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NOMENCLATURE

Apart from the following reserved symbols used for the materials accountancy 
application

Ik the phys ica l  inventory  measurement at  the end of  balance
per iod  k

MUFk m a te r ia l  unaccounted for at  the end of  pe r iod  k

CUMUFk cumulative MUFk

Uk the n e t input measurement during ba lance per iod  k

Vk the e r r o r  va r iance  on Ik

Uk the e r r o r  va r iance  on Uk

the nomenclature will be as below:-

x j , a  lower case ch a rac te r s  denote s c a l a r  q u a n t i t i e s

Xk lower case under l ined  c h a rac te r s  denote v e c to r s .
The presence of  a subsc r ip t  s i g n i f i e s  tha t  the vec to r  
p e r t a i n s  to a p a r t i c u l a r  time pe r io d ,  k.

J ,  Pkl upper case c h a rac te r s  denote m a tr ices  or s e t s .
The presence o f  a subsc r ip t  s i g n i f i e s  a time p e r iod ,  
a p a r t i t i o n  or a square dimension.

Ac a p e r t u r b a t i o n  or d e v ia t io n  in v ec to r  £

t h i s  n o t a t i o n  is  used to rep resen t  the it*1 component 
(pk ) i i  a vec to r  or matr ix

J '  the symbol " * " i s  reserved fo r  the transpose  of a matr ix

0f the symbol * " is  reserved for those elements tha t  are
s i g n i f i c a n t l y  in e r ro r

I the i d e n t i t y  matr ix

i x i , |T|  the abso lu te  value of a s c a l a r  q u a n t i ty  and the 
determinant o f  a square matr ix



E{x} the expected value  of  a random v a r i a b l e  x

var{x} the va r iance  of  a random v a r i a b l e  x

cov{x,y} the covar iance between two random v a r i a b l e s  x and y

cor{x,y} the c o r r e l a t i o n  between two random v a r i a b le s  x and y

Log the n a tu ra l  logari thm

Max the maximum element in a l i s t  or set  o f  rea l  or in tege r  
numbers

Quantities that frequently have the same meaning are listed below.

5k >5k t îe measurement v ec to r  and i t s  model p r e d i c t i o n  
at  the end o f  time per iod  k

xk the s t a t e  v ec to r  at  the end o f  pe r iod  k

U the set  of  a l l  non-path  f a u l t s  and measurement b ia se s

¥ the set  o f  a l l  parameters  and v a r i a b l e s  necessary
to desc r ibe  the r e - d i s t r i b u t i o n  process

0 tha t  sub-se t  o f  ¥ which the d ia g n o s t i c i a n  is  u n c e r t a in
about

2k the vec to r  o f  parameters and v a r i a b l e s  necessary  to
desc r ibe  the r e - d i s t r i b u t i o n  process

£k the vec to r  o f  those elements o f  0 tha t  are c u r r e n t l y
of i n t e r e s t  on per iod  k

s k a measurement b ias

xk zero-mean measurement noise

nk non-path  f a u l t s

%  the combination of  measurement b ia se s  and non-path  f a u l t s

£j the j t k  n a tu ra l  b a s i s  vec to r



pk the covar iance matr ix  o f  M k

Rk the covar iance matr ix  of  the measurements

J a Jac o b ia n - l ik e  matr ix

Pi the c o r r e l a t i o n  between MUFk and MUFk+1

the var iance

ABBREVIATIONS

CUMUF cumulative material unaccounted for 

MUF material unaccounted for

NRTMA near-real time material accountancy



SUMMARY

A theory of model-based fault diagnosis is proposed which is suitable for
non-linear plants that are information poor. That is, there are a bare minimum of 
sensors available to operate the process without recourse to analytical redundancy, 
the sensors output at frequencies which are likely to be low, relative to the 
dynamics of the plant, and there is considerable uncertainty surrounding any 

mathematical models that are available. Other approaches are likely to be more 
suitable for information rich plants. However, it should be of, at least, 
philosophical interest to the diagnostician who assumes that he is dealing with 
such a plant, if only because it should lead him to question whether his plant 
actually satisfies criteria necessary to support this assumption.

The theory argues against model-based fault diagnosis as a panacea for fault

diagnosis in favour of a data fusion approach where model-based reasoning forms 

one input. One consequence of this is that a knowledge-based approach is
proposed to implement the different inputs that are possible and to fuse their
conclusions. Another is that a model-based alarm system is thought undesirable. 
Methods are therefore proposed, both to alarm that a fault has actually occurred 
and to perform a preliminary diagnosis, without recourse to models. Based on 

control charts, these seek to combine well-known, detection theory with a 

qualitative approach to pattern recognition: the former performing the task of 

alarm generation, the latter diagnosis.

It is proposed that model-based reasoning be based on two principles, a Principle 
of Re-Distribution and a Principle of a Minimum Number of Explanations. The

Principal of Re-distribution provides the diagnostician with a formal qualitative
approach to explaining discrepancies between plant and model whilst maintaining

quantitative rigour. This leads to the construction of a candidate space of all

possible combinations of all possible explanations. The Principle of a Minimum 
Number of Explanations is then proposed as a strategy for searching this space. 
Based on common sense, it attempts to imitate the diagnostician.



-  X

A method is then described to appraise a particular candidate set of suspect faults 
and model inaccuracies. This assumes that the diagnostician has some subjective 
view of errors in both the model and measurement systems.

The application of both theory and methods to one particular process, that of 
near-real time material accountancy in fuel reprocessing plants, is described. This 
has been implemented in a hybrid lisp/FORTRAN environment: the alarm system, 
model-based reasoning and other knowledge sources being implemented in the lisp 

environment; plant simulation and candidate appraisal being implemented in 

FORTRAN. The lisp environment consists, essentially, of multiple production 
systems. Inference is by forward chaining. System performance to various fault 
scenarios is investigated, with encouraging results.

A great deal has yet to be done and various issues that are still outstanding are 
raised in the Conclusions.
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1. INTRODUCTION

1.1 General

It is possible that, in the years to come, cheap, robust, reliable instruments will 
be available to measure every possible process variable that exists in any plant. It 
is also possible that we will develop an acute understanding of the physical 

processes that arise in any plant. With these capabilities we should be in a 

position to detect and locate any fault, almost immediately, by comparing the data 

collected with appropriate, valid mathematical plant models. Unfortunately, in some 
industries at least, we are a long way off this desirable state of affairs. 
Instruments are either not available, too expensive, in terms of either capital or 
maintenance costs, or unreliable making instrument failure a possibility. Valid 
models may also not exist

Over the past two decades, considerable research (W  has been carried out into 
the detection and diagnosis of faults. Various approaches have evolved including 
analytical redundancy (10K constraint suspension (n > and qualitative reasoning*72-1. 
These have largely focused on plants or systems that are information rich: either 
in the sense that there is a proliferation of sensors throughout the plant, the
outputs of which are of a sufficiently high quality and are recorded at frequencies 

much higher than that of underlying process fluctuations or in the availability of 

models that are accurate in terms of structure and parameters or both. Certain 

approaches discriminate between linear and non-linear plants te  13h in these cases, 

it appears W that work on non-linear aspects is still in its infancy. A large 

number of possible applications have been identified including electronics (11K 
nuclear power plants (14-i6), process plants (13-17-18) and ships (19K

This research has taken a scientific approach in that it has attempted to seek

systematic formulations that are generally, if not universally, applicable. Thus 

mathematical techniques have been proposed (13W  to improve the robustness |]to 

uncertainty in* the models. The question then arises as to what happens if these
formulations are inappropriate? Should the diagnostician give in? Faced with such
a situation, he would probably use his common sense (30> and whatever tools that



are available to him, to make a judgement specific to the particular situation he 
is faced with. He would not aim for some grand rigorous statement about plant 
operation, but would confine himself to finding the fault. Faced with uncertainty, 
he would be prepared to be wrong.

This thesis describes a common sense approach to model-based fault diagnosis 
that is suitable for non-linear plants that are information poor. That is, there are 
a bare minimum of sensors available to observe the process without recourse to 

analytical redundancy, the sensors output at frequencies which are likely to be 
low relative to the dynamics of the plant, and there is considerable uncertainty 
surrounding any models that are available. Such plants may not only exist by 
design; for instance, the initial failure at Three-Mile Island ^  caused the plant 
to enter a state which was unlikely to have been modelled previously and where 
the diagnosis of subsequent failures was key to shutting the plant-down in an 

orderly manner. The work has been motivated by one specific process, that of 
fast reactor fuel reprocessing and in particular, in the application of near-real time 
materials accountancy (48> to a reprocessing plant. Near real time material 
accountancy (NRTMA) is a method of enhancing conventional material 
accountancy techniques to improve the sensitivity and timeliness of detection 
through the use of in-process instrumentation (generally operator equipment) to 

increase the frequency of the account. A fault is then deemed to be any 
significant error in the account. Difficulties may arise because the sensor systems 
and modes of plant operation are optimised for reprocessing and not for NRTMA.

The remainder of this Chapter is devoted to explaining the various terms: fault, 
information poor, diagnosis and model-based and outlining the contents of this 
thesis.



1.2 Faults

As defined by Isermann (4> a fault is any nonpermitted deviation of a 

characteristic property which leads to the inability ta fulfil the intended purpose. 
Himmelblau M defines a fault as a synonym to designate the departure from an 

acceptable range of an observed variable or calculated parameter associated with a 
piece of equipment. Both are difficult to implement, the former because of 
difficulties in knowing which deviations are permitted, the latter because of the 
number of variables and parameters in a plant.

The control of any plant is usually hierarchical in nature in that the primary 

control objective is normally described by a few characteristic quantities which 
are affected by other characteristic quantities attributed to the next level down 
and so on. For instance the primary objective of a power station is to supply
power as required, that of a factory energy management system is to minimise 
total energy consumption and that of a materials accountancy system in a nuclear
fuel reprocessing plant is to account for the total throughput of nuclear material.
These individual objectives are dependent on the operation of specific plant 
components which in turn can be viewed as being made up of sub-systems and 
so on. The net effect is often that the plant operator will tend to ‘drive’ the

plant on data derived from the upper levels of the hierarchy and leave 
information pertaining to the lower levels to the plant maintenance engineers. Data 
at the lower levels may be used to trigger alarms or be presented to the operator 
for information; other items may not be. communicated to the operator at all and 

may not even be recordable. Indeed there is often an economic case against 
over-instrumentation on the grounds of both capital and maintenance costs. Certain 

malfunctions may therefore only be detected if and when they affect the control 

variables monitored at the upper levels or during scheduled maintenance. If they 

do affect the upper levels then the effect is unlikely to be unique.
. .• - . One

can therefore identify a corresponding hierarchy of malfunctions where those at 

the top are critical to plant operation whereas those at the bottom can wait until 

scheduled maintenance.



This thesis attempts to differentiate by defining a fault or malfunction as any 
occurrence in time that results in the plant deviating from its intended mode of 

operation. This may be as a result of the total failure of a component or a less 
serious misalignment or maladjustment; it could be as a result of measurement 
bias or of some external affect. For instance, an operator or plant engineer may 
take an incorrect action or there could be an unpredicted variation in the 
feedstock. Some malfunctions may only occur once and last only a short period 
of time, others could be more regular but still be intermittent whilst others could 
develop very slowly.

1.3 Information Poor Plants

It is difficult to define, succinctly, what one means by a plant being information 
poor. The term has largely been derived from inferring what the plant is not, 

that is information rich. Scarl et al (18> use the term sensor-rich to describe an 
environment with an abundance of on-line instrumentation. Himmelblau & 

describes the temporary need to install additional sensors and to perform special 
tests to diagnose certain faults in chemical plants, that is to increase the quantity 

and quality of the information flow from the plant. One of the aims of the 
philosophy proposed here is to provide the diagnostician with evidence to support 

the case for such resource intensive activities.

Consider a hypothetical plant which is information poor. The flowrate and 
composition of the feedstock may vary and although attempts may be made to

monitor it, there may always be a possibility that the monitoring process might 

be fooled because certain properties, eg temperature, might be out of range or it 

might not be designed to monitor certain features or chemicals. The feedstock 

may also vary at a rate which is significant relative to the frequency at which it

is being monitored. The operation of individual units in the plant may be varied
with pumps being stopped/started, valves being opened/closed and so on. The

operator may not need to record, accurately, the times at which each activity



takes place but such information may be needed as input to a simulation for 
diagnosis purposes. Faults may not only arise because of instrument or actuator 
failures but also because of, for instance, the build-up of crud (ie solids). It is 
unlikely that a simulation would be able to predict all possibilities.

1.4 Fault Diagnosis

Fault detection, diagnosis, isolation and location are generic terms which are used 
either singly or combined (4<6#-17) to describe the process of ascertaining that a 
fault has arisen and of determining its location and cause. Here we assume that 
the term fault diagnosis <6> subsumes them all.

A large number of model-based techniques have been published to detect faults 
and there is still considerable research in this area that is o n g o i n g ( 8 3 , 8 5 ) t One or 

more of their assumptions are usually violated when applied to non-linear plants 
which are information poor. A common approach to circumventing any uncertainty 

is to introduce thresholds to distinguish a fault. The problem with thresholds is 
that they not only reduce sensitivity to faults, but also vary with variations in the 
plant inputs and disturbances. Choosing the threshold too small increases the false 
alarm rate; choosing it too large reduces the power to detect.

There are two main approaches to determining the location and cause of a fault: 

either a set of all possible faults may be formed and the effect of each 
individual fault compared with that observed or an argument may be derived on 
the basis of deviations from what is expected. Rasmussen <21> uses the term 

symptomatic search to denote the former and topographic search the latter.



The two main ways of performing symptomatic search appear to be the fault 
dictionary M and the diagnostic tree (24K The fault dictionary is a list of causes 
and effects, and diagnosis is performed by looking up the effects in a

cause-effect table to see what the cause was. The diagnostic tree is a way of 
constraining the search to go along different diagnosis paths. Both techniques use 
look-up tables. For instance, alarm procedures have been used to sort out alarms 
which are present on the basis of prestored data of association links between the
alarms (24K There are a number of difficulties with using these techniques in

larger plants. A large number of entries may be needed in the look-up table. 

Sufficient data and resources must be made available to trace the faults through 
the plant. It is very important that all potential faults have been predicted in 

advance; this can be difficult, if not impossible, in large plants. If this a priori 
analysis is not complete and correct, then diagnosis may not only be impossible 
but also positively misleading. They are therefore of only limited applicability to
plants that are information poor.

Topographic search methods rely on their ability to predict plant performance so 
that discrepancies or residues can be used to diagnose the fault. There appear to 

be two approaches, analytical redundancy (10> which derives from modem control 
theory and the method of violated expectations (lli22) which comes from Artificial 
Intelligence. Both appear to be applicable to diagnosis in plants which are 
information poor because they do not require a priori knowledge of possible 
faults.

The technique known as constraint suspension IW is derived from the method of 
violated expectations. Faults are not hypothesised explicitly but are hypothesised in 

teims of their observed affect on the system. For instance, a control actuator 

failure could be identified by the hypothesis, ‘a constant valve opening of X% 
would explain all the discrepancies or symptoms observed.’ Faults may therefore 

be systematically isolated without recourse to the set of all possible faults. The 

technique lends itself to a hierarchical approach in that it should be possible to 

generate*77-1 discrepancies at component level, then sub-component level and so on. 

However this is likely to neglect common mode failures which can percolate 
through lower levels. For instance, control valves may be pneumatically driven 

from the same air supply or chemical samples may be analysed at the same



laboratory station. A common mode failure may then be misinterpreted as being a 
multiplicity of different faults at the component level.

One approach an analytical redundancy technique, is to recourse to on-line 
identification to evaluate the model parameters. Unexpected changes in these 
parameters can then be correlated with possible fault scenarios. This assumes that 
either the parameters are known explicitly or they can be identified prior to any 
fault developing. Problems arise with either assumption when dealing with an 

information poor plant, firstly because of uncertainty regarding the model structure 

and secondly, because the frequency of data collection is low relative to the 
variation in feedstock and changes in mode of operation. It is difficult to ensure 
that there will be sufficient information to perform identification in a reasonable 

timescale and that no fault develops whilst the initial identification proceeds.

1.5 Modelling

There is no such thing as a unique model of a process Any model-based 
approach which is applicable to information poor plants must tackle uncertainty 

surrounding model structure and parameters. Choosing a relevant model may not 

be straightforward, because the decision as to whether or not a ‘valid model is 
available, must be taken in the context of the application. Validity is application 

specific. For instance, a model need not be perfectly accurate for the purposes of 

constraint suspension; it need only be sufficiently accurate to ensure the 
uniqueness of the mismatches.

This leads us to the fundamental philosophical question: can a model be proved 

to be correct when used in the context above? The basis for an answer to this 

question was first provided by the philosopher Sir Karl Popper (31) in 1934, who 

was interested in the characteristics of a scientific theory. In Popper’s view, a 

theory can never be proved by any of its successes, since a new test, perhaps as 
yet not thought of, may come along that it will fail. Failure in any fair test, on



the other hand, indicates a fault in the theory. One possible interpretation of this 
is that models may evolve or learn by their failures: a model may be deemed to
be valid until it fails to detect and locate a particular fault when the model can
be revised to take account of that particular failure* However this may be of 
limited utility because the same fault might never occur twice: for instance, it 
may have resulted in a design re-evaluation or a change in operational procedure. 
Clearly the credibility of any fault detection and diagnosis system would also 
depend on the frequency of model failure.

This thesis describes an alternative view which •

is more pertinent to fault diagnosis. It requires that the
diagnostician understand concepts of systems modelling and in particular the Laws 

of Conservatioa That is, the diagnostician does not treat the model as a set of 
equations but rather as a mathematical description. Lind has proposed one
possible approach based on this theme. He uses a method of computer modelling 

he calls How Modelling to predict the distribution of mass and energy around a 
plant. This distribution can be compared with the measured distribution and faults 
hypothesised to explain the pattern of discrepancies <26K

1.6 Overview of Thesis

This thesis is divided into three parts: theory, method and practice. Chapter 2 
describes a theory of model-based fault diagnosis applicable to any plant. The 
approach adopted is rather laborious but necessary to ensure general applicability. 
Chapters 3 & 4 outline methods which implement certain aspects of the theory. 
Chapters 5 & 6 then describe one particular application, that of NRTMA. Neither 

theory, method nor practice are complete; Chapter 7 therefore lists some aspects 
that are still outstanding.



2. A THEORY OF MODEL-BASED FAULT DIAGNOSIS

2.1 Introduction

The main aim of any fault diagnosis system is to hypothesise possible faults or 
classes of faults which explain the measurements observed. A model-based fault 

diagnosis system works on the premise that it is possible to generate suitable 

hypotheses by looking at the discrepancies between model predictions and these
measurements.

♦ What techniques can be used to hypothesise these faults?
♦ What level of detail is required of the simulation?
♦ What is meant by explains?

♦ If more than one fault is hypothesised, can they be ordered in some 
way?

Any theory of model-based fault diagnosis must tackle these basic issues.

Model-based fault diagnosis is discussed and problems of model validity raised. 
These are circumvented by proposing that the measurements to be explained 
should be restricted primarily, to those measurements that have nominal values.
That is those measurements that are usually capable of being alarmed. Such a 

system is unlikely to identify a specific fault unless the fault invokes a unique 

combination of symptoms. It is therefore proposed to reduce the number of 
possible candidates by requiring the simulation to explain other aspects of the 
data collected. Further questions then arise as to how the ‘other aspects of the 

data collected’ should be identified and handled.

The theory is presented as a set of propositions in italics.



- 10 -

2.2 A Strategy For Model-Based Fault Diagnosis

What do we mean by model-based fault diagnosis?

In its simplest form (8) it can be considered as consisting of a parallel simulation 
predicting plant measurements, a comparison between these predictions and the 
actual measurements and a means of generating fault hypotheses on the basis of 
any discrepancies obtained.

measurements

FEEDS
DISTURBANCES
MANIPULATED
VARIABLES

measurement
predictions

FAULT
DECISION

MODEL

PROCESS

Figure 1: Model-Based Fault Diagnosis

A slightly more sophisticated arrangement^ is where the simulation outputs model 
parameters instead.

FEEDS
DISTURBANCES
MANIPULATED
VARIABLES

PROCESS
measurements

PARAMETER
ESTIMATION

FAULT
DECISION

¥
Figure 2: Model-Parameter-Based Fault Diagnosis
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There are two ways of generating hypotheses: either the system can hypothesise a 
fault explicitly by correlating the discrepancies with those predicted a priori on 
the basis of a list of hypotheses or it can specify it in terms of that set of plant 
conditions that would explain the discrepancies. The former can suffer from
problems of completeness, of validity, because models must be known a priori, 
and of practicability, whereas the latter suffers from problems of validity. Both 
have a role to play provided they are applied selectively.

If symptomatic search, ie the former, were to be pursued by itself, it would 
require that the list of possible hypotheses be complete even if only a small 
proportion of malfunctions are of direct interest. A malfunction can be thought to 
occur for one of three reasons: as a result of noise, of a malfunction in the 

measurement or alarm system, or of a plant malfunction or maloperation. For

instance, a measurement system might malfunction because of a hardware fault, a 

violation of the physical model upon which the measurement is based (eg single 

phase flow), a parameter error (eg the device may not include any temperature 
compensation although it might be susceptible to changes in temperature) or an 
error in the actual recording process. Only a plant malfunction or maloperation is 
crucial to plant operation, a malfunction of a measurement system may be crucial, 

indirectly, because it might mislead the operator or provide him with insufficient 
information on which to operate the plant The others merely affect the credibility 
of the alarm system. But all must be entered on the list It is unlikely that the 
list will ever be complete. This does not mean that techniques based on previous 
observations, whether direct or through simulation, like fault dictionaries or 
diagnostic trees cannot be applied with success but rather that there is often no 
guarantee that they can be.

If topographic search were pursued by itself, then the diagnostician would be 

relying on his ability to simulate all effects. His chosen model would have to be 
robust in that it would have to be valid for any operating regime. This includes 

those scenarios not foreseen during the development of the model. It is unlikely 
that it will ever be possible to guarantee robustness in general even if modelling

and fault diagnosis techniques were to be optimised with this in mind.

The following propositions seem reasonable given that neither approach is perfect.
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Model-based fault diagnosis should pursue topographic search.

Given that there is a poor chance of success in producing a complete list of 

hypotheses for information poor plants, the only option appears to be to examine 
whether topographic search can be made sufficiently robust to diagnose most 
faults. However there is one proviso.

Model-based fault diagnosis must not exclude non-model-based approaches.

It would be a folly, against this background of uncertainty, to omit any technique 
capable of generating fault hypotheses whether they produce specific or classes of 
faults. For instance, hypotheses could be generated by applying heuristics which 
either pertain to past history or to any peculiarities that are known about current 

operation or even to some profound thought that the operator might have. 

Although the proposed system is notionally based on models, it must be able to 

combine or fuse the lists of hypotheses obtained by applying any technique 
available. That is, it must include non-model-based symptomatic search.

One possible approach, Figure 3, to implementing such a system is to hold 
knowledge pertaining to each technique in separate knowledge-sources arranged in 
,a star network around a supervisor which gathers and combines the various 

hypotheses. The system is data-driven in that the various measurements are 

analysed by the various knowledge-sources.
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Another
Knowledge-
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M odel-based 
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Figure 3: Outline Knowledge-Based Approach

A number of guidelines seem appropriate to regulate the generation of hypotheses 

from the various knowledge-sources.

Hypotheses must be justified

A  fault diagnosis system cannot say ‘this is the fault’ unless it has actually 
observed it. For instance, an instrument may only be definitely at fault if it is 
outputting a signal which is not attainable irrespective of the actual state of the 
substance being measured. The best it can do is to present the operator with a 

list of hypotheses together with supporting evidence. It is then up to the operator 

to either choose between them or even decide on something quite lateral. What is 

important though is that the list of hypotheses, themselves, must be properly 

justified or validated. Clearly the credibility of a fault diagnosis system will 

depend on the validity of its suggestions.
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Hypotheses must be valid

How can a diagnostic system be certain that it is producing valid or justifiable 
hypotheses. One of the central themes of Popper’s work (31> is that a scientific 
theory must be falsifiable. The equivalent, in fault diagnosis would be that all 
hypotheses should be readily testable. Unfortunately, faults may be intermittent. 
Others may be difficult to test in that they may be due to a peculiar operating 
regime or, for instance, a build-up of sludge somewhere in the plant. Such a 
criterion may not, therefore, be practicable.

A looser criterion is needed in cases where the criterion of testability is not 
practicable. If the hypothesis cannot be tested directly, why not test the indicators 
used to generate the hypothesis instead. This concept has a considerable impact if 

models are used to generate hypotheses because the model structure, its 

parameters, inputs and the assumptions it is based on, must all be testable. A 
complicated model with a detailed structure, a large number of parameters 

identified on-line and a host of assumptions will be difficult to validate.

Testability tends to undermine credibility in that a fault diagnosis system will not 
be too popular if it either continually asks the operator to obtain information in 

addition to that already available or requires a large capital investment to increase 

the scope of the data collected. The criterion of testability encourages simplicity.

2.3 An Introduction to Modelling For Fault Diagnosis

It may be concluded from the above that the simplest, valid model possible 

would be the ideal choice for a model-based fault diagnosis system. What is 

meant by valid] Before discussing this, it may be worthwhile to reflect on some 

of the issues that surround the development and application of models.
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2.3.1 Mathematical Models - Their Structure

The normal approach to developing a physical law based dynamic model of a 
system is to perform one or more balances of either the system, in its entirety,
or of the system divided into a number of sub-systems. For instance, these
balances may be of mass or energy or momentum and the sub-systems may be

obtained by dividing the system into individual physical components. These 

balances may be used to estimate the change in internal state of the individual 
sub-systems over any period in time, k,

s t a t e  a t  end of  pe r iod  k = s t a t e  a t  beginning of  pe r iod  k
+ net  change over pe r iod  k

This assumes that the state within a particular sub-system is either uniform or

varies in some pre-defined manner, for instance, linearly. The state at the end of
period k will therefore be known provided both an initial condition and the net
changes over the periods are known.

The balances that are applied to any specific situation are chosen to estimate 

certain properties of a particular sub-system directly. For instance, these
properties may include volume, mass, density or enthalpy. These properties are

often denoted by the term ‘state variable’ when applied to these sub-systems.

There may be more than one way in dividing a particular system into 
sub-systems. The decision is usually made on the basis of the assumption 
surrounding the variation of the state within the sub-system, the need to calculate 

the appropriate net changes and in computational complexity. The larger the 
number of sub-systems, the greater the chance of internal uniformity. Conversely, 
the larger the number of sub-systems, the larger the number of net changes that 

need be determined and the greater the computational problem. The chance that 

these net changes can be estimated directly from available in-process

measurements also reduces as the number of sub-systems increases: recourse must 

then be made to estimation on the basis of differences in properties between 

‘neighbouring’ sub-systems; this evaluation often involves parameters which need 

identifying. On-line identification may then be necessary if some of these
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parameters vary with the state of the plant. Although this may not cause 
problems in particular applications, it does require that any identification be 
carried out either prior to any fault developing or at a pace slow enough to 

ensure that any fault is not identified as being a parameter variation. 
Alternatively, if discrepancies are based on parameter variations then these must 
be identified quickly enough and with no ambiguity.

There is therefore a case to minimise both the number of sub-systems involved 

and the number of parameters that need on-line identificatioa One approach to 

this is to accept that the assumption of internal uniformity may be violated 
provided that the internal variation can be shown to be within reasonable bounds. 

That is, to use a lumped parameter approach in general. This has the effect that 
a particular measurement of a sub-system may differ from that estimated by the 
model. The measurements are said to have 1 systematic errors’. In addition, the 
expressions used to determine the net changes are also likely to be affected.

2.3.2 Mathematical Models - Disturbances and Manipulated Variables

In reality there could also be some uncertainty surrounding the specification of
the inputs to the model. These may be viewed as largely being the manual 

interventions that are used to drive the plant For instance, set-point changes and 

times at which pumps are switched on or off. Times at which operational modes 

are changed may only be recorded approximately and may relate to the start, 
middle or end of the change-over sequence; certain variables, that are not critical 

for plant operation, may not be recorded reliably; it is not necessarily certain that 
what was recorded using one convention during one period, would be recorded in 
the same way during the next and so on. It may therefore be difficult to
produce a quantitative model of these inaccuracies objectively: for instance, certain

variables could be extremely accurate one period and in considerable error the 

next.
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2.4 Defining the Stucture of a Model-Based Fault Diagnosis System

The following statements now seem evident,

Model-based fault diagnosis is realty automatic model refinement

The decision as to whether or not a model is valid must be taken in the context

of the application; the context here being its ability to explain the measurements.
Model-based fault diagnosis would like to assume that all the discrepancies 
between the actual measurements and its own model predictions are as a result of 
either some fault or noise. That is, it would like to assume that the model is 
valid. Unfortunately this is often not possible because of the uncertainty described 
above. Either the process of model-based diagnosis must be viewed as being the 
process of diagnosing both model inaccuracies and faults, or robust methods must 
be evolved or thresholds must be introduced resulting in reduced performance as 
described in Chapter 1. If the faults are included in the model then diagnosis can 

be viewed as performing automatic model refinement to ensure model validity.

Automatic model refinement is not a panacea for fault diagnosis

The term automatic model refinement is largely a misnomer because it will 

always require some degree of interaction with the user: someone must tell the 

system what is, and is not, possible. The plant operator is unlikely to accept this 
change in emphasis if it requires him to investigate problems of model 
inaccuracy. Model-based reasoning cannot, in general, be viewed as being a 
panacea of fault diagnosis.

This leads to the following proposition.
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Preferably, fault diagnosis should not be centred on model-based reasoning.

We have already argued that model-based fault diagnosis should be augmented by 
other knowledge. We now argue that model-based fault diagnosis should, itself, 
augment something else. If it is known that a fault exists and it can be classified 
in some way, then model-based reasoning can focus the model refinement on 
these aspects and effectively play-down problems of model validity. A procedure 
for doing this is described in Chapter 3.

The knowledge-based approach would then be revised as shown below.

Fault 
D etection 

and 
Partial 

k Isolation

M odel-based 
Fault 

i  Isolation J

SUPERVISOR

Another 
Knowledge- 
k S ource?  ,

Plant

History

Figure 4: A More Realistic Knowledge-Based Approach

Clearly this does not rule out the possibility of a model-based approach remaining 

central, it merely stresses its undesirability.
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2.5 Non-Model-Based Fault Detection and Partial Isolation

A plant is rarely operated precisely to a state determined by a model. A model
may be used to derive, for instance, a flowsheet, so that plant control variables 
like flowrates and pressures can be input as controller setpoints but other 
variables will be allowed to take up there own values. However, certain variables,
often called characteristic variables, will be key to satisfactory production and will

be monitored closely in that a nominal value and tolerances will be specified and 
alarms will be set to alert the operator of a problem. These variables may have 

to be estimated on the basis of other measurements. For instance energy 
consumption must be obtained by integrating instantaneous power over the period 

or the position of the heavy metal front in the first stage of a solvent extraction

system may have to be estimated by either looking at the rafinate or some other
measurement.

It is commonplace for the operator to display charts of these variables to enable 
him to detect the occurrence of a fault These charts may simply be plots of the 
individual instances in time or of cumulative instances in time or of some other 
variable^. Depending on the application they may be updated almost continuously, 
every minute or hour or even every day. The frequency largely depends on the 

methods of data collection available and the rates at which faults are expected to 

develop. Although quality control. techniques deal primarily with open loop

processes they may also be applicable to closed loop situations where, for 

instance, the quantities of interest could be the states of the final control
elements.

It is therefore proposed that fault detection and partial isolation should be based 
on the deviations in these variables. Although they are likely to deviate during 

normal operation, techniques exist to accommodate these effects. One possible 

methodology is described in the next Chapter.
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Unfortunately restricting the number of measurements in this way reduces the 
possibility of identifying a malfunction uniquely. Hence the need for model-based 
reasoning. There is now a difference though because it need only be applied once 

the deviations have first been used to say that there is a malfunction and 
secondly been used to initiate the diagnostic process.

Fault diagnosis must now be considered in terms of two separate contexts: of 
deviations and model-based reasoning.

A diagnosis will first be deemed to be valid if, with the fault hypothesised 
included, all deviations are returned to within tolerances. Having satisfied this 
context, the model must then predict all other measurements to. within 
measurement tolerances.

2.6 Model-Based Fault Diagnosis

2.6.1 Modelling for Fault Diagnosis

Model invalidity can be tackled in two ways: either a model must be chosen 
carefully to ensure that it can never be invalidated or we must reason with 
multiple models. Although in Popper’s view a scientific theory can never be said 

to be irrefutable, it is unlikely that this event will occur in the models of interest 

here. It is not the universal laws that will fail but the way they are applied. We 
therefore argue for a single model, examine the modelling issues necessary to 

achieve this and propose a single-model-based diagnostic system.

One may persist and still ask the question as to what happens if the model is 

found to be invalid. Is the system discedited? Although unlikely to occur, the 

assessment carried out on the basis of the deviations will still stand, only the 

conclusions based on the other symptoms will be put into doubt
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2.6.2 Handling Uncertainty With a Single Model

We tackle model uncertainty as far as it concerns fault diagnosis by examining 
how to ensure the successful application of the Laws of Conservation. We start 
by considering the simplest structure, that of a single open system. If the system 
is viewed as a whole, then Laws of Conservation can be applied both simply 
and accurately provided that transfers into and out of the system are monitored 
accurately. If the transfer errors can be assumed to be error free then we can 
infer global conservation.

One of the main concerns when applying the Laws at a more local level is to 
ensure that global conservation is maintained. This is often achieved 
computationally by using unique variables to define the flow from one sub-system 

to an adjoining one. If global conservation is maintained, then the effect of any 

simulation error, whether structural or due to parameter uncertainty, will be 

observed as a re-distribution of the values taken up by the various state variables 

defined when forming the balances. For instance, mass may be re-distributed.

If these sub-systems are chosen along physical boundaries, the flows between the 
sub-systems will align with the well-defined physical connections of the system. 
The effect of any simulation error whatsoever must then manifest itself at the 
physical ports of the sub-system. It follows that any simulation error in a 
particular sub-system will cause a re-distribution to neighbouring physical 

components.

Similar re-distributions will also be obtained if a process fault results in a change 
in the flow pattern. For instance, a faulty valve may cause a re-distribution of 

mass. If this type of fault is denoted by the term path fault then non-path faults 

will be those faults that only affect a single sub-system. A typical example is 

that of a measurement error. It follows that non-path faults will affect global 

conservation whereas path faults will not
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The question therefore arises as to whether a particular re-distribution can be 
attributed, uniquely, to a particular class of simulation errors or faults. It is
envisaged that the only faults that would produce a similar re-distribution would 
be those that had a direct effect on the paths between sub-systems. Other faults 
would either have a more local effect, for instance measurement errors, or
percolate through some other set of paths, for instance common mode failures.

It should therefore be possible to locate and to discriminate between simulation 

errors and path faults on the one hand and non-path faults on the other, by 
assessing these re-distributions. However some form of further investigation will 

be required to discriminate between simulation errors and path faults.

This leads to the suggestion that the state variables should be estimated, either 

directly or indirectly, from in-process measurements and compared with model 

predictions. Clearly, it may not be possible to estimate every state variable: the 
more states that can be estimated, the better the discrimination.

One obvious pitfall with this approach is that of initial conditions: the Laws of
Conservation may be applied successfully but the end result may still be in error. 
Incorrect initial conditions may be viewed as being equivalent to non-path faults 
that only occur on the time period that the simulation is started. This must be 

accommodated in the fault diagnosis system.

The model structure may be suspect because of problems with internal uniformity. 
It is proposed to ignore this issue, explicitly. Inaccuracies with the model 
structure will then be mistaken for non-path faults because the state measurements 
may now appear to be biased and path faults because the inter-sub-system flows 
may now be calculated incorrectly.

These concepts can be loosely described as a principle, a Principle of 

Re-Distribution.

«



- 23 -

2.6.3 Model Formulation

Let Xfc denote the vector of variables used to describe the actual state of the
system at the end of a particular period in time k ‘when measurements become
available and let %  denote the equivalent vector in the model. Let denote the 
vector of parameters and variables necessary to describe the re-distribution process, 
then

Sc = Sc-1 + g(£k-i  > Be, k ) 

where g is the vector of calculated net changes.

Let ik  denote the vector of measurements obtained to generate the symptoms. Let 
these be related to the state measurements by

£k = h(xk) 

where ideally, h( ) would be the identity matrix.

Then the symptoms are described by the vector ik  ~ 5k where yH= hQ^)

~i l i t  has already been suggested, Section 2.3, that there could be some uncertainty 
surrounding the simulation vector % . The expressions used to determine the net 
changes, that is g, may also be inaccurate; for instance, they may be affected by 

the assumption of individual uniformity: th e  model structure may therefore be 

suspect.

Although this uncertainty exists, it is still necessary to estimate %  for the

simulation to proceed. Let the set *F contain all scalar variables that are elements
of Then certain elements of 'F will be known precisely whilst we might be 

less confident about others. Suppose that we attempt to identify that subset 0  we
IAA

are ̂ certain about and form a vector containing thetnie.

c Rn

where {fi}j60e'F Vi,i = l,...n
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Gearly it is not possible to guarantee that this vector contains all elements that 
are actually in error. Let the estimates of £ input to the simulation for period k 
be denoted by 0^ and let the errors in these estimates ie ( ^  -  §k) be denoted 

by M b

We define a new function f  to relate the measured sub-system outputs at the end 
of one period to the sub-system outputs at the end of the subsequent period
obtained by simulation:

Zk = yjc-i + k )

where the analytic form of this function need not be known.

Note that the initial conditions £k-i are assumed to be derived from 
measurements and not from the simulation unless it is necessary to do so because
of a lack of suitable measurements. This reflects the belief that the measurements
are more likely to be ‘correct’ than the simulatioa

The measured sub-system outputs &, may be biased by ^  so that

E = Ik + Be

and corrupted by measurement noise, Yb assumed to be of zero-mean and 
uncorrelated in time, thus,

£k = Ik  + *k + Xk

cov <£j » £k> s  Rk 5kj € Rm x Rm

where 5jg is the Kronecker delta function,

fo r k = j

fo r k *  j
5kj =



- 25 -

The bias will not only be affected by the actual physical measurement system
but also by the assumptions on which the measurement is based, for instance 

perfect mixing. Let set U contain all these possible causes. Set U must also 
contain all possible non-path faults because these will have a similar affect on

discrepancies on a particular period k be denoted by vector %.

As a consequence of this, the initial conditions are likely to be in error. 

We accept the inevitability of this and aim to minimise its effect on the fault 

diagnosis process by ensuring that faults are identified and incorporated into the 

simulation sequentially in time. That is, we only start the simulation from a 

period that we are ‘confident’ is error free. This may mean that measurements 

pertaining to more than one period may have to be compared with the simulation 
in one go. Then

the discrepancy y^-y^. Let the actual effect that these non-path faults have on the

^k+n

ik+n-1

where yk = ^k+n-2

Xk

must be used instead of the formulation above.

Clearly this confidence could be unfounded, so it is important to include this 
possibility in the reasoning process.
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2.6.4 Some Observations

We imagine ourselves as the diagnostician and suggest that he might take the 
following viewpoint.

The 'symptoms? should be categorized, qualitatively.

The choice of categorization is open to discussion. For instance, it could be
based on statistical or fuzzy measures (36K A statistical representation is preferred 

here, primarily because of its obvious compatibility with the measurement 
statistics. The i^1 symptom could be deemed to be in error at level n, if n is the 
largest integer:

I fyjc - ik) i I « n<Jx i

where the parameter ofo is based on the some measure of the uncertainty
surrounding the i^1 symptom.

A  problem arises here because it is difficult to specify, in absolute terms, the 
uncertainty in f. One possibility is to make the pragmatic decision to ignore, 
completely, errors associated with modelling uncertainty and let

i = (Rk-i  + Rk) i  i 

Bounds Can Be Placed On Simulation Errors.

It is likely that the diagnostician would have some subjective appreciation as to 
possible inaccuracies in §k provided he assumes no fault exists. Although

imprecise, he would have some idea of the order of magnitude and probably ‘err

on the large side’ to accommodate any unforeseen factors:.

E { A 0 ^ }  =  £ { 0 ^ - 6 * }  =  0  

covfAfik, A0k } = Pk
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and it is assumed that these inaccuracies are not correlated with the discrepancy
e.rr'oi'S

measurementy .Although not strictly necessary, it is likely that F^ would be 

assumed to be diagonal (F^ can always be diagonalized by re-defining £k to 
accommodate these cross-correlations).

The diagnostician would probably agree that the symptoms could be explained by 
errors that were insignificant, if a AQk could be identified to reduce the symptoms 
to a specified level:

| {Mkl i | < m W Pkl i i  Vi

where integer m, the level of significance, would probably be chosen to be 

either 2 or 3 by direct analogy with hypothesis testing. -

Conversely, if an explanation could only be obtained by allowing certain elements 
to disobey this condition, he would argue that these elements were significantly in 
error. Let us use a star to indicate these elements, for example, 0* and let 0* 

denote the set of all elements that are significantly in error.

Catastrophic failures should be handled differently to non-catastropMc failures.

Before going any further it is worth pointing out that a slightly different

approach would be taken if a fault, or inaccurate input data to the simulation,
results in a catastrophic failure. For instance, a tank emptying whilst it is still

feeding the process downstream. These failures are easier to detect because firstly
r

a failure has definitely occured and secondly it is usually clear whether it has
Yocccujed in either the plant or simulation or both. For instance, an empty tank is 

unlikely to go unnoticed. This leads to the following line of reasoning:

( c a t a s t r o p h ic  p l a n t )  & ( c a t a s t r o p h ic  s imula t ion)  -»
(malopera t ion)

not ( c a t a s t r o p h ic  p l a n t )  & ( c a t a s t r o p h ic  s imula t ion)  -»

( ( s im u la t io n  f a u l t )  (measured-plant- input  i n c o r r e c t ) )

( c a t a s t r o p h ic  p l a n t )  & not ( c a t a s t r o p h ic  s im ula t ion)  -» 

((maloperation) ( s im u la t ion  f a u l t )  (measured-p lan t- inpu t  i n c o r r e c t ) )

where -» means implies.
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However it may still be necessary to pursue the same line of diagnosis to 
determine the root cause in the second and third cases.

2.6.5 The Candidate Space

A candidate is a particular hypothesis for how the plant differs from the model.
That is, it is a set of elements of ©uU whose values could, hypothetically, be 
manipulated to explain the discrepancies. Figure 5 shows the candidate space for
a simple example containing just two path and two non-path errors. Each set of

explanations, indicated by [.], is possible giving 35 candidates in all. More

realistic situations would involve much larger candidate spaces. If considerable 
uncertainty surrounds the diagnosis, then candidates at the top of the lattice are 
likely to be true; the greater the certainty, the more likely the candidates towards 
the bottom of the lattice become.

The number of explanations contained in each of the candidates towards the top 
of the lattice are likely to be far greater than the number of symptoms available
to perform a diagnosis. It will therefore be difficult to discriminate between the
various candidates unless it is possible to eliminate some of the explanations on 
grounds of inter-dependence or through non-symptom related arguments.

Fortunately, the diagnostic problem changes from being one that is underdefined 
to one that is overdefined as we move down the lattice. We therefore seek an

argument to enable diagnosis to proceed by considering candidates towards the 
bottom of the lattice where techniques like regression can be applied. This is 

contrary to the scientific view that we should tackle uncertainty as it really is. 
Here we propose to use our common sense to avoid the issue.
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2.6.6 Common Sense Reasoning

As to what is meant by common sense the reader is referred elsewhere^. Two
aspects of importance here are that common sense 'is concerned with the concrete
and particular’ and that 'its function is to master each situation as it arises.’

The following posture is argued as being common sense.

1. Insight is not required into the state the plant is actually in but only into
why the discrepancies have occurred.

2. Although a large number of errors may exist in the model structure,
parameters and measurements, the diagnostician is only interested in those

errors that would result in the observed symptoms. That is, he would not 
be interested in the true value of nor of but only of those elements 
of U, ©* and, if necessary ©, that could provide an explanation.

3. If the term image is used to denote any plant state that is likely to exist,
then the diagnostician will only be interested in those images that explain
the symptoms.

4. Other insights gleaned from, for instance, history, fault detection and partial

isolation should aid the search.

A heuristic which we will call The Principle of a Minimum Number of
Explanations is proposed to encompass some of these ideas.

2.6.7 The Principle of a Minimum Number of Explanations

The symptoms can be explained by a minimum number of errors with all other 

errors pertaining to the symptoms being assumed to be zero.
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That is, it is assumed that all elements of U, ©* and © can be ignored except 
those incriminated.

There is a fundamental difference between this and The Principle of Parsimony 
which Reiter (29> interprets as meaning that

"a diagnosis is a conjecture that some minimal set of components are faulty."

One refers to errors whereas the other refers to faults. The Principle of 
Parsimony merely proposes that diagnosis move upwards from the bottom of the 
lattice searching for faults, which either have, or have not, occurred, until a 

suitable candidate is identified. The Principle of a Minimum Number of Errors 

has no scientific basis; it also argues for a bottom-up search but now assumes a 
minimum uncertainty. It does, however, conform to the notion of testability 
described in Section 2.2.

2.6.8 Candidate Evaluation

There are likely to be a number of different techniques capable of evaluating the 

credibility of individual candidates. As such they are only techniques and 
including one particular method in the theory would tend to detract from its 

intended universal applicability. This is therefore left to a separate chapter, 
Chapter 4.

2.6.9 The Basic Strategy

It is important that the candidate space be searched prudently because of the 

large number of candidates that are likely.



- 32 -

Information external to the model-based diagnosis can be used to guide the 
search. If no faults are expected then the search should start with candidates 

containing insignificant path errors only, if path faults are expected then 
candidates with starred elements are to be preferred whereas if non-path faults are 
expected, candidates with non-path elements are of prime interest Thus a 
combination of breadth-first and depth-first search is proposed. All candidates on 
the bottom row, which contain one particular type of error, are examined first, 
then the next row and so on. As will be seen in Chapter 4, computational

efficiency may also be a factor in how the lattice is searched. A decision must

be made as to whether to continue up the lattice, indefinitely, considering only 
those candidates that contain one particular type of error or whether to broaden 
the search: if the Principle of Parsimony were to be applied then at some point 
other candidates towards the bottom of the lattice would be preferred. Such a 
decision is application specific and one method of deciding when to broaden the 
search is described in the Application Chapter, Chapter 6.

Another aspect common sense would deem to be worthy of consideration is that 

of focusing on one particular part of the plant. If discrepancies are confined to 
one part then there may be an argument to eliminate candidates not pertaining to
it. However caution should be exerted because of the problem of cancelling
errors. For instance, a path error between two inter-connecting sub-systems A&B 
when combined with a non-path error, of similar magnitude, in B could be 
mistaken for a single non-path error in A.

Such candidates can therefore only be eliminated from the lower rows of the 

lattice where it is known that other errors cannot be present.

Efficient diagnostic procedures based on the Principle of Parsimony have been 
previously proposed in the literature ffl-w). These procedures aim at arriving at 
this minimal set by constructing conflict sets of components to explain the 

symptoms. For instance, in the above, a conflict set could be arrived at, which 

indicates that one or more of < 0, u1 u2> is in error. They do not appear to 

be applicable, at least directly, here because they assume that every occurrence of 

a particular fault in the candidate space will be the same: true or false. Here the I,

values of the elements in [ux u2 ] may be quite different to those in [02 Uj u2 ].
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2.6.10 The Solution Candidate Set

If the Principle of a Minimum Number of Errors were to be applied, strictly, 

then all candidates, on the lowest row possible, that explain the symptoms are 
admissible. However, other factors like one type of error being preferred to 
another come into play. As will be seen in Chapter 4, the method of determining 

suitable values for the elements in the candidate set may also affect this 
admissible set.
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2.7 The Role of the Supervisor

The question then arises as to when is one particular hypothesis more appropriate 
than any of its rivals? One answer could be that it is appropriate if it is correct. 
Unfortunately the only guarantee that a particular hypothesised fault is correct is 

physically to examine the component involved. This is relatively straightforward if 

the fault is catastrophic, for instance if a transducer is failing to transmit, but not 
so easy if, for instance, the component has to be taken out of service for 
re-calibration or if the malfunction is intermittent; for instance it may be difficult 
to reproduce the precise conditions agaia When should a plant operator accept a 
particular hypothesis and act accordingly? There could be political as well as 
technical ramifications. For instance, production may have to be reduced if a 

particular component is taken out of service. He may be prepared to examine an 

alternative, marginally less likely, hypothesis if this has less effect on plant 
operation. However his decision must weigh-up the possibility that failure to act 
could increase the risk of a plant shut-down. There could also be resource
implications regarding the scheduling of maintenance staff. Certain hypotheses may 
not need investigating at all. For instance, a single physical inventory 
measurement error will have no effect on the overall account in NRTMA; an 

entry as to a possible weakness in the measurement system may be all that is 

required. If this hypothesis is one of a number of alternatives, should it be 

chosen in preference to any of the others? There may be a case for delaying 
making a decision by one or more periods to see how a fault develops or to 
change the operation of a particular plant unit to investigate its affect

These considerations are beyond the scope of this thesis in that they do not
pertain to fault diagnosis, per se, but to the adjudication process that may follow.
Unfortunately it is difficult to separate the two tasks succinctly because the form 
the diagnosis takes will have a bearing on how it is used. It is therefore 
desirable to have some idea of the different types of assessment I do not intend 

to digress too much into this because the information generated by the diagnostic 

system proposed here is of only one possible form, that of ordered lists. This 

derives from an assumption that if we accept that our knowledge of possible 

faults, of modelling errors and of the plant itself, is never complete, we must 

also accept that it is impossible to specify, in absolute terms, the probability of
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any individual error occurring. However each technique used to generate 
hypotheses should be able to order the list it outputs in some way. Such an 

ordering should be of benefit to the operator even if it cannot be viewed as 
being the absolute truth. Again one particular method of ordering is considered in 
Chapter 4.

However this is a moot point The proposed theory would therefore not seem 
complete without, at least, providing a brief literature survey.

2.7.1 Adjudication

It must be evident from the above that the adjudicator must be utilitarian in
nature. According to the traditional theory of utility (32K the approach should be
to assign a utility to each hypothesis, to estimate the likelihood that each
hypothesis will obtain, to calculate the utility of each act and to choose an act 

of maximum utility. The primary weakness with this is in the type and amount 

of information required. Even if it were possible to produce a fault dictionary 
with a utility assigned to each fault this can never be complete. There would 
probably be a lack of temporal factors; for instance the dictionary is unlikely to 
include the possibility of the maintenance engineer failing to carry out his duties 

properly.

We therefore leave the utilitarian aspect to the operator and concentrate on how 
to infer that one hypothesis is more likely than any other.

Inference is the process of argument where, on the basis of evidence, one or 
more hypotheses are proposed which are more probable than any rival. If it is
unsuccessful then there is deemed to be insufficient evidence: either more 

evidence must be gathered or all hypotheses must be carried forward. The 

methods used in the inference process depend on the category of inference 

required <33K An inference is a deductive one if all it does is draw out of the 
premises propositions already (albeit tacitly) contained in the premises taken 

together. So in deductive logic the truth of the premises makes certain the truth
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of the conclusion. In the inference from evidence to hypothesis, it is possible that 
the truth of the premises, ie the evidence, may only make certain to some degree 
the truth of the conclusion, ie the hypothesis. Hence it is natural to regard this 
type of inference as being similar but distinct from deduction and it is given the 
name of induction. Deduction is then regarded as being the limiting case of 
induction.

Deduction would be possible in fault diagnosis if perfect measurements could be 
recorded throughout a plant and compared with the perfect model. Alternatively 

an approximation to this may be obtained using signal processing and parameter 
identification. Induction becomes necessary when there is a lack of measurements 
and models and those that are available are uncertain. We therefore focus on 
induction.

There are two types of induction <34k ampliative and summative. Workers te  71> 
in expert systems generally use the term induction solely to refer to 'summative’ 
induction. Summative induction establishes a generalization on the basis of what 
are known to be all its instances, as when a railway inspector, passing down the 

whole train, establishes that every passenger on the train has a ticket. Induction is 
‘ampliative’ when it extrapolates beyond existing data. It is unlikely that all 
possible faults will be known so the process of inferring the existence of a

particular fault on the basis of a set of indirect measurements is likely to be

ampliative. Workers in expert systems use the term uncertainty, loosely, to refer 
to ampliative induction. For instance, The term "uncertainty" .... appears to be

used whenever reasoning by strict logical implication is not considered possible’
(72)'

A number of reviews have been published into suitable techniques for ampliative 
induction te 72,73,74)' other comparisons can also be found in publications which 

describe particular expert systems (75i  The techniques fall into two categories,

numerical and non-numerical. These, in turn, divide into sub-categories where 

techniques based on probability (72K fuzzy sets and fuzzy measures <36> are 

examples of the former and methods of endorsements W  and relevant variables 
(35) are examples of the latter.
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The most obvious numerical technique is that of probability theory. The 
arguments concerning the appropriate role of probabilistic statements, of how they 

should be chosen and manipulated, have raged for centuries. Various articles (?2>76) 
have been written to promote probability theory, others to describe the
attributes of six alternative theories of probability whilst others W) to propose 
techniques for their implementation.

A number of non-numerical techniques have been proposed that set various levels 

of qualitative hurdle. The ‘method of relevant variables’ (35> fits naturally into 

systems that sequentially apply a standard set of increasingly stringent tests. The 
‘method of endorsements’ W) uses a ledger metaphor to represent evidence pro 
and con where the certainty of a hypothesis can be represented as its strongest 
endorsement.

2.8 The System Must Learn

  . The operators leam by experience. A
knowledge-base is therefore required which can 

.can  expand in time.

It is envisaged that, at least during the infancy of a plant, the system will alarm 
frequently. It is therefore proposed that the system should be invoked on every 
period so as to minimise the number of un-explained faults present at any one 
time. The data set would then be updated eveiytime a fault was diagnosed to the 

satisfaction of the operator. It is not intended that the original data set be

overwritten unless the diagnosis is properly verified. Either a second data set

should be created or the modification included as an update to the original. In

either case the system would now restart and assume that the revised data set is
now correct
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3. MAKING USE OF THE PRIMARY CHARACTERISTIC VARIABLES

3.1 Introduction

Control charts are used in process plants to provide a visual indication of a 
problem developing. Trends in the plots can not only provide information as to 

whether or not there is a fault but also as to its cause. The approach is 

qualitative rather than quantitative; the cognitive process is symptomatic because 

the operator attempts to correlate these trends with fault related patterns. 
Historically, plant control charts have had a disparate role in quality control (a >. 
This Chapter examines whether both roles may be incorporated into a 
model-based fault diagnosis system.

Considerable expertise exists in the application of control charts to processes with 
either known statistics or a reasonable flow of data t2-3-63), that is, to information 

rich processes. Less is available for processes which are information poor. This 
Chapter is devoted to providing a brief overview and proposing specific methods 
which have been found to be appropriate for information poor plants.

3.2 Traditional Plant Control

The objective of quality control is to check that the actual value of a quantity 
agrees with its expected value. This limits the number of control variables to 
those where a true expected value can be generated.

The traditional role of quality control <a > has been in fault detection and not in 

fault diagnosis. The approach is to apply statistical techniques to the time series 

obtained by measuring the process discrepancies at discrete intervals of time. 

Procedures t64) have been recommended if the relevant probability densities are 

not available. A number of test procedures are available to optimise the power to 
detect a fault against its credibilty (ie its false alarm rate) i2-65-66). Quality
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control charts W 7) provide graphical representations of test procedures applied to 
the time series. The simplest plot is that of the Shewart chart W) suitable for 
uncorrelated time series of constant variance. Another common plot is that of the 
cum ulative sum. Both plots are against time.

Considerable effort has been expended in the development of techniques to 
improve both the power to detect and credibility when the time series is 
correlated in time. They usually assume that a statistical model is available and 
split naturally into 2 distinct categories, namely estimators and detectors. 
Estimators are solely concerned with producing new estimates of discrepancy 
values that have errors with reduced variances. On the other hand the objective 
of detectors is to manipulate the time series so that a more effective test 
procedure can be generated.

It should be appreciated that estimators only produce test statistics and it is 

necessary to apply a test procedure in order to obtain any results. This is chosen 
on the basis of its credibility and power to detect a particular error scenario. The 
reduced error variances achieved by the estimator will improve the performance of 

the test and so both categories have the same ultimate goal of increased detection 
probability.

As detectors are not concerned with producing a meaningful physical estimate it 

is possible that they will be more effective than their counterpart. However they 

have no role in diagnosis, as opposed to detection.

The main disadvantage of most estimators and detectors is that they require 

knowledge of the measurement errors involved. This may not be too problematic 
if the characteristic variables are measured directly but may be difficult if they 

are derived from a set of measurements. If it is not possible to produce a 

meaningful measurement model, then it is argued that, on the basis of this 

uncertainty, plant control should be viewed as being more qualitative than 
quantitative. This is more in line with that of supervisory control.
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3.3 Viewing Control Charts Qualitatively

Plant control charts are used in supervisory control in two ways: to provide 
assurance that the control variables are behaving in a reasonable manner and to 
correlate the patterns observed in the charts with each other and with the various 
plant actions. If a fault develops the charts can be used as an aid in 
symptomatic search. The general principle is to develop rules to explain plant 
activity by relating the patterns on either a single or number of charts to possible 

fault scenarios. Although there is unlikely to be sufficient information to identify 
the fault uniquely, the charts provide a means of reducing the search space.

Considerable effort has been expended ( W  into developing statistical techniques 
so that patterns may be attributed to possible fault scenarios in some optimal 
manner. In general, they adopt the same approach as for the detectors and 
estimators above and hence suffer from the same limitations.

This statistical approach is not the way the operator would infer from the charts. 
His rules would largely be heuristics and he would normally attempt to ignore 
any noise by visually filtering it out. That is, his view of noise would be 

restricted to any ‘high frequency’ fluctuations superimposed on the plots. The only 

statistical representation would then be deemed to be equivalent to that obtained 
when the same measurement is taken a number of times and would be defined 
as being its ‘random error’.

It is this qualitative approach that is considered here.

One of the issues is how often should the process of pattern recognition be 
repeated. Clearly the longer the delay, the more the information and the better 

the discrimination. Conversely, the longer the delay, the less timely the detection 

and diagnosis. Diagnosis may prove difficult if the state of the plant has changed, 

significantly, from when a particular incident was initiated. For instance, the 

chances of finding an intermittent fault are reduced. In addition operators are a 

great deal more aware of the current situation than that which took place some 

time ago.
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The same approach can be applied to quality control charts of any physically 
meaningful variable, for instance a control variable or its cumulative sum. 
Although the odd result is general, for instance, a bias may be estimated by 

visual inspection of the cumulative sum, most results are application specific and 
are best examined by example.

3.4 Automatic Extraction of Information From Control Charts

The primary role of the control charts is to detect the occurrence of a fault and 
having done so, to output two lists: a list of discrepancies and a list of 
assertions which point to possible classes of faults that could account for the 

patterns observed. It would be unusual for the charts to identify a fault uniquely; 
their role is to focus attentioa Two issues complicate the recognition process, 
that of noise and of multiple faults. Both can largely be overcome by adding any 

fault, that is remotely likely, to the list Care must then be taken to ensure that 
the most likely are considered first

The pattern recognition exercise is largely one of detection and not of estimation 
because it seeks to determine the existence of various patterns. Hence it involves 
the application of tests. These need not be founded on rigorous statistical 
arguments.

3.4.1 The CUSUM Plot

It is common practice to use plots of the cumulative sum of particular 

discrepancies to examine drift. The approach has two main weaknesses. Firstly, 

the sum can build up with time so that special provision must be made when 

using it to detect events that are local in time. Secondly, although informative 

visually, this information is difficult to extract automatically primarily because 

changes from period to period are of interest and not absolute changes which are
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relative to some datum. These problems are usually overcome by applying the 

CUSUM test (69K In its graphical form, the technique involves centring the 
V-mask

where %[ is the normalised value of the discrepancy on period i, and 
alarming if jjf Crosses the boundary shown.

This is equivalent to the tests

The importance of the CUSUM test to quality control in general, is perhaps 

reflected in the sheer number of papers (see> f°r instance 7°) that present methods for 

choosing the two parameters h, k. This in turn is an indication that the choice 

may be a complicated one. Fortunately approximate values should be sufficient 

here because the approach does not require the test to achieve 
specific leve j f  power and credibility.

boundary

boundary

on each point of a plot of the normalized cumulative sum,

n
Xi

alarm if Sn -  Sn.r ^  h + rk

alarm if Sn -  Sn_r ^ -  h -  rk

for any r = 1, ..., n.
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The V-mask has great virtue, deriving from its easy visual interpretation. 
However, a numerical version is required for computer applications. It can be 
shown (W that it is equivalent to the following algorithm.

Alarm i f  ^  h or ^ h

where
t n = max { tnt ,  + zn -  k, 0}

xn = min (xnT, + Zn + k - °)

At first glance the test does not appear to be applicable for information poor

plants because of the need to know the standard deviation to normalise the 
individual discrepancies. However if the posture of Section 2.4 is adopted, the 
control variables will be restricted to those variables which are either measured 
directly or obtained by performing some algebraic manipulation of a set of 
measurements. In either case it should be possible to obtain a reasonable estimate 
of random error.

3.4.2 Visual Estimation of Drift

The main role of the CUSUM plot is in detection because the process of
normalizing the control variable visually distorts the plot An un-normalized plot

is more suitable for looking for trends such as biases. Consider the un-noimalized
and suppose .that ,

plot shown m Figure 6 below ^ the process is deemed to be in control if
the points lie, approximately, along a horizontal line.



co n tro l
/v a r ia b le
/- —  - A

Figure 6: Un-normalized Cumulative Plot

Two main issues arise when trying to describe the drift Did the problem causing 

the drift start at the second, third or fourth point? What is the underlying rate at 
which the drift occurred?

By direct analogy with the Cusum test, one possible approach could be to 
perform all linear regressions with a minimum of three points and then to choose 

the one with the greatest gradient This would give a start point, final point, 
gradient, m, and variance, o2 (37>:
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A decision could then be made to extend this trend to previous points
by applying the test:

| ( x , x 0) |  < (m-6a)

where x0 is the new start point hypothesised.
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4. CANDIDATE APPRAISAL

4.1 Introduction

The notion of a candidate space was introduced in Chapter 2. However the 
chapter avoided proposing a method for calculating the values a particular 

candidate would need to take to explain the symptoms observed. This was 

because it was devoted to developing a universal theory. This situation is rectified 
here.

One possible approach is described which, again, has leanings towards the 
common sense rather than the scientific. The approach makes various assumptions 
which influence the way the candidate space is searched.

4.2 Intuitive Overview

We imagine ourselves once more as the diagnostician faced with the problem of 
determining the values a candidate set of errors should take to explain symptoms 
he views as being at various levels of significance. These errors may be 

dispersed throughout the plant, measurement system and model. He would be 

aware that this candidate would be one of many, a large proportion of which

would be neither credible nor sensible. One approach he might adopt could be to
try to determine reasonable values for one or more of the candidate elements 
which would explain the most significant symptom. Having done this, he would 
then move onto the next most significant symptom and so on. He would note 
that credible deviations in certain elements had little affect on any of the 

symptoms and would discard any candidate containing them.

The approach described here has been developed to reflect this point of view but

with certain modifications to accommodate some of its shortcomings. Firstly, all 

elements of the candidate are assessed simultaneously to avoid the conflict that 
could arise if one or more elements needed to explain the first symptom are also
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needed to explain the second. Secondly, symptoms at a relatively low level of 
significance (for instance, 1) are included because of the possibility of two errors 

partially cancelling each other out Thirdly, for computational efficiency, a single 

model is derived to relate deviations in all possible errors contained in the 
candidate space to the symptoms observed. Reduced versions of this model are 
then formed to determine possible values for a particular candidate.

4.3 Developing a Model for Value Estimation

Recall from Section 2.6.3 that

£k = £k-, + k >

and consider the case of path errors first

If a symptom, (y-yf}j, were to be attributed to a distortion in a single variable or 

parameter, j, contained in then its size could be estimated deterministically by
viewing estimates of all the other elements as being perfect so that

{£k>i = { y k - + f f a .e i c  + {A9k}j ,e j  ,k )} j

where q  is the j* natural basis vector.

That is, the required distortion could be obtained by determining that change in 
fAGfclj needed to enable the simulation to predict the i* measurement precisely. 
In practical terms, this could be achieved by applying any one of a number of 
standard numerical algorithms to the simulation. This calculation would 

simultaneously estimate the effect that the required distortion would have on the 

other symptoms. Let the resultant perturbation in all the symptoms be denoted by 

Av1: where

!j = h t - i  + jy ik -S k  + { A 8 jJ j .e j ,k )  _



A Jacobian-like matrix may now be obtained by forming a list, p/j5/, of all 
elements of © that are thought to be suspect and assembling the vectors obtained 
by solving for the most significant symptom, taking one element at a time, to 
form

4lk ! 1
1

{A9k} 0, | {A6k) £ 1
I

where subscripts ftj refer to the i* element of pto and

h  * yk-, + f ^ . ,  . k) -  yk

It may not be possible to obtain a solution for every element; certain elements 

may simply not affect the symptom or may have only a limited affect, too small 
to eliminate it. However these elements may affect the other symptoms. The 
solution process is therefore re-focused onto the next most significant symptom
and any relevant vectors obtained and so on until either all the columns of J,

have been filled or all the symptoms, that are deemed to be significant, are
exhausted.

The implication of the latter is that there could be certain elements which can 
only explain a small proportion of the discrepancy between the measurements and 
the simulation. In this case, an alternative approach must be taken to incorporate 
their effects in the model. These variations can be represented by considering
infinitesimally small perturbations around the operating point. That is by adopting 

the usual procedure for determining a Jacobian. Having obtained such a Jacobian, 
J2  ̂ the vector Afy- can be re-arranged into two parts, AQ^1 and A6^1: the first 

part containing all the successful elements whilst the second part containing those 

where no solution could be obtained. A composite Jacobian-like matrix J can now 
be defined so that it operates on the entire composite vector. That is
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If the covariance of A0^. P^, is assumed to be at least block diagonal, the above 
has covariance,

JPk V  = [ J, : J 2 ]
pk, ; o

I
o

a

pka

j ;

j ;

= j ,  Pk, j ;  + h  Pk, k

On the basis that the previous period is error free and that inaccuracies in the 
model structure can be viewed as being path errors, and hence affecting and
non-path errors, and hence affecting n^, function f also represents the true change 
in sub-system output:

Then

and

Zk = Ik -!  + l,Cxk-x , Sfc, k) + iifc

Zk = Ik - i  + f(* k -. , &  + 48k, k) + nk

£k -  £k * 3c + Zk + 2k -  3c -i “  Ik - i  + 3 4§k

For convenience, combine biases % and into a single vector This vector 
therefore represents biases in the measurement system, non-path faults and the 
effect of inaccuracies in the model structure. Considerable uncertainty surrounds 
this vector. If this were not the case, there would be little justification for it to
be represented explicitly because the same information could be accommodated in
the simulation. It is therefore proposed to handle this uncertainty in a similar way
to the above by viewing the vector as being a random process probably
correlated in time where

E { M f c }  =  E { u k } =  0

and

cov{AUk,Mk) = Puk
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A composite vector [A0kjA%] can then be formed with covariance

Pk_ 1 _  0 ' 

o I Puk

and the model formulation can be revised to

A  A)
J 1 0 A0fc

Zk -  Zk -  Zk -  -  Zk-. + -  + -

0 i I Attfc

Two aspects of the model still require clarification: the alignment of two or more 
vectors making it impossible to discriminate between them and the quantification 
of uncertainty, that is the specification of covariance matrices P^ and P ^ . The 

former is left until Section 4.6 where it is related to the actual estimation process 
whilst the latter is considered here.

The diagnostician can only specify a if he assumes that there are not any 
errors that are significant and he may be reluctant to specify a at all. It is 
therefore proposed to resort to the pragmatic approach of assuming that a 
symptom can be explained by a single error. It therefore seems reasonable to 

hypothesise the standard deviation, ie V{Pukhi’ ^  being equal to the error in the 
appropriate symptom. Turning to the specification of P^. This has already been 

specified in Section 2.6.4 for errors that are insignificant but not otherwise, that 

is for starred elements. A similar approach as for P ^  is therefore proposed.

Finally, the model most appropriate for estimating the values for a particular 

candidate is formed by simply eliminating all columns and rows that do not 
relate to either the elements of the candidate or the symptoms that would be 

affected by varying those elements.
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4.4 Estimation

The mean and variance of the marginal distribution of A9^ for a particular 

instance -  yk) may now t>e determined by applying the linear
transform

I  -  Pk J ' (Rk -i  + Rk +JPk J ' )

to the composite vector, c :

c =
Afjk 

(Zk -  Zk)

where

E{c} =
E{A0Jc}

( JE{A0^} -  WkM )

and

cov{c, c ’} =
Pk P k J '

Jpk Rk-i + Rk + JpkJ '

This block diagonalises cov{c, c’} and produces a marginal distribution with mean

EtASk -  PkJ ' ( Rk-, + Rk + JPfcJ')" (Zk -  Zk»

= EfAOfc} -  PkJ'(R k .j + Rk + JPfcJ')-1 (»k-, “  E(JAek )>

If £ is assumed to be jointly normally distributed then it can be shown that 

A8k -  PkJ ' (Rk.j + Rk + JPkJ')_1 (yk -  yk) and (yk -  yk) will be independent.
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It follows that the marginal distribution will be the same as the conditional 
distribution for a given value of so that

E{A9k|(£k -  ik )}  = E{Aek} + PkJ'(RkM+- Rk + JPkJ ' ) “

(£k -  Zk -  iJc-. + E{JAfik»

with  covar iance ,  Qk = Pk -  pk J " ( Rk-i + Rk + - ^ k ^ ) " 1 Jpk 

It can be shown that this is the minimum variance unbiased estimate.

Hence if the prior estimate of Gk is taken to be 

ie  E{A8k } = 0

and if non-path errors pertaining to the previous period have already been deemed 
to have been resolved (Section 2.6.3), then the posteriori estimate is given by

E{6k|(yk -  Zk)} = §k + P k J '(Rk-,+  Rk + JP fcJ ') '1 (Zk -  Zk)

The above may be partitioned to produce separate estimates for A^Cl and •
The estimation process now becomes,

es t im ate  = EtAO^} + Pkl J '  (Rk _, + Rk + JPkJ ' ) _1

(Zk -  Zk -  Be-. + E{JMk})

with covariance,

Qk = pki “  pki Ji (Rk - i  + Rk + JpkJ ' ) _1 Ji Pki

since only those elements of Afy  ̂ are of interest
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4.5 Interpretation

The estimator con be applied to a number of different sets of candidate errors. 
The results obtained must be assessed, firstly to determine whether any particular 
estimate is credible and secondly to order them in some way.

The estimation process is deemed to be credible if

1. each individual estimate satisfies its a priori variance. That is,

( Ef£k| Cyjc -  yjc)> ] j  < n °i 

where n is some subjective factor and q  relates to or P ^  ;

2. the estimates reduce the symptoms to some specified level 
of significance when they are included in the simulation ie

ik  -  £k-! -  1 [ik . EtOjcl (yfe -  ,k)

replaces (yk -  y^) in the test of Section 2.6.4.

4.5.1 Ordering the Various Estimates

Ordering must be viewed as being rather subjective because of the way the 
covariances Pk and P ^  have been specified. The outline order is largely 
dependent on whether or not a particular combination has necessitated either the 

revision of P^ to accommodate a significant error and/or the inclusion of P ^ .  
The diagnostician would probably prefer not to consider such aspects first and 

would therefore place any other combinations at the top of the list. This would 

be followed by combinations containing a single revision or element of P ^  and 

so on.
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A method is proposed here which orders each part of the list by ordering the 
log likelihood function (38’39> evaluated for each candidate.

If we assume that Afy^ is jointly normally distributed with zero mean and
covariance then its likelihood function LfA9kl .Pj^) is given by

L(A9kl , Pk l ) = |27tPkl |* exp{- KABfcj P fc^ A ^ ,)}

Similarly the log likelihood function k(Afi|kl ,1\ 1) is given by

g(Aek, , pk l ) = -  ilog{ |2 itPkl | -  i(A9^, P t ' A g k , ) }

The term l27rPkl i may be omitted from the above because it is common to all 

candidates and will therefore not affect the result. Hence the ordering process

reduces to evaluating fAO^ P^- 1 A9k l ) for each candidate and ordering with 

the minimum at the top of the list.

4.6 Orthogonality and Reducing die Search Space

It is likely that variations in more than one element will be seen to affect the 
discrepancies in a similar way. This is because one sub-system can only affect 

other sub-systems through the interconnections between them. If two of the 

columns of J are aligned in the sense that

(column i) £ a  (column j)

then the estimation process will have difficulty in discriminating between the i* 

and j*  elements. It therefore seems sensible to reduce the number of elements in 

0  by eliminating those aligned columns, and hence elements, that are less likely 

to affect the other symptoms. If an element with a vector which is aligned, is 

identified as being suspect then the other elements must also be suspect. Other 

factors must then be taken into account in deciding between them.
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In practice this alignment can be tested for by applying the inner product 
property that two vectors are aligned if

< column i , column j > = || column i || || column j

Hence a test can be applied of the form

< column i ,  column j >
1 —    < 6

column i || || column j

where e is some specified tolerance.

Having produced a set of m aligned vectors, the most significant vector j, is that 
associated with element i:

max [{j_}/ ✓{Pfc) ,] , V/ I : {j_); *  0

If A9fc is ordered such that the aligned vectors relate to its first elements 
c O c  © :

AGj,’ = [ Ac^’ . . .  ]

then the aligned columns of can be eliminated by post multiplying Jj by the 
operator M:

M  =

5 i 1
i i I 

o
1 1

O
'

i

In - m

where £j e Rm and is the first natural basis vector.

The problem with this approach is that the estimator does not take the eliminated 

elements into account. A variation may be worthy of consideration. If the 

principle of a minimum number of errors is allowed to be contradicted by 
combining similar elements using the operator L:
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L =

where a e Rm

a' i 
l

0 '

i i
o

I

*n-m

and {a}i = < column i ,  column i > 

y < column 1, column 1 >

then this will revise and shorten the vector by forming a composite element 
a'Acpfc and giving it a revised covariance matrix LP^I/.

The composite element will then be estimated as 

E {ABk | (y -  y)}, = a ' Apy

= £ | a; | s i gn (a ]) ̂ IPjcJ i i
{A£k)i

W T T  J

If each element of O is then assumed to contribute an equal amount in a sense 
that

{^9k) i i 
s ign(cq)  -----------  = k Vi

then
W T 7

A ^ k l i i  s i gn ( a t )  . . .

(A(Pk)i = — — ;— 1   . E {Mk (y -  y)}x
£ | a i |

This assumption is obviously unlikely. The diagnostician would need to refer to 
additional information before he could identify a preference for a particular 
distribution.
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4.7 Implications for Searching the Candidate Space

A considerable proportion of the computational effort needed to search the 
candidate space will be devoted to performing simulations because the regression 
exercise involves the manipulation of a relatively S/nol1 number of matrices of
low dimension. With large candidate spaces anticipated, it is important that the 
number of simulations be kept to a minimum. If the lattice defining the candidate 
space is viewed as being a number of sub-lattices, with each sub-lattice branching 

from a different node at the top of the lattice, then the same regression model 
(Section 4.3) can be used to estimate all candidates in any particular sub-lattice. 

It therefore seems sensible to form each regression model only once, especially 
since the number of simulations needed to form matrix J is typically 2 or 3
times the number of its columns.

Although this need not affect the method of search, searching the lattice, one 

sub-lattice at a time, would reduce computer memory requirements. Care should 

then be taken to ensure that individual candidates are not evaluated more than

once.

Before describing how the method of candidate appraisal and search can be
implemented, we digress a little to introduce the only application included in this 
thesis: that of near-real time materials accountancy.
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5. APPLICATION TO NEAR REAL TIME MATERIALS ACCOUNTANCY:
SYSTEM DEFINITION

5.1 Introduction

A model-based fault diagnosis system has been developed with the sole purpose 
of experimenting with the ideas described previously. A conscious decision was 
taken at the outset to focus on only one application, that of near real time
materials accountancy (NRTMA) and in particular, on its role in nuclear fuel 

reprocessing. This was largely chosen because of the author’s previous experience 
(46,47)' -phe application has the following important features:

1. the plants are inherently non-linear,

2. the boundaries around the plants are well-defined with the transfers across
them being closely monitored;

3. materials accountancy is to do with ensuring that the measured or estimated
flow of material through a plant balances; a fault is therefore deemed to be 
anything that upsets this balance;

4. the plant operator and materials accountant have very different objectives

with the former largely dictating the type, quality and frequency, of the data 

collected;

5. the material of greatest interest is plutonium; failure to achieve a reasonable
plutonium balance has political implications;

6. a significant proportion of the data needed to form an account is derived

from chemical analyses performed off-line in laboratories. It may be some

time before these results become available. Hence the term near real time. 
Obviously this also has a considerable bearing on the frequency at which the 
account can be taken.
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This Chapter outlines the system developed; an initial assessment of its 
performance is given in the next Chapter. There are two main problems with 

developing even a pilot system in a university environment: evolution and testing. 
As has already been argued in Section 2.8, the system should evolve by 
interacting with the plant; experience or knowledge being accumulated 
incrementally. The system described here is therefore skeletal, its rules and 
simulated faults are merely representative.

5.2 Introduction to NRTMA

5.2.1 NRTMA Described

Nuclear materials safeguards^ are the steps taken by the nuclear community to 

ensure the security of nuclear materials. The managers of plants handling nuclear 

material, national bodies overseeing the activities of such plants, and international 
agencies who are charged with implementing various international treaties all have 
an interest in safeguarding the use of nuclear materials. One of the main ways 
that this is achieved is through the application of material accountancy.

Nuclear materials accountancy is based on the following structure. The plant is 

divided into units called materials balance areas, which are used as a basis for 
balancing all transfers of nuclear material. The plant is usually operated 
continuously for 2 months to a year’s duration, at the end of which the plant is 
completely cleaned out and a physical inventory is taken. This operational cycle 
is known as a campaign. A balance is now obtained and the material 
unaccounted for, denoted by MUFt derived on the basis of

_ Total  _  Change in
Net T rans fe r  Phys ica l  Inventory

This quantity should be zero if all the estimates are error free.

This procedure suffers from a lack of timeliness. The question therefore arises as 

to whether these balances could be formed more frequently by measuring the 

physical inventory in situ. This approach is known as near real time materials 

accountancy (NRTMA).
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There are essentially two distinct application areas, that of fuel fabrication and of 
fuel reprocessing. Primarily, the former involves powders and discrete solid 

components and the latter both solids and liquids. Research into NRTMA has 
largely been attracted to reprocessing because of inherent difficulties with 
measuring the inaccessible inventories and because of the benefits of early 
detection of ‘faults’.

In the past near real time materials accountancy as applied to fuel reprocessing 

plants has taken two forms, that where material balances are made at relatively 
large intervals of time (eg every day or every batchy49*5̂  and that where 
measurements are made almost continuously^. The former has been fully 
implemented on operational plants whereas the latter, being both capital and 
resource intensive, has been tried experimentally.

5.2.2 Statistical Approach

A  number of statistical techniques have been developed to detect whether there is 
a significant MUF over one or more balance periods^ instance and a

number of reviews^55'5̂  have been published. The approach is usually along the 
following lines.

Consider taking a balance at the end of period k, then

MUFk = Uk -  ( I k -  Ik „ )

where 1  ̂ is the total physical inventory at the end of balance period k, and
is the net input during period k.

If it is assumed that the estimates of U^, 1  ̂ and 1^., are corrupted by random

errors which are independent of each other then MUF^ can be viewed as being a

random variable with variance given by

4  = var (Ml)Fk ) = V^., + w£ + v£ 

where Vk and Wk are the measurement error variances of Ik and Uk.
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It can easily be seen that

4 +1 = var (MUFk+1) = v£ + w£+1 + v£+1

The occurrence of Vk2 in both these expressions causes the random variables 
MUFk and MUFk+1 to be correlated. As

MUKk + MUFk+1 = Ik -! + Uk + Uk+1 -  Ik+1

the result

var (MUFk + MUFk+1} = vfc., + WjL + Ŵ +1 + v£+l

follows immediately. Using the formula

var {xk + xk+1} = var {xk } + 2 cov {xk , xk+1} + var {xk+1}

the covariance between MUF^ and M U F ^  can be calculated, 

cov {MUFk , MUFk+1} = -  Vk

Hence the covariance matrix has non-zero terms in the three leading diagonals 
and is therefore termed tri-diagonal.

The correlation between xk and xk+1, C o rtx ^ x ^  } is related to covariance by 
the definition

cov {xk , xk+1} 
cor{xk ,xk+1} a  k+ l!

✓ var l x k) . var fxk+1}

Hence, denoting correlation by pk, it is clear that

-  V 2
pk = co r {MUFk , MUFk+1} =

ak ak+i

For the simplest case of all, (when Vj = V, Wj = W for all i) the pj will be 

constant with

-  V 2 V iPi = p =   1
1 W 2 +  2 V 2



Under these conditions it is easy to see that p: -0.5 ^ p ^  0 depending on W2 
and V2. For an inventory dominated plant (ie V2 »  W2) p -» -0.5, whereas for

a net transfer dominated plant (ie W2 »  V2) p -» 0.

The MUF series and covariance matrix now form the input to a detector or 
estimator with the aim of determining whether or not a diversion has occurred. 
The IAEA (48> envisages two patterns of diversion, abrupt and protracted. The 
former is diversion of the significant quantity, 8 kg over a few days, while for 

the latter, the period would cover a large part of a campaign, perhaps extending 
over more than one campaign.

It has long been recognized (58) that this naive approach is flawed. In theory the 
measurement model should discriminate between systematic errors, so-called 
non-measurement errors and so-called random errors. A description of these errors

in the context of nuclear materials accounting is given by Speed et al (56>:

‘Systematic errors can arise through a wide range of reasons such as 

plugged probes, solid buildup in tanks, miscalibration of measurement devices 
and so on, whilst non-measurement errors may include errors due to
operators misreading, mistranscribing or miscalculating; and random errors are 
presumably the unavoidable errors that are left over after all other possible 
explanations have been exhausted.’

They point out that the usual approach to accommodating these non-random errors 

is simply to add an extra component of error, argue that this is far from 
satisfactory and conclude by specifying a number of extremely stringent 
pre-conditions needed to ensure the applicability of a statistical approach. In

addition, diversions and estimation errors are not the only sources of deviation of 

MUF values from zero. A host of instrument and human errors, such as

miscalibration of measuring devices, can produce effects which may persist over 

several material balance periods and may closely resemble the effects of

diversions. Accountancy procedures may also have difficulty determining physical 
inventories of plant components involved in non-routine operations.
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5.2.5 Diagnosis in NRTMA

Diagnosis has largely been neglected in NRTMA research because NRTMA has 
largely been viewed as a safeguards tool to detect and not as a tool to explain 
the alarms observed. This is presumably because the number of alarms are 
thought to be so few as not to warrant much a priori research and because there 
is little operational data available to highlight a need.

This neglect is not justified. The statistical approach is currently not practicable 
because of a lack of realistic measurement models and possibly reliable data 
collection procedures. The net effect is either that large errors must be 
hypothesised thus reducing the power to detect certain diversion scenarios or a 

large number of false alarms must be diagnosed. This is apparent from the 
limited operational experience that has been published. Jones et al <49> have 
written about their experience in performing NRTMA on a real plant. They 

describe some of the diagnostic procedures used to justify the data collected even 

when relatively large errors are hypothesised and argue that NRTMA is a 
contributor to instrumentation quality control.

This thesis examines a diagnostic system where only aspects of the measurement 
model that are truly known are incorporated in the test procedure. This results in 
smaller variances and a resultant higher false alarm rate. The system then 
improves credibility by eliminating most of these false alarms without recourse to 
operator intervention. This in turn will enable a case history of non-random errors 

to be built up thus improving the capabilities of the statistical tests.
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5.3 Overview of Proposed Knowledge-Based System

5.3.1 Its Structure

The proposed system has the following outline:

Inference 
Engine j

Knowledge 
Sources 

and 
^ Data >

Numerical
Routines

Analysis
Routines

SIMULATION

Lisp Program s

Fortran Program s

Figure 7: Proposed Knowledge-Based System

It consists of a hybrid lisp/Fortran environment with the lisp environment acting 

as host calling Fortran routines when necessary. A hybrid implementation is 

preferred because it combines the numerical affinity of Fortran with the list and 
symbolic processing powers of lisp. The Fortran environment is composed of 
simulation, analysis and numerical routines.
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The numerical routines are a library of routines to perform matrix algebra, to 
solve a set of linear simultaneous equations and to generate random numbers for 

test purposes. The role of the analysis and simulation routines have largely been 

described elsewhere. The lisp environment consists of knowledge-sources, an 
inference engine and various global data structures and methods. There are four 
knowledge-sources arranged as shown in the Figure below.

CONTROL

CHARTS

SUPERVISOR

M odel-based
Reasoning

HISTORY

Figure 8: NRTMA Knowledge-Sowrces
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The system is invoked everytime a set of plant measurements becomes available, 
that is at the end of every period. This data is input to the lisp environment and 
the control chart knowledge-source is activated.

The primary role of the control charts is to detect the occurrence of a fault and 
having done so, to output two lists: a list of discrepancies and a list of 

assertions which point to possible classes of faults that could account for the 
patterns observed. It would be unusual for the charts to identify a fault uniquely; 
their role is to focus attention. Two issues complicate the recognition process, 
that of noise and of multiple faults. Both can largely be overcome by adding any 
fault, that is remotely likely, to the list Care must then be taken to ensure that 
the most likely are considered first

The supervisor is driven by data flowing from the control charts where the 
overall objective is to detect and diagnose discrepancies in the control charts. 
Alternatively, if no discrepancies exist, the system can still be used either to 
identify malfunctions that do not give rise to discrepancies or to improve the 
simulation by learning. The Supervisor has two roles, that of an evidence gatherer 

and hypothesis generator and that of an adjudicator. We use the term gatherer to 
refer to the former.

The basic mechanism behind the Gatherer is as follows. On receipt of a list of 
fault scenarios, the Gatherer takes each fault scenario in turn and invokes one or 
more of three options: a simulation, a reference to history or its own assessment. 
In most situations it will invoke all three. Each option returns either a statement 
of its deliberations or nothing at all.

Finally the adjudicator is invoked. As explained in Section 2.7, little research has 

been carried out into the process of adjudicatioa The current state assumes that 
the operator will make his own assessment based on the hypotheses formed.
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5.3.2 Knowledge Representation

Individual knowledge-sources are represented in lisp or productions or some

combination of the two. Lisp tends to be used only where a specific task is 
procedural. The productions are of the form

if antecedent then consequent
or

antecedent -> consequent 

with the following syntax:

i) variables are always preceded by a

ii) antecedants may be made up of one or more components linked by
either ’&’ or ’or’; each component can either take the form of a 

lisp-like predicate, for instance (> ?a ?b), or a more general predicate, 

for instance (colour ?a ?b), where the list cannot be evaluated.

iii) consequences may contain a number of special symbols ’!’ and ’$’,
the symbol ’!’ precedes any method and the symbol ’$’ is used to 
expand lists.

For instance, if the method (gefjist x) returns a list (a b c) then

(conseq $ ! (get_list x))

will produce three consequenses (conseq a), (conseq b) and (conseq c).

There are two special cases: no consequences are produced if the list does not 
contain any elements and the use of multiple ’$’ symbols assumes that 

consequences are to be formed by extracting elements from corresponding 

positions of each list. Thus,

(conseq $(a b c) $(r s t))

returns (conseq a r), (conseq b s) and (conseq c t).
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It is intended that the interfaces between the various knowledge sources should be 
custom built, that one knowledge source would usually invoke another via a 
method and that exit would usually result ffom either the search being exhausted 
or ffom invokation of the consequence (return ?information).

Global data is stored in one of three ways: the simple list, frame and lisp 
structure. Global data is kept to a minimum for ease of program development 

Data that is amenable to hierarchical structuring and is relatively static is 
generally stored in frames. Most other data is stored in structures.

An example of a simple list is that of the list used to identify the individual 
periods the system currently has data for. These are stored in the list periods and 
take the form

(mostu_recent_period nextu_mosf_recent_period and so on)

where individual periods may be named batchl,batch2,...
or 01-JAN-90, 02-JAN-90, .... 

and so oa
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An example of a frame is that used to store static data pertaining to the state of

the plant on a given period. These frames are automatically created as data is
received from the ’plant* and have the form

NAME: name o f  period
GENERATION: th is  i s  i n i t i a l l y  set to ’master*

SLOT: plant component
MEASUREMENT: type o f measurement

VALUE: f lo a t in g  point number
STATE: recorded?

MEASUREMENT: type o f  measurement
VALUE: f lo a t in g  point number
STATE: recorded?

MEASUREMENT: type o f  measurement
VALUE: f lo a t in g  point number
STATE: recorded?

OPERATION : s ta te
ON: (tim e_start timers top) 

others:
and so on

SLOT: plant component
MEASUREMENT: type o f  measurement

VALUE: f lo a t in g  point number

STATE: recorded?
MEASUREMENT: type o f measurement

VALUE: flo a t in g  point number
STATE: recorded?

and so on

SLOT: plant component
STATE: recorded?

MEASUREMENT: type o f  measurement

VALUE: flo a t in g  point number

STATE: recorded?
and so on

The generation is used to ensure that the original data is not overwritten by any 

revisions that may be proposed.
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An example of a structure when used to store static data is that of the plant 
component structure:

component - volume : id e n t if ie r  (eg p ftv o l)
- a n a lysis  : id e n t if ie r  (eg p ftan a l)
- in itia l-v o lu m e : id e n t if ie r

- measurements : l i s t  (eg (volume a n a ly s is ))

The same structure can also be used to store calculated variables pertaining to the 
operation of a particular component on a particular period. For instance,

component - inventory : ((p eriod  value) (period . .
- random : ((period  value) (period . .

5.3.3 The Inference Engine

It has already been argued that the inference process is one of building-up an 
explanation to describe the symptoms observed. As distinct ffom trying out 
various fault scenarios until one correlates with the symptoms. The former is 
amenable to forward chaining whereas the latter is amenable to backward 
chaining. A forward chainer has been developed specifically for this application. It 
is capable of inferring ffom productions with syntax described previously with the 
limitation that variable names can only be one of ?u, ?v ,?x, ?y or ?z. Although 

expandable this list is pie-defined. The unification algorithm used is that described 
in Chamiak and McDermott (80K Its performance has been enhanced by Lam (81> 

who incorporated various pointers and data structures.
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5.4 The Control Chart Knowledge-Source

5.4.1 Specification of Control Charts and Associated Patterns

It is envisaged that, at least during the infancy of the plant, the only sensible 
plots will be those of MUF versus time and its cumulative sum because of 
uncertainty surrounding the measurement models. As described in Section 3.4 the 
latter can take two forms,

k
CUMUFk = jT MUFk 

i=i

with variance

k
var(CUMUFk ) = v£ + f  Wj + Vk

i=i

or

k
CUSUMk = r

MUFk

Although NRTMA has tended to concentrate on the accountancy of plutonium, 

Jones (49> has argued that uranium should, also be accounted because this provides 

additional information for diagnosis. This would then result in 2 sets of plots 
which could be compared.

A number of heuristics can be derived to explain the patterns that arise when 
particular categories of error occur. These are based, primarily, on the serial 

correlation caused by the presence of the same physical inventory in consecutive 

balance periods. Thus the effect of a physical inventory error should be observed 

on more than one period.
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Five patterns

Pattern 1:

Pattern 2:

are apparent.

The effect of an error in a transfer either into or out of the 
balance area on a single period, m. If this is the only error and 
has magnitude e, then

' 0  ; 0 ; k < m

M U F jj- = e ; C U M U F fc  =  • e ; k = m

0  ; e ; k > m

The effect of a physical inventory measurement error on a 

single period, m, will be observed on both that period and the 
next If this is the only error and has magnitude e, then

0  ; 0 ; k < m o r k > ra+1

M U F j^  = e ; C U M U F fc  = • e ; k = m

-e ; 0 ; k = m+1

That is a reflection will be observed in the MUF chart and a 
single spike in the CUMUF chart.



Pattern 3:

Pattern 4:

- 73 -

A constant, additive bias in a transfer measurement will be 
observed as a linear shift in the MUF plot and a non-zero 
gradient (ie an incline) in the CUMUF plot. If this is the only 

error, it has magnitude e and it only occurs between periods m 
to n inclusive then,

MUFk =

0 ;

e ;

0 ;

C U M U F k  =

0 ; k < m

(k-m+1) e ; m < k < n 

(n-m+1) e ; n < k

A constant, additive bias in a physical inventory measurement 

will be observed in the MUF plot as a single spike on the 
period the bias develops with a reflected spike on the period the 
bias stops. This will have the effect of creating a plateau on 
the CUMUF plot. If this is the only error, it has magnitude e 
and it only occurs during periods m to n inclusive then,

MUFk

•e ; 

0 ; 

e ;

k = m

k #  m or k * n+1 

k = n+1

-e

CUMUFk = • -e

0

k = m

m < k < n

k < m or k > n



Pattern 5: A single loss on period m from a physical inventory would
produce Pattern 1 provided that the resultant reduction in output 
does not occur on the same period. If it does occur on the 
same period then,

MUFk =

0

2e

k < m 

k = m

k = m+1

k > m+1

CUMUFk =

0

2e

e

k < m 

k = m 

k > m

Gearly the patterns will be less well-defined than the above suggests because of 
the effect of random noise. In addition patterns 3 and 4 may be less clearly 
defined because neither the net transfer nor the physical inventory are measured 

directly: a constant bias in a particular measurement will have a more subtle 
effect on the plots. However the underlying patterns will often be the same with 

the additional complications often being observed as random fluctuations. Figure 9 
shows a typical set of MUF plots corrupted by the various error scenarios. The 
errors have been applied on Period 10 and, where appropriate, revoked on Period 
15.
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Pattern  1

Pattern  2

5<

Pattern  3

Pattern  4

Pattern  5

8 10 12 14 16 18
Periods

Figure 9: Simulated MUF Plots



5.4.2 Timeliness

With reference to Figure 9, a question arises as to whether all data points should 
be examined at the end of each period. If the process were to be repeated every 
period then, initially at least, all the above patterns would be identified as 
pertaining to Pattern 1 on period m. This has been examined by Russell et at47> 
in the context of optimal detectioa They argue on both practical and statistical 
grounds that, although the process should be repeated every period, the detector 

should only be applied to all periods up to, but not including, the current period. 
That is current data is used only to improve the power to detect something that 
has arisen on previous periods. If this approach were to be applied to the 
recognition process then Patterns 1 and 4 would be viewed as one possibility 
whilst all other patterns would be viewed as separate entities.

The question naturally arises as to whether an even longer delay would be of 

benefit Clearly the longer the delay, the more the information and the better the 
discrimination. Conversely, the longer the delay, the less timely the detection and 
diagnosis. There is therefore an argument for a recognition process which is 
applied to all periods (ie with no delay) but with less power to identify patterns 
on current periods than on previous ones.

5.4.3 Pattern Identification 

The approach is to apply the four tests,

t e s t  A: alarm i f  MUF̂  > hm y var (MUF^)

t e s t  B: alarm i f  MUF̂  < hm y  var (MUF^)

t e s t  C: alarm i f  ^  h

t e s t  D: alarm i f  ^  h

where x£ and x^ are as defined in Section 3.4,
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to the relevant time series and to correlate the resulting (binary) sequencies with 
the (binary) sequencies that would arise if the same tests were applied to the 
patterns above.

The method favoured in NRTMA P5*59! for choosing the parameters h, k and 1^ 
is to initially use simulation and then to revise with operational experience. The 
selection process is largely one of balancing credibility, that is, the possibility of 
an alarm never being caused by random fluctuations against power to detect. 
Russell <55) has calculated that for the amount of serial correlation expected in

NRTMA (p=-0.4), the CUSUM test with h = 3.059 and k = 0.063 will ensure

96% credibility over 10 periods (95% over 20) with a power to detect a 0.5o
constant bias within 6 periods of 52.8% (99.3% within 15). This was on the
basis that the CUSUM test was the sole test applied. However it is well-known
(.59,7°) that the results are sensitive to the serial correlation present.

A detailed investigation is needed to ensure that reasonable parameters are chosen 

for a particular plant For computational reasons, the investigation is best carried 
out in two stages: an assessment of performance on the basis of series of random 

numbers followed by an assessment using time series derived ffom a more

realistic simulation. This is because considerable insight can be gleaned by 
examining the performance of tests on time series with statistics which 

approximate to reality. Some of the results obtained by considering time series

which approximate to those expected in NRTMA are given in the Appendix.
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As a result of this insight, the following test combinations appear to provide a 
method of ordering the various patterns:

1: Ak or Bk

2: & Dk ) or (Bk _i & Ck ) or (Ak _i & Bk ) or

(Ak & Bk - l )  or (ck & Dk - l )  or (Ck - l  & Dk )

3: (Ak & Efk ) & (Ck or Dk )

4: (Ak & B ^ )  or (Ak _j & Bk )

since they can be used as follows

combination 1: ( p a t t e r n  2 )k , ( p a t t e r n  l ) k , ( p a t t e r n  5 )k

combination 2: ( p a t t e r n  2 )k _, , ( p a t t e r n  5 )k _j

combination 3: ( p a t t e r n  3 ) ^ . a , ( p a t t e r n  2 ) k , ( p a t t e r n  l ) k

combination 4: ( p a t t e r n  2 ) k . 1 , ( p a t t e r n  5 )k _1

combinations 1 & 2: ( p a t t e r n  2 ) ^ . 2 , ( p a t t e r n  5 ) ^ ^

Note that pattern 4 is omitted here. It can be identified, indirectly, by searching 
for multiple occurrences of pattern 1.



Table 1 shows the results obtained when the four tests were applied to 100,000 
series of random numbers; 10,000 for each of the 10 different error scenarios. 
The random numbers were generated on the basis of an ideal, constant throughput 
plant with the ratio of the physical inventory to throughput being chosen to 
produce a serial correlation, p, of -0.4 in the MUF time series. The magnitudes 
of the faults were specified as multiples of the plant throughput and not of

°MUF’ as is the convention in the assessment of detectors. The equivalent
proportions of <*Mup can be obtained by multiplying the proportion of plant

throughput by the factor y(0.5+p). Thus the results in the first column represent a 

transfer error of 6% of the throughput on a particular period and so on. The 
tests assumed that hm=3.0, h=3.059 and k=0.063.

It is recommended that combinations 2, 3 and 4 should be sought prior to
combination 1 because they require more alarms. That is they are compound tests. 

As described in Section 3.4.2, additional information can be extracted if Pattern 3 

is suspected.

Once the pattern recognition process is completed, relevant classes of faults may 
be added to the list for output. The patterns may not define uniquely a particular 
class of faults. For instance, Pattern 3 not only describes a net transfer bias but

also a temporary hold-up which is slowly building up; for instance as a result of

a tank not being monitored. More than one possible class may therefore be 

output per pattern.

From now on any reference to these patterns may be replaced by more physically
meaningful terms to make what follows more readable. Thus,

P a t t e r n  1 - s i n g l e _ t r a n s f e r _ e r r o r  or inv_loss
P a t t e r n  2 - s in g le_ inv_er ro r

P a t t e r n  3 - transfer__bias or inc/dec_holdup

P a t t e r n  4 - tem pjioldup

P a t t e r n  5 - inv loss  + s i m o u t
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ALARM
Combinations

P a t t e r n
1

12

P a t t e r n
2

12

P a t t e r n
3

l '

P a t t e r n
5

12

No
Fau l t

1
Jerioc

10
11
12
13
15

13
0
0
0
0

78
0
0
0
0

14
13
0
0
0

78
79 

0 
0 
0

0
0
0
0
0

1
1
1
1
1

2
2
2
2
2

79
14
0
0
0

100
79

0
0
0

0.3
0.3
0 .2
0.3
0.3

2 10 1 1 1 2 0 0 0 2 2 0 .0
11 0 0 8 74 0 0 0 13 79 0 .0
12 0 0 0 0 0 0 0 0 0 0 .0
13 0 0 0 0 0 0 0 0 0 0 .0
15 0 0 0 0 0 0 0 0 0 0 .0

3 10 25 15 24 15 5 6 9 14 0 3.1
11 14 4 1 0 6 14 26 0 0 3.5
12 7 1 9 11 8 20 29 8 11 3.7
13 5 1 6 4 10 20 22 6 4 3.7
15 3 2 5 2 10 15 23 4 2 3.8

1 & 2 10 1 1 1 2 0 0 0 2 2 0 .0
11 0 0 8 74 0 0 0 13 79 0 .0
12 0 0 0 0 0 0 0 0 0 0 .0
13 0 0 0 0 0 0 0 0 0 0 .0
15 0 0 0 0 0 0 0 0 0 0 .0

1 & 3 10 0 0 0 0 0 0 0 0 0 0 .0
11 0 0 0 0 0 0 0 0 0 0 .0
12 0 0 0 0 0 0 0 0 0 0 .0
13 0 0 0 0 0 0 0 0 0 0 .0
15 0 0 0 0 0 0 0 0 0 0 .0

2 & 3 10 0 0 0 0 0 0 0 0 0 0 .0
11 0 0 0 0 0 0 0 0 0 0 .0
12 0 0 0 0 0 0 0 0 0 0 .0
13 0 0 0 0 0 0 0 0 0 0 .0
15 0 0 0 0 0 0 0 0 0 0 .0

4 10 0 0 0 0 0 0 0 2 2 0 .0
11 0 0 4 65 0 0 0 13 79 0.0
12 0 0 0 0 0 0 0 0 0 0 .0
13 0 0 0 0 0 0 0 0 0 0 .0
15 0 0 0 0 0 0 0 0 0 0 .0

No alarm in 
6 per iods - 27 1 37 1 34 2 0 4 0 70.4

0 denotes < 0 .5

Table 1 : Test Performance with Time Series
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5.4.4 Its Form

The knowledge-source has two parts: a lisp section where the various test 
statistics (MUF, CUMUF and CUSUM) are both 'formed and tested, and a 
production section where the list of alarms are interpreted. Both alarms and 
interpretations are then entered into the assertion base.
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5.5 The Supervisor

The Supervisor is driven by the data added to goals. The overall objective is to 
detect and diagnose discrepancies in the control charts. Alternatively, if no 
discrepancies exist, the system can still be used either to identify malfunctions 
that do not give rise to discrepancies or to improve the simulation by learning.

On receipt of goals, the Gatherer takes each interpretation in turn and invokes 
one or more of three options: model-based reasoning, a reference to history or its 
own assessment. In most situations it will invoke all three. Each option returns 
either a statement of its deliberations or nothing at all.

Assessments made by the Gatherer can be divided into two parts: those heuristics 
peculiar to plant operation and those which attempt to interpret the hypotheses 
generated.

5.5.1 Typical Plant Operation Heuristics

A number of rules may be derived from the fact that a tank is simply a storage 
device. Having determined both the maximum and minimum analyses of the 
liquor entering the tank over the past n period, rules of the form

[ (minimum_input_analysis ?tank ?per iod  ?min)

& (maximum_input_analysis ?tank ?per iod ?max)

& { (an a ly s i s jn ea su red  < ?min) or ( a n a ly s i s jn e a su re d  > ?max)} ]

-» (suspect_analysis_measurement ?tank ?period)

may be applied. In practice, these assertions may also be used in model-based 

reasoning so the heuristics are applied here.
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Another heuristic (46> for diagnosing transfer errors, is to combine the material 
balance area with a connecting one so that an external transfer point becomes 
internal. Data pertaining to this point will not be included m  the resulting 
balance. A comparison of the various balances may then reveal whether this data 
is suspect.

5.5.2 Hypothesis Interpretation

Most of the hypotheses generated thus far have been subjective because they have 

been related to one’s experience, models with all their uncertainty or plant
operation heuristics. It is therefore important to ensure that they will actually
explain the alarms ie the goals.

Of central importance here are a set of methods or procedures which calculate
that change in any particular variable that would eliminate one or more

discrepancies that are specified. These methods are denoted here by the single

name perturbation_required. The objective is then achieved if a set of faults are 
hypothesised that result in perturbations which explain all the evidence generated f, 

provided that the set is valid.

For instance, a single transfer error hypothesis can be corroborated by referring to
the following productions,

(s ing le_ transfer__error  ?per iod) ■*

( t r ans fe r_occu red  ?per iod $ ! { g e t_ t r an s fe r s  ?per iod})

( t r ans fe r_occu red  ?per iod ? t r a n s f e r )  -*

(p e r t s_ re q  s_t_e ! {per tu rba t ion_ requ i red  ?per iod ? t r a n s f e r } )

5.5.3 Its Form

The Supervisor (Figure 8) is based solely on productions.
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5.6 The History Knowledge-Source

This knowledge source contains data describing any peculiarities pertaining to the 
plant, either currently or recently and rules based on basic physical principles 
which relate this type of data to possibile fault scenarios. It is largely application 
specific and is likely to expand with time.

General assertions are typically of the form,

(measurement_maintained period measurement)

(suspect feedstock period)

whilst rules are of the form,

if [ and (net_transfer_bias_from period)

(measurement_maintained period measurement)
(measurement e net_transfer_measurements) ]

-* (poor_maintenance period measurement)

A typical application specific rule relates to problems in the determination of the 

physical inventory of the solvent-extraction plant Fortunately it is usual 

operational policy to run at one flowsheet ie one load, for extensive periods so 
that physical inventory changes are infrequent. Pattern 4 will then be observed 

when a flowsheet change is invoked and the physical inventory is estimated 
incorrectly. Rules can therefore be applied to correlate this pattern with known 
plant activity, thus

if (Pattern 4 m n) -» ! (look_at_solvent_ext_history m n+1)

if [and (flowsheet_change ?sol_ex_a m)

(flowsheet_change ?sol_ex_b n+1)
(no_flowsheet_change m+1 n) ]

-* (sol_ex? ?sol_ex_a ?sol_ex_b m n)

where look_at_solvent_ext_history is a method which generates the assertions 

needed by the subsequent rule.
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5.7 Model-based Reasoning

The purpose of model-based reasoning is to explain the fault scenario that is 
hypothesised. This explanation can be given in terms of any level of the physical 
hierarchy that is feasible. The knowledge-source is written in two parts: the
analytical approach of Chapters 2 and 4 is invoked and controlled by lispcode
whilst additional heuristics are written as productions. The knowledge-source is 

invoked through the method look_for_fault with the production system being 

invoked first.

The method is also used to specify the periods over which the simulation is to 
be performed. The policy adopted here is to use the category of fault 
hypothesised to do this: if the category refers to information pertaining to periods 

(k-i) through to k then it would seem appropriate to start at period (k-i) and stop 
at either period k or k+1. For instance, one way of discriminating between a 

single error, on period k, involving a transfer out of the system and a single 
inventory measurement error is to simulate over two periods k and k+1. The
inventory error will only give rise to discrepancies on period k whereas the
transfer error will continue to have an effect on subsequent periods.

Hence

(single_transfer_error_k) -» ! (look_for_fault s_t_e (k) {k k+1})

(single_inv_error k)'-» ! (look_for_fault s_Le (k) {k})

where the first list denotes the periods to look for a fault and the second list 

denotes the simulation runlength.
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The following assertions are returned to the production system from the analytical 
approach when the search has been completed.

1. (interpret_model {template./ template2 ....})

where templates contains all successful candidates found in a given sub-lattice as
defined by its significant path elements. It has the form

[ (number_of_significant_path_elements 

(list_of_significant_path_elements)

(candidate./ candidate2 ...)

(score/ score2 ...) ]

where score/ >score2>scoreJ....

and candidates is a list of all its elements and their estimated values and has the 
form

[ (element/ value/) (element2 value2) .... ]

2. (?fault element value list_of_significant_path_elements i:candidatei)

These are components of interpret__model where only elements which are

significant are included and scores, which are only consistent, internally, are

ignored. The variable ?fault is replaced by the first element of look_for_faulL
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5.7.1 The Locality Heuristic

The possibility of focusing on one part of the plant, as a means of reducing the 
candidate space, was mooted in Section 2.6.9 where it was proposed that only 
errors associated with those components significantly in error need be considered. 
However it was appreciated that care must be taken to minimise the possibility 
of the effects of multiple errors being screened by partial cancellation. Since 
complete cancellation is unlikely, a pragmatic approach would be to consider all 

components in error down to a low level of significance, say 1.

Slots containing the related path and non-path errors are therefore assigned to 

each component structure and these are accessed when constructing the candidate 
space.

5.7.2 General Framework of the Analytical Approach

Figure 10 shows the primary dataflow through the principal lisp functions of the
knowledge-source. Going from top to bottom, these functions are

interface - runs the simulation and identifies suspect components, focus-invt
by applying the locality heuristic;

focus - identifies the candidate set on the basis of focus-inv, and

controls inter_sub_lattice search by outputting sets of significant 
paths, starting with the Empty Set, then the Universal Set, then 

the set of single errors, followed by double errors and so on. 
Section 6.6.4 gives an explanation as to why this strategy is
adopted. The search can be terminated, after completing any

sub-lattice, if a suitable candidate has been returned ffom

search_sub_lat - which controls intra-sub-lattice search by identifying all 

candidates, one row at a time, terminating prematurely if a 

successful candidate containing solely insignificant path elements 

and, if variable non-path is set .true., non-path elements, is 
returned ffom
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focus 12 - which assimilates the results obtained by examining one
candidate at a time using

do_it2 - to call out to the Fortran analysis routines and to test the
estimates that are returned by updating the simulation variables 
via

calc-value - and calling on

modify&simulate- to re-run the simulation with the revised values.

Figure 11 shows the primary dataflows through the Fortran routines. The routines 

are accessed through points A to D. Of central importance are the two routines 
FOCUS and SIMU: the former controls the construction and application of the 
regression model whilst the latter performs the simulatioa Routines makeA and 
makeJ construct the two perturbation matrices Jj and J2. Simulation variables are 
updated through setV whereas measurement errors are introduced through corect.
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simulate

focus inv (tem platel te m p la te 2 ....)

{slg_pathl} tem platel

Form
regression

model

tem platel

({candidateiH scorei}) Vsuccessfuli £  rowj{candldatel}rowj

candldatel ({candidate!} {score!}) if su ccessfu l

Perform
regression

candldatel easu rem en ts

(elem ent! value!);

sim ulate

Focus

F ocusl

Interface

calc value

search sub lat

Focus12

Modify & 
simulate

do It2

Figure 10: The Lisp Domain in Model-based, Reasoning
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A, B or C B

put data
get da ta

da ta

initial sta te , xinitial sta te , x

revised

A or D

.revised
Xo

X^

m easurem entss ta te

A or D

m easurem ent errors

setV

m akeJmakeA

BAL

SIMUP

CORECT

S U B C O R

MEAS

Regression
routines

C ovariance
routineFOCUS

SIMU

COMMON block

Figure 11: The Principal Fortran Routines



- 91 -

5.7.3 Heuristics

As above, a number of rules may be derived from the fact that a tank is simply 
a storage device. If a particular tank is suspected on a particular period and if 
the simulation is accepted as being correct, then the following can be applied to 
investigate whether the measurement model is in error,

[ ( s im u la t ion_ana lys is  > measured_analysis)

& (measured_tank_inventory < simula ted_tank_inventory)

& (s im u la t ion_ana lys i s  > maximum_analysis_input) ]

( s t r a t i f i e d ? )

This is of little use by itself because of uncertainty over the simulation. However 
if

[ ( s t r a t i f i e d ? )

& (! (p e r tu rb a t io n _ req u i r ed  ’a n a ly s i s )  < s im u la t io n _ a n a ly s i s ) ]  

(measurement_model_error)

also holds then both (stratified?) and (measurement_model_error) can be returned 
to the Supervisor as evidence.

The above may also be repeated for the case where the measured tank inventory 
is greater than the simulation tank inventory.
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6. APPLICATION TO NEAR REAL TIME MATERIALS ACCOUNTANCY:

A Specific Example

6.1 Introduction

This Chapter discusses the steps that should be taken to develop a model-based 
diagnosis system for a particular plant; in this case a solvent-extraction and 
concentration plant. There are three stages to such a development:

1. form a skeletal knowledge-base as described in the previous Chapter and

produce simulation and analysis routines;

2. test the functionality of the resulting system using data output from the
simulation;

3. assess its performance on the real plant.

Unfortunately neither a plant nor resources were available to perform the third

stage. A relatively superficial assessment of its performance was therefore made

by testing it against a simulation designed to reflect some of the uncertainty 
surrounding the model.

The plant, its layout and operation, are first described. Models are then proposed
both for including in the system and for performing the assessment.

6.2 The Reprocessing Plant

A nuclear fuel reprocessing facility takes spent fuel assemblies as its input and 

produces separate streams of plutonium nitrate, uranium nitrate, high active, 

medium active and low active wastes as its outputs. Conventionally the fuel 

assemblies are first broken apart enabling the individual fuel pins to be extracted. 

These pins are then cut up into small lengths before being immersed, as batches, 

into nitric acid. The solution produced ffom a single batch is first centrifuged to 

remove any solids, then transferred to a tank where the quantity of plutonium
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and uranium present is measured. This tank is sometimes called the ‘accountancy 
tank*. Once measured, the batch is emptied into a buffer tank which forms the 

start of the, continuous, solvent-extraction plant where the separate output streams 
are formed. Finally, the plutonium nitrate may be concentrated by evaporating off 
water so as to ease transportation.

Materials balance areas are usually identified as being ffom the input to and 

including the accountancy tank and ffom there to the various outputs. Separate 

accounts are struck for plutonium and for uranium. It is difficult to simulate the 

first materials balance area because little published data exists as to its operation. 

For instance the rate of loss of nuclear material ffom the main stream as a result
of, for instance, small particles being formed at the fuel pin chopping stage is
difficult to predict However sufficient information t50’60) is available to enable a 
reasonable simulation of the solvent-extraction and concentration plant to be made.

The reprocessing plant examined here is shown in Figure 12. It is assumed that

i) the account is taken every 24 hours and that only one batch can be input
during this period;

ii) either Buffer Tank B is connected to the solvent-extraction plant whilst 
Buffer Tank C feeds the concentrator or vice versa;

iii) Solvent-Extraction Plants A and B operate separately;

iv) Product Storage A is filling whilst Product Storage B is emptied after a 

more accurate inventory is taken and vice versa;

v) the feed to the Concentrator is switched-off at least 8 hours prior to its 
inventory being taken. This is similar to the mode of operation identified as 
being most suitable for NRTMA at Tokai in Japan (51K

Note that the account is taken relatively infrequently. For instance, both the input 

and concentrator are operated on a 24 hour cycle giving only one set of 

measurements per account. Although certain measurements may be taken more 

frequently, for example tank volumes may be recorded hourly, these are omitted 

for reasons of simplicity. It would obviously be beneficial to include them in any 
real system and this is raised in the Conclusions.
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Figure 12: Reprocessing Plant Examined
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6.3 The Simulation

A realistic simulation of a nuclear fuel reprocessing plant is not available in the 
public domain. However sufficient information does * exist (49’50>52) to enable a 
simulation to be constructed which produces a similar level of modelling 

uncertainty. It must be stressed that the objective is to produce typical effects and 
not to predict the precise state of a particular plant. The latter would require 
considerable effort in its development and validation.

The simulation described here, only accounts plutonium as this is thought to be a 
large enough problem for our purposes. Jones et al (49> point out that considerable 

insight can be gleaned from correlating the plutonium account with the uranium 
account. Although this aspect should have a place in any fully operational 

implementation, it represents another level of complexity.

There are potentially two independent variables that are of any significance: the 
mass of liquor (less heavy metals dissolved) and the mass of the plutonium. 
However there would be considerable complexity in applying mass balances to the 

liquor passing through the solvent-extraction and concentration processes. This is 
because of the different streams entering and leaving the former and because of 

the evaporation process in the latter. Since the plutonium balance is of primary 

importance, liquor mass balances are only applied when it is straightforward to do 
so.

The model consists of simple mass and volume balances of the form:

Massj = Massj.j + Net-transferj.j j  

where Massj = mass at end of time step j,

to ensure an accurate account is maintained throughout. This is applied 96 times 

per accountancy period where the actual time interval used is allowed to vary to 

ensure a balance is taken whenever there is a change in plant operation.
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6.3.1 Buffer Tanks

Modelling the contents of tanks is not straightforward because of difficulties in 
predicting the degree of inhomogeneity that is present. The task is made more 
difficult by the fact that one of the key features of a reprocessing plant is that 
the geometry of each plant item is designed to minimise the risk of ciiticality. 
The resulting designs may introduce complicated geometries which can increase 

the possibility of the liquor being stratified. Apparently ^  these tanks incorporate 

continuous mixing techniques to ameliorate this situation. Nevertheless this mixing 

does not produce homogeneity, resulting in biases in the analytical samples. It is 
debatable as to whether or not these biases are deterministic. Since the aim here 
is not one of reality and because it was felt that errors in model structures are 
of interest, a simplified deterministic approach has been adopted.

The tanks are modelled on the assumption that liquor enters at the top and 
leaves at the bottom. If stratification were to take place, then it would probably 

result in horizontal bands, of different chemical composition, being present in the 
tank. The depth of these bands would depend on variation in the feed. A 
simplified model is obtained by assuming that the liquor flowing into the tank 
forms horizontal zones of volume one-twentieth of the total volume of the tank 

where the liquor contained in each zone is perfectly mixed. These zones move 
down as liquor leaves the tank. The amount of inter-zonal mixing can be varied 

for individual simulations. The approach is to allow the N-zones closest to the 

free surface to mix, perfectly, where N is chosen to be between 1 and 20. In 
the case of Buffer Tank A where relatively large batches are input relatively 
infrequently, N is made to vary with the volume of each batch input

An inventory of the tank contents is obtained by multiplying an estimate of the 

liquor volume by an estimate of it’s plutonium content (per unit volume). In 

practice the volume is usually obtained by measuring differential pressure using 

pneumercator diptubes and density and relating to volume via calibration tables. 

The plutonium content is estimated by performing a volumetric analysis on a 

single sample taken ffom the tank. Good accountancy procedure dictates that the 

contents are properly homogenized prior to the sample being taken (51K It is 

debatable to what extent this would be practicable if carried out frequently.
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A further parameter, similar to N above, is therefore provided to enable different 

levels of inter-zonal mixing to be simulated prior to a volumetric analysis being 
made. The sample is then assumed to be taken ffom the zone at the ffee surface.

This uncertainty provides a useful scenario for performing a simulation-based 
assessment. Can a diagnostic system which assumes that the individual buffer 
tanks are perfectly mixed analyse a simulation with stratified tanks? We will 
return to this scenario later.

6.3.2 The Solvent-Extraction Plant

The plutonium inventory in a solvent-extraction plant is largely determined by the 

flowrates of its various inputs (60K These tend to be varied together to maintain 

the heavy metal front in a fixed position. Under these circumstances and to a 
first approximation,

plutonium  inven to ry  <* p la n t throughput

Although it may be possible to determine the plutonium inventory in low to 

medium active parts of the plant by direct measurement, there exists at present 
no satisfactory way of measuring the inventory in the first, ie high active, cycle. 

Here the high level of fission products and higher actinides mask any proven 
plutonium detection techniques. Computer predictions carried out by Walford et al 
(ffl) suggest that the inventory in the first cycle can be varied by between 0.8 to 

4 times the design inventory by manipulating the solvent and scrub feeds. They 
publish a graph showing the steady state variation in inventory obtained by 
varying these two feeds separately.

This uncertainty provides another useful scenario for performing a model-based 

assessment. Can a system which adopts the simple proportionality above analyse a 

simulation where load and first cycle solvent and scrub feeds are not known 
precisely?
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The detailed simulation is therefore based on the afore mentioned graph, assuming 
that the two effects can be summed together. Specifically,

1 + a sol + a sc r )

AQsol  ̂ 0 
AQsol < 0

a Sc r = ( 0 .5 . AQg ĵ- , 16. AQgQj* — 5 .9  )

and AQgoj, AQscr are  d e v ia tio n s  in  feeds from th e ir  nominal v a lu e s .

It is assumed that any feed or load changes are invoked at the beginning of a 

period, gradually over 8 hours, giving the plant time to settle before an inventory 
is taken. Deviations ffom this design inventory may then be imposed by 

perturbing the various feeds.

6.3.3 The Concentrator

The proposed mode of operation should result in the product liquor being 
homogeneous and of approximately the same volume and concentration whenever 

the inventory is taken. This is because it is assumed that the concentrator 
continues to evaporate and produce product after its feed has been stopped 
approximately 8 hours prior to the inventory being taken. By this time a steady 

state should be reached. This steady state can be viewed as being determined by 

volume and concentration ‘setpoints’.

Assuming that the Concentrator performs as predicted then the only issue that 

arises in modelling for accountancy is in determining the rate at which liquor is 

produced. The simplest approach, and that adopted here, is to assume a constant 
rate of production.

inven to ry  o f 
f i r s t  cycle

La
. I T .

where - percen tage  load
0

a S O l  ”

“  AQsol

150. (AQs o l )
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6.3.4 Product Storage

Stratification is less of a problem here than in the buffer tanks provided the 
input concentration is maintained relatively constant. Tanks with perfect mixing 
are therefore adopted.

6.3.5 Random Measurement Errors

In accordance with convention, measurements are assumed to be corrupted by 

random, gaussian distributed errors.

6.3.6 Plant Operation Timing Errors

There appears to be little justification in recording changes in plant operation 

automatically. The operators are more likely to enter the time, for instance, at 
which the feed was switched ffom Product Storage A to Product Storage B, 
manually. Some form of rounding error must therefore arise, its extent being 

dependent on the particular operator. For instance, he could round to minutes, 

5-minutes, 10-minutes, quarter-hours and so on.

Gaussian distributed random number generators are used to simulate these effects.
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6.3.7 Some Typical Faults

System performance was assessed by examining its ability to detect and diagnose
the following faults'.

A. an erroneous measurement of volume (equivalent to 3.7 omxjf) of the plant 
feed tank (buffer tank A) on period 5;

B. an additative bias of approximately 2.3% in the accountancy tank volume

measurement ffom period 3;

C. a diversion from the concentrator (equivalent to 4.2 c^m p) on period 5;

D. solvent_extraction_A plant load incorrectly specified on period 5 as 60%

instead of 100% load; this will cause the simulation to either over or under 

predict the inventory in the plant feed tank with an associated under or over 

prediction of the inventories of buffer tanks B and C. In addition, the

estimated inventory of the relevant solvent extraction plant will be in error.

6.4 Base Simulations

With the absence of a real plant for comparison, it is assumed that the structure 

of the model incorporated into the fault diagnosis system is the simplest possible. 
That is, one with perfect mixing in all the buffer tanks and the solvent-extraction 
plant as described above with the ratios of the various feeds maintained constant. 
The only random errors are those assumed to exist in the individual 
measurements.

System performance can then be examined by diagnosing faults generated ffom a 

simulation in which non-perfect mixing and variations in a number of feeds and 

parameters may or may not be imposed. To be concise, only two plant 
simulations are considered here,
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Plant A:

i) random errors applied to individual measurements;

ii) fluctuations in each of the elements initially contained 
in the set of simulation variables, 0:

Plant B: as above plus

iii) only the top quarter ,of the total possible volume, 

of each buffer tank is mixed;

iv) 0% mixing in the buffer tanks prior to sampling;

v) 0.5% fluctuation in the nominal load of the 
solvent-extraction plants;

vi) 0.5% fluctuations in each of the feeds to the 
first cycle of the solvent-extraction plant:

where an n% fluctuation is modelled as a multiplicative gaussian random error

with standard deviation, n/100. In all, 16 different random sources are included in 

Plant B in addition to those used to corrupt the individual measurements. It must 

be emphasised again that these plant simulations have been performed for the

purposes of experimentation and not to depict reality.

The simulation runs are restricted to 16 periods in all cases because of the not

insignificant amount of data required like switching times. There are ten sets of
data in all. Multiple runs are then obtained by repeating this 10*16 period
sequence using different sets of random numbers. Although an attempt has been

made to make the 10 sets different, a certain amount of similarity still exists
because of difficulties in generating operational times which do not result in tanks 
being emptied.

It is difficult to give a reasonable impression of the difference in results
generated from Plants A&B because

i) the approach is statistical: no single set of graphs will be truly 

representative;
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ii) individual physical inventories may not be startlingly different: a difference 
of only 5% in the physical inventory of a particular component may 

typically represent one aj^pjF.

Figure 13 compares the MUF plot generated by Plants A (x) & B (o) using the 
same set of random numbers and simulating Fault A but applied on Period 10. 

Three a ^ u p  error bars are superimposed. The results that are presented here 
are intended to give a general impression and no more.
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Figure 13 : Typical MUF plots
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6.5 Control Charts

6.5.1 Their Form

The control charts incorporated into the system are as defined in the previous 
Chapter. These require some estimate of the error distributions of the individual 
transfers, inventories and hence, MUFs. The conventional approach to determining 

these error distributions would be to propagate the measurement errors through the 

various calculations. Since these calculations are a combination of additions and 
multiplications, this procedure would involve obtaining corresponding expressions 
for their error distributions. In particular (40K if x and y are two independent 

random variables with probabily densities f(x) and g(y) respectively, the 
probability density function p(w) of random variable w: w=xy is given by

p(w) = TL  . f ( z )  . g ( I  } dz

Fortunately, this procedure need not be adopted in practice because of the central 
limit theorem (37h The resulting error distribution should be approximately 

gaussian because the MUF calculation is a summation <̂ f a number of random 
variables with similar probability densities.

Of importance here then are the two results,

var {ax+by} = a2 var {x} + b2 var {y}

var {xy} s  E [(xy -  E [x y ])2]

= E [(x y )2] -  E [xy]2

= E[x2]E [y2] -  E [x ]2E [y ]2

= var {x} var {y} + E [x ]2 var {y} + E [y ]2 var {x}
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6.5.2 Some Results

The results described in Section 5.3.2 were derived from studies using series of 
random numbers. This Section examines whether the conclusions drawn can be 
extrapolated to more realistic simulations. The method of combining alarms to 
infer particular patterns should be universally applicable because it is based on 
qualitative rather than quantitative arguments. It is the test parameters that are 
suspect.

The effect of varying serial correlation was first examined by applying identical 

statistical tests to those described in that section, this time to 100,000 repeated 
simulations of the plant assuming 100% mixing in the buffer tanks, no 
fluctuations in feeds to the solvent-extraction plant and the precise recording of 

operational changes. That is, the only noise stemmed horn the measurement 

system. The fault scenarios which would cause the various patterns were again 

simulated by corrupting the resultant MUF sequences, 10,000 simulations per 

scenario. The results obtained are very similar as can be seen ffom Table 2.

The experiments were then repeated but this time using realistic Plant B. The 
results obtained are given in Table 3. Note that there are generally more alarms 
as would be expected with the increased variation.
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ALARM
Combinations

P a t te rn  1

12
P a tte rn  2

12

P a tte rn  3 

1 2 3
P a t te rn  5 

6 12

No F au lt

]5erioc
1 10 13 78 13 79 0 1 2 78 100 0 .2

11 0 0 13 77 0 1 2 13 78 0 .2
12 0 0 0 0 0 1 2 0 0 0 .3
13 0 0 0 0 0 1 2 0 0 0 .3
15 0 0 0 0 0 1 2 0 0 0 .2

2 10 0 1 1 1 0 0 0 0 1 0 .0
11 0 0 8 75 0 0 0 13 78 0 .0
12 0 0 0 0 0 0 0 0 0 0 .0
13 0 0 0 0 0 0 0 0 0 0 .0
15 0 0 0 0 0 0 0 0 0 0 .0

3 10 22 18 22 18 1 3 5 18 0 1.0
11 17 3 0 0 4 11 28 0 0 1.5
12 8 1 6 13 5 21 37 6 13 0 .9
13 5 0 5 5 8 27 20 4 5 1.0
15 3 0 3 1 12 13 23 3 2 1.3

1 & 2 10 0 0 1 1 0 0 0 1 1 0 .0
11 0 0 8 • 75 0 0 0 13 78 0 .0
12 0 0 0 0 0 0 0 0 0 0 .0
13 0 0 0 0 0 0 0 0 0 0 .0
15 0 0 0 0 0 0 0 0 0 0 .0

4 10 0 1 0 0 0 0 0 0 0 0 .0
11 0 0 4 65 0 0 0 12 78 0 .0
12 0 0 0 0 0 0 0 0 0 0 .0
13 0 0 0 0 0 0 0 0 0 0 .0
15 0 0 0 0 0 0 0 0 0 0 .0

Table 2: Test Performance on Plant A
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P a tt(
6

jrn  1 
12

P a tt(
6

?rn 2 
12

Pi
1

i t t e r i
2

i 3
3

Patt<
6

jrn  5 
12

No
3a/

3.059

F a u lts  
4a / 

3.059
]5erio (

1 10 44 96 52 98 4 8 14 43 100 2 0 0
11 0 0 23 87 0 0 1 8 68 0 0 0
12 0 0 0 0 1 1 3 0 0 0 0 0
13 0 0 0 0 1 3 5 0 0 0 0 0
15 0 0 0 0 0 0 1 0 0 0 0 0

2 10 3 3 3 3 1 1 2 0 0 0 0 0
11 0 0 21 87 0 0 0 7 68 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 1

15 0 0 0 0 0 0 0 0 0 0 0 0
3 10 27 4 27 2 7 11 15 40 0 4 5 0

11 10 0 0 0 8 19 33 1 0 3 3 0
12 6 0 8 8 12 30 29 5 18 2 3 0
13 6 0 3 2 26 25 16 9 10 6 6 0

15 1 0 3 1 7 6 22 2 1 2 2 0
1&2 10 3 3 3 3 1 1 2 0 0 0 0 0

11 0 0 21 87 0 0 0 7 68 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0

4 10 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 17 86 0 0 0 6 68 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0
No
a la r i H

3 - 13 0 18 0 0 4 0 56 57 93

in  15 perio d s

Table 3: Test Performance on Plant B
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6.6 Model-based Reasoning

The experiments described here have largely been confined to reasoning about a 
single period primarily because of a lack of resources. There has been insufficient 
time to consider the added dimension of errors in the simulation variables being 
correlated and the increased complexity resulting from multiple periods would 

have stretched the current computational facility of a VaxStation 3100 with 8Mb 
of memory.

6.6.1 Its Form

The symptoms are generated by comparing all the measurements output for the 
purpose of performing the near real time accountancy of plutonium with those 

output from the simulation. This, essentially, consists of volumes and volumetric 

analyses. There are thirteen such measurements output every period from the 

simulation here. Each measurement must have a measurement error, in terms of a 
standard deviation, attached to it.

Initially the set © of parameters and other variables necessary to describe the 
re-distribution process is restricted to those elements that form the boundary 

conditions of the simulation. That is,

accountancy_tank_volum e_transfered 
account ancy_t ank_analysi s_t rans fe red 
t i me_o f_ac coun t ancy_t ank__t r ans f  e r 
start_ tim e_of_feed_ toJP roduct_ tank_A  
s t a r t__t i me_o f_ f  eed_t o_P roduc t_ t  ank_B 
tim e_concen tra to r_sw itched_off 

s tart_ tim e_of_ feed_ to_concen tra te_ tank_A  

sta rt_ tim e_of_ feed_ to_concen tra te_ tank_B  

s o lv e n t_ e x tra c ti  on__p 1 an t _A_1 o ad 

so lv en t_ ex trac tio n _ p lan t_ B _ lo ad
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Other elements can be added with experience. The uncertainty matrix must be 
specified for each period k. Fortunately it is likely to be diagonal with those 
elements involving time being independent of k. The other elements are likely to 
be some multiple of either the volume, analysis or load involved.

In addition, the plutonium content estimates in both the solvent-extraction plants 
and the concentrator must be omitted from this assessment because the model 

used to estimate the content is also incorporated into the simulation. That is, y=y 
in both cases. Thus errors in the various feeds will have an identical effect on 

both y and y. Their presence must be inferred from their effect on the other 
measurements. These errors must therefore be included, explicitly, in €>. Thus

so lv en t_ ex trac tio n _ p lan t_ A _ in v en to ry _ e rro r c 0 
so lv en t_ ex trac tio n _ p lan t_ B _ in v en to ry _ e rro r c 0 
c o n c e n tra to r_ in v e n to ry _ e rro r e 0

6.6.2 The Candidate Space

A maximum of three explanations per period is chosen, at least initially, as being 
the most the diagnostician would be prepared to contemplate at any one time. 

This is obviously a moot point but is justified on the grounds that it represents a 
candidate space of some 9737 candidates which is more than sufficient for our 
purposes here. In addition and as suggested in Section 4.7, the lattice is searched 
one sub-lattice at a time to minimise computer storage.

6.6.3 Fault Free Studies

A number of experiments were carried out to optimise the credibility of the 

approach, that is its false alarm rate, to examine the effect of using composite as 

opposed to single elements (Section 4.6) and to assess whether the search space 

could be reduced by applying the locality heuristic as described in Section 2.6.9.
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Each experiment consisted of diagnosing results ffom 10 simulations, of 16 
periods each, of both Plants A and B. The same covariance matrices P^, 
and Rfc as used to generate the data were assumed throughout. A particular 
candidate was deemed to be credible (Section 4.5) if each estimate satisfied its 
apriori variance at level 3 or less and the revised symptoms were explained at 
level 3 or below. In all, Plant A required some form of explanation on 108 
periods whilst Plant B required explanations on 129 periods, (note that this false

were applied.)

Ideally the diagnostician would prefer the system to only output path errors that 
are insignificant (Section 2.6.4) because no faults have arisen. Hence the search 
was restricted to that sub-lattice that contained solely insignificant path errors. The 
search adopted a depth first strategy, considering path errors first, and then 
non-path errors.

The following was observed.

1. Diagnosis was successful on all periods.

2. Only 3 non-path explanations were required if only candidates with 

composite elements were considered in the diagnosis of plant A. This 

compared with 10 if single elements were used instead. A decision was 

therefore made to use composite elements in all subsequent experiments.

3. It was felt that the demanded explanation rate of 129/160 for Plant B was 
rather excessive. The test on the revised symptoms was altered to be 
successful at level 4 or below. Plant A now required 80 explanations whilst 

Plant B required 118.

4. It was found that there was very little difference if the search space was 

restricted further by applying the locality heuristic of Section 5.7.1. This can 

be seen ffom Table 4 below which shows the distribution of candidates, 

providing successful explanations at level 4 or below, for Plants A and B 

with or without the locality heuristic being applied. This similarity was also 

observed in all subsequent experiments.

alarm rate cannot be compared directly with the results
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CANDIDATES

Path  elem ents 
only

Path  & non-path  
elem ents

Number o f elem ents Number o f elem ents

P la n t L ocali ty  
H e u ris tic 1 2 3 1 2 3

A YES 64 14 0 0 2 0

NO 64 13 1 0 2 0

B YES 80 32 3 0 3 0

NO 80 32 5 0 1 0

Table 4 : Distribution o f Successful Candidates

6.6.4 Fault Studies

The simulations above were repeated but with either Fault A, C or D included 
creating 60 datasets in all, 3*10 pertaining to Plant A and 3*10 to Plant B. 
Again, that sub-lattice containing solely insignificant path errors was searched with 

elements being preferred to non-path ones. The results are given in Table 5. It 

can be seen that

Fault A: the correct measurement error is identified in all cases;

Fault C: diagnosis has been incorrect because it should have been performed over 
two periods (Section 5.7). However it has identified the correct plant component 

and, as will be shown in the next Section, still provides useful information;
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Fault D: one diagnosis, per plant, failed completely whilst the other 9 required at 
least 2 non-path explanations. A question therefore arose as to whether or not 

these 2 explanations could be replaced by a single, significant path explanation. 
That sub-lattice containing no insignificant path errors was therefore examined for 
those datasets containing Fault D and the following results were obtained:

P la n t A - 7*p* & 3*2p*

P la n t B - 5*2p* & l*(p*+np) & 4*3p*

where * means ‘cases had’ and a particular p* in every case was that composite
element that contained both solvent_extraction_plant_A_load and solvent_extraction
plant_B_load. Each sub-lattice containing a single significant path error which was 
identical to one of those identified was searched next. Only 2 significant path 
errors were succesful in the case of Plant A, the 2 loads and the following 
candidates were identified,

P la n t A - so lv en t_ ex trac tio n _ p lan t_ A _ lo ad !fc + (7 & 3*p)

P la n t B - so lv en t_ ex trac tion_p lan t_A _load*  + (4*p & 2*np & 4*2p)

This is the stategy adopted in function ’focus’ described in Section 5.7.2.
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CANDIDATES

P = path np = non-path

P lan t F au lt np p+np 2np 2p+np p+2np 3np np id e n t i f ie d

A A

C

D

6

7

4

3

8 1

p ft_ v o l

prod_storA _vol

p ft_ v o l
+buf_tankB_vol 
(+p r od_s t o rA_v o1)

B A 7 3 p ft_ v o l

C 1 7 2 prod_storA _vol

D 8 1 p ft_ v o l
+buf_tankB_vol 
(+p rod_st o rA_vo1)

Table 5 : Fault Studies Using Insignificant Path Sub-lattice

6.7 Overall System Performance

The system implemented to date is skeletal. As explained in Sections 5.1, 5.3.1

and 6.0, this is partly because of the lack of a real facility and partly because of

a lack of time. The main limitations are,

1. the system only contains the bare minimum of heuristics needed to prove
the interaction of the knowledge-sources;

2. only regression models based on the single period are formed;

3. the system lacks an adjudicator,

4. catastrophic failures (Section 2.6.4) are not accommodated.
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The following examples are given merely to elaborate on system performance and 

to demonstrate its potential. Considerably more development is required before the 
system can be viewed as being operationally viable.

At present, the consequences generated by the control-chart and supervisor 
knowledge-sources are held in a common assertion base, goals. Model-based 
reasoning and history have their own assertion bases, sim_asserts and corr_asserts. 
The following assertion bases were generated when the system was invoked using 

the data described previously.

Plant A, Fault A; system invoked at the end of the day following the fault,

goals - as produced by the control charts

( I N V - L O S S + S I M - O U T  Y E S T E R D A Y )

( I N V - L O S S  Y E S T E R D A Y )

( S I N G L E - T R A N S F E R - E R R O R  Y E S T E R D A Y )

( S I N G L E - I N V - E R R O R  Y E S T E R D A Y )

( L O O K - A T  C U S U M P  T O D A Y )

( L O O K - A T  M U F T E S T P  T O D A Y )

( C U S U M - P  Y E S T E R D A Y )

( M U F T E S T - P  Y E S T E R D A Y  3 1 6 . 4 9 8 )

Note that the patterns were generated solely on the basis of 
combination 1. The LOOK-AT assertions are merely for connecting 

rules and are of no interest to the diagnostician.
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goals - produced by the supervisor,

(VALUE-REQ S-T-E YESTERDAY PROD-STOR-B 

((VOLUME 1.0e6 1.0e6)
(ANALYSIS 73.8536 3.113602)
(INI—VOL 106.1241 4 .474106)))

(VALUE-REQ S-T-E YESTERDAY ACCN-T 
((VOLUME -8.36588 9.865882)

(ANALYSIS 29.20196 -2.87804)
(INI—VOL 1 0 1 .6 0 4 1 -9 .8 6 5 8 9 )))

(LOOK-FOR-FAULT S -I-E  YESTERDAY (YESTERDAY YESTERDAY)) 
(LOOK-FOR-FAULT S-T-E YESTERDAY (YESTERDAY TODAY)) 
(TRANSFER-OCCURED YESTERDAY PROD-STOR-B)

(TRANSFER-OCCURED YESTERDAY ACCN-T)

(LOOK-FOR-FAULT I-L  YESTERDAY (YESTERDAY TODAY))

The VALUE-REQ assertions specify the measurements together with 
their respective perturbations that would be needed to individually 
explain the MUFTEST-P. These would be of interest if model-based 
reasoning suspected either the accountancy tank or product storage tank
B.

sim_asserts - as produced by the analytical approach,

(S -I-E  ( (PFTVOL-MEAS -9 .20707)) NIL 1)
( INTERPRET-410DEL S -I-E

((0  NIL (((1  -0.492931) (991 -9 .2 0 7 0 7 )))

(0 .9 6 5 0 0 9 ))))

Only one possible explanation was generated on the second row of the 

insignificant path error sub-lattice and the search was terminated. (The
  1 :  : a  r : „  J  _______ i :  \  a   j   n  o  /

lx isL  i u w  xxavixig  x u c ix u x x cu  xxu a u x ia u x c  w axxuxuaxcs.j x cu u w u u x x  ux

in the simulated volume in the plant feed tank would explain the 

measurements. That is, there was a measurement error of -9.2/ as 

compared to an actual error of -10/. An insignificant error in the 
volume input to the plant is also needed to explain the discrepancies.
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sim-asserts - initial assertions’

(INV-TYPE PFT I-TANK)
(INV-TYPE SOL—EX—1 SPECIAL)
(INV-TYPE SOL—EX—2 SPECIAL)
(INV-TYPE BUF-TANK-B I-TANK)
(INV-TYPE BUF-TANK-C I-TANK)
(INV-TYPE EVAPORATOR SPECIAL)
(INV-TYPE PROD-STOR-A I-TANK)

(INV-TYPE PROD-STOR-B I-TANK)

sim-asserts - base data,

(ERROR YESTERDAY BUF-TANK-C -38.5993)
(ERROR YESTERDAY BUF-TANK-B 53.93359)
(ERROR YESTERDAY PFT -327.456)
(PROBLEM-INV YESTERDAY BUF-TANK-C)
(PROBLEM-INV YESTERDAY BUF-TANK-B)

(PROBLEM-INV YESTERDAY PFT)

3 suspect components have been identified by comparing the model 
output with the measurements where erron=( actual-predicted ). These 
form focus-inv (Section 5.7.2).
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sim_asserts - produced by heuristics,

(ANAL-REQ PFT 30.28288)

(MIN-INPUT-ANAL PFT YESTERDAY 28.69)
(MAX-INPUT-ANAL PFT YESTERDAY 37.07)
( INPUT-ANAL-HIST PFT YESTERDAY ((32 .08  37.07 2 8 .6 9 )))  
(ANAL-REQ BUF-TANK-B 33.56335)
(MIN-INPUT-ANAL BUF-TANK-B YESTERDAY 28.84)

(MAX-INPUT-ANAL BUF-TANK-B YESTERDAY 35.68)
(INPUT-ANAL-HIST BUF-TANK-B YESTERDAY

((33.34999 35.68 28. 84) (33.18 35.29999 29 .05999))) 
(SIM-ANAL-HIGH?? YESTERDAY PFT -327.456 33.25375 33.20999) 
(ANAL-REQ BUF-TANK-C 34.7864)

(MIN-INPUT-ANAL BUF-TANK-C YESTERDAY 28.84)

(MAX-INPUT-ANAL BUF-TANK-C YESTERDAY 35.68)
(INPUT-ANAL-HIST BUF-TANK-C YESTERDAY

((33.34999 35.68 28.84) (33.18 35.29999 29 .05999))) 
(SIM-ANAL-HIGH?? YESTERDAY BUF-TANK-C 

-38.5993 35.0352 35.18999)
(SIM-ANAL-LOW?? YESTERDAY BUF-TANK-B 

53.93359 32.76209 32.59)

The system attempted to assess whether any of the tanks were 

stratified by applying the heuristics of Section 5.5.1 but failed to 

identify any. The consequence (stratified ...) would have appeared if it 
had been successful.
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Plant B, Fault A: consequences virtually identical to the above were added but 
with the following notable exceptions:

(S -I-E  ( (PFTVOL-MEAS -9 .11259)) NIL 1)
(INTERPRET-410DEL S -I-E  ((0  NIL (( (1  -0.345518)

(6 -0.634452) (991 -9 .1 1 2 5 9 ))) (2 .227894))))

A single candidate was generated on the third row of the insignificant 
path error sub-lattice. Again, this contained a single significant error of 

-9.1/ in the volume measurement.
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Plant A, Fault B: This scenario was included primarily to examine the 

performance of the control charts because of the current limitation of a single 
period imposed on the model-based reasoning. It was assumed that the bias was 
applied three days ago with this diagnosis being performed at the end of 
‘TODAY’.

goals -

(IDH NOT-YET-DONE)

(LOOK-FOR-FAULT S -I-E  TODAY (TODAY TODAY))

(LOOK-FOR-FAULT S-T-E TODAY (TODAY TOMORROW)) 
(TRANSFER-OCCURED TODAY ACCN-T)

(LOOK-FOR-FAULT I-L  TODAY (TODAY TOMORROW))
(SIG-GRAD-ON (TWODAY YESTERDAY TODAY))

(CUMUF-GRADIENT 156.2182)

(VIS-GRAD UPTO (156.2182 (TWODAY YESTERDAY TODAY))) 

(DO-VIS-GRAD UPTO TODAY (FIVEDAY FOURDAY THREEDAY TWODAY 
YESTERDAY TODAY))

(INV-LOSS TODAY)
(SINGLE-TRANSFER-ERROR TODAY)

(SINGLE-INV-ERROR TODAY)
(INC/DEC-HOLDUP NIL)

(TRANSFER-BIAS NIL)

(COMBIN-3 TODAY)
(LOOK-AT CUSUMP TOMORROW)
(CUSUM-P TODAY)

(CUMUF-TEST TODAY 423.7539)

Combination 3 is invoked which in turn requests that the possibility of 

a transfer_bias, inc/dec_hold-up, single_transfer_error or single_inventory__ 

error be examined. A bias of about 0.16Kg/period is estimated starting 

one day after the actual occurrence.



sim-asserts - base data,

(ERROR TODAY PROD-STOR-A -55.6582)
(ERROR TODAY BUF-TANK-C -117.612)
(ERROR TODAY BUF-TANK-B 28.52734)

(ERROR TODAY PFT -102.767)
(PROBLEM-INV TODAY PROD-STOR-A)
(PROBLEM-INV TODAY BUF-TANK-C)

(PROBLEM-INV TODAY BUF-TANK-B)

(PROBLEM-INV TODAY PFT)

sim-asserts - produced by analytical approach,

(S -I-E  (BUFTCANAL-MEAS -0.440304) NIL 1)
( INTERPRET-MODEL S -I-E

((0  NIL (((998  -0 .440304))

((4  -0.09671) (5 0 .09671))
((997 -2 .84438)))

(0.037795 0.074822 0 .6 3 1 9 3 3 ))))

The model-based reasoning is invoked but identifies a relatively 

insignificant measurement error of 0.44gm//.

Plant B, Fault B: This has a similar output to the above, but with one major 
exception best explained by examining the alarms added to the goals,

(CUSUM-P YESTERDAY)

(CUMUF-TEST TODAY 390.6166)
(MUFTEST-P TODAY 327.1447)

Both the muf test and cusum test have alarmed on the same period 
so combination 3 is not invoked. The important indicator is the alarm 

generated by the cumuf test.
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Plant A, Fault C: as explained in Section 6.6, it was expected that this fault 
scenario would be misinterpreted because diagnosis is currently restricted to a 
single period. However it can be seen that the fault can be inferred from the 
contradictory evidence in the goals.

goals:-

(VALUE-REQ S-T-E YESTERDAY ((VOLUME 1.0e6 1.0e6)

(ANALYSIS 73.61585 2.875854)

(INI—VOL 105.439 4 .119049)))

(VALUE-REQ S-T-E YESTERDAY ((VOLUME 10.58294 9.082944) 
(ANALYSIS 29.43035 -2.64964)
(IN I—VOL 102.387 -9 .08295)))

(LOOK-FOR-FAULT S -I-E  YESTERDAY (YESTERDAY YESTERDAY)) 
(LOOK-FOR-FAULT S-T-E YESTERDAY (YESTERDAY TWODAY)) 
(TRANSFER-OCCURED YESTERDAY PROD-STOR-B)
(TRANSFER-OCCURED YESTERDAY ACCN-T)
(LOOK-FOR-FAULT I-L  YESTERDAY (YESTERDAY TOMORROW))
( INV-LOSS+SIM-OUT YESTERDAY)
(INV-LOSS YESTERDAY)
(SINGLE-TRANSFER-ERROR YESTERDAY)
(SINGLE-INV-ERROR YESTERDAY)

(LOOK-AT CUSUMP TODAY)

(LOOK-AT MUFTESTP TODAY) .

(CUSUM-P YESTERDAY)

(CUMUF-TEST YESTERDAY 283.7919)

(CUMUF-TEST TODAY 452.7478)
(CUMUF-TEST TOMORROW 461.236)
(MUFTEST-P YESTERDAY 336.875)

The CUMUF-TEST continues to alarm on subsequent periods. This 

would not happen if it was a single inventory error. Note that the 

diagnosis has been performed over an additional period, TOMORROW, 
to corroborate this.
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sim-asserts: -  base data,

(ERROR YESTERDAY PROD-STOR-A -362.353)

(ERROR YESTERDAY BUF-TANK-C -38.5993)

(ERROR YESTERDAY BUF-TANK-B 53.93359)
(PROBLEM-INV YESTERDAY PROD-STOR-A)
(PROBLEM-INV YESTERDAY BUF-TANK-C)
(PROBLEM-INV YESTERDAY BUF-TANK-B)

sim-asserts:- produced by analytical approach,

(S -I-E  ( (PRODTAVOL-MEAS -4 .15504)) NIL 1)
( INTERPRET-MODEL S -I-E

((0  NIL (((1 3  40.46071) (1000 -4 .1 5 5 0 4 ))) (0 .8 3 0 3 9 4 ))))

A single error is identified, that of a measurement error in product 
storage tank A. However from above, this is more likely to be a 
diversion.

Plant B, Fault C: the results obtained were very similar to the above and are 
therefore omitted.
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Plant A, Fault D:

goals

(VALUE-REQ S-T-E YESTERDAY PROD-STOR-A 
((VOLUME 1.0e6 1.0e6)

(ANALYSIS 73.93459 3.194595)
(INI—VOL 106.2404 4 .590477)))

(VALUE-REQ S-T-E YESTERDAY ACCN-T 

((VOLUME 11.6225 10.1225)
(ANALYSIS 29.1271 -2.9529)
(INI—VOL 101.3474 -10 .1225)))

(LOOK-FOR-FAULT S -I-E  YESTERDAY (YESTERDAY YESTERDAY)) 
(LOOK-FOR-FAULT S-T-E YESTERDAY (YESTERDAY TODAY)) 

(TRANSFER-OCCURED YESTERDAY PROD-STOR-B) 

(TRANSFER-OCCURED YESTERDAY ACCN-T)

(LOOK-FOR-FAULT I-L  YESTERDAY (YESTERDAY TODAY))
( INV-LOSS+SIM-OUT YESTERDAY)
(INV-LOSS YESTERDAY)

(SINGLE-TRANSFER-ERROR YESTERDAY)
(SINGLE-INV-ERROR YESTERDAY)
(LOOK-AT CUSUMP TODAY)

(LOOK-AT MUFTESTP TODAY)
(CUSUM-P YESTERDAY)

(CUMUF-TEST YESTERDAY 271.6474)

(MUFTEST-P YESTERDAY 324.7304)

sims_asserts\- base data,

(ERROR YESTERDAY PROD-STOR-A -91.2678)

(ERROR YESTERDAY BUF-TANK-B 401.3547)

(ERROR YESTERDAY PFT -668.361)

(PROBLEM-INV YESTERDAY PROD-STOR-A)
(PROBLEM-INV YESTERDAY BUF-TANK-B)
(PROBLEM-INV YESTERDAY PFT)
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sim-asserts:- produced by analytical approach,

(S -I-E  ( (PFTVOL-MEAS -18.845) (BUFTBVOL-MEAS 12.44342))
NIL 4)

(S -I-E  ( (PRODTAVOL-MEAS -0.563591) (PFTVOL-MEAS -18.8944) 
(BUFTBVOL-MEAS 12.49887)) NIL 3)

(S -I-E  ((PFTVOL-MEAS -18.845) (BUFTBVOL-MEAS 12.44342))
NIL 2)

(S -I-E  ( (PFTVOL-MEAS -18.8944) (PRODTAANAL-MEAS -0.739998) 

(BUFTBVOL-MEAS 12.49887)) NIL 1)
(S -I-E  ( ( (S0LEX1—LOAD 20.30077) (S0LEX2-L0AD 20.30077)))

(7 8 4 5 6 13 1 2 3 9 10 11 12) 1)
(S -I-E  ( ( (S0LEX1-L0AD 38 .62499))) (9) 1)
(S -I-E  ( ( (S0LEX2-L0AD 38.62499))) (10) 1)
(INTERPRET-MODEL S -I-E

((1 (10) ( ( (9  1.943749) (10 38 .62499))) (1 .039366))

(1 (9) ( ( (9  38.62499) (10 1 .943749))) (1.039366))
(13 (7 8 4 5 6 13 1 2 3 9 10 11 12)

( ( (9  20.30077) (10 20 .30077))) (0 .521842))
(0 NIL (( (1  -0.49561) (991 -18.8944) (1001 -0.739998)

(995 12.49887)) ((7  0.203061) (1 -0.494316)

(991 -18.845) (995 12.44342))

((13 21.78896) (1000 -0.563591) (1 -0.49561) 
(991-18.8944) (995 12.49887))

((6  -0.446531) (1 -0.494316)
(991 -18.845) (995 12.44342))) 

(2.060651 2.108644 2.306707 
2 .3 4 2 4 8 9 ))))

The more important fault hypotheses have been added to the assertion 

base first and therefore follow immediately on from 

INTERPRET-MODEL. The first hypothesis is for a single significant 
error of 38.6% in the load of solvent extraction plant A. This is 

derived from that sub-lattice which only contains this single path 
error.
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Note that the diagnostic system is unable to discriminate between the 
3 possible scenarios of either or both of the sol_ex_loads being 

significantly in error. However a total increase of about 40% is 
consistently required to explain the measurements. Alternative fault 

hypotheses are then proposed which are based on more than one 
significant error.

Plant B, Fault D -

goals -

(VALUE-REQ S-T-E YESTERDAY PROD-STOR-B 

((VOLUME 1.0e6 1.0e6)
(ANALYSIS 73.61585 2.875854)
(INI—VOL 105.439 4 .119049)))

(VALUE-REQ S-T-E YESTERDAY ACCN-T 

((VOLUME 10.58294 9.082944)

(ANALYSIS 29.43035 -2.64964)

(INI-V0L 102.387 -9 .0 8 2 9 5 )))

(LOOK-FOR-FAULT S -I-E  YESTERDAY (YESTERDAY YESTERDAY)) 
(LOOK-FOR-FAULT S-T-E YESTERDAY (YESTERDAY TODAY)) 
(TRANSFER-OCCURED YESTERDAY PROD-STOR-B)
(TRANSFER-OCCURED YESTERDAY ACCN-T)
(LOOK-FOR-FAULT I-L  YESTERDAY (YESTERDAY TOMORROW))
( INV—LOSS+SIM-OUT YESTERDAY)

(INV-LOSS YESTERDAY)
(SINGLE-TRANSFER-ERROR YESTERDAY)
(SINGLE-INV-ERROR YESTERDAY)
(LOOK-AT CUSUMP TODAY)

(LOOK-AT MUFTESTP TODAY)

(CUSUM-P YESTERDAY)

(MUFTEST-P YESTERDAY 291.3813) 1
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sim-asserts - base data,

(ERROR YESTERDAY PROD-STOR-A -275.093)

(ERROR YESTERDAY BUF-TANK-C 210.1196) *
(ERROR YESTERDAY BUF-TANK-B 436.0869)
(ERROR YESTERDAY PFT -668.361)
(PROBLEM-INV YESTERDAY PROD-STOR-A)
(PROBLEM-INV YESTERDAY BUF-TANK-C)
(PROBLEM-INV YESTERDAY BUF-TANK-B)

(PROBLEM-INV YESTERDAY PFT)

sim-asserts:- produced by analytical approach,

(S -I-E  ((PFTVOL-MEAS -18.845)

(BUFTBVOL-MEAS 13.50509)) NIL 1)

(S -I-E  (((BUFTBANAL -0.911213)

(PFTVOL -9.78666)

(PFTVOL-MEAS -9.51926) (BUFTBVOL-MEAS 13.50509))) 

(7 8 4 5 6 13 1 2 3 9 10 11 12) 3)
(S -I-E  (((1 3  78.43061)

(CONCT1VOL-MEAS -1.11111)
(SOLEX1—LOAD 21.42752)
(S0LEX2-L0AD 21.42752)

(BUFTCANAL-MEAS 1.390303).)
((BUFTBANAL -0.911213)

(PFTVOL -9.78666)
(PFTVOL-MEAS -9.51926)
(BUFTBVOL-MEAS 13.50509)))

(7 8 4 5 6 13 1 2 3 9 10 11 12) 2)

(S -I-E  ( ( (CONC-INV 108.1671)

(PRODSTAVOL-MEAS -1.53238)

(S0LEX1-L0AD 21.62524)

(S0LEX2-L0AD 21.62524)

(S0LEX1-INV -75.3563)
(S0LEX2-INV -75.3569))
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( (CONC-INV 78.43061)
(PR0DSTAV0L41EAS -1.11111)
(S0LEX1—LOAD 21.42752)
(S0LEX2-L0AD 21.42752)

(BUFTCANAL-MEAS 1.390303))
((BUFTBANAL -0.911213)

(PFTVOL -9.78666)

(PFTVOL-MEAS -9.51926)
(BUFTBVOL-MEAS 13.50509)))

(7 8 4 5 6 13 1 2 3 9 10 11 12) 1)
(S -I-E  (((PFTVOL-MEAS -18.845)

(BUFTBVOL-MEAS 13.50509))) (13) 1)

(S -I-E  (((PFTVOL-MEAS -18.845)
(BUFTBVOL-MEAS 13.50509))) (9) 3)

(S -I-E  ( ( (S0LEX1-L0AD 36.32323))

( (PFTVOL-MEAS -18.845)
(BUFTBVOL-MEAS 13.50509))) (9) 2)

(S -I-E  (((PRODSTAVOL-MEAS -1.86382)
(S0LEX1-L0AD 40.77165) (BUFTCANAL-MEAS 1.388878)) 

( (S0LEX1—LOAD 36.32323))

((PFTVOL-MEAS -18.845)

(BUFTBVOL-MEAS 13.50509))) (9) 1)

(S -I-E  ( ( (PFTV0L-41EAS -18.845)
(BUFTBVOL-MEAS 13.50509))) (10) 3)

(S -I-E  ( ( (S0LEX2-L0AD 36.32323))

((PFTVOL-MEAS -18.845)
(BUFTBVOL-MEAS 13.50509))) (10) 2)

(S -I-E  ( ( (PRODSTAVOL-MEAS -1.86382)
(S0LEX2-L0AD 40.77165)

(BUFTCANAL-MEAS 1.388878))

( (S0LEX2-L0AD 36.32323))

( (PFTVOL-MEAS -18.845)

(BUFTBVOL-MEAS 13.50509))) (10) 1)

(S -I-E  (((PFTVOL-MEAS -18.845)

(BUFTBVOL-MEAS 13.50509))) (11) 1)
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(S -I-E  ( ( (PFTVOL-MEAS -18.845)
(BUFTBVOL-MEAS 13.50509))) (12) 1)

(S -I-E  (((BUFTBANAL -0.911213)

(PFTVOL-MEAS -18.845)

(BUFTBVOL-MEAS 13.50509))) (6) 1)
(S -I-E  (((PFTVOL -9.78666)

(PFTVOL-MEAS -9.51926)
(BUFTBVOL-MEAS 13.50509))) (1) 1) 

(INTERPRET-MODEL S -I-E  

((1 (1) ( ( (6  -0.909553) (1 -9.78666)

(991 -9.51926) (995 13.50509) (3 .130606))
(1 (6) ( ( (6  -0.911213) (1 -0.494316) (991 -18.845) 

(995 13.50509))) (3.395451))
(1 (12) ( ( (6  -0.909553) (1 -0.494316) (991 -18.845) 

(995 13.50509))) (3 .606022))

(1 (11) ( ( (6  -0.909553) (1 -0.494316) (991 -18.845) 
(995 13.50509))) (3.606022))

(1 (10) (((1 3  23.9064) (1000 -1.86382) (9 2.051777) 
(10 40.77165) (998 1.388878))

((4  -0.407746) (6 -0.67321) (9 1.827917)
(10 36.32323))

((6  -0.909553) (1 -0.494316) (991 -18.845) 
(995 13.50509)))

(1.881204 2.490629 3.606022))

(1 (9) (((1 3  23.9064) (1000 -1.86382) (9 40.77165) 

(10 2.051777) (998 1.388878))

((4  -0.407745) (6 -0.67321) (9 36.32323)
(10 1.827917))

((6  -0.909553) (1 -0.494316) (991 -18.845) 
(995 13.50509)))

(1.881203 2.490628 3.606022))

(1 (13) ( ( (6  -0.909553) (1 -0.494316) (991 -18.845) 

(995 13.50509))) (3 .606022))

(13 (7 8 4 5 6 13 1 2 3 9 10 11 12)

(((1 3  108.1671) (1000 -1.53238) (9 21.62524)
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(10 21.62524) (11 -75.3563) (12 -75.3569))
((13 78.43061) (1000 -1.11111) (9 21.42752)

(10 21.42752) (998 1.390303))
( (6 -0 .9 1 1 2 1 3 )  (1 -9.78666) (991 -9.51926)

(995 13.50509))) (0.992551 1.159545 2.920035))
(0 NIL ( ( (6 -0 .9 0 9 5 5 3 )  (1 -0.494316) (991 -18.845)

(995 13.50509))) (3 .6 0 6 0 2 2 ))))

The results are similar to the above but more complicated. The only candidates 

that contain a single significant error are still those that identify one of the 
solvent extraction plant loads and the same conclusions can be drawn.

6.8 Sensitivity Analysis

The results described here have all been obtained on the assumption that the 
diagnostician’s perception of variable uncertainty is correct. That is, the plant data 
sets have been generated with the same variance as those incorporated into the 

analysis. No formal sensitivity analysis has been performed, partly because of a 
lack of time but more importantly because of a difficulty in identifying a need. 
A detailed analysis based on experimentation cannot be extrapolated to another 
situation.

However a number of ad hoc experiments have been carried out where reasonable 
results have been obtained.
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7. CONCLUSIONS

A theory of model-based fault diagnosis has been presented in Chapter 2. Various 
procedures to facilitate its application have been described in Chapters 3 and 4. 
Some issues of implementation have been explored in Chapter 5 in the context of 
a single specific application, that of NRTMA and some results pertaining to this 
application are given in Chapter 6.

Care has been taken in preparing this thesis to separate theory ffom methods and 

methods ffom application although the precise boundaries are still a moot point It 
is intended that the theory should be generally applicable in the engineering 
domain whilst methods and implementation should be relevant to a reasonable 
cross-section of applications. However it is accepted that the theory has been

developed ffom the author’s own limited viewpoint so is unlikely to be complete.

One particular aspect where this is certainly the case is that it has largely been 

developed in response to the need to diagnose faults in information poor plants.
Other approaches are likely to be more suitable for information rich plants.
However it should be of, at least, philosophical interest to someone who thinks
that he is diagnosing faults in an information rich plant if only because it should 

lead him to question whether his plant actually satisfies criteria necessary to

support his assumption.

There are two main ‘aspects’ or ‘strands’ to the theory: the need for an
integrated approach and the need for common sense reasoning about quantitative 

models. Both have an AI (artificial intelligence) flavour to them: the former 
through the acquisition and fusion of knowledge and the latter through common 

sense reasoning. Both are about the specific, making it difficult to draw any 
general conclusions. For instance, the approach has been shown to be successful 

in the limited simulations described in Chapter 6 but this cannot guarantee

success on the real plant A sensitivity analysis involving a large number of
additional case studies would still not achieve this.

What matters more is that the theory should be deemed to have firm foundations 

both ffom a philosophical and a pragmatic point of view.
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As highlighted by Chamiak et al W ), the human being has evolved with 
well-developed senses whilst the computer has evolved with the ability to store 
and manipulate vast quantities of largely numerical data. A human being will 

have great difficulty multiplying 10-digit numbers* whereas vision represents 
considerable complexity to a computer. Similarly, a diagnostician will tend to shy 

away from quantitative models because of his relatively poor numeracy but 
computers have no common sense. There is therefore a case to combine the 
quantitative powers of the computer with the common sense of the diagnostician. 
That is, there is a case for common sense reasoning about quantitative models 

since the suppleness of the human mind is well suited to handling uncertainty 
surrounding such models.

At a more pragmatic level, the theory argues against model-based fault diagnosis 

as a panacea for fault diagnosis in favour of a data fusion approach where 
model-based reasoning forms one input. That is, it accepts possible failings of a 

model-based approach. One outcome of this is that a model-based approach 
cannot be relied upon to alarm a fault.

The theory is based on two principles, a Principle of Re-Distristribution and a 
Principle of a Minimum Number of Explanations. By arguing that modelling 

inaccuracies manifest themselves as an erroneous re-distribution of mass, energy 
and so on throughout a plant, the former enables the diagnostician to relate to a 
plant simulation at a more qualitative level whilst maintaining the rigour of 
mathematical detail. Different faults and model inaccuracies will result in 
different re-distributions. Some will occur along known paths, others will not. 
Differences between distibutions observed in the plant and those in the model can 

then be related to these path and non-path errors. Of particular concern here may 

be that certain paths may be omitted from the analysis: the system should then 
identify two non-path faults, one at each end of the hidden path. Hence the need 

to take other knowledge into account and for the Supervisor to adjudicate 

(Section 2.7).
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The Principle of a Minimum Number of Explanations argues that the 

diagnostician is not interested in estimating model uncertainty but in locating 
faults. His common sense would lead him to believe that gross re-distributions are 
more likely to be as a result of a few faults and inaccuracies than of a large 
number of small ones. He would then view his main task as being that of 
identifying suitable plausible candidate sets of a few faults and model 
inaccuracies. This is clearly contentious although arguably how a diagnostician 
would approach a problem.

The purpose of Chapter 3 is to identify methods of alarming that a fault has 
actually occurred, and of performing a preliminary diagnosis, without recourse to 
models. In practice, only one approach is considered, that relating to control 
charts of primary characteristic variables; quantitative methods are proposed to 
perform the alarm function whilst qualitative methods are proposed to perform a 

preliminary diagnosis. Only one primary characteristic variable is considered in the 

NRTMA application of Chapters 5 and 6, that of plutonium unaccounted for. 

Section 5.4 shows how various fault categories can be hypothesised by applying a 
set of rules to 4 different boolean time series derived by testing the time history 
of material unaccounted for or its cumulative sum. It is unlikely that a unique 
category will ever be identified; the rules merely identify an ordered list of 

possibilities. These possible categories must then be assessed one at a time. Some 
idea of the performance of the approach can be gleaned ffom the results ffom a 

large number of simulations tabulated in Tables 1, 2 and 3. However, again this 

should be viewed subjectively as the numbers, themselves, cannot be extrapolated 
to any real plant. Finally turning to the specific fault studies described in Section 
6.7, one particular conclusion that can be drawn is that the control chart tests 
could be improved by incorporating the CUMUF test, explicitly.

The purpose of Chapter 4 is to identify methods of appraising a particular 

candidate set of suspect faults and model inaccuracies. Again only one method is 

considered here. This performs two separate tasks. Firstly, the determination of 

the most likely value each element of a particular candidate set would take if it 

was, indeed, the cause of the symptoms. That is those values that would best 
explain the re-distribution. Secondly, an assessment as to whether or not these 

values are more likely to occur than any other candidate set. The approach is
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conventional, being based on subjective probabilities. For computational efficiency 
a number of candidates are appraised simultaneously. One possible implementation 
is described in Section 5.7. Based on the limited experience to date (Section 6.6), 
the approach appears to be successful. This is obscured, in part, by deficiencies 
in the current implementation. The system was able to diagnose the correct fault 
on every occasion on which the implementation was complete. On all other 
occasions, it was able to diagnose something closely resembling the truth.

The main limitation up to now has been one of the computer: it has taken 

between 3 and 4 hours to appraise just 3 sub-lattices of the application candidate 
space. The 8Mb of memory available on the VaxStation currently in use, is 
suspected as being insufficient for the memory intensive lisp/FORTRAN 
environment installed.

Finally the question arises as to how the approach compares with others proposed 

elsewhere. The approach here is to tackle models, and their uncertainty, explicitly, 
whereas other approaches take a more implicit view, attempting to develop 

techniques which are robust to uncertainty. Clearly any comparison would have, 

somehow, to specify what is meant by uncertainty and this is beyond the scope 
of the work published here.

A great deal has yet to be done. The main contribution here has been the theory 
whilst everything else has been more exploratory. Certain avenues have been 
explored in depth, others at a superficial level whilst others, still remain 
untouched. For instance, the Supervisor requires considerable research especially 

into the process of adjudication; candidate appraisal over multiple periods needs 
to be implemented and assessed; the knowledge-base developed so far is only 
skeletal, considerable insight must be obtained by interacting with a working 
facility before a robust, practical implementation can be produced; such an 
implementation would require a diagnostician-computer interface and so on. As 

outlined in Section 6.2, the method of Chapter 4 may also need revising because 

it assumes that the symptoms arrive synchronously which need not be the case.

To conclude, the model-based fault diagnosis of information poor plants is still in 

its infancy, a great deal has yet to be done.
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APPENDIX: Time Series Studies

A number of simulations have been carried out to gain insight into how the

CUSUM test performs by itself, firstly with no fault and then with fault scenarios

which would cause the patterns described in Section 5.4. A constant throughput 
plant was chosen with 1% random errors and a ratio of the physical inventory to 
throughput to produce a serial correlation, p, of either -0.4 or -0.45 in the MUF

time series. The magnitudes of the faults were specified as multiples of the error
(W) in the plant throughput and not of o ^ ,  as is the convention in the 

assessment of detectors. The equivalent proportions of can be obtained by
multiplying the proportion of plant throughput by the factor y(0.5+p).

The no fault situation was examined by performing 300,000 simulations for each 
of 3 sets of h, k and p. A particular test sequence was stopped immediately it
alarmed. The following results were obtained

P eriod

h
k
P

%
Alarms

= 3.059 
= 0.063 
= -  0 .4

C re d ib il i  ty

h
k
P

%
Alarms

= 5.00  
= 0 .00  
= -  0 .4

C re d ib i l i ty

h
k
P

%
Alarms

= 3.05 ^
= 0.063 
= -  0 .45

C r e d ib i l i ty

1 0.17 1.00 0.00 1.00 0.18 1.00

2 0.49 1.00 0.00 1.00 0.42 1.00

3 0.95 0.99 0.00 1.00 0.58 0.99

4 1.47 0.98 0.03 1.00 0.81 0 .9 9 -

5 1.97 0.98 0.09 1.00 1.02 0.99

10 3.33 0.96 1.17 1.00 1.85 0.98

15 3.21 0.95 1.03 0.99 2.09 0.97

20 2.55 0.95 - - 1.96 0.97

Table A l: False Alarm Rates in Terms of % Alarms to occur for the 
1st time and Credibility. (300,000 simulations).
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The ’% Alarms’ column is the percentage of tests that alarm for the first time 

on that particular period and ’Credibility’ is the proportion of the tests, that are 
actually applied on a particular period, that do not alarm. It can be seen that, 
initially, the false alarm rate increases until it reaches-a maximum. The power to 
alarm any fault scenario then remains constant. That is it does not depend on 
how much later the fault occurs (55K (The apparent decrease in the % Alarm rate 
is as a result of fewer tests being applied.) As is to be expected increasing h, 
increases the credibility of the test and that the effect of serial correlation is 
considerable.

A number of simulations (100,000/case) were carried out to examine the 
performance of the test whilst the false alarm rate is increasing. Faults relating to 
both Pattern 1 and Pattern 2 were examined and the same effect was observed in 
both sets of results. A summary of the results obtained for Pattern 2 are given 

below in Table A2. A single physical inventory measurement error was simulated, 

firstly on period 1, then on periods 5, 10 and 15. The percentage of tests that 
alarmed for the first time on a particular period were recorded. Note that the test 
was restarted if it alarmed prior to the fault being applied.
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PATTERN 2

Magni tude
%

throughput

Per iod

Per iod
Applied

+ 0 + 1 + 2 + 3 + 5

4

1 3.3 3.0 3.1 3.3 3.3

5 13.2 3.3 3.6 3.8 3.7

10 17.7 4.1 4 .0 3.9 3.5

15 18.7 4 .4 4.1 - -

6

1 11.1 7.9 6.3 5.2 3.8

5 31.3 5.4 4 .7 4 .0 3.1

10 37.0 5.5 4 .6 3.9 2 .9

15 37.5 5.6 4.5 - -

8

1 27.6 15.2 8.7 5 .6 3.0

5 55.3 7.4 4.8 3.4 2 .0

10 60.5 6.7 4.3 3 .0 2.3

15 61.2 6.6 4 .3 - -

12

1 74.7 14.5 3.9 1.6 0.8

5 92.1 3.7 1.3 0 .6 0 .2

10 93.0 3.4 1.1 0.5 0 .2

15 92.9 3.4 1.1 - -

Table A2

It can be seen that the power increases with increasing false alarm rate and that 

the majority of alarms arise on the period the fault is applied.
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A general survey was then carried out to examine the test’s performance when 
the various faults occur. All faults were applied from period 10 to give the false 
alarm rate time to settle. The assessment was based on 10,000 simulations in 

most cases because of the computational load. The results obtained, Tables A3, 

A4 and A5, are therefore only suitable for qualitative comparison.
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