dt]_

Again using Watson, p.405, we have

-]
, - 2 » Z _ -
OJ‘th(tsmz) cos(ts:.nz)dt = 25 0 <.y < ¢
: sin3 \
) Z
=—2si1f%d sin%--r- (sinz%-nsinzg’) ’
-y " : N 2\
cos -i[dy .\/(slrf% ~-  sif 3)
c <y < 7
and (16.21)
i L
in &Y ain s L _ 2sin3 0O <y < ¢
of Jz(t sin ;3 sim (t sin 5 )dt_ = , 11% s
S 3
_ - siﬁ%
N S 7 . = ’
A/(s1rf-2°_ - sif -i)[s:m-z- + ,/2511‘\?2' - s:erE-
e <y < 7
(16.22)
A It then easily follows that we obtain
O lx—0 =—COS Y 3 O<¥y<e (16,,2:5)

a8 required,
Using a similar procedure on equation (16.19) we find, using the facts; given in

Watson that o

oj Jz(t sin-g-) cos(t sin%) = O c < y <T

¥
cos ( 2 sida-léj_n g / sin %.-l}
= ‘ 2 ;0 <y < ¢

.28 <2 o Y
/(Slnzg sll’zl 2 ) (16524)
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— <
?fl Jzn(t) cos ny = t cos 3 cos(t sin ;227' ) (16.25)
N L

where we have used the series given in Watson, p. 327, (12)

. ® , ®
oz 8in 8 (2 cos o)k - Z%ZnJZn X cos(2ng) + i Ze one172n Sin( 2n4) 6
] ) ’

N0 =0
(16.26)
then it follows that
2
I (2 cC
. o . cos sin = - 1 co g ‘
‘/Y‘PXJX___O=...,2(-_.-2 * Sy), 0 < y < ¢
\/-( cosy = cosc )
- o0, - c <y < w
(16.27)

Thus we have recovered the required boundary conditions. However, in the region
0 <Y <c, it is seen that the displacement changes sign, which is physically impossible,
We must therefore include the term a o to satisfy the physical conditions,

Equations of the form of (16.9) and (16.10) have been solved by Sneddon and Srivastav
(1962),

Following the authors mentioned abovey, we set

15 a, + Zan cos ny = Y’( g(u) (u?— y2) au , 0O <y < ¢
h=i (1.6,28)

where we have introduced a function g(u) as yet undetermined., From the theory of Fourier
Series, it follows immediately that, in terms of the function g(u), the coefficients are

given by
-

8 =':J g(u) Jo(nu) du n % 1
[ (16.29)

N

Now, let us return to equation (16.9), which we may write in the form

© | |
| Zm sin ny = Z“?(y)dy = ¢(y) say , 0 <y <o

n

=1 (16030)
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o . . . , -
Multiplying each side of this equation by Y (y‘a — Y"XL 2 and integrating from O
to ry we have

o0

_u r_(/u+ 1) r I
a_n nr) = — : A F= SNz
Z\l n 'I/m( ) " %R’H ) Jy( y F2Y(y) ay (16.31)

where the integrals involved have been evaluated with the use of Erdelyi (1954)., P69 Voleal.
On. substituting in this expression for the values of the coefficients a n (n> 1) 32
and interchanging the order of the integration and summation, we have

:5 g(u) du Zn_ﬂ

n=1

T (nr) 3 (nu)

r_( P+ 1) r 1
= g OS 7@ -F#N 2Py ay, o0 < r<e
2"""/1_1"\—(,1%) (16.32)

We now require the sum of the series contained in the integral on the left hand side.

Let us: consider the complex integraly

s (o) 3 (m) T az
Gf +H— (16.53)

sinT z

where C is the contour showns .
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It may be shown that

S o (a2) ()

hal w
- y‘n‘ -
fer g () I (yu) a7 - Je _y T (w) T, () oy
sinhty r
The Pirst integral on the right hand side may be evaluated to give (16.34)
fy"fJJ (yr) T (yu) ay = 2_-‘)_ (P w2 )
o '-H- 1 ) 3 - (lJ + 1)1"“4 (16-35)
If we now substitute imto equation (16.32), we obtain
P r) r [-"‘i:
s s—F—n (- @ o ) T - Y6) o
‘J T(;m) o BTN Y
t -yw
c -y
¢ [ a OY S v L) 1, Gm) o
(16.36)
where we have again used Erdelyi (1954y p.48, Vol.2)
if now we let 'J—-a O+ and differentiate with respect to r, we have
(]
g(e) = a(w) K(u, 1) aa o+ A(x) (16.37)
.. where we have writien
2 a4 T 2 aF
i@ = 24 S -0 @ (16.38)
and.
oy ) = B ) B 1) T o) (16.59)

ice. we have reduced the problem to the solution of a Fredholm integral equation of the
second kind, Methods of solwving this type of equation are discussed later, when we solve

a gimilar equation with a different kernel.
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N
7 Cracks in cylinders.
— |
—
¢ c
—
1

Pig 17.1

We wish to consid.er the problem of an infinitely long cylinder, of finite radius, with
a track dgveloped inside the material of the cylinder. We assume, in the first case, that
the wall of the cylinder is free from applied stress, and that the material is homogeneous,
The erack, which we shall take to lie on the plane z = 0, is penny-shaped, and is subjected to
an in‘tei'nal pressure p(p) s 8o that we shall have an axially symmetric problem, Since w: hove -
this symetry we may employ cylindrical polar co-ordinates ( p s P 5 Z ) with the z axis
toinciding with the axis of symmetry, As is usual in crack problems, we require that there
should be no shearing stress across the plane of the crack, and that there should be no displace-
ment normal to the plane of the crack, outside it., We shall take the radius of the crack to
be our unit of length, and we denote the radius of the cylinder by ¢ where. c>1, The
conditions for the problem stated above can then be replaced by the conditions for a semi-infinite

}Wlinder as follows. -

5 — - = for all z 2 0

: o, = rpz = 0 on p = e, for

| T = 0 on O<gp<xec

j pZ (17.1)
- w =0 On €2p > 1§ onz =0

g O-Z = PO on og p < 1 B

Mis problem is referred to, in the following paragraphs as the first problem.
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The second problem we wish to consider is again that of a cylinder with a penny shaped

crsck developed on the plane z = O inside the cylinder., However in this case we consider

different Boundary conditions on the surface p = c,
AZ

——=__ D

\\

In this case we consider the cylinder. to have its walls clampedd

-of this problem is to consider the cylinder embedded in a rigid material,

conditions now become

Up = TpZ = 0 :
o, = -plp ), 0 <. p < 1

w = Oy c > P > 1
sz = 05 P 2 O’

WO
BIRRININ

OorL. P:G‘;,

i

An alfernate view

The boundary

(17.2)

We shall, by using a combination of solutions of the equations of elastic equilibrium,

reduce these problems to the solution of an integral equation,

The problem above will be referred to as the second problem.
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818, A first solution of the equations of elastic equilibrium.

Since we are dealing with problems concerning cylinders having axial symmetry, we shall
choose cylindrical polar co-ordinates in which to work, We take the axis of z to coincide
with the axis of the cylinder and employ co-ordinates ( p., ¢ 5 z). The components of the ,
displacement vector will then be denoted by (up s O, w) in the usual way. The equations of

elastic equilibrium, in terms of the normal components of stress (¢ , o, , o z) and the

¢
shear component 'Tp ? then take the form
E? -+ aTE?_ + O'E - O-é = 0 (18-1)
ap 0z P
Tz, 2% oz (18.2)
e + 3% + F = 0 18.
where, since we have axial symmetry, we have taken
0
a1 = = 0
s = % 2 %
where in the usual way
du, u ow
g, .0 - N ou — ) (18.3)
(Gp:¢yz) + (,%ﬂ:.f.:az
ou o (18.4)
T = M L ®
pa (’gz-2 ap)
and
A = il.e' + _Iie_ + E‘VL (1 8;5)
adp p 0z

where )\ , y are Lame's constants and are related to Poisson's ratiorv. where normally
% < v < % by the equation
A
Vo= o( N 1)
As a first solution of the equations (18.1) and (1 8.2) subject to the conditions
(18.3) to (18.6) we consider the equations derived by Sneddon (1961). In terms of a

potential funection

v = ¢(p 5 2) (18.6)

the components of displacement and stress may be written in the form
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; 3. 2 0%y
u;) = 5 * (13 —1)zm (18.7)
. 2
L R x 2 (18.8)
2 3
r et Revewe 0 BE (o
3
’I‘T;)z = 2z (ﬂ2-1) %'g? + % : (18010)
2 2 3
R R (.11

ad the hoop stress may be determined from the expression

bloy +o)f'= (2P DL - (6 -1) s Y ( 18.12)

The choice of the function g ( p,z) most suitable to the problemsj under consideration
is given by

¥ (pyz) fn‘zFCn)i e '“Jo (0) a (18.13)

= il
2= 17 Jo

Having made this choice we now substitute from equation (18.13) into equation (18.7)

1o (18.1\1) to derive the quantities in which we are interested. The components of displacement

garegiven by
O
g = - [t 0 -2y na)s () M (18.14)
o
- —-.N%
: vo= [rremfet - v) anay @ (18.15)
t -]

While we have for the components of stress

t "; = =24 IF(TD, e'n‘ZKl - nzf @0 - (1 -2~ nz) g%")']d'q (18.16)
| 0% = ‘Z#J—;@(ﬂﬂz')ﬂz{)( np) dn (18.17)
| : 2 .

Tﬁz =T 2uz Sn Fi) e ZJ1 (p) an ' (18.18)

Ve are now interested in the values taken by these quantities on the plane z = 0, and
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f on the cylindrical surface p = c¢ . On z = O we have

L 1
Tz = 0s p>0 (18.19)
-}
w' o= 2(1-v) fn”‘ F(n) J (np) an (18,20)
o
o, = -ZMJF(n) Jo(np) dn (18.21)
h /)
: and on the surface p= c,

@

T;;z = - 2uz /n F(n) =™ J (ne) an (18.22)
Ca [F o™ 5 ) - (-2 d (18.23)
op = H,Q n) e 19, \(ne) - 1-;( " 18.23%
® ne
+ ZuJ; F(n) . zn e'nZ{J 0(nc:) - =—pan
u;)" = - ln" F(n)(1 - 2v - nz) J1(nc) e~ an (18.24)

, To facilitate later working, it is desirable to obtain these expressions in a slightly
different form. Let us denote the Fourier sine transform of a function f‘(x) twith respect

| to the variable & by

?s [f(xﬁ S‘aa] = .’/%‘\I:(X) sin &x dx (18.25)

and the Fourier cosine transform by

F. [ 5] - f?;fzu) cos Ex dx (18.26)

Having done this,it is easily seen that

?c [e.g-ﬁz 55_] = «/Eﬂ EZ 47 (18.27)
PN S T R

7 (n° + & S iy (E:‘?‘)" (18.28)
}‘U’sing equations (18.25) to (18.28) it follows that

[fs{["';)z]p:c ;€}= Au[ f(a . J1(ry.c)dn (18.29)

“\4
Q
N
@'
|
‘E;‘
]
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FA

infinite integrals 11, 12, and i

2 z2
= ")-F.u,\/-,’;-\g (E.;

3’

n_d(nc) F(n) .

TR LA

2 ne) ®(n
[ f%ﬁ

21 2 Jp (ne) F(n
b T c g l: EE + N)° dn

(- -]
2 JPJ ne) P(n
WEJEVOEC.

Jdgne) F
/:: 28" \f éé + 7 g

The expressions (18.29) to (18.31) may be expressed very simply in terms of three

where

n ®(n) J (nc)

Y e

anz J.Qﬁc}

2; j(22+n2)

.
|

+77)

R(n) 3 (10) 4

. LE Jﬁ
l :*
3 iy

(g% + n°)°

We can now express equations (18.29) to (18.,31) in the wuch more compact form,

7.{[)
Fe{ld o1
?@{[up] ’ ég}

~{Z7 1 (4, - i)

o X (cgi1 +

"E'(i —vi)
Fés -

vi

- i

)
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(18.30)

(18.31)

(18.32)

(18.33)

(18.34)

(18.35)

(18.36)

(18.37)

It is easily seen from the form of the solution given above that, if F@E) is suitably

. chosen, we may obtain the solution of the problem of a crack in an infinite elastic medium,

This is in fact the solution derived by Sneddon(1946).
solution which will reduce the normal and shear stresses on the walls of the cylinder p = c
This may be thought of as a

to zero, and maintain our conditions on the plane z = O.
correction solution, and, as the radius of the crack increases and approaches the radius of

the cylinder, the second solution will become increasingly important.

§ 8 19 A second solution of the equations of elastic equilibrium,

H

We now wish to introduce a second

A solution of the equations (18.1) to (18.5) has also been derived by Sneddon (1951)

in terms of a biharmonic:function X which satisfies the equation
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a2 L1 a2 Ch 4 @ b X
ap? p 9p e 002 Toap t o9z2 = 0 (19.1)

The: components of stress and displacement may be expressed in terms of this function

as follows,

2 (1 + v) 9%y
u = —

) E 3poz (19.2)

v a2 ox
w? = e [€ ~2v) Vi 4 —-‘f sy L (19.3)

B 9p p op

; where we have written V2 for
2 _ 8%_ 18 a2

VP = Tt oo ot (19.4)

-

: and E is Young's Modulus, where E = (3N + 2u) /(N + )
; Using the stress-strain relations we can now calculate the normal and shear stress

| components

az = .:_E —vVZX - ;:_)2_(. (19.5)
T;F - % i(1 B ::):] (19.6)
o; = _gz_. :vVZX "%_:%( (19.7)
o2 = % :(2 - v)V¥ - :_:’; (19.8)

We must now choose the form of X(P , z)s We choose this function in the form

) - LZ-Z{E(E) + 41 - ) B(E)] T,(68) - &P B(E) :5(‘5")}3239‘;&

| where AE) and{BE ) are as yet arbitrary functions of the variable & and Io@é )s I ’ CE) are

' modified Bessel functions of order zero and one respectively,
Having chosen the piharmonic function X (py z) in this way, we substitute from equation
(19.9) into equatigus (19.5) to (419.8) to obtain the boundary conditions on the plane z = O,

and on the cylinderp=ce. Onz = 0,
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w2 = T;z = 0, p 20 (19.10)
: o = ‘2“‘155 [[A(g) - 2v B(Eﬂ I, (&) - &p B(%) I,(Ep)} dg (19411)

Q
]

s - 2 {ae [eren) - x(08]  +2(8[05 - 29) 3o )41 -9) 1D
) o o2z I'(cg)]j‘ cos Ez d& (19.12)
_2,1LE{[A(§) v 201 - ) B(B)1y(c) - cEB(Y L(cB fsin Bz ak

T2 =
.gz > (19.13)
al = L{@(@ 4 - 9 B(E]T,(8) - EB(Y T,(8A} cos (22)as
(1941L)
Following the procedure used at the end of paragraph 18, we now re-write equations

l (19.12) to'{(195.14) in the form of Fourier sine and cosine transforms.

R, oA e e - ne] (195

v 5(8) [(5 - 20)0¥er) - T (er) 1= n)ieE
T N | RSN ETE Y SR R

%c{[u Z]pzcg’} = »/g [ [2@) +5(1-9) B(g)|1,(c8) - o2 B(£)To(c8) f

(19.17)

We have now set up two sets of equations, each of which is a solutiop of the elastic

i equations of equations of equilibrium, We now wish to combine thege two sets to give the

¢ solutions to the stated problems.

} B 20, Boundary conditions.

nsider in more detail the boundary conditions discussed in §17,,

We shall now co
oblem, that of

Let us consider firstly the boundary conditions imposed on the first pr

the cylinder having its walls free from stress and a crack developed in its interior on the

; plane z =0, Onz =0 S o
o 2 O
Ty = 05 p (20.1)
w = 0, p > 1 (20.2)
o, =0(p) 1 > p >0 (20. 3)
+ Where, on p=C
s P 3 v O'p = sz - 0 (2004)
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Neither of the solutions given in §‘|8 or § 19 are capable, separately,of providing a
complete solution to this problem. However, if we combine each of the solutions we are able
to do SO. Since: now the components of stress and strain are represented by a combination
of two terns, we may re-write the boundary conditions (20.1) to (20.4) in the following way,
ion z = O,

sz + sz = O, p >0 (2005)
W1 2 O
+ w = g p > 1 (20‘6)
1 2
o+ O = - p(p) 1> p >0 (20.7)
and on =C
p=re o; + cr; = 0 (20.8)
1 2
Tow ¥ Tpp= O (20.9)

] Consider also the second problem described in §17, that of a cylinder clamped on the wall
such a way that there is no radial displacement on p = ¢, and no shearing stress there,
" i'he boundary conditions then become, on z =0

Ton  * Tog = O >0 (20,10}
w o+ W = 0 p > (20,11)
o; + o; = ~p(p) 1>p>0 (20,12)
and on o= ¢ 1 - 2
[0 u, o+ U = 0 (20.13)
1 ? o
sz + Pz - 0 (20014)

the remaining boundary conditions. If we solve the last two eonditions in each case i.ea
(20.8) ana (20.9) in the first case, and (20.13), (20.14) in the second, for A(E) and B( &
then we will obtedin integral equations of the same form, but with different values of A(E)
nd B( ), from the third and fourth conditions in each case, to determine (&), We

begin by determining A(E) and B(g) and leave the discussion of the integral equations to
Por the first problem, if we substitute in equations (20.,89; and

the next paragrapha . ]
(18435) (18,36) and (19.15), (19.16) we obtain the relations

20.9) from equations

w@) [oe 1o8) - 1]+ HO [0 2968 1,(00) lt- ) 1,(08) - o 1]

g+ Vi - ig (20.15)
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A®) 1,008 - B®) [eBI(B) - 21 -MT (B)] = 3, - 1, (20.16)

On solving these two simultaneous equations for A(g) and B(g) we obtain the results,
which we denote by A1(g), B,l(g) respectively.

o2 4, (g) =[or Ilo) -0 -v) 1,()] = 3,

- [3(1 - v) cE Iy(cE) -2(2 - v)(1 -v) I;(cE) - c%&? I,(csz,)]j,‘2

201 - v) & Lo(eB) - 201 - v) I,(c8) - 0" 1,(c8)] 1, o
20,17

&(g) B,(g) = cgI,(c&) 1, +[cEIs(cE) - (1 = ) I.(C«E)]iz - & I,(cE)iyg
(20.18)

where we have written,

G(g) = o%? L(og) - (2 -2v + %) To(cE) | (20,19)

and we define the integrals i,, i,, i,, in terms of the function F(&) by equations (18.32),

- (18.33) .and (18.34).

: Now let us return to the second case to be considered, that of the cylinder with

i fixed walls. If we substitute from equations (18.35), (18.37) and (19.15),(19.17) into
3 equations (20.13) and (20,14) we obtain the two simultaneous equations in A(E) and B(E),

33

M (ed - 5E) [ 1(e8) -4t - ) - 1 - v, 0 .20)
A(g) I, (c8) =~ B(E) [ca To(cE) - 2(1 - ) I,(ng)] = iz - i (20.21)

We solve for A( @) and B(Z). and denote the solution in this case by AZ(E,) and Bz(g),
Then
1 .
A (E) 1+ — [0610(09 - 41 ~ ) I.(ciilz (20,22)
: 1,(c® °  A(cD

B (&) 1 i (20.23)
2 2I,(c&)

Having determined A( ;‘-;) and B( g) in each case, let us now return to the second and
third conditions to determine the function F(g).
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821, Integral egquations.

In both. the problems we are considering, the boundary conditions on the plane z = O
are the: same, -In both cases we are considering a penny-shaped crack on the surface z = O,

We assume that the internal pressure of the crack may be written in the form

o, = = p(p) =-2u£(p) 0<p <1 (21.1)

. . 2 . . .
Then on substituting for a; 0, ,W1 ,and W2 in either equations (20.8) and. (20.9) or

(20.11) and. {20.12) we obtain

© @®

lp(g) J (Ep) & + J;E[[A(é - 2v B(a_)";] I,(g0) ~ &p B(&) I‘(ap)} E = £(p),
. 0<p <1 (21.2)
LE"' F(&) JO(EP») i = 0, p > (21.3)

Since A(€). and B(’§) are. known, we have obtained a set of dual integral equations for
the determination of F(8) . In order to reduce this set of dual integral equations to a
single integral equationy we write

) = g [ ab) sin(ey) as (21.1)

where the function g(t) has the value zero at t = O,
The second equation of the set of dual integral equations is then immediately

satisfied and since

o0
fJ(gp) cos gtd§= ‘ s p>t
o ° Gl - (21.5)
. :
= o, p<

the first equation of the set of integral equations becomes

P o0
f(pg'(f} G, Joa{[A(E)

Since, it is also true that

t pdp g () at
l,tz_pz‘ o/pa_tz‘

equation (21,6) reduces to

2v B(E)] T, (g0) -p& B(E) I.(ap)} ak = £(p)s
0 <p <1 , (21.6)

g(t) (21.7)

I
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- fﬁ#ﬁé- —fr-; E&.(a) - m(eerMJ —gB(g)j £ I'(Eﬁ) 4 }

We can evaluate the two inner integrals in equation (21.8) and these take the wvalues

j JEE,@.QQ. _ _sinh &t (21.9)

g

(21.8)

Llﬂiel.éﬁ_.
ey

and so, we may write the integral equation for g(t) in the Fform

l t cosh £t - sinh gt] (21410)

glt) = f,ftz—_‘ - —f{[A(E) + 61 - 2y) B(g)_'l sinh gt - B(g) gt cosh gt}ag
(21.11)
Before proceeding further, we now require to look at the forms of solutions obtained
for A(g) and B(§), These were given in terms of the integrals i1 s i2, i3, which themselves
were functions depending on F(§) and hence from equation (21.4) on g(t)., On substituting

| 1
ME) = E'{;g(u) sim Eu du

in equations (18.32) to (18.34) we obtain the values of the integrals in the form

1
i = %fg(u){sinh Eu [Ko(og) —?‘;d(.(c?;il + Eu cosh Eu K|(°€)} du (21.12)
i, = -L-tfg(u) sinh Eu K,(£) du (21.13)

i, = %fg(u){smgu[qg K,(cE) + K,(cg)] ‘- Eu cosh Eu K,(cg)} au  (21.1%)

where we have made use of the int¥grals

(.2}

J sinnt Jo{e) dn 1 et KEe) - (21.15)
o (&% 4+ n?) g -
j n®sinnt Joe) 47 _ def smes [Ko(gc) - gcn_@cﬂ (24.16)
) (Ezv'l' n2)2 Zg
_ ; + Bt cosh&¢ Ko(&]c)}
L nsin 6 5 (Ne) 41 _ gimn &4 K, o) (21.17)
© (gz + 77 ) - -I
-4,725‘[ nsin nt Ji (n0) dn - t cosh&t XK, Ec) -E sinh &t [K|(c?§,) + c& Ko(cE),
| (82 & n%)?2 (21.18)
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Having obtained the integrals 15 1y, iz, in terms of the function g(t) we now determine
A(Z) and B(Z) in terms of g, For the case of the cylinder with free walls, we obtain, after
an amount of ,reduction,

1
A,(E) - [H(g) A- 2+ 2v] fg(u) &u cosh Eu du
7G{cg) 0

!
2 [(3 - 2v) H(ck) - b x4y - %3 J g(u) sinh &u au  (21.19)
G(cE) °

! 1
B'(E) = ;%(ggy L\g(u) Eu cosh Eu du + g%—%%if“g(u) sinh Eu du(21,20)

where we have written

I

H(cg) = c?&? Io(ca) Ko(ca) + (2 - 2v 4+ c%8?) I;(ca) K1(cr:::) (21.21)

and G(cE) is as hefore

If ,after some reduction, we substitute for A, and B, in equation (21.11) we obtain

1
the integral equation to determine g in the form

i

g(t) + %fg(u) K(t, u) au = P(t) (21.22)
N ‘
where p(t) - 2 [££le) do (21.23)
' T Y% ta - p2,

and the kernel of the equation is given by

-]
K(‘t, u) = 2 -E}-Z—g){[H(cg) - 1] [gu cosh Bu sinh £t + &t cosh &t sinhlEu]
T GE, '

+[2H(cg) -3 +2v - czgz] sinh Eu sinh Et
- Eu &t cosh Eu cosh E_‘,t} dg (21 s24)
Having set up the integral equation to determine g(t) in the first case , let us

again turn our attention to the cylinder with clamped walls.

In this case,

8+ (- 2) 50 = iy +2f11-@jl}zx,<ca> - 51 <ca)]iz_” (21.25)

On substituting into equation (21.11) for B(E), i, i,s and using equation (21.25) we
derive the appropriate integral equation for g(t).
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g(8) + 2] ) x(t, w) @ = () (21.26)
‘ t
where P . 2 2£(p) dp
(t) Ay (21.27)
and. ht
K(s, w) = 2 ot [T (cB)Kq(cB) 4 Lo(cE)K((eE)] = 21, (cE)K, ) gt sinn
W‘[{ I‘;(cg) 1RRED simg

-|, .
~ EK, (QE)I,(CE) [u coshZu sinhEt + t cosh&t sinhgta}dg (21.28)
Using the facts that

I,(cE)Ko(cE) + Ig(cB)K (cZ) = (cE)™" (21,29

0 >
and — e . .
v j I(x) sinh dk sinh px = - Jv%x? E%‘-%%}x sinh ax sinh Bx dx
o Y nx o

1]

-1
+\ﬁ1«:1 (x)I (x) sinh ax sinh gx{dx
[ 1

ofls, oz, (0

coshax sinh Bx + B cosh px ginh chl}dx

(21.30)
it is easily seen that the integral equation may be written in the simpler form
. ' .'
s 2 £
g(v) - 2[eflelde | k(o0 x(s, v) @ (21.31)
T thz L om?d,
where , ©
K(t, u) = Ki(8) i Zr sinh %}z & ( 21.32)

(¢

L, 11 (8)
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§22. Numerical solution of the integral eguation,

_In this paragraph, we consider the nuperical solution of the integral equation for the
problem of the cylinder with clamped walls, and with a crack of unit radius developed inside

the material of the cylinder, on the plane z = O, We take the integral equation in the form

1
2
g(t) - f g(u) K(u, t)du==t (22.1)
o T
where K(u, t) is expressed in the form below, and we have taken f(ld) =1
L4
2 K () U+t -t|
K(p, t) = == ! cosh g - cosh 2| dag  (22.2)
7%c J, I (8) c c
1 ,

We must now compute the value of this kernel for a range of values of u and 4, and
having done so, to numerically integrate equation (22.'1) to ascertain the values of g(t) for
t ranging from zero to one, We shall tackle this problem in two distinct ways. Firstly
we shall apply an approximate iterative procedure, by expanding the difference in hyperbolic
cosines appearing in equation (22,2). ~ Secondly we will apply a numerical integration

procedure in an attempt to gain exact solutions. We begin with the iterative method.

(a) Iterative method.

In equation (22,1) write
g(t) = -i—"h(t) . (22.3)

Then the integral equation may be written in the simpller form
1
h(+t) -f h(u)K(y, t)du =t (22.4)
0

where K(u, t) is still given by equation (22.2).
If we now express h(t) in the following way

B(t) = b+ ), B (%) (22.5)
r=1
=L b (t)

r=0

where we have taken h o( t) = t, and the hr( t) are polynomials in t, we find, by substitution
in equation (22.11.) that we have defined the iterative procedure for the determination of h (t

1'10(t)=t1

h1(.1:) = fo uk (u, t)du
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1

b (4) = f n, () K(u, £)au (22.6)

00000.0-0020005'000‘009.000.0'
hr+1(t) = /0 hr(t) K(u, t)du

O @O0 e P0000C0OOU0O0ECO0R000B88sT0

To proceed further we require to find an expression for the kernel K(u, t), Expanding
the difference. in hyperbolic cosines in the interior of the expression for K(u s t) o We find
that

2
C (¢]

cosh (u +t)g =~ cosh (u - t) E = cut ~E? +1—4(u3t+ut3)g4
c 3c :

+,—-3—-é (3u’t + 10ut3+ 3ut ) £°
180¢c

' 8
bl (WP 4 Tu5t® 4 Tu Pt 4 ut 7)E
24702c®

+0(e "), (22.7)

Thus, we may express K(u, t) in the form

3 s
K(u, t) = o (w)t + o(u)t + Kg(wt + 0(7(11)1:7 + soa
where B 3 s
2 2uT, u T4 u T, u T8
O([(u) = + o f+ eso (22'8)
Te i c* 3¢t 60c® 2,520¢
2 l_uT4 W T, o Tp
O{s(u) = + 5 + < + o000
oo 1Tch3c4 18¢c 360G
2 B uT, u"’Te
&s(u) - N " ? + ooc
T e| 60c 360c
2 [ uTy
0(1(11) —4 Q. g + eo0®
m*e| 2,520¢
[ -]
where we have written
T, - £,(2) gl avg (22.9)

and the values of the T, ave given by Tranter (1959)




87

From the form now taken by the function K(u, t) it follows easily that the functions

hr(t)_may be written in the form

7

hr(t)zP,r.t+P§.t3+Pf. ts +P.f‘.t + e0o (22,10)

where Pi is the coefficient of t- in the expression for hr(t).
~ Suppose, for example, that c is sufficiently large to enable us to omit powers of t
higher than the seventh. The next iteration hr+1(t) may then be obtained from equation

(22,10) where the new coefficients will be determined in the following manner,
/

AR

o

P;r. u +P:§ o e +P§ . us +P£ ° u7]°(i(u)du. (22.11)

In the case of h (t), the initial valuey we take

° s
P' = 1’ Pi = O’ 1 * 1 (22(12)
Then, to find the coefficients of successive iterations we need only calculate the

sixteen quantities )

S

as, r = fu D(r(u) du S =1y 3,5, 7 (22.13)

° r = 19 39 5’ 7

Then the general term hr(t) will be given by
S w4
hr(t)zPl.".t+P§.t" +PL .t +F ot (22.14)
where
r r—~1 - 1 -1
Fi =8y, 47 regsF5 +egy Py +ag By

We tabulate the sixteen quantities &y p where we take
’

Tz = 205033’ 0 Té = 230431
T+ = 307713’ 9 Ts = 302929 °
2 |27, T, T, T4
a = + + +
LET ac] 36% 1504 u20d®  22,6800%

1

033582 .0509 0013 0026
s T 5 YT 7 YT g

(s [+ c (¢]
2 |-2T,‘ Ty Ty Tg

T T oA P * e T g
B T afo | 5ot 21t shoet 27,7206

. 002
_;@.2.2+492§_&+;99.§§.+_9_..1

B c c’ c?




Y

%33

a,
7,

2 [2T,_ T, T, Tq

+ + +
w‘cl_7c" 27t 660  32,760C"

_2Alh9 | 00283 L0072 L0019

c? % e’ c?

2 |21, T, 3T, Tg
+

+ + —
wel| 9¢ 33t 780  37,800¢%

2127 + .0232 + 20061 + .0016

3 s 7 ?

(] Cc ¢} C

2 |, T, Tq

+ +
Mel|9d® 90c® 2,5200°

- .,.OEJSO + .,0538 + ,02%5

I

2036k L0293 0155
- + 7 ¥ q

C [¢] C

2 | 1, T, Tq

+ +
e 15et  126¢®  3,240¢%

20210 + «037( + 20190

s 07 c 1

4

+ +
me| 21c4 1620b 3960(:g

s

(¢] (¢]

+ +
Te| 276t 198¢°  4,6800%

20283 20240 L0155

5
c 67 c7

2 | T, Ty

+
n"c 180 c® 1800c:8

- 20261 + 20340

c? o?
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1

1t}

2 Tb L T8
+
Mo | 3006°  25200°
20158 N 202
7 7
c c
2 T Tq
2 s e
T el 420c 3240c
29113 + 276
o !

+
e | 5L0c® 39600

37 C?

2 | Ty .0081

el 7,560 |~ o

2 [ my T .o

11}6 | | 12 ,60008_ ) !

2 [, | .00%5
c L1 7,64008_ ) g

3 .0027
ol 22,680c:8 ) c?
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(b) MNumerical integration of the integral eguation.
" We develop now a. numerieal integration procedure to evaluate the solution g( t) of the

integral equation at a number of pointsy The integral equation is written as

]
g(t) -}—2—,- g(u)K(u, t) du = 2.4 (22,19)
mPe Jo m
o0
where now ‘ K(g)] u 4+t u=t
Klu, t) = | - cosh E - cosh~——E}dE (22,20)
b 11-(6.) c c |

Before we can integrate the equation (22.19), we must first of all evaluate K(u, t)
gt a number of walues of u and t. Suppose that we wish to £ind the value at {the n points

t = t{, ta g ves ,tn
u _“_uﬂ’ U2 g oos ,un

Then by the symmetry of K(u, t) in t and u we need caloulate it only at gl_f_ri2+_‘l)_

points, Let us now write

H (\) :f = €) [cosh (W) - 1] & (22.21)
(o] I1 (g)
so that % -t
| K (u, t) = HES - H(E) (22,22)

If the quantities u and t are spaced at the same interval then we require to calculate
nZn -1)

H(\) at the points

2

‘= t
)\ = O’ u2.' tb,a.a u“"‘"'ﬂlo (22;23)
If we write the spacing of the®waiues of G and t as §, then we require
2(n - 8
\ =o, %, T (221

The functions given by

K (8) |
~dee——|cosh N§ = 1] (22425)
I (8)
1
were tabulated st intervals of (.05) from O to 5.1 and at intervals of (.1) from 5.1 onwards.
In the actual integratien it was decided,to use Weddle's rule for numerical integration

where

b b ~a 22426
aIyd.X:: 5 Eyo+5y1fy2+6y3+y4+5ys+y;l ( )

and the y; are the walues of the ordinates for x = X e




Prom this table the values of K(u, t) are easily calculated.

9

Using this rule the values of H(A) required were computed and are shown in Table A,

It will be noticed from the

integration formula that each interval we wish to integrate over is divided into a muiltiple

of six divisions

ranges of .t and u

Because of this it wald decided o compute the kernel K(u, ‘t) over the

theé solution of the mteg;r’al equat:l.onn - We do th:x.s by sol:zing a set.of s.mmltaneous equations,

t=0 , 7115 s ose 5 1
u=0 , -%-2-’ s 725 R
A= 205 o .15 .2 .25 o3 o35
H(A) | .0031,302 | ,0125,322 | .0282,421 | ,0503,195 |.0788,498 | .1139,453 | .1557,470
ok A5 o5 055 .6 .65 o7
0204lg 248 | 22601,858 | o3232,728 | o3939,712 |.4726,447 | +5595,919 | .6553,551
o 75 o8 085 9 095 1,0 1.05
276045516 | 8754,361 | 1.0010,887 |1:1382,353 |1.2878,760 |1.4511,991 |1.6296,279
"1,1 1015 122
1.8248,817 | 2.0390,566 | 2,2747,370
Table A,
o= 0 1/12 2/12 3/12 L/12 512 &12
g(t) = 0 a0575,368 | .1150,938 | .1726,918 | .2303,522 | .2880,980 | .3459,534
/12 8/12 912 19/12 11/12 1
1039463 | 621,06k | 25204,680 | 57905708 | o6379,612 | 6971 ,940
Table B.

Since we now.bave the values of K(u, t) for a specified value of c, we may proceesd to

Using the :Lntegratlon formula (22.26) and Qqua+1ons (22. 19) together with the facts that

&0) =

SQquation is given by

h2)- 7

b s ) e KGR B

+a( 13

) ese (50 55,5 +2(
s 75 )+g(%)K(%yf’l§)+5g(
B ess@ (L B+ a3

0 K(O t) = K(u, 0) = 0, We ‘have a set of fwelva s:.multa.neous equaf;lons where e m
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These equations were solved for the value ¢ = 5/3, The values of g(t) are shown in
Table B and the graph of g(t) in Fig.(22.2), ,

" The energy required to form the crack is easily computed using the information already
calculated, We have

Energy

n

2m J:p [w(p)] 2%
1 1 @ ‘
ya(1 - v) [ pan jg(t)dtf 3 (np) sin nt &

1 1
bar(1 - v)fpdpfg(t) /e - o2t
° P

On changing the order of integration, the integral reduces to

1
Energy = Lu(41 - v) ft g(t) at

. From the given table it.is easily found. that the energy of the crack considered is thus

Energy = 2,9051 (1 = »)




A
————— = calculated values.
W8 |-
e v e = Straight line approximation.
e e = values for an infinite medium,.
00-7 I~
Gb |
r
Ok [
03 T
Q22 T
@t T
" v J ® 1 1 i 1 (] i 1 l’ ~
0 1. 2 3 4L 2 [ L S 2 10 R 7
1 12 12 12 12 12 12 12 12 12 12

Values of the function g(t)

Fig 22.2
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IV A suggestion for an approximate approach to the crack problem,

§23 . In this paragraph, we consider the problem described in S17, but we now take the
radius of ‘the cylinder to be ] and the radius of the crack to be ¢,

If the value of ¢ is small compared to 1, the radius of the cylinder, then the problen
reduces to that of a crack of radius ¢ placed in an infinite medium, as far as the stresses

and displacements induced in the material are concerned. This problem has been solved by

Sneddon ( qu.lo) « We shall attempt to discuss the case when ¢ is of the order of .5 toc .8

of the radius of the cylinder, We shall pay particular attention to the stresses in the

immediate vicinity of the crack since this is where most interest is focussed.,

The method which we shall use is an approximate one. We see from equation (1 7.,-’(,) that

the stresses normal and tangential to the wall of the cylinder should be zero. We shall

start with a solution for which this is not true, but for which the conditions on the plane

z = 0 are satisfied, We shall then attempt to introduce suitable forces, such that the

- If we can do this then we may add the two
solutions %o give us a complete:solution of the problem, as shown diagrammatically.,

will cancel out the forces oh the cylinder wall,

1° | A= pe
/‘\<: '} ' \__j Pt \ p( )
= . ot 10, =~E(2
Oz _..O O-Z"-’-(ZJ C sz :-‘S(Z)
_'1——-5sz=0 — 1 /sz=g(‘z) o > ]
|
! . . |
g_= constan s
—C—> AN . [ o,|= cons .;a.l’l‘;t\ .
7P 7p | ail e %
— +_ . ] ‘
! |
‘ m—
N E
N —~ | :

with a>

Any system of forces which we choose to apply must satisfy the twe conditions

(a) +that it will lie outside the cylinder, so that we may consider the force as an
imaginary or virtual one.

(b) +that it will be symmetrical, since the stresses on the cylinder walls will be,

The simplest type of suitable force would then be a ring force with radius greater than
Wity, at a suitable distance from the plane z = O, and with a suitable magnitude. Purther,
Since we wish to maintain our conditions on the plane z = O, it suggests that if we place a

force at o height h above the plane z = O, then we should place one at an equal distance below
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the plane. The type of system of forces we should then consider are as shown.

N

~ B

. A Z
< S =+
P
h
a — ‘

4 E
'R

We see then that we have three parameters with which to work; the radius of the rings
8y the height from plane z = O, bj and the magnitude of the forces Pij' To proceed further
we must :

(,i) Find the residual stresses on the cylinder walls from whicheéver solution we take,

(ii) Calculate the values of 0,5 ‘Tp 5oV on plane z = O due to the forces.

(iii) Calculate the values of ap s i—p 5, o the cylinder p =1 due to the forces,

Let us suppose that it is possible to find ring forces as described such that the
conditions on z = O are not greatly affected. Further let us suppose that we have teken
a solution which supplies the approximate solution z = O,

Let us consider the value of the residual stresses on the wall of the cylinder p =1 at,
say, n points given by the n values of z

Zo= By Zos eee Zoe . .
If we denote the value of the radial stress at the point Z by op and similarly let sz j

be the value of the shear stress at the same point. Then we will have 2n quantities which .

Wwe wish o reduce +o0 zero viz.

91 2 n
Tpz? Tpz? °** Tpz
1 2 n
(o2 ag g
p P P

as illus+trated,
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Suppose now, that we take a set of ring forces, Let us take the pair of rings of radius
By and at height b from plane z =0. Let us take the magnitude to be P St We shall leave

the actual s:Lzoe of the f‘orce P st arbitrary for the moment and proceed to calculate the

quantities £ and -B—* due to this particular set of rings. Suppose that at the pain-

P st P st
| : : op(z)
zk, this set gives rise to a radial Stress———de and let us denote this by oy t(k)" Similarly
P
| st

v denote the corresponding shear stress at the same point by T‘g, t( k) . Then, at the points

Ly eoo Z,. 00 the cylinder p =1, we shall get values of the radial and shear stress compumen®:

()

Pop Togl1) 5 eee s Py Toi(n)

Py ost(’l) +P, ost(Z) ooe g

s sts

Suppose now that we set up 2n sets of rings like this., We shall then obtain 2n arbitrary

constants P, . with which to reduce the resultant stress at any point to zero., We shall then

1j
formulate the 2n simultaneous equations as follows,

k
. 0
ZZ Fys a5 4{k) + %

1

!
g =
J"U
.

mi

H

N
W

e’
+

Eﬂw

i
(@)

where Pij is ﬁhe‘ magnitude of the force corresponding to the set of rings of radius as and
distance from the z = O plane equal to b,j’ |

Having solved these equations fpr the Pij we can redetermine the value of o, onz= O,
We can determine the degree to which we have approximated by considering whether o ” is still
constant over the area of the crack. We can also recalculate the radial and shear stresses
on the cylinder p = 1 and ensure that we have zero stress there,

In the above argument we assumed that at each point z, the values of the radial stress

ap and shear stress 'T'/:z were required. In fact we could use the value of Gp at points
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Z

2y s Zps see 2, say, and the values of "Efz at Zk+1_’ cee 5 Zpe

§ 2., Ring Forces.

We shall consider the effects on displacements and stresses in an infinite medium of
two ring forces of radius a and placed symmetrically with respect to the plane g = O at heights
th respectively. the situation is then as shown.

AZ

o
7 _
fay

Since we have symmetry, we can choose axes (p,¢ ,= ) with the z axid coinciding
with the axis of symmetry. The four non vanishing components of stress ap o »? o
are then related to the displacements u,J and u, by the equations

T
z? 'pz?

aup > I_JQ’ Z ,
(ap,a¢,crz) = (g2 -2 + 2( 5 > ) (22.1)

ou du
r - (_.Q_ b =2 ) (24.2)

pz oz op
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where the dilatation A is given by au au u

P 2 P
A = 5o +az + P (2&,..3)

B2 is a constant, which is dimensionless and in our calculations will be taken to be 3.
This corresponds to the case A= u, i.e. to v =%,

The equations of equilibrium may be written in the form

do ar o =-—a

P Pz P [0 .
=L + 522 + - + oF = 0 (21 o2)
a'rpz aoz sz

75 +37 ¢+ > + O‘Fz =0 (22;»:5)

where we have taken F o and FZ to be the body forces acting in the p and z directions
respectively., 0 is the body density, The equations have been written in the form to
conform with the solutions given to problems of this type by Eas'on, Fulton and Sneddon (sqs&)
The problem of choosing the wvalues of Fp and FZ now presents itself, We ’ must have
symmetry about the plane z = 0 to disturb conditions on z = O as little as possible and we
must have Fp R Fz in the form of delta functions to equate them to ring forces.
Choose F, = 0, and write FZ = %, where we write

p
Z=J&f(P:Z) (21""6)

The problem as treated by Eason, Pulton and Sneddon is formulated in terms of Fourier and

Hankel transforms., We thus define

f(E,2) =ﬁ__—jr -: itz dz/:o of( p ,g)Jo(Ep)cip (?4.7)

In the theory quoted in the above paper, Z is a time dependent force and so we must

remember when substituting in the equations there that

_— 400

Z(eg, p,1)=—=—] T2(Eg,p)ar
4/2 «00

_AZT Fe 56w (2.8)

g.

m-j_z__— TEOT o T S () (2449)
o w00

Withf the information given in (24.6)...(24.8) we solve the equations (24,.L) and
(Zi# .5) following Eason, Fulton and Sneddon. These authors give the following solutions
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in the case WhenFZ =Z =1/a £( p . z)

(82 - 1) ] © 27 (Ep)E(E ,8)
—-——-—/ 1y 515z E/ LeP ] aE

u = @2(—\°10)
p ,‘/zﬂﬁz -0 (€2+.sz)2
LTIV ACIOE LI D |
Y2 T AT T ﬁZ/_ ° dg[o (£2 4+ $?)>? a5 (@ 1)
and the stresses are given‘ by
[ o
-1 . ' EJ (& 2 2.2)e?|r(E
oz (5075 s 13 (50) (57 57+ (57203 D e s
2 mﬁa E.z 2 2
o0 -
. ©g2J (& g2 - (p2-2)8% (g, ¥
- 4;" Ie-lgz dS[ (el - 3« )’15(24.13-)
2w B I 0 (% + §9°
. -(/3 -1)[fls_lcz f ZJ(a,a)f(a,s')
p (gz + gz)z
. Cg[(p7 - 2)8 - p2ed] I (zp) TED)
- fi?e‘lg"* afrg[ﬁ AR &) 7§ ag {24.14)
//2—1;'/92 2 ° (gZ +~g2)2
Now let us choose the particular form of f‘( ,o s z)
f( p, 2) = 2I;p 5(p - a) [5(2 - h) -~ &(z +h)] (24.15)
80 that
2(g,5) - —E— 7 (ga) [FTh- 5152 ] @ 16)
21],3 2

Before proceeding any further, it would be as well to evaluate a few integrals which

Wwill e needed., Also we need to define a few terms,

Let =z -h
¢ =2z + h (224--1 7)
6

|6

sgn 0 =
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- The integrals which we will require are then given by

o e-i€§ "E»lel -
N 1(6) = [-w 1§'gz+ga dS = msgn 6 e ‘ (2L s18)
| o -105 -
N ,(6) =E° i‘Sz—ez——-z—)—dg =—7-r-€93glel (2%.19)
-00 g +g 2 s
% -i6 _
N _(6) =g/ SRS —ld (24.20)
-2 (8% +¢2) ‘
©0 _1:6; _
NON f—i—-——as =L (1 4 glo| )eElC! (24 .21)
A (2 +¢2)2 2

The quantities in which we are interested may now be calculated.

w=u =_4-%F--/o EJO(Ef)JO(Ea) . I . ag

Z
_ f” (o3Sh _ 3Sh ycigs (5752 4%7) o

! ~e (g% + 82)° _
_ /oo (8.156 _ e—i§¢) - + (,32 - 1) ggo __1:_.___ ay
«00 (§2+§2~) | (gz +52)2
=Jé--[1v3(e)-N3(¢)] +i§?‘-ﬁ [N4(9)-N4(¢):|

S [Eel gm0l gge) atlel o veloheele]

w = —E—; ) g(ép)fJo(Ea)/I‘ {(ﬁu 1) +(ﬂ2'*1)‘$'l,9l} e*l°!
g wp 0 ,
- [e7+ 1)+ (p7- eyl e-am}}m
Thus w =0, onz =0 (25.22)

while

z,__'tr’P_ﬂZ/:aJo(gf)Jo(ga)[:(/3 2sgng + (ﬁ 2 . 1)g9);‘€|9]

o
2
-(B2sgn¢ + (B2 -1)a¢)e"€|¢] dg (25.23)

=i [en@paaes (e (ox-adelel )emE
L wB2d, _
(14 gz [0S0 ] ae (202%)



|

T = -
Pz

and

LL__)Tf £ 3 (£p)7 (% a) [‘ee glel _ ¢e-al¢1:] aE

% = L4 B2
—T——/w EJ (E )T (E2) [{ (B% - 2)sgno - (B* - 1)E¢ } &l

41rﬁ _ |
- {(ﬁz-Z)sgnas - (ﬁ2-1)€¢_1 e’gl“’l] dZ

These are the general stresses and displacements throughout the body. We now wish to

Z:O,

mke a closer examination of them on the plane z = 0 and on the cylinder p = 1,

e AL COI PR Den Jo8" ag
2 mp Jo ‘

andon p =1

/ g7, (8)J, (aa)f (1 + (g2 -1)gle|} o~Elel

-{1 + (F —1)I¢I}e &lol }J az
0, = -Lﬁz—ljl’:'ijww,(a) 7,(ga) [0e7®ll oo ¥l | ag

[((ﬂz-Z)sgne - (g -1)5,6} c~&lel

Lﬂfﬁ

[(ﬁ2 - 2)sgn¢ - (B2 =1)Ed e-él¢ljdg,

Now change the variable from & to (E, a) and write the integrals

Q0
_ H =q® g
RO EEENCOEAC
Then our conditions become; On z = O:

w =TpZ=O

g ——:E—_- ﬂJ 0(5’2)4.(}82-1)% zo( ﬂ
'

Z 2w7p?a?

On

102.

(24.25)

(21426)

(21..27)

(22,.28)

(21, 29)

(24:30)

(24.31)
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while on p = 1,

SECEEED « P T LI R
| p Lup%a? 1,1 a? a 91(a’ a )
- | |
;J B |- e g, (L, L2l 02, (1, e
: -(g-2eme g (L ey Loty (1 Ll

1l

- Piz2E’71(g..’Lg-L)+(‘82”1)-L5.6-LJ2?1(%’J_2TL)

sz o i
‘J171(%9-L§L’)-(ﬁznﬁ-)iglm']z}x%’-%lw)—]

As an example of the type of curves obtained we draw graphs of crp ang. TPZ for the values

a=1o5, and h=‘1, .30

215

g | 0 .05 .40 .20 .25 230 .35 .40
rpzf 0 ~0. 7616 -1.6515 17T | AT9 | =1.5935 | -1.2618 | -0.8660 | =0.4759
ap_’ 0.5101 | 0.4979 C.4631 04109 0.3483 0.2820 0.2179 Q.1596 0.1091
45 250 .60 .70 «80 <90 1§00 2400
-0.1346 0.1389 0.4836 0,6218 0.6393 05974 0.5319 0.0981
V" 0.0668 0,032 -0,0168 -0, 0466 -0.0639 -0.0733 -0.0777 ~0.0493
10 -0 10 5 .20 .25 .30 .35 20|
!szv 0 -0.643L | -1.2618 -1,8164 =2,2478 | =2.4898 | 2,774 | -2,2351 17643
I‘ ap' 1,2066 | 1.1908 11l 1,068 0,967k 0.8467 0.7133 0.5754 0.4405
‘M-—- A5 .50 .60 .70 .80 .90 1.00 2,00
\ ~141554 | -0.5010 0.6470 13582 146548 1,680k | 1.5651 0.306L.
| 0.3152 0.2037 0,0284 | =0,0875 | -04158L [=0.1989 [-0.2198  |-0,1484 |

Where we have written T‘pz’ s ap' for l;rrﬁsz»Z / P and lwrﬁ&p/ P respectively.
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Values of ’EZLfor & =15, h = 1, and .3




Values of op' for a =1.5; h = o1, .3

105

7 N

1.0
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where we have written p o= p /e , B =3z/c and Onm, S: denote the integrals

Q
i

m * e % :
n / n e Il 05 7) cosn dn (25.7)

0

R )
1l

o
' n=q =L .
/ n"" e J(p,n)sinnadn (25.8)
0 .

which can be evaluated as shown in the paper.

The vglues of Gp‘ /Po and sz /PO are given as followsy in the case of ¢ = ,625.

*'%zu--,o;o‘ 0,125 0,250 04375 0.500 0.625 0.750 0,875 4.0 1,125 14250 1875

%l 0,108 0,072 0.005 <0.043 =0,05k -0,054 ~0,048 -04039 -0,032 ~0,02k ~0,018 =0,005

z] 0,0 .0.125 .0.250 .0,375 0,500 04625 0,750 0,875 1.0  1.125 12250 1.875

4 0.0 0,030 0,020 -0,006 =0,029 -0,046 -0,047 -0,048 -0,04k -0,040 -0,035 ~0,017

Having determined these curves, the idea of the suggestedmethod is to solve the

equations given in§23 using the values of a number of curves similar to those given at the

., end of § 2,  This: has nct yet been carried out,
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25, Solution for a crack in an infinite medium,
P

- We take the solution given by Sneddon C 19 476) for a penny shaped crack, similar +o
that described in the last paragraph, of radius ¢ lying in an infinite medium, For a crack
of this shape cylindrical cowordinates ( p s g z) were employed since there is symmetry
about the z axis., In this co~ordinate system the displacement vector may be written as
(u p? 0 u, ) and the siress in the interior of ther medium will be completely specified
by the four s’rr'ess components ¢ p %0 T g Tz since the remaining components are
identically zers.

The stress prodused in the neighbourhood of the crack is the same as that produced in a
semi=-infinite medium by the boundary conditions

-
sz=o for all p

crz=-p(ﬁ))0~sp< c onz =0 (25.1)
uz:“O c <P < ow ]

l
!

If we take p(p) p@ s & constant we see that on z = O, we have the conditions we
require for the problem stated in B4T7. However on the cylindrical surface p = 1, we shall
find finite values of the radial and shear stress, If we follow through the problem as treatb-

ed. by Sneddon for a constant internal pressure we find the f@llovr_'m& solution

: ® 1 4  sing
u, = 2o j( -én)m(m) i"MJ(p,n)dM (25.2)
7 (5% =1) (g2 - 1) dn 7
. 2 2 - sin i \ |
u =.__1i,o.ff__ J’u +ﬂ é‘q)—- Ve I (g, n)an o (25.3)
2 oom (1) an n ?
where we take 2 = 3 and the components of stress we require are given by
2p
§Z=“§[C(Pis§) S(p19§)+§0(pl,§)- gsa( 9§)} (250,4)
, 2p, ¢
Tog = [C(p s ) -581(a, t.r)} | (25.5)
Po 3% = 4 o @ _ 1 2 2
0, = il ey {c,‘( ps $)-8(2r, §)} -(,@fﬂ){c'( s &) -8 p1,§)}

2' [¢] @ 0
;[cj(pq,g)-sq(pq L, 8)=0%a, 8 ) +8%p, ,E)-Cp ,C)

£S5, ¢ )} (25.6)
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on the wall of the cylinder,

Se Toz
my and «%:

Values of
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&2@ % Appendix,
In the previous paragraphs we have made use of the integrals J“ - (p R q) for values

of u =1, 2and v = 0, 1 for a range of values of (p, q) where

, (o @) =f "7 (sp)7,(s)e™® as - (2601)
(o] )
The integral given by equation (26.1) is a particular oase of integrals of the type
00
(e, v ,N) = f J“(at)JV(bt)e_Ctt)‘dt (26.2)
, ' 6
considered by Eason, Noble, and Sneddon ( 1355 ) . Since we are concerned only with the

simpler form of integral (2,(3.‘1) and since we reguire man;y more values of the parameters than

are given by Eason, Noble, and Sneddon it would seem as well to stréamline their method for
this particular problem,

Por the values of u and y we require, the integral (26.1) converges, Following

EBason, Noble, and Sneddon we make a transformation of J Loy (p, q) in the following way.

Write
’ 1
-1 2"
J (R) é_:_]}_?_.,__. -
n A - Be*le
' m
where R> = A% +B%~ 28Bcos 6 = (A - Be+?)(a - Be™9),  (Watson, 1944, p.359).

Since N is to be taken as integral, there are no restrictions,

L8

I (A)Jm(B)ei‘“"’ (26.3)

[o+]

"
§

If we now multiply numerator and denominator of the fraction on the left of equation
(26.3) by (A - Be™ 6), miltiply both sides by e - M0 and integrate with respect to ¢ from
0to 27 we have

‘ 1 4 JTI(R) =1 -in : |
(05,0 <= R [ ety g (26.0)

If we now write A = sp, B=s, n =0, n = v we find that

T J (rs
R TR PNy . YRR LR (26.5)

vhere now r2 = p2 +1 - 2pcos. 6 .

If we now substitute into equation 2.6.1) from equation (26 3) we have

I, (e Fs ™% gs —j@/ﬂ J(rs) (p - o187 4

=179€/ (p - e0)” defwi—'r,,-—(f:ge"s‘ls (26.6)

o r
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| Purther the inner integral may be evaluated from Watson (lﬁ 44)

/s“Jv(rs)eqsds=(2 1"/‘1)‘11(”“ V”)ZE" (.’ji"””, “*V‘”z;vn;-i)(zsﬂ)
0 H Ty +1) 2 2 q?

On substituting fpom equation (26.7) into equation (26.6) and rearranging the terms we have

T(#+V+D ~i0\v, Y Vel LtV 42 r? '
g (py, @) == (p - e V)Vp |Etds vty — laa (2.8
ﬁ prv T(v+1)£ﬂqll+v+1 o 271 5 ’ 5 H 3 qz

Before proceeding further, it is as well to note several results which we shall need in
~ the evaluation of the integrals we require. With the usual notation for elliptic integrals of !
the first and second kinds we may write

: ¢ v ¢ |
e, ¢) = [ S, ma, 6) <[ ey (26.9)

1 .
where’ A((ﬁ):(‘l-—kzsinang)z and k = sin o, ,
i We are interested only in the case where ¢ = 7 /2 s lee. the complete elliptic integrals.
Ve now list results we shall require.

|
|
i
l

|
{' /2 ay E

= k"2=1 - k2 (26n1c
o (1-ksmy )’ w®
- /2 2
| / sin’® ¢ d¢ _E-KkZF (26,11
1’ 0 (1—kzsin21/;)3/2 K2k!'2
| /2 A
| [ ' - ~= ——t— (4E - F) (26442
,l o (1 -'kzsinzzﬁ) 3/2 3(1 _kz)
' /
‘ T2 .2 -
| [ , sin® ¢ ag _E-F . _2F (26.13)
j ° (1 - k* sin®p)>/2 3k2k 2 3k'4
' In the following calculations we shall write
(_
i k2= =R with k< 1 . (26,13
(p +1)% +q° ‘
We now evaluate the mtegrals J, (p, q), A o(p, a), J (p, q), (p, q). We start with
" 3

P @), with p =1, ] _ ol

-
J1,0(P’ ) =J—2/ 2F1(1, 31 3135 -r7q®)ae
Tq o



i W1

_ /"” a6
mq® Jo (1 +x2/ g2 p/2

g K g(x)
- TP (26.15)

-gsincer2=p2 +1 = 2p cos @,

. m
2 2
| Jz’(;(p, q):——f 2F1(:s/2,2;1;-r_2)de-
i i T o q
Using the fact that

2 =3,

2
| (1,&%)22(3/2,2;1;-%) (1 =I5 + ) (26,16)
| , q q 2q° q ‘
i (Brdelyi, Vol.1).
| #e have . s . ,
| 3
J (pyq ==—2E——— (4E-7) - k . B(k). (26.17)
20 16 p 3/2k,2 Ll_ﬂpzlz k' 2

Now taking u =1, v =1 we find that

|

|

I

|

( J1 (p,q)——l—ﬁ/ (p-e-le)F(3/2,2;2~-—)d6
|, q®
. .
\

|

l

|

|

- 1 ®  (p = cosb)
1rq3 o (1 +r2/q2)3/2

= k - [(D + 12) E(k) - 22 - (E(k) _ k'ZF(k))] (-‘2_6,‘18.)
L ap*’? k! X K .

and finally with u 2, v =1, we have

i

1]

J (p, )
291

T . s
—L4£'/ (p- e 16)2F1(2,3/2 ;23 —-I-:—z)de
0

q

3 /ﬂ (p -cosd) ,
(1 +r2/q )3/2

|
|
|
(O, ,.
! | . -~ jiz,z[”k, et - 7(0)- =2 {E'(k)-F(kj--;gEJ (26.19)
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We shall calculate the values of J 1)(p, q) for pu = 1, 2and v = 0, 1 for ranges

of values of p = .025 (.,025) .5, and q = .025 (.,025) .5. The first column in the -
, following tables gives the values of p, the second the values of J 1.0 ° the third the values
: b

| of J, o » the fourth the values of J 4 4 » and the fifth the values of J
3 3

i
f
|

2,1°




<025
.«050
0075
. 2100
0125
<150
175
«200
0225
«250
0275
<300
0325
0350
375
«400
o425
450
o475
«500

.025
.050
075
2100
125
0150
0175
2200
0225
250
.275
300
0325
3350
<375
2400
425
<450
475
+500

+0,0250
+0,0251
+0,0253
+0,0255
+0.,0259
+0,0263
4+0,0268
+000273
+0,0281
+0,0289
+0,0298
+0,0308
+0,0320
+0.033)
40,0350
40,0368
+0,3887
+0.0412
+0, 0440
+0.0472

400499

6.0501
+0,050L
+0.0509
+0,0516
+0.0524
+0, 0534
+0,0546
+0.0559
+0.,0575
+0,0593
+0,061 4
+0.0638
40,0665
40,0697
40,0732
+0,0773

+0,0820

+0,0874
+0,0936

Values of J/u,v (py q) for g = .025 to .5

=0.9987
—1 o 0030
~1,0102
-1,0204
-1.0336
-1.0501
~1.0699
-1.0935
~1.1211
11531
=1.1900
-1.2322
-1 ° 2805
-1.3358
=1 .3988
-1.4710
=1.5537
_1 G6L1‘87
-1.7582
-1 .8852

g = 9025

-0,9907
-0.9953
-1,0027
-1,0130
-1,0263
“’1 e'oli'29
-1,0628
-1 ,0863
-1.1138
1 A456
- ,1822
-1 02242
-1.2721
~1 3268
~1.3892
- 4605
=1 o 5l21
16359
*107%58
-1 08687

g = 0050

-0,0125
~0,0250
-0,0376
~0.0504
-0,0634
-0,0767
-0,0903
=041 044y
-0,1189
-0.1340
-0,1497
=0.1835

- =0.2019

~0,2214
~0,2422
=0,2645
~0,2886
=03147
-0,3432

-0, 0124
-0,0248
-0,0373
=(0,0500
-0,0629
=0,0760
-0,0895
=0,1034

: "001 178

-0.1327
~0,1482
=041645
-0,1997
-0,2189
-0,2393
-0,2612
-0,2848
=-0,3103
=0,3384

13

-0,0079
~0,0162
-0,0250
~0,0345
=0, Q47
~0,0560
-0.0685
=0.082%
-0.0982
-0.1162
'“001370
~0.1611
-0,1893
=0,2227
-0,2625
-0031 03
-0.3683
~0.4395
"005278
-0,6383

-~0,0158

-0.0323

=0.0497

-0,0685
-0,0888
-0.1111
-0,1359
=0,1635
~0.1948
=0,2305
-0.2716
“’0031 92
=0,3750
-0,4408
-0,5192
—0.613.4
-0.7275
“‘008673
-1,0402
-1 2564



. 025
.050
.075
100
125
«150
0175
.200
6225
«250
«275
«300
+325
«350
2375
<400
o425
o450
475
500

.025
050
075
«100
125
»150
175
»200
225
«250
275
300
«325
«350
375

4000

425
450
475
500

+0.0745
+0,0748
+0.0753
40,0760
+0,0770
40,0782
+0,0797
+0.0814
+0,083L
+0.0857
+0,088.
+0.0915
+0.0950
+0.0991
+0.1089
40,1149
+On1 21 7
+0,1296
+091387

40,0987
+0,0991
+0.0997
40,1007
+0.1020
+0.1035
40,1054
+0.1103
40,1134
40,1169
+0,1209
40.1255
40,1307
+0.1367
40,1435
+0,1512
+0,1600
40,1702
+0.1819

=0.977k
=0,9825
-0,9903
-11,0008
_1 aO}Illl*'
-1.0310
-1.0509
=1.,0744
—1 01 01 7
-1.1333
-1.1695
"1 02:1—09
-1.2581
"1 031 20
“1.3733
"1 QLI‘LFBB
"1 05232
~1.6148
"‘1 07201
-1.8417

qQ = 0075

-0.9591
-0,9648
=0, 9731
-0,9840
"'O.o 99 78
-1. ° 611|-6
=1.0346
-1.0850
"1 '1 1’62
‘1 01 01 "9
-1.4926
-1 .2389’
"'1 -29’1 6/
-1.3515
=1 4196
A 2573
-1.5386%
-1 6878
~1.8050

g = .100

0,022
=0,024
-0,03%68

040493

~0,0620

N "‘O [ 0749

-0,0882
-0,1019
-0,1160
-0,1306
-0,1458
Q41617
~0,1785
-0.1961
-0.2148
=0,2346
~0,2558
-0,2786
-0,3032
-0,3298

=0,0120
=0,0240
~040361
-0,0483
-0,0607
-0,0734
-0,086.
-0,0997
"'001'1 35
-0.1277
~-0.1425
-0.1579
=017
-0.1911
-042091
~0,2282
-0.2485
-0,2702
~04.2935
~-0,3186

=0,023L
-0,0478
-0,0737
-0.1015
-0.1316
=0,1646
«0,2012
-0.,2424

-’002885-

~0,3409
-0, 4014
-0.4715
-0.5535
-0,6500
~0,7648
"o I3 90211-
-] ,0688
~1,2721
-1 .5229
-1 ,8356

-0,0307
-0,0627
“Oo 0967
=0,1331
-0.1725
-0,2157
=0,2635
-0,3170
=0,3772
~0,4:58
=0,524;
=0,6154
=0,7215
«=0,863
"’Oo 9943
-1.1712
=1 43847
=1 o 6Ll
~1,9636
~2,3599
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0050
075
100
0125
150
A75
.200
.225
.250
275
»300
2325
3350
2375

2400

425
«450
475
.500

«025
050
0‘075
«100
0125
«150
o175
200
225
«250
o275
2500
«325
«350
o375
o400
o425
o450
o475
»500

+0.4223

40,1208

40,1236
40,1248
40,1263
+0.1283

40,1306

+0,1333
+0.1365
+0.1402
+0,1445
+0.149L
+0.1549
40,1613
+0.168L
40,1766
+0.1859
40,2087
40,2226

+0, 2447
+0.2605

-0.9360
=0,9425
-0.951 4
"Oo 9629
=0,9770
-0.9939
-1..0139
-1,0372
""1 00640
=1,0947
-1.1298
=1 41696
-4.2148
=1 .2663
=132l
-1.3900
-1.4649
-15502
=1 6477
=1, 7591-1-

q = 0125

+0,9085
"0091 59
-0,9256
~0,9376
"’009521
~0,9692
-0.9893
=1.012k
«1,0389
-4 ,0691
-1.1034
=1.1422
=1.1861
-1 .2356
-1,2916
‘1 03549
A 266
=1 5080

. =1,6006

"’1 ° 7062

q = 0150_

-0.0117

-=0,023L

-0,0351
"‘Oo OL|-71
"‘000592
-0,0715
=0,0841
~0,097Q
=0,1103
-0,1241
-0.1383
=0,1532
-0,1687
-0,1850
-0.2021

. "'O 02202

~0.2394
~0.2598
~0,2815
=0.,3048

—0«0113

=0,0226

-0,0341
~0,0456
-0,0573
-0,0692
~0,0813
-0,0938
-0,1066
-0,1198
=0,1334
-0.1476
=0,1623
-0.1777
=0.1939
~0,2108
-0.2287
<0,2L76
~0,2676
-0,2888
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“’000375
-0,0768
=0.1183
-0,1628
-0,2110
=0,2637
=0,3220
-0, 3870
-0,4602
-0, 540l
~0,6386
"Oa 7485
~0,876.
"’1 00263
-1,2036
‘“1 04049
-1 .6687
=1 ,976k
“'2 03527
=2,8173

=0,0439
~0,0898
=0,1384
=0,1904
-0,2466
«0,3084
-0,3759
=0eitH51 L
‘”Oo 53 63
-0,6325
=04 742k
=0,8690
“4.0157
-4 ,1872
=1.,3894
=1 629
=1 491 6L
="'2(12625
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.050
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150
175
200
«225
«250
275
230Q
«325
0350
o375
«400
o425
450
75
»H00
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075
»100
«150
o’ 75’
2200
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0250

275
$300
o 3 25)
0350
4375

«400.

425
«450

0'475 .

2500

+0.1675
+Oa'1 681

4041692
+0.1708
+0,1728
+0.1753
+0.1784
4041 81 9
+0§4 861

+0,1910
40,1965
+0.,2028
"'0021 OO
+0,2181

40,2273
40,2377
+0.2495
+0,2628
+0.2780
+0.2952

+0,.1888
+0.1895
40,1907

+0.1924

+0.1947
40,1974
+0,2008
+0.2046
+0.2093
+#9.2146
40,2206
+0.2275
+0.2353
+042441

+0,2540
40,2653
+0.2779
+0,2922
+0.3084
+0,3267

-0,8770
-0,885L4
-0.8959
-0,9085
=0,923L
-‘OI"92"I'09
-0.9610
—009839
-1.0101

"’1 00397
-] 0073'1
-1.1108
-1 1531

-1.2009
1 42546
-1 ¢31 50
-1 03832
-1 4603
"'1 55475
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q, = 0175

—0+8449
—01851 ll"
-0.,8627
"09 8760
4048915
-049092
=0:9293
"0 '] 9521
=0.9778
"!1 [ 0069
-4 ,0394
‘1 a 0758
“1.1166
=1 41623
~142135
-1 335k
-1 .4079
-1.4895
-1 .5816

q.' = .200

—’0001 09
~0,0218
70,0328
-0.0439

~0.,0551,
-0, 0666,
~0.0782.

=045901
-0,1023
~0s1149
-0,1278
=0,1412
=041551
-041695
~0.1846
~042003
-0,2167
=0,2340
-042521
-0.2712

0,01 0L
=0,0209
~0,0314
~0,0420
-0,0528
—0,0631
-0.,0747
-0,0860
~0.0976
~0«1 09

*=0¢1216

=Q061342
~0s1471
=041605
~0a1 7k
-0,4888
-0,2037
-042193
~04235L
~0,2522
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- 0.0497
-0,1017
-0,1567
-0,2155
-0.2790
=043482
-0 uli-zll—é
=0.5095
~0,6Q46
~0.7122
-0.8347
-0,975k
"'1 01 380
-1 3274
-1 05496
-1.8122
-2.1247
-2 ¢)+99ll-
"’20 9522
-3.5037

~0.0549
=0,1104
-~0,1730
-0,2378
~=0,3077
-0,3839
-0, 4676
-0,5606
~Q:6645
-0,7816
-O e 91 46
-1..0668
-1 2421
"1 o«Ll')‘l'5}+
- ,6828
~1,9620
262923
-2,6860
"’.3'&15&4‘
"3 -729‘)4-



025
© ,050
o075
o100
<125
0150
75
+200
225
+250
275
«300
0325
+350
<375
21400
o425
o450

LTS

«500

«025
050
«075
51 00
2125
o150
175
0200
0225
#250
0275

2300

325
350
«375
400
o425
o450
o475
«560

4‘09‘2092
+0,2100
+0.2113
+0.2131

+0.2155
4002185
+042220
+0.2263
+0,2302
+0.2368
40,2433
+0,2506
"'002589
+0.2683
+0,2788
40,2906
+0.3039
+0.3189
40,3357
+0.3546

+0,2285
+0.229
+0.2307
+0,2326
+0.2352
+06238)
+0.2421
+00 2466
+0.2518
52577
+0.2645
+042721
+0,2808
+0,2906

FL30715

+0.3137

063275

+0.3428

- +843600

+0.3792

-0,8036
~0,8143
""008266
-0.8406
-048565
"008745
"0«89)4"7
=0,91 7l|-
=0,9427
-0 0'971 0
-1 0026
-140377
"1 00769
-1.1201

-1,1169
- 22234
"‘1 0281—1-0
-143518
-1 o\)-l-277
-1.5128

q = .;225.

=0,7626
=047745
~0,7878
-0,8026
-0,8190
-0,8373
"‘008576
-0.8801
-049050
-0.9326
=049632
~-0,9970
"“ . 0345
-1 ,0760
-1 41220
~1 1751
-] 42298
-] ,2928
= 23630
- a1 2

g = 250

=~0,0099
~0.0199
=0,0299
"‘Oo OLFOO
-0,0502
-0,0605
-0,0710
~0,0816

-040925.
~0,1036.

~0.1149
~041266
~0.1385
-041508
00,1635
-041765
~041899
~0.2037
~0e2179

~0,0094
~0,0188
-0,9283
-0.0378
=0 Ol 7h
-0.0571
-0,0670
~040769
~0,0871
~0,1079
~0,1186
~041295
~001407
-Q41521
~041 638
~041756
«0,1877
«0,1999
04,2122
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-0,0595
-041217
-0+1873
-0.2573
'005327
=0s2147
"00'5014-8
=0,604;
-0,7155
-00'81-1-03
-=0,9817
-161427
-13275
-1 65409
~1.7888
-2,0787
=2.197
-2,8233
-3.30)4-1
"3 a8802i-

-0.0634
~0,1300
=041994
-0,2738
-0,3538
-0 07
-0.5358
-0.61.08

"O 3 7575
-0,8883
-1.0357
-1.2031

-1.3943

"'1 0‘61 LI-O
=] .8680
"’2 o 1 632
~2.5083
-2.9139
-343932
<349 627



2025
050
075
«100
125
.150
200
2225
.250

«275.

300
325
350
0375
400
425
450
o475
-500

«025
050
-075
2100
125
150
175
200
0225
+250
«275
300
0325
350
375
«400
o425
o450
o475
«500

+0,2468
+0.2476
40,2491
+#0,2511
42538
+0,2570
+0,2610
40,2656
+0,2709
+oo 2771
+0.2811
+042920
+0,3009
40,3109
+0.3221
40,3346
40,3485
40,3640
+0.3813
+0,4:005

40,2639
"!Oo 26&8
+002663
+0,2684
+0e2711
402744
+0.2785
+0.2832
+0,2887
+0a2950
+0050211
+0.3102
+0.3192
+0.329L
+0.3406
40,3532
+0.3674
+0.3825
+0.3997
40,4186

"ou71 95
-0,7326
~Q4 7469
~0,762)
=077
=~0.7980
"'0581 84
-0.8407
"O.8652
-0.8921
-049217
-0.9542
-0.9900
~1.0294
~1.0727
"1 01 206

=161 734

-'1 0231 8
-1 02961
“‘1 03679

q = 0275

=046 747
~0,6891
=0a 7043
-0, 7206
-00'7382
-0.7571
=047775
~0.7997
-0.8237
-0,8499
-0,8785
-0.9097
-0.9438
-0.9811
-1.,0219
~1,.0666
"‘1 01 1 57
~11696
1 02287
"'1 02938

N ‘000088
‘ ‘;On 01 77

-0,0266
~040355
~0.0445
-040536
-0,0628
-0,0720
~0,081.
-0.0909
~0,1005
-0.1103
-0,1202
~0.1303
=0,1404
-0,1506
-0,1610
-0.,1713
"‘001 816
-0.1918

-0,0083
-0.0165
-00248
-0,0332
=-0s0415
—=0,0500
=04, 0584
-0,0670
-0 © 075 6
-Q4s0843
-0,0930
~0s1018
=0.1407
-041196
-041286
"O 0‘1 3 75
~0.1463
=041550

041635

=0,1717
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~0,0666
~0,1360
"002093
~0,2872
-0.3710
-0,4616
""Oo 5607
"‘Oe 6697
-0+7905
-Ot92514'
-1.0770
~1.2483
=1 olh31
“1.6657
"1 u921 7
20217k
235608
-2 . 961 l!‘
=3.4311
=3 09821-0

-0,0691
=0,1411
~0.2171
-0,2977
-0,3842
=0a4777
~0,5796
-0,6914
-0,8149
-0,9523
-1.1060
"'1 a’2789
-1 011-047
=1,6973
~1,9516
=2 421t57
-2 45805
-2,9706
-3 4240
"3 59531



.050
2075
-100
125
+150
175
2200
+225
+250
0275
» 300
0325
«350
o375
»100
o125
o150
ol 75
500

2025
2050
2075
«100
o125
0150
A7H
200
2225
2250
«275
2300
«325
350
375
«400
o425
o450
oli75
’ 0500

+0.2799
+0,2808
+042823
+0.284
+0.2871
40,2906
+0,2947
+0,2995
+0.3050
40,5114
+0.3186
+0.3267
+0.3358
40,3459
+0.3571
40,3696
+0,3833

40,3985

+0.4153
+0.43357

+0,2946
40,2955

40,2970

+0,2992
+0,3019
+0.3054
+.3095
+0.3143
+09.3199
40,3263
403334

40,3415

40,3505

+0,3605.

+0.3716
+0.3838
+0.3973
+044121
+044283

‘I‘+Oa)-l-ll‘6o

~0,6287
=0,6L43
-0,6605
-0.6776
20,6956
"Oe 71LF8
=0.7353
"007573
-0.7810
—~0.B065
068341

-‘008964
-0.9316
-0.9700
-1,0117
"'1 00572
1 1067
=1 «1609
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-0,5820
-0.5987
-0,6159
=0 L 6336
=0,6522
~0,6717
-046922
“0, 7141
=0.7373
 =047622
-0,7888
~0.8175
-0,8483
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=0,9175
-049564
-049985
“.1 o'Ol&lJ-O
-1 40933
~ +14:68

q =

94 = 325

350

—0,0077
=0.0153
-0,0230
-0,0307
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~0,0540

~( 0618
~0,0697
~0s0775
~0.085L
~0,0933
-1 0113
-1 40895
~1.,1669
-1 «2430
~1.3173
~4,3891
"‘1 64573
-1 ,5208

-040071
~040212
-0,0283
~0,0354
-0,0425
~0,0496
-0,0566
"O‘u 0637
-0,0708
-0,0778
-0,0847
~0,0916
=040983
-‘O ] 1 01I-9
=041113
=0,4174
=0,1232
-0.1285
=041331
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-=0,0709

~0.1449
~0,2227
-0,3053
-0.3938
"OOLP891
-0.5927
~0, 7061
-0,8309
-049692
-1.1234
-1,2960
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"'1 671 03
"‘1 09601
-202450
"'205714
=3.3787
~3,8786

-0,07214
-0.1473
-0,226l
~0,3102
-0.3997
~044960
~0,600.
=0.7143
-0,8392
=0.9771
~1.1301
-1 3006
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167067
“"1 094914‘
-2.2245
-2.5373
-2,8941
=3,5020
-3 07693
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100
125
»150
o1 75
«200
0225
+250

6205

300
«325
«350
«315
o400
o425
2450
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«500

.025
s050
»075
«100
#125
«150
175

»200

«225
«250
«275
300
«325
«350
«375
«400
o425
450
475
800

+0.3205
+0.3214
4043229
+0.3250
140.32377
+0.3311
+0,3352
+0,3399
403453
40.3515
+0,3585
+063662
40,3748
+0.,38
40,3948
+0.4063
40,4188
40,4325
404473
“"ool!'632

+0.3081
+0.3090
+0,3106
+0e3127
+043156
+043189
40,3230
+043278
+0.3333
+0.3396
40,3467
+043547
+0 03635
4043811
+043960
40,2091
+0.4233
+0.4389
4044558
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-0,5069
-0.5258
-0.5L48
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-045843
-0,6050
~0,.6265
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~047238
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-0,7813
-0.8129
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~0,882%
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=0.5350
—0.5528
"'005708
"005893
=046083
-046280
-046487
-0,6703
-(0,6932
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=0, 7432
~047706
-0,8000
~0.8314
=0,8650
-0,9012
=0.9401
-0,9819
-1.0268
"1 00751

q_ = .400

-0,0059
-0.0117
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~0,023)
-0,0292
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-0,Q407
-0,0463
—-0,0519
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-0,0628
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-0,0934
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-0,0065
-0.0129
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~0.0451
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—0,0640
=0,0702
-0,0763
-0,0822
-0,0879
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~0,4080
=0,1119
-0s1151
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-0,0728
-0,1486
-0,2282
-0,3123
=0,4018
-0.4977
=0,6010
-0,7130
-0.8350
-0,9686
-1.1155
- ,2777
"1 04576
-1.6577
-1,8810
-2.1308
-2,4108
=2,7253
=-3,0791
=3.4772

-0,0727
-0,1485
-0,2282
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~044023
=0,43988
~0,6030
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-0,8403
~0,9766
-1.1271
-1 .2941
""1 04802
-1,6885
-1 49222
~2,185.
=2 4825
-2,8188
=342001
"3 a6331



.025
«050
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«100
+125.
«150
0175
«200
«225

«250

0275
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0325

«350
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«400
425
o450
o475
«500
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100
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<175
.200
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«250
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375
»400
425
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+0.3316
+0 n3325
+0,3340
40,3360
+0.3387
+0.3420
+0,3460
+0,3506
+0.3559
+0,3620
+0,3687

+0.3763

+0.3846
+0.3938
+0.4038
+0,4148
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+0,4582
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-0.5828
-0,6049
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-0.7318
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"007927
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-0,8611
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=0.5613
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~0,6313
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=0,0158
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~0,.0313
~0,0363
-0.0113
~0,0462
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~0,0b41
-0,0680
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-0,0796
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-040186
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~0s03%321
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~0.,0h46
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-0,0636
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-0.b666
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~0.0669
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-040723
~0.1477
=0,2267
=0.3100
-0,3986
=0.4932
~0.5949
=0a7047
"038239
=0.9540
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