VL

Universit
s of Glasgowy

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.qgla.ac.uk/
research-enlighten@glasgow.ac.uk



http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

MODEL-BASED FAULT DIAGNOSIS IN
INFORMATION POOR PROCESSES

by
John Howell

Thesis submitted for

the Degree of Doctor of Philosophy

Department of Mechanical Engineering

University of Glasgow

March 1991
Glasgow, Scotland

© J Howell, 1991



ProQuest Number: 10984129

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10984129

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346



ACKNOWLEDGEMENTS

I would like to thank Professor D Murray-Smith for reading Chapters 1 to 4
and Mr F J Walford (retired, formerly with the Nuclear Materials Control Team
of AEA Technology) for his comments regarding the NRTMA application
described in Chapters 5 and 6. Last, but no means least, my thanks to Isabelle
for her considerable effort in the publication of this thesis. '



CONTENTS

LIST OF FIGURES
LIST OF TABLES
NOMENCLATURE
SUMMARY

INTRODUCTION

1.1 General

1.2 Faults

1.3 Information Poor Plants
1.4 Fault Diagnosis

1.5 Modelling

1.6 Overview of Thesis

A THEORY OF MODEL-BASED FAULT DIAGNOSIS
2.1 Introduction

22 A Strategy for Model-Based Fault Diagnosis

2.3 An Introduction to Modelling for Fault Diagnosis

2.3.1 Mathematical Models
- Their Structure
2.3.2 Mathematicals Models
- Disturbances and Manipulated Variables

24 Defining the Structure of a Model-Based Fault
Diagnosis System

2.5 Non-Model-Based Fault Detection and
Partial Isolation

Page No.

vi

ix

0o q3 W B W

10
14

15
16

17

19



CONTENTS (cont.)

2.6 Model-Based Fault Diagnosis

2.8

26.1
262
2.6.3
2,64
265
2.6.6
2.6.7

2,68
2,69

Modelling for Fault Diagnosis
Handling Uncertainty with a Single Model
Model Formulation
Some Observations
The Candidate Space
Common Sense Reasoning
The Principle of a Minimum Number
of Explanations
Candidate Evaluation
The Basic Strategy

2.6.10 The Solution Candidate Set
27 The Role of the Supervisor

27.1

Adjudication
The System Must Leamn

Page No.

20
21
23

28
30

30
31
31
33

35
37

MAKING USE OF THE PRIMARY CHARACTERISTIC VARIABLES
Introduction

3.2 Traditional Plant Control

3.3 Viewing Control Charts Qualitatively

3.1

3.4 Automatic Extraction of Information from Cdntrol Charts

34.1
342

The CUSUM Plot
Visual Estimation of Drift

CANDIDATE APPRAISAL

Introduction

Intuitive Overview

Developing a Model for Value Estimation
Estimation

Interpretation

4.1
42
4.3
4.4
4.5

45.1

Ordering the Various Estimates

4.6 Orthogonality and Reducing the Search Space
4.7 Implications for Searching the Candidate Space

38
38
40
41

41
43

46
46
47
51
53
53

54
57



CONTENTS (cont.)

Page No.

APPLICATION TO NEAR REAL TIME MATERIALS ACCOUNTANCY:
SYSTEM DEFINITION

5.1 Introduction 58

5.2 Introduction to NRTMA : 59
5.2.1 NRTMA Described 59
522 Statistical Approach : 60
5.2.3 Diagnosis in NRTMA ' 63

5.3 Overview of Proposed Knowledge-Based System
5.3.1 Its Structure 64
5.3.2 Knowledge Representation 67
5.3.3 The Inference Engine 70

54 The Control Chart Knowledge-Source
54.1 Specification of Control Charts and

Associated Patterns 71

54.2 Timeliness . 76
54.3 Pattern Identification 76
544 Its Form 81
5.5 The Supervisor 82
5.5.1 Typical Plant Operation Heuristics 82
5.5.2 Hypothesis Interpretation ‘ 83
553 Its Form - 83
5.6 The History Knowledge-Source 84
5.7 Model-Based Reasoning 85
5.7.1 The Locality Heuristic 87
5.72 General Framework of the Analytical Approach 87

5.7.3 Heuristics 91



- iy -

CONTENTS (cont.)

 Page No.

APPLICATION TO NEAR REAL TIME MATERIALS ACCOUNTANCY:
A Specific Example

6.1 Introduction - 92
6.2 The Reprocessing Plant 92
6.3 The Simulation 95
6.3.1 Buffer Tanks 96
6.3.2 The Solvent-Extraction Plant o 97
6.3.3 The Concentrator ’ o8
6.34 Product Storage 99
. 0.3.5 Measurement Errors 99
6.3.6 Plant Operation Timing Errors 99
- 637 Some Typical Faults 100
6.4 Base Simulations 100
6.5 Control Charts
6.5.1 Their Form 104
6.5.2 Some Results : 105
6.6 Model-Based Reasoning 108
6.6.1 Its Form 108
6.6.2 The Candidate Space 109
6.6.3 Fault Free Studies 109
6.64 Fault Studies 111
6.7 Overall System Performance 113
6.8 Sensitivity Analysis 129
CONCLUSIONS 130
REFERENCES ' 134

APPENDIX 140



Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Table 1
- Table 2
Table 3
Table 4
Table 5

LIST OF FIGURES

Model-Based Fault Diagnosis
Model-Parameter-Based Fault Diagnosis
Outline Knowledge-Based Approach

A More-realistic Knowledge-Based Approach
A Typical 4-element Candidate Space
Un-normalized Cumulative Plot

Proposed Knowledge-Based System

NRTMA Knowledge-Sources

Simulated MUF Plots

The Lisp Domain in Model-Based Reasoning
The Principal Fortran Routines ‘
Reprocessing Plant Examined

Typical MUF Plots

LIST OF TABLES

Test Performance with Time Series
Test Performance on Plant A

Test Performance on Plant B
Distribution of Successful Condidates

Fault Studies Using Insignificant Path Sub-lattice

Page No.

10
10
.13
18

AR N

75
89
90
94
103

Page No.

80
106
107
111
113



NOMENCLATURE

Apart from the following reserved symbols used for the materials accountanéy

application

the physical inventory measurement at the end of balance
period k

material unaccounted for at the end of period k
cumulative MUFy

the net input measurement during balance period k

the error variance on Iy

the error variance on Uy

the nomenclature will be as below:-

Xi,» O

C, Yk

T, P,

{8}
{Pxl}ii

lower case characters denote scalar quantities

lower case underlined characters denote vectors.
The presence of a subscript signifies that the vector
pertains to a particular time period, k.

upper case characters denote matrices or sets.
The presence of a subscript signifies a time period,
a partition or a square dimension.

a perturbation or deviation in vector ¢

this notation is used to represent the ith component
of a vector or matrix

the symbol " ~ " is reserved for the transpose of a matrix
the symbol " * " is reserved for those elements that are
significantly in error

the identity matrix

the absolute value of a scalar quantity and the
determinant of a square matrix



E{x} the expected value of a random variable x
var{x} the variance of a random variable x
cov({x,y} the covariance between two random variables x and y

cor{x,y} the correlation between two random variables x and y

Log the natural logarithm
Max the maximum element in a list or set of real or integer
numbers

Quantities. that frequently have the same meaning are listed below.

ik ’ik the measurement vector and its model prediction
at the end of time period k

Xk the state vector at the end of period k

U the set of all non-path faults and measurement biases

b4 the set of all parameters and variables necessary
to describe the re-distribution process

] that sub-set of ¥ which the diagnostician is uncertain
about

¥x the vector of parameters and variables necessary to
describe the re-distribution process '

Ok the vector of those elements of O that are currently
of interest on period k

Wk a measurement bias

Yk zero-mean measurement noise

ng non-path faults

uy the combination of measurement biases and non-path faults

gj the jth natural basis vector



the covariance matrix of AQy

Pk

Rk the covariance matrix of the measurements
J a Jacobian-like matrix .

Pi the correlation between MUFy and MUFy,,
o} the variance

ABBREVIATIONS

CUMUF cumulative material unaccounted for

MUF material unaccounted for

NRTMA near-real time material accountancy



SUMMARY

A theory of model-based fault diagnosis is proposed which is suitable for
non-linear plants that are information poor. That is, there are a bare minimum of
sensors available to operate the process without recourse to ‘analytical redundancy,
the sensors output at frequencies which are likely to be low, relative to the
dynamics of the plant, and there is considerable uncertainty surrounding any
mathematical models that are available. Other approaches are likely to be more
suitable for information rich plants. However, it should be of, at least,
philosophical interest to the diagnostician who assumes that he is dealing with
such a plant, if only because it should lead him to question whether his plant
actually satisfies criteria necessary to support this assumption.

The theory argues against model-based fault diagnosis as a panacea for fault
diagnosis in favour of a data fusion approach where model-based reasoning forms
one input. One consequence of this. is that a knowledge-based approach is
proposed to implement the different inputs that are possible and to fuse their
conclusions. Another is that a model-based alarm system is thought undesirable.
Methods are therefore proposed, both to alarm that a fault has actually occurred
and to perform a preliminary diagnosis, without recourse to models. Based on
control charts, these seek to combine well-known. detection theory with a
qualitative approach to pattern recognition: the former performing the task of
alarm generation, the latter diagnosis. |

It is proposed that model-based reasoning be based on two principles, a Principle
of Re-Distribution and a Principle of a Minimum Number of Explanations. The
Principal of Re-distribution provides the diagnostician with a formal qualitative
approach to explaining discrepancies between plant and model whﬂst maintaining
quantitative rigour. This leads to the construction of a candldate space of all
possible combinations of all possible explananons The Pnnmple of a Minimum
Number of Explanations is then proposed as a slratqu for searching this space.
Based on common sense, it attempts to imitate the diagnostician.



A method is then described to appraise a particular candidate set of suspect faults
and model inaccuracies. This assumes that the diagnostician has some subjective
view of errors in both the model and measurement systems.

The application of both theory and methods to one particular process, that of
near-real time material accountancy in fuel reprocessing plants, is described. This
has been implemented in a hybrid lisp/FORTRAN environment: the alarm system,
model-based reasoning and other knowledge sources being implemented in the lisp
environment; plant simulation and candidate appraisal being implemented in
FORTRAN. The lisp environment consists, essentially, of multiple production
systems. Inference is by forward chaining. System performance to various fault
scenarios is investigated, with encouraging results.

A great deal has yet to be done and various issues that are still outstanding are
raised in the Conclusions.



1. INTRODUCTION

1.1 General

It is possible that, in the years to come, cheap, robust, reliable instruments will
be available to measure every possible process variable that exists in any plant. It
is also possible that we will develop an acute understanding of the physical
processes that arise in any plant. With these capabilities we should be in a
position to detect and locate any fault, almost immediately, by comparing the data
collected with appropriate, valid mathematical plant models. Unfortunately, in some
industries at least, we are a long way off this desirable state of affairs.
Instruments are either not available, too expensive, in terms of either capital or
maintenance costs, or unreliable making instrument failure a possibility. Valid
models may also not exist. ‘

Over the past two decades, considerable research (I9) has been carried out into
the detection and diagnosis of faults. Various approaches have evolved including
analytical redundahcy (10), constraint suspension (/2) and qualitative reasoning(!?),
These have largely focused on plants or systems that are information rich: either
in the sense that there is a proliferation of sensors throughout the plant, the
outputs of which are of a sufficiently high quality and are recorded at frequencies
much higher than that of underlying process fluctuations or in the availability of
models that are accurate in terms of structure and parameters or both. Certain
approaches discriminate between linear and non-linear plants (%8 13): in these cases,
it appears (® that work on non-linear aspects is still in its infancy. A large
number of possible applications have been identified including electronics (2,
nuclear power plants (14-16), process plants (/347.18) and ships (79,

This research has taken a scientific approach in that it has attempted to seek
systematic formulations that are generally, if not universally, applicable. Thus
mathematical - techniques have been proposed (# to improve the robustness :,Lio )
c‘«1‘1'rﬁ1céVrtiziiirwiftﬁ'y'iiLxifﬁ‘tifé~mode:ls. The question then arises as to what happens if these
formulations 'are inappropriate? Should the diagnostician give in? Faced with such

a situation, he would probably use his common sense 6% and whatever tools that



are avail'able to him, to make a judgement specific to the particular situation he
is faced with. He would not aim for some grand rigorous statement about plant
operation, but would confine himself to finding the fault. Faced with uncertainty,
he would be prepared to be wrong.

This thesis describes a common sense approach to model-based fault diagnosis
that is suitable for non-linear plants that are infggmation poor. That is, there are
a bare minimum of sensors available to ob_servej the process without recourse to
analytical redundancy, the sensors output at frequencies which are likely to be
low relative to the dynamics of the plant, and there is considerable uncertainty
surrounding any models that are available. Such plants may not only exist by
design; for instance, the initial failure at Three-Mile Island 29 caused the plant
to enter a state which was unlikely to have been modelled previously and where
the diagnosis of subsequent failures was key to shutting the plant-down in an
orderly manner. The work has been motivated by one specific process, that of
fast reactor fuel reprocessing and in particular, in the application of near-real time
materials accountancy 8 to a reprocessing plant. Near real time material
accountancy (NRTMA) is a method of enhancing conventional material
accountancy techniques to improve the sensitivity and timeliness of detection
through the use of in-process instrumentation (generally operator equipment) to
increase the frequency of the account. A fauwlt is then deemed to be any
significant error in the account. Difficulties may arise because the sensor systems
and modes of plant operation are optimised for reprocessing and not for NRTMA

The remainder of this Chapter is devoted to explaining the various terms: fault,
information poor, diagnosis and model-based and outlining the contents of this
thesis.



1.2 Faults

As defined by Isermann *) a fault is any nonpermitted deviation of a
characteristic property which leads to the inability to- fulfil the intended purpose.
Himmelblau @) defines a fault as a synonym to designate the departure from an
acceptable range of an observed variable or calculated parameter associated with a
piece of equipment. Both are difficult to implement, the former because of
difficulties in knowing which deviations are permitted, the latter because of the
number of variables and parameters in a plant.

"I‘he control of any plant is usually hierarchical in nature in that the primary
control objective is normally described by a few characteristic quantities which
are affected by other characteristic quantities attributed to the next level down
and so on. For instance the primary objective of a power station is to supply
power as required, that of a factory energy management system is to minimisé
total energy consumption and that of a materials accountancy system in a nuclear
fuel reprocessing plant is to account for the total throughput of nuclear material.
These individual objectives are dependent on the operation of specific plant
components which in turn can be viewed as being made up of sub-systems and
so on. The net effect is often that the plant operator will tend to ‘drive’ the
plant on data derived from the upper levels of the hierarchy and leave
information pertaining to the lower levels to the plant maintenance engineers. Data
at the lower levels may be used to trigger alarms or be presented to the operator
for information; other items may not be.communicated to the operator at all and
may not even be recordable. Indeed there is often an economic case against
over-instrumentation on the grounds of both capital and maintenance costs. Certain
malfunctions may therefore only be detected if and when they affect the control
variables monitored at the upper levels or during scheduled maintenance. If they
do affect the upper levels then the effect is unlikely to be unique. -. - 7
T T - ... One
can therefore identify a corresponding hierarchy of malfunctions where those at
the top are critical to plant operation whereas those at the bottom can wait until
scheduled maintenance.



This thesis attempts to differentiate by deﬁm’ng a fault or malfunction as any
occurrence in time that results in the plant deviating from its intended mode of
operation. This may be as a result of the total failure of a component or a less
serious misalignment or maladjustment; it could be as a result of measurement
bias or of some external affect. For instance, an operator or plant engineer may
take an incorrect action or there could be an unpredicted variation in the
feedstock. Some malfunctions may only occur once and last only a short period
of time, others could be more regular but still be intermittent whilst others could
develop very slowly. |

1.3 Information Poor Plants

It is difficult to define, succinctly, what one means by a plant being information
poor. The term has largely been derived from inferring what the plant is not,
that is information rich. Scarl et al (18 use the term senmsor-rich to describe an
environment with an abundance of on-line instrumentation. Himmelblau (2
describes the temporary need to install additional sensors and to perform special
tests to diagnose certain faults in chemical plants, that is to increase the quantity
and quality of the information flow from the plant. One of the aims of the
philosophy proposed here is to provide the diagnostician with evidence to support
the case for such resource intensive activities.

Consider a hypothetical plant which is information poor. The flowrate and
composition of the feedstock may vary and although attempts may be made to
monitor it, there may always be a possibility that the monitoring process might
be fooled because certain properties, eg temperature, might be out of range or it
might not be designed to monitor certain features or chemicals. The feedstock
may also vary at a rate which is significant relative to the frequency at which it
is being monitored. The operation of individual units in the plant may be varied
with pumps being stopped/staried, valves being opened/closed and so on. The
operator may not need to record, accurately, the times at which each activity



takes place but such information may be needed as input to a simulation for
diagnosis purposes. Faults may not only arise because of instrument or actuator
failures but also because of, for instance, the build-up of crud (ie solids). It is
unlikely that a simulation would be able to predict all possibilities.

14 Fault Diagnosis

Fault detection, diagnosis, isolation and location are generic terms which are used
either singly or combined “¢817) to describe the process of ascertaining that a
fault has arisen and of determining its location and cause. Here we assume that
the term fault diagnosis (©) subsumes them all.

A large number of model-based techniques have been published to detect faults
and there is still considerable research in this area that is ongoing(83:85), One or
more of their assumptions are usually violated when applied to non-line_ar_ plants -
which are information poor. A common approach to circumventing any uncertainty
is to introduce thresholds to distinguish a fault. The problem with thresholds is
that they not only reduce sensitivity to faults, but also vary with variations in the
plant inputs and disturbances. Choosing the threshold too small increases the false
alarm rate; choosing it too large reduces the power to detect.

There are two main approaches to determining the location and cause of a fault:
either a set of all possible faults may be formed and the effect of each
individual fault compared with that observed or an argument may be derived on
the basis of deviations from what is expected. Rasmussen /) uses the teérm
symptomatic search t0 denote the former and topographic search the latter.



The two main ways of performing symptomatic search appear to be the fault
dictionary @ and the diagnostic tree (29, The fault dictionary is a list of causes
and effects, and diagnosis is performed by looking up the effects in a
cause-effect table to see what the cause was. The diagnostic tree is a way of
constraining the search to go along different diagnosis paths. Both techniques use
look-up tables. For instance, alarm procedures have been used to sort out alarms
which are present on the basis of prestored data of association links between the
alarms (2%, There are a number of difficulties with using these techniques in
larger plants. A large number of entries may be needed in the look-up table.
Sufficient data and resources must be made available to trace the faults through
the plant. It is very important that all potential faults have been predicted in
advance; this can be. difficult, if not impossible, in large plants. If this a priori
analysis is not complete and correct, then diagnosis may not only be impossible
but also positively misleading. They are therefore of only limited applicability to
plants that are information poor.

Topographic search methods rely on their ability to predict; plant performance so
that discrepancies or residues can be used to diagnose the fault. There appear to
be two approaches, analytical redundancy (19 which derives from modem control
theory and the method of violated expectations (1122) which comes from Artificial
Intelligence. Both appear to be applicable to diagnosis in plants which are
information poor because they do not require a priori knowledge of possible
faults.

The technique known as constraint suspension (11) is derived from the method of
violated expectations. Faults are not hypothesised explicitly but are hypothesised in
terms of their observed affect on the system. For instance, a control actuator
failure could be identified by the hypothesis, ‘a constant valve opening of X%
would explain all the discrepancies or symptoms observed.” Faults may therefore
be systematically isolated without recourse to the set of all possible faults. The
technique lends itself to a hierarchical approach in that it should be possible to
generate(!7) discrepancies at component level, then sub-component level and so on.
However this is likely to neglect common mode failures which can percolate
through lower levels. For instance, control »valves may be pneumatically driven
from the same air supply or chemical samples may be analysed at the same



laboratory station. A common mode failure may then be misinterpreted as being a
multiplicity of different faults at the component level.

One approach (#7), an analytical redundancy technique, is to recourse to on-line
identification to evaluate the model parameters. Unexpected changes in these
parameters can then be correlated with possible fault scenarios. This assumes that
either the parameters are known explicitly or they can be identified prior to any
fault developing. Problems arise with either assumption when dealing with an
information poor plant, firstly because of uncertainty regarding the model structure
and secondly, because the frequency of data collection is low relative to the
variation in feedstock and changes in mode of operation. It is difficult to ensure
that there will be sufficient information to perform identification in a reasonable
timescale and that no fault develops whilst the initial identification proceeds.

1.5 Modelling

There is no such thing as a unique model of a process (242), Any model-based
approach which is applicable to information poor plants must tackle uncertainty
surrounding model structure and parameters. Choosing a relevant model may not
be straightforward, because the decision as to whether or not a ‘valid model is
available, must be taken in the context of the application. Validity is application
specific. For instance, a model need not be perfectly accurate for the purposes of
constraint suspension; it need only be sufficiently accurate to ensure the
uniqueness of the mismatches.

This leads us to the fundamental philosophical question: can a model be proved
to be correct when used in the context above? The basis for an answer to this
question was first provided by the philosopher Sir Karl Popper (/) in 1934, who
was interested in the characteristics of a scientific theory. In Popper’s view, a
theory can never be proved by any of its successes, since a new test, perhaps as
yet not thought of, may come along that it will fail. Failure in any fair test, on



the other hand, indicates a fault in the theory. One possible interpretation of this
is that models may evolve or learn by their failures: a model may be deemed to
be valid until it fails to detect and locate a particular fault when the model can
be revised to take account of that particular failure: However this may be of
limited utility because the same fault might never occur twice: for instance, it
may have resulted in a design re-evaluation or a change in operational procedure.
Clearly the credibility of any fault detection and diagnosis system would also
depend on the frequency of model failure.

This thes1s descnbes an alternative view which A s

, - is more pertinent to fault d1agnos1s It requires that ﬂie
diagnostician understand concepts of systems modelling and in particular the Laws
of Conservation. That is, the diagnostician does not treat the model as a set of
equations but rather as a mathematical description. Lind (%) has proposed one
possible approach based on this theme. He uses a method of computer modelling
he calls Flow Modelling to predict the distribution of mass and energy around a
plant. This distribution can be compared with the measured distribution and faults
hypothesised to explain the pattern of discrepancies (29),

1.6 Overview of Thesis

This thesis is divided into three parts: theory, method and practice. Chapter 2
describes a theory of model-based fault diagnosis applicable to any plant. The
approach adopted is rather laborious but necessary to ensure general applicability.
Chapters 3 & 4 outline methods which implement certain aspects of the theory.
Chapters 5 & 6 then describe one particular application, that of NRTMA. Neither
theory, method nor practice are complete; Chapter 7 therefore lists some aspects
that are still outstanding. ‘



2. A THEORY OF MODEL-BASED FAULT DIAGNOSIS

2.1 Introduction

The main aim of any fault diagnosis system is to hypothesise possible faults or
classes of faults which explain the measurements observed. A model-based fault
diagnosis system works on the premise that it is possible to generate suitable
hypotheses by looking at the discrepancies between model predictions and these
measurements. '

. What techniques can be used to hypothesise these faults?

. What level of detail is required of the simulation?

. What is meant by explains?

. If more than one fault is hypothesised, can they be ordered in some
way?

Any theory of model-based fault diagnosis must tackle these basic issues.

Model-based fault diagnosis is discussed and problems of model validity raised.
These are circumvented by proposing that the measurements to be explained
should be restricted primarily, to those measurements that have nominal values.
That is those measurements that are usually capable of being alarmed. Such a
system is unlikely to identify a specific fault ‘unless the fault invokes a unique
combination of symptoms. It is therefore proposed to reduce the number of
possible candidates by requiring the simulation to explain other aspects of the
data collected. Further questions then arise as to how the ‘other aspects of the
data collected” should be identified and handled.

The theory is presented as a set of propositions in italics.
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22 A Strategy For Model-Based Fault Diagnosis

What do we mean by model-based fault diagnosis?

In its simplest form @) it can be considered as consisting of a parallel simulation
predicting plant measurements, a comparison between these predictions and the
actual measurements and a means of generating fault hypotheses on the basis of

any discrepancies obtained.

FEEDS

DISTURBANCES ——

MANIPULATED
VARIABLES

A slightly more sophisticated arrangement® is where the simulation outputs model
parameters instead.

FEEDS |
DISTURBANCES
MANIPULATED
VARIABLES

Ny

FAULT
DECISION

Figure 1.

measurements
PROCESS
MODEL
measurement
predictions

Model-Based Fault Diagnosis

5| PROCESS ,

measuremems\

7

N

PARAMETER
ESTIMATION *

U

FAULT
DECISION

U

Figure 2: Model-Parameter-Based Fault Diagnosis
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There are two ways of generating hypotheses: either the system can hypothesise a
fault explicitly by correlating the discrepancies with those predicted a priori on
the basis of a list of hypotheses or it can specify it in terms of that set of plant
conditions that would explain the discrepancies. The former can suffer from
problems of completeness, of validity, because models must be known a priori,
and of practicability, whereas the latter suffers from problems of validity. Both
have a role to play provided they are applied selectively.

If symptomatic search, ie the former, were to be pursued by itself, it would
require that the list of possible hypotheses be complete even if only a small
proportion of malfunctions are of direct interest. A malfunction can be thought to
occur for one of three reasons: as a result of noise, of a malfunction in the
measurement or alarm system, or of a plant malfunction or maloperation. For
instance, a measurement system might malfunction because of a hardware fault, a
violation of the physical model upon which the measurement is based (eg single
phase flow), a parameter error (eg the device may not include any temperature
compensation although it might be susceptible to changes in temperature) or an
error in the actual recording process. Only a plant malfunction or maloperation is
crucial to plant operation, a malfunction of a measurement system may be crucial,
indirectly, because it might mislead the operator or provide him with insufficient
information on which to bperate the plant. The others merely affect the credibility
of the alarm system. But all must be entered on the list. It is unlikely that the
list will ever be complete. This does not mean that techniques based on previous
observations, whether direct or through simulation, like fault dictionaries or
diagnostic trees cannot be applied with success but rather that there is often no
guarantee that they can be.

If topographic search were pursued by itself, then the diagnostician would be
relying on his ability to simulate all effects. His chosen model would have to be
robust in that it would have to be valid for any operating regime. This includes
those scenarios not foreseen during the development of the model. It is unlikely
that it will ever be possible to guarantec robustness in general even if modelling
and fault diagnosis techniques were to be optimised with this in mind.

The following propositions seem reasonable given that neither approach is perfect.
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Model-based fault dzagnoszs should pursue topographic search.

Given that there is a poor chance of success in producing a complete list of
hypotheses for information poor plants, the only option appears to be to examine
whether topographic search can be made sufficiently robust to diagnose most
faults. However there is one proviso.

Model-based fault diagnosis must not exclude non-model-based approaches.

It would be a fo]ly,' against this background of uncertainty, to omit any technique
capable of generating fault hypotheses whether they produce specific or classes of
faults. For instance, hypotheses could be generated by applying heuristics which
‘either pertain to past history or to any peculiarities that are known about current
operation or even to some profound thought that the operator might have.
Although the proposed system is notionally based on models, it must be able to
combine or fuse the lists of hypotheses obtained by applying any technique
available. That is, it must include non-model-based symptomatic search. |

One possible - approach, Figure 3, to implemenﬁng such a system is to hold
knowledge pertaining to each technique in separate knowledge-sources arranged in
a star network around a supervisor which gathers and combines the various
hypotheses. The system is data-driven in that the various measurements are
analysed by the various knowledge-sources.
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Another
Knowledge-
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Figure 3: Qutline Kncwledge-Based Approach

A number of guidelines seem appropriate to regulate the generation of hypotheses
from the various knowledge-sources. '

Hypotheses must be justified

A fault diagnosis system cannot say ‘this is the fault’ unless it has actually
observed it. For instance, an instrument may only be definitely at fault if it is
outputting a signal which is not attainable irrespective of the actual state of the
substance being measured. The best it can do is to present the operator with a
list of hypotheses together with supporting evidence. It is then up to the operator
to either choose between them or even decide on something quite lateral. What is
important though is that the list of hypotheses, themselves, must be properly
jﬁstiﬁed or validated. Clearly the credibility of a fault diagnosis system will
depend on the validity of its suggestions.
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Hypotheses must be valid

How can a diagnostic system be certain that it is producing valid or justifiable
hypotheses. One of the central themes of Popper’s work 4! is that a scientific
theory must be falsifiable. The equivalent, in fault diagnosis would be that all
hypotheses should be readily testable. Unfortunately, faults may be intermittent.
Others may be difficult to test in that they may be due to a peculiar operating
regime or, for instance, a build-up of sludge somewhere in the plant. Such a
criterion may not, therefore, be practicable.

A looser criterion is needed in cases where the criterion of testability is not
practicable. If the hypothesis cannot be tested directly, why not test the indicators
used to generate the hypothesis instead. This concept has a considerable impact if
models are used to generate hypotheses because the model structure, its
parameters, inputs and the assumptions it is based on, must all be testable. A
complicated model with a detailed structure, a large number of paramefers
identified on-line and a host of assumptions will be difficult to validate.

Testability tends to undermine credibility in that a fault diagnosis system will not
be too popular if it either continually asks the operator to obtain information in
addition to that already available or requires a large capital investment to increase
the scope of the data collected. The .criterion of testability encourages simplicity.

2.3 An Introduction to Modelling For Fault Diagnosis

It may be concluded from the above that the simplest, valid model possible
would be the ideal choice for a model-based fault diagnosis system. What is
meant by valid? Before discussing this, it may be worthwhile to reflect on some
of the issues that surround the development and application of models.
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2.3.1 Mathematical Models - Their Structure

The normal approach to developing a physical law based dynamic model of a
system is to perform one or more balances of either the system, in its entirety,
or of the system divided into a number of sub-systems. For instance, these
balances may be of mass or energy or momentum and the sub-systems may be
obtained by dividing the system into individual physical components.  These
balances may be used to estimate the change in internal state of the individual
sub-systems over any period in time, k,

state at end of period k = state at beginning of period k
+ net change over period k

This assumes that the state within a particular sub-system is either uniform or
varies in some pre-defined manner, for instance, linearly. The state at the end of
period k will therefore be known provided both an initial condition and the net
changes over the periods are known.

The balances that are applied to any specific situation are chosen to estimate
certain properties of a particular sub-system directly. For instance, these

properties may include volume, mass, density or enthalpy. These properties are

often denoted by the term ‘state variable’ when applied to these sub-systems.

There inay be more than one way in dividing a particular system into
sub-systems.  The decision is usually made on the basis of the assumption
surrounding the variaton of the state within the sub-system, the need to calculate
the appropriate net changes and in computational complexity. The larger the
number of sub-systems, the greater the. chance of internal uniformity. Conversely,
the larger the number of sub-systems, the larger the number of net changes that
need be determined and the greater the computational problem. The chance that
these net changes can be estimated directly from available in-process
measurements also reduces as the number of sub-systems increases: recourse must
then be made to estimation on the basis of differences in properties between
‘neighbouring’ sub-systems; this evaluation often involves parameters which need
identifying.  On-line identification may then be necessary if some of these
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parameters vary with the state of the plant. Although this may not cause
problems in particular applications, it does require that any identification be
carried out either prior to any fault developing or at a pace slow enough to
ensure that any fault is not identified as being a parameter variation. -
Alternatively, if discrepancies are based on parameter variations then these must
be identified quickly enough and with no ambiguity.

There is therefore a case to minimise both the number of sub-systems involved
and the number of parameters that need on-line identification. One approach to
this is to accept that the assumption of intemal uniformity may be violated
provided that the intenal variation can be shown to be within reasonable bounds.
That is, to use a lumped parameter approach in general. This has the effect that
a particular measurement of a sub-system may differ from that estimated by the
model. The measurements are said to have ‘systematic errors’. In addition, the
expressions used to determine the net changes are also likely to be affected.

232 Mathematical Models - Disturbances and Manipulated Variables

In reality there could also be some uncertainty surrounding the specification of
the inputs to the model. These may be viewed as largely being the manual
interventions that are used to drive the plant. For instance, set-point changes and
times at which pumps are switched on or off. Times at which operational modes
are changed may only be recorded approximately and may relate to the start,
middle or end of the change-over sequence; certain variables, that are not critical
for plant operation, may not be recorded reliably; it is not necessarily certain that
what was recorded using one convention during one period, would be recorded in
the same way during the next and so on. It may therefore be difficult to
produce a quantitative model of these inaccuracies objectively: for instance, certain
variables could be extremely accurate one period and in considerable error the

next.
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~

24 Defining the Stucture of a Model-Based Fault Diagnosis System

The following statements now seem evident,

Model-based fault diagnosis is really automatic model refinement

The decision as to whether or not a model is valid must be taken in the context
of the applicatidn; ihe context here being its ability to explain the measurements.
Model-based fault diagnosis would like to assume that all the discrepancies
between the actual measurements and its own model predictions are as a result of
either some fault or noise. That is, it would like to assume that the model is
valid. Unfortunately this is often not possible because of the uncertainty described
above. Either the process of model-based diagnosis must be viewed as being the
process of diagnosing both model inaccuracies and faults, or robust methods must
be evolved or thresholds must be introduced resulting in reduced performance as
described in Chapter 1. If the faults are included in the model then diagnosis can
be viewed as performing automatic model refinement to ensure model validity.

Automatic model refinement is not a panacea for fault diagnosis

The term automatic model refinement is largely a misnomer because it will
always require some degree of interaction with the user: someone must tell the
system what is, and is not, possible. The plant operator is unlikely to accept this
change in emphasis if it requires him to investigaté problems of model
inaccuracy. Model-based reasoning cannot, in generai, be viewed as being a
panacea of fault diagnosis.

This leads to the following proposition.



- 18 -

Preferably, fault diagnosis should not be centred on model-based reasoning.

We have already argued that model-based fault diagnosis should be augmented by
other knowledge. We now argue that model-based fault diagnosis should, itself,
augment something else. If it is known that a fault exists and it can be classified
in some way, then model-based reasoning can focus the model refinement on
these aspects and effectively play-down problems of model validity. A procedure
for doing this is described in Chapter 3.

The knowledge-based approach would then be revised as shown below.

Fault
Detection

Model-based

and
Fault Partial
Isolation Isolation

SUPERVISOR

Another
Knowledge-
Source?

Figure 4: A More Realistic Knowledge-Based Approach

Clearly this does not rule out the possibility of a model-based approach remaining
central, it merely stresses its undesirability.
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2.5 Non-Model-Based Fault Detection and Partial Isolation

A plant is rarely operated precisely to a state determined by a model. A model
may be used to derive, for instance, a flowsheet, so that plant control variables
like flowrates and pressures can be input as controller setpoints but other
variables will be allowed to take up there own values. However, certain variables,
often called characteristic variables, will be key to satisfactory production and will
be monitored closely in that a nominal value and tolerances will be specified and
alarms will be set to alert the operator of a problem. These variables may have
to be estimated on the basis of other measurements. For instance energy
consumption must be obtained by integrating instantaneous power over the period
or the position of the heavy metal front in the first stage of a solvent extraction
system may have to be estimated by either looking at the rafinate or some other

measurement.

It is commonplace for the operator to display charts of these variables to enable
him to detect the occurrence of a fault. These charts may simply be plots of the
individual instances in time or of cumulative instances in time or of some other
variable?). Depending on the applicalibn they may be updated almost continuously,
every minute or hour or even every day. The frequency largely depends on the
methods of data collection available and the rates at which faults are expected to
develop. Although quality control & techniques deal primarily with open loop
processes they may also be applicable to closed loop situations where, for
instance, the quantities of interest could be the states of the final control
elements.

It is therefore proposed that fault detection and partial isolation should be based
on the deviations in these variables. Although they are likely to deviate during
normal operation, techniques exist to accommodate these effects. One possible
methodology is described in the next Chapter.
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Unfortunately restricting the number of measurements in this way reduces the
possibility of identifying a malfunction uniquely. Hence the need for model-based
reasoning. There is now a difference though because it need only be applied once
the deviations have first been used to say that there is a malfunction and
secondly been used to initiate the diagnostic procéss.

Fault diagnosis must now be considered in terms of two separate contexts: of
deviations and model-based reasoning.

A diagnosis will first be deemed to be valid if, with the fault hypothesised
included, all deviations are returned to within tolerances. Having " satisfied this
context, the model must then predict all other measurements to. within
measurement tolerances. -

2.6 Model-Based Fault Diagnosis

2,6.1 Modelling for Fault Diagnosis

Model invalidity can be tackled in two ways: either a model must be chosen
carefully to ensure that it can never be invalidated or we must reason with
multiple models. Although in Popper’s view a scientific theory can never be said
to be irrefutable, it is unlikely that this event will occur in the models of interest
here. It is not the universal laws that will fail but the way they are applied. We
therefore argue for a single model, examine the modelling issues necessary to
achieve this and propose a single-model-based diagnostic system.

One may persist and still ask the question as to what happens if the model is
found to be invalid. Is the system discedited? Although unlikely to occur, the
_ assessment carried out on the basis of the deviations will still stand, only the
conclusions based on the other symptoms will be put into doubt.
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2.6.2 Handling Uncertainty With a Single Model

We tackle model uncertainty as far as it concemns fault diagnosis by examining
how to ensure the successful application of the Laws of Conservation. We start
by considering the simplest structure, that of a single open system. If the system
is viewed as a whole, then Laws of Conservation can be applied both simply
and accurately provided that transfers into and out of the system are monitored
accurately. If the transfer errors can be assumed to be error free then we can
infer global conservation.

One of the main concems when applying the Laws at a more local level is to
ensure that global conservation is maintained. This is often achieved
computationally by using unique variables to define the flow from one sub-system
to an adjoining one. If global conservation is maintained, then the effect of any
simulation error, whether structural or due to parameter uncertainty, will be
observed as a re-distribution of the values taken up by the various state variables
defined when forming the balances. For instance, mass may be re-distributed.

If these sub-systems are chosen along physical boundaries, the flows between the
sub-systems will align with the well-defined physical connections of the system.
The effect of any simulation error whatsoever must then manifest itself at the
physical ports of the sub-system. It follows that any simulation error in a
particular sub-system will cause a re-distribution to neighbouring physical
components.

Similar re-distributions will also be obtained if a process fault results in a change
in the flow pattern. For instance, a faulty valve may cause a re-distribution of .
mass. If this type of fault is denoted by the term path fauit then non-path faults
will be those faults that only affect a single sub-system. A typical example is
that of a measurement error. It follows that non-path faults will affect global
conservation whereas path faults will not.
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The question therefore arises as to whether a particular re-distribution can be
attributed, uniquely, to a particular class of simulation errors or faults. It is
envisaged that the only faults that would produce a similar re-distribution would
be those that had a direct effect on the paths between sub-systems. Other faults
would either have a more local effect, for instance measurement errors, or
percolate through some other set of paths, for instance common mode failures.

It should therefore be possible to locate and to discriminate between simulation
errors and path faults on the one hand and non-path faults on the other, by
assessing these re-distributions. However some form of further investigation will
be required to discriminate between simulation errors and path faults.

This leads to the suggestion that the state variables should be estimated, either
directly or indirectly, from in-process measurements and compared with model
predictions. Clearly, it may not be possible to estimate every state variable: the
more states that can be estimated, the better the discrimination.

One obvious pitfall with this approach is that of initial conditions: the Laws of
Conservation may be applied successfully but the end result may still be in error.
Incorrect initial conditions may be viewed as being equivalent to non-path faults
that only occur on the time period that the simulation is started. This must be
accommodated in the fault diagnosis system.

The model structure may be suspect because of problems with internal uniformity.
It is Aproposed to ignore this issue, explicitly. Inaccuracies with the model
~structure will then be mistaken for non-path faults because the state measurements
may now appear to be biased and path faults because the inter-sub-system flows
may now be calculated incorrectly.

These concepts can be loosely described as - a principle, a Principle of
Re-Distribution.
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2.6.3 Model Formulation

Let xx denote the vector of variables used to describe the actual state of the
system at the end of a particular period in time k -when measurements become
available and let x¢ denote the equivalent vector in the model. Let Y denote the
vector of parameters and variables necessary to describe the re-distribution process,
then

lz.k = ik-x + E(’:‘k-l' Yk, K)

where g is the vector of calculated net changes.

Let ﬁk denote the vector of measurements obtained to generate the symptoms. Let
these be related to the state measurements by

Yk = h(Xk)
where ideally, h( ) would be the identity matrix.

Then the symptoms are described by the vector ¥ — ¥ where §,= h(X)

A Z it has already been suggested, Section 2.3, that there could be some uncertainty
surrounding the simulation vector V. The expressions used to determine ‘the net
changes, that is g, may also be inaccurate; for instance, they may be affected by
the assumption of individual unifor'mity:' the model structure may therefore be
suspect.

Although this uncertainty exists, it is still necessary to estimate Y for the
simulation to proceed. Let the set W contain all scalar variables that are elements
of Wx. Then certain elements of ¥ will be known precisely whilst we might be
less confident about others. Suppose that we attempt to identify that subset © we
are'zc‘ertain about and form a vector containing m;m’ie.

Q e R

where {0};ie®e¥ Vii = 1,..n
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Clearly it is not possible to guarantee that this vector contains all elements that
are actually in error. Let the estimates of  input to the simulation for period k
be denoted by & and let the errors in these estimates ie (8 — 8, ) be denoted
by Ab. |

We define a new function f to relate the measured sub-system outputs at the end
of one period to the sub-system outputs at the end of the subsequent period
obtained by simulation:

~

Yk = Yk * g'k(gk-l' O )

where the analytic form of this function need not be known.

Note that the initial conditions Xy., are assumed to be derived from -
measurements and not from the simulation unless it is necessary to do so because -
of a lack of suitable measurements. This reflects the belief that the measurements
are more likely to be ‘correct’ than the simulation.

The measured sub-system outputs &k, may be biased by w, so that

E{} = w+ %

and corrupted by measurement  noise, Vg, assumed to be of zero-mean and
uncorrelated in time, thus,

Iy

k = Ykt ¥+ ¥k

cov {_S:’_j , i'_k} Rg akj e RO x Rm

where 8y; is the Kronecker delta function,



The bias wy will not only be affected by the actual physical measurement system
but also by the assumptions on which the measurement is based, for instance
perfect mixing. Let set U contain all these possible causes. Set U must also
contain all possible non-path faults because these will have a similar affect on
the discrepancy &kik Let the actual effect that these non-path faults have on the
discrepancies on a particular period k be denoted by vector ny.

As a consequence of this, the initial conditions X, are likely to be in error.
We accept the inevitability of this and aim to minimise its effect on the fault
diagnosis process by ensuring that faults are identified and incorporated into the
simulation sequentially in time. That is, we only start the simulation from a
period that we are ‘confident’ is error free, This may mean that measurements
pertaining to more than one period may have to be compared with the simulation
in one go. Then |

gg I

C(r . &
S ACHS S

[ Slk+n
Yk+n-1

where ¥k = Yk+n-2

| ¥k

must be used instead of the formulation above.

Clearly this confidence could be unfounded, so it is important to include this
possibility in the reasoning process.
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264 Some Observations

We imagine ourselves as the diagnostician and suggest that he might take the
following viewpoint,

The ’symptoms’ should be categorized, qualitatively.

The choice of categorization is open t0 discussion. - For instance, it could be
based on statistical or fuzzy measures (6. A statistical representation is preferred
here, primarily because of its obvious compatibility with the measurement
statistics. The i symptom could be deemed to be in error at level n, if n is the
largest integer: |

{yk - ¥k}i| < noii

where the parameter oj; is based on the some measure of the uncertainty
* surrounding the it symptom.

A problem arises here because it is difficult to specify, in absolute terms, the
uncertainty in f. One possibility is to make the pragmatic decision to ignore,
- completely, errors associated with modelling uncertainty and let

oii = {Rg-, + Rglij

Bounds Can Be Placed On Simulation Errors.

It is likely that the diagnostician would have some subjective appreciation as to
possible inaccuracies in Qk providled he assumes no fault exists. Although
-imprecise, he would have some idea of the order of magnitude and probably ‘err
on the large side’ to accommodate any unforeseen factors: . -

E(A8k} = E(8 - &} = 0
cov{ABk, ABk‘) = Py
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and it is assumed that these inaccuracies are not correlated with the discrepancy -
measurement?ZfZlﬂlough not strictly necessary, it is likely that P, would be
assumed to be diagonal (Py can always be diagonalized by re-defining & to

accommodate these cross-correlations).

The diagnostician would probably agree that the ~sﬁvmptonw could be explained by
errors that were insignificant, if a AQ could be identified to reduce the symptoms
to a specified level:

|(a0k)i| <m s(Beli; v
where integer m, the level of significance, would probably be chosen to be
either 2 or 3 by direct analogy with hypothesis testing. :

Conversely, if an explanation could only be obtained by allowing certain elements
to disobey this condition, he would argue that these elements were significantly in
error. Let us use a star to indicate these elements, for example, 8 and let ©*
denote the set of all elements that are significantly in error.

Catastrophic failures should be handled differently to non-catastrophic failures.

Before going any further it is worth pointing out that a slightly different
approach would be taken if a fault, or inaccurate input data to the simulation,
results in a catastrophic failure. For instance, a tank emiptying whilst it is still
feeding the process downstream. These failures are easier to detect because firstly
a failure has definitely occurEd and secpndly it is usually clear whether it has
occcu{ed in either the plant or simulation or both. For instance, an empty tank is
unlikely to go unnoticed. This leads to the following line of reasoning:

(catastrophic plant) & (catastrophic simulation) -
~(maloperation)

not (catastrophic plant) & (catastrophic simulation) =
((simulation fault) (measured-plant—input incorrect))

(catastrophic plant) & not (catastrophic simulation) -
('(maldperéﬁ‘ah)“;(simulation fault) (measured—plant—input incorrect))

~ where -» means implies.
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However it may still be necessary to pursue the same line of diagnosis to
determine the root cause in the second and third cases.

2.6.5 The Candidate Space

A candidate is a particular hypothesis for how the plant differs from the model.
That is, it is a set of elements of @UU whose values could, hypotheticaliy, be
manipulated to explain the discrepancies. Figure S shows the candidate space for
a simple example containing just two path ‘and two non-path errors.” Each set of
explanations, indicated by [.J, is possible giving 35 candidates in all. More
realistic situations would involve much larger candidate spaces. If considerable
uncertainty surrounds the diagnosis, then candidates at the top of the lattice are
likely to be true; the greater the certainty, the more likely the candidates towards
the bottom of the lattice become. |

The number of explanations contained in each of the candidates towards the top
of the lattice are likely to be far greater than the number of symptoms available
to perform a diagnosis. It will therefore be difficult to discriminate between the
various candidates unless it is possible to eliminate some of the explanations on
grounds of inter-dependence or through non-symptom related arguments.

Fortunately, the diagnostic problem changes from being one that is underdefined
to one that is overdefined as we move down the lattice. We therefore seek an
argument to enable diagnosis to proceed by considering candidates towards the
bottom of the lattice where techniques like regression can be applied. This is
contrary to the 'scientzﬁc view that we should tackle uncertainty as it really is.
Here we propose to use our common sense to avoid the issue.
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2.6.6 Common Sense Reasoning

As to what is meant by common sense the reader is referred elsewhere9, Two
aspects of importance here are that common sense ‘is concemed with the concrete
and particular’ and that ‘its function is to master each situation as it arises.’

The following posture is argued as being common sense.

1. Insight is not required into the state the plant is actually in but only into
why the discrepancies have occurred.

2. Although a large number of errors may exist in the model structure,
parameters and measurements, the diagnostician is only interested in those
errors that would result in the observed symptoms. That is, he would not
be interested in the true value of yi nor of Gy but only of those elements
of U, @ and, if necessary ©, that could provide an explanation.

3. If the term image is used to denote any plant state that is likely to exist,
then the diagnostician will only be interested in those images that explain

the symptoms.

4, Other insights gleaned from, for instance, history, fault detection and partial
isolation should aid the search. '

A heuristic which we will call The Principle of a Minimum Number of
Explanations is proposed to encompass some of these ideas.

26.7 The Principle of a Minimum Number of Explanations

The symptoms can be explained by a minimum number of errors with all other
errors pertaining to the symptoms being assumed to be zero.
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That is, it is assumed that all elements of U, ©* and © can be ignored except
those incriminated.

There is a fundamental difference between this and The Principle of Parsiinony
which Reiter (29 interprets as meaning that

"a diagnosis is a conjecture that some minimal set of components are faulty."

One refers to errors whereas the other refers to faults. The Principle of
Parsimony merely proposes that diagnosis move upwards from the bottom of the
lattice searching for faults, which either have, or have not, occurred, until a
suitable candidate is identified. The Principle of a Minimum Number of Errors
has no scientific basis; it also argues for a bottom-up search but now assumes a
minimum uncertainty. It does, however, conform to the notion of testability
described in Section 2.2.

2.6.8 Candidate Evaluation

There are likely to be a number of different techniques capable of evaluating the
credibility of individual candidates. As such they are only techniques and
including one particular method in the theory would tend to detract from its
intended universal applicability. This is therefore left to a separate chapter,
Chapter 4.

2.6.9 The Basic Strategy

It is important that the candidate space be searched prudently because of the
large number of candidates that are likely. '
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Information external to the model-based diagnosis can be used to guide the
search. If no faults are expected then the search should start with candidates
containing insignificant path errors only, if path faults are expected then
candidates with starred elements are to be preferred whereas if non-path faults are
expected, candidates with non-path elements are of prime interest. Thus a
combination of breadth-first and depth-first search is proposed. All candidates on
the bottom row, which contain one particular type of error, are examined first,
then the next row and so on. As will be seen in Chapter 4, computational
efficiency may also be a factor in how the lattice is searched. A decision must
be made as to whether to continue up the lattice, indefinitely, considering only
those candidates that contain one particular type of error or whether to broaden
the search: if the Principle of Parsimony were to be applied then at some point
other candidates towards the bottom of the lattice would be preferred. Such a
decision is application specific and one method of deciding when to broaden the
search is described in the Application Chapter, Chapter 6.

Another aspect common sense would deem to be worthy of consideration is that
of focusing on one particular part of the plant. If discrepancies are confined to
one part then there may be an argument to eliminate candidates not pertaining to |
it. However caution should be exerted because of the problem of cancelling
errors. For instance, a path error between two inter-connecting sub-systems A&B
when combined with a non-path error, of similar magnitude, in B could be
mistaken for a single non-path error in A.

Such candidates can therefore only be eliminated from the lower rows of the
lattice where it is known that other errors cannot be present.

Efficient diagnostic procedures based on the Principle of Parsimony have been
previously proposed in the literature (27-29, These procedures aim at arriving at

this minimal set by constructing conflict sets of components to explain the
symptoms. For instance, in the above, a conflict set could be arrived at, which

indicates that one or more of < 6, u, u,> is in emor. They do not appear to

be applicable, at least directly, here because they assume that every occurrence of

a particular fault in the candidate space will be the same: true or false. Here the estimaded
values of the elements in [u, u,] may be quite different to those in [0, u, u, 1.
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2.6.10 The Solution Candidate Set

If the Principle of a Minimum Number of Errors were to be applied, strictly,
then all candidates, on the lowest row possiblé, that explain the symptoms are
admissible. However, other factors like one type of error being preferred to
another come into play. As will be seen in Chapter 4, the method of determining
suitable values for the elements in the candidate set may also affect this
admissible set. '



2.7 The Role of the Supervisor

The question then arises as to when is one particular hypothesis more appropriate
than any of its rivals? One answer could be that it is appropriate if it is correct.
Unfortunately the only guarantee that a particular hypothesised fault is correct is
physically to examine the component involved. This is relatively straightforward if
the fault is catastrophic, for instance if a transducer is failing to transmit, but not
so easy if, for instance, the component has to be taken out of service for
re-calibration or if the malfunction is intermittent; for instance it may be difficult
to reproduce the precise conditions again. When should a plant operator accept a
particular hypothesis and act accordingly? There could be political as well as
technical ramifications. For instance, production may have to be reduced if a
particular component is taken out of service. He may be prepared to examine an
alternative, marginally less likely, hypothesis if this has less effect on plant
operation. However his decision must weigh-up the possibility that failure to act
could increase the risk of a plant shut-down. There could also be resource
implications regarding the scheduling of maintenance staff. Certain hypotheses may
not need investigating at all. For instance, a single physical inventory
measurement error will have no effect on the overall account in NRTMA; an
entry as to a possible weakness in the measurement system may be all that is
required. If this hypothesis is one of a number of altematives, should it be
chosen in preference to any of the others? There may be a case for delaying
- making a decision by one or more periods to see how a fault develops or to
change the operation of a particular plant unit to investigate its affect.

These considerations are beyondb the scope of this thesis in that they do not
pertain to fault diagnosis, per se, but to the adjudication process that may follow.
Unfortunately it is difficult to separate the two tasks succinctly because the form
the diagnosis takes will have a bearing on how it is used. It is therefore
desirable to have some idea of the different types of assessment. I do not intend
to digress too much into this because the information generated by the diagnostic
system proposed here is of only one possible form, that of ordered lists. This
derives from an assumption that if we accept that our knowledge of possible
faults, of modelling errors and of the plant itself, is never complete, we must
also accept that it is impossible to specify, in absolute terms, the probability of
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any individual error occurring. However each techni.que used to generate
hypotheses should be able to order the list it outputs in some way. Such an
ordering should be of benefit to the operator even if it cannot be viewed as
being the absolute truth. Again one particular method of ordering is considered in
Chapter 4.

However this is a moot point. The proposed theory would therefore not seem
complete without, at least, providing a brief literature survey.

2.7.1 Adjudication

It must be evident from the above that the adjudicator must be utilitarian in
nature. According to the traditional theory of utility ©2), the approach should be
to assign a utility to each hypothesis, to estimate the likelihood that each
hypothesis will obtain, to calculate the utility of each act and to choose an act
of maximum utility. The primary weakness with this is in the type and amount
of information required. Even if it were possible to produce a fault dictionary
with a utility assigned to each fault this can never be complete. There would
probably be a lack of temporal factors; for instance the dictionary is unlikely to
include the possibility of the maintenance engineer failing to carry out his duties
properly.

We therefore leave the utilitarian aspect to the operator and concentrate on how
to infer that one hypothesis is more likely than any other.

Inference is the process of argument where, on the basis of evidence, one or
more hypotheses are proposed which are more probable than any rival. If it is
unsuccessful then there is deemed to be insufficient evidence: either more
evidence must be gathered or all hypotheses must be carried forward. The
methods used in the inference process depend on the category of inference
required ©3). An inference is a deductive one if all it does is draw out of the
premises propositions already (albeit tacitly) contained in the premises taken
together. So in deductive logic the truth of the premises makes certain the truth
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of the conclusion. In the inference from evidence to hypothesis, it is possible that
the truth of the premises, ie the evidence, may only make certain to some degree
the truth of the conclusion, ie the hypothesis. Hence it is natural to regard this
type of inference as being similar but distinct from deduction and it is given the
name of induction. Deduction is then regarded as being the limiting case of
induction. 4

Deduction would be possible in fault diagnosis if perfect measurements could be
recorded throughout a plant and compared with the perfect model. Altematively
an approximation to this may be obtained using signal processing and parameter
identification. Induction becomes necessary when there is a lack of ‘measurements
and models and those that are available are uncertain. We therefore focus on
induction.

There are two types of induction ©4): ampliative and summative. Workers (eg 71)
in expert systems generally use the term induction solely to refer to ‘summative’
induction. Summative induction establishes a generalization on the basis of what
are known to be all its instances, as when a railway inspector, passing down the
whole train, establishes that every passenger on the train has a ticket. Induction is
‘ampliative’ when it extrapolates beyond existing data. It is unlikely that all
possible faults will be known so the process of inferring the existence of a
particular fault on the basis of a set of indirect measurements is likely to be
ampliative. Workers in expert systems use the term uncertainty, loosely, to refer
to ampliative induction. For instance, ‘The term "uncertainty" ... appears to be

used whenever reasoning by strict logical implication is not considered possible’
(72), '

A number of reviews have been published into suitable techniques for ampliative
induction (e 727374), Other comparisons can also be found in publications which
describe particular expert systems (75), The techniques fall into two categories,
numerical and non-numerical. These, in tum, divide into sub-categories where
techniques based on probability (72, fuzzy sets and fuzzy measures (6 are
examples of the former and methods of endorsements () and relevant variables
(35) are examples of the latter.
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The most obvious numerical technique is that of probability theory. The
arguments concerning the appropriate role of probabilistic statements, of how they
should be chosen and manipulated, have raged for centuries. Various articles (72.76)
have been written to promote probability theory, others #3534 to describe the
attributes of six alternative theories of probability whilst others “2) to propose
techniques for their implementation.

A number of non-numerical techniques have been proposed that set various levels
of qualitative hurdle. The ‘method of relevant variables’ @5 fits naturally into
systems that sequentially apply a standard set of increasingly stringent tests. The
‘method of endorsements’ 3) uses a ledger metaphor to represent evidence pro
and con where the certainty of a hypothesis can be represented as its strongest
endorsement.

2.8 The System Must Leam

) .. The operators learn by experience. A

knowledge-base is therefore required which can -
. can expand in time.

It is envisaged that, at least during the infancy of a plant, the system will alarm
frequently. It is therefore proposed that the system should be invoked on every
period so as to minimise the number of un-explained faults present at any one
time. The data set would then be updated everytime a fault was diagnosed to the
satisfaction of the operator. It is not intended that the original data set be
overwritten unless the diagnosis is properly verified. Either a second data set
should be created or the modification included as an update to the original. In
either case the system would now restart and assume that the revised data set is
now correct. '
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3. MAKING USE OF THE PRIMARY CHARACTERISTIC VARIABLES

3.1 Introduction

Control charts are used in process plants to provide a visual indication of a
problem developing. Trends in the plots can not only provide information as to
whether or not there is a fault but also as to its cause. The approach is
qualitative rather than quantitative; the cognitive process is symptomatic because
the operator attempts to correlate these trends with fault related pattems.
Historically, plant control charts have had a disparate role in quality control (63),
This Chapter examines whether both roles may be incorporated into a
model-based fault diagnosis system.

~ Considerable expertise exists in the application of control charts to processes with
either known statistics or a reasonable flow of data (2363, that is, to information
rich processes. Less is available for processes which are information poor. This
Chapter is devoted to providing a brief overview and proposing specific methods
which have been found to be appropriate for information poor plants. »

3.2  Traditional Plant Control

The objective of quality control is to check that the actual value of a quantity
agrees with its expected value. This limits the number of control variables to
those where a true expected value can be generated.

The traditional role of quality control (6% has been in fault detection and not in
fault diagnosis. The approach is to apply statistical techniques to the time series
obtained by measuring the process discrepancies at discrete intervals of time.
Procedures (%) have been recommended if the relevant probability densities are
not available. A number of test procedures are available to optimise the power to
detect a fault against its credibilty (ie its false alarm rate) (26566), Quality
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control charts (6467) provide graphical representations of test procedures applied to
the time series. The simplest plot is that of the Shewart chart (68 suitable for
uncorrelated time series of constant variance. Another common plot is that of the
cum ulative sum. Both plots are against time.

Considerable effort has been expended in the development of techniques to
improve both the power to detect and credibility when the time .series is
correlated in time. They usually assume that a statistical model is available and
split naturally into 2 distinct categories, namely estimators and detectors.
Estimators are solely concemned with producing new estimates of discrepancy
values that have errors with reduced variances. On the other hand the objective
of detectors is to manipulate the time series so that a more effective test
procedure can be generated.

It should be appreciated that estimators only produce test statistics and it is
necessary to apply a test procedure in order to obtain any results. This is chosen
on the basis of its credibility and power to detect a particular error scenario. The
reduced error variances achieved by the estimator will improve the performance of
the test and so both categories have the same ultimate goal of increased detection
probability. '

As detectors are not concemed with producing a meaningful physical estimate it
is possible that they will be more effective than their counterpart. However they
have no role in diagnosis, as opposed to detection.

The main disadvantage of most estimators and detectors is that they require
knowledge of the measurement errors involved. This may not be too problematic
if the characteristic variables are measured directly but may be difficult if they
are derived from a set of measurements. If it is not possible to produce a
meaningful measurement model, then it is argued that, on the basis of this
uncertainty, plant control should be viewed as being more qualitative than
quantitative. This is more in line with that of supervisory control. |



3.3 Viewing Control Charts Qualitatively

Plant control charts are used in supervisory control in two ways: to provide
assurance that the control variables are behaving in a reasonable manner and to
correlate the pattemns observed in the charts with each other and with the various
plant actions. If a fault develops the charts can be used as an aid in
symptomatic search. The general principle is to develop rules to explain plant
activity by relating the pattems on either a single or number of charts to possible
fault scenarios. Although there is unlikely to be sufficient information to identify
the fault uniquely, the charts provide a means of reducing the search space.

Considerable effort has been expended 26) into developing statistical techniques
so that patterns may be attributed to possible fault scenarios in some optimal
manner. In general, they adopt the same approach as for the detectors and
estimators above and hence suffer from the same limitations.

This statistical approach is not the way the operator would infer from the charts.
His rules would largely be heuristics and he would normally attempt to ignore
any noise by visually filtering it out. That is, his view of noise would be
restricted to any ‘high frequency’ fluctuations superimposed on the plots. The only
statistical representation would then be deemed to be equivalent to that obtained
when the same measurement is taken a number of times and would be defined
as being its ‘random error’.

It is this qualitative approach that is considered here.

One of the issues is how often should the process of pattern recognition be
repeated. Clearly the longer the delay, the more the information and the better
the discrimination. Conversely, the longer the delay, the less timely the detection
and diagnosis. Diagnosis may prove difficult if the state of the plant has changed,
significantly, from when a particular incident was initiated. For instance, the
chances of finding an intermittent fault are reduced. In addition operators are a
great deal more aware of the cument situation than that which took place some

time ago.
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The same approach can be applied to quality control charts of any physically
meaningful variable, for instance a control variable or its cumulative sum.
Although the odd result is general, for instance, a bias may be estimated by
visual inspection of the cumulative sum, most results are application specific and
are best examined by example.

34 Automatic Extraction of Information From Contml Charts

The primary role of the control charts is to detect the occurrence of a fault and
having done so, to output two lists: a list of discrepancies and a list of
assertions which point to possible classes of faults that could account for the
patterns observed. It would be unusual for the chars to identify a fault uniquely;
their role is to focus attention. Two issues complicate the recognition process,
that of noise and of multiple faults. Both can largely be overcome by adding any
fault, that is remotely likely, to the list. Care must then be taken to ensure that
the most likely are considered first.

The pattern recognition exercise is largely one of detection and not of estimation
because it seeks to determine the existence of various patterns. Hence it involves
the applicationv of tests. These need not be founded on rigorous statistical
arguments.

34.1 The CUSUM Plot

It is common practice to use plots of the cumulative sum of particular
discrepancies to examine drift, The approach has two main weaknesses. Firstly,
the sum can build up with time so that special provision must be made when
using it to detect events that are local in time. Secondly, although informative
visually, this information is difficult to extract automatically primarily because
changes from period to period are of interest and not absolute changes which are
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relative to some datum. These problems are usually overcome by applying the

CUSUM test (69, In its graphical form, the technique involves >centring the
V-mask '

“boundary’

- 'paréotk

lx,k — wSer
SP@;L C
W&rs

on each point of a plot of the normalized cumulative sum,

n
= [
1=

where %; is the normalised value of the discrepancy on period i, and
alamming if X gfotsses the boundary shown.

This is equivalent to the tests
alam if Sy — Spr»r h + 1k
alam if Sy — Spr < —h -1k
for any r = 1,

The importance of the CUSUM test to quality control in general is perhaps
reflected in the sheer number of papers (see, for instance 70) that present methods for
choosing the two parameters h, k. This in tum is an indication that the choice
may be a complicated one. Fortunately approximate values shogld be sufficient

~ here because the approach does not requlre the test to achieve -
spemﬁc leve £ ‘power and credlblhty
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_ The V-mask has great virtue, deriving from its easy visual interpretation.
However, a numerical version is required for computer applications. It can be
shown (6) that it is equivalent to the following algorithm.

Alarm if 15 » h or 15 < h

where
"En = max {'cn'f, + Xn — k, 0}
Tp = min {tq., + Xp + k, 0}

At first glance the test does not appear to be applicable for information poor
plants because of the need to know the standard deviation to normalise the
individual discrepancies. However if the posture of Section 2.4 is adopted, the
control variables will be restricted to those variables which are either measured
directly - or obtained by performing some algebraic manipulation of a set of
measurements. In either case it should be possible to obtain a reasonable estimate
of random error. '

342 Visual Estimation of Drift

The main role of the CUSUM plot is in detection because the process of
normalizing the control variable visually distorts the plot. An un-normalized plot
is more suitable for looking for trends such as biases. Consider the un-normalized

L and suppose that ) . .
plot shown in Figure 6 below 4 . the process is deemed to be in control if

the points lie, approximately, along a horizontal line.



" control |
/variable

S
periodk

Figure 6: Un-normalized Cumulative Plot

Two main issues arise when trying to describe the drift. Did the problem causing
the drift start at the second, third or fourth point? What is the underlying rate at
which the drift occurred? ‘

By direct analogy with the Cusum test, one possible approach could be to
perform all linear regressions with a minimum of three points and then to choose
the one with the greatest gradient. This would give a start point, final point,
gradient, m, and variance, o* ©7): ’

n
o: = 1 Z (yj — mxj — c)?
i=1 ‘

n-2
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A decision could then be made to extend this trend to previous points
by applying the test:

(x;, = Xy)| < (m-60)

where x, is the new start point hypothesised.
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4. CANDIDATE APPRAISAL

4,1 Introduction

The notion of a candidate space was introduced in Chapter 2. However the
chapter avoided proposing a method for calculating the values a particular
candidate would need to take to explain the symptoms observed. This was
because it was devoted to developing a universal theory. This situation is rectified
here.

‘One possible approach is described which, again, has leanings towards the
common sense rather than the scientific. The approach makes various assumptions
which influence the way the candidate space is searched.

4.2 Intuitive Overview

We imagine ourselves once more as the diagnostician faced with the problem of
determining the values a candidate set of errors should take to explain symptoms
he views as being at various levels of significance. These errors may be
dispersed throughout the plant, measurement system and model. He would be
aware that this candidate would be one of many, a large proportion of which
would be neither credible nor sensible. One approach he might adopt could be to
try to determine reasonable values for one or more of the candidate elements
which would explain the most significant symptom. Having done this, he would
then move onto the next most significant symptom and so on. He would note
that credible deviations in certain elements had little affect on any of the
symptoms and would discard any candidate containing them.

The approach described here has been developed to reflect this point of view but
with certain modifications to accommodate some of its shortcomings. Firstly, all
elements of the candidate are assessed simultaneously to avoid the conflict that
could arise if one or more elements needed to explain the first symptom are also
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needed to explain the second. Secondly, symptoms at a relatively low level of
significance (for instance, 1) are included because of the possibility of two errors
partially cancelling each other out. Thirdly, for computational efficiency, a single
model is derived to relate deviations in all possible errors contained in the
candidate space to the symptoms observed. Reduced versions of this model are
then formed to determine possible values for a particular candidate.

4.3 Developing a Model for Value Estimation

Recall from Section 2.6.3 that

~

e = T+ LGk & K

and consider the case of path errors first.

If a symptom, {3-3}j, were to be attributed to a distortion in a single variable or
parameter, j, contained in Qk,' then its size could be estimated deterministically by
viewing estimates of all the other elements as being perfect so that

A

ki = {Fk-s + £k B + {A8k}j.ej.K)};

~where g is the jth natural basis vector.

That is, the required distortion could be obtained by determining that change in
{Aﬁk}j needed to enable the simulation to. predict the i measurement precisely.
In practical terms, this could be achieved by applying any one of a number of
standard numerical algorithms to the simulation. This calculation would
simultaneously estimate the effect that the required distortion would have on the
other symptoms. Let the resultant perturbation in all the symptoms be denoted by
Ay, where

Ay, i - ks + £k Bk + {A8k}j.e5.k) - ¥
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A Jacobian-like matrix may now be obtained by forming a list, p;, of all
elements of ® that are thought to be suspect and assembling the vectors obtained
by solving for the most significant symptom, taking one element at a time, to
form

Avk Ak !

. = —_ —_— .
(a0t lo, 1 a0} le, !
!

where subscripts 2; refer to the i element of py, and

~

o+ e 8 0 - K

tf‘)

T, 88 =

It may not be possible to obtain a solution for every element; certain elements
may simply not affect the symptom or may have only a limited affect, too small
to eliminate it. However these elements may affect the other symptoms. The
solution process is therefore re-focused onto the next most significant symptom
and any relevant vectors obtained and so on until either all the columns of J,
have been filled or all the symptoms, that are deemed to be significant, are
exhausted.

The implication of the latter is that-there could be certain elements which can
only explain a small proportion of the discrepancy between the measurements and
the simulation. In this case, an altemnative approach must be taken to incorporate
their effects in the model. These variations can be represented by considering
infinitesimally small perturbations around the operating point. That is by adopting
the usual procedure for determining a Jacobian. Having obtained such a Jacobian,
J,, the vector Afy can be re-arranged into two parts, AGy, and Ab,: the first
part containing all the succéssful elements whilst the second part containing those
where no solution could be obtained. A composite Jacobian-like matrix J can now
be defined so that it operates on the entire composite vector. That is

ée_kx

J&k=[J1:Jz] AB
—ka
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If the covariance of Afy, Py, is assumed to be at least block diagonal, the above
has covariance,

]
JPkJ’=[JI:Jz] ------ -

I, Py 37 4+ J, Py, 35
On the basis that the previous period is error free and that inaccuracies in the
model structure can be viewed as being path errors, and hence affecting @y, and
non-path errors, and hence affecting my, function f also represents the true change
in sub-system output:

Yk = Yk-1 ¥t i,fﬁk-uﬁk' k) + ng
Then

Y = Zk-l"'f,g.%k-l’@k'*'éﬂk'k)"'n_k
and

For convenience, combine biases ny and wy into a single vector u. This vector
therefore represents biases in the measurement system, non-path faults and the
effect of inaccuracies in the model structure. Considerable uncertainty surrounds
this vector. If this were not the case, there would be little justification for it to
be represented explicitly because the same information could be accommodated in
the simulation. It is therefore proposed to handle this uncertainty in a similar way
‘to the above by viewing the vector as being a random process probably
correlated in time where

E{Aug} = E{ug} =0
and '
cov{Aug Aug) = Pyg
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A composite vector [A_leégk] can then be formed with covariance

Py 1 0

_——t - -

0 1 Py

and the model formulation can be revised to
. Juo] [ ae
Yk =Yk = Yk = Wkey =Yk F | ==
011 Aug

Two aspects of the model still require clarification: the alignment of two or more
vectors making it impossible to discriminate between them and the quantification
of uncertainty, that is the specification of covariance matrices Py and Pyyx. The

- former is left until Section 4.6 where it is related to the actual estimation process
whilst the latter - is considered here.

The diagnostician can only specify a P if he assumes that there are not any
errors that are significant and he may be reluctant to specify a Py at all. It is
therefore proposed to resort to the pragmatic approach of assuming that a
symptom can be explained by a single error. It therefore seems reasonable to
hypothesise the standard deviation, ie ¢{Pyk}ij, as being equal to the error in the
‘appropriate symptom. Tuming to the specification of Py. This has already been
specified in Section 2.6.4 for errors that are insignificant but not otherwise, that
is for starred elements. A similar approach as for Pyy is therefore proposed.

Finally, the model most appropriate for estimating the values for a particular.
candidate is formed by simply eliminating all columns and rows that do not
relate to either the _elements of the candidate or the symptoms that would be
affected by varying those elements.
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4.4 Estimation

The mean and variance of the marginal distribution of A@ for a particular

instance (9 - Jx) may now be determined by applying
transform

I - Px J°(Rg., + Ry +IPgJ")

0 I -

to the composite vector, ¢ :

A6y
[} =
(yk - yx)
where
E{A0y}
‘E{c} = 2%
( JE(A8K) - w.,)
and
. Py | Ppl”
covic, ¢'} =

JPg Rg., + Rg + JPJ”

the linear

This block diagonalises cov{c, ¢’} and produces a marginal distribution with mean

E{ABK — P (Rg., + R + JPID ™ (3 - ¥i))

= E{A6k} — PgJ (Rg., + Rg + JPEJ*)™' (wp., — E{JABk})

If ¢ is assumed to be jointly normally distributed then it can be shown that
ABy — Pid” Ry, + R + JP) ! (¥ — Yi) and (g — ¥y will be independent.
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It follows that the marginal distribution will be the same as the conditional
distribution for a given value of 9 —  so that

E{AOk|(yx — Yk)} = E{A6k} + PxJ (Rg_,+ Ry + JPEJ*)™"
(J = ¥ = ¥k-y + E{IARD)

with covariance, Q¢ = Py — PyJ"(Rg., + Rg + JPJ") ' JPy

It can be shown that this is the minimum variance unbiased estimate.

Hence if the prior estimate of @y is taken to be &

ie E(A8) = O

and if non-path errors pertaining to the previous period have already been deemed
to have been resolved (Section 2.6.3), then the posteriori estimate is given by

E{Ok |k - 710} = 8k + P "(Rg-,+ Rg + JPEI )™ [Jx — ¥

The above may be partitioned to produce separate estimates for Ay, and Af,.
The estimation process now becomes,

1]

'estimate E{AB8k} + Py, I (Rg., + Rg + JPEJ")™!

-

(Jk = Yk = ¥k-, + E{JA8y})

with covariance,

Qk

P, = Pg, I (Rg-, + Rg + JPJ")~1 J Py,

since only those elements of AQy, are of interest.
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4.5 Interpretation

The estimator cwl be applied to a number of different sets of candidate errors.
The results obtained must be assessed, firstly to determine whether any particular
estimate is credible and secondly to order them in some way.

The estimation process is deemed to be credible if

1. each individual estimate satisfies its a priori variance. That is,

[ Bt0e| Gk - 50} ], < nos

where n is some subjective factor and oj relates to Py or Pyy ;

2. the estimates reduce the symptoms to some speciﬁed level
of significance when they are included in the simulation ie

Bk = Sk = £ (B O] Gk - 3101 .4]

replaces (yx — yi) in the test of Section 2.6.4.

4.5.1 Ordering the Various Estimates

Ordering must be viewed as being rather subjective because of the way the
covariances Py and Pyx have been specified. The outline order is largely
dependent on whether or not a particular combination has necessitated either the
revision of Py to accommodate a significant error and/or the inclusion of Pyg.
The diagnostician would probably prefer not to consider such aspects first and
would therefore place any other combinations at the top of the list. This would
be followed by combinations containing a single revision or element of Pyy and
SO on,
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A method is proposed here which orders each part of the list by ordering the
~log likelihood function 839) evaluated for each candidate.

If we assume that Afy, is jointly normally distributed with zero mean and
covariance Py, then its likelihood function L(ABy, Py, ) is given by |

L8k, . Pk,) = |2nPy, [ exp{- +(A8k, Py;"48k,)}

Similarly the log likelihood function 2(A6, B, ) is given by
R(A8, . Py,) =~ 3log{|2mPy, | - £(86k, Py;' A6, )}

The term 12xPy, | may be omitted from the above because it is common to all
candidates and will therefore not affect the result. Hence the ordering process
reduces to evaluating (A8, Py;' A,) for each candidate and ordering with
the minimum at the top of the list.

4.6 Orthogonality and Reducing the Search Space

It is likely that variations in more than one element will be seen to affect the
discrepancies in a similar way. This is because one sub-system can only affect
other sub-systems through the interconnections between them. If two of the
columns of J are aligned in the sense that

(column i) = o (column j)

then the estimation process will have difficulty in discriminating between the i
and jh elements, It therefore seems sensible to reduce the number of elements in
© by eliminating those aligned columns, and hence elements, that are less likely
to affect the other symptoms. If an element with a vector which is aligned, is
identified as being suSpect then the other elements must also be suspect. Other
factors must then be taken into account in deciding between them.
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In practice this alignment can be tested for by applying >the inner product
property that two vectors are aligned if

< column i, column j > = ” column i " " column j "

Hence a test can be applied of the form

< column i, column j > ‘
1= < €
" column i " ” column j ”

where e is some specified tolerance.

Having produced a set of m aligned vectors, the most significant vector j, is that
associated with element i:

max [{(j}; /(Pelii] » VI 1 (i} %0

If AQy is ordered such that the aligned vectors relate to its first elements
e dcO:

1]

A0 = [ Ag’ .o ]

then the aligned columns of J, can be eliminated by post multiplying J, by the
operator M:

where ¢, ¢ R™ and is the first natural basis vector.

The problem with this approach is that the estimator does not take the eliminated
elements into account. A variation may be worthy of consideration. If the
principle of a minimum number of errors is allowed to be contradicted by
combining similar elements using the operator L:
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r—1
1}
]
]
)
—— e
]
1
]
e

where o € R®

N . 1 .
and {Q‘]i = < column i, column i >

v < column 1, column 1 >

then this will revise and shorten the vector by forming a composite element -

’,

o’A@y and giving it a revised covariance matrix LPL".

The composite element will then be estimated as

E {A6k | (¥ - M}, =0 Ag
{Agk}i
= X |°‘i|Sign(“i)"[Pk}ii [ — ]
LT

If each element of @ is then assumed to contribute an equal amount in a sense
that

) {A0klii )
sign(ej) ———— = k Vi

klii
then

MPRTTT sign (o)
L o] YTt

E {88 | (v - 1},

This assumption is obviously unlikely. The diagnostician would need to refer to
additional information before he could identify a preference for a particular
distribution.
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4.7 Implications for Searching the Candidate Space

A considerable proportion of the computational effort needed to search the
candidate space will be devoted to performing simulations because the regression
exercise involves the manipulation of a relatively Snioil number of matrices of
low dimension. With large candidate spaces anticipated, it is important that the
number of simulations be kept to a minimum. If the lattice defining the candidate
space is viewed as being a number of sub-lattices, with each sub-lattice branching
from a different node at the top of the lattice, then the same regression model
(Section 4.3) ccm be used to estimate all candidates in any particular sub-lattice.
" It therefore seems sensible to form each regression model only once, especially
since the number of simulations needed to form matrix J is typically 2 or 3
times the number of its columns.

Although this need not affect the method of search, searching the lattice, one
sub-lattice at a time, would reduce computer memory requirements. Care should
then be taken to ensure that individual candidates are not evaluated more than
once.

Before describing how the method of candidate appraisal and search can be
implemented, we digress a little to introduce the only application included in this
thesis: that of near-real time materials accountancy.
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5. APPLICATION TO NEAR REAL TIME MATERIALS ACCOUNTANCY:
SYSTEM DEFINITION '
5.1 Introduction

A model-based fault diagnosis system has been developed with the sole purpose

of experimenting with the ideas described previously. A conscious decision was

taken at the outset to focus on only one application, that of near real time
materials accountancy (NRTMA) and in particular, on its role in nuclear fuel
reprocéssing. This was largely chosen because of the author’s previous experience

(4647), The application has the following important features:

the plants are inherently non-linear;

the boundaries around the plants are well-defined with the transfers across
them being closely monitored;

materials accountancy is to do with ensuring that the measured or estimated
flow of material through a plant balances; a fault is therefore deemed to be
anything that upsets this balance; '

the plant operator and materials éccountant have very different objectives
with the former largely dictating the type, quality and frequency, of the data

collected;

the material of greatest interest is plutonium; failure to achieve a reasonable
plutonium balance has political implications;

a significant proportion of the data needed to form an account is derived

- from chemical analyses performed off-line in laboratories. It may be some

time before these results become available. Hence the term near real time.
Obviously this also has a considerable bearing on the frequency at which the
account can be taken.
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This Chapter outlines the system developed; an initial assessment of its
performance is given in the next Chapter. There are two main problems with
developing even a pilot system in a university environment: evolution and testing.
As has already been -argued in Section 2.8, the system should evolve by
interacting with the plant; experience or knowledge being accumulated
incrementally. The system described here is therefore skeletal, its rules and
simulated faults are merely representative.

5.2 Introduction to NRTMA
5.2.1 NRTMA Described

Nuclear materials safeguards®) are the steps taken by the nuclear community to
ensure the security of nuclear materials. The managers of plants handling nuclear
material, national bodies overseeing the activities of such plants, and international
agencies who are charged with implementing various international treaties all have
an interest in safeguarding the use of nuclear materials. One of the main ways
that this is achieved is through the application of material accountancy.

Nuclear materials accountancy is based on the following structure. The plant is
divided into units called materials balance areas, which are used as a basis for
balancing all transfers of nuclear material. The plant is usually operated
continuously for 2 months to a year’s duration, at the end of which the plant is
completely cleaned out and a physical inventory is taken. This operational cycle
is known as a campaign. A balance is now obtained and the material
unaccounted for, denoted by MUF, derived on the basis of

MUE = Total _ Change in
~ Net Transfer Physical Inventory

This quantity should be zero if all the estimates are error free.

This procedure suffers from a lack of timeliness. The question therefore arises as
to whether these balances could be formed more frequently by measuring the
physical inventory in situ. This approach is known as near real time materials
_accountancy (NRTMA).



There are essentially two distinct application areas, that of fuel fabrication and of
fuel reprocessing. Primarily, the former involves powders and discrete solid
components and the latter both solids and liquids. Research into NRTMA has
largely been attracted to reprocessing because of inherent difficulties with
measuring the inaccessible inventories and because of the benefits of early
detection of ‘faults’.

In the past near real time materials accountancy as applied to fuel reprocessing
plants has taken two forms, that where material balances are made at relatively
large intervals of time (eg every day or every batchY4%5!) and that where
measurements are made almost continuously®?. The former has been fully
implemented on operational plants whereas the latter, being both capital and
resource intensive, has been tried experimentally.

522 Statistical Approach

A number of statistical techniques have been developed to detect whether there is
a significant MUF over one or more balance periodsfor instance 4%5354) and a
number of reviews5-57) have been published. The approach is usually along the
following lines.

Consider taking a balance at the end of period k, then

MUFx = Ug = (Ix = Ix.,)

where Iy is the total physical inventory at the end of balance period k, and Uk
is the net input during period k.

If it is assumed that the estimates of Uy, Iy and Ix_, are corrupted by random
errors which are independent of each other then MUF, can be viewed as being a
random variable with variance given by

ok = var {MUFg) = Vg., + Wg + Vi

“where Vi and Wy are the measurement error variances of Iy and U.
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It can easily be seen that

Ok, = var {MUFg,,} = Vi + w12(+1 + V12(+1

a

The occurrence of Vi’ in both these expressions causes the random variables
MUFi and MUFy.., to be correlated. As

MUKg + MUFyy, = Igx., + Ug + Uky, = Igy,
the result )
var {MUFg + MUFgy, } = Vk., + Wi + Wiy, + Vig, |
follows immediately. Using the formula

var {xg + Xy, } = var {xg} + 2 cov {Xg, Xg4,} + var {xg4,}

the covariance between MUFg and MUFy,, can be calculated,

cov {MUFg, MUFg.,} = - Vg

Hence the covariance matrix has non-zero terms in the three leading diagonals
and is therefore termed tri-diagonal.

The correlation between xi and Xyy,, ¢or{xx.Xc4, )} is related to covariance by
the definition

cov {Xk, Xk4;1}

o/ var {Xg} . var {Xg4,t

cor{xg,xg4,} =

Hence, denoting correlation by py, it is clear that

- V2

Ok Ok+

For the simplest case of all, (when V;j = V, W; = W for all i) the p; will be
constant with

px = cor {MUFy, MUFy.,, }
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Under these conditions it is easy to see that p: -0.5 g p £ 0 depending on W3
and V2, For an inventory dominated plant (ie V2 >> W2) p - -0.5, whereas for
a net transfer dominated plant (ie W2 >> V2) p 5 0. '

The MUF series and covariance matrix now form the input to a detector or
estimator with the aim of determining whether or not a diversion has occurred.
The IAEA (48 envisages two patterns of diversion, abrupt and protracted. The
former is diversion of the significant quantity, 8 kg over a few days, while for
the latter, the period would cover a large part of a campaign, perhaps extending
over more than one campaign.

It has long been recognized ©# that this naive approach is flawed. In theory the
measurement model should discriminate between systematic errors, so-called
non-measurement errors and so-called random errors. A description of these errors
in the context of nuclear materials accounting is given by Speed er al (59

‘Systematic errors can arise through a wide range of reasons such as
plugged probes, solid buildup in tanks, miscalibration of measurement devices
and so on, whilst non-measurement errors may include errors due to
operators misreading, mistranscribing or miscalculating; and random errors are
presumably the unavoidable errors that are left over after all other possible
explanations have been exhausted.’ '

They point out that the usual approach to accommodating these non-random errors
is simply to add an extra component of error, argue that this is far from
satisfactory and conclude by specifying a number of extremely stringent
pre-conditions needed to ensure the applicability of a statistical approach. In
addition, diversions and estimation errors are not the only sources of deviation of
MUF values from zero. A host of instrument and human errors, such as
miscalibration of measuring devices, can produce effects which may persist over
several material balance periods and may closely resemble the effects of
~ diversions. Accountancy procedures may also have difficulty determining physical
inventories of plant components involved in non-routine operations.
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523 Diagnosis in NRTMA

Diagnosis has largely been neglected in NRTMA research because NRTMA has
largely been viewed as a safeguards tool to detect and not as a tool to explain
the alarms observed. This is presumably because the number of alarms are
thought to be so few as not to warrant much a priori research and because there
is little operational data available to highlight a need. ‘

This neglect is not justified. The statistical approach is currently not practicable
because of a lack of realistic measurement models and possibly reliable data
collection procedures. The net effect is either that large errors must be
hypothesised thus reducing the power to detect certain diversion scenarios or a
large number of false alarms must be diagnosed. This is apparent from the
limited operational experience that has been published. Jones et al “% have
written about their experience in performing NRTMA on a real plant. They
describe some of the diagnostic procedures used to justify the data collected even
when relatively large errors are hypothesised and argue that NRTMA is a
contributor to instrumentation quality control.

This thesis examines a diagnostic system where only aspects of the measurement
model that are truly known are incorporated in the test procedure. This results in
smaller variances and a resultant higher false alarm rate. The system then
improves credibility by eliminating most of these false alarms without recourse to
operator intervention. This in tum will enable a case history of non-random errors
to be built up thus improving the capabilities of the statistical tests.



| 5.3 Overview of Proposed Knowledge-Based System

‘} : 53.1 Its Structure

| The proposed system has the following outline:

" : ’ SIMULATION

Analysis Numerical
Routines Routines

' ‘ Knowledge
Inference Sources
Engine and

Data

Q Lisp Programs

Fortran Programs

Figure 7: Proposed Knowledge-Based System

It consists of a hybrid lisp/Fortran environment with the lisp environment acting
as host calling Fortran routines when necessary. A hybrid implementation is
preferred because it combines the numerical affinity of Fortran with the list and

symbolic processing powers of lisp. The Fortran environment is composed of
simulation, analysis and numerical routines.
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The numerical routines are a library of routines to perform matrix algebra, to
solve a set of linear simultaneous equations and to generate random numbers for
test purposes. The role of the analysis and simulation routines have largely been
described elsewhere. The lisp environment consists of knowledge-sources, an
inference engine and various global data structures and methods. There are four
knowledge-sources arranged as shown in the Figure below.

CONTROL
CHARTS

Model-based.
Reasoning

Figure 8: NRTMA Knowledge-Sources
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The system is invoked everytime a set of plant measurements becomes available,
that is at the end of every period. This data is input to the lisp environment and
the control chart knowledge-source is activated.

The primary role of the control charts is to detect the occurrence of a fault and
having done so, to output two lists: a list of discrepancies and a list of
assertions which point to possible classes of faults that could account for the
patterns observed. It would be unusual for the charts to identify a fault uniquely;
their role is to focus attention. Two issues complicate the recognition process,
that of noise and of multiple faults. Both can largely be overcome by adding any
fault, that is remotely likely, to the list. Care must then be taken to ensure that
the most likely are considered first.

The supervisor is driven by data flowing from the control charts where the
overall objective is to detect and diagnose discrepancies in the control charts.
Alternatively, if no discrepancies exist, the system can still be used either to
identify malfunctions that do not give rise to discrepancies or to improve the
simulation by learning. The Supervisor has two roles, that of an evidence gatherer
and hypothesis generator and that of an adjudicator. We use the term gatherer 10
refer to the former. '

The basic mechanism behind the Gatherer is as follows. On receipt of a list of
fault scenarios, the Gatherer takes each fault scenario in tum and invokes one or
more of three options: a simulation, a reference to history or its own assessment.
In most situations it will invoke all three. Each option retufns either a statement
of its deliberations or nothing at all. '

Finally the adjudicator is invoked. As explained in Section 2.7, little research has
been carried out into the process of adjudication. The current state assumes that
the operator will make his own assessment based on the hypotheses formed.
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532 Knowledge Representation

Individual knowledge-sources are represented in lisp or productions or some
combination of the two. Lisp tends to be used only where a specific task is
procedural. The productions are of the form

if antecedent then consequent
or
antecedent - consequent

with the following syntax:
i) variables are always preceded by a ’?’;
ii) antecedants may be made up of one or more components linked by
either '&’ or ’or’; each component can either take the form of a

lisp-like predicate, for instance (> ?a ?b), or a more general predicate,
for instance (colour ?a 7b), where the list cannot be evaluated.

iii) consequences may contain a number of special symbols '!’ and °'$’,
the symbol '!’ precedes any method and the symbol '$’ is used to
expand lists.

For instance, if the method (get_list .x) retumns a list (@ b ¢) then
(cohseq $ ! (get_list x))
will produce three consequenses (conseq a), (conseq b) and (conseq c). ,
There are two special cases: no consequences are produced if the list does not.
contain any elements and the use of multiple ’'$’ symbols assumes that

consequences are to be formed by extracting elements from corresponding
positions of each list. Thus,

(conseq $(a b ¢) $(r s t))

returns (conseq a r), (conseq b s) and (conseq c t).
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It is intended that the interfaces between the various knowledge sources should be
custom built, that one knowledge source would usually invoke another via a
method and that exit would usually result from either the search being exhausted
or from invokation of the consequence (return ?information).

Global data is stored in one of three ways: the simple list, frame and lisp
structure. Global data is kept to a minimum for ease of program development.
Data that is amenable to hierarchical structuring and is relatively static is
generally stored in frames. Most other data is stored in structures.

An example of a simple list is that of the list used to identify the individual
periods the system currently has data for. These are stored in the list periods and
take the form

(most_recent_period next_most_recent_period and so on)

where individual periods may be named batchl,batch2,...
or  01-JAN-90, 02-JAN-90, ....
and so on.
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An example of a frame is that used to store static data pertaining to the state of
the plant on a given period. These frames are automatically created as data is
received from the ’plant’ and have the form

NAME: name of period
GENERATION: this is initially set to ’'master’

SLOT: plant component
MEASUREMENT: type of measurement
VALUE: floating point number
STATE: recorded?
MEASUREMENT: type of measurement
| VALUE: floating point number
STATE: recorded?
MEASUREMENT: type of measurement
VALUE: floating point number
STATE: recorded?
OPERATION : state
ON: (time_start time_stop)
» others:
and so on

SLOT: plant component
MEASUREMENT: type of measurement
- VALUE: floating point number
STATE: recorded?
MEASUREMENT: type of measurement
VALUE: floating point number
STATE: recorded?
and so on

SLOT: plant component
STATE: recorded?
MEASUREMENT: type of measurement
VALUE: floating point number
STATE: recorded?
and so on

The generation is used to ensure that the original data is not overwritien by any
revisions that may be proposed.
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An example of a structure when used to store static data is that of the plant
component structure: '

component - volume : identifier (eg pftvol)
- analysis : identifier (eg pftanal)
- initial-volume : identifier
- measurements : list (eg (volume analysis))

The same structure can also be used to store calculated variables pertaining to the
operation of a particular component on a particular period. For instance,

component - inventory : ((period value) (period ..

- random ¢ ((period value) (period ..
533 The Inference Engine

It has already been argued that the inference process is one of building-up an
explanation to describe the symptoms observed. As distinct from trying out
various fault scenarios until one correlates with the symptoms. The former is
amenable to forward chaining whereas the latter is amenable to backward
chaining. A forward chainer has been developed  specifically for this application. It
is capable of inferring from productions with syntax described previously with the
‘limitation that variable names can only be one of ?u, ?v ,7x, ?y or ?z. Although
expandable this list is pre-defined. The unification algorithm used is that described
in Chamiak and McDermott 0, Its performance has been enhanced by Lam () -
who incorporated various pointers and data structures.
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54 The Control Chart Knowledge-Source

54.1 Specification of Control Charts and Associated Patterns

It is envisaged that, at least during the infancy of the plant, the only sensible
plots will be those of MUF versus time and its cumulative sum because of
uncertainty surrounding the measurement models. As described in Section 3.4 the
latter can take two forms,

k
CUMUF = [ MUF

1=

with variance
Tk
var(CUMUFy) = V3 + [ Wi o+ Vi
i=
or
k
MUFg
CUSUM = | o

i=1

Although NRTMA has tended to concentrate on the accountancy of plutonium,
Jones “9 has argued that uranium should also be accounted because this provides
additional information for diagnosis. This would then result in 2 sets of plots
which could be compared. '

A number of heuristics can be derived to explain the patterns that arise when
particular categories of error occur. ' These are based, primarily, on the serial
correlation caused by the presence of the same physical inventory in consecutive
balance periods. Thus the effect of a physical inventory error should be observed
on more than one period. '
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Five patterns are apparent.

Pattern 1: The effect of an emor in a transfer either into or out of the
balance area on a single period, m. If this is the only error and
has magnitude e, then

0 9 0 [ k < m
MUFy = e ; CUMUFg, =4 e ; k=m
0 ’ e ’ k > I'l]
Pattern 2: The effect of a physical inventory measurement error on a

single period, m, will be observed on both that period and the
next. If this is the only error and has magnitude e, then

0 0; k <mor k > m+l
MUFx, = e ; CUMUFg = { e ; k=m
- 0; k=ml

That is a reflection will be observed in the MUF chart and a
single spike in the CUMUF chart.



Pattem 3:

Pattern 4:
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A constant,’ additive bias in a transfer measurement will be
observed as a linear shift in the MUF plot and a non-zero
gradient (ie an incline) in the CUMUF plot. If this is the only
error, it has magnitude e and it only occurs between periods m
to n inclusive then,

0; 10 ; k<m

MUFx = { ¢ ; CUMUFg = (k-m+1) e ; m<k<n
0; (n-m+l) e ; n<k

A constant, additive bias in a physical inventory measurement
will be observed in the MUF plot as a single spike on the
period the bias develops with a reflected spike on the period the
bias stops. This will have the effect of creating a plateau on
the CUMUF plot. If this is the only error, it has magnitude e
and it only occurs during periods m to n inclusive then,

- k=n

MUF, = 0; k#m or k # n+l
e ; k = n+l
- k=n

CUMUFy = -e 3 m<k<n

0 ; k<m or k>n
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Pattern 5: A single loss on period m from a physical inventory would
produce Pattern 1 provided that the resultant reduction in output
does not occur on the same period. If it does occur on the
same period then,

0 ; k<n

2e ; k=mn
MUF, = 1

-e k = m+l

0 ; k > m+l

0 ; k <m
CUMUF = 2e k =m

e k>mnm

Clearly the patterns will be less well-defined than the above suggests because of
the effect of random noise. In addition patterns 3 and 4 may be less clearly
defined because neither the net transfer nor the physical inventory are measured
directly: a constant bias in a particular measurement will have a more subtle
effect on the plots. However the underlying patterns will often be the same with
the additional complications often being observed as random fluctuations. Figure 9
shows a typical set of MUF plots corrupted by the various error scenarios. The
errors have been applied on Period 10 and, where appropriate, revoked on Period
15.
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Figure 9: Simulated MUF Plots



54.2 Timeliness

With reference to Figure 9, a question arises as to whether all data points should
be examined at the end of each period. If the process were to be repeated every
period then, initially at least, all the above pattens would be identified as
pertaining to Pattern 1 on period m. This has been examined by Russell et af4?)
~in the context of optimal detection. They argue on both practical and statistical
grounds that, although the process should be repeated every period, the detector
should only be applied to all periods up to, but not including, the current period.
That is current data is used only to improve the power to detect something that
has arisen on previous periods. If this approach were to be applied to the
recognition process then Patterns 1 and 4 would be viewed as one possibility
whilst all other patterns would be viewed as separate entities.

The question naturally arises as to whether an even longer delay would be of
benefit. Clearly the longer the delay, the more the information and the better the
discrimination. Conversely, the longer the delay, the less timely the detection and
diagnosis. There is therefore an argument for a recognition process which is
applied to all periods (ie with no delay) but with less power to identify patterns
on current periods than on previous ones.

54.3 Pattern Identification
The approach is to apply the four tests,

test A: alarm if MUFxy > hyp ¢ var (MUFg)

test B: alarm if MUFx < hyp ¢ var (MUFg)
test C: alarm if 1 > h
test D: alarm if 15 <h

where T and t are as defined in Section 3.4,
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to the relevant time series and to correlate the resﬁlting (binary) sequencies with
the (binary) sequencies that would arise if the same tests were applied to the
patterns above.

The method favoured in NRTMA #3559 for choosing the parameters h, k and hy,
is to initially use simulation and then to revise with operational experience. The
selection process is largely one of balancing credibility, that is, the possibility of
an alarm never being caused by random fluctuations against power to detect.
Russell 5 has calculated that for the amount of serial correlation expected in
NRTMA (p=-0.4), the CUSUM test with h = 3.059 and k = 0.063 will ensure
96% credibility over 10 periods (95% over 20) with a power to detect a 0.5¢
constant bias within 6 periods of 52.8% (99.3% within 15). This was on the
basis that the CUSUM test was the sole test applied. However it is well-known
(3970) that the results are sensitive to the serial correlation present.

A detailed investigation is needed to ensure that reasonable parameters are chosen
for a particular plant. For computational reasons, the investigation is best carried
out in two stages: an assessment of performance on the basis of series of random
numbers followed by an assessment using time series derived from a more
realistic simulation. This is because considerable insight can be gleaned by
examining the performance of tests on time series with statistics which
approximate to reality. Some of the results obtained by considering time series
which approximate to those expected in NRTMA are given in the Appendix.
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As a result of this insight, the following test combinations appear to provide a
method of ordering the various patterns:
1: Ak or By

2:  (Ag.1 & Dy) or (Bx.j & Cx) or (Ag.1 & By) or
(Ak & Bg.1) or (Cx & Dg_1) or (Cx.1 & Dyg)

3: (B¢ & By) & (Ck or Dy)
4:  (Ag & Bg.1) or (Ag.1 & By)

since they can be used as follows

combination 1: (pattern 2)g, (pattern 1)k, (pattern S)y
combination 2: (pattern 2)1(_l ,» (pattern S)g._,

combination 3: (pattern 3)k_,, (pattern 2)g, (pattern 1)y
combination 4: (pattern 2)g.,, (pattern 5)g._,

combinations 1 & 2: (pattern 2)x.,, (pattern 5)g._,

Note that pattern 4 is omitted here. It can be identified, indirectly, by searching
for multiple occurrences of pattern 1.
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Table 1 shows the results obtained .when the four tests were applied to 100,000
seriecs of random numbers; 10,000 for each of the 10 different error scenarios.
The random numbers were generated on the basis of an ideal, constant throughput
plant with the ratio of the physical inventory to throughput being chosen to
produce a serial correlation, p, of -04 in the MUF time series. The magnitudes
of the faults were specified as multiples of the plant throughput and not of
OMUF> as is the convention in the assessment of detectors. The equivalent
proportions of OpfyF can be obtained by multiplying the proportion of plant
throughput by the factor #0.5+p). Thus the results in the first column represent a
transfer error of 6% of the throughput on a particular period and so on. The
tests assumed that hy,=3.0, h=3.059 and k=0.063. '

It is recommended that combinations 2, 3 and 4 should be sought prior to
combination 1 because they require more alarms. That is they are compound tests.
As described in Section 3.4.2, additional information can be extracted if Pattern 3
is suspected.

Once the pattern recognition process is completed, relevant classes of faults may
be added to the list for output. The patterns may not define uniquely a particular
class of faults. For instance, Pattern 3 not only describes a net transfer bias but
also a temporary hold-up which is slowly building up; for instance as a result of
a tank not being monitored. More than one possible class may therefore be
output per pattern.

From now on any reference to these patterns may be replaced by more physically
meaningful terms to make what follows more readable. Thus,

Pattern 1 - single_transfer_error or inv_loss
Pattern 2 - single_inv_error

Pattern 3 - transfer_bias or | inc/dec_holdup
Pattern 4 - temp_holdup

Pattern 5§ - inv_loss + sim_out
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544 Its Form

The knowledge-source has two parts: a lisp section where the various test
statistics (MUF, CUMUF and CUSUM) are both ~formed and tested, and a
production section where the list of alarms are interpreted. Both alarms and
interpretations are then entered into the assertion base.
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5.5 The Supetvisor

The Supervisor is driven by the data added to goals. The overall objective is to
detect and diagnose discrepancies in the control charts. Alternatively, if no
discrepancies exist, the system can still be used either to identify malfunctions
that do not give rise to discrepancies or to improve the simﬁlation by learning.

On receipt of goals, the Gatherer takes each interpretation in tum and invokes
one or more of three options: model-based reasoning, a reference to history or its
own assessment. In most situations it will }invoke all three. Each option returns
either a statement of its deliberations or nothing at all.

Assessments made by the Gatherer can be divided into two parts: those heuristics
peculiar to plant operation and those which attempt to interpret the hypotheses
generated.

5.5.1 Typical Plant Operation Heuristics

A number of rules may be derived ‘from the fact that a tank is simply "a storage
device. Having determined both the maximum and minimum analyses of the
liquor entering the tank over the past n period, rules of the form

[ (minimum_input_analysis ?tank ?period ?min)
& (maximum_input_analysis ?tank ?period ?max)
& {(analysis_measured < ?min) or (analysis_measured > 7max)} ]

- (suspect_analysis_measurement Ptank Iperiod)

may be applied. In practice, these assertions may also be used in model-based
reasoning so the heuristics are applied here.
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Another heuristic “9) for diagnosing transfer errors, is to combine the material
balance area with a connecting one so that an external transfer point becomes
internal. Data pertaining to this point will not be included :n the resulting
bélance. A comparison of the various balances may then reveal whether this data
is suspect.

552 Hypothesis Interpretation

Most of the hypotheses generated thus far have been subjective because they have
been related to one’s experience, models with all their uncertainty or plant
operation heuristics. It is therefore important to ensure that they will actually
explain the alarms ie the goals.

| Of central importance here are a set of methods or procedures which calculate
that change in any particular variable that would eliminate one or more
discrepancies that are specified. These methods are denoted here by the single
name pertdrbation_required. The objective is then achieved if a set of faults are
hypothesised that result in perturbations which explain all the evidence generated
~ ~provided-that the set is valid.

For instance, a single transfer error hypothesis can be corroborated by referring to
the following productions,

(single_transfer_error ?period) -

(transfer_occured ?period $ ! {get_transfers ?period})

(transfer_occured ?period ?transfer) -

(perts_req s_t_e ! {perturbation_required ?period ?transfer})

553 Its Form

The Supervisor (Figure 8) is based solely on productions.



5.6 The History Knowledge-Source'

This knowledge source contains data describing any peculiarities pertaining to the
plant, either currently or recently and rules based on basic physical principles
which relate this type of data to possibile fault scenarios. It is largely application
specific and is likely to expand with time.

General assertions are typically of the form,

(measurement_maintained period measurement)
(suspect feedstock period)

whilst rules are of the form,

if [ and (net_transfer_bias_from period)
(measurement_maintained period measurement)
(measurement e net_transfer_measurements) ]
- (poor_maintenance period measurement)

A typical application specific rule relates to problems in the determination of the
physical inventory of the solvent-extraction plant. Fortunately it is wusual
operational policy to run at one flowsheet, ic¢ one load, for extensive periods so
that physical inventory changes are infrequent. Pattern 4 will then be observed
when a flowsheet change is invoked and the physical inventory is estimated
incorrectly. Rules can therefore be applied to correlate this pattern with known
plant activity, thus

if (Pattern 4 m n) - ! (look_at_solvent_ext_history m n+1)

if [and (flowsheet_change ?sol_ex_a m)
‘ (flowsheet_change ?sol_ex_b n+1)
(nb_ﬂowsheet_change m+1 n) ]
- (sol_ex? 7sol_ex_a ?sol_ex_ b m n)

where look_at_solvent_ext_history is a method which generates the assertions
needed by the subsequent rule.
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5.7 Model-based Reasoning

The purpose of model-based reasoning is to explain the fault scenario that is
hypothesised. This explanation can be given in terms of any level of the physical
hierarchy that is feasible. The knowledge-source is written in two parts: the
analytical approach of Chapters 2 and 4 is invoked and controlled by lispcode
whilst additional heuristics are written as productions. The knowledge-source is
invoked through the method look_for_fault with the production system being
invoked first.

The method is also used to specify the periods over which the simulation is to
be performed. The policy adopted here is to use thé category of fault
hypothesised to do this: if the category refers to information pertaining to periods
(k-i) through to k then it would seem appropriate to start at period (k-i) and stop
at either period k or k+1. For instance, one way of discriminating between a
single error, on period k, involving a transfer out of the system and a single
inventory measurement error is to simulate over two periods k and k+1. The
inventory error will only . give rise to discrepancies on period k whereas the
transfer error will continue to have an effect on subsequent periods.

Hence
v(single_transferv_error_k) - ! (look_for_fault s_t e (k) {k k+1})
(single_inv_error k) - ! (look_for_fault s_i_e (k) {k})

where the first list denotes the periods to look for a fault and the second list
denotes the simulation runlength.
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The following assertions are returned to the production system from the analytical
approach when the search has been completed.

1. (interpret_model ({template/ template2 ....})

where templaten contains all successful candidates found in a given sub-lattice - as
defined by its significant path elements. It has the form

[ (number_of_significant_path_elements
(list_of_significant_path_elements)
(candidate/ candidate2 ...)
(scorel score2 ..) ]
where score1>score2>scoré3....
and candidaten is a list of all its elements and their estimated values and has the

form

[ (clement! valuel) (element2 value2) ..... ]

2. (fault element value list_of_significant_path_elements i:candidatei)

These are components of interpret__model where only elements which are
significant are included and scores, which are only consistent, intemally, are
ignored. The variable ?fault is replaced by the first element of look_for_fault.



- 87 -

5.7.1 The Locality Heuristic

The possibility of focusing on one part of the plant, as a means of reducing the
candidate space, was mooted in Section 2.6.9 where it was >proposed that only
errors associated with those components significantly in error need be considered.
However it was -appreciated that care must be taken to minimise the possibility
of the effects of multiple errors being screened by partial cancellation. Since
complete cancellation is unlikely, a pragmatic approach would be to consider all
components in error down to a low level of significance, say 1.

Slots containing the related path and non-path errors are therefore assigned to
each component structure and these are accessed when constructing the candidate
space.

572 General Framework of the Analytical Approach

Figure 10 shows the primary dataflow through the principbi- lisp functions of the
knowledge-source. Going from top to bottom, these functions are

interface - runs the simulation and identifies suspect components, Jocus—inv,
by applying the locality heuristic;

focus - identifies the candidate set on the basis of focus—inv, and
controls inter_sub_lattice search by outputting sets of significant
paths, starting with the Empty Set, then the Universal Set, then
the set of single errors, followed by double errors and so on.
Section 6.6.4 gives an explanation as to why this strategy is
adopted. The search can be terminated, afier completing any
sub-lattice, if a suitable candidate has been returned from

search_sub_lat - which controls intra-sub-lattice search by identifying all
candidates, one row at a time, terminating prematurely if a
successful candidate coﬁtaining solely insignificant path elements
and, if variable non-path is set .true., non-path elements, is
returned from
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focus12 - which assimilates the results obtained by examining one
candidate at a time using

do_it2 - to call out to the Fortran analysis routines and to test the
estimates that are retumed by updating the simulation variables
via

calc—value - and calling on

modify&simulate- to re-run the simulation with the revised values.

Figure 11 shows the primary dataflows through the Fortran routines. The routines
are accessed through points A to D. Of central importance are the two routines
FOCUS and SIMU: the former controls the construction and application of the
regression model whilst the latter perfoms the simulation. Routines makeA and
makeJ construct the two perturbation matrices J, and J,. Simulation variables are
updated through setV whereas measurement errors are introduced through corect. |
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.

focus_inv (template1 template?2 ....)

Focus

{slg_pathli} templatel

Form
Focus1 —B——* regression
model

{slg_pathi} templatel

Fearch_sub_lat

{candldatel}mwj ({candidatel}{scorel}) Vsuccessfull € rowj
Focus12
candidatel ({candidatel} {scorel}) If successful
| +—— Perform
do_it2 c regression
candidatel easurements
(elementi valuel)
calc_value Modilfy & simulate
simuiate D

Figure 10: The Lisp Domain in Model-based Reasoning
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5.7.3 Heuristics

As above, a number of rules may be derived from the fact that a tank is simply
a storage device. If a particular tank is suspected on a particular period and if
the simulation is accepted as being correct, then the following can be applied to
investigate whether the measurement model is in errof,

[ (simulation_analysis > measured_analysis)
& (measured_tank_inventory < simulated_tank_inventory)
& (simulation_analysis > maximum_analysis_input) ]

2 (stratified?)

This is of little use by itself because of uncertainty over the simulation. However
if

[ (stratified?)

& (! (perturbation_required ’analysis) < simulation_analysis)]

- (measurement_model_error)

also holds then both (stratified?) and (measurement_model_error) can be returned
to the Supervisor as evidence.

The above may also be repeated for the case where the measured tank inventory
is greater than the simulation tank inventory.
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6. APPLICATION TO NEAR REAL TIME MATERIALS ACCOUNTANCY:
A Specific Example

6.1 Introduction

This Chapter discusses the steps that should be taken to develop a model-based
diagnosis system for a particular plant; in this case a solvent-extraction and
concentration plant. There are three stages to such a development:

1. form a skeletal knowlédge-base as described in the previous Chapter and
produce simulation and analysis routines;

2. test the functionality of the resulting system using data output from the
simulation;

3. assess its performance on the real plant

Unfortunately neither a plant nor resources were available to perform the third
stage. A relatively superficial assessment of its performance was therefore made
by testing it against a simulation designed to reflect some of the uncertainty
surrounding the model. ’

The plant, its layout and operation, are first described. Models are then proposed
both for including in the system and for performing the assessment.

6.2 The Reprocessing Plant

A nuclear fuel reprocessing facility takes spent fuel assemblies as its input and
produces separate streams of plutonium nitrate, uranium nitrate, high active,
medium active and low active wastes as its outputs. Conventionally the fuel
assemblies are first broken apart enabling the individual fuel pins to be extracted.
These pins are then cut up into small lengths before being immersed, as batches,
into nitric acid. The solution produced from a single batch is first centrifuged to
remove any solids, then transferred to a tank where the quantity of plutonium
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and uranium present is measured. This tank is sometimes called the ‘accountancy
tank’. Once measured, the batch is emptied into a buffer tank which forms the
start of the, continuous, solvent-extraction plant where the separate output streams
are formed. Finally, the plutonium nitrate may be concentrated by evaporating off
water so as to ease transportation.

Materials balance areas are usually identified as being from the input to and
including the accountancy tank and from there to the various outputs. Separate
accounts are struck for plutonium and for uranium. It is difficult to simulate the
first materials balance area because little published data exists as to its operation.
For instance the rate of loss of nuclear material from the main stream as a result
of, for instance, small particles being formed at the fuel pin chopping stage is
difficult to predict. However sufficient information (060 js available to enable a
reasonable simulation of the solvent-extraction and concentration plant to be made.

The reprocessing plant examined here is shown in Figure 12, It is assumed that

i) the account is taken every 24 hours and that only one batch can be input
during this period;

ii) either Buffer Tank B is connected to the solvent-extraction plant whilst
Buffer Tank C feeds the concentrator or vice versa;

iii) Solvent-Extraction Plants A and B opefate separately;

iv) Product Storage A is filling whilst Product Storage B is emptied after a
more accurate inventory is taken and vice versa;

v) the feed to the Concentrator is switched-off ‘at least 8 hours prior to its
~ inventory being taken. This is similar to the mode of operation identified as
being most suitable for NRTMA at Tokai in Japan (),

Note that the account is taken relatively infrequently. For instance, both the input
and concentrator are operated on a 24 hour cycle giving only one set of
measurements per account. Although certain measurements may be taken more
frequently, for example tank volumes may be recorded hourly, these are omitted
for reasons of simplicity. It would obviously be beneficial to include them in any
real system and this is raised in the Conclusions.
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6.3 The Simulation

A realistic simulation of a nuclear fuel reprocessing plant is not available in the
public domain. However sufficient information does- exist “95052) to enable a
simulation to be constructed which produces a similar level of modelling
uncertainty. It must be stressed that the objective is to produce typical effects and
not to predict the precise state of a particular plant. The latter would require
considerable effort in its development and validation.

The simulation described here, only accounts plutonium as this is thought to be a
large enough problem for our purposes. Jones et al 49 point out that considerable
insight can be gleaned from correlating the plutonium account with the uranium
account. Although this aspect should have a place in any fully operational
implementation, it represents another level of complexity.

There are potentially two independent variables that are of any significance: the
mass of liquor (less heavy metals dissolved) and the mass of the plutonium.
However there would be considerable complexity in applying mass balances to the
liquor passing through the solvent-extraction and concentration processes. This is
because of the different streams entering and leaving the former and because of
the evaporation process in the latter. Since the plutonium balance is of primary
importance, liquor mass balances are only applied when it is straightforward to do
so.

The model consists of simple mass and volume balances of the form:
Mass; = Mass;., + Net—transferj.,
where MaSSj = mass at end of time step j,
to ensure an accurate account is maintained throughout. This is applied 96 times

per accountancy period where the actual time interval used is allowed to vary to
‘ensure a balance is taken whenever there is a change in plant operation.
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6.3.1 Buffer Tanks

Modelling the contents of tanks is not straightforward because of difficulties in
predicting the degree of inhomogeneity that is present. The task is made more
difficult by the fact that one of the key features of a reprocessing plant is that
the geometry of each plant item is designed to minimise the risk of criticality.
The resulting designs may introduce complicated geometries which can increase
the possibility of the liquor being stratified. Apparently (62) these tanks incorporate
continuous mixing techniques to ameliorate this situation. Nevertheless this mixing
does not produce homogeneity, resulting in biases in the analytical samples. It is
debatable as to whether or not these biases are deterministic. Since the aim here
is not one of reality and because it was felt that errors in model structures are
of interest, a simplified deterministic approach has been adopted.

The tanks are modelled on the assumption that liquor enters at the top and
leaves at the bottom. If stratification were to take place, then it would probably
result in horizontal bands, of different chemical composition, being present in the
tank. The depth of these bands would depend on variation in the feed. A
simplified model is obtained by assuming that the liquor flowing into the tank
forms horizontal zones of volume one-twentieth of the total volume of the tank
where the liquor contained in each zone is perfectly mixed. These zones move
down as liquor leaves the tank. The amount of inter-zonal mixing can be varied
for individual simulations. The approach is to allow the N-zones closest to the
free surface to mix, perfectly, where N is chosen to be between 1 and 20. In
the case of Buffer Tank A where relatively large batches are input relatively
infrequently, N is made to vary with the volume of each batch input.

An inventory of the tank contents is obtained by multiplying an estimate of the
liquor volume by an estimate of it’s plutonium content (per unit volume). In
practice the volume is usually obtained by measuring differential pressure using
pneumercator diptubes and density and relating to volume via calibration tables.
The plutonium content is estimated by performing a volumetric analysis on a
single sample taken from the tank. Good accountancy procedure dictates that the
contents are properly homogenized prior to the sample being taken (1), It is
debatable to what extent this would be practicable if carried .out frequently.



A further parameter, similar to N above, is therefore provided to enable different
levels of inter-zonal mixing to be simulated prior to a volumetric analysis being
made. The sample is then assumed to be taken from the zone at the free surface.

This uncertainty provides a useful scenario for performing a simulation-based
assessment. Can a diagnostic system which assumes that the individual buffer
tanks are perfectly mixed analyse a simulation with stratified tanks? -We will
return to this scenario later.

6.3.2 The Solvent-Extraction Plant

The plutonium inventory in a solvent-extraction plant is largely determined by the
flowrates of its various inputs (69, These tend to be varied together to maintain
the heavy metal front in a fixed position. Under these circumstances and to a
first approximation,

plutonium inventory « plant throughput

Although it may be possible to determine the plutonium inventory in low to
medium active parts of the plant by direct measurement, there exists at present
no satisfactory . way of measuring the inventory in the first, ie high active, cycle.
Here the high level of fission products and higher actinides mask any proven
plutonium detection techniques. Computer predictions carried out by Walford et al
(60) suggest that the inventory in the first cycle can be varied by between 0.8 to
4 times the design inventory by manipulating the solvent and scrub feeds. They
publish a graph showing the steady state variation in inventory obtained by
varying these two feeds separately.

This uncertainty provides another useful scenario for performing a model-based
assessment. Can a system which adopts the simple proportionality above analyse a
simulation where load and first cycle solvent and scrub feeds are not known
precisely?
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The detailed simulation is therefore based on the afore mentioned graph, assuming
that the two effects can be summed together. Specifically,

inventory onf L
[ first cycle ] a [I:] ( 1+ ag0) + Ogcr )

L
where L percentage load

- 3. AQso1 MQso1 % 0
150. (AQgo1)® AQgo1 < O

Csol

and AQgp1, AQgcr are deviations in feeds from their nominal values.

It is assumed that any feed or load changes are invoked at the beginning of a
period, gradually over 8 hours, giving the plant time to settle before an inventory
is taken. Deviations from this design inventory’ may then be imposed by
perturbing the various feeds.

6.3.3 The Concentrator

The proposed mode of operation should result in the product liquor being
homogeneous and of approximately the same volume and concentration whenever
the inventory is taken. This is because it is assumed that the concentrator
continues to evaporate and produce product after its feed has been stopped
approximately 8 hours prior to the inventory being taken. By this time a steady
state should be reached. This steady state can be viewed as being determined by
volume and concentration ‘setpoints’.

Assuming that the Concentrator performs as predicted then the only issue that
arises in modelling for accountancy is in determining the rate at which liquor is
produced. The simplest approach, and that adopted here, is to assume a constant
rate of production.



6.34 Product Storage

Stratification is less of a problem here than in the buffer tanks provided the
input concentration is maintained relatively constant. Tanks with perfect mixing
are therefore adopted.

6.3.5 Random Measurement Errors

In accordance with convention, measurements are assumed to be corrupted by
random, gaussian distributed errors.

6.3.6 - Plant Operation Timing Errors

There appears to be little jusﬁﬁcation in recording changes in plant operation
automatically. The operators are more likely to enter the time, for instance, at
which the feed was switched from Product Storage A to Product Storage B,
manually. Some form of rounding error must therefore arise, its extent being
dependent on the particular operator. For instance, he could round to minutes,
S-minutes, 10-minutes, quarter-hours and so on.

Gaussian distributed random number generators are used to simulate these effects.
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6.3.7 Some Typical Faults

System performance was assessed by examining its ability to detect and diagnose
the following faults: -

A. an erroneous measurement of volume (equivalent to 3.7 oyyp) of the plant
feed tank (buffer tank A) on period 5;

B. an additative bias of approximately 2.3% in the accountancy tank volume
measurement from period 3;

C. a diversion from the concentrator (equivalent to 4.2 opyp) on period 5;

D. solvent_extraction_A plant load incorrectly specified on period 5 as 60%
instead of 100% load; this will cause the simulation to either over or under
predict the inventory in the plant feed tank with an associated under or over
prediction of the inventories of buffer tanks B and C. In addition, the
estimated inventory of the relevant solvent extraction plant will be in error.

6.4 Base Simulations

With the absence of a real plant for coxﬁparison, it is assumed that the structure
of the model incorporated into the fault diagnosis system is the simplest possible.
That is, one with perfect mixing in all the buffer tanks and the solvent-extraction
plant as described above with the ratios of the various feeds maintained constant.
The only random errors are those assumed to exist in the individual
measurements.

System performance can then be examined by diagnosing faults generated from a
simulation in which non-perfect mixing and variations in a number of feeds and
parameters may or may not be imposed. To be concise, only two plant
simulations are considered here,
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Plant A
i) ~ random errors applied to individual measurements;

ii)  fluctuations in each of the elements initially contained
in the set of simulation variables, ©:

Plant B: as above plus

iii) only the top quarter ,of the total possible volume,
of each buffer tank is mixed;

iv) 0% mixing in the buffer tanks prior to sampling;

V) 0.5% fluctuation in the nominal load of the
solvent-extraction plants;

vi)  0.5% fluctuations in each of the feeds to the
first cycle of the solvent-extraction plant:

where an n% fluctuation is vmodelled as a multiplicative gaussian random error
with standard deviation, n/100. In all, 16 different random sources are included in
Plant B in addition to those used to corrupt the individual measurements. It must
be emphasised again that these plant simulations have been performed for the
purposes of experimentation and not to depict reality.

The simulation runs are restricted to 16 periods in all cases because of the not
insignificant amount of data required like switching times. There are ten sets of
data in all. Multiple runs are then obtained by repeating this 10*16 period
sequence using different sets of random numbers. Although an attempt has been
made to make the 10 sets different, a certain amount of similarity still exists
because of difficulties in generating operational times which do not result in tanks
being emptied.

It is difficult to give a reasonable impression of the difference in results
generated from Plants A&B because

i) the approach is statistical: no singlé set of graphs will be truly
representative;
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if) individual physical inventories may not be startlingly different: a difference
of only 5% in the physical inventory of a particular component may
typically represent one G)MUF.

Figure 13 compares the MUF plot generated by Plants A (x) & B (o) using the
same set of random numbers and simulating Fault A but applied on Period 10.
Three opyr error bars are superimposed. The results that are presented here
are intended to give a general impression and no more.
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6.5 Control Charts

6.5.1 Their Form

The control charts incorporated into the system are as defined in the previous
Chapter. These require some estimate of the error distributions of the individual
transfers, inventories and hence, MUFs. The conventional approach to determining
these error distributions would be to propagate the measurement errors through the
various calculations. Since these calculations are a combination of additions and
multiplications, this procedure would involve obtaining corresponding expressions
for their error distributions. In particular <49, if x and y are two independent
random variables with probabily densities f(x) and g(y) respectively, the
probability density function p(w) of random variable w: w=xy is given by

©0

JORE l,—i—, fz) . g (5]

-0

Fortunately, this procedure need not be adopted in practice because of the central
limit theorem 7). The resulting error distribution should be approximately
gaussian because the MUF calculation is a summation cac a number of random
variables with similar probability densities.

Of importance here then are the two results,
var {ax+by} = a* var {x} + b? var {y}

var {xy} = E[(xy — E[xy])?]
= E[(xy)?] - E[xy]?

E[x#]E[y*] — E[x]*E[y]?

var {x} var {y} + E[x]? var {y} + E[y]? var {x]}
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6.5.2 Some Results

The results described in Section 5.3.2 were derived from studies using series of
random numbers. This Section examines whether the conclusions drawn can be
extrapolated to more  realistic simulations. The method of ‘combining alarms to
infer particular patterns should be universally applicable because it is based on
qualitative rather than quantita‘tive’ arguments. It is the test parameters that are
~ suspect.

The effect of varying serial correlation was first examined by applying identical
statistical tests to those described in that section, this time to 100,000 repeated
simulations of the plant assuming 100% mixing in the buffer tanks, no
fluctuations in feeds to the solvent-extraction plant and the precise recording of
operational changes. That is, the only noise stemmed from the measurement
system. The fault scenarios which would cause the various patterns were again
simulated by corrupting the resultant MUF sequences, 10,000 simulations per
scenario. The results obtained are very similar as can be seen from Table 2.

The experiments were then repeated but this time using realistic Plant B. The
results obtained are given in Table 3. Note that there are generally more alarms
as would be expected with the increased variation.
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Pattern 1jPattern 2 Pattern 3 |Pattern 5 [No Fault
Comr . 6|12 612 1] 2| 3] 6| 12
Period
1 10137813179 o 1| 2178|100/ 0.2
1|l of o377 o 1| 213 78| 0.2
121 0of o]l of o] of 1| 2] o o| 0.3
13 o]l o] ol of of 1] 2] of of o3
15/ of o] of o] of 1| 2] o 0| 0.2
2 10 0 1 1 1 0 0| o 0 1 0.0
11| of o]l 8(75] o] of ol 13| 78| 0.0
121 of ol of o] ol of o] o 0| 0.0
3] 0of ol of o] o] of of o 0| 0.0
5] of o] of o] o] of o] o 0| 0.0
3 10221812218} 1| 3| 5] 18 o| 1.0
11117 3] of o] 4|11|28] o 0| 1.5
12| 8. 1} 613 5}21|37] 6| 13| 0.9
13 5] o] 5| 5| 82720 4 51 1.0
151 3] 0] 3] 1121323 3 2| 1.3
1&2 0] of o} 1| 1} o] o} o] 1 1| o0.0
11} of o] 875 o o] o]l 13| 78| 0.0
121 of ol of o] ol of o] o 0| 0.0
3] of of of o] ol of o} o o 0.0
15] of o] of o] o] of o] o 0| 0.0
4 10l of 1] of of ol of o] o o| 0.0
11| of o] 416s}] o| of o|12]| 78] 0.0
121 ol of ol of o] of o] o 0| 0.0
3] of o] of o] ol o] of o 0| 0.0
151 ol ol ol of ol.ol ol of ol 0.0

Table 2; Test Performance on Plant A



- 107 -

W/.nw 0000000010000000000000000%
2 €9 \ A
WN...J 000000000053362nununununununununuomﬂlu
o o ' .
Z SN0 .
QO,O 2000000000432620000000000“
3 .
Lo W o\ © 0 O O OO 0 O O OO0 O 0 O O 00 O © Ol w o © o]lo
- S O O - O =
[« — .
Pt
[
-
M,.O n430000007000“159207000060004
P .
o T = N N AN O O O OJln " OO V. AN O O O Ol © © © oo
(e2] —t - N N —~ A
g
O 00 O — N O]~ O O© © O}~ & O OV V|mw © © © 0 © © © Oo|JCo
- - = N N
-
A
—
o
(o\] 0 >~ O O Olon > O O OlN © oo AN —w|lon I~ O © O] vV © © oo
ml N [>2] oo %]
2
= \O N N O O O|ln — O O O © con onJlon —m O © OO =~ © O© Olom
< 'a TN o\ o oy (9] — —
y
i
nu %000030000400003000000000.
$=
[}
-t
M,O M000030000~.Umw66130000000003
=9
3 .
- O = AN N N0 AN NO = AN NO — AN O —~ N N wn o
LT B B R = R R R R IR B R I I I B I I I IR R B R T e R e R
e —-—
[a¥ =
St
(] <
— (o] o o3 < O
— zZ <

in 15 periods

Table 3: Test Performance on Plant B



- 108 -

- 6.6 Model-based Reasoning

The experiments described here have largely been confined to reasoning about a
single period primarily because of a lack of resources. There has been insufficient
time to consider the added dimension of errors in the simulation variables being
correlated and the increased complexity resulting from multiple periods would
have stretched the current computational facility of a VaxStation 3100 with 8Mb
of memory.

6.06.] Its Form

The symptoms are generated by comparing all the measurements output for the
purpose of performing the near real time accountancy of plutonium with those
output from the simulation. This, essentially, consists of volumes and volumetric
analyses. There are thirteen such measurements output every period from the
simulation here. Each measurement must have a measurement error, in terms of a
standard deviation, attached to it.

Initially the set © of parameters and other variables necessary to describe the
re-distribution process is restricted to those elements that form the boundary
conditions of the simulation. That i, ’

accountancy_tank_volume_transfered
accountancy_tank_analysis_transfered
time_of_accountancy_tank_transfer ;
start_time_of_feed_to_Product_tank_A
start_time_of_feed_to_Product_tank_B
time_concentrator_switched_off
start_time_of_feed_to_concentrate_tank_A
start_time_of_feed_to_concentrate_tank_B
solvent_extraction_plant_A_load
solvent_extraction_plant_B_load
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Other elements can be added with experience. The uncertainty matrix Py must be
specified for each period k. Fortunately it is likely to be diagonal with those
elements involving time being independent of k. The other elements are likely to
be some multiple of either the volume, analysis or load involved.

In addition, the plutonium content estimates in both the solvent-extraction plants
and the concentrator must be omitted from this assessment because the model
used to estimate the content is also incorporated into the simulation. That is, §'=S'
in both cases. Thus errors in the various feeds will have an identical effect on
both §' and y. Their presence must be inferred from their effect on the other
measurements. These errors must therefore be included, explicitly, in ©. Thus

solvent_extraction_plant_A_inventory_error ¢ @
solvent_extraction_plant_B_inventory_error ¢ ©
concentrator_inventory_error ¢ ©

0.6.2 The Candidate Space

A maximum of three explanations per period is chosen, at least initially, as being
the most the diagnostician would be prepared to contemplate at any one time.
This is obviously a moot point but is justified on the grounds that it represents a
candidate space of some 9737 candidates which is more than sufficient for our
purposes here. In addition and as suggested in Section 4.7, the lattice is searched
one sub-lattice at a time to minimise computer storage.

6.6.3 Fault Free Studies

A number of experiments were carried out to optimise the credibility of the
approach, that is its false alarm rate, to examine the effect of using composite as
opposed to single elements (Section 4.6) and to assess whether the search space
could be reduced by applying the locality heuristic as described in Section 2.6.9.
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Each ekperiment consisted of diagnosing results from 10 simulations, of 16
periods each, of both Plants A and B. The same covariance matrices Py, Ry,
and Ry as used to generate the data were assumed throughout. A parﬁculaf
candidate was deemed to be credible (Section 4.5) if each estimate satisfied its
apriori variance at level 3 or less and the revised symptoms were explained at
level 3 or below. In all, Plant A required some form of explanation on 108
periods whilst Plant B required explanations on 129 periods. (note that this false
alarm rate cannot be compared directly with the results of Table 2 because'l sts
were applied.)

“Ideally the diagnostician would prefer the system to only output path errors that
are insignificant (Section 2.6.4) because no faults have arisen. Hence the search
was restricted to that sub-lattice that contained solely insignificant 'path errors. The
search adopted a depth first strategy, considering path errors first, and then
non-path errors.

The following was observed.
1. Diagnosis was successful on all periods.

2. Only 3 non-path explanations were required if only candidates with
composite elements were considered in the diagnosis of plant A. This
compared with 10 if single elements were used instead. A decision was
therefore made to use composite elements in all subsequent experiments.

3. It was felt that the demanded explanation rate of 129/160 for Plant B was
rather excessive. The test on the revised symptoms was altered to be
successful at level 4 or below. Plant A now reqmred 80 explanations whilst
Plant B required 118.

4. It was found that there was very little difference if the search space was
restricted further by applying the locality heuristic of Section 5.7.1. This can
be seen from Table 4 below which shows the distribution of candidates,
providing successful explanations at level 4 or below, for Plants A and B
with or without the locality heuristic being applied. This similarity was also
observed in all subsequent experiments,
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CANDIDATES

Path elements

Path & non-path

only elements
Number of elements | Number of elements
Locality :
Plant Heuristic 1 2 3 1 2 3

A YES 64 14 0 0 2 0
NO 64 13 1 0 2 0

B YES 80 32 3 0 3 0
NO 80 32 5 0 1 0

Table 4 : Distribution of Successful Candidates

6.6.4 Fault Studies

The simulations above were repeated but with either Fault A, C or D included
creating 60 datasets in all, 3*10 pertaining to Plant A and 3*10 to Plant B.
Again, that sub-lattice containing solély insignificant path errors was searched with
elements being preferred to non-path ones. The results are given in Table 5. It

can be seen that

Fault A: the correct measurement error is identified in all cases;

Fault C:. diagnosis has been incorrect because it should have been performed over
two periods (Section 5.7). However it has identified the correct plant component

and, as will be shown in the next Section, still provides useful information;
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Fault D: one diagnosis, per plant, failed completely whilst the other 9 required at
least 2 non-path explanations. A question therefore arose as to whether or not
these 2 explanations could be replaced by a single, significant path explanation.
That sub-lattice containing no insignificant path errors was therefore examined for
those datasets containing Fault D and the following results were obtained:

Plant A - 7*p* & 3*2p*

Plant B - 5%2p* & l*(p*+np) & 4*3p*
where * means ‘cases had’ and a particular p* in every case was that composite
element that contained both solvent_extraction_plant_A_load and solvent_extraction_
plant_B_load. Each sub-lattice containing a single significant path error which was
identical to one of those identified was searched next. Only 2 significant path
errors were succesful in the case of Plant A, the 2 loads and the following
candidates were identified,

Plant A - solvent_extraction_plant_A_load* + (7 & 3*p)

Plant B - solvent_extraction_plant_A_load* + (4*p & 2*np & 4*2p)

This is the stategy adopted in function ’focus’ described in Section 5.7.2.
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CANDIDATES

p = path np = non-path

Plant|Fault| np | p+np| 2np |2p+np|p+2np| 3np np identified

A A 6 4 pft_vol
C 7 3 prod_storA_vol
D . 8 1 |pft_vol

+buf_tankB_vol
(+prod_storA_vol)

B | A 7 3| pft_vol
C 1 7 2 prod_storA_vol
D 8 1 |pft_vol

+buf_tankB_vol
(+prod_storA_vol)

Table 5 : Fault Studies Using Insignificant Path Sub-lattice

6.7 Overall System Performance
The system implemented to date is skeletal. As explained in Sections 5.1, 5.3.1
and 6.0, this is partly because of the lack of a real facility and partly because of

a lack of time. The main limitations are,

1. the system only contains the bare minimum of heuristics needed to prove
the interaction of the knowledge-sources;

2. only regression models based on the single period are formed;
3. the system lacks an adjudicator;

4. catastrophic failures (Section 2.6.4) are not accommodated.
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The following examples are given merely to elaborate on system performance and
to demonstrate its potential. Considerably more development is required before the
system can be viewed as being operationally viable.

At present, the consequences generated by the control—chart and supervisor
knowledge-sources are held in a common assertion base, goals. Model-based
reasoning and history have their own assertion bases, sim_asserts and corr_asserts.
The following assertion bases were generated when the system wés invoked using
the data described previously.

Plant A, Fault A: system invoked at the end of the day following the fault,
~goals - as produced by the control charts

(INV-LOSS+SIM-QUT YESTERDAY)
(INV-LOSS YESTERDAY) ,
(SINGLE~TRANSFER-ERROR YESTERDAY)
(SINGLE-INV-ERROR YESTERDAY)
(LOOK~-AT CUSUMP TODAY)

(LOOK-AT MUFTESTP TODAY)

(CUSUM-P YESTERDAY)

(MUFTEST-P YESTERDAY 316.498)

Note that the patterns were generated solely on the basis of
combination 1. The LOOK-AT assertions are merely for connecting
rules and are of no interest to the diagnostician.
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goals - produced by the supervisor,

(VALUE-REQ S-T-E YESTERDAY PROD-STOR-B
((VOLUME 1.0e6 1.0e6)
(ANALYSIS 73.8536 3.113602)
(INI-VOL 106.1241 4.474106)))
- (VALUE-REQ S-T-E YESTERDAY ACCN-T
((VOLUME -8.36588 9.865882)
(ANALYSIS 29.20196 -2.87804)
(INI-VOL 101.6041 -9.86589)))
(LOOK-FOR-FAULT S-I-E YESTERDAY (YESTERDAY YESTERDAY))
(LOOK-FOR-FAULT S-T-E YESTERDAY (YESTERDAY TODAY))
(TRANSFER-OCCURED YESTERDAY PROD-STOR-B)
(TRANSFER-OCCURED YESTERDAY ACCN-T)
(LOOK-FOR-FAULT I-L YESTERDAY (YESTERDAY TODAY))

o

The VALUE—REQ assertions specify the measurements together with
their respective perturbations that would be needed to individually
explain the MUFTEST-P. These would be of interest if model-based
reasoning suspected either the accountancy tank or product storage tank |
B.

sim_asserts - as produced by the analytical approach,

(S-I-E ((PFTVOL-MEAS -9.20707)) NIL 1)
(INTERPRET-MODEL S—I-E
((0 NIL (((1 -0.492931) (991 -9.20707)))
(0.965009))))

Only one possible explanation was generated on the second row of the
insignificant path error sub-lattice and the search was terminated. (The
Lot somesr Liaciome 33Amsif2ad wn oselénlela mam Al Tnbac N A cndnsiam £ 0O N]T
LIIdL 1UW llavilly 1UClULlICU LIV dUlLlaviC valldiuaitd.) A 10Guluuvll vl =7.46
in the simulated volume in the plant feed tank would explain the
measurements. That is, there was a measurement error of -9.2/ as
compared to an actual error of -10/ An insignificant error in the

volume input to the plant is also needed to explain the discrepancies.
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sim—asserts - initial assertions’

(INV-TYPE PFT I-TANK)
(INV-TYPE SOL-EX-1 SPECIAL)
(INV-TYPE SOL-EX-2 SPECIAL)
(INV-TYPE BUF-TANK-B I-TANK)
(INV-TYPE BUF-TANK—C I-TANK)
(INV-TYPE EVAPORATOR SPECIAL)
(INV-TYPE PROD-STOR-A I-TANK)
(INV-TYPE PROD-STOR-B I-TANK)

sim—asserts - base data,

(ERROR YESTERDAY BUF-TANK-C -38.5993)
(ERROR YESTERDAY BUF-TANK-B 53.93359)
(ERROR YESTERDAY PFT -327.456)
(PROBLEM~INV YESTERDAY BUF-TANK-C)
(PROBLEM-INV YESTERDAY BUF-TANK-B)
(PROBLEM-INV YESTERDAY PFT)

3 suspect components have been identified by comparing the model
output with the measurements where error=( actual-predicted ). These
form focus—inv (Section 5.7.2).
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sim_asserts - produced by heuristics,

(ANAL-REQ PET 30.28288)
(MIN-INPUT-ANAL PFT YESTERDAY 28.60)
(MAX—INPUT-ANAL PET YESTERDAY 37.07)
(INPUT-ANAL-HIST PFT YESTERDAY ((32.08 37.07 28.69)))
(ANAL-REQ BUF-TANK-B 33.56335)
(MIN-INPUT—ANAL BUF-TANK-B YESTERDAY 28.84)
(MAX—INPUT—ANAL BUF-TANK-B YESTERDAY 35.68)
(INPUT—ANAL-HIST BUF-TANK—B YESTERDAY

((33.34999 35.68 28. 84) (33.18 35.29999 20.05999)))
(SIM—ANAL-HIGH?? YESTERDAY PFT -327.456 33.25375 33.20999)
(ANAL-REQ BUF-TANK-C 34.7864)
(MIN-INPUT—ANAL BUF-TANK~C YESTERDAY 28.84)
(MAX—INPUT—ANAL BUF-TANK-C YESTERDAY 35.68)
(INPUT-ANAL-HIST BUF—TANK-C YESTERDAY

((33.34999 35.68 28.84) (33.18 35.29999 29.05999)))
(SIM-ANAL-HIGH?? YESTERDAY BUF—TANK—C

-38.5993 35.0352 35.18999)
(SIM—ANAL-LOW?? YESTERDAY BUF-TANK-B

53.93359 32.76209 32.59)

The system attempted to assess whether any of the tanks were
stratified by applying the heuristics of * Section 5.5.1 but failed to
identify any. The consequence (stratified ...) would have appeared if it
had been successful.
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Plant B, Fault A: consequences virtually identical to the above were added but
with the following notable exceptions:

(S—I-E ((PFTVOL-MEAS -9.11259)) NIL 1)
(INTERPRET-MODEL S-I-E ((0 NIL (((1 -0.345518)
(6 -0.634452) (991 -9.11259))) (2.227894))))

A single candidate was generated on the third row of the insignificant
path error sub-lattice. Again, this contained a single significant error of
-9.1/ in the volume measurement.
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Plant A, Fault B: This scenario was included primarily to examine the

performance of the control charts because of the current limitation of a single

period imposed on the model-based reasoning. It was assumed that the bias was

applied three days ago with this diagnosis being perfbrmed at the end of

‘TODAY".

goals -

(IDH NOT-YET-DONE)

(LOOK~FOR-FAULT S-I-E TODAY (TODAY TODAY))

(LOOK-FOR-FAULT S-T-E TODAY (TODAY TOMORROW))

(TRANSFER-OCCURED TODAY ACCN-T)

(LOOK-FOR-FAULT I-L TODAY (TODAY TOMORROW))

(SIG-GRAD-ON (TWODAY YESTERDAY TODAY))

(CUMUF-GRADIENT 156.2182)

(VIS-GRAD UPTO (156.2182 (TWODAY YESTERDAY TODAY)))

(DO-VIS-GRAD UPTO TODAY (FIVEDAY FOURDAY THREEDAY TWODAY
YESTERDAY TODAY))

(INV-LOSS TODAY)

(SINGLE-TRANSFER-ERROR TODAY)

(SINGLE-INV-ERROR TODAY)

(INC/DEC-HOLDUP NIL)

(TRANSFER-BIAS NIL)

(COMBIN-3 TODAY)

(LOOK~AT CUSUMP TOMORROW)

(CUSUM-P TODAY)

(CUMUF-TEST TODAY 423.7539)

Combination 3 is invoked which in turn requests that the possibility of
a transfer_bias, inc/dec_hold-up, single_transfer_error or single_inventory_
error be examined. A bias of about 0.16Kg/period is estimated starting
one day after the actual occurrence.
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‘sim—asserts - base data,

(ERROR TODAY PROD-STOR-A -55.6582)
(ERROR TODAY BUF-TANK-C -117.612)
(ERROR TODAY BUF-TANK-B 28.52734)
(ERROR TODAY PFT -102.767)
(PROBLEM-INV TODAY PROD-STOR-A)
(PROBLEM-INV TODAY BUF-TANK-C)
(PROBLEM-INV TODAY BUF-TANK-B)
(PROBLEM-INV TODAY PFT)

sim—asserts - produced by analytical approach,

(S-I-E (BUFTCANAL-MEAS -0.440304) NIL 1)
(INTERPRET-MODEL S—I-E
((0 NIL (((998 -0.440304))
((4 -0.09671) (5 0.09671))
((997 -2.84438)))
(0.037795 0.074822 0.631933))))

The model-based reasoning is invoked but identifies a relatively
insignificant measurement error of 0.44gm/l.

Plant B, Fault B: This has a similar output to the above, but with one major
exception best explained by examining the alarms added to the goals,

(CUSUM—P YESTERDAY)
(CUMUF-TEST TODAY 390.6166)
(MUFTEST-P TODAY 327.1447)

Both the muf test and cusum test have alarmed on the same period
so combination 3 is not invoked. The important indicator is the alarm
generated by the cumuf test. '
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Plant A, Fault C: as explained in Section 6.6, it was expected that this fault

scenario would be misinterpreted because diagnosis is currently restricted to a

single period. However it can be seen that the fault can be inferred from the

contradictory evidence in the goals. -

goals:-

(VALUE-REQ S-T-E YESTERDAY ((VOLUME 1.0e6 1.0e6)
(ANALYSIS 73.61585 2.875854)
(INI-VOL 105.439 4.119049)))
(VALUE-REQ S-T-E YESTERDAY ((VOLUME 10.58294 9.082944)
(ANALYSIS 29.43035 -2.64964)
(INI-VOL 102.387 -9.08295)))
(LOOK-FOR-FAULT S-I-E YESTERDAY (YESTERDAY YESTERDAY))
(LOOK-FOR-FAULT S-T-E YESTERDAY (YESTERDAY TWODAY))
(TRANSFER-OCCURED YESTERDAY PROD-STOR-B)
(TRANSFER-OCCURED YESTERDAY ACCN-T)
(LOOK-FOR-FAULT I-L YESTERDAY (YESTERDAY TOMORROW))
(INV-LOSS+SIM-OUT YESTERDAY) |
(INV-LOSS YESTERDAY)
(SINGLE-TRANSFER-ERROR YESTERDAY)
(SINGLE-INV-ERROR YESTERDAY)
(LOOK-AT CUSUMP TODAY)
(LOOK-AT MUFTESTP TODAY) .
(CUSUM-P YESTERDAY)
(CUMUF-TEST YESTERDAY 283.7919)
(CUMUF-TEST TODAY 452.7478)
(CUMUF-TEST TOMORROW 461.236)
(MUFTEST-P YESTERDAY 336.875)

The CUMUF-TEST continues to alarm on subsequent periods. This

would not happen if it was a single inventory error. Note that the

diagnosis has been performed over an additional period, TOMORROW,
to corroborate this. '
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sim—asserts:— base data,

(ERROR YESTERDAY PROD-STOR-A -362.353)
(ERROR YESTERDAY BUF-TANK-C -38.5993)
(ERROR YESTERDAY BUF-TANK-B 53.93359)
(PROBLEM-INV YESTERDAY PROD-STOR-A)
(PROBLEM-INV YESTERDAY BUF-TANK-C)
(PROBLEM-INV YESTERDAY BUF-TANK-B)

sim—asserts:- produced by analytical approach,

(S-I-E ((PRODTAVOL-MEAS -4.15504)) NIL 1)
(INTERPRET-MODEL S-I-E
((0 NIL (((13 40.46071) (1000 -4.15504))) (0.830394))))

A single error is identified, that of a measurement error in product
storage tank A. However from above, this is more likely to be a
diversion. '

Plant B, Fault C: the results obtained were very similar to the above and are
therefore omitted.
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Plant A, Fault D:

goals

(VALUE-REQ S-T-E YESTERDAY PROD-STOR-A
((VOLUME 1.0e6 1.0e6)
(ANALYSIS 73.93459 3.194595)
(INI-VOL 106.2404 4.590477)))
(VALUE-REQ S—T-E YESTERDAY ACCN-T
((VOLUME 11.6225 10.1225)
(ANALYSIS 29.1271 -2.9529)
(INI-VOL 101.3474 -10.1225)))
(LOOK-FOR-FAULT S—I-E YESTERDAY (YESTERDAY YESTERDAY))
(LOOK—FOR-FAULT S—T-E YESTERDAY (YESTERDAY TODAY))
(TRANSFER-OCCURED YESTERDAY PROD-STOR-B)
(TRANSFER-OCCURED YESTERDAY ACCN-T)
(LOOK-FOR-FAULT I-L YESTERDAY (YESTERDAY TODAY))
(INV-LOSS+SIM-OUT YESTERDAY)
(INV-LOSS YESTERDAY)
(SINGLE-TRANSFER-ERROR YESTERDAY)
(SINGLE-INV-ERROR YESTERDAY)
(LOOK-AT CUSUMP TODAY)
(LOOK—AT MUFTESTP TODAY)
(CUSUM—P YESTERDAY)
(CUMUF-TEST YESTERDAY 271.6474)
(MUFTEST-P YESTERDAY 324.7304)

sims_asserts:- base data,

(ERROR YESTERDAY PROD-STOR-A -91.2678)
(ERROR YESTERDAY BUF-TANK-B 401.3547)
(ERROR YESTERDAY PFT -668.361)
(PROBLEM-INV YESTERDAY PROD-STOR-A)
(PROBLEM-INV YESTERDAY BUF-TANK-B)
(PROBLEM-INV YESTERDAY PFT)
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sim—asserts.- produced by analytical approach,

(S—I-E ((PFTVOL-MEAS -18.845) (BUFTBVOL-MEAS 12.44342))
NIL 4)
(S-I-E ((PRODTAVOL-MEAS -0.563591) (PFTVOL-MEAS -18.8944)
(BUFTBVOL-MEAS 12.49887)) NIL 3)
(S—I-E ((PFTVOL-MEAS -18.845) (BUFTBVOL-MEAS 12.44342))
NIL 2) |
(S—I-E ((PFTVOL-MEAS -18.8944) (PRODTAANAL-MEAS -0.739998)
(BUFTBVOL-MEAS 12.49887)) NIL 1)
(S—I-E (((SOLEX1-LOAD 20.30077) (SOLEX2-LOAD 20.30077)))
(7845613123910 11 12) 1)
(S-1-E (((SOLEX1-LOAD 38.62499))) (9) 1)
(S—I-E (((SOLEX2-LOAD 38.62499))) (10) 1)
(INTERPRET-MODEL S—I-E
((1 (10) (((9 1.943749) (10 38.62499))) (1.039366))
(1 (9) (((9 38.62499) (10 1.943749))) (1.039366))
(13 (7845613123910 11 12)
(((9 20.30077) (10 20.30077))) (0.521842))
(0 NIL (((1 -0.49561) (991 -18.8944) (1001 -0.739998)
(995 12.49887)) ((7 0.203061) (1 -0.494316)
(991 -18.845) (995 12.44342))
((13 21.78896) (1000 -0.563591) (1 -0.49561)
(991-18.8944) (995 12.49887))
((6 -0.446531) (1 -0.494316)
(991 -18.845) (995 12.44342)))
(2.060651 2.108644 2.306707
2.342489))))

The more important fault hypotheses have been added to the assertion
base  first and  therefore  follow  immediately on  from
INTERPRET-MODEL. The first hypothesis is for a single significant
error of 38.6% in the load of solvent extraction plant A. This is
derived from that sub-lattice which only contains this single path
error.
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Note that the diagnostic system is unable to discriminate between the
3 possible scenarios of either or both of the sol_ex_loads being
significantly in error. However a total increase of about 40% is
consistently required to explain the measurements. Alternative fault
hypotheses are then proposed which are based on more than one
signiﬁcant error.

Plant B, Fault D -
goals -

(VALUE-REQ S-T-E YESTERDAY PROD-STOR-B

((VOLUME 1.0e6 1.0e6)

(ANALYSIS 73.61585 2.875854)

(INI-VOL 105.439 4.119049)))
(VALUE-REQ S-T-E YESTERDAY ACCN-T

((VOLUME 10.58294 9.082944)

(ANALYSIS 29.43035 -2.64964)

(INI-VOL 102.387 -9.08295)))
(LOOK-FOR-FAULT S—I-E YESTERDAY (YESTERDAY YESTERDAY))
(LOOK—FOR-FAULT S-T-E YESTERDAY (YESTERDAY TODAY))
(TRANSFER-OCCURED YESTERDAY PROD-STOR-B)
(TRANSFER-OCCURED YESTERDAY ACCN-T)
(LOOK—FOR-FAULT I-L YESTERDAY (YESTERDAY TOMORROW))
(INV-LOSS+SIM—OUT YESTERDAY) '
(INV-LOSS YESTERDAY)
(SINGLE-TRANSFER-ERROR YESTERDAY)
(SINGLE-INV-ERROR YESTERDAY)
(LOOK-AT CUSUMP TODAY)
(LOOK-AT MUFTESTP TODAY)
(CUSUM-P YESTERDAY)
(MUFTEST-P YESTERDAY 291.3813) 1
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sim—asserts - base data,

(ERROR YESTERDAY PROD-STOR-A -275.093)
(ERROR YESTERDAY BUF-TANK—C 210,1196) -
(ERROR YESTERDAY BUF-TANK-B 436.0869)
(ERROR YESTERDAY PFT -668.361)
(PROBLEM—~INV YESTERDAY PROD—STOR-A)
(PROBLEM=INV YESTERDAY BUF-TANK-C)
(PROBLEM—INV YESTERDAY BUF-TANK-B)
(PROBLEM—~INV YESTERDAY PFT)

sim—asserts:- produced by analytical approach,

(S-I-E ((PFTVOL-MEAS -18.845)
(BUFTBVOL-MEAS 13.50509)) NIL 1)
(S-I-E (((BUFTBANAL -0.911213)
(PFTVOL -9.78666)
(PFTVOL-MEAS -9.51926) (BUFTBVOL-MEAS 13.50509)))
(7845613123910 11 12) 3)
(S-I-E (((13 78.43061)
(CONCT1VOL-MEAS -1.11111)
(SOLEX1-LOAD 21.42752)
(SOLEX2-LOAD 21.42752)
(BUFTCANAL-MEAS 1.390303).)
((BUFTBANAL -0.911213)
(PFTVOL -9.78666)
(PFTVOL-MEAS -9.51926)
(BUFTBVOL-MEAS 13.50509)))
(7845613123910 11 12) 2)
(S=I-E (((CONC-INV 108.1671)
(PRODSTAVOL-MEAS -1.53238)
(SOLEX1-LOAD 21.62524)
(SOLEX2-LOAD 21.62524)
- (SOLEX1-INV -75.3563)
(SOLEX2-INV -75.3569))
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((CONC-INV 78.43061)
(PRODSTAVOL-MEAS -1.11111)
(SOLEX1-LOAD 21.42752)
(SOLEX2-LOAD 21.42752)
(BUFTCANAL-MEAS 1.390303))

( (BUFTBANAL -0.911213)
(PFTVOL -9.78666)
(PFTVOL-MEAS -9.51926)
(BUFTBVOL-MEAS 13.50509)))
(7845613123910 11 12) 1)

(S-I-E (((PFTVOL-MEAS ' -18.845)
(BUFTBVOL-MEAS 13.50509))) (13) 1)

(S-I-E (((PFIVOL-MEAS -18.845)
(BUFTBVOL-MEAS 13.50509))) (9) 3)

(S—I-E (((SOLEX1-LOAD 36.32323))

( (PFTVOL-MEAS -18.845)
(BUFTBVOL-MEAS 13.50509))) (9) 2)

(S—I-E (((PRODSTAVOL-MEAS -1.86382) |

(SOLEX1-LOAD 40.77165) (BUFTCANAL-MEAS 1.388878))
((SOLEX1-LOAD 36.32323))
((PFTVOL-MEAS -18.845)

(BUFTBVOL-MEAS 13.50509))) (9) 1)

(S—I-E (((PFTVOL-MEAS -18.845)
(BUFTBVOL-MEAS 13.50509))) (10) 3)

(S-I-E (((SOLEX2-LOAD 36.32323))

( (PFTVOL-MEAS -18.845)
(BUFTBVOL-MEAS 13.50509))) (10) 2)

(S-I-E (((PRODSTAVOL-MEAS -1.86382)
(SOLEX2-LOAD 40.77165)
(BUFTCANAL-MEAS 1.388878))

( (SOLEX2-LOAD 36.32323))
( (PFTVOL-MEAS -18.845)
(BUFTBVOL-MEAS 13.50509))) (10) 1)

(S—I-E (((PFTVOL-MEAS -18.845)

(BUFTBVOL-MEAS 13.50509))) (11) 1)
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(S-I-E (((PFTVOL-MEAS -18.845)
(BUFTBVOL-MEAS 13.50509))) (12) 1)
(S-I-E (((BUFTBANAL -0.911213)
(PFTVOL-MEAS -18.845)
(BUFTBVOL-MEAS 13.50509))) (6) 1)
(S-I-E (((PFIVOL -9.78666)
(PFTVOL-MEAS -9.51926)
(BUFTBVOL-MEAS 13.50509))) (1) 1)
(INTERPRET-MODEL S~I-E
((1 (1) (((6 -0.909553) (1 -9.78666)
(991 -9.51926) (995 13.50509) (3.130606))
(1 (6) (((6 -0.911213) (1 -0.494316) (991 -18.845)
(995 13.50509))) (3.395451))
(1 (12) (((6 -0.909553) (1 -0.494316) (991 -18.845)
(995 13.50509))) (3.606022))
(1 (11) (((6 -0.909553) (1 -0.494316) (991 -18.845)
(995 13.50509))) (3.606022))
(1 (10) (((13 23.9064) (1000 -1.86382) (9 2.051777)
(10 40.77165) (998 1.388878))
((4 -0.407746) (6 -0.67321) (9 1.827917)
(10 36.32323)) |
((6 -0.909553) (1 -0.494316) (991 -18.845)
(995 13.50509)))
(1.881204 2.490629 3.606022))
(1 (9) (((13 23.9064) (1000 -1.86382) (9 40.77165)
(10 2.051777) (998 1.388878))
((4 -0.407745) (6 -0.67321) (9 36.32323)
(10 1.827917))
((6 -0.909553) (1 -0.494316) (991 -18.845)
(995 13.50509)))
(1.881203 2.490628 3.606022))
(1 (13) (((6 -0.909553) (1 -0.494316) (991 -18.845)
(995 13.50509))) (3.606022))
(13 (7845613123910 11 12)
(((13 108.1671) (1000 -1.53238) (9 21.62524)
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(10 21.62524) (11 -75.3563) (12 -75.3569))

((13 78.43061) (1000 -1.11111) (9 21.42752)

(10 21.42752) (998 1.390303))

((6 -0.911213) (1 -9.78666) (991 -9.51926)

(995 13.50509))) (0.992551 1.159545 2.920035))
(0 NIL (((6 -0.909553) (1 -0.494316) (991 -18.845)

(995 13.50509))) (3.606022))))

The results are similar to the above but more complicated. The only candidates
that contain a single significant error are still those that identify one of the
solvent extraction plant loads and the same conclusions can be drawn.

6.8 Sensitivity Analysis

The results described here have all been obtained on the assumption that the
diagnostician’s perception of variable uncertainty is correct. That is, the plant data
sets have been generated with the same variance as those incorporated into the
analysis. No formal sensitivity analysis has been performed, partly because of a
lack of time but more importantly because of a difficulty in identifying a need.
A detailed analysis based on experimentation cannot be extrapolated to another
situation. '

However a number of ad hoc experiments have been carried out where reasonable
results have been obtained.
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7. CONCLUSIONS

A theory of model-based fault diagnosis has been presented in Chapter 2. Various
procedures to facilitate its application have been described in Chapters 3 and 4.
Some issues of implementation have been explored in Chapter 5 in the context of
a single specific application, that of NRTMA and some results pertaining to this
application are given in Chapter 6.

Care has been taken in preparing this thesis to separate theory from methods and
methods from application although the precise boundaries are still a moot point. It
is intended that the theory should be generally applicable in the engineering
domain whilst methods and implementation should be relevant to a reasonable
cross-section of applications. However it is accepted that the theory has been
developed from the author’s own limited viewpoint so is unlikely to be complete.

One particular aspect where this is certainly the case is that it has largely been
developed in response to the need to diagnose faults in information poor plants.
Other approaches are likely to be more suitable for information rich plants.
However it should be of, at least, philosophical interest to someone who thinks
that he is diagnosing faults in an information rich plant if only because it should
lead him to question whether his plant actually satisfies criteria necessary to
support - his assumption.

There are two main ‘aspects’ or ‘strands’ to the theory: the need for an
integrated approach and the need for common sense reasoning about quantitative
models. Both have an AI (artificial intelligence) flavour to them: the former
through the acquisiion and fusion of knowledge and the latter through common
sense reasoning. Both are about the specific, making it difficult to draw any
general conclusions. For instance, the approach has been shown to be successful
in the limited simulations déscribed in Chapter 6 but this cannot guarantee
success on the real plant. A sensitivity analysis involving a large number of
additional case studies would still not achieve this.

What matters more is that the theory should be deemed to have firm foundations
both from a philosophical and a pragmatic point of view.
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As highlighted by Chamiak et al (80), the human being has evolved with
well-developed senses whilst the computer has evolved with the ability to store
and manipulate vast quantities of largely numerical data. A human being will
have great difficulty multiplying 10-digit numberss whereas vision represents
considerable complexity to a computer. Similarly, a diagnostician will tend to shy
away from quantitative models because of his relatively poor numeracy but
computers have no common sense. There is therefore a case to combine the
quantitative powers of the computer with the common sense of the diagnostician.
That is, there is a case for common sense reasoning about quantitative models
since the suppleness of the human mind is well suited to handling uncertainty
surrounding such models. '

At a more pragmatic level, the theory argues against model-based fault diagnosis
as a panacea for fault diagnosis in favour of a data fusion approach where
model-based reasoning forms one input. That is, it accepts possible failings of a
model-based approach. One outcome of this is that a model-based approach
cannot be relied upon to alarm a fault.

The theory is based on two principles, a Principle of Re-Distristribution and a
Principle of a Minimum Number of Explanations. By arguing that modelling
inaccuracies manifest themselves as an erroneous re-distribution of mass, energy
and so on throughout a plant, thevfonner enables the diagnostician to relate to a
plant simulation at a more qualitative level whilst maintaining the rigour of
mathematical detail. Different faults .and model inaccuracies will result in
different re-distributions. Some will occur along known paths, others will not.
Differences between distibutions observed in the plant and those in the model can
then be related to these path and non-path errors. Of particular ‘concern here may
be that certain paths may be omitted from the analysis: the system should then
identify two non-path faults, one at each end of the hidden path. Hence the need
to take other knowledge into account and for the Supervisor to adjudicate
(Section 2.7).
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The Principle of a Minimum Number of Explanations argues that the
diagnostician is not interested in estimating model uncertainty but in locating
faults. His common sense would lead him to believe that gross re-distributions are
more likely to be as a result of a few faults and inaccuracies than of a large
number of small ones. He would then view his main task as being that of
identifying suitable plausible candidate sets of a few faults and model
inaccuracies. This is clearly contentious although arguably how a diagnostician
would approach a problem.

The purpose of Chapter 3 is to identify methods of alarming that a fault has
actually occurred, and of pérfonning a preliminary diagnosis, without recourse to
models. In practice, only one approach is considered, that relating to control
charts of primary characteristic variables; quantitative methods are proposed to
perform the alarm function whilst qualitative methods are proposed to perform a
preliminary diagnosis. Only one primary characteristic variable is considered in the
NRTMA application of Chapters 5 and 6, that of plutonium unaccounted for.
Section 5.4 shows how various fault categories can be hypothesised by applying a
set of rules to 4 different boolean time series derived by testing the time history
of material unaccounted for or its cumulative sum. It is unlikely that a unique
category will ever be identified; the rules merely identify an ordered list of
possibilities. These possible categories must then be assessed one at a time. Some
idea of the performance of the approach can be gleaned from the results from a
large number of simulations tabulated in Tables 1, 2 and 3. However, again this
should be viewed subjectively as the numbers, themselves, cannot be extrapolated
to any real plant. Finally turning to the specific fault studies described in Section
6.7, one particular conclusion that can be drawn is that the control chart tests
could be improved by incorporating the CUMUF test, explicitly.

The purpose of Chapter 4 is to identify methods of appraising a particular
candidate set of suspect faults and model inaccuracies. Again only one method is
considered here. This performs two separate tasks. Firstly, the determination of
the most likely value each element of a particular candidate set would take if it
was, indeed, the cause of the symptoms. That is those values that would best
explain the re-distribution. Secondly, an assessment as to whether or not these
values are more likely to occur than any other candidate set. The approach is
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conventional, being based on subjective probabilities. For computational efficiency
a number of candidates are appraised simultaneously. One possible implementation
is described in Section 5.7. Based on the limited experience to date (Section 6.6),
the approach appears to be successful. This is obscured, in part, by deficiencies
in the current implementation. The system was able to diagnose the correct fault
on every occasion on which the implementation was complete. On all other
occasions, it was able to diagnose something closely resembling the truth.

The main limitation up to now has been one-of the computer: it has taken
between 3 and 4 hours to appraise just 3 sub-lattices of the application candidate
space. The 8Mb of memory available on the VaxStation currently in use, is
suspected as being insufficient for the memory intensive lisp/FORTRAN
environment installed.

Finally the question arises as to how the approach compares with others proposed
elsewhere. The approach here is to tackle models, and their uncertainty, explicitly,
whereas other approaches take a more implicit view, attempting to develop
techniques which are robust to uncertainty. Clearly any comparison would have,
somehow, to specify what is meant by uncertainty and this is beyond the scope
of the work published here.

A great deai has yet to be done. The main contribution here has been the theory
whilst everything else has been more exploratory. Certain avenues have been
explored in depth, others at a superficial level whilst others, still remain
untouched. For instance, the Supervisor requires considerable research especially
into the process of adjudication; candidate appraisal over multiple periods needs
to be implemented and assessed; the knowledge-base developed so far is only
skeletal, considerable insight must be obtained by interacting with a working
facility before a robust, practical implementation can be produced; such an
implementation would require a -diagnostician-computer interface and so on. As
outlined in Section 6.2, the method of Chapter 4 may also need revising because
it assumes that the symptoms arrive synchronously which need not be the case.

To conclude, the model-based fault diagnosis of information poor plants is still in
its infancy, a great deal has yet to be done.
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APPENDIX: Time Series Studies

A number of simulations have been carried out to gain insight into how the
CUSUM test performs by itself, firstly with no fault and then with fault scenarios
which would cause the patterns described in Section 5.4. A constant throughput
plant was chosen with 1% random errors and a ratio of the physical inventory to
throughput to produce a serial correlation, p, of either -0.4 or -045 in the MUF
time series. The magnitudes of the faults were specified as multiples of the error
(W) in the plant throughput and not of Gyyge, as is the convention in the
assessment of detectors. The equivalent proportions of Gy can be obtained by
Arnultiplying the proportion of plant throughput by the factor /0.5+p).

The no fault situation was examined by performing 300,000 simulations for each
of 3 sets of h, k and p. A particular test sequence was stopped immediately it
alarmed. The following results were obtained

r

h = 3.059 h =5.00 h =3.059

k = 0.063 k =0.00 k = 0.063
p=-0.4 p=-20.4 p=-0.45

% % ' %
Period|Alarms|Credibility|Alarms|Credibility|Alarms|Credibility

11]10.17 1.00 0.00 1.00 0.18 1.00
2| 0.49 1.00 0.00 1.00 0.42 1.00
310.95 0.99 0.00 1.00 0.58 0.99
4 | 1.47 0.98 0.03 1.00 0.81 0.99.
s11.97] o0.98 0.09 1.00 | 1.02| 0.99
10 | 3.33 0.96 1.17 1.00 1.85 0.98
15 | 3.21 0.95 1.03 0.99 2.09 0.97
20 { 2.55 0.95 - - 1.96 | 0.97

Table Al: False Alarm Rates in Terms of % Alarms to occur for the
Ist time and Credibility. (300,000 simulations).
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The '% Alarms’ column is the percentage of tests. that alarm for the first time
on that particular period and ’Credibility’ is the proportion of the tests, that are
actually applied on a particular period, that do not alarm, It can be seen that,
initially, the false alarm rate increases until it reaches-a maximum. The power to
alarm any fault scenario then remains constant. That is it does not depend on
how much later the fault occurs ©3). (The apparent decrease in the % Alarm rate
is as a result of fewer tests being applied.) As is to be expected increasing h,
increases the credibility of the test and that the effect of serial correlation is
considerable.

A number of simulations (IO0,000/case) were carried out to examine the
performance of the test whilst the false alarm rate is increasing. Faults relating to
both Pattern 1 and Pattern 2 were examined and the same effect was observed in
both sets of results. A summary of the results obtained for Pattern 2 are given
below in Table A2. A single physical inventory measurement error was simulated,
firstly on period 1, then on periods 5, 10 and 15. The percentage of tests that
alarmed for the first time on a particular period were recorded. Note that the test
was restarted if it alarmed prior to the fault being applied.



- 142 -

PATTERN 2
Magni tude Period| + O +1 + 2 + 3 + 5
% Period
throughput |Applied
1 3.3 3.0 3.1 3.3 3.3
5 13.2 3.3 3.6 3.8 3.7
* 10 17.7 4.1 4.0 3.9 3.5
15 18.7 4.4 4.1 - -
1 11.1 7.9 6.3 5.2 3.8
5 31.3 5.4 4.7 4.0 3.1
° 10 37.0 | 55| 4.6 | 3.9 | 2.9
15 37.5 5.6 4.5 - -
1 27.6 | 15.2 8.7 5.6 3.0
5 55.3 7.4 4.8 3.4 2.0
° 10 60.5 6.7 4.3 3.0 2.3
15 61.2 6.6 4.3 - -
1 74.7 | 14.5 3.9 1.6 0.8
5 92.1 3.7 1.3 0.6 0.2
12
10 93.0 3.4 1.1 0.5 0.2
15 92.9 3.4 1.1 - -
Table A2

It can be seen that the power increases with increasing false alarm rate and that
the majority of alarms arise on the period the fault is applied.
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A general survey was then carried out to examine the test’s performance when
the various faults occur. All faults were applied from period 10 to give the false
alarm rate time to settle. The assessment was based on 10,000 simulations in
most cases because of the computational load. The results obtained, Tables A3,
A4 and AS, are therefore only suitable for qualitative comparison.
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