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' Academic philosophers, ever since the 
time of P a r m e n i d e s , have b e l i e v e d  that the 
world is a unity, . , , The most fundamental of

my intellectual beliefs is that this is

rubbish, I think the univ e r s e  is all spots a n d 
j u m p s , without unity, without continuity, 
without coherence of o r d e r l i n e s s  or any of the 
other p r o p e r t i e s  that g o v e r n e s s e s  love,

Indeed, there is little but p r e j u d i c e  a n d

habit to be said for the view that there is

a wo rid at all...

The external world may be an illusion, but 
i f i t. ex i s t s , it consists of e ve n t s , shor t,

small a n d  haphazard. Order, u n i t y  a n d  
co ntinuity are human inventions, just as truly 
as are catalogues a nd encyclopedias. '

B e r t r a n d  Russel,

" My philosophical d e v e l o p m e n t " ,



This work is d e d i c a t e d  to my  
pa rents,
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ABSTRACT

This thesis introduces an Automatic Flight Control System for single 

rotor helicopters which gives a new relevance to the traditional techniques 

based on the Linear Control Theory. This design was obtained by applying 

concepts of differential geometry tailored for engineering purposes through 

the Uonlinear System Theory. The development of this thesis follows the 

traditional path of applied sciences. First the need to establish 

techniques for theoretical analysis of flight machanics, where the small 

disturbance methods are no longer valid, is reviewed. This is followed by a 

presentation of the nonlinear problem and a survey of the development of 

the theoretical tools available. At this stage the process, a single rotor 

helicopter, is modelled. The model is then cast in a form suitable for 

Nonlinear System Theory techniques. Next, the mathematical theory to be 

applied is fully developed. It consists of finding the conditions required 

by a nonlinear system to be transformable under state feedback to a linear 

canonical form; the construction of the feedback is also presented. A 

Flight Control System is designed by applying this theory to the helicopter 

model previously formulated. The above application requires the development 

of Symbolic Algebraic Manipulation programmes, which are also included. 

Finally, a set of simulation studies demonstrate the performance of the 

design.



CHAPTER 1,

INTRODUCTION.

Summary.

The subject developed in this thesis belongs to a branch of applied 

sciences, namely the theory of Flight Stability and Control. Furthermore, 

the material presented here is devoted to the control of single rotor 

hall.gQpt.erSi

This work has borrowed its theoretical principles from another 

applied science, System Theory. This introductory chapter is partially 

dedicated to exposing the relationship between these two disciplines and to 

clarifying the appearance of differential geometry in the development of 

Flight Stability and Control, which is the essence of the work submitted 

here, A review of each chapter is also included.
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1.1. Introduction.

Tlie study of flight mechanics relieson two different independent 

sciences, aerodynamics and mechanics. Of course, as pointed out throughout 

this thesis, the role of mathematics is not a passive auxiliary of an 

applied science, but rather a tool that suggests and encourages further 

development of its content.

It is known that the theory of flight stability and control appears 

from the outset as a mathematically expressed, and therefore essentially 

deductive, theory. This theory also relies heavily on rigid body mechanics, 

from where the small disturbance method is obtained which has been used as 

the main instrument for analysis.

The existence of the small disturbance method implies that the 

knowledge of aerodynamics is required in order to determine the 

characteristics of any aircraft. These characteristics are related to the 

forces and moments acting on the aircraft. The information obtained by 

applying aerodynamics is summarised in a set of parameters, the so called 

stability derivatives introduced by G. H. Bryan (Etkin [1972]).

The classical mathematical model used in the flight stability and 

control theory is obtained by small disturbance rigid body dynamics 

together with the stability derivatives. This model consists of essentially 

a set of linear differential equations with constant coefficients. It is 

precisely through this model that the link between flight stability and 

control and system theory is carried out. The linear systems theory has 

provided the results needed to determine the flying qualities of a given
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aircraft. In fact these two disciplines experienced a concomitant 

development. This is reflected in the treatises devoted to flying 

qualities. For instance, the methods of single input single output systems 

using the Laplace transform, has been expressed by McRuer, Ashrenas and 

Graham in their book "Aircraft Dynamics and Automatic Control" [19703. The 

appearance of the state space techniques in system theory (in which linear 

algebra is the mathematical instrument of analysis) improves the methods of 

analysis in flight theory. This is reflected in the books by B. Etkin 

[19723, [19823 and Prouty C19863. Furthermore most of the recent results

published on flight stability and control are obtained by applying this 

approach.

As is typical of any applied science, the theory of flight stability 

and control is influenced by the mathematical method used. Thus, the small 

disturbance method played a striking part in shaping the theory, 

emphasising the dependence on models expressed in terms of stability 

derivatives. However, this approach presents serious limitations in the 

study of some aspects of flight, for instance, those related to agility, 

which is defined (for rotorcraft) as "The ease with which a helicopter can 

change its position and state with precision and speed" (Thomson C19873).

The subject of agility involves situations wherein the small 

disturbance situation can not be assumed any more, so that a change of 

model is required and with it a new mathematical treatment.

Agility has been addressed from the practical point of view by 

Charlton et al [19873 and by Buckingham [19863. In these heuristic studies 

the agility of a particular helicopter is determined from the results of 

flight tests. An agility factor is defined by comparing a "theoretical" 

maximum performance to an actual performance achieved in the flight tests.
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Agility factors for several different manoeuvres have been defined by using 

this procedure.

The question concerning how easily and quickly a helicopter can 

change its flight control conditions, obviously depends on the opinion of 

the pilot. Buckingham et al. [1986] reported the results of a series of 

piloted simulations which were intended to explore and define control 

systems for helicopters. Throughout these simulations it is assumed that 

the helicopter responses are transformed by a control system to an 

"equivalent" system which is linear. In spite of the fact that the terms 

and conditions of this equivalence are not defined in this report it is 

possible to formulate the agility problem in a formal manner from these 

results.

The first theoretical approach used to analyse the flight mechanics, 

not relying on the small disturbance model is based on inverse solutions. 

The first reports on the use of this technique in the solution of flight 

stability and control problems were presented by Meyer and Cicolani [1975] 

[1981], This technique consists of obtaining an inverse solution of the 

equations of motion involved in a specific flight path, then calculating 

the control and state histories to fly it. In the method suggested by Meyer 

and Cicolani, it is shown that it is possible to define an equivalent 

linear system of the equations of motion, so that the problem could be 

solved using the standard linear techniques [1981], In this report an 

application to a fixed wing aircraft is presented and the application to a 

helicopter was later reported by Hunt, Su and Meyer [1982] [1984].

Moreover, in these last two references, the mathematical proof of the 

existence of the linear equivalent system using differential geometry, is 

also presented. In 1987 Smith and Meyer presented an automatic flight

4



control system concept based on this technique. The difference of these 

implementations with respect to the one presented here is that the 

previous works depend on numerical methods for the calculation of the

inverse solution, whereas they are presented here inanalytical closed form.

The introduction of differential geometry in the theory of flight 

stability and control can be considered as the natural effects of the

mathematical method on the content of a branch of applied science and can

also contribute to its broadening. Because of their degree of abstraction, 

mathematical theories have a large sphere of potential applications. Even 

if they were initially called to life or developed on the basis of certain 

special requirements of physics or engineering, they soon exceed the space 

of these particular applications. For this reason, the examination of some 

mathematical theories from the standpoint of possible application combined 

with the awareness of the physical processes characteristic of a given 

applied science, may result in improved knowledge about this applied 

science,

Nevertheless, in this case the path of development followed the

opposite direction; it began with the actual necessity and then the search 

for the tool. In the future this could be inverted and the study of 

flight mechanics developed using the concept of differential geometry as a 

foundation.
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1 .2 . Nonlinear Controllability.

In the paper presented by Charlton et al. [1987], an agility factor 

for helicopters is defined by the ratio of a "theoretical ideal task" time 

and the actual time required to execute this task.

This problem can be formulated from a mathematical point of view

through some concepts and results obtained from the nonlinear system

theory. These concepts are very useful when one analyses the above

problem. Unfortunately, the proofs of all the statements require an 

extensive mathematical background which are beyond the scope of this

thesis, so that this material (which is fully developed in the references, 

in particular the book by Boothby [19861) is presented only as antecedent 

of the following chapters, especially Chapter III.

Since the equations of flight of the helicopter can be related to a 

dynamical system H in a known state X0, the following question can be

formulated: "What states can H attain at some future time T under the

action of inputs chosen from a specified set Q ? ". This is a statement of 

the problem of reachability. A variation of this problem occurs when one 

wants to transfer H from X0 to a given state X, this problem is known as 

controllability. It is evident that, the essence of the reachability - 

controllability question is to decide what can be done with H, considering 

the control resources available.

Brockett C19733, [1976] explained the nonlinear reachability

(controllability) problem using the general system
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• rn
X(t) = I u± fi(X) ,

m
X(0)= Xo € R° (I. 1),

where the vector functions fi(X) are C“. One can then formulate the 

question: under what conditions does a smooth p-dimensional manifold M

contained in R™, with p $ n exist, such that the set -CfiCX)} spans the 

tangent space of M at each point ? The connection between this question 

and the problem of reachability (controllability) is that, if such a 

manifold M exists, then the state can move anywhere within M but not out of

An easy way to understand the problem is to proceed as follows 

(Brockett [ 19761 ):

Making Ui(t)= 1 for a particular i, 1 ( i ( m and ud= 0 for j* i. 

Then the system (I. 1) is reduced to

The solution of the above equation can be denoted by q>(t,X0>, that is:

Furthermore, if one considers a time interval Itl < € , such that <p(t,X0) 

can be expanded in Taylor series around t= 0, then 

X(t)= q>(0+t, X0),

it.

X(t)= f±(X) , X(0)= Xo (1.2 ).

X(t)= q>(t, X0).

. d2 q> (t, Xp)
d t2

tf
2 +

H.O.T

Also

<p(0,X)= X(0)= X0 ,
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And

d j O J o )  
d t I...

d2 <p(t,X0) 
d t2

= fi(X) = fi (X.O

d t 1

d ft (X)
d t

b •H — )

d t

b X

Theref ore

X(t> = ( I + t f± ■ + + H.O.T ) (X0) ,2 b X

sometimes the above expression is defined as

X(t) = (exp tfi) (X0) , (1.3)

where (exp tfj.) denotes the series in the brackets and I is the identity 

function on R". Note that (exp tfA) represents a function whose argument is 

X0. If one supposes the following control sequence for system (1.1), with 

X(0)= X0 is applied;

from 0 to t, Ut= 1, ud = 0 for all j* 1 ; 

from t to 2t, u2= 1, ud= 0 for all j* 2 ;

from 2t to 3t, Ut= -1, Uj= 0 for all j* 1 and

from 3t to 4t, u2= -1, ud= 0 for all j* 2

8



Also X,, X2, X3 and X4 can also be expressed in a Taylor series. Expanding 

these terms to the second order one has

X, * X0 + t fT(Xo) + -|"|l f!<Xo) (1.4),

X2 * X, + t f2 (X,) + ' ^^CX,) (1.5),

X-3 s X a - t  fn(X2) + - p - 1 f, (X2) (1.6) and

X* « X-3 - t f2 (X3) + ~ p ~  fa (Xa) (1.7) .

The function f4 can also be developed in Taylor series:

f4 = f(X0+5X) = f4(Xc) + (Xo) 6X + (H.O.T. ) (Xo) (1.8) .

These last equations can be manipulated and expressed to the second 

order, so that X* may be written

XA * ( I + t2 [ • H r -  fi - ^  f2 1 ) (Xo) (1.9) .

where

t I *a f, - ~l * J" f2 J = tf,, fa3 (I. 10) .

is defined\ as the Lie bracket of the vector fields f , and f2. Thus, if

C f t , f =z3 is not a linear combination of f 4, i=l m , then C f,, f^l

represents a new direction in which the state can move. The problem of 

finding M, whose tangent space is spanned by f4, i=l,...,m, cannot be

solved. With this example Brockett C19731 t19761 showed the central role of 

the Lie bracket operation in answering the question of reachabi1ity- 

controllability,

From the above example it is easy to consider the definition of 

involut ivity:

9



Def ini t ion. A set of vector fields f±, 1 = 1,... m, is said to be

involutive if there exists a set of scalar functions cldk, such that

Tft

[flt fa] (X) = X cidk fk (X) ,k “ 1

for every vector field fif i=l,...m .

Considering the previous development of system (1.1) persuades one 

that the property of involutivity is necessary in order to be able to 

obtain a solution surface (manifold) whose tangent plane is described by 

the system equation (1.1). The theorem of Frobenius establishes that this 

condition is necessary and sufficient. This theorem plus the involutive 

condition plays the central role in the development of the flight control 

system designed in this thesis.

The results from nonlinear systems theory on which the present work 

is based are included in the references by Casti C19851, Hirshon [19731, 

Hermann et. al.[ 19771, and Sussmann et. al. [ 19721.

Considering a general nonlinear system

X(t) = f(X,u) , X(0)= X0 (I. 11) .

where u € Q , an admissible set of Rm valued input function; and X € M, a 

C“-connected manifold of dimension n. In order to simplify the notation, it 

is assumed that M admits globally defined coordinates X=(x1,..,, x„),

allowing one to identify the points of M with their coordinate

representations and to write the control system in the usual engineering

form given by (I. 11),

It is assumed that the vector field f(.,.) is C" with respect to its

arguments and that (I. 11) is complete, that is, for every bounded

measurable control u(t) and every XQ € M, there exists a solution of (I.11)

10



satisfying X(0)= X0 and X(t) € M for all real positive t.

The controllability of nonlinear systems is expressed by the

following definitions and theorems (Hermann and Krenner [1977]):

Deflnition I. 1. Given a point X* € M, it is said that X* is reachable

from X0 at time T if there exists a bounded measurable input u € Q, such

that, the trajectory of (I. 11) satisfies X(0)= X0 , X(T)= X* and X(t) € M

for all t € [0,T3. The set of reachable states from X0 is denoted by 

/?(X0)= u f X: X reachable from X0 at time T>o«; T « eo

It is said that (I. 11) is reachable at XQ if /?<X0)= M and reachable if

/?(X)= M for all X e M. I

The problem with definition 1.1 is that f(X,u) is nonlinear, it may be 

necessary to travel either a long distance or for a long time to reach

points near X0. Thus, the property of reachability from X0 may not always 

be of practical use. This motivates the following restriction:

Definition 1.2. The system (I. 11) is locally reachable at X0 if for every

neighbourhood U of X0, /?(X0) n U is also a neighbourhood of X0 with the

trajectory from Xc to /?(X0) n U lying entirely within U. The system (I.11)

is locally reachable if it is locally reachable for each X € M. I

Given that the reachability given in definitions 1.1 and 1.2 does not 

guarantee the condition of symmetry, that is X* may be reachable from X** 

but not conversely (in contrast with the case of constant linear systems). 

A weaker definition is needed:

Definition 1.3. Two states X* and X** are weakly reachable from each

other if and only if there exist states

Xo. x ,  xk € M
such that X0 = X* and Xk = X**

11



and either XA is reachable from Xi_T or Xi-, is reachable from XA, i= 

I

The system (I. 11) is weakly reachable if it is global reachable, so 

that it is also possible to define a local version as shown in definition 

1.2 .

The condition of reachabi1ity-controllabi1ity of a system is 

characterized by the following theorem.

Theorem 1.1. System (I.11) is locally weakly reachable-controllable if 

and only if for every X € M and every neighbourhood U of X the interior of 

/?(x) restricted to U is not empty.

Proof. (Hermann and Krenner C19771).

Assuming that system (I.11) is weakly reachable. Then given any X0 € M 

and any neighbourhood U of X0 one can choose u, e Q such that 

f1(X)= f(X,u,) 

does not vanish at X0.

If s => Yn«(X) denotes the flow on f1 that is, the solutions of the 

differential equation

d = f1 ( y»<X) )
d s

that satisfies the initial conditions

Y1o(X)= X , 

then for some 5 > 0, the set

V1 = { 0 < s < 5 )

is a submanifold of U of dimension one.

Intuitively it is possible to define VJ_1 as 

VJ_1 = { YJ _ 1 0 ••• 0 Y1 :  ( St    )

in some open subset of the positive orthant RJ_1 > ,

12



where " indicates the composition of functions and y * mi (X) is the "flow" 

of fi(x)= f (X,Ui) for some ud € Q.

It can be observed that VJ_1 c /55j(X0> (the space of reachable states from

Xo).

If j ( n , VJ is constructed choosing an ud € Q and a XJ_1 e vj-1. 

This is always possible as if this is not the case, then every trajectory 

of (I. 11) starting on VJ_1 would remain on VJ_1 for a while. This

contradicts the local weak controllability of (I. 11).

It follows that it is also possible to select an open subset of the

positive orthant of RJ , such that the map

.......sd) => o o y 1., ) (Xo)

is an imbedding of the subset into U. This subset is called V-3. Continuing

in this way until j = n , where V" is a open subset of /5j (X0)i so that the

interior of R._, (Xc) is not empty.

As for the converse, one can suppose that Rj (X0> * ® , then choosing a 

control u(t), t0 ( t ( t, , such that the corresponding trajectory X(t) for 

t0 ( t ( t, , satisfies X0 (t)= X0 and X(t!)= X, , with X, being an interior 

point of î ,(X0) and X(t) € U for all t € [ t0, t-,1.

Letting y +(X, t0) be generated by the time dependent vector field 

f*(X)= f(X, u (t)), 

that is

d V+.CX, to) = f*< Y*(X,t0) > 
d t

with Yto(X> t0) = X .

Then Y-t (• » t,) is a diffeomorphism of a neighbourhood V of X, over a

13



neighbouhood of X0v Morover, one can choose V properly contained in J3j(X0) 

and sufficiently small, so that Yto(V,t) is weakly locally reachable from

X 0 . ■

The form of this proof is the commonplace in nonlinear system theory 

proofs. In Chapter III a similar proof is developed which is more suited to 

a practical application.

The characterization of the set /5.,(X0), depends on the following 

def init ions.

Definition 1.4. (Boothby [ 19861 ). Let x<M> be the set of all the C~

vector fields over M, this is an infinite dimensional real vector field.

This space is a Lie algebra provided that

i) if x<M) is a collection of vector fields on the manifold M, then x<M) is

a real vector space with respect to ordinary vector addition and scalar 

multiplicat ion

ii) furthermore if f, and f2 belong to x<M> then the Lie bracket C f,, f2l 

also belongs to x<M). 1

Let u denote each constant control u € Q, then f(X,u) defines a vector 

field in x (M). Assume also that F0 denotes the subset of all such vector 

fields, for instance, the set of all vector fields generated from f (X,.) 

through the use of constant inputs. Let F denote the smallest subalgebra 

of x<M) containing Fc, that is, the elements of F are linear combinations 

of elements of the form:

Cfi, fa3,

C f,, Cf2l f3] ],

C fi• C fa Cfa, f*] 3

14



[f, , [f2 ... C f i, f i--, 3 . . . 3 ] . 

where fA= f (X, u) for some constant u.x € Q.

The representation of the system itself suggests the existance of a

space of tangent vectors spanned by the vector fields of F at the point X

of the submanifold M. This tangent space is usually denoted by T(X).

Definition. 1.5. The system (I. 11) is said to satisfy the

reachabi 1 i tv-control labi 1 i ty rank condition at a point X0 of M if the

dimension of T(X0) is n. If this is true for every X e M, then the system 

(I. 11) satisfies the reachabi1ity-controllabi1ity rank condition at M. I

Theorem 1.5. If (I. 11) is locally weakly reachable-controllable, then 

the reachabi1ity-controllabi1ity rank condition is satisfied on an open

subset of M, that is, the rank condition is satisfied generally on M.

The proof of the above theorem, given by Hermann and Krenner 1 19773 is

very similar to theorem 1.1, it is constructed by a definition of

submanifolds over the different trajectories of the system through a given 

point. The details are ommited here. I

The above results are related to the general system (I.11). In

practice it is more common to find systems of the form:

. rr»

X(t) = f(x) + 2 u* gi(X) , X(0)= X0 e M  c Rn. (1.12).
i-i

Hunt presented, in several publications CE19793, C19803, C1982.a3 and

C1982.b3), a practical characterization of the rank condition for systems 

given by equation (1.12). This condition can be summarized by the main 

result obtained in C1982,b3:

If every integral manifold N of the Lie algebra denoted Lg, generated 

by g± i= 1,..., m contained in M, contains a point X, where f(.) is tangent

15



to N, then the system (1.12) is controllable if the following conditions 

hold for at least one such X in each submanifold N:

1) There exists a basis h,, . .., hk of Lg near X and integers 1,

  Ik , such that the space spanned by

{ hh (X), . hk (X>, [f*, h,3 (X).......[f*, hk] (X),

(ad11 f*, h,) (X)......  (adlk f*, hk) (X) >

has dimension n, where the vector function is defined as:
k

f* = f - X c± hik»l

and c ±) i= 1 k are constants. Also (ad2 f*, h)= [ f*, [f*, hi] and so

on.

2) If the vector fields g4, i= 1 , ..., m are linearly independent and 

involutive on M, the above condition is replaced by the span of

{ g,(X>, ..., g2 (X), [f, g-i 3, .... Cf, grJ , ...,
(ad11 f, gl> (X)......  (adlrn, gm) (X) > .

This thesis shows the development of a practical application of these

results in the design of an Automatic Flight Control System for a single

rotor helicopter. The treatment of this theory, in order to obtain an 

instrument of design, is the topic of Chapter III, after the presentation

of a model of the system in Chapter II.
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1.3 THE SYSTEM MODEL.

The application of the concepts presented in the previous section 

require an appropriate representation of the system, in the present case, a 

single main rotor helicopter. In this thesis a representation derived from 

the model reported by Padfield [1981] and implemented in a simulation 

package called "Helistab" has been used. This simulation package was 

developed in the Royal Aircraft Establishment, Bedford. In general this is 

considered a very well validated model.

The simulation package "Helistab" is a very helpful instrument in the 

study of helicopter dynamics, but from the point of view of control system 

design "Helistab" presents a serious limitation. There is no access to the 

definition of the command inputs according to a control law defined by the 

user. Moreover, the inputs can not be defined "on line".

In "Helistab" the helicopter is simulated according to an equation of 

the form:

X (t) = f(X) + G(X,u) (I.14) .

That is, the rate of change of the state is the sum of a "drift" term f (X) 

e C- and a "driven" term G(X,u), This last term represents the forces and 

moments exerted on the helicopter which depend on the state X and the input 

command vector u. As shown in section 1.1, the "driven" term must be 

expressed in the form of a sum of the control commands, namely:

IT
2 u** gi(X) , (I.15) .

Where u*± are the input commands and nonlinear relationships among them and
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in this thesis, the terms g*. are called the control vectors. That is, it is 

necessary to express the forces and moments in function of the inputs.

The obtaining of such a function has not yet been reported. In chapter 

two of this thesis a six degree of freedom model of a helicopter, where the 

"driven” term is expressed according to equation (1.15) is obtained. In 

this chapter it is shown that the "driven" term has the form:

0O gl (X) + e 1s g2 (X) + e 11= g3<x> + g*<x) + e0 e lm g5cx> +
gs (X) + 8 1 g-7 (X) + 8 1 8 1 c ge (X) + g3 (X) + 8P gio^X) .

Where;

80: is the collective main rotor command;

81sj: is the longitudinal cyclic main rotor command;

8lc: is the lateral cyclic main rotor command and 

8P: is the tail rotor collective command.

The vector fields gA(X), 1=1,..., 10, depend on the aerodynamic

characteristics of the helicopter.

The details of the model used in this thesis are presented in chapter 

two and in the appendices II. i, i = l,..., 3 .

18



1.4 NONLINEAR SYSTEM FEEDBACK EQUIVALENCE.

In section 1.1 of this introductory chapter the generalization of

controllability to "smooth" nonlinear systems was presented briefly. The 

use of these ideas is treated extensively in chapter three in order to 

design nonlinear control systems. These ideas were originally introduced 

by Su [19821 and further developed by Hunt, Su and Meyer [1983]. The same 

results were independently published by Jackubzyk and Respondec [1980] and 

Respondec [1985].

A reader unfamiliar with differential geometry and differential 

manifolds will find the above publications very difficult to follow, 

between their abstract and the conclusion there is a body of mathematical 

steps which are not presented in great detail. From the point of view of a 

possible user of this theory, it is important to grasp the fundamentals of 

the results to be applied. The purpose of chapter three is to develop in 

detail the works by the authors mentioned above.

The aim is given a nonlinear system of the form of equation (1.12)

find a diffeomorphic transformation in function of its input to a linear

canonical form. That is obtaining a nonlinear control law such that the

original system behaves like a linear controllable canonical form. In this 

chapter the nessesary and sufficient conditions required by a nonlinear 

system in order to obtain the diffeomorphic map mentioned above is 

presented. A constructive proof of the existance of this map is also 

shown. All the relevant steps are presented.
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1.5 THE FLIGHT CONTROL SYSTEM DESIGN.

The application of Nonlinear Control Systems Theory to flight 

mechanics is presented in the form of a Flight Control System in chapter 

four.

The design is composed of several aspects. The complex nature of the 

system, force one to perform some simplifying assumptions, namely on the 

input vectors and by considering the helicopter as a two time scale system.

It is shown that the simplification on the input vectors allows one to 

apply a compensator, which performs a partial linearization and decoupling 

of the system.

The closed-loop system obtained by introducing this compensator is 

analysed according to the theory developed in chapter three. A 

diffeomorphic transformation of the closed-loop system to a linear 

controllable canonical form is obtained. The development of Symbolic 

Algebraic Manipulation programmes required in the design are presented. The 

relationship between the nonlinear system and the linear canonical form as 

a function of the control inputs of the nonlinear system and the linear one 

is also presented. Furthermore this relationship is solved for the 

nonlinear system inputs, so that it is possible to calculate the inputs for 

the nonlinear system equivalent to the inputs of the linear system. That 

is, given a input in the linear system one can calculate an input that 

would drive the nonlinear system in an equivalent way to the linear system.

The next step is to generate the control input of the linear system, 

the pole assignment technique is used in this thesis.

20



The Flight Control System is composed of the compensator, the 

diffeomorphic map of the closed-loop system obtained by applying the 

compensator to the helicopter and a linear controller (pole placement 

techniques).

The performance of the Flight Control System is investigated by a 

series of simulations. According to the diffeomorphic map the nonlinear 

system is mapped to four decoupled linear systems. The simulations are 

intended to show that the Flight Control System divides the helicopter 

state into four sub-systems, each one corresponding to the normal, 

longitudinal, lateral and heading movements of the vehicle.
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CHAPTER II

A HELICOPTER MODEL.

Summary-

Iii this chapter the equations of motion and orientation of a 

single rotor helicopter are obtained in an (f,g) distribution form.

The interest in such models arises from the necessity to study 

from the point of view of control systems, rather than design, the 

dynamical behaviour of the helicopter. The scope of the model presented 

here is intended to be valid not only around a particular flight 

condition, but over a set of manoeuvres around a given operating point.

The model derived here is a modification of the equations of 

motion used in HELISTAB, which is a simulation package developed in the 

Royal Aircraft Establishment Bedford, for helicopter flight mechanic 

studies.
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II.1 INTRODUCTION

A model is formally defined in terms of tlie relations between general 

systems, for instance ( Kramer, Smit de [19771):

" If a system M, epistemologically independent of a 

system S, is used to obtain information about system

S, it is said that H is a model of S 11.

It is clear that helicopters require a set of models, each one 

referring to a particular aspect, for example; design, operation or

stability and control. In particular, this thesis is concerned with flight

control, a topic that rests completely on formal models. These models are 

defined as symbolical sets of statements in logical terms about an 

idealized, relatively simple, situation that represents the structural 

characteristics of the original factual physical system. Vithin the scope 

of the present study, only one kind of formal model is required, namely a 

mathematical model. Entering more into the subject of flight control, this 

is considered to be composed of (McRuer, Ashkenas, Graham [19733):

Guidance: The action of determining the course and 

speed relative to some reference system 

to be followed by the vehicle.

Control: The development and application of forces and moments 

to a vehicle which:

1. Establish some equilibrium state of the 

vehicle motion (operating point control).

2. Restore a disturbed vehicle to its 

equilibrium state (operating point) and
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regulate, within desired limits, its 

departures from operating point conditions 

(stabilization).

With respect to control, two more points could be included, one 

referring to the improvement of the facility to execute manoeuvres by the 

pilot (handling qualities) and the other referring to the determination of 

the set of manoeuvres that the vehicle can execute (agility).

The analysis of guidance, control, agility and handling qualities are 

theoretically supported by formal models, from which the responses to 

exogenous and control inputs, as well as stability can be estimated. The 

importance of having an aircraft model directed to this study has been 

considered since the begining of aeronautical science (MacRuer, Ashkenas, 

Graham [1973]), such models according to the classification given by 

Rosenblueth and Winer (Kramer, Smit de C19773), had been material and 

formal. Nowadays it is more appropriate to consider formal models during 

the first stage of flight mechanic studies. This is due mainly to the 

developement of new mathematical tools and the enormous power of 

calculation provided by computers. This is in contrast with the early 

days of aeronautics in which prototypes of the vehicle (material models) 

were used to investigate its flying qualities.

Most of the models used in the analysis are mathematical 

representations obtained via the theory of infinitesimal motions or 

perturbations around an operating point. This can be seen in any text on 

stability and control, automatic control applied to aircraft and missiles, 

and even in recent publications . This procedure involves the neglect of 

second order terms. It also leads to a system of linear differential 

equations as a representation of the system obtained, a fact that allows 

exploitation of its homogenity and additivity features. In these 

circunstances,assumptions valuable information about the behaviour of an
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aircraft in a given flight condition can be obtained, in a significant 

manner.

The approach usually followed in order to analyse the dynamic 

characteristics of an aircraft is the linear system theory. This theory is 

based on representations expressed as linear differential equations. The 

results obtained are valid whenever the relationship between the physical 

system and the model correspond to a homeomorphism, that is, the 

relationship of model system entities correspond to an analog relationship 

of equivalent entities of the physical system. Under the hypothesis of 

small departures from the flight condition, it is possible to determine, 

for example, the effect of the longitudinal cyclic or elevator command on 

the pitch attitude of a helicopter or aeroplane respectively. In this case 

the system is considered to be composed of Single Input- Single Output 

(SISO) subsystems, so that the transfer function approach is adequate 

(McRuer, Ashkenas and Graham C1973]) and (Wanner). Given that the commands 

of the helicopter are strongly coupled, the physical system is represented 

better by Multi Input- Multi Output (MIMO) models, a fact that can be 

confirmed by looking at the rotor dynamic equations (Bramwell C1976]), 

(Johnson [1980]), (Gessow and Myres [1952]) or a helicopter dynamic model 

itself (Padfield [1981]). The state space approach establishes the way in 

which the problem can be reformulated and solved. These ideas were 

formalized with the controllability and observability concepts in the 

early 60's by Kalman.

The validity of the results obtained using the linear system theory 

is restricted by the hypothesis of small perturbations or variations 

around an operating point. In the case where the restrictions are 

violated, the physical system and the model will not be related by a 

homeomorphism, or in extreme conditions not related at all. This latter 

point can be ilustrated by comparing the linear models of a helicopter at 

hover and longitudinal flight, for example at 80 knots. This is an

25



important limitation when large perturbations and manoeuvres are involved. 

One possible solution is the use of several linear models for every 

operating point. This technique requires an apriori schedule of the 

manoeuvres and a complicated logic should be incorporated to the flight 

computer for switching the perturbation control gains and reference 

control as the aircraft leaves the domain of validity of one perturbation 

model and enters another. Even the procedure for choosing the set of 

reference trajectories about which to perturb is unclear at present. This 

solution is complex in concept and implementation (Meyer, Ciccolani 

[1975]).

These difficulties mentioned above have motivated the application of 

nonlinear control theory for the future development of flight control 

systems.

The object of this chapter is to develop a helicopter model, which 

will accomplish the fundamental condition of homeomorphism with respect to 

the physical system, beyond the small perturbation assumption. This model 

is essential to the development of this research. It will play the role of 

system "M" in the contest of the definition of "model" given previously.

The following helicopter dynamic model was obtained according to the 

natation and general development reported by Padfield [1981] and 

implemented in "Helistab" which is a simulation package developed in the 

Flight Systems Department of the Royal Aircraft Establishment, Bedford. 

This package is generally accepted as a well validated model of a six 

degree of freedom single rotor helicopter.

The model obtained here is restricted to the same assumptions of the 

six degrees of freedom model used in "Helistab", and therefore its 

validity can not exceed the limits of these restrictions. Nevertheless, 

the following model considers the most important nonlinearities.
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II.2 NATURE OF THE MODEL.

As Babister [19801 painted out, flight dynamics deals with the 

motion of aircraft under the influence of forces, which can be of the 

five types listed below (inertia "forces" have been eliminated, this 

can be done if the principle of d’Alembert is not used):

1. Aerodynamic damping forces and moments, depending on the 

angular velocities of the aircraft,

2. Aerodynamic forces and moments depending on the 

translational velocities of the aircraft.

3. Aerodynamic forces and moments due to the application of 

controls.

4. Gravitational forces.

5. Propulsive forces, in the case of the helicopter these 

forces are strongly related to the aerodynamic forces due to 

the application of controls.

The flying characteristics of an aircraft depend on its 

response to the application of its commands which generate the 

necessary forces of types 3 and 5 (given in the above list). These 

balance the other forces, making the aircraft execute a desired 

trajectory. Due to this fact, the problem can be formulated from the 

system theory point of view. The helicopter will be referred to as 

the system, in this case it will be associated with a deterministic 

mathematical representation, specified by five sets; (T, U, Y, I, 

Q) and two functions "0 and ft, where:

T is the time set, a subset of the real numbers or natural 

numbers.
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V is the input set, in this case composed of the helicopter 

commands.

Y is the output set. RR, P e F.

X is the state set. Rn, n <= H n )P.

Q is the set of admissible input functions, a subset of the set

of all functions T-*V, which is closed under splicing, that is, 

for all ui and u2 in Q, for all times t2 in T, there exists a 

function u* in Q such that:

I ui if t>t2 

u*(t>= I

I u2 if t2<t 

“0 : T x T x X x Q - ) X

The latter is the state transition function and satisfies the 

conditions of consistency 

‘0 (to, to, x, u)= x 

and

*0 (t2, ti, “0 ( t1s to, x, u), u)= ~0 ( t2, to, x, u),

for all times to, ti and t2 all state x and all admissible

input functions u.

The condition of causality is 

*0(1 1 , to, X, Ui)= ~0< t 1t to, X, U2 ) 

and if ui(t)= u2 (t) for to$ t i . 

fi: T x X Y is the output function.

The system is assumed to be stationary (constant or time 

invariant): this implies that T is closed under addition, Q is closed 

under the shift operator z-*1' for every t in T and
t! , to, x, U)= ~0( ti+T, to+T, x, z^u)

for all times to, t i , all delays t , all states x and all admissible 

input functions u;
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fi (to|X)= fi (-ti , X)

for all times to, ti and all states x.

The above condition allows one to remove one time variable, 

replacing "0 and fi by simpler 0 and n, where:

0 : T x X x Q - * X

and

n: X -> Y

In physics, it is usually not 0 (.) that is given, but rather 

the laws of motion. In other words, some differential equations are 

given that must be solved in order to find the state transition 

function. These equations of motion have the form: 

dX/dt= f(X>, XC0)=Xo given

where f is a (possibly time dependent) vector field on X. This last 

relationship allows the elaboration of a formal structure for the 

model, for example; the function f can be a vector field on a 

manifold M, an integral curve of f can be defined at some point m of 

M, defined as a curve c(.) at m such that its derivative 

c'(X) = f (c (X)) for each X in a subset of R. The obtaining of the 

integral curve c(X) leads to a set of ordinary differential 

equations. Their solution rests on the well-known existence and 

uniqueness theorems for ordinary differential equations (Padulo, 

Arbib 11974]), (Thorpe C1985]), (Abraham, Marsden C1981]). This 

problem will be treated in detail in the next chapter: the present 

chapter is dedicated to the development of a function f for the 

helicopter.
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II.3 AXES .SYMBOLS AMD EQUATIONS OF MOTIOM.

The general equations representing the motion of an atmospheric 

flying vehicle are usually referred to body axes system, which is 

described as follows.

The body reference frame is represented by OXYZ, where the origin 0 

lies on the centre of gravity of the helicopter; The axes OX, OZ, lie in 

the plane of symmetry and the axis OY is perpendicular to it. The name of 

the axes are:

OX: Longitudinal axis, positive forward.

OY: Lateral axis, positive starboard.

OZ: Mormal axis, positive toward the undercarriage of the vehicle.

The axes will be right handed.

The orientation of the helicopter with respect to the inertial 

frame, assumed fixed on earth will be specified by the vehicle Euler 

angles 8 , <f> and y:

y: Rotation about the axis OZ, carries the axes to OX*Y*Z*;

8 : Rotation about the axis OY, carries the axes to OXeYeZe and

ff: Rotation about the axis OX, carries the axes to their final

orientation.

In order to facilitate the analysis the following assumptions are 

considered:

1) The Earth is a stationary plane in the inertial space.

2) The centripetal acceleration associated with the Earth's rotation 

is neglected

3) The atmosphere is at rest relative to the Earth.

4) The helicopter is a rigid body.

The symbols used to represent the components of the velocity of the 

centre of gravity of the helicopter and of its angular velocity, together
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with the components of the aerodynamic forces, and moments and products of 

inertia of the helicopter are summarised in the following tables:

AXIS

VELOCITY

FORCE

POSITIVE
DIRECTION

VELOCITY AND FORCE COMPONENTS 

X Y

u

X f

forward

Y f

starboard

w

Z f

downwards

NAME longitudinal lateral normal

ANGULAR VELOCITY AND MOMENT COMPONENTS

AXIS

MOMENT

ANGULAR
VELOCITY

POSITIVE
DIRECTION

NAME

X

Lm

p

starboard down 

rolling

Y

Mm

q

nose up 

pitching

Z

Nm

nose to starboard

yawing

AXIS

MOMENTS OF 
INERTIA

PRODUCT OF 
INERTIA

MOMENTS AND PRODUCTS OF INERTIA 

X Y

I*= J (y^+z2) dm Iy= ^(x^+z2) dm

I yz= Jyz dm= 0 I X2Z~ S xz dm

I*= 2) dm= ^(x2+y

L y= £xy dm= 0

The general equations representing the motion of a rigid flying 

vehicle referred to body axes are well known(Etkin [19723), (Seckel 

[19643), (Johnson [19803), (Babister 19803), i. e.:

TRANSLATIONAL EQUATIONS

u= vr - wq - G (sin 8 ) + (1/m) X f
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v= wp - ur + G (cos 8) + (1/m) Yf 

w= uq - vp + G (cos 8) + (1/m) Zf

ROTATIONAL EQUATIONS

Ix:* p= (Iyy - l a )  qr + Ix*: (r + pq) + L m

I y y q= ( I z z  -  I*:*) Tp +  Ix* (r2 ~  p2 )  +  M m

I «  r= (Ixx - Iyy) pq + Ix* (p - qr) + Nm

ORIENTATION (KINEMATIC EQUATION)

<f>- p + q (sin p) (tan 8 ) + r (cos p) (tan 8 )

8= q (cos jO - r (sin p)

y= q (sin p) sec(8 ) + r (cos p) sec(8 )

where G is the acceleration due to gravity.

The total forces and moments are the sum of the contribution of each

vehicle element. In the case of a single main rotor helicopter the 

contributions are due to the main rotor, tail rotor, tailplane, fin and 

fuselage. Considering this, the forces can be expressed as reported by 

Padfield [1981]:

X f = X r  + X t  + X t r  + X f n  + Xf 

Y f = Y r  + Y t  + Y t p  + Y f n  + Yf 

Z f = Z r  + Z t  + Z t p  + Z f n  + Zr 

where the indices from left to right, are the contributions of the main 

rotor, tail rotor, tail plane, fin and fuselage respectively. If the 

vertical plane of the helicopter is considered to be a plane of symmetry

then the force equations are reduced to:
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X f = X r  + Xf

Y f = Y r  + Y t  + Y f n  + Yf 

Z f = Z r  + Z t f - + Zf

In appendix A.II.l it is shown that the rotor forces can be 

expressed as:

X r = < K f x , 8 r a >

Y r = < K f v , 8 r a >

Z r = < K f s , 8 r >

where the symbol <., .> indicates the inner product operation, the vector 

8 r  is a vector whose components are the main rotor commands and a 

constant,

8 r =  C8o, Si®, 01c, 13 t-

where

8 0 : is the collective command,

8 i®: is the longitudinal cyclic command,

8 ic: is the lateral cyclic command 

and t: indicates transpose.

On the other hand, the vector 8 r a  is composed of the rotor commands and

its coupled and nonlinear terms:

8 r a =  180, 81®, 8ic, 8 0 2 , 8 0  8i®, 8 0  8ic, S i ® 2 , 81 ® 8ic, S i c 2 , 13 *■

The vectors K f x , K f y  and K f z  are vectors whose components are functions of

the aerodynamic parameters and the state, these functions are described in

Appendix II.1.

The fuselage forces Xf, Yf and Zf and moments Lf, Mf and Hr are 

calculated from semiempirical forms using wind data tunnel (Padfield 

[19813). These forces do not depend directly on the helicopter commands,
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as can be seen in appendix II.3. Their expressions will not be expressed 

as inner products.

The fin and tailplane forces are described in Appendix II.2. These 

expressions are not changed to inner products also as they do not depend 

directly on the input commands.

The tail rotor force Y t  is analysed in appendix II. 4. Where it is 

shown that this force can be expressed as:

Y t = < K t a i i _, 0 t r >

where

0TR= C0QT, II *' 

and 0o t is the tail rotor command.

Therefore the force equations can be expressed as

X f = Xf + < K f x , ©r a >
Y f = Y fim + Yf + < K t a i i _» 0t r >  + <K f y , 0r a >

Z f = Z t p  + Z f  + ^ K f S i 0 r > .

The moment equations can be written in a similar way

L m = L r  + L t  + L t r  + L f n  + Lf

K m — K r  + K t  + K t f - + K f n  + Mf

K m 111 K r  + K t  + K t p  + K f n  + Kf

If the assumptions of symmetry are considered again then the moment 

equations can be reduced to:

L m = L r  + L t  + L f n
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Km - M r + Mt p  + Mr

Km= Mr + Hr + Kfn + Kf .

In appendix 11,1 it is shown that the main rotor moments can be 

expressed as inner products,

Lr= <Kri_, 8r a >
Mr= {Krm, 0 r a )
Kr= <Krn, 0 r a) »

where the vector functions Krl., Krm, Krn are described in appendix II. 1.

In appendix II.2 it is found that the tail rotor moment can be written as

Lt = <Kti_, 0t r >

Kt = {Kt N f 8t r > .

The vector functions Ktl. and Ktn depend on the state and the aerodynamic 

characteristics of the helicopter.

The description of the tail plane, fuselage and fin moments

contribution are described in appendix II.3. As these moments do not

depend on the input commands they are not expressed as inner products.

Replacing the above expressions for the moment contributions of the 

rotors in the moment equations we obtain

Lm = Lf + {Kt l., 0 t r ^ + {Kr m , 0r a ^

Mm = Mt p  + Mf  + {Kr m , 0 r a >

Mm= Kfn + Kf + {Ktn, 8tr> + {Krn, 8r a > .

In order to achieve only one vector referring to the helicopter

commands, a general vector 8 is defined which is formed as follows:
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Then the vector 0 can be considered as the input command vector of the 
helicopter, thus permitting the dynamic equations to be expressed as:

FORCE EQUATIONS 
Xf= Xf + <Kx, 0>
Yf= Yfn + <Ky, 8>
Zf= Ztf + Zf + {Kz, 8> ,

where the vectors Kx, Kv and Kz are defined as
Kx= (1/m) (Kfxi , . . . , Kfxs, 0, Kfxio)
Ky= (1/m) (Kfyi , . . , , Kfysi, Ktaii_i , Kfyio + Ktailz) t-
Kz= (1/m) (Kfsi  Kfzs, 0, 0, 0, 0, 0, 0, 0, Kfz/i) 1 .

MOMENT EQUATIONS
Lm= Lfn + {Kti_, 0tr>+ { Kl_, 8>
Mm= Mtp + Mf + {Km, 8/>
Nm= Nfn + Nf + {Kn, 0> ,

where the vectors Kl_, Km and Kn are defined as
Ki_= (1/Ixx) (Kri_i , . . . , Kri_«», Ktlt , Krlio + Ktl.2;)
Km= (i/i yy) (Krmi,..., Krms, 0, Krmio)
Kn= (Krni , . . . , Krns, Ktni , Krn to + Ktns:)

Finally, the equations of motion of the helicopter can be put in 
terms of of the inner product as follows:

TRANSLATIONAL EQUATIONS 

u= vr - wq - G (sin 0) + (1/m) Xf + {Kx, 8>



v= wp - ur - G (cos 8) (sin $) + (1/m) Yfm + (1/m) Yf + <Ky, 0> 

w= uq - vp - G (cos 8) (cos 0) + (1/m) Z t p  + (1/m) Zf + <Kz, 0>

R0TATI05AL EQUATIOHS 

p= (1/Ixx) 1 (Iy y  ~ Ixx) qr + Ixz (r + pq) + L f n  ) + <K l., 0^

q= (1/ Iy y ) ( (Izz - Ixx) rp + Ixz (r2 - p:2) + M t p  + Mf > + <KM, 0>

W= (1/Izz) I (Ixx — Iy y ) pq + Ixz (p ~qr ) + N f n  + Nf ) + < K n , 0^

In this chapter the dynamic equations of the helicopter, in which

the input commands are associated in separate terms, have been obtained. 

This allows the helicopter flight dynamic model to be expressed in the 

following form

m

x(t)= f(x) + I Ui gi(x)
i"l

where x is in the R" space, n= 9; u± are the elements of the vector 0; 

x= [ u, v , w, p, q, r, 0 , 8 , y] *■; the function f is
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f (x) =

vr - wq - g (sin 9) + (1/m) Xf + Kxi i 

wp - ur + g (cos 0 ) (sin 0 ) + (1/m) (Yfn + Yf) + Kyii

uq - vp + g (cos 9) (cos jf) + (1/m) (Zt p  + Zf) + Ksi i

(1/Ixx) ((Iyy — I2 2 ) qr + 1x2 (r' + pq) + Lfn)

(1/Iyy) {(Izz - Ixx) rp + Ixz: (r2 - p2) + M t p  + Mf >

(I/I2 2 ) ((Ixx ~ Ixs) pq + 1x2 (p' — qr) + Rfn + NV)

p + q (sin 0) (tan 0 ) + r (cos 0) (tan 0 ) 

q (cos 0 ) - r (sin 0 ) 

q (sin 0) (sec 0 ) + r (cos 0) (sec 0 )

and;

0= U = t Ui , U2 ..... Uiol 1

Finally

- [ Kx i, Ky i, K2 i, Ki_i , Kmi , Kn i, 0 , 0 , 03*' ; i- 1 , . . . , m; m- 1 0 ,

The model presented here has the advantage of enabling the 

functions f and gi to be considered as a distribution on a manifold U 

contained in R” (for this reason this equation will be referred to as the 

(f,g) distribution model form). In the following chapter an application 

of nonlinear control theory based on differential geometry will be 

presented;in this, it is necessary to have an (f,g) model of the system,

In table 1 the data for a representative transport helicopter are 

presented. These are the data which are used in throughout thesis.
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Chapter III.

LINEAR EQUIVALENCE OF NONLINEAR SYSTEMS.

Summary .

This chapter deals with a direct application of differential geometry 

to the nonlinear control system problem. The application is presented in 

detail and some of the more important mathematical tools are discussed. 

This application rests on the concept of the feedback equivalence theory of 

nonlinear systems introduced by Respondeck [19851 and Brocket [19781. 

However the essence of the method presented here was developed by Su, Hunt 

and Meyer [19831. The nonlinear system is assumed to be represented by an 

(f,g) distribution model.
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III.l INTRODUCTION.

In recent years there has been an increasing interest in the 

linearization problem of nonlinear control systems. In many circumstances 

linear models of nonlinear systems do suffice for the design of 

controllers and observers. However, as pointed out in the previous chapter, 

in many other situations the intrinsic nonlinearities of the studied system 

are of interest. To pose the problem in other words: is it possible to

transform the system into a linear form using such a transformation as a 

change of coordinates in the state space, state-input space, output- 

feedback and input injection?.

When studying smooth systems, differential geometry provides methods 

and tools like Lie brackets of vector fields, the Lie derivatives of 

functions, involutive distributions and integral manifolds which help to 

answer the above questions and to distinguish those systems which may be 

treated as linear ones.

Among all problems the most natural question is when does a 

change of coordinates exist?, in other words when is there a 

diffeomorphism which carries the given nonlinear system into a linear one. 

Studying such questions, Krener 119733 showed the importance of the Lie 

algebra of vector fields generated by the system. He also showed when it 

was possible to obtain such a change of coordinates. Later Brockett in

119783 enlarged the studied class of transformations by also allowing a

certain form of feedback to act: his paper has inspired the subsequent

research in the field. Among the works originated by Brockett*s work are

Jakubczyk, Respondec 119803, Su 119823 and Hunt, Su 119813; in these works, 

the full feedback group was considered and gave necessary and sufficient 

conditions for linearization.

In this chapter the system will be assumed to be of the form:
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x<t) = f(x) + 2 u± gi(x) ; x € (III.NLS.l)•i i

where f, g-, , g*  grn are smooth vector fields on R". The word smooth

will always mean C°.

In most cases the assumption of infinite differentiability is not 

essential, but it is assumed in order to avoid having to count the degree 

of differentiability needed in some cases,

It is assumed that an initial state xQ € R" around the operating point 

is given. The linear equivalent system is required in the form:

rft
y(t)= A y + 2 Vi b4 (x) ; y € R" (III.L.l)

Throughout this chapter it is considered that f(x0)= 0 . Without this

assumption the results still hold, but it is necessary to consider a 

constant in the vector field Ay. This problem can be avoided if the 

linearizing transformation maps x0 to 0. Reboulet and Champetier 119843 

presented a pseudo-linearization which does not depend on the operating 

point.

The results presented below are local. This means that the conditions 

requied need to hold locally around the initial state x0 , and the 

linearizing transformation exists locally around this point. Nevertheless 

Hunt, Su and Meyer [19833 gave the necessary conditions for global 

aspects. The same problem has been studied separately by Respondec [19853.

The spirit of the feedback linearization can be described with the aid 

of an academic example. The example presented by Su [19823, which has been 

used in subsequent publications, for clarification and comparation, for 

example by Reboulet and Champetier [19843, is used here:

Consider the nonlinear system;

x2 cos(x,)
= +

x2 0 1

on R2. It is straigthforward to observe that if new coordinates of the
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following form are introduced:

z,= -x2 + In I tan(te x, + # rc) I ; (III.B.l)

z2= x^/c o s Cx t ) ; (III.B.2)

v3= x^2 tan (x,)/cos (x, ) + u {x;2 sinCx-,) + ll/cosCx,) (III.B.3) ,

then the above system takes the following linear form:

Zi z2 0
= +

z2 0 1

This means that the nonlinearity of system (III.A) is not intrinsic 

and occurs due to an unfortunate choice of coordinates. If the coordinates 

are replaced according to equations (III.B), the linear system (III.C) is 

obtained.

The above leads to the problem of finding a change of coordinates of 

the state-input space, namely linearization by means of a diffeomorphism 

expressed in terms of the control input, that is by feedback.

Consider a nonlinear control system of the form:

m
x(t> = f(x) + I Ui gi(x) ; xe R" (III.NLS.1)

Where f, gn  , . . ,gm belong to V°° >, the family of vector fields on a

manifold contained in R’"’. This problem leads to the generalization of the 

linear feedback case, comprehensively studied by Brunovsky [19701. Namely, 

consider the linear system;

y ( t ) = A y ( t ) + B v  ; y £ Rn; v e R m (III.L.2)

Its dynamics can be modified by the linear feedback v= F y + H w , where F 

and H are matrices of appropriate dimensions and H is invertible:

y(t)= (A + B F) y + (B H) w .

where w is the reference output.

For the nonlinear system (III.NLS.1) where u= (u,, . . .,um) *, the 

nonlinear feedback u= a( x) + p (x) v is applied, where a(. ) and p(.) are
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(mxl) and (mxm) valued smooth functions respectively, and (3(.) is 

invertible. This gives the modified system

x(t)= (f + G a) x + (G 3) u ,

rn

where Z uA gi(x)= G u ,i ”»rfi

The nonlinear decoupling and noniterating control problems are 

extensively studied by Isidori, Krener, Gori-Giorgi and Monaco [19811, 

Isidori and Krener [19821, and Isidori [19851 in particular an answer to 

the question : when can nonlinear systems of the form (III.NLS. 1) be

transformed to linear systems of the form:

. rn
y(t)= A y + S Vi b± (x) ; ye R"

under a change of coordinates and a feedback? The change of coordinates is 

given as T= T(x) and the feedback is of the form v= a(x) + £(x) u . Here it 

is convenient to remark that equation (III.B.3) has this form, can be 

solved for u, and that then, is obviously a local result. In fact one of 

the conditions necessary and sufficient for such a transformation to be 

global is completeness. Equation (III.B.3) is not defined for all R2. 

Nevertheless for some practical purposes this condition does not impede the 

application in a wide operating range of a certain kind of process, as can 

be seen in the application presented by Liceaga-Castro and Bradley [19871.

The above questions give rise on the following concept. A 

distribution A(p) on a manifold M at p, of dimension 1= m + k, is a set of 

m linearly independent vector fields gT,...,gm which form a basis and an m- 

dimensional subspace of the tangent space of M at p. It is said that A(p)

is a C” n-plane distribution of dimension m on M and g,.....  gm is a local

basis of A. If A(.) is defined for all x € M, it is said that A(.) is a

regular distribution.
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Using this definition, the geometrical interpretation

of the problem is in finding a manifold M such that its tangent space is 

generated by the vector fields -Cf, g!,... , gm} and that this state can only 

be defined on this manifold and nowhere else. Then the problem is reduced 

to finding a coordinate chart for this manifold, where the state-input 

relationship is linear. Furthermore this change of coordinates can be 

solved for the input u.

It is intuitively clear that the results and conclusions from systems 

using the traditional approaches depend on the theorem of existence and 

uniqueness of the solution of ordinary differential equations. This 

dependence is very well presented and discussed from the point of view of 

control systems by Padulo and Arbib [19741. The Frobenius theorem plays an 

equivalent role in the geometric approach. This theorem can be expressed in 

many ways, and at different theoretical levels, as is evident in the 

literature of the subject, for instance Lang C 19623, Abraham and Marsden 

[19811, Boothby [ 19873, Choquet-Bruhat, DeWitt-Morette and Di1lard-Bleck 

[19771, Brickell and Clarck [19701. The version (a crude one) used in 

Nonlinear Control Systems is usually stated as: a distribution A is

integrable if and only if it is involutive.

On the other hand, the Frobenius theorem may be considered as the 

generalization of the existence theorem (of ordinary differential 

equations) to certain types of partial differential equations, namely 

Pfaffian systems. Choquet-Bruhat, DeWitt-Morette and Di1lard-Bleck [19773 

analysed the parametric solution of the Pfaffian equations from this point 

of view. The same method is applied in this chapter.

In the following sections of this chapter, the procedure proposed by 

Hunt, Su and Meyer [ 19831 is presented in detail. This procedure is 

composed of some of the ideas mentioned in this section, and is synthesized 

by the concept of linear feedback equivalence of systems which consists of 

a change of coordinates of the input-output space and feedback.
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III.2 Preliminaries.

The purpose of this section is to present the most important concepts 

and notation essential to the study of nonlinear systems and in particular 

to the development of this chapter. The source of these concepts is 

differential geometry. The notation used in this chapter can be considered 

as standard. On the other hand, only the strictly necessary concepts are 

presented, nevertheless some proofs are included in the appendices. 

Definition. Lie bracket.

Given two C“ f(.) and gC.) on R*1, the Lie bracket of f and g is 

defined by

5 sr 5 fCf,g]= f " -TT2— g • (III.LD.l)° b x b x °

where ~  ^ ■ and f are the Jacobian matrices.b x b x

The Lie bracket operation can be applied successively, i. e,,

(ad°f,g)= g

(ad1f,g)= Cf,gl

<ad*f,g)= Cf, [f,gll

(adkf,g)= Cf, (adk_1f,g)1

Let M be a manifold of dimension 1= m + k and assume that to each p e 

M is assigned an m-dimensional subspace A(p) of the tangent space of M, 

denoted TP (M). Furthermore suppose that in a neighbourhood U of each p
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there are m linearly independent Cro-vector fields f,, f2  fr,, which form

a basis of A(p) for every q e U. Then A(p) is said to be a Cro m-plane 

distribution of dimension m on M and f , f2, . . . , fm form a local basis of 

A(p>.

A distribution A(. ) is said to be involutive if there exists a local 

basis f1t f2l..., f„, in a neighbourhood of each point such that

The Frobenius theorem can be expressed as follows:

Let ff t , f2, . . . , fr„> be a set of involutive and linearly independent

vector fields in R'"1 and x0 € R«, then there exists a unique m dimensional 

Cro submanifold S contained in R™ through xOJ with the tangent space 

generated by f , f2, . . . , fm. The subset S of R™ is defined as the unique 

integral manifold of flt f2  fm through x0.

The Lie derivative of a function is defined as follows:

Given a C" function h on R" and a C“ vector field f on R°, the Lie

derivative of h with respect to f is expressed by

Lf(h)= <dh,f> (III.LD.2)

where denotes the duality between one-forms and vector fields and dh

denotes the gradient of the function f.

Lie derivatives of one-forms:

If dT is a C~ one-form on R", the Lie derivative of dT with respect 

to a C* vector field f on R" is defined by

C f i» f d 3 = 2 c % 0. fk Hi, j*m.

(III.LD.3)

where t denotes transpose and — ---  and--— ---  are Jacobian matrices.r b x b x
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In Appendix III.l it is shown that the gradient of the Lie 

derivative with respect to a Cm vector field f on R" of a C“ function h on 

Rn iS equal to the Lie derivative of the gradient of the function with 

respect to f, i. e.

dLf(h)= Lf Cdh) (III.LD.4)

In the Appendix III.l above it is also shown that the three Lie 

derivatives are related by the Leibnitz rule

Lf<dT,g>= <Lf (dT),g> + <dT,[f,g3> (III.LD.5)

with f and T as before and where g is a Cm vector field.

The relations defined in this section are the tools used to define a 

linear equivalent system for smooth nonlinear systems. The way in which 

these relations can be handled is presented in the next section.
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111.3 EQUIVALENCE OF SYSTEMS.

In the introduction to this chapter a philosophy allowing one to 

tackle the problem of nonlinear control systems was presented. In the next 

section some mathematical tools were introduced. In the remainder of this 

chapter, the application of the ideas described in the first section, using 

the mathematical concepts defined in the second, will be considered. The 

ideas presented here were originally developed by Su 119821 and Hunt, Su 

and Meyer [19831. These ideas are presented in detail in order to display 

the essence of this relatively new theory and to make easier its general 

applicat ion.

In this section a transformation T is presented, which transforms a 

nonlinear system into a linear canonical form. The characteristics of such 

a transformation are obtained, after which, the transformation T between 

the nonlinear system and the linear canonical form is presented as a 

function of the control input. The condition needed in order to obtain the 

transformation T for the control input is also given. Finally, provided 

that this condition is accomplished a feedback linearization is defined.

The following definitions and theorems give the grounds for the 

development of this section.

Consider the inverse function theorem (Abraham, Marsden [ 19811) which 

can be expressed as:

Theorem. III. 1. Let W and F be a subset of Rf-*-™ and let T be a C" 

mapping such that T:W-*F. Let x0 € W, and assuming that DT(x0> is a linear 

isomorphism, then T is a C® diffeomorphism on some neighbourhood of x0 

onto some neighbourhood of T(x0). ■

Now let xc be the origin of W. By the above theorem, it is clear that 

if DT(x0> is an isomorphism, then T maps a neighbourhood of the origin of W 

to some neighbourhood of T(xc). Furthermore, if T(xc) is the origin of the 

image, then T can be classified according to the following definition:
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Def ini t ion III.l, Let W be an open neighbourhood of the origin in the 

Rn+m space.

A x-transformation T with domain w is a diffeomorphism onto an open

neighbourhood of the origin in R̂ -*-™ which is nonsingular and maps the

origin to the origin. I

It follows that the set W is assumed to be of the form X x Rn+m, where

is an open neighbourhood of the origin in R" and will be referred to as the

state space, so that
T: W= X x Rn+rn Y  x R'"1 c Rn-rr,

The nature of X x R° and Y c Rn will be defined according to the model

structure given in the previous chapter, namely

( x,, . .., x,,; u,, . . . , um) € W and C y,, ..., y„; v,, ..., vm) € T (W)

denote the state-control variable in W and T(W) respectively.

Now let Si and be two different systems such that

St is defined by x= a( x1( x„; u,, urr>), with state transfer

function q> and

S2 is defined by y= b( yn, ..., y„; v,, ..., vrn), with state transfer

function y.

Definition III.2. Let W be a subset of Rrv+'m. The system St is t- 

related to system S2 if there exists a T-transformation T on W such that

for each state x0 € X, and each admissible control u(t) € Q (the set of

admissible control functions), the following conditions are accomplished:

y(0)= T(x0; u(0)) and T( q>(t,x0;u), u(t))= (y(t), v(t)) 

whenever

(p(t; xc, u) € W then y(t)=\|f(t; y0» v) . I

Definition III.3. If S-. is x-related to S.-> by the transformation T 

with domain W it is said that Si is T-related to S.-,. I

Given the above definitions, the problem can be reduced to finding a 

x-transformation which maps the nonlinear system

49



x (t)= f(x,t) + I Ui g±(x(t>) , f CO)= fo (III.NLS.l)
1=1

to a controllable linear system. In particular it can be mapped to a

Brunovsky canonical system

y(t)= A y + B v, (III.1.2)

The matrix A is of the following form:

block diagt U ,, ..., Uml

where the matrices U, Um are matrices of order K:i. x Kj., i= 1, . .., m

with the unity in their diagonal and zeros elsewhere. And the matrix B is 

formed as follows:

ei<T

ei<m

where e±, i= K,, . .., Krri, are the Kith standar basis vector of dimension

Ki, and I*, i= K, K,.„, are the unity matrices of order KA x K± (i= 1

... , m) respectively.

The indices in matrices A and B are the Kronecker indices and <7-i =

K,, a2= Kt+K-;.......  Kt+.-.+K^, are the controllability indices.

In the work published by Hunt, Su and Meyer 119831, it is shown that

if a nonlinear system is equivalent to the Brunovsky canonical form then

a) The Jacobian matrix b T± _ q * i= 1, . . . , m and k= 1, . . . , m .
b uk

b) The m x m matrix b T., , j= n+1, . . . , n+m and k= 1, . . . , m
b uk

c) The foolowing partial differential equations hold on a set W

contained in

<dTx, gA>= 0 , (III,PD.1)

where 1= 1  <7,-1, a,+l, ..., crrri_,-1, ar„_-,+l.......n-1.
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X(l

f + Z ui (t) gi(x(t))>= Tn+1

(III.PD.2)

Tt I
<dTCT„, f + Z Ul<t> g1 Cx(t))>= T„+m±™i

and

<dTx, f>= Tx+1 , 

where 1 is the defined as in equation (III.PD.l).

Hunt, Su and Meyer showed that if the transformation T exists then 

conditions a), b) and c) should be satisfied. This is shown in detail in 

the three points below:

Condition a). Let x0> u, y0, <p and <p be defined as in system S, and 

S2. If y0= T(x0» u(0 )) and

T<q><t; x0, u))= (y(t), v(t)) so that

yd (t)= Tj(<p(t; x0 ,u), u(t)), for j= 1,..., n and

V i ( t ) =  Ti((p(t;  x0 , u), u ( t ) ) ,  for i= 1 , . . . ,  n+m .

By this hypothesis y= ( y , , y„) is a state vector of S2 with control

inputs v(t)= (v, vrri),

If the linear state equation (III.1.2) is expressed in terms of the 

transformation T and the partial derivatives with respect to time is taken, 

then the following equation is obtained:

ft y-i _ ft Tj (q>(t ; x0 , u ) , u ( t ) )  .
b t ft t , l l, . . . , n .

Using the properties of the state transfer function the above 

equations can be written as:

ft yi _ ft Tj (x, u)
ft t “ ft t ’ .

Applying the chain rule to the last equation one can see that
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ft Yi _ y ft Tj d xk ^ ft TA d u
ft t ±Z, 5 xk d t i" 1 5 uk d t k= 1, . . . , n

The importance of having the transformation of the states Tj., i= 1, 

n, indepedent of the control u, allows one to solve for the control 

inputs u, in the transformed state-input space, Liceaga-Castro and Bradley 

[19871, showed that in some cases it is possible to design a T 

transformation for nonlinear discrete systems, whenever the transformation 

of the state does not depend on the control inputs. The importance of this 

characteristic will become apparent through this section.

The rows of the linear canonical system depend, by hipothesis, on the 

transformation y ±= Ti(x,u), i= 1,..., n, and Vi= Trvt.jCx,u), j= 1,..., m.

It is obvious that the derivative of y depends on x and u, and not on 

the derivative of u respect to time, as a consequence, Ti i= 1 n do

not depend on the derivative of u respect to time either, therefore 

ft T, = 0 , i= 1....  n .ft u,<

This proves condition a).

Condition b). The T transformation is defined as a diffeomorphism 

therefore its Jacobian matrix

kJL .ft X,
ftj l
b Kr 0 0

••• F "  °  ••• °5 Xt ft x„

ft Tyrf. 1 ft Tyr,- -| ft Tyrf. 1 ft T r
6 X, * * ' ft x„ ft Ui ' ' ‘ ft uri

ft_T-±,n * • ’ ft Tr^m ft T̂ -̂rr. • • • ft Tr
ft X t ft X„ ft U, ft Ur
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is nonsingular. Therefore, if T exists, the matrix

b Tr
b U-,

b Tt
b u,

ft
b Ut

ft Ty 
b ur

is also nonsingular. This proves necessity of condition b).

Condition c). The Brunovsky canonical form can be written as 

yi= y*

yCTV--,=  y *  

y<r,= vi 

y ̂  ̂  1 y cr i +2

yo-2-v-i y o-2 ■•■St

53



y°rn— 1 1 y CTrn— 1

y°'ni— 1 Vrn--

y .j rn— 1 ■+• I y CT m— '

y,->-n = y,-, 

y«= vm

which can be expressed in terms of T:

Tt= t2

T'o- —i —

T  =  T1 cr 1 1 in— 1

T  =  T1 cr 1 -+-1 1 cr •] -+-2

T  =  T— 1 a(T2

Tcr2-+1— Too;
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From the above equations, one can select the following:

fi= T i-+-i >
where

1 ~  1,2, •••, O' 1 — 1 » O  i +  1 , •••» (J-2~ 1 , 0^2 + 1 > • • 4 » Ofn—  1 ~ 1 > ^rn—  1 1 » • • • I 1 •

On the other hand, if the original nonlinear system (III.NLS,1) is

considered, then the above equations can be expressed as the Lie derivative 

respect x.

rn

(dTj, f + 2 Ui gi>= T1 + 1 ,i-i

where 1 is as defined previously, (the index 1 will have the same meaning

in this chapter) and the arguments have been eliminated for the sake of

simplicity.

The last equation can be rewritten as

m

<dT, f> U  Ul <dTi, gi>= T 1+1 
i = l

From condition a) previously shown, which establishes that T t e r m s  do 

not depend on the input u, it is concluded that:

 ̂̂ T!, f > = T 1 + 1 ,

which are the partial differential equations (III.PD.3), and



2 Ui <dTi, gi>= 0 ; for every admissible u:i, so that 
i = l

2 <dTlt g±>= 0i »»1

which are the partial differential equations (III.PD.l).

On the hand the states with indices a,, o„ are expressed by

Ter •, - 1 - V 1

T = T ^ = v*<yn 1 rn-rn vm *

In this case v±, i= 1, , m depends on uA, i= 1, . .., m then the

partial differential equations (III.PD.2) are obtained:

Tn+i~  ̂ dTCT1, f + 2 Ui gi>i»i

Tru-rn-  ̂ dTn , f + 2 Ui gi> 
i = l

This proves the condition c). I

The three above conditions establish the basic mathematical structure 

of the T transformation. This structure can be simplified according to its 

the three Lie derivatives given in section two of this chapter. For 

example, consider:

< dTi, f>= T1 + 1

where

1= 1,2 , ..., o'i 1} ff,+l, <r2 -l, o2 +l, ..., orn_i — 1, o^-t+ 1  n-1 .

The Lie derivative of the one-form dTx with respect to f is

T i  +  r  Lf (T j  ) .

This allows the Leibnitz rule to be applied, i.e.
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<dTx, [f,g]>= < cKdTx, g4>, f > - < d<dT1} f>, g4 > , 

where i= 1 , . . . , m.

But as was shown before, the first terra of the right side of the last

equations is zero so that

< dTlf Cf,g3 >= -< d< dTx, f>, g> , i= 1, ..., m.

The last equations can be worked out as follows. Let the set

L— "(1— 1,2,..., CT1 1 , O I +1 , . . . , 1 I 1 » • « • » &r ft— 1 — 1 > O'm— 1 "t 1 » • • • > 1} ,

and from equation (III.PD.3):

< dTx, tf,g] >= -< dT1 + 1, gi> , i= 1 ,. . .,m .

If 1+1 € L then

< dT j., [f,gj >= 0 (III.PD.4)

and if 1+1 is a controllability index then

< dTlt [f,gi3 ^ 0

The equations whose index 1+1 € L can be modified as follows:

if < dTi, [f,gj >=0 .

Then from (III.PD.l) and (III.PD.3) the equation

< dTi +,, [f,gl] >= < <dT1 + ], gi>, f > - < d< dT! + •,, f>, gi>

can be transformed to

< dT1 + 1, C f,gi 1 >= < dT1+2, gi>

If the Leibnitz rule is applied succesively as follows:

< dTx, [f, [f.gjl >= < d< dTlf [f,gj>, f> - <d <dTx, f>, Cf,gi3>

then

< dTx, adf:2gi>= -< dT1 + 1, Cf,gil>

Then it is clear that

< dT1+2, gi>= < dTx, adf*gi> , 

and if 1+2 € L then

< dTx, adf2gi>= 0 .

This procedure can be repeated until the index of T takes the value of 

a controllability index, for example

< dTCT, C f ,g±3 >= < d <T<t_ 1 , gi>, f> - < <dTCT_1, f>, g*>
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= - < d< dT„_1( f>, gi>

= - < dTCT, gi>

* 0

Then

< dTlf (adfd, gi)> t  0 

where j= 1,..., K,—2; i= 1,..., m and K, is the first Kronecker index.

If the above procdure is applied to the differential equations

(III.PD.l), one can replace them by:

< dTlt (adjf,gi) >= 0 , for j= 0 , . . . ,  K,-2 and i= 1,..., m .

< (addf,gl) >= 0 , for j= 0 ,..., K^-2 and i= 1  m .

< dT0.rn̂.1^1, (adJf,gi) >=0 ,  for j= 0 , . . . , Krri-2 and i= 1,..., m .

(III.PD.5) .

Equations (III.PD.2) can be transformed in a similar way. For example, they 

can be written as:

m

Tn+1 = <dTCT1, f> ± 2 Ui <dTCT1,gi>
i«»1

T„+rfl= <dTr>, f> ± I Ui <dT„, gi>i»l

The second term on the right hand side of the above equations can be 

transformed using the Leibnitz rule and the partial differential equations 

(III.PD.3) and (III.PD.5): the procedure is the same as the one applied to 

equations (III.PD.l). After this procedure is applied, the partial 

differential equations are transformed into

58



v•)= <dTCT , f> ± 2 u;i <dT,, (ad'<f, g*)> , k= K-,-1 , cr= cr, .
i = l

m
vm= <dTCT , f> ± I Ui <dTffl, (adkf, g±)> , k = Km-1 , ol = ct̂ t+1,i ■» n

O’— O’,-, ,

where U+H applies if Ki is odd and if it is even, for i= 1,..., m.

The partial differential equations (III.PD,6 ) involve the T 

transformation of an (f,g) nonlinear system to a linear canonical Brunovsky 

form. This relationship is a function of the control input uit i= 1, •••>

m. If these equations are solved for û ., one can obtain the control input 

that makes a nonlinear system given by equations (III.NLS.1) behave like a 

linear system represented by equation (III.L.2); i. e. a feedback 

linearization.

The condition required to solve for uA is that the matrix formed by 

the vector columns

< dT,, <adKl- \  gi)>

< dT*,*,, (ad^-1, gl»

 ̂ 1 ■+-1 » m > 8 * ^  i= 1 m

be nonsingular.

Hence, the solution of the partial differential equations (III.PD.5) 

and (III.PD.6 ), with the above matrix nonsingular, defines a transformation 

from the nonlinear system (III.NLS.1) to the canonical linear system 

(III.L.2). In the following section the necessary and sufficient conditions
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for the existence of such a transformation given that the points a), b) 

and c) given in this section are satisfied are presented.
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III.4.- EXISTENCE AND CONSTRUCTION OF THE T-TRANSFORMATION.

In the previous section, a T-transformation that maps a nonlinear 

system to a linear canonical form was defined. It was also shown that if 

this transformation exists, it possesses certain properties ( namely the 

conditions a), b) and c) ). It remains to determine if this transformation 

,T, exists for a nonlinear system and how it can be constructed, given that 

the conditions established previously are accomplished.

In this section the necessary and sufficient conditions for the 

existence of a T-transformation for a particular nonlinear system, 

expressed in an (f,g) form are established. The manner in which this 

transformation can be constructed is also given.

In order to show the necessary and sufficient conditions for the 

existence of T, the following sets are defined:

C= ( gi , Cf, gi3, (adKl_1f, g,), gat [f, ga], ..., (ad^-'f, g2 >,

grn, Cf, grJ , • ••, (adKm_1f, g„,) > J

and

Cd= < g,( Cf, g,l  (adKj-:2f, gl>, ga , Cf, ga], ..., (ad^-^f, ga >,

gm, Cf, grJ  --- - (adKj ~ * f , grfl) > ,

for j= 1, . . . , m.

Theorem III.2. The nonlinear system (III.NLS.1) is T-equivalent to the 

linear canonical system (III.L.2) if and only if the following conditions 

are satisfied in a neighbourhood about the origin:

1) The set C spans an n-dimensional space, that is, the elements of C 

are linearly independent. Furthermore the dT± i= 1, ..., n+m gradients are 

also linearly independent.

2) The sets Cd are involutive for j= 1, ..., m.

3) The span of Cd is the same as the span of C n Cd for j= 1 ,..., m.
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The proof of the theorem will be given by parts, first the necessary 

conditions of point 1), 2 ) and 3) are checked, followed by the sufficiency 

conditions which are given in a constructive form.

Nessesary conditions.

Proof of statement 1).

This condition is necessary and sufficient for dT0- j= 1 n+m to

be linearly independent. This proof consists of a comparision of the vector 

fields in C and the dTk k= 1, ... n one-forms. Assuming that Ti , ..., T„

solve the partial differential equations (III.PD.5) and (III.PD.6 ); and d,,

d2 . d„ e R be n arbitrary constants then the following linear

combinations can be obtained:

of d-, g, + d2 (ad1 f, g,) + ... + dCT1 (adKl_1f, g,) +

d<r1+i g* + dCTl .̂2 (ad1 f, g2) + , . . + d ^  (ad^^f, g2> +

+ grn + (ad1 f, gm) + ... + d„ (ad^'f, gm)

If it can be shown that the constants d± i= 1.... n are all zero, it is

established that the elements in C are linearly independent:

The vector a is assumed to be zero in a neighbourhood about the

origin. If the <a , .> operation is realized with each dTA i= 1, ..., n,

then the n inner products <a , dT±> can be arranged in matrix form 

M D= 0

where

D= C di d„] *

and the matrix M is comprises of rows of the form
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[ <dTkl §i> ... <dTk , (adKl_1f, gl)> <dTk , g2> ... <dTk , (adl<*-1f, g2 >>

. . . <dTk, gm> ... <dTk, (ad^-'f, gr„>> 1 ;

for k= 1, . . . , n.

It has been shown that if T is a T-transf ormat ion, then it satisfies 

the partial differential equations (III.PD.5) and (III.PD.6 ), where upon 

the first row of the M matrix can be transformed to

[0 ... <dT1} (adKl“ 1f, g,)> 0 ... <dT, , (ad^-’f, g2)>

0 ... <dT1, (ad,<m“ 1 f, gr„)> 1 ,

If Kt > K2 > ... > Krfl then the only element different from zero in the 

above row is the element associated with K, . Then the inner product of this 

row and the vector D is:

<dT1( (adk-1f, >> dCT = 0 ; for k= K-, and <j= o, .

But as shown previously, the above inner product does not vanish,

therefore: dcr= 0. If K-, appears s times in the first row, then the inner 

product will be

<dT,, (adk_1 f, gl)> dCT1 + ... + <dT,, (adk-f, gs>> dCTs= 0

In this case the constants dd j= <7lf ... , <rm are all zero. It is then

possible to eliminate the first row of matrix M together with the columns

multiplied by the vanishing elements of vector D.

Applying the above procedure to the remaining rows, it is found that 

the matrix M can be reduced to

<dTffl, gi> <dTCT1, g2> ... <dTCT1, gm>

<dTCT2, gl> <dTcr2, g2> ... <dTCT2, gm>

• * * * t

<dTCTrn* Sl> <dTcrm, g2 > ••• <dTCTm> gm>

and the vector D is reduced to another vector whose components are those
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<dT, , (adKl~ 1f, gl)>

<dTC T 1 , Cad^-’f, gl>>

<dTcrm_ 1 , (adK--‘f, gl)>

<dTlf (adKl -1 f, gn,)>

<dTffl+1> (ad'<:2 1 f, grri>>

<dTCTrri_1( (adK"*-,f,.gm)>

is nonsingular.

The linear independence of the one-forms dT,, dTr-, is determined

in a similar way by defining the following linear combination: 

p= b, dT■, + b2 dT2 + . . . + b„ dT„ = 0 . 

where B= [ b, ... b^l * is an arbitrary constant vector.

In this case the inner product <j3 , . > is taken with each element of 

C. Then it is possible to form the equation:

Mp. B= 0 , 

where the matrix Mp is
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<dTlf gl>

<dT1f (adf,gl)>

<dT,, (adKl_1f, gl)> 

<dT1, gi>

<dT1, (ad^-’f, g*)>

<dT2 , gl>

<dT2 , (adf, gl >>

<dT2, (adKl“ 1f, g,)> 

<dT2, gs>

<dT2, (adK:2_ 1f, g2)>

<dT„, gl>

<dT„, (adf, gl>

<dTri, (adKl ~ 1 f, gl»  

<dTri, g2>

<dTn, (ad'^-’f, g2)>

<dTlt gm> <dTs, gm> ... <dTril gm>

<dTlf (adKm_1 f, gm)> <dTa, (ad*"1-1 f, gm»  ... <dTr„ (ad^-’f, gm)> 

Using the same procedure as before, it is possible to show that, if 

the one-forms dT1f ..., dT„ satisfy the partial differential equations 

(III.PD.5) and (III.PD.6 ) then the above matrix can be transformed to

<dT1f (ad^-’f, gl)> <dTCT1+.1, (adK2-1 f, gl)> ... <dTCTm_1^1, (ad^-'f, gl)>

<dT-,, g„,)> <dTCTl̂ 1, (ad* 2-1 f, grri>> ... <dTCTm_1^1, (adK"‘- 1f, grri)>

and that 3 is zero if the above matrix (which is the transpose of (M. 1) is 

nonsingular.

Finally, one can see that if 

dTi i= 1, ..., n are linearly independent Tj j= 1, ..., n+m are the

solutions of the partial differential equations (III.PD.5) and (III.PD.6 ), 

and the matrix (III.M.1) is nonsingular, then the one-forms dT, , . . . ,dT„^.m
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are linearly independent. This proves point 1). §

In the remainder of this chapter the proof of points 2) and 3) are 

presented together with a method to construct the T-transformation which 

involves the sufficiency of condition 1), 2) and 3)..

Necessity of conditions 2) and 3).

The conditions 2) and 3) will be analysed under the assumption that 

the previous results are accomplished. That is, the partial differential 

equations (III.PD.5) and (III.PD.6 ) hold and dTd j= 1, ..., n+m and the

elements of C are linearly independent.

Proof of conditions 2) and 3).

The first equations (III.PD.5)

<<n,, (adJf, gi)>= 0 ; j= 0....  K,-2 and i= 1, . . . , m;

imply that dT! is perpendicular to all the elements of

C,= < Si, [f, g,3  (adKl-*f, gl),

gs, Cf, g sh •••, (adKl'“‘SEf, g2),

grr.» Cf, grJ , •••, (adK' ~ Sf , gM ) > .
Now it was shown that dT7 is perpendicular to all the elements of C, 

except (adxf, gl), for x= K,-l. One can also see that, (adxf, gl) is the 

only element of C that can not be contained in C ,, provided that K-,> K2> 

...> Kr„. Therefore if C spans an n-dimensional space, then C, obviously 

will span at most an n-1 dimensional space. Considering the above facts, it 

is also clear that the span of C-, is equal to the span of C  ̂C} .

At this point it is possible to outline how to obtain the components 

of the T-transformation, which are the solutions of the partial 

differential equations (III.PD.5) and (III.PD.6 ). Consider in particular
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the equation

<dT!, (adJf, gi>>= 0 ; j= 1....  K,-2 and i= 1, . . . , m .

Solving this equation is the same as finding a function T-, whose gradient 

is perpendicular to the vector fields in C,, that is to the space generated 

by the elements of C, , which is the same space generated by C  ̂ C,. It is

clear that the solution of the above equations can be reduced to the 

process of finding a function T, whose gradient is perpendicular to C, <■> C.

The answer to the existence of Ti can be readily aswered by appealing to

the famous Frobenius theorem, which when tailored for this problem can be

expressed as:

Theorem III. 3 (Frobenius) Assuming that vector fields of C <"> C-, pass 

through a given point xc € R", then the vector fields in C ^ C-, , generate 

the tangent space of a unique sub-manifold N in Rn. The non-vanishing

function whose gradient dT! is perpendicular to the space generated by C 

ft C, is defined, if and only if, the vector fields in question are 

involutive. N is said to be the integral manifold of the vector fields of C 

n C, through x0.i

If K, appears s times in C then the following occurs. If s > 2 then Kt= 

K2= . . . =KS, so that there are s terms in C that can not be contained in

C!. In this case C t spans, at most, an n-s dimensional space. From the

partial differential equations

<dT!, (adKj f, g*)>= 0 ; j= 0 ,..., K,-2 ; i= 1,..., m
(adKif, gl)>= 0 ; J= 0,..., K2-2 j 1 = 1 ..... m ,

(adKj f, gi)>= 0 ; j= 0   K.-2 ; i= 1,..., m

it is clear that if dT, , dTc.^,  dT^-, are linearly independent of

all the elements of C,, these one-forms are also linearly independent of 

all the elements of C except of those terms whose Lie derivative order is
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K-,-1. Then C, and C  ̂C-, span, at most, an n-s dimensional space.

Invoking again the Frobenius theorem, one can see that there exists a 

unique n-s dimensional integral manifold through some point xQ e R™* whose

tangent space is generated by C n cn , also the Tj, j= 1, a,+l  ovl

escalar fields, have their gradients perpendicular to the space generated 

by C n C-, at x0 if and only if C  ̂C-, is involutive.

The construction of the transformation T will depend on the partial 

differential equations (III.PD.5),

<dT1} (adJf, gi)>= 0 ; j= 0, . . . , K-,-2 ; i= 1....  m .

<dTor,_ll (adJ f, gi)>= 0 ; j= 0, . . . , K2~2 ; i= 1,..., m .

<dTcrn.i_ 1 , (adJ f, g±)>= 0 ; j= 0,..., Kr„-2 ; i= 1,..., m .

These equations can be transformed according to the Leibnitz rule 

<dTx, (adJf, gi)>= <dT1 + 1, (ad^f, gA)>

for 1= 1 ffi-1, Ot + 1 Oa-l, ct2 + 1 aro_T, , . . . , n .

Therefore

<dT ■,, <adkf, gi)>= 0 ; k= Kr 2 ; i= 1,..., m .

<dTCT1_!, gi>= 0 ; i= 1,..., m .

<dTCTm_ 1 , (ad'<f, gi)>= 0 ; k= Km-2 ; i= 1,..., m .

<dTm_1, gi>= 0 ; i= 1, . . . , m .

According to point 1), the sets C and { dT,, dT2, ..., dT„) have n 

linearly independent elements. Comparing these sets with the above 

equations, one can see that the number of linearly independent vector

68



fields in C n Cd, j= 1,..., m is n-(p/m). Where p is the number of

equations in (III.PD.5) whose Lie derivative order is equal to or greater

than Kj-2. This is also the number of linearly independent vector fields in 

C n Cd, j= 1,..., m. Therefore there are n-(n-p/m)= p/m elements in the

set -CT-,, T2 .......  T„> whose gradients are linearly independent of the

integral manifold of C n Cj , j == 1, . . . , m (or C d). Note that the validity 

of this argument depends entirely on the involutivity of the sets C " Cj, 

j= 1,..., m (or Cd).

According to the above analysis the solution of the partial 

differential equations (III.PD.5) is the solution of the partial

differential equations

<dT, , Ct >= 0; V c-| € C n C! ,

<dT«. c2>= 0 V c2 e C n C:2 ,

(III.PD.7)

d̂TCTnl̂.1 , Cm>= 0 V C rn € C O  Cr,-,

The necessity of conditions 2) and 3) becomes apparent from the above 

process. I

Conditions of sufficiency. Construction of the Transformation.

Hunt, Su and Meyer C19833 presented a constructive proof for the 

sufficiency of points 1), 2) and 3). This proof consists of the actual

construction of the T transformation. From the practical point of view,this 

proof shows the method to such a transformation may be constructed. The 

construction described by the above authors is presented as follows. Some 

comments and a supporting theorem have been included in this proof in order 

to clarify the procedure.

In the book by Choquet-Bruhat, DeWitt-Morette and Di1lard-Bleick
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t1977], a treatise of analysis, manifolds and differential equations is 

developed, in which the relationship among these topics is presented. In 

fact all are considered as one subject. The solution of the type of partial 

differential equations discussed above may also be found in this work . 

According to Choquet-Bruhat et al., equations (III.PD.7) form an exterior 

differential system, and if the system is related to one-forms then it is 

called a Pfaffian system.

Individually equations (III.PD.7) are called Pfaffian differential 

equat ions.

The relationship between the Pfaffian differential equations and the 

Frobenius theorem is the same as the relationship between ordinary 

differential equations and the Existence Theorems for their solutions. One 

can observe that, in contrast to ordinary differential equations, the 

solution of the Pfaffian equations is subject to a condition, namely its 

involut i vi ty. Up to this point, this section has been devoted to 

establishing this condition before attempting to solve the partial 

differential equations obtained in the previous section.

The procedure proposed by Hunt et al. for the solution of the partial 

differential equations (III.PD.7), is now described. It is at once clear 

that given the solution of these equations one can construct the T- 

transformation with equations (III.PD.7) and the Leibnitz rule.

First the following constants and sets are defined: 

st : the number of times that K,-l appears in C and

S-,: the subset of C whose elements are the vector fields related to

KT-lth Lie derivative.

s2: the number of times that K2-l appears in C and

S2 . the subset of C whose elements are the vector fields related to

the K^^th Lie derivative.
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srn: the number of linearly independent vectors in 

Sm= fgi»•••> gnJ > which by hypothesis is m.

(Notice that s-, + s2 + ... + srr,= n) .

Then a parametric mapping

Z (ti , t;2» trl)— ( X i ( t i ) 1 J  • • • » tn), « . . , Xy-, ( t ■) , t ̂ » •••» t,-,) )

that maps the origin to the origin and passes though the S t integral curves

of the vector fields whose Lie derivative order is K,-l and are contained 

in C is obtained.

The above function is constructed considering that ( Choquet-Bruhat 

et. al. C1977], Thorpe [1985]):

Def ini t ion. A parametric curve in R1"1"’"'1 is a Cra function a: I -» R1"’""’1, 

where I is some interval of R defined by a ( t ) = (a,(t), ..., «„.*.■, (t)) and

a i f i=l ,...n+1 .

One also needs to state:

Theorem 111.4 (Thorpe [ 1985]), Let X be a C” vector field on an open 

set U c FT1- 1 and p e U. Then there exists an open interval I containing the 

origin and an integral curve a: I -* U such that

i) a (0 )= q .

ii) If 3:J -) U is any other integral curve of X with |3(0)= q, then J c

I and a(t)= p(t) for all t € J. I

The above theorem, whose proof can be found in the book by Thorpe

[1985], implies that the integral curve of a vector field through a fixed 

point is unique.

The z mapping is constructed considering that it passes through the 

integral curve of the (adkf, g-,) vector field, which is given by the

solution of (Thorpe [1985]):

= (adkfi gi) . k= k i-! ,

with Xt (0 )= 0 .
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By the above theorem this integral curve is unique.

If s, 2 then by solving:

Cl X ( t n  t - ; ; )

d t 2 (adrf, g2) r= K.,-1

with x <t,, 0 )= x(t|),a second integral curve through the origin is found.

This procedure is repeated until the parameter tB  ̂ is introduced by

If one can solve the partial differential equations (III.PD.7) with

then the solution will be contained in the intersection of the sT integral 

curves obtained above. At this stage one can see that condition 1) is being 

used to construct a diffeomorphism.

The solution of equations (III.PD.7) can be worked out considering the 

existence of a function Z such that:

< dZ, (adkf, g,)>= 0 ; k= K,-2

Finding this function Z is equivalent to finding the solution of the 

linear ordinary differential equations ( Choquet-Bruhant 119771, Thorpe 

C 19791, Elsgoltz [ 19771 )

If this integration process is repeated s2 times,the following equation is 

f ound:

d  X ( t 1 t  *  - — -■■■ t") = (adKf gj,) ; where r= St . k= Kt — 1

x(t,, t̂ , ..., t̂ , 0 , ...0 )= x(t,, t2, ..., tn) as the initial condition,

If s2 ) 2 then the equation

<dZ, (adKl“:2f, g:2)>= 0

<dZ, (adKl"2f , gB2)>= 0
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which can be solved as follows:

dx = (adkf, gs> , k= Kt-2 ;------ r— ~ --  = 0

Next, the s3 partial differential equations associated with the vector 

fields contained in S3 are integrated, starting with equation

<dZ, (adK;,~3 f, g,)> = 0 , 

which is related to the equations

dx = (adkf, g,) , k= K, -3 ; ■■   = 0, ---  . , O' » “ “ I ~ I V I .U k31 +S2+1 ^ "S1+B2+1

and ending with

<dZ, (adKl"3 f, g.3)>= 0 , 

related to

dx = (ad“f, g. ) , k=K,-3 ; . ,62---- = 0d , 4 ) QB ' J “ W > X f''a -4-532“*"453 4-B2 + B3

with x (1 1, t3i tsai +B2 +B3-1 * 0 )— x C1 1, t3, • • • , tB1 i)

This process ends when the n parameters t j , j= 1,..., n are

introduced, that is, when

<dZ, gm>= 0 .

This equation is associated with

dx _ . bZ _
d t„ Sm ’ b t„

satisfying xCt,, t2, . .., t„_-,, 0 )= x(t1f t3) ..., tn_-,) .

With the above process a map from Rn to Rn which maps the origin to

the origin given by

C t 1 , . . . , ty-,) "4 (X̂ Ct-J, . , . , t^), . . . , Xf~! C t -J » . < . , t y, ) )

may.be constructed. Furthermore according to the method this map was

constructed its Jacobian matrix is
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Note that when this matrix is evaluated at the origin, its columns are the 

elements of the set C, and we know this set spans an n-dimensional space, 

thus the above matrix is nonsingular. Therefore the map is a diffeomorphism 

on an open neighbourhood W of the origin in R", and the image V of W, is 

also a neighbourhood around the origin in Rn. On the other hand according 

to the inverse function theorem, one can solve this map for the parameters

tlf ..., t a s  functions of  ...... x,-,. This prooves the sufiency of

conditions 1), 2) and 3). I

At this stage it clear that a diffeomorphism of the state space of the 

nonlinear system has been obtained. The problem which now arises, is how 

one can use this diffeomorphism in the definition of the desired

functions;

T  i i To- •, +-1 » . . . i T a.rri_ 1+.1

By design, each map td, j= 1,..., n is C" and takes the origin to the 

origin on V.

If one surmises that 

1 1 = t !

then one has to show that this Ti satisfies the first set of equations

(III.PD.7)

<dT, , c,>= 0 V c, € C o Ct .

According to the Frobenius theorem and the involutivity of C ^ C, , it is

clear that the solution of these equations exists. Furthermore, for fixed

t  tei and varying tB1+lf t„ the integral manifold of C ^ C, is

obtained. Therefore the map T,= t, is constant in such a manifold, and it



is quickly seen that

<dT,, c,>= 0 V c, € C n c, .

Note that (ad 1 f* g]) is associated with t-, .

To define the map T0 ,+1, one can proceed in the same way. That

is, one seeks for a t such that:

<dTCT c2>= 0 V c2 € C n c* .

Keeping in mind the elements of C which are not contained in C ^

C2, one can appeal to (ad5 2-1 f, g2). According to the construction 

of the diffeomorphism, the parameter associated with this vector field 

originates a constant map in the integral manifold of C n c2 (which one

knows exists if the vector fields in this set are involutive) by

keeping the parameter associated to (ad*2” 1f, g2) constant while the 

parameters with higher index vary, as was previously done.

For similar reasons one can define as the parameter associated

to the vector field (adK3_ 1f, g3).

The functions T ^ ^ t , ..., TCTrri_ , can be defined in the same manner,

defines the solution of the partial differential equations (III.PD.7), 

which is the same solution of that of equations (III.PD.5).

With this the sufficiency of points 1), 2) and 3) is demostrated I.

Finally, as described previously in this section, the rest of the T- 

transformation components can be evaluated from equations (III.PD.6 ) and 

Leibnitz rule, at this stage the construction of T= (T7, T3, ..., T„̂ .m) can 

be easily obtained.
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Before ending this chapter, it seems appropriate to rewrite the main 

result obtained:

A nonlinear system expressed by equations (III.NLS.l) is T-equivalent 

with the linear canonical form (I1I.L.2), where the variables X, ,. . . , x„

lie on a neighbourhood around the origin of R’"1, if and only if:

1) The set C spans an n-dimensional space,

2) The sets Cd j= 1,..., n are involutive and

3) The span of Cd is equal to the span of C ̂ Cj for j= 1,..., n ,

In the following chapter the theory developed here is applied to a 

helicopter, represented by the model structure given in chapter II, in

order to design a flight control system.
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CHAPTER IV,

FLIGHT COITROL SYSTEM DESIGJT.

Summary.

In this chapter the design of an automatic flight control System for 

helicopters is developed. The helicopter is assumed to be represented by. 

the model defined in Chapter II and the design of the automatic flight 

control system is realized according to the theory of nonlinear feedback 

demostrated in Chapter III. A series of simulations is presented in order 

to investigate the performance of the design.
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IV. I. imODUCTIOJff.

The object of the present chapter is to concatenate the helicopter 

model described in Chapter II to the nonlinear feedback described in 

Chapter III in the form of a flight control system. The link between these 

two aspects is in principle straightforward, nevertheless the complexity 

and the high order of the plant in question present enormous difficulties 

in the implementation of the theory. These obstacles are overcome by

1 ), making use of the characteristics of the system, which allows one 

to perform a partial linearization, using a nonlinear compensator, thus 

reducing the complexity of the original plant substantially,

2), the use and development of Symbolic Algebraic Manipulation 

programs to execute the calculations required in the design of the 

nonlinear control law, and,

3), by the ubiquitous: simplifying assumptions, in this case they are 

apropriate in obtaining a solution of the set of partial differential 

equations involved in the definition of the nonlinear control law.

The three aspects mentioned above are used throughout this chapter to 

link the helicopter model to the nonlinear control theory, resulting in a 

flight control system. The process in which these aspects are joined 

together is explained sequentially in each section of the chapter. First, 

in section II the nonlinear compensator is introduced. This compensator is 

the continuous time version of the nonlinear control law presented 

previously by Liceaga-Castro and Bradley C19871. In the present application 

it is shown that, by applying this nonlinear compensator, it is 

possible to decouple the normal andangular velocities of the helicopter. 

Furthermore, from the point of view of the feedback linearization theory,
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the resulting equivalent system has the normal and angular velocity 

references as inputs, while the state remains unchanged. The problem is 

reduced to defining the sequence of references in order to control the 

system. This is much easier than controlling the original plant.

In section III, a set of programmes which determine whether or not a 

nonlinear system possesses a linear feedback equivalence system is

presented. These programmes are developed using the Algebraic Symbolic

Manipulation language Reduce. The linearizable helicopter properties are 

obtained by using these programmes. These properties are also included in 

section III. In the following section, nonlinear control systems is applied 

.This is in order to find a diffeomorphic mapping between the Compensator- 

Helicopter pair to a linear Brunovsky canonical form*. In this section, one 

can see the necessity for considering strong simplifying assumptions in the 

system in order to find the components of the diffeomorphic map between the 

plant considered and the linear canonical form. The state mapping and the 

inverse of the input mapping which, define the control law for the 

nonlinear system, are obtained in this section. According to the Feedback 

Equivalence Theory, if a nonlinear system is r-equivalent to a linear 

canonical form,the control law designed for the canonical form has an

equivalent effect on the nonlinear system. In other words, if the inverse

of the T-transformation is applied to the control inputs of the linear 

system and then to the nonlinear one, the behaviour of the nonlinear system 

will be equivalent to that of the canonical linear form.

In section V the Pole Placement Technique is used to set the 

performance and control of the canonical linear system. It is shown that 

the effects of the assumptions made in the previous sections are 

compensated if the poles of the linear system are conveniently placed. This
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step completes the Flight Control System structure, represented in figure 

(FIG. IV.I.1) .

COMPENSATOR HELICOP TER

R: Reference.

Tf<: Transformation of reference.

Tv-1: Inverse transformation of the linear input, 

u: Ronlinear input, 

x: State.

T : Transformation of the state.

Figure (IV.I.1).- Flight control system structure.
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Finally, in the last section of the chapter, some simulation results 

are presented and one can see that, for the manoeuvres considered here, the 

performance of the flight control system is satisfactory.
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IV.2. PARTIAL LINEARIZATION OF THE SYSTEM USING A COMPENSATOR.

According to the model described in Chapter two, the helicopter model 

can be expressed by an equation of the form

I o
x(t)= f(x) + E Ui bi(x, 3, u) ,i 1

where x £ R12, f(.) and b*. are C® vector fields in R12 and the U± are

components of the input vector

£90, 1̂ 31 8 T c , 00*1 9o 0 1 3 i 9o 9 ■) c , 9 1 S3 © 1 <=» 9C*" , 9p]

where 80, 9ls, 8lc and 8P are respectively the collective, longitudinal 

cyclic, lateral cyclic and tail rotor collective pitch angles .{3 represents 

the flapping motion and u the linear elements of U.

The purpose of this section is to modify the original plant in order 

to achieve a model which is easier to work with, and to perform a partial 

linearization and decoupling of the plant by incorporating a compensator.

First, the simplification of the system is referred to the valued 

vector fields b±(.), i = 1, ... ,10, mentioned above. A new set of vector

valued input fields are defined as

90 C bn (. ) + 80 b*(. >1 = 80 g, (.)
91 s Cb2 (.) + 8C bs (. ) + 0!. b7 (.>] = 01s g2 (.)
e11= tb3 (.) + e0 be c.) + el5B be <.) + elc b3 (.) i = elc g3 (.>
8P ib4 (.)] = 9P g10(. ) .

If the above vector fields gi(.) , i = 1 , ... , 3 and g1Q are 

used, the number of vector is evidently reduced from 10 to 4. This 

simplification is justified due to the fact that the must significant terms 

in are h*, i= 1,..., 3, . In practice these terms can be identified on line

or, as pointed out later, linear robust techniques can be applied. In this
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thesis the values of input vectors have been updated.

Assuming the above fact the model can be rewritten as;

x(t) = f(x) + 2 Ui gi(. )

or

x (t) = f (x) + G(. ) u

Liceaga-Castro and Bradley [19871 showed that it is possible to obtain 

a feedback linearization for discrete nonlinear systems, in this case the

discrete nonlinear input state is mapped to a linear set of first order

discrete linear system. Furthermore, this set of linear systems are

decoupled with respect to each other and are stable. In foregioig paper it 

is shown that the condition required for this map to exist and to be a 

diffeomorphism, is that the input matrix accomplishes the so called "ratio

condition", that is that the leading principal minors A,, ..... Arfl of the

input matrix satisfies the following inequality uniformly;

for an arbitrary real number s.

It should now be clear that the control law obtained from this 

diffeomorphic map is restricted to systems with the same number of inputs 

and outputs. The continuous version of this feedback linearization control 

is summarized as follows, for the nonlinear system described by

x(t) = f, (x) + B-, (x) w

Idet AJ
Idet A,I Idet A™-,I

where

x is the state contained in a set A contained properly in Rn,

f1 (x) is a C™ m-dimensional vector field,
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B|(x) is an mxm square matrix function and 

w represents the system input.

If the matrix function B,(x) accomplishes the ratio condition around the 

operating points of the system, then it is possible to obtain a 

diffeomorphic transformation to the input state space (x, R,), by applying 

the following control law;

w = C B 1(x)]-1 C-f1(x) + R, (t)> (IV.CM.1)

where R,(t) = (Ri(t), ... , R^Ct))* is the reference vector.

It is evident that the linear input-state space is given by

Xj (t) = R± (t) i = 1.......m ,

by applying this control law as a compensator. The linearization and 

decoupling of the normal and angular velocities of the helicopter with 

respect to the commands can also be performed, for example including in the 

helicopter model three more degrees of freedom, in this case the position 

coordinate referred to body axes can be incorporated. These three new 

degrees of freedom are waranties the involutivity of the distribution 

generated by the system equations
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u vr - wq - G sin0 + Fx

V wp - ur + G cos0 sin© + Fx

w uq - vp + G cos0 cos© + Fz

p I, qr + I2 pq + L,

q I3 rp + I4 Cr^-p2) + M,

r Is pq + Is qr + N,

0 q cos© - r sin©

0 p + q sin© tan0 + r cos© tan0

¥ (q sin© + r cos©)/cos©

X u

y V

z w
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b , i h i  2 h i  3 h i  a

b a n bss h s 3 h a / j .

h a i h 3 ; 2 b a a b e  A

h / i  i b * * h / i s h j i A

b s 1 h . S 2 h s s h s A

h e .  i h f S 2 h e - 3 h e  a

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

(IV.HE.1)

if the commands are generated according to equation (IV.CM.1) as follows

0o b3i b33 h33 h 3 A
—  1 uq - vp + G cos9 cos0 + Fz W r

0 1 » b*i h^3 h ^ t  a Ii qr + pq + hi
+

Pr
0 1 c bsi b S 2 hss b s A I3 rp + U  (r2 - p2> + M, q«

hGi be2 hS3 he a Is pq + Ie qr + M, rR

Here wR) pR, qR and rR are the reference values for the normal, rolling 

pitching and yawing velocities respectively. The closed-loop system 

resulting from incorporating the compensator is as follows;
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u vr - wq - G sin8 + F:i< + h, (p, q, r, w)

V wq - ur + G cos8 sino + Fy + h2(p, q, r, w)

w 0

p 0

q 0

r 0

0 q cos© - r sino

0 p + q sino tan8 + r cos© tan8

V (q sino + r coso) / cos8

X u

y V

z w

WR ^ Pr "I" ^ *~R *
(CH.1)

where the functions h-, (. ) and h2 ( . )  a r ise  from the d irec t  e f fe c t  of the
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commands in the forward and lateral velocities respectively. The fin, 

fuselage and tail plane contributions are represented by the terms F;t< and

Fv •
The unitary vectors e3, e*, es and es are the 3th, 4^, 5^^ and 

elements of the standard base of R12. In obtaining these vectors it becomes 

apparent that the G matrix satisfies the ratio condition. It should be 

noted that the definition of the matrix B-, (. ) in the compensator is not 

unique, in general any combination of four rows of the matrix G form a 

nonsingular matrix. The selection of the rows which form matrix B t (.), in 

the synthesis of the former compensator, are chosen in order to control the 

angular velocities. It is well known from experience that the flight 

trajectory control of any aircraft depends on the control of the angular 

velocities. Buckingham and Padfield [19861 reported this fact through a 

series of piloted simulations directed to exploring and defining control 

systems. In the simulations presented in this report, the existence of a 

control law which decouples and transforms the angular responses into a 

second order linear system has been assumed.

The control of the angular velocities using the nonlinear 

compensator equvalent to the singular perturbation pproach applied to a 

fixed wing aircraft. (Menon et al C19873

In the work presented by Menon, Badget, Walker and Duke t19871 a 

singular perturbation technique is applied in order to design a fixed wing 

aircraft trajectory controller. The advantage presented by this approach 

is the reduction in the order of the aircraft model in trim conditions and 

during the the execution of manoeuvres, in order to separate the system 

model into two sub-systems with different time scales. According to 

Kokotovic's tutorial [19871, the singular perturbation model for finite
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dimensional dynamic systems is as an explicit state variable form in which 

the derivatives of some of the states are multiplied by a small parameter 

e, that is,

x = F,(x,z,u,£,t) x e Re (IV.SP.l)

sz = F2 (x,z,u,£,t) z e R* (IV.SP.2)

where u = u(t) is the control vector, F, (. ) and F2 are Cro vector fields 

with respect to x, z, u, £ and t, x and z form the state and the scalar £ 

represents the small parameters to be neglected.

In the control and system theory the model given by (IV.SP.l) and 

(IV.SP2.) is a convenient tool for "Reduced Order Modeling". The order

reduction is converted into a parameter perturbation called singular. When

the value of £ is set to zero the dimension of the state space of (IV.SP.l) 

and (VI.SP.2) is reduced from 8 + s to 0 because the differential equation 

(VI.SP.2) degenerates into the algebraic equation

0 = F;2 (x, z , u , £, t ) ,  (VI.SP.3)

where the bar indicates that the variables belong to the system when e = 0.

The model given by equations (IV.SP.l) and (IV.SP.2) is referred 

to as the "standard form" if and only if, the following assumption

concerning (IV.SP.3) is satisfied.

Assumption 1. SP.l.

In a domain of interest equation (IV.SP.3) has k ) 1 distinct

("isolated") real roots,

z = cpi (x, u, t), i = 1, ... , k . (IV.SP.4)

This assumption assures that a well defined 8-dimentional reduced model 

(IV.SP.4) is substituted into (IV.SP.l)
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x = F-, (x, q>i (x, u, t), u, 9 t) (IV.SP.5)

In the sequel the subscript i can be omitted

5c =  Ft ( x , u, t) (IV.SP.6)

This model is sometimes called the "quasi-steady-state" model, because

z , whose velocity z = g/s is large when s is small, may rapidly converge 

to a root of (IV.SP.3), which is the quasi-steady-state form of (IV.SP.2). 

This defines the two-time scale property of the system.

The convenience of using a parameter to achieve order reduction, in 

general, also has a disadvantage; it is not always clear how to choose the 

parameters which are to be considered small. Fortunately, in many cases, 

the knowledge of the physical processes and components of the system 

suffice in the selection of the appropriate parameters. For example the 

report by Menon et al [19873 considered the fast states for the fixed wing 

aircrafts as the rotational velocities. This assumption can be considered 

as the natural choice for flying vehicles. In the case of the helicopter, 

the experience (Buckingham, Padfield [19863) shows that this assumption is 

valid due to the fact that the evolution of the angular velocities is 

really faster than the other velocities.

Applying the singular perturbation model criterion to the closed-loop 

system (IV.CH.l) one can include the scale parameters elf e2, s3 and e* as 

follows
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u -G sin8 + Fx + £t (vr - wq) + £3 g,(p, q

V G cos8 sin© + Fx + £3 (wq - ur) + eA g2 (p

w 0

p 0

q 0

r = 0

0 q cos© - r sin©

© p + q sin© tan8 + r cos© tan8

V (q sin© + r cos©) / cos8

X u

y V

z w

wR e3 + pR e* + qR e5 + r R ee ,

A
or x( t )  = f c i ( x )  + 1 Rihi ,i o= 1

(IV.C-H.2)
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where R, = wR, R2 = pR, R3 = qR, R* = rR, h, = e3, h:2 = e4l h3 = eSf 

lu = e6

The coefficients e,, e2, e3 and eA are zero if the angular velocities are 

also zero and and e* are zero if the helicopter is in trim.

Equation (IV.C-H.2) coincides also with the model used by Meyer, 

Hunt and Su t 19821, in which model inverses are used. Finally, one can 

assert that in the present case, the ratio condition and assumption 

(IV.SP.l) are equivalent, i. e. , in this two conditions one has to solve 

for the normal and angular velocities.

In the following section a nonlinear controller is developed using 

the theory developed in Chapter III for the system given by equation 

(IV.CH.2).
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IV.3. CLOSED-LOOP SYSTEM ANALYSIS.

In the last section a nonlinear compensator was presented. It was 

designed in order to perform a partial linearization of the helicopter 

equation of motion. The closed-loop system resulting from the application 

of this compensator is given by equation (IV.C-H.2). The object of the 

present section is to analyse whether or not the input-state space of this 

system can be transformed, through a diffeomorphic map, to a linear 

Brunovsky canonical form.

According to the results obtained in Chapter III, the nonlinear system

A
x (t) = fcl(x> + 2 Ri hi (IV.C-H.2)i«=1

is linear transformable if and only if the following conditions are 

sat isf ied:

1. The set C = {R,, [fcl, R,3, ... , (adkl_1fcl, R,),

R*. Cfci. R* , , (adkA_1fc!, R*> >

spans a 12-dimensional space.
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2, The sets C-, = { R-, , [fcl, R-, ], ... , (adkl~afcl, R,) >

C* = < Ra> C f c i , R* l ,  . . .  , (adk- " 2f c l l  R4 ) >

are involutive and;

3. The span of Ci( i = 1, ... , 4 is equal to the span of CA C.

It is very difficult to investigate whether or not any nonlinear 

system oforder greater than three satisfies these conditions. Furthermore, 

during these calculations, errors are readily committed. For plants of the 

order treated here it is practically impossible to calculate the sets C, 

Ct , C2, C3, and without the aid of Symbolic Algebraic Manipulation

(SAM).

Since the late sixties, it has been known that computers are capable

of performing symbolic and algebraic manipulations. Nowadays, there are
/applications of symbolic algebraic manipulation systems in many fields of 

scientific research, such as, physics, celestial mechanics, optics, applied 

mathematics (Marino, Cesaro C19841, Hearn C19851, Fitch [19851) and now 

helicopter flight control dynamics.

The basic features of every symbolic algebraic system are

a), the use of integer and rational arithmetics with infinite precision

and

b), the manipulation of polynomials, rational and elementary functions.
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The symbolic algebraic system used here, Reduce, also offers the following;

c), algebraic manipulation of matrices whose entries are polynomials, 

rational and elementary functions or combinations of these mathematical

ent i t ies;

d), calculus: derivatives, partial derivatives and integrals; 

e), other types of manipulations, not included in the previous points, 

new or special rules for specific needs can be added, and

f) the interactive use is also permitted, so that, one can manipulate

expressions in the same way as one can use pocket calculators for numbers.

The symbolic algebraic manipulation systems have, in general, very low 

capabilities for numerical calculations. However the results obtained using 

Reduce can be given as Fortran instructions and therefore can be directly 

implemented.

The potential of Reduce in the present application relies mainly on the 

possibility of performing partial derivatives. This feature makes the

computation of Lie brackets and Lie derivatives very easy, so that the

calculation of the sets C, Ct , C2, C3 and CA is facilitated. For example,

obtaining the Lie bracket of two vector fields of order n, can be done by 

executing the procedure presented in figure (IV.RE.l). Using this programme

in conjunction with the iterative qualities of Reduce, the set C is easily

obtained.

Before presenting the calculation of the set C, the following aspects 

are considered. Firstly the state is rearanged as follows,

Cx, u, 9, q, y, v, 0 , p, 2 , w, y, rl *

so that the input is also changed to 

qr-i Pr 6s, wr 610 and rR e12* 

in order to visualize that the pilot longitudinal stick commands correspond
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to pitch attitude, lateral stick to roll attitude, collective to normal 

velocity and pedal position to yaw rate. These associations between the 

commands and attitudes is the natural way to conceive the helicopter 

control from the point of view of the pilot. Yue et. al. [ 19873 assumed 

also this relationship in the design of control laws using Hra-optimization 

and Buckingham et. al. [19863 in the research of advanced control systems 

for helicopters. Considering this aspect and the rearangement of the state, 

leads one to suggest that the controllability indices are 4, 4, 2 and 2.

Therefore the set C is

(e*, [fR, ej , (ad'fp;, e^>, (ad;3fR, e*), 

ea , [fR, ea3 , (ad̂ fr,, el3>, (ad3fR, es>, 

eioi tfR, e-i 03 ,

® I :2 > [ f R * S i ^ l )

where fR is the reordered version of fcl appropriate to the new state.

These vector fields are presented in figure (IV.RE,2).

If the selection of the controllability indices is adequate then the

elements of C also form a set of linearly independent vector fields.

Following the ideas of Marino and Cesareo [19853, [19843, a programme for 

determining whether or not a set of vector fields are linearly independent 

has been developed under the following assumptions.

Given a set of m vector fields <V, , V2, ... , Vp>, VA e R1"* i = 1, ...

>P-
find the rank r of the corresponding distribution and the spanning set of 

vector fields. The method used to solve this problem is the 

triangularization of the nxm matrix formed by the given vector fields. A
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Gaussian free fraction algorithm has been implemented, a listing of the 

programme is presented in figure (IV.RE.3),

Using the programme described above, it is found that the rank of the 

matrix formed with the elements of C as its columns is 12. It should be

noted that this programme is designed to be used for an arbitrary number of 

vector fields. In this case the matrix formed by the vector fields is

square, so that, using the capabilities of Reduce one can also determine 

whether or not if C spans a twelve dimensional space by calculating the 

determinant of this matrix. Furthermore, one needs to know if this matrix 

is nonsingular at the origin. The results which show this matrix is

nonsingular are presented in figure (IV.RE.2). This proves the first

condition required for the existence of the transformation.

In order to establish if a given set of vector fields is involutive or 

not, the programme given in figure (IV.RE.4) has been developed. The inputs 

of this programme are

1., the array G which is provided by the triangularization algorithm,

11., the dimension of the vector fields and

111., the dimension of the space spanned by the vector fields (which is an 

output of the triangularization algorithm.

The output of the programme is simply "TRUE" if the vector fields are 

involutive and "FALSE" if otherwise.

The use of the triangularized vector fields G facilitates the 

determination of the output of this programme, since given a set of vector 

fields (V-,, ... , Vp>

tv*, Vd3 e span (V,......  Vp> if and only if [V±T, VjTIT £ span

<V,T, . . . , p i q,

where the index T indicates triangularized. The sets are obviously
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involutive if and only if

CViT, VjT]T = 0  for all i, j; i < j

Using the programmes "TRIAN" and "INVOLU" one can readily check that the 

sets

rS CD C f « _ , ( a d 2  f C L _ , e * > ,

e Q  ) C f c u , e i 3 ]  > ( a d 2  f C I _ , e l 3 ) ,

®  1 O  1■ [ f e u , e i o J , ( a d -  f c l > e i o > ,

e l 2 [ f e u , e 1 2 l , ( a d 2  f c l , 2 )  }

are involutive. The sets C3 and are trivially involutive. This shows

that the closed-loop system satisfies the condition II.

It is easier to confirm that the closed-loop system satisfies the 

condition III point due to the fact that (ad fcl_i e1Q) vanishes and that 

(ad2 fCL_, e1Q) spans the same space as C fCi_» e-icJ> so that every C, i = 

1, ... , 4 is involutive.

Note that if the position coordinates were not included in equation 

(IV.HE.l), the set C would not be involutive, and position deviations from 

a reference state of the helicopter could not be controlled.

In this section it has been proved that if the closed-loop system is in 

trim condition, that is when £ i t i = 1, ... , 4 are zero, it can be

transformed through a diffeomorphic map to a linear canonical system. The 

construction of one of these possible maps is presented in the next 

section.
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PROCEDURE LIE(P1»P2,NF>:
X
X THIS PROCEDURE CALCULATES THE LIE BRACKETT 
X OF THE VECTOR FIELDS PI AND P2.
X THE LIE BRACKETT CP1.P23 IS ASSIIGNED TO THE 
X COLUMN MATRIX VET= IP1.P23 .
XBEGIN MATRIX OAF 1(12,12):FOR I: =1:NF DO FOR 0 : = 1 j NF DO 

0ACB(I,0):=DF(P2(I,1),X{0});VET1s =UACB*P1;FOR I:=1:NF DO FOR 0 : = 1s NF uOJAF1(I,U):=DF(P1(I,1),X(U));VET2:=0AF1 *P2;
VET:=VET1-VET2;END:END;

FIGURE IV.RE.l.- PROCEDURE USED TO CALCULATE THE LIE BRACKETT OF TWO VECTOR FIELDS. GIVEN PI AND P2 THEN VET= CP 1 tP23.
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SYSTEM VECTOR FIELD f:
F1 (1,1 > := - (SIN(X7)*GRAV - FX - FX0>$
F1(2,1 ) := SIN(X8)*COS(X7)*GRAV ♦ FY + FY0$
F1 (7 , 1 > := - (SIN(X8)*X6 - COS(X8>*X5>$
F1< 8 ,1 ) := ((S IN(X8 ) *X5 + COS{X8)*X6)*SIN(X7> + COS(X 7 )*X4)/COS(X7>$
F1 (9 , 1 ) := (SIN(X8)*X5 + COS(X8 )*X6)/COS(X7 )S
Fl(10,1) := Xl$
FI ( 11 , 1 > := X2S 
F1(12,1 ) := X3$

INPUT VECTOR FIELD gl;
F2(3,1 ) := 1$
INPUT VECTOR FIELD g2;
F3(4, 1 > := 1$
INPUT VECTOR FIELD g3;
F4(5,1 ) := 1$
INPUT VECTOR FIELD g4;
F5(G ,1 ) := 1$

ELEMENTS OF SET C.
THE COLOUMNS OF MATRIX "ORIGEN" ARE THE ELEMENTS OF THE SET C.

ORIGEN{3,1) := 1 : = C , gI3$
ORIGEN(4 , 2 > := 1 := C , g23$ '
OR IGEN(5 , 3 ) := 1 := C , g33$
ORIGEN(G,4> := 1 := C , g43$
$ THE OPERATION C ,g3 DENOTES THE LIE BRACKETT OF $ ORDER ZERO.

FIGURE IV.RE.2.- CONTINUES NEXT PAGE.
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ORIGEN(12,5> := (-1) := Cf, gl3S

0RIGEN(S.6> := (-1) := Cf,g23S

VECTOR FIELD Cf,g33 
ORIGEN(7,7) := - C0S(X8> S
ORIGEN(8,7) := ( - SIN(X7)*SIN<X8})/COS(X7 >$
OR IGEN(9,7 ) := < - SIN(X8>J/COSIX7>$
VECTOR FIELD tf ,g43 
ORIGEN< 7,8 ) := SIN(X8>$
ORIGEN(8,8) : = ( - SIN(X7>*COS(X8>>/COS(X7>$
ORIGEN(9,8 ) := { - COSCX8>>/COS(X7)$

VECTOR FIELD Cf, Cf,gl33
ORIGEN(2,9 ) := COS<X7>*COS<X8>*GRAVS
ORIGEN(7,9) := - <SIN(X8)*X5 + COS(X8)*X6>$
ORIGEN(8,9) := ( - (SIN(X8)*XS - COS(X8)*X5)*SIN(X7) ) /COS(X7)$
ORIGEN!9,9 ) := ( - (SIN(X8)*XS - COS ( X 8 >*X5))/C0S!X7>S

VECTOR FIELD Ef,[f,g233
ORIGEN(1,10) := - COS(X7)*COS!X8)*GRAV$
OR IGEN { 7 , Iff) := SIN!X8)*X4$
ORIGEN!8,10) := { - (SIN(X7)*COS!X8 )*X4 - SIN!X8>**2*COS(X7>*X6 - COS! 
X 7 )*COS{X8 ) **2*X6)*COS(X 7 )>/COS(X7)**2$
ORIGEN(9,10) := ( - COS(X8>*X4>/COS(X 7 >$

FIGURE IV.RE.2.- CONTINUES NEXT PAGE.
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VECTOR FIELD tf,tfftf,gl333
ORIGEN(1,11) := - <SIN<X8>*X5 + COS(X8)*X6)*COS(X7 >*GRAV$
ORIGEN(2,11) := - (2*SIN(X7)*X5 + SIN<X8>*COS(X7)*X4)*GRAVS 
ORIGEN(7,11) := <SIN<X8>*X6 - COS(X8)*X5)*X4$
OR I GEN( 8,11) := ( - (((SIN(X8)*X5 + COS<X8 )*X6)*SIN(X7> + COS<X7)*X4>* 
(SIN(X8)*X5 + COS(X8 )*X6)*SIN{X7) + (<SIN(X8)*X6 
- COS(X8)*X5)*SIN(X7) + SIN(X8)*X5 + COS(X8 
} *XS)*((SIN{X8>*X6 - COS{X 8 )*X5)*SIN(X7 ) - SIN(
X8) *X5 - COS(X8)*X6> - {SIN(X8>*-X6 - COS<X8>*X5 
)**2 ) )/COS(X7>**2$

' ORIGEN(9,11) := ( - (SIN(X8)*X5 + COS(X 8 >*X6>*X4)/COS(X7 )$
ORIGEN(11,11) :* - COS<X7>*COS(X8>*GRAVS

VECTOR FIELD tf,tfCftg23J3
ORIGENI1,12) := (SIN(X7)*SIN<X8>**2*X5 + SIN(X7 )*C0S(X8)**2*X5 + 2*SIN (X8 )*COS . ..7 )*X4 )*GRAV$
ORIGENI2,12) := <<SIN(X7>*X4 - SIN(X8)**2*COS(X7)*COS(XS )*X6 - COS(X7) *COS(X8)**3*X6)*COS(X7)*GRAV>/COS(X7)S
ORIGENI7,12) := USIN(X8 >**3*X5*X6 + SIN(X8)**2*COS{X8>*X6**2 + SIN(X8 
)*COS(X8)**2*X5*X6 + COS(X8 >**3*X6**2 + COS<X8)*X4 
**2)*COS(X7)**2 ) /COS (X7 ) **2$
ORIGEN< 8,12) i= ((SIN{X7>*SIN(X8)*X4**2 + SIN{X7>*SIN(X8>*X6**2 - SINl 
X7)*COS<X8)*X5*X6 - SIN<X8)**2*COS(X7)*X4*X5 - COS 
<X7)*COS(X8)**2*X4*X5)*COS<X7)**2)/COS{X7>**3$
ORIGEN(9,12) := (<SIN(X8)**3*X6**2 - SIN(X8>**2*COS(X8 >*X5*X6 + SIN(X8 >*COS(X8)**2*X6**2 + SIN(X8)*X4**2 - COS(X8 >**3*X5 *X6 }*COS(X7)**2)/COS(X7) **3$
ORIGEN(1#,12) := COSIX7>*COS(X8)*GRAV$

DETERMINANT OF MATRIX "ORIGEN".
DETORIGEN := COS(X7)**3*COS(X8>**4*GRAV**4$

FIGURE IV.RE.2 SYSTEM FUNCTION AND ELEMENTS OF THE SET "C"; THE ELEMENTS OF "C" ARE THE COLUMNS OF MATRIX "ORIGEN".THE VANISHING TERMS ARE NOT SHOWN:
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PROCEDURE TRI (RA,NF,MC,SPAN>;
X
X THIS PROCEDURE TRIANGULARISES THE MATRIX FUNCTION "RA"X OF ORDER (NF,MC ) . THE TRIANGULARIZATION OF MATRIX "RA"X IS GIVEN BY MATRIX BB.X THE NUMBER OF INDEPENDENT COLUMNS IS GIVEN BY THE PARAMETER X "SPAN".
XBEGIN X I
INTEGER INE,KM1,0,K,KMM,LL,RR;L2: - Z ;L:=JET;

R : = 1 ;KC: = 1 :
X
X FOR 0:=1:MC DO FOR I : = 1 : NF DO GG(R , I ,0):=RA(1,0);GG(#,£,#>:=1;
X WHILE ( KC < MC ) DO BEGIN X2

L2:= KC-I;;L :=L+1;WHILE ( MC > L2 ) DO BEGIN X3 L 2:= L2+1;IF (GG(R,L,L2) NEQ 0  ) THEN BEGIN X4
FOR 11: = 1:NF DO BEGIN X5 V(II,KC):= GG(R,11,L2):V( 11 ,L2):= GG{R ,11,KC)END: X5

X FOR 00: = 1:NF DO BEGIN X6 GG(R,00,KC):=V(DO,KC ) ;GG(R ,00,L2):=V(00,L2) ;END; X6
X INE:=L2;L2:=MC;
X LL:=KC+1;

IF ( KC = MC I THEN LL:=MC;K:=R;
KM1:=R+1;KMM:=R-1;

FIGURE IV.RE.3.- CONTINUES NEXT PAGE.
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IF (GG(KMM,KMM,KMM> NEQ 0) THEN 
FU:=GG(KMM,KMM,KMM) ELSE FU: = 1 ;FU : = 1 ;

X FOR I: =LL :MC DO BEGIN X I 1IF (GG(K ,L ,I ) NEQ 0) THEN RAO:=GG(K,L,K) ELSE RAQ:=1;FOR 0:=1:NF DO BEGIN X8
GG(KM1.0.I):= RAQ*GG(K,0,I)-GG(K,0,K>*GG{KtL,I>;GG(KM1, 0 ,I):=GG(KM1,0.I)/FU END: XBEND; X 7 1

X R :=R+ 1 ;KC:= KC +1;NON:- 0 ;
X END X4
X END; X3
X END: XZ
X FOR I:=1:MC DO FOR 0:=1:NF DO BB(1,0,1>:=0;
X RR:= 0 :FOR I:=1:MC DO BEGIN XI FOR 00:=1:NF DO

VAX(00,1):=GG<I,00,I);PIN:- 0 ;
FOR IK: = 1:NF DO PIN:=VAX(IK,1)*VAX(IK,1)+PIN;IF (PIN = JET) THEN <<PON:=3»
ELSE <<RR:=RR + 1; FOR IL: = 1:NF DO BB(RR,IL.RR):«VAX(IL.1>: SPAN:=RR>>END; XI

X
IrD; X i

FIGURE IV.RE.3.- THIS PROCEDURE TRIANGULARISES A MATRIX FUNCTION USING THE FREE FRACCTION GAUSSIAN ALGORITHM.
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PROCEDURE INVO (P,SPN,NFI>;
THIS PROCEDURE DETERMINES IF "SPN" VECTOR FIELDS (COLUMNS OF ARRAY P) OF DIMENSION "NFI" ARE INVOLUTIVE.
THE BOOLEAN (FALSE OR TRUE) ANSWER IS ASSIGNED TO THE VARIABLE "INVOLUTIVE" .
BEGIN XIINTEGER I;MATRIX VOL(12,2 0 ) , VACA(12,1):I: =2 ;M : =SPN+1;
MAS:=SPN+2;INVOLUTIVE:=TRUE;

X WHILE ( I < MAS ) DO BEGIN XIH : = 1 ;
X WHILE ( H < I ) DO BEGIN X3FOR 0: = 1:NF I DO BEGIN %4Al (0 , 1 >:= P ( H , J , H );A2(0,1):= P(I,U,I)END; X4
X LIE(A1,A 2 ,NFI);
X PI NT:=0;FOR I : = 1:NFI DO P INT:=P INT+VET( 1,1 >*rVET( 1,1 >;
X IF (PINT NEQ JET) THEN BEGIN VET 1:=VET;

VACA:=VET1;FOR 0 s *1s NFI DO P(M .0,M ):=VET(0,1);FOR K1 :- 1:H DO FOR K2:=1:NFI DO VOL(K2,K1):= P(Kl,K2fKl);% TRI(VOL.NF1,M>;DIN:=SPAN;

FIGURE IV.RE.4.- CONTINUES NEXT PAGE.
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PIN:- 0 ;FOR LA:=1:NFI DO PIN:=PIN+GG(M,LA,M)*GG(M,LA,M)ENDELSE << PIN: =J0T >>;
X IF ( PIN=J0T ) THEN H :=H+1

ELSE << COSA:=PIN; INVOLUTIVE:“FALSE; H: = I; I:=MAS >> END; X3I : = I + 1 END; XZIF (INVOLUTIVE = FALSE) THEN INVOLUTIVE:“FALSE ELSE INVOLUTIVE:“TRUE;RETURN INVOLUTIVE END; XI

FIGURE IV.RE.4.- THIS PROCEDURE DETERMINES IF A DISTRIBUTION OF VECTOR FIELDS IS INVOLUITIVE.
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IV.4. CONSTRUCTION OF A Z-TRANSFORMATION.

At this point the existence of a diffeomorphic transformation of the 

closed-loop system has been established. The next step, according to the 

sequence given at the beginning of this chapter, is the construction of one 

of these transformations. The way in which this can be done is now 

considered.

The construction of the diffeomorphic map of a nonlinear system to a 

linear Brunovsky canonical form, described in Chapter III, where it is

shown that the components of the transformation in question are obtained by 

solving a set of partial differential equations. Given that these equations 

are linear, they can be reduced to a set of ordinary differential

equations, which given the nature of the problem, are obviously nonlinear.

For practical purposes, the problem of finding the diffeomorphic 

relationship between the nonlinear system to the linear canonical form, is 

that of obtaining the solution of the nonlinear ordinary differential 

equations arising from the definition of the transformation itself. In 

general, the solutions of these of equations tends to increase in 

complexity with the number of equations. The algebraic problem involved is 

usually analytically intractable. The previous simplifications performed in 

the closed-loop system were intended to avoid such problems. This aspect is 

not characteristic of every application of the theory used here, For 

instance, R. Narino [19841 presented an application to a synchronus 

generator connected to an infinite bus. The order of the model of the plant

used in was five, with two inputs. In this case the solution was obtained
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by assuming that the first component of the mapping depended on two 

variables only.

Unfortunately, in the present case one has to appeal to 

simplifications, for example the parameters ei, 6 2 , €3 and in the

closed-loop system are considered zero. This is equivalent to the 

assumption that the helicopter is in a trim condition, posibly with small 

angular velocities. Under this assumption, it is easy to obtain a solution 

to the set of partial differential equations that define the map 

coordinates.

The partial differential equations are

<dTi , (ad3 feu, e^)> = 0 ,

<dTi , (ad3 feu, ê .) > = 0 ,

<dTi , [ fcU, e*! 011
<dT i , 64> = 0 1

<dTs, (ad3 W> 0 r e©> — 0 ,

<dTs> (ad3 feu, e©> — 0 ,

<dTs, [f<=U, e©] > = 0

<dTs, e©> = 0 1

<dT©, [feu, eio]> = 0

<dT©, ei = 0 1

<dT 1 1, t f CU » e! •1 ] > = 0 and

< dT1 1, e11> - 0 ,

where the Lie brackets involved in the equations are presented in figure 

(IV.RE.2).
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One of the possible solutions of the system is, T i (x) = xi, Ts(x) = xs, 

T-a(x) = x-3 and I n  (x) = xi i where x is the state vector.

By construction, the remaining components are immediately given by 

Is (X) = <dTl, f C:L.>,

Ts(x) = <dT:̂ -, fcl_>,

T4 (x) = <dTs, f c l > !

Ts(x) = <dTs, f C:L.> ,

Tv (x) = (dTe., f ,

Ts (x) = <dT7, fcL.>;

Tio(x) = <dTs, fcl_> and

Ti 2 (x) = <dTn, fcL> .

This transformation maps the states of the closed-loop system to a 

Brunovsky canonical form. Explicit expressions for the components, Ti, are 

presented in figure (IV.RE.5).

From the point of view of control synthesis, the interest in defining 

the state transformation is the definition of the inverse of the input 

mapping. In this case the inverse is
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u = Gr” 1 -Cv-Fv ) or

Ui <dT/*, e,d> <dT4., e.s> <dT4, 6 1 0) <dT*, eis>

Us = <dTe, <dTs, e©> <dT®, /\0Q) <dTs, ei2>

Us < dT i o 6 4 ) <dTto, ea /  ̂dT to, e -i o> (dT i o , ei 2)

U a <dTi2 e4> <dTt.-2, e3> <dTi 2 , 6lO>  ̂dT TO, e 1 2 y

Vi <dT 4 , f Cl_>

<•
Vs - <dTe, f c l )

V3 <dTi 0 f Cl_>

V a < dT i s f c l )

(IV.C-H.3),

where v is the control input vector of the linear system. Equation (IV.C-

H.3) defines the nonlinear control input of the nonlinear system. This 

control law will have the same effect in the nonlinear system as the input 

v has in the linear canonical form. The matrix function Gt_1 and the vector 

field Fv are shown in figure (VI.RE.4).

In general, if v is the input of the linear equivalent system, it can 

be defined according to any standard linear design. Here it is assumed that 

the nonlinear system is mapped to a linear Brunovsky canonical form, so 

that, the pole placement method would appear to be an appropriate approach 

for the generation of v. This will be dealt with briefly in the next 

section.

n o



X10S
Xl$
- SIN(X7 >*GRAV + FX + FX0$

COS(X7)*GRAV*(SIN(X8)*XS - COS(X8)*X5)$ 
Xll$
X2$
SIN(X8)*COS(X7)*GRAV + FY + FY0$

TI 
T2 
T3 
T4 
T5 
T6 
T7
T8 := GRAV*(SIN(X7)*SIN(X8>**2*X6 - SIN(X7}*SIN(X8)*COS(X8)*X5 * SIN( X8 ) *COS (X7 ) *COS ( X8 ) *TAN ( X7 ) *X5 + COS(X7 )*COS(X8 >**2*TAN<X7 ) *X6 + COS(X7)*COS<X8)*X4)S
T9 := X12S
T10 := X3$
Til := X9$
T12 := (SIN

FIGURE IV.RE.5." COMPONENTS OF THE DIFFEOMORPHIC TRANSFORMATION.
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GTINV{1,3) 
GTINV(2,1) 
GTINV(2.2) 
GTINV(2,4) 
GTINVC 3,1) 
GTINV(3,4) 
GTINV(4.1> 
GTINV(4,4)

= IS
= < - SIN(X7)*SIN(X8))/(COS{X7)**2*C0S(X8)*GRAV)S 
= l/(COS(X7)*COS<X8)*GRAV>$
= - SIN(X7>$
= ( - COS(X8))/(COS(X7)*GRAV)S 
= SIN(X8)*COS(X7)$
» SIN<X8)/{COS(X7)*GRAV)S 
= COS(X7)*COS(X8)S

FIGURE IV.RE.6.- TERMS RELATED TO NONLINEAR CONTROLLEF 
DESCRIBED BY EQUATION IV.C-H.3 .
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SVECTOR FIELD FV OF EQUATION IV.C-H.3

F V( 1 , 1 ) *» <((SIN(X8)*X5 + COS{X8)*X6)*SIN(X7) * COS {X7 ) *X4 ) * (SIN (X8 ) * 
X5 + COS {X8)*X6 ) + {SIN(X8)*X6 - COS < X8 ) *X5 ) **2*S I N { X7 >
) *GRAVS
FV< 2,1) := ( - ((X4**2 + XS**2)*SIN(X8)*COS(X7) + SIN(X7)*X4*X5 - COS( 
X7)*COS(X8 > *X5*X6)*COS(X7)*GRAV)/COS(X7 >$
FV(4,1> := ( - f 2*(SIN(X8)*X5 + COS <X8 > "X6 ) *S I N { X7 } + COS < X7 ) *X4 ) * ( S IN 
(X8 ) *X6 - COS(X8)*X5))/COS(X7)**2$
FV(1«1) := ((<SIN(X8)*X5 + COS<X8>*X6)*SIN(X 7 ) * COS<X7)*X4)*(SIN(X8)* 
X5 + COS(X8)*X6) + <SIN(X8>*X6 - COS(X8)*X5)*w2*SIN{X7)
)*GRAVS

FV(2♦I) s* ( - ({X4**2 + X6**2)*SIN(X8)*COS(X7> + SIN(X7)*X4*X5 - COS< 
X7 >*COS(X8>*X5*X6>*COS(X7 >*GRAV)/COS(X7)$
FV(4,1) := ( - {2*(SIN(X8 ) *X5 + COS<X8>*X6>*SINCX7> + COS(X7)*X4)*<SIN 
{X 8 )*X6 - COS(X8)*X5))/COS(X7)**2$

MATRIX GT OF EQUATION IV.C-H.3 .

GT(113) s = - COSCX7)*COS(X8)*GRAV$
GT(1,4) := SIN(X8)*COS(X7)*GRAV$
GTC 2,2 ) := COS(X7>*COS{X8>*GRAVS 
GT(2,4) := SIN(X7)*GRAV$
GT(3 , 1 > := 1$
GT(4,3) := SIN(X8)/COS(X7)$
GT(4,4 ) := COS(X8)/COS(X7)$

DETRMINANT OF MATRIX GT.
DETGT := C0SIX7>*COS(X8>*GRAV**2S'

FIGURE IV.RE.6.- CONTINUES NEXT PAGE.



INVERSE OF MATRIX GT.

GTINVt1,3) 
GTINVC2,1) 
GTINV(2,2 > 
GTINV(2,4) 
GTINVt 3,1) 
GTINV(3,4) 
GTINV(4.1) 
GTINV(4,4)

= IS
= { - SIN<X7)*SIN(X8))/<COS(X7)**2*COS(X8)*GRAV)S 
= l/(COS(X7 )*COS(X8)*GRAV)$
= - SIN<X7)S
= ( - COS(X8))/(COS(X7)*GRAV)$
= SIN(X8)*COS(X7)$
= SIN(X8)/{COS(X7)*GRAV)S 
= COS(X7)*COS{X8>$

FIGURE IV.RE.6.- TERMS RELATED TO NONLINEAR CONTROLLEF 
DESCRIBED BY EQUATION IV.C-H.3 .
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IV. 5. LINEAR CONTROLLER.

In this section a possible way to generate the control input of the 

linear equivalent system is treated briefly. The application of the inverse 

of the diffeomorphic map to this input, given by equation (IV.C-H.6), will 

lead the nonlinear system to behave as the linear canonical form, so that, 

this completes the structure of the Flight Control System.

Nowadays, the analysis and design of linear control systems is very 

well known, there are extensive and comprehensive treatises about the 

subject. At this stage of the design presented here the nonlinear control 

problem has been reduced to the use of very well established procedures. 

The analysis of the most adequate linear control technique to use is not 

presented here, this section is restricted to the application of state 

feedback in order to place the poles of the linear system in the stability 

region.

The pole placement technique is therefore applied to linear systems 

of the form;

y i 0 1 0 0 y-> 0

y * 0 0 1 0 y * 0
. = + Vi
y® 0 0 0 1 y * 0

y * 0 0 0 0 y * 1

ys 0 1 0 0 ye 0

y^ 0 0 1 0 y® 0
. = + Vs
y^ 0 0 0 1 T' 0

ye 0 0 0 0 ye 1
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y * 0 1 y *
+

0
vs and

yio 0 0 y 10 1

yi i 0 1 yi 1
+

0

yi 2 0 0 yia 1
V a

That is the Brunovsky canonical form.

The state feedback that performs the pole placement for the above 

linear system is given by; 

vi = Ri - Ki Yi ,

Vs = Rs ~ Ki i Yi i ,

V3 = Rs — Kiii Yiii and 

v a  = R a - Kiv Yiv.

Where;

Yi = C yi, ys, ys, yA]\

Yi 1 = Cys, ye, yr, ye]*-,

Yi 11 = C Js, yi cl*'

Yiv = [yn, yis] *-;

Ri, Rs, Rs and R a  are the references of the linear systems given by the

transformation of the reference of the nonlinear system, according to the

mapping coordinates presented in figure (IV.RE.6 ); and

Ki = [-Pi Ps Ps P a , P i P s  P s  + Pi Ps P a  + Pi P3 P a  + Ps Ps P a ,

-(Pi Ps + Pi Ps + Pi Pa + Ps Ps + P s a  + Ps Pa), (Pi + Ps + Ps + Pa )],

Ki1 = C“Si Ss Ss S a , S i S3 S3 + Si Ss S a  + Si S3 S a  + S3 S3 S a ,

- ( S i S s  + Si Ss + Si S a  + Ss Ss + Ss S a  + S s a ), (Si + Ss + Ss + S a ) ] ,

K m  = C-Vi Vs, Vi + Vs] and
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Kiv = C-Vi Vs, Vi + Vs] .

Vhere Pi, i = 1, ... , 4 ; Si, i = 1, ... , 4 ; Vi i = 1, 2 and

Vi, i = i, 2 are the desired poles for the linear system and therefore, for

the global closed-loop system.

The linear control technique, presented here, is expected to 

compensate the simplifications performed during the initial stages of the 

design. Obviously one cannot expect that the transformation presented in 

the previous section maps the nonlinear system exactly to a linear

Brunovsky canonical form. Nevertheless, one can positively expect the 

transformation to be "near" enough to the canonical form, consequently the 

linear controller could cope with the discrepances arising from the 

simplifications.

The conditions which achieve this are shown in the following section 

by simulating the helicopter together with the flight control system.
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IV.6. SYSTEM SIMULATIONS.

In order to visualize the performance of the control law developed in 

the previous sections, a series of simulations of a helicopter with the 

flight control system is presented. The results consist of the time 

responses of the helicopter state during the execution of basic manoeuvres.

The manoeuvres simulated are intended to show that the global closed- 

loop system is formed by four linear and decoupled sub-systems. It was 

previously established that this set of sub-systems corresponds exactly to 

the Brunovsky canonical form if the helicopter is in trim. In other 

circumstances the sub-systems still correspond to the canonical linear 

form, but a "noise" is added due to the simplifications made in the 

nonlinear controller design. One role of the linear controller in the 

flight control system is to compensate for the effects of the noise added 

to the system while it is not in trim.

The most elementary properties of the closed-loop system which need 

to be considered are a),- non-coupling of the four sub-systems and b), 

whether or not the controller allows the execution of manoeuvres. It should 

be noted that the Flight Control System was designed referring the 

position of the helicopter to body axes, for instance x= u, y= v and 

z= w, which are of no use in the definition of trajectories or position of 

the vehicle with respect to Earth. However, in the simulations presented 

here, the helicopter position has been referred to a reference frame fixed 

on Earth and expressed by
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xe= u (cos0 cosy) + v (sin0 sin0 cosy - coso siny) +
w (coso sin0 cosy + sins siny),

yi~.= u <cos0 siny) + v (sino sin0 siny + coso cosy) +
w (coso sin0 siny - sino cosy) and

z e =  u (-sin0) + v (sino cos0) + w (coso cos0) .

That when the flight control system is required to drive the helicopter to
a certain value of (xe, ye, ze) these values represent the rectangular 
coordinates of the position with respect to a reference frame fixed on 
Earth.

The results presented below prove that the above two characteristics 
a), and b) and also the robustness required to control position are
satisfied.

Before presenting the resulting simulations, it is appropriate to
recall that the four sub-systems are related to the longitudinal, lateral, 
normal and heading movements. These sub-systems are:

1. Sub-system 1
state: [xe, u, 0, q]T,
input: 0is, longitudinal cyclic command.

2. Sub-system 2
state: [ye, v, o, p]T,
input: 0ic, lateral cyclic command.

3. Sub-system 3 
state: [ze, w]t,
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input: 0o, main rotor collective command.

4. Sub-system 4 

state: [y, rlT,

input: 0P. tail rotor collective command.

The following figures show the responses of the sub-systems during 

the execution of a series of simple manoevres,

DESCRIPTION OF SIMULATIONS

Simulation 1.

The results of the first simulation are presented in figures IV.Sl.i, 

i= 1, . . . , 4. These figures show the dynamic characteristics of sub-system

1, which is related to the longitudinal movement of the helicopter, and its 

influences on the other sub-systems.

In this simulation the fact that it is possible to demand a 

longitudinal movement from hover to hover by simply defining the following 

reference to the flight control system is demostrated

Ri= (XR>,

Rs:= Ts (Yr ),

R s =  T-=i (Zr ) and 

IU= Tii (yR),

where Ti , Ts, Ts and T-ii are the corresponding components of the state 

diffeomorphic transformation; X r , Y r  and Z r  are the desired helicopter
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position coordinates, referred to a reference frame fixed on Earth, and ^r 

is the heading reference.

The initial flight condition is hover on the origin of the reference 

frame, which is maintained for one second before the manoeuvre is started.

The responses marked with the symbol correspond to the

theoretical equivalent system related to the helicopter position. The poles 

of the linear equivalent system were set at;

?i= -1.0, P2= -1.0, Pr,= -1.0, ?A= -1.0;

S,= -2.0, S2= -2.0, S3= -1.0, SA= -1.0;

Tt= -2.0, T2= -2.0;

Vi= -2.0, V2= -2.0.

The value of the reference given for this simulation was:

X r = 50 m,, Y r — 0 m,, Z r = 0 m. , y R = 0 rad.

One can see that the helicopter forward displacement is practically 

overlapped with the theoretical linear equivalent system. This indicates 

that the linearization is accomplished for this particular operation. When 

one considers the time history of u, it is clear from the beginning of its 

response that it does not behave like a third order system with its poles 

at -1, but that this mismatching does not affect the general performance of 

the system. On the other hand, the effects of the simplifying assumptions 

directly affect the three translational velocities.

On the contrary to the forward velocity, the pitch angle and the 

pitch rate dynamics correspond very closely to second and first order 

systems respectively. This is particulary obvious for q, as can be seen in 

its initial response in figure IV.S1.1.
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The only one of the remaining sub-systems which is significantly 

affected is sub-system 3. This is not unexpected, given that the change in 

attitude and the forward displacement will affect the height. In this case 

the maximum deviation from the reference is four metres, nevertheless the 

final error is zero, as can be checked in figure IV.SI.3.

The outputs of sub-systems 2 and 4 are practically unaffected during 

this manoeuvre, as is shown in the scales of the responses in figures 

IV,SI.2 and IV.SI.4. In the same figures it can be seen that the decoupling 

of this sub-system requires some action from its control commands.
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FIGURE 
Ri= Ti=

B o l d  rftsp 1 1. corrfesponds. -t-ou i v a l e n t  C v . s t e m  .meters

u

0

radians/secq

longitudinal cyclic 
(radians)

V.S1.1.- SUB-SYSTEK 1 . RESPONSE TO Rn= T, (x r )= 50 m  
0 i= 2, ... ,4.CL0SED-L00P SYSTEK POLES Pj= -1, j=l, ... ,4.
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Bolcf r e * p o * e  corr»»poncls t,o t,h-»e l i n e a r  e q u i v a l e n t  s y s t e m .ye :<i meters

meters/secv

ts

radians

S3

radians/secP

SECONDS
0ic lateral cyclic 

s (radians)

FIGURE IV. SI. 2.- EFFECTS OR SUB-SYSTEM 2 BY THE CHARGE Iff THE REFEREHCE OF 
SUB-SYSTEM 1 OF SIMULATIOff 1. CLOSED-LOOP SYSTEM S,= -2, Ss= -2, S3= -1,
S* — — 1.
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Bold resposc corresponds to
i i nes r equivalent- %yst<erri .

z e J. meters

5ECOKOS

8
W meters/sec

5EC0MSS

eo „ collective
(radians)

scconos

FIGURE IV. SI. 3.- EFFECTS 05 SUB-SYSTEX 3 BY THE CHARGE IX THE REFERENCE 01 
SUB-SYSTEX 1 OF SIXULATI05 1. CL0SED-L00P SYSTEX POLES Ti= -2, T2= -2.
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Bold reeposs corr*mponds

9 radians

radians/secr

0ip collective tail rotor
(radians)

ifc.oi

FIGURE IV. SI. 4.- EFFECTS 05 SUB-SYSTEM 4 BY THE CHARGE IE THE REFERENCE OF 
SUB-SYSTEM 1 OF SIMULATION 1. CL0SED-L00P SYSTEM POLES Vi= -2, V2= -2.
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Simulations 2, 3 and 4.

These simulations are intended to show the influence of the selection 

of poles of the equivalent linear system for sub-system 1,

It is clear that the previous simulation addresses an academic 

problem rather than a practical one, or at least that the kind of

manoeuvres simulated are restricted to small displacements. In fact, a

reference larger than X r = 5 0  m will generate, in the flight control 

system, an initial position error such that, in order to compensate it an 

unrealistic control input is demanded.

In the following simulations the pole of the equivalent linear system 

corresponding to X e , Ye and Ze is set at the origin and the system output 

is considered to comprise the translational velocities u, v and w. This is 

equivalent to defining the reference with

Ri = T a  (Ur ) ,

R s = T s  (Vr ) ,

Rs:= T i c  (w r ) and 

Sa= Ti 2 (^r) ,*

Pi— 0, Si= 0, Ti— 0 and Vi= 0.

where T 2, Te, Tie and Its are the corresponding components of the 

diffeomorphic transformation of the state, u r , v r  and w r  the reference 

translational velocities and Pi, Si, Ti and Vi the poles of the first mode 

of the linear equivalent systems 1, 2, 3 and 4 respectively.

In order to avoid an unnecessary proliferation of figures, only the 

responses of sub-system 1 are presented.
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The result of simulation 2 is shown in figure IV.S2.1. This 

simulation is intended to show the response of sub-system 1 in a flight 

condition other than hover. In this case the forward velocity u is changed 

from 0 to 20 m/s and then returned to 0, while the other references are 

kept equal to zero. From the response shown in figure IV.S2.1. it is clear 

that the system response is symmetric with respect to the increase or 

decrease of the reference. This does not occur with the input command, the 

changes from flight conditions other than hover require larger inputs to 

realize a change from forward flight. Uote that the values of the poles are 

the same as in simulation 1.

The effect on the position of the equivalent system is shown in 

figures IV.S3.1 and IV.S4.1. In simulation 3 (figure IV.S3.1) the poles 

were set at Ps= -2,

Ps= -1, Pa~ -1 and in simulation 4 at Ps= -0.5, P3= -0.5,

P/t= -1.0. The difference between these two responses is obviously the time 

response and the input command dynamics. This shows that the 

characteristics of the response of sub-system 1 relies on the selection of 

the the linear controller and on the magnitude of the reference demand. 

That is, if the time response of the system is reduced, larger inputs will 

be required. For instance, in the case of simulation 3, if the reference is 

changed from 0 m/s to 10 m/s, it will cause a large demand on the 

longitudinal cyclic resulting in instability in the calculation of the 

rotor coefficients. On the other hand, by increasing the time response, it 

is possible to increase the reference to 40 m/s, as shown in figure

IV.S4.1.
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Bo 1 d res pose corresponds t..e»
1 xr>w«r »qui v««l *n t sy stem ,meters/sec

radians8

SECOMS

radians/secq

longitudinal cyclic 
(radians)

FIGURE IV.S2.1.- SUB-SYSTEX 1 RESPONSE TO Ri= Ti (u)= 20 m/s ABD 
Ri= Ti(u)= 0 m/s. Pj= -1, j= , ... ,4.
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Bold respoaap corresponds ■t-o
meters/sec

radians0

radians/sec
q

longitudinal cyclic 
(radians)

7».«i

FIGURE IV.S3.1.- SUB-SYSTEX 1. RESPONSE TO Rt = Ti(u)= 10 m/s. CL0SEI>-L00P 
SYSTEM POLES. Pt= 0, P2= -2, P3= -1, P*= -1.
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&  o 1 c3 ̂ r e s p o s e  c o r r s t p o n a s  to
i i Tier a, i- e q u i v i l e n v  e, t e n .

meters/sec

SECONDS

6 radians

SECCNOS

q * radians/sec

SECONDS

longitudinal cyclic 
(radians)

FIGURE IV.S4.1.- SUB-SYSTEX 1 RESPOXSE TO R,= T,(u)= 40 m/s. P,= 0, 
P2= -0.5, P3= -0.5, P*= -1.0.
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Bolci respose. c o r r  ® * p o n d 5  t.o 
1 i n#a r e q u i v a l e n t  sVster

meters/sec

0 radians

radians/sec

longitudinal cyclic 
(radians)

iV.vt

FIGURE IY.S4.1.- SUB-SYSTEX 1 RESPONSE TO Ri= T, <u)= 40 m/s. P t = 0, 
P2= -0.5, P3= -0.5, PA= -1.0.

13 2



Simulation 5

This simulation is intended to show that sub-system 2 is linear and 

decoupled from the remaining sub-systems.

The helicopter is initially in hover flight for one second, after 

which, from this condition, the reference is generated by

Ri= Ti <XR) ,

R2= Ts (Yr ) ,

R3= T© (Zr) and 

R.4 = Tii (^r) ,

with Xr = 0, Zr= 0, yR= 0 and Yr = -30 m .The manoeuvre thus consists of

a side step displacement of 30 m amplitude, keeping the height and the

longitudinal displacement constant.

The poles of the sub-systems for this simulation were;

Pi = -1, P2= -1, Ps= -1, P*= -1,

St= -1.5, S2= -1.5, Ss= -1.5, S*= -1,

Tt= -1, Ts= -2,

V.i= -1, V2= -5.

The system response for simulation 5 is shown by figures IV.S5.1 to 

IV.S5.4. The response corresponding to sub-system 2 is presented in figure 

IV.S5.2, which shows that the response of the rolling rate p is a typical 

response of a first order system and the roll angle 0 of a second order 

system. In spite of the simplifying assumptions in the design, the response
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of the lateral position is very close to the linear equivalent system as 

can be confirmed in figure IV.S5.2.

During this manoeuvre, the sub-system affected most, was sub-system

3. It suffered a maximum deviation in height of 4 metres, thus causing a 

large demand on the collective command. On the other hand, the outputs of 

sub-systems 1 and 4 were effectively decoupled: nevertheless some action 

from the longitudinal cyclic and tail rotor collective command are

required, as can be seen in figures IV.S5.1 and IV.S5.4.
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Bold r«»po«e c o r r » * p o n d s  t-o 
the linear « q u i v a l e n t  s y s t e m ,meters

meters/sec

« radianse

radians/secq

longitudinal cyclic 
k (.radians)

FIGURE IV.S5.1.- EFFECTS OB SUB-SYSTEX 1, BY A CHABGE IB THE EEFEREBCE O' 
SUB-SYSTEX 2 . CLOSED-LOOP SYSTEX POLES Pj= -1 , j= 1 .......4 .
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Bold rssposa cor p * » p o n d s  •t.o 
t. (->£-• 1 ine»r a q u i v a l e n t  «y»t-»rn.

meters/sec

radians

radians/secP

lateral cyclic 
(radians)1 c

FIGURE IY.S5.2.- SUB-SYSTEM 2. RESPONSE TO R2= T2 (YE>= 30 m. Ri = Rs= fU= 0 . 
CLOSED-LOOP SYSTEM POLES S’= -1.5, S2= -1.5, S3= -1.5, SA= - 1 .
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E’o l c J  r i i f S p o & e  c o  r r c r s p o n d s  *1-0
i  x n«i#a equ xv^lent-meters

meters/secw

collective
e. (radians)

FIGURE IV.S5.3- EFFECTS OR SUB-SYSTEM 3, BY A CHARGE IR THE REFERERCE OF 
SUB-SYSTEH 2. CLOSED-LOOP SYSTEM POLES T,= -1 , T=>= -2.
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corr®*pC'nds t-o
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'fl.OO 0.40 1.43 *.« a. 20 4.03 t.40 3.40 «.t0 T.W 4.0C 4.40 t.H 10.44 11.40 14. CO 14.42 13.41SCCQNQS

0 1^ collective tail rotor
(radians)

FIGURE IV.S5.4.- EFFECTS OF SUB-SYSTEM 4 BY A rHAwri? th
SUB-SYSTEM 2. CLOSED-LOOP SYSTEM POLES Vi = -l, y2= -5 REFERE5CE OF
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Simulation 6 .

The variables related to sub-systems 3 and 4 were obtained without 

considering simplifying assumptions, so that to avoid a large quantity of 

figures, the responses of these sub-systems are presented in same 

simulations . Furthermore, in this simulation, sub-system 1 is also 

required to respond to a change in the reference, so that the four sub­

systems are involved in this manoeuvre.

The reference given to the Flight Control System is defined as 

follows:

at t= 0 s ,

Rl = Tz: (Ur = 0) ,

Rz= Te (v r = 0),

Ra= Tio (Wr = 0),

R4— T11 (yR= 0) ;

at t= 1 s,

Ri= T2 (u r = 20 m/s),

Rz-= Te (v r = 0 m/s),

R.3= Tio (w r = -5 m/s),

R4.— Ti i (/r13 0);
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and at t= 15 s,

Ri = Ts (u r= 20 m/s),

Rz= Te. (vr= 0 m/s),

Ra= Tio (w r = -5 m/s),

"Ra.- Tit (^r— 8 */S ).

The equivalent poles of the system are Pi = 0, -1, Ps= -1, Pa= -1,

Si = 0, Ss= -1, S3= -1, S*= -1, Ti= 0, Ts= -2, Vi= 0, V3= -5.

The results of this simulation are presented in figures

IV.S6 ,i i= 1, .... 4.

From figure IV.S6.3 it is clear that the normal velocity response 

corresponds to that of the linear equivalent system. Nevertheless, to 

achieve the time response shown, an initial high collective input is 

required.

The response of sub-system 4 is shown in figure IV.S6.4. In this 

figure the bold line corresponds to the rate of change of yaw. From this 

response it is clear that the yaw rate is sytrongly affected by changes in 

the translational velocities u and w. Thus a large demand of tail rotor 

collective is required to maintain the heading angle y at a prescribed 

value. On the other hand a demand on the rate of change of y while the 

vehicle is flying at u= 20 m/s and w= -5 m/s, does not involve such a large 

tail rotor collective demmand. Here, a substantial demand of the lateral 

cyclic command is required in order to achieve the heading rate reference. 

In order to achieve the yaw rate of 8 °/s, sub-system 2 has been

substantially modified; for example, note the roll angle change from the
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hGver condition to 17.2 °/s with respect to the response of y. It is clear 

that this corresponds to its linear equivalent system response.

It is obvious from figure IV.S6.1 that sub-system 1 is not completely 

decoupled from the collective command. The responses of q and 9 still 

correspond to a first and second order system, meanwhile, the response of u

is not even similar to that of simulations 2 and 3. Nevertheless the

reference is practically reached at the same time as its that of linear 

equivalent system.

The response of sub-system 2 shown in figure IV.S6.2 is a consequence 

of the kinematic relationship of the vehicle. In order to maintain the side 

slip velocity v equal to zero during this manoeuvre the bank angle has to

be increased. During the transient of the response of this sub-system, an

overshoot of 100% is observed, plus an oscilation around the reference 

value. The characteristics of this response depend entirely an the value of 

the poles of the equivalent linear system. For instance in figure IV.S7.2 

the response of sub-system 2 is shown for the same manoeuvre, but with the 

poles of the equivalent linear system changed to St= 0, Ŝ >= -0.5, S3= -0,5 

and S^= -1 ,0 , while the other sub-system equivalent system poles values are 

as in simulation 6 .

It is obvious that the change of the pole locations modifies the 

characteristic of the response, the overshoot has been reduced to 65%.

Again, the effect of the collective command changes on sub-system 2 

is shown during the period of 1 to 15 seconds in figures IY.S6.2 and

IV.S7.2. These figures show how the value of the poles affect the sub­

system dynamics with respect to sub-system 3.
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SECOMQS

FIGURE IV.S6.1.- SUB-SYSTEX 1. XASOEUVRE DESCRIBED IS SIXULATIOS 6 .
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FIGURE IV.S6.2.- SUB-SYSTEK 2. HAIOEUVRE DESCRIBED II SIMULATION 6 .
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FIGURE IV.S6.3.- SUB-SYSTEK 3. KAJTOEUVRE DESCRIBED II SIKULATIOH 6 ,
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FIGURE IV.S6.4.- SUB-SYSTEM 4. MA10EUVRE DESCRIBED IE SIXULATIOS 6 .
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FIGURE IV.S7.2.- SUB-SYSIEX 3. MANOEUVRE DESCRIBED IE SIKULATIOE 6. 
WITH CLGSED-LOOP SYSTEX POLES CHASGED TO Si= 0, & > =  -0 5, S~= -0 5 
Sa= -1.0.
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CHAPTER V.

V.l. CONCLUSIONS AND FURTHER DEVELOPMENTS.

In the work comprising this thesis, a flight control system for 

helicopters has been designed. The relevance of the procedures and results 

presented here is that they have been obtained through the application of 

nonlinear system theory, introducing a new approach to the problem of 

helicopter control.

The advantages of the approach introduced here, over the conventional 

techniques (linear system theory), is the span of the validity of the 

results. They are not restricted to a particular operating point thus 

avoiding the use of several models and scheduled controllers. The design of 

the control system, using this theory, does not rely on the models obtained 

by linearizing the helicopter's equations of motion, which introduce a 

large number of parameters (e.g. aerodynamics derivatives). The latter 

representations require extensive identification procedures for validation. 

On the contrary, the model proposed and obtained in this thesis, depends 

directly on the forces and moments of the rotor in function of the 

helicopter commands. Unfortunately the relationship of forces and moments 

cannot be expresed in closed form due to its complexity. Nevertheless', even 

a representation of a particular flight condition requires fewer parameters 

than the linearized model: only those coefficients related to the input

matrix are required.

The control structure designed here is composed of three different 

elements, which according to the design, realize the following features:
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a) With the nonlinear compensator it is not possible to control the 

whole system, but it is possible to simplify the model substantially.

b) The direct application of the nonlinear feedback equivalence 

theory to the original model of the helicopter will be extremely 

complicated. On the other hand, the application of the present theory to 

the helicopter-compensator closed-loop system facilitates the design. The 

diffeomorphic transformation to a linear system of the helicopter- 

compensator combination is obtained, but not without considering some 

simplifying assumptions,

c) The effectiveness of the previous two steps is enhanced by a 

linear controller, in this case pole placement. This shows that the design 

of the flight control system for helicopters has been reduced to a linear 

control problem via a diffeomorphic transformation of the state-input 

space.

The work presented in this thesis can be summarised by the following 

points:

1) The introduction of the nonlinear system theory as a new and 

powerful technique for the development of flight control systems for 

helicopters.

2) The obtaining of the model required in the application of 

nonlinear system theory for the development of flight control systems.

3) A comprehensive review of the nonlinear feedback linearization 

Theory, including mathematical tools and proofs.

4) The presentation of a flight control system design using the 

results of nonlinear system theory. The symbolic algebraic computation 

facilities required for the application of this theory are also included.

5) The simulation of a helicopter with the flight control system.
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From the results of the simulations, it is clear that the behaviour of the 

global closed-loop system is very close to that of a canonical linear 

system, showing that the performance of the control system is good.

The results obtained in this thesis suggest that there is a 

possibility for further applications and developments of flight control 

systems for helicopters, by use of the approach presented in this thesis. 

Every aspect of the design presented here is a suitable topic for future 

study and development, for instance:

I) We can consider the response of the system to wind perturbation, 

that is adding a perturbation term to the velocity vector.

II) The section related to the linear controller can be developed to 

further. Given that the equivalent linear system is affected by 

perturbations inherent in the design, it is reasonable to consider the 

problem of determination of the "best" linear control approach for 

improvement the performance of this section of the flight control system. 

One could venture to consider H“, model following or optimal control 

techniques for this purpose.

III) The section concerning the compensator could also be developed 

further. Given that the control matrix is not constant, it must be 

calculated on line. This calculation can be avoided if the elements of the 

control matrix involved in the compensator output are estimated on line 

with an identification algorithm.

IV) The core of the flight control system design developed in this 

thesis, relies on the generalization of the concept of controllability from 

linear control systems to the nonlinear case. The application of this 

concept to control systems depends on the accessibility of the state 

which, in many cases is not physically realisable. If this is the case, the
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natural consequence is an investigation of the dual of controllability; 

observabi1i ty.

At present some results on observability and the design of observers 

for nonlinear systems are available. Bestle and Beitz [19831 presented the 

dual of the Brunovsky canonical form transformation of single output of 

nonlinear systems. Research in the development of the multivariable case 

originated from this work. Its application is substantially more 

complicated and the conditions required for the system to be transformable

to a canonical observer form are more demanding than in the dual case,

these facts are established by C. W. Li and L, W. Tao [19861 and Xiao-Hua

Xia and Wei-Bin Gao [19881.

V) In future research, stability and robustness of the control system 

could be studied. This aspect is of great interest, not only for control 

systems but in a variety of applications, (see for instance Chapter 6

Stability Theory: Singularities, Bifurcations and Catastrophes by Casti

[19851). This topic by itself presents a good intellectual challenge.

An outline for the study of stability and robustness of the flight 

control system developed in this thesis is given as follows:

Let x be an equilibrium state for the system of differential 

equations

ITi
x(t)= f (x) + X u:i gi (x)= h(x) V.l.i w» 1

where h is C1 in some set W of the state space which contains x.
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Def ini t ion V.1.

The point x is a state equilibrium point, if for every neighbourhood

Un of x in U such that every solution x(t) with x(0) in U-, is defined in U 

for all t > 0. If Ut can be chosen so that in addition

1im x(t)= x

Then x is asympotically stable.

Given a compact set k containing x in its interior, x is said to 

to beasymotically stable on k if it is stable and every solution starting

to beconverges to x.

Definition V.2.

Let V: U ■) R be a continuous function defined on a neighbourhood U of

x, differentiable on U - Cx) 

such that

a) V(X)= 0 and V(x) > 0 if x t  x

b) V < 0 in U - <x>

The function V is defined as a strict Lyapunov function for x.

Suppose a linear feedback control is applied to the linear equivalent 

system of V.l, to stabilize (asymtotacally) the system about the origin. In 

the present content we have

y (t)= Ay + Bv

y(t)= Ay + B(yR - Ky)
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y(t)= (A - BK) y + B0 yR ;

one can consider yR as the origin and A - BK= C

y(t)= Cy

where the eigen values of C have a negative real part. Choosing a negative 

definite matrix Q, the equation CPT + PC= Q (T denotes transpose) yields a 

unique, positive, definite solution P, and

V(y)= yT Py

is a strict Lyapunov function

Now given that y,= T t (x ), y2= T2 (x), ... , yN= TN (x) then V depends

on x so that;

5v
i»iv= Z — —  Xi

= x" <£ - I f  Xlbx*

bv= I ----- T .bT< J

= Z bvj-, *>yj

which by condition b) of definition V.2. is known to be negative away from 

the origin in the y space. Hence, V is a strict Lyapunov function for the 

origin in the x-space, the system being V. 1. with u corresponding to the 

linear feedback control.
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Remembering that the relationship between uit i= 1, ... , m and v:L,

i=l, ... , m is given by equation (III PD6), it is possible to express u in 

function of v,.

Using the theorem of Lyapunov and substituting u*., i= 1, ... , 4 into 

system (V.I.), the origin is asympotically stable. Moreover, if k is a

compact subset of W containing the origin and the boundary of k is a level

set of V(G(k)), then the origin is asympotically stable on k.

This follows because T and T_1 map level sets to corresponding level 

sets, trajectories to corresponding trajectories and the origin to a

corresponding origin.

This, if the nonlinear system (V.l.) is mapped according to the

diffeomorphic function defined in chapter III, around an open set W

containing the origin in the x-space and one uses a linear feedback in the

y-space to stabilize asymptotically the linear system (eigenvalues having 

negative real parts) any strict Lyapunov function v[y(K)l for the linear 

system is a strict Lyapunov function vCy(k)] for the nonlinear system with 

the controls corresponding to those of linear feedback. Furthermore, this 

nonlinear system has its origin as an asymptotically stable equilibrium

point on any compact set k whose boundary is a level set of v[y(x)l and

with K contained in W (Williems, J. L. t19701).

As a final comment, one can consider that the object of this research 

has been achieved. A new approach has been applied to flight mechanics, 

and given the new advances in symbolic computing, the application of this 

new approach to the several aspects of helicopter analysis introduces a new 

powerful tool.
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"Zer edo zer esan bearra badaukat".
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APPENDIX II.l ROTOR FORCES AND MOMENTS,

In this appendix the equations which describe the force and moments 

produced by a helicopter main rotor are developed . These equations were 

originally reported by Padfield, They are modified here in order to obtain 

an (f,g) model, in which the controls ui are the collective, lateral and 

longitudinal commands of the helicopter,

The equations presented here, are the same ones as implemented in 

the six degrees of freedom version of Helistab. The terms appearing in 

this version are extended to the first harmonic only and blade dynamics is 

ignored. These assumptions limit the range of validity of the model, 

nevertheless the most important nonlinearities and coupled terms are not 

neglected, so that the model obtained is a good starting point from the 

nonlinear control point of view.

The equations are not presented in the same detail as in the 

references. Only the part of the theory which is necessary to obtain a 

suitable model for the development of this thesis, is shown here.

The flapping, forces and moment equations are expressed as an inner 

product, one of the vectors involved is referred to the aerodynamic and 

state variables and the other one to the control commands. The elements of 

the vector referred to the commands can be linear and nonlinear with 

respect to its elements. In the first case this vector is composed as 

follows:

8r= [80, 8 is, 8i c , 13 *■ ,

or

6w — C0Ou», 01 SIW ) 01 cw, 13 ,

where
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0o: is the collective command,
0 i«: is the cyclic longitudinal command, and
0 ic: is the cyclic lateral command.
The above commands are expressed with respect to body axes, the

subindex "w" denotes that they are expressed with respect to wind axes.
The nonlinear terms in the commands arise from the multiplication of 

two internal products, for example, let
Let v=Cvi, v2, vs, v4] t and w=C wi, ws, ws, ŵ l 1 be two vectors whose

elements are functions of the helicopter state and let < . , . > denote the
inner product operation. In the development of the equations the product

(a) Cj3)= <v,0R> <w,0R> (1)
is often encountered. If this product is developed, the result can be
expressed again as a inner product of the form

<U,0 RA> , (2 )
where:

0 R A = [0O, 01®, 01c, 0 O 2 , 0 o  01®, 0 O  01c, 0 1 ® 2 , 0 1 ®  01c, 0 1 c 2 , 1] t-

and

U=CVi WA+V4 Wi , Vs W4+V4 W2 , Va Wa+Vs W4 ,Vi Wi , V2 W2 +V2 wi ,
Vi W3 +V3 wi, vs Ws, Vs W3 +V3 Ws3t- •

In the simulations and model programme used in this Thesis, a 
subroutine that transforms all terms of type (1) to the terms of type (2)
has been implemented. The equations of flapping forces and moments of the
main rotor are expressed as internal products, in order to obtain an (f,g) 
model with respect to the command inputs.

THRUST AND FLAPPING.
The main rotor downwash and thrust coefficients are calculated in 

exactly the same way as reported in (Padfield [19811) and are executed as
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in Helistab. These equations are rewritten in the form of inner products 

referred to body axes.

It is easier to describe the flapping angles with respect to wind 

axes, but here it is necessary to change the reference frame to body axes. 

This are first calculated with respect to wind axes and then transformed to 

body axes, the relationship between these two different frames is

Xw
cos yw 

-<sin
0

(sin yw> 
cos yw 
0

Xb ,

where xw and xt. are vectors referred to wind and body axes respectively; u h  

and vH are the rotor longitudinal and lateral velocities respectively; 

cos yw= jWji , sin yw= Uci (pv/p) ,

p><= Uh / (ft R) , py= vy/(ft R), p= (p*2 + Pv2)

and Eci: indicates the main rotor rotation sense.

The above matrix which relates the body and wind axes frames will be 

denoted as:

K„c
~K
0

K y s
Kykc
0

(3)

The variables ft and R are the rotor revolutions per unit of time and 

rotor radius respectively.

RQTQR THRUST COEFFICIENT.

The rotor thrust coefficient Ct is given by (Padfield 119811, equation 

(E-10)):

CT= (ao s/2) (0O (1/3 + p2/2 ) + £ p (0 1 t £ Pnw Nc i) + £ Rml. +

H 0tw (1 + p2>

where:

ao: is the lift slope of the blade section; 

s: is the rotor solidity;
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(number of blades) (blade chord)/ (tc R) = (b c )/(tt R) . 

pnw: Helicopter normalised roll rate with respect to wind axes; 

pw/Q ;

pw: helicopter roll rate with respect to wind axes.

Rml.: is equal to (juz-Xo); 

where Xo is the main rotor uniform downwash component;

jî z= wh/(Q R) and Wi-, is the helicopter normal velocity.

8tw: Is the blade twist.

The thrust coefficient equation can be rewriten as:

Ct= 9o {34 (ao s) (1/3 + fi*2)} + 0 i 134 p ao s) +

34 (ao s) {34 p,™ R c i + 34 8 t w (1 + /jl2 )}

If one defines

Crwi= 34 (ao s) (1/3 + 34 >i2)

Ctw2= 34 (ao s) p

C t  w 3= 0

34 (ao ) {pnw Re i t 34 0tw (1 t p.2 ))

then it is possible to express the thrust coefficient as:

C t - (Ct w i 8 w > (

where the elements of the vector CTw are the coefficients CTwi, for 

i=l,...,4. If the commands are referred to body axes then 

Ct = <Kc t , 8r > , 

where:

K c T = [ C t w I  1 C tw 2  K-vic , C tw 3  K^hs, C tw a I t- 

= C K cT I > K c T 2 , K c T 3  ) K c T 4-1

Rote that the thrust coefficient C t and the downwash component Xo are 

related by a nonlinear algebraic equation. In the simulation programme the
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values of Ct and Xo are calculated according to Padfield [1981] (appendix 

E).

M I R  RQTQR FLAPPING ARGLES,

The rotor flapping angles are expressed in function of the structural 

and aerodynamic characteristics of the rotor:

X j b 2 : is the normalised rotating flapping frequency, given by;

XjE3"C’= 1 + K jb / (I# )

where Kjb is the spring stiffness of the rotor blade assuming it is a 

centrally sprung hinge; I* is the blade moment of inertia, ie.

I*= mjs rjs2 dr*,

nje: is the inertia number equal to t / 8, where "i is the Lock number 

t= (p c ao R4)/I* 

where p is the air density and

Sjb: is the stiffness number; S^= (Xjs2  -1)/ n&

In Helistab, the flapping angles are obtained by calculating the terms 

and coefficients separately due to the complexity of the equations. These 

terms are redefined here.

The longitudinal and lateral flapping angles are proportional to 

Fcf= -Db / < (1 + S*2 - K ji4) ( X j b )  >

Longitudinal flapping B1c.

The influence of the blades twist is evaluated by:

F t « c =  2  p  {  ( 1  +  34 p 2 )  \b/iib +  ( 8 / 1 5 )  Sjb ( 1  +  ( 1 6 / 9 )  p 2 )  > ;

The downwash effect is calculated by using

T t \ w ~  Rml. {  ( 1 6 / 9 )  S b  +  2  X ^ /D jb  ( 1 + 3 4  j i 2 )  } +  (Xjb S b  X t c w ) / J 2 | 3  5

where

Xic«: is the first lateral downwash component in hub wind axes
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Xo (tan x/2), X< ̂

X 1 c W —

Xo (cot x/2), if X^

and x is the wake angle, given by x= arctan( p/(Xo - p=).

The effect of the angular velocity is :

F w c =  U d  p>nw {  (X^/Jte) ( 1  + % p2 -  2  S s / j j b >  +  ( ( 1 6 / 1 8 )  Sjb p 2 ) > 

Pnw Xjs/ I2b (  Sjb +  ( 2 /  Djej) ( 1  +  14 p 2 ) )

The following term is defined:

F a w ~  Fcf ( F t  wc +  Fwc +  Fxc)

The direct effect of the control commands is expressed in a

way.

Term due to the collective command:

Fi«= Fcf ( (1 + 2 p2) + * /i4 Xjb/ iib + (16/9) Sb p2 > 0o .

Term due to longitudinal cyclic:

F 2 w= F c f  i ( 1 + 2  p2 + % pA) (XB2/ne) + (16/9) Sb p2 > 0 i . w .

Term due to lateral cyclic:

F a w =  -  {  F c f  S jb X ^ / l f e  ( 1  +  54 p 2 )  )  0 i  Cw

The expression for J3iCw can be written as:

$1 CW— (Fw, 0W X I 

where obviously

Fw= CFiw, Fsw, Fsw, Fa w ]t .

Finally the lateral flapping in terms of 0lE and 0ic can be 

using the transformation matrix (3):

$t C w= <F , 0R> 

where F- CFiw, Fsw Kv»u— Faw Kv»®, F^w K^®+ Fsw K^c, Faw3 

= [Ft, F*, Fs , Fa ] *

Lateral.,, flapping. equalion-fii

similar

obtained
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The equations for the lateral flapping are composed of the following 

terms:

Term related to rotor downwash:

G x =  ji R m l . { ( 1 6 / 9 )  (1 ~  p 2 ) -  2  S j s / U jb) —  ( X j32 / i2.b ) ( &  —  1) ) Xi c «

Term related to the angular velocity:

G w =  p „ w  B e l  { ( X j b ^ / D b )  < 2 / j j b ) (te p 2 - l )  -  Sjb) +  ( 1 6 / 1 8 )  p 2  +

(Jnw XjB2 /J3jb { 2  SjB/i3|5 +  /J.2  “ 1)

The influence of the twist is calculated with:

G t w =  2  |i 0 t w  { (1 +  /i'2/ 3  -  ( 5 / 1 2 )  /i*) ( 8 / 1 5  -  ( SB/db) X e 2  >

The above terms can be associated as follows:

Gaw = F c f  (G x  +  G w  +  G - t w ) .

The terms related to the command inputs.

Collective command factor:

G i w =  ( 4 / 3 )  p. F c f  ( 1 +  /i"2 (1 ~  p 2 ) —  2  S& < Xjb/ njB) )

Longitudinal cyclic factor:

G2 w= F c f  < ( 1 6 / 9 )  / l 2  (1 -  te p 2 ) -  (1 +  ( 3 / 2 )  p 2 ) Sjb ( X * / i t e )  >

Lateral cyclic factor:

Gb w "  “  F c f  ( X b / I 2 jb) ( 1  — V& p 4 )

Proceeding as before the lateral flapping can be expressed as:

^lew— KG<*» ) 8 w> )

where

G w =  [ G i w ,  G a w , G s w i  G i t w ] ^  ,

Finally referring this angle to body axes using the transformation(3):

$  1 -sw" < G w  , 9  R >  ,

where

G w ~  C G i w , G s w  K ^ c  G s w  G s w  t  Gbw i Gaw3 .
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F.LAEEUKx.. AHGLES REFERRED.. TQ BODY AXES.

The force and moment equations depend on the flapping angles referred 

to body axes, so that it is necessary to apply the transformation (3) to 

the flapping angles. The resulting equations are 

J3ic= <K„C F + G , 0r > or

c= <Fj3 , 9r > ,

where F*= K^c F + K*® G ; and 

F,B = C Fjs 1 , FjB2 , F b 3» F̂ i4] t-

and;

J3-i®= <KV*C G - Kv»® F, 9r> or 

$ 1®= Ĝjb, 9r> , 

where Gj3= K^c G - K*® F ; and

GjB= [Gf)1, GjB2 , GjB3, G.B4.3 t- , 

which can be substituted in the rotor torque equations to obtain a similar 

expression for the rotor torque. These expressions are obtained as follows. 

The main rotor torque coefficient is given by 

Cq = — C t  (Rml. ~ jlJJicw) + %<£ s (1 + jj.2) ,

where tf, is the main drag rotor coefficient, (assumed to be of the form S-  

6 0  + C t 2 5 . This parameter has not been considered as a function of <Kc t

, 9r >, assuming that C t 2 does not have an important influence in the change 

of the value of 6 .

By substituting the expressions of CT and J3iCw in the Cq equation it 

is possible to obtain

Cq= —<(Rml. Kct, 9r> + p Kct, 0r> <F, 0R> + y& 6 s (1 + ji2) .

If the vector

Qi = Rml. t Kct i , Kct2, Kcts, Kct4 + 6 S (1 + JJL2 )/ (8 Rml.)3 t-
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is defined, and if the product of the second term is realized according to 

the procedure explained at the beginning of this appendix, then the torque 

coefficient can be expressed as;

C q = <Q i , 8 r a >  + <Qs, 0 R A >  ,

where

8raX = JJL Kc t , 8r> <F, 8r> .

Finally if K q = Qi+Q^ then 

Cq = (Kq , 8ra>

The main rotor torque is defined as 

Q r — p Q s; Re 7T Cq  •

This equation can be transformed to an inner product 

Qr = <Kq r , 0r a > , 

where K q r = p Rs tc Kq

By extending this procedure the force and moment equations can be 

expressed in a similar way, as shown below.

M I  &-RQIQR. FARCES.
In order to have a compact notation the variables 

R f i = p Q'2 R a tt;

Rf z= Rfi R:

Rxy= - VI S s p

are defined.

The longitudinal force component is;

Xf = F fi ICt ($i c + 10 — (J s |i) .

If the flapping and thrust coefficients are expressed as inner products, 

this equation can be transformed to;

X f = ’(Kc t , 8r> <Ffi Fjb , 8r> + <Ffl_ Y® K c t , 8r> + % S S ji F fi ,

where K® is the shaft angle. It is possible to define a vector function K f x

as for the Cq coefficient, such that
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X f— ^Kfx, 8r a X •

The la te r a l  fo rc e  is  expressed by;

Yf= Rf i Ct J3i® Ic  i  — ^ &  s ji)

I f  the  in n e r p roducts  are s u b s t itu te d  then

Yf= R fi Kc t  , 8 r > <Rc i G,&> -  J s |l R fi 

Proceeding as be fore  t h is  equa tion  can be w r it te n  as 

Yf= <Kfy, 8r a > , 

f o r  some v e c to r fu n c t io n  Kfy.

The normal, force. is?
Zf = ~ Rf i Ct , 

which can e a s ily  be transfo rm ed to ;

Z f = "(Kf z , 8r > .

MAIM RQTQR MOMENTS

The r o l l in g  moment equa tion  is ;

L r = L h + hR Yf ,

were hR is  the h e ig h t o f the  hub from  the  cen tre  o f g r a v ity  and Lh= -  ¥® 

Nci Qr  s o  th a t  the r o l l in g  moment can be expressed by

L r = Y® Bci Kq r , 8r a > + <hR Kf y , 8r a >,

Which can e a s ily  be transfo rm ed to ,

L r = <Kr l., 8r a > , 

f o r  some v e c to r fu n c t io n  K rl_.

For the p itc h in g  moment i t  i s  p o s s ib le  to  o b ta in  a s im i la r  exp ress ion  

g iven  th a t

M r = R f 2 <Mh  “ hp Xr  + Xcg Z r ) , 

where xca is  the h o r iz o n ta l d is ta n c e  between the  hub and the  c e n tre  o f 

g r a v ity  and

Mh= -  £ b YLb  J 5 t ,

were K^ is  the  hub s t i f fn e s s .
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So, according to tlie development outlined here, the pitching moment 

can be expressed as:

Mr = <— Rf z  b K# Gis, 8r > + Rf 2 hR K f x , 8r a > + <Rf z  K f z  Xcg, 8 r a >

and aga in, t h is  can be reduced to

K r = < K r m , 8ra> ,

for a vector function

Kr m= ( -Rfs hR + Rfz Xcg ) Kfz +

( ~ Rfz b Kjb ) ( G,bi , , , . , Gjb3, 0, 0, 0, 0, 0, 0, 1)*'.

Finally the yawing moment, is given by:
Kr= Qr ffcl + "tf-s Lr .

The terms on the right can also be written as inner products:

R r = <Uc i Kqr + ^r Kr u , 8ra>

If Kr n= Hci Kqr + Yr Krl. then 

Kr= <Kr n , 8ra>
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APPENDIX II. 2 TAIL ROTOR FORCE AND MOMENTS,

This appendix is  devoted to the equations of t a i l  ro to r force and 

moments which are obtained in  such a form th at th e ir  contributions can be 

expressed as inner products.

The th rust and power are expressed in  terms of normalised v e lo c it ie s

/iT= (U:Z + (W -  KxT Xo + q ( I t + Xcg)2) 14 (ft Rt ) ” 1

and

JIzt= (~v + (It + xcg) r  -  hT p) (ft Rt)-1 , 

where u, v and w are the aerodynamic v e lo c it ie s  a t the h e lico p te r centre of

g rav ity ; p, q and r  are the fuselage angular v e lo c ity  components, Xo is  the

main ro to r downwash, and It and hT, the pos ition  of the t a i l  ro to r a f t  and 

above the fuselage reference point, which is  the point v e r t ic a l ly  below the 

main ro to r hub, ly in g  on the fuselage reference lin e .

The t a i l  ro to r th rust c o e ffic ie n t is  expressed as

CtT= aoT St ( 0 o T *  (1/3 + JIt2 ) + ^ (jlasT “ Xo) 

where a0T is  the l i f t  curve slope of the t a i l  ro to r blades, S t  is  the t a i l  

ro to r s o lid ity ,  and 8o t *  is  the c o lle c tiv e  p itch , given by:

8o t * =  8 o t  +  <S3  J3ot

where £0t  is  the t a i l  ro to r coning angle and 63 represents the t a i l  ro to r  

c o lle c tiv e  p itch  reduction due to blade flap p ing  and p itc h  reduction.

F in a lly  Xo is  the uniform t a i l  ro to r downwash.

I f  the expression fo r  £ot is  substitu ted  in  the c o lle c t iv e  p itc h

expression, then

0oT* = (0OT + 6:3 (nTJs/XjB2 ) (4/3) (jJh:T“ Xo) )/ (1 + 6̂  (TLt&/XJB52) 2 (1 + jlz) )
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where iitjb and Xtjb are the tail rotor inertia number and normalised flapping 

frequency respectively, assuming that the tail rotor stiffness number is 

S B= 0.

If the following functions

Tri= 11 + Ss Xjs2) 2 (1 + p.3 ) ) -’1 ,
Tr:z,= Tri <S.3 (Ht&/ Xjb2 ) (4/3) (p^T- Xo) ,

Tr3= a0r St (1 + 3jjt2/2)/6 and

Tr .̂= aoT St (p.a:T— Xo )/6

are defined, then the thrust coefficient can be expressed as:

Ctt= 9oT [Tri Tr3] *' + [ Trs: Trs + Tr4.3 *' , 

and if Kctt= CTri Trs, Trs Tr3 + TraI t> = [Ctti , CttsI ,

0t r= [0o t , 1]T , this coefficient can be written as 

Ct t= (Kc t t , 8t r>

The tail rotor thrust is defined by 

Yt= p Qt2 Rta Ft Ctt , 

where Ft is the empirical blockage factor given by 

Ft= 1- * Sf n/Oc Rt2), 

where Sfn is the fin area.

The tail thrust can be expressed in terms of an inner product,

Yt= p Qt2 Rt a Ft (Kc t t , 8t r> J 

and if the vector Ktail.= <p Gt2 Rt '1 Ft ) Kc t t=E Ki tail., KztaiiJ *• is defined, 

Yt= (Kt a x l, 0t r)
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The torque coefficient can be calculated as follows:

Cqt= (ji=:T"Xo) (KtAIL., 0TR> + % 6 T St ( 1 + 3  jiT2 )

Defining Kqt= (jizr-Xc.) [Kitaii-, Kstail. + % 6r St (1 + 3 jiT2 )3 t- 

Kqt= CKiqt, KsqtI *'

One can write the torque coefficient as 

C q t = (Kq t , 0t r > ,

The tail rotor torque can be expressed in terms of the above inner 

product as

Qt= p Qt2 Rt3 Ft <Kqt, 8tr) and

Q t = (Kq TAIL) 8tr> ,

where Kg»taii_= p Ot2 Rt 3 Ft CKqtI

The tail rotor force causes a rolling and yawing moment. The rolling 

moment is given by

Lt = hT Yt ,

where hT is  the distance along the long itud ina l axis (p a r a l le l  to  the 

helico p ter lo g itu d in a l axis) from the t a i l  ro to r hub to the centre of
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gravity of the helicopter. If the force is expressed as an inner product 

the above equation is transformed to 

L t =  ( K t i _ >  8 tr) 

where Ki_t= hT Kty .

The yawing moment is calculated by

N t = “ (It + X c g )  YT

where xca is the centre of gravity distance, located forward of the 

fuselage reference point and 1T is the tail rotor location aft of the 

fuselage reference point.

If the tail rotor force is expressed as an inner product the yawing moment 

can be written as

N t = (Kt n , 0 t r >  , 

where Kt n = -(It + xc.3) K t y .
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APPENDIX II.3 FUSELAGE, TAIL PLANE AND FIN FORCES AND MOMENTS.

In this appendix the equations used in Helistab to calculate the 

forces and moments applied to the helicopter by the fuselage, tail plane 

and fin are described.

Fuselage
Let ou and jb denote the fuselage incidence and sideslip respectively. 

These angles are calculated as follows:

If the rotor downwash Xo is negative, 

cxf= arctan (w/u) 

and the fuselage total velocity is 

Vf2= w2 + u2 ;

whereas, if the rotor downwash is positive then 

ctf= arctan (wx/u) 

and the fuselage total velocity is;

Vf2= Wx2 + u2 .

where u, and w are the longitudinal and normal aircraft total velocities

respectively and Wx is defined as 

Wr= w - Kxf ft R Xo

where Kxf: is a constant that depends on the increase in downwash over the 

disc, 

ft the rotor rate,

R the rotor radius.

The sideslip J3f is given by 

where ]3f= arctan (v/u),

and v denotes the lateral vehicle velocity.

Given the fuselage incidence and sideslip, it is possible to calculate

the fuselage forces and moments using the following equations

Xf= ^ p (ft R)2 Sp Vfn2 Cxf(af) ,

Yf= % p (ft R>2 S*, V f n2 CYf(Jb) ,
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Zf = % p (ft R)2 S p  Vfn2 Czf((Xf) ,

Mf= % p (ft R)2 Sp Ifn Y f 2 CMf(af) and
Nf= K p (ft R)2 S« Ifn Vf2 CNf(£f) ,

where S P and S« are are the fuselage plan and side areas respectively, If 
is a reference length and V t„ is the velocity normalised to ftR. The 
fuselage aerodynamic coefficients are described by the following polynomial 
functions:

Cxf=_ (Fxo + Fxi (Xf + Fxs 0Cf2 + Fx 3 Off3 ’*/ (Rdr Prs)
Cy f= (Fyo + Fyi j3f + Fys J3f2 + Fys j3f3)/ (Rdr Pr s )

Gsf = (Fzo + Fzi (Xf + Fzs C(f2 + Fz3 0(f3 )/ (Rdr Pr s )

C m f= (Fmo + Fmi (Xf + Fms (Xf2 + Fms (Xf3 )/ (Rdr Prs)
CNf= (Fno + F ni j3f + Fne J3f2 + Fn s  j3f3)/ (Rdr Prs) ,

where the constants Fxi, Fy±, Fz, Fmi and Fni for i=l,...,3 are 
semiempirical constants depending on vehicle geometry.

Tailplane
It is assumed that the tailplane force acts on the vertical plane of 

the vehicle. The equations that describe the forces and momentsare 
summarised as follows:

Tailplane force:
Zt r = ^ p (ft R)2 Vt Stp Cz t r ((Xt R5 , 

where St p  is the tail plane area, (Xt r  is the tail plane incidence. The 
force coefficients are given by

Cz t r = -ac>T (Tpi (Xt r  + Tp3 (Xt r 3 + Tps (Xt r s ) , 

aoT= Aotpo + A o t r i  j3f , 

where a©T is the effective lift curve slope for small (Xt r  and where T r i  for 
1=1,3,5 and Ao t r i  for i=0,l are semiempirical coefficients;
Str is a constant related to the aerodynamic section of the tailplane, for 
the helicopter; in Helistab it is assumed to be 2.

The effect of the main rotor flow impinging on the tailplane is 
incorporated in Vt and at as follows:
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Vt2= { (w - Kxtp ft R Xo)2 + u2 ) (ft R)"2
and

o(t= 0t + arctan ( {(w - Kxtp ft R Xo + (Itp + Xcg) q > /u) , 
where Kxtp is a constant when x^X^X2* where x is the maia rotor wake 
angle, i. e, :

X= arctan (p/(Xo- /iz)) ,
Xi= arctan ((Itp - R)/(hp - hTp)) and 
X2= arctan (Itp/ (hp - 1itp)).

Otherwise Kxtp= 0 .
In the above expressions, Itp is the location aft of the fuselage reference 
point, hp is the negative coordinate of the rotor hub and 1itp is the 
negative z component of the tail plane centre of pressure.

The moment produced by the tail plane force is
MtP= (It + X c g )  Ztp .

Similarly the fin side force can be written as 
Yfn= t e  ( f t  R)2 V f r , 2  Sfn Cvfn(Pfn) .

where
Vfn2= (Ua + v2)/(ft R)2;

and
0fn= -0fn + arctan(v - Ifn r) , 

where 0fn is the fin cant angle positive nose starboard, Ifn is the 
location aft of fuselage reference point; u, v and w are the vehicle 
velocities and r is the vehicle yawing rate. The aerodynamic coefficient is 
defined by the functions

Aofn= Aofno + Aofni (Xf ,
Gyfn= “Aofn (Fint J3fn + Fins j3fm3 + Fins J3fns) , 

where Aofn± for i=l,2 and Fini for i=l,3 5 are semiempirical coefficients. 
The moments exerted on the helicopter by these forces are 
Lfn= Iifn Yfn and
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Nfn- ~(1fn + Xcg) Yfn , 
where xcg is the distance ahead of the hub of the centre of gravity.
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APPENDIX III.1

The proof of equation (III.LD.4)

dLf<h)= Lf (h) (III.LD.4)

encountered in section 2 of chapter III, will be presented in this 

appendix.

Let h be a C" function on R and f a vector field on R" . The operation 

Lf(h) is defined as <dh,f> so that: 

dLf (h) = d<dh,f> ;

if dh = (dh,, . . . , dh„) * and f = (f, f„) * then:

dLf (h) = d(dh-, f, + dh2 f2 + . . . + dh,-, fn)

(f, b dhi dh! b f ,) .... , (f„ b dh„ , dh,-, b f„)= C
b X, b X! b X, b X,

ft d h , + dh-, b f i + . . . + (f„ b dh,-, + dhr, b f„
ft X2 b X;2 b X2 b X-j2

(fi ft_dhT + dhi-, ft_f_L > + ••• + < ft dh„ + - dh., b j ^ )
’ ft Xn ft X„ b X„ b X„

Reordering the above expression we have

dLf(h)= ( f, b dh, ... f„ b dh„ .......  f, b dh! . ... . f„ b dh„) ---- + +    ----  + + r---b x, 5 x, ft x„ ft x„

+ ( dh, ft f, + ... + dh„ b f„ + . . . + dh, b fT + . .. + dh„ b f „  y
ft X, b X, b X„ ft x„
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The two vectors of the right hand side of this last expression can be 

factorised as follows .*

dLf (h) =

b dh, .. . b dh„ f i b fl • . f m dh,
b X , 5 X , b X , b X ,

• • • + • • •
b dh, .. . b dh„ f n b f l b f* dh„
b b x r , b b ^

and this expression can be reduced to

,T , r b dh .. f r 2> f - dhdLf (h) = [  --  ] + [ --—  1b x b x

which is the definition of Lf (dh), so that 

dLf <h) = Lf (dh)
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APPENDIX 111,1 (Second part)

Proof of equation (III.LD.5)

Given two C® vector fields in Rn, f and g, and a C® one form dh on R", then

the Lie derivatives defined in section 2 of Chapter III

Lf(h), tf,g] and Lf(dh) 

are related by

Lf < dh, g > = < Lf (dh), g > + < dh, If, g] > (III.LD.5)

Proof:

Let dh = I dh, , ... , dh„ 3 "S f = I f, .......f„ 3 * and

g = C gi . • . . » grJ * •
Then the second term on the right hand side can be written as:

< dh, [f, g] > = < (dh, , ... , dh„), l b g ] f _ [_b_f__]g >
b x b g

= < dh, c 5 g 3f > - < dh, t H ] g >
b x b x

Extending the right hand term of the above equation, gives the following;

< dh, b x f > = (dh)-*1 b g f
5 x 5 x

which can be extended further to give;

<dh, [ _ b f  ̂ g > _ (dh) 11 L b f k
b x b x

thus:

< dh, I f, g3 > = dh f - [| -f ? dh S (A. III. 1)° b x b x

the hand the left hand side term is by definition

Lf < dh, g > = < d < dh, g >, f >

Developing this term results in :
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Lf < dh, g > _ ^gi  ̂£ ^̂ .L] ^ Sj_—]) +, . , + ^ dĥ .j ^ dh,-,  ̂b gr>̂ ̂
5 X, & X, ’ ' ’ 5 K, b X,

+

b X

• • • ^ >̂v>~| • • • • » j- ̂  PCi->-j ) dhr, , f y
5 x, b x„

+ [&-S-]* dh • f
b x > so that

Lf< dh, g>= ( [& dhjt g + Lb g ^  dh
b x 6 x ) f (A.III.2)

With respect to the remaining term of the last equation it can be written 

as:

< Lf (dh), g > = < d <dh, f>, g >

and comparing this equation with the previous calculations it is easy to 

see that:

Finally by substituting equations (A.III.l), (A.III.2) and (A.III.3) into 

equation (LD.2) the equality is easily checked.

< Lf (dh), g ) > S (A.III.3)

19 3



Table 1.
Helicopter data for simulation model

Ha in rotor.

ao Blade lift slope. 6.0

c Blade chord. 0.533 m

hr< Negative Z coordinate of rotor hub. 1.755 m

Ijb Blade flapping moment of inertia. 1281.4 Kg nP

Kjb Blade flapping stiffness-spring 1037.2 Hw m

constant.

R Blade radius. 7.5 m

s Rotor solidity. 0.0906 m

la,3 Centre of gravity forward of 0.0

fuselage reference point.

1U Rotor shaft forward tilt. 0.087°

So Blade profile drag coefficient. 0.009

612 Blade lift dependent drag 5.333

coefficient.

0tw Linear blade twist. 5°

Tail rotor.

aoT Blade lift curve slope. 6.0

Ft Fin blockage factor. 0.87

h-r negative z coordinate of hub. 0.366

kxT Main rotor downwash factor. 1.5

It Tail rotor location aft of fuselage 9.144
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reference point.

ng  (inertia number)/(flap frequency)3.
X~.b T

Rt Blade radius.

S s t  Tail rotor solidity.

Sor Blade profile drag coefficient.

(Sst Blade lift dependent drag

coefficient.

Tailplane

sotp Lift curve slope at zero incident.

Cztl. Maximum normal force coefficient.

kx-T-p Main rotor downwash factor.

I t p  Location aft of fuselage reference

point.

S t r  Tailplane area.

9 t  Tailplane setting (positive nose up

relative to fuselage x axis).

Fin

3ifn negative z component of fin centre

of pressure.

I f n  Location aft of fuselage reference

point.

S f m  Fin area.

8 f n  Fin setting (positive nose starboard)

1

1.513 

0. 153 

0. 009 

5.333

3.5 

2 . 0

1.5

9.144m

1.347nP 

3.5°

0. 0 

= *TP

1. 273m2

2. 0“
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Fuselage

C y s Aerodynamic sideforce coefficient. -0.75

kxF' Main rotor downwash factor. 1.5

lf Fuselage reference length. 13.106m

Oj:̂ Fuselage plan area. 16. 723m-

S« Fuselage side area. 23.226m-

Helicopter inertias

Ixx Moment of inertia. 5695 kg

lyy M 34578

Izz M 30239

Ix* Product of inertia. 2068 kg

M a Aircraft mass. 5234.6 ]


