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‘ Academic philosophers, ever since the
time of Farmenides, have belisved that the
world Iis a wnity, ... The most fundamental of
my intellectual beliefs is that this is
rubbish, I think the wuniverse Iis all spots and
Jumps, withowt unity, withouwut continuity,
withouwt coherénce of orderliness or any of the
.other properties that governesses love,
Indead, there is little but prejudice and
habit to be said for the view that there 1iIs
aworld at 11, .,

The external world may be an illusion, but
if it exists, it consists wof events, short,
small and hapha=zard, Order, wunity and
continwity are hwuman inventions, Just as trwly

as are catalogues and encyclopedias, '

Eertrand Russel,

" My philosophical development',
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This thesis introduces an Automatic Flight Control System for single
rotor helicopters which gives a new relevance to the traditional techniques
based on the Linear Control Theory. This design was obtained by applying
concepts of differential geometry tailored for engineering purposes through
the Nonlinear System Theory. The development of this thesis follows the
traditional path of applied sciences. First +the need to establish
techniques for theoretical analysis of flight machanics, where the small
disturbance methods are no longer valid, is reviewed. This is followed by a
presentation of the nonlinear problem and a survey of the development of
the theoretical tools available. At this stage the process, a single rotor
helicopter, is modelled. The model is then cast in a form suitable for
Nonlinear System Theory techniques. Next, the mathematical theory to be
applied is fully developed. It consists of finding the conditions required
by a nonlinear system to be transformable under state feedback to a linear
canonical form; the construction of the feedback is also presented. A
Flight Control System is designed by applying this theory to the helicopter
model previously formulated. The above application requires the development
of Symbolic Algebraic Manipulation programmes, which are also included.
Finally, a set of simulation studies demonstrate the performance of the

design.



INTRODUCTION.

Summary.

The subject developed 1n this thesis belongs to a branch of applied
~sciences, namely the theory of Flight Stability and Control. Furthermore,
the material presented here is devoted to the control of single rotor
helicopters.

This work  has borrowed its theoretical principles from another
applied science, System Theory. This introductory chapter 1s partially
‘dedicated to exposing the relationship between these two disciplines and to
clarifying the appearance of differential geometry in the development of
Flight Stability and Control, which is the essence of the work submitted

here. A review of each chapter is also included.



I.1. Introduction.

The study of flight mechanics relieson two different independent
sciences, aerodynamics and mechanics. Of course, as pointed out throughout
this thesis, the role of mathematics is not a passive auxiliary of an
applied science, but rather a tool that suggests and encourages further
development of its content.

It is known that the theory of flight stability and control appears
from the outset as a mathematically expressed, and therefore essentially
deductive, theory. This theory also relies heavily on rigid body mechanics,
from where the small disturbance method is obtained which has been used as
the main instrument for analysis.

The existence of the small disturbance method implies that the
knowledge of aerodynamics 1s required 1in order to determine the
characteristics of any aircraft. These characteristics are related to the
forces and moments acting on the aircraft. The information obtained by
applying aerodynamics is summarised in a set of parameters, the so called
stability derivatives introduced by G. H. Bryan (Etkin [19721).

The classical mathematical model used in the flight stability and
control theory is obtained by small disturbance rigid body dynamics
together with the stability derivatives. This mndel consists of essentially
a set of linear differential equations with constant coefficients. It is
precisely through this model that the link between flight stability and
control and system theory is carried out. The linear systems theory has

provided the results needed to determine the flying qualities of a given



aircraft. In fact these +two disciplines experienced a concomitant
development. This 1s reflected in the treatises devoted to flying
qualities. For instance, the methods of single input single output systems
using the Laplace transform, has been expressed by M<Ruer, Ashrenas and
Graham in their book "Aircraft Dynamics and Automafic Control®" [1970]. The
appearance of the state space techniques in system theory (in which linear
algebra is the mathematical instrument of analysis) improves the methods of
analysis in flight theory. This is reflected in the books by B. Etkin
(16721, [1982] and Prouty [1986]. Furthermore most of the recent results
published on flight stability and control are obtained‘by applying this
approach.

As is typical of any applied science, the theory of flight stability
and control is influenced by the mathematical method used. Thus, the small
disturbance method played a striking part i1in shaping the theory,
emphasising the dependence on models expressed in terms of stability
derivatives. However, this approach presents serious limitations in the
study of some aspects of flight, for instance, those related to agility,
which is defined (for rotorcraft) as "The ease with which a helicopter can
change its position and state with precision and speed" (Thomson [19871).

The subject of agility involves situations wherein the small
disturbance situation can not be assumed any more, so that a change of
model 1is required and with it a new mathematical treatment.

Agility has been addressed from the practical point of view by
Charlton et al [1987]1 and by Buckingham [19861. In these heuristic studies
the agility of a particular helicopter is determined from the results of
flight tests. An agility factor is defined by comparing a "theoretical"

maximum performancé to an actual performance achieved in the flight tests.



Agility factors for several different manoeuvres have been defined by using
this procedure.

The question concerning how ‘easily and quickly a helicopter can
change its flight control conditions, obviously depends on the opinion of
the pilot. Buckingham et al. [1986] reported the results of a series of
piloted simulations which were intended to explore and define control
systems for helicopters. Throughout these simulations it is assumed that
the helicopter responses are transformed by a control system to an
"equivalent" system which is linear. In spite of thé fact that the terms
and conditions of this equivalence are ﬁot defined in this report it is
possible to formulate the agility problem in a formal manner from these
results,

The first theoretical approach used to analyse the flight mechanics,
not relying on the small disturbance model is based on inverse solutioms.
The first reports on the use of this technique in the solution of flight
stability and control problems were presented by Meyer and Cicolani [1975]
[1981]. This technique consists of obtaining an inverse solution of the
equations of motion involved in a specific flight path, then calculating
the control and state histories to fly it. In the method suggested by Meyer
and Cicolani, it is shown that it is possible to define an equivalent
linear system of the equations of motion, so that the problem could be
solved using the standard linear techniques [1981]. In this report an
application to a fixed wing aircraft is presented and the application to a
helicopter was later reported by Hunt, Su and Meyer [19821 [1984].
Moreover, in these last two references, the mathematical proof of the
existence of the linear equivalent system using differential geometry, is

also presented. In 1987 Smith and Meyer presented an automatic flight



control system concept based on this technique. The difference of these
implementations with respect to the omne presented here is that the
previous works depend on numerical methods for the calculation of the
inverse solution, whereas they are presented here inanalytical closed form.

The introduction of differential geometry in the theory of flight
stability and control can be considered as the natural effects of the
mathematical method on the content of a branch of applied science and can
also contribute to its broadening. Because of their degree of abstraction,
mathematical theories have a large sphere of potential applications. Even
if they were initially called to life or developed on the basis of certain
special requirements of physics or engineering, they soon exceed the space
of these particular applications. For this reason, the examination of some
mathematical theories from the standpoint of possible application combined
with the awareness of the physical processes characteristic of a given
applied science, may result in improved knowledge about this applied
science.

Nevertheless, in this case the path of development followed the
opposite direction; it began with the actual necessity and then the search
for the tool. In the future this could be inverted and the study of
flight mechanics developed using the concept of differential geometry as a

foundation.



1.2, Nonlinear Controllability.

In the paper presented by Charlton et al. [19871, an agility factor
for helicopters is defined by the ratio of a "theoretical ideal task" time
and the actual time required to execute this task.

This problem can be formulated from a mathematical point of view
through some concepts and results obtained from the nonlinear system
theory. These concepts are very useful when one analyses the above
problem. Unfortunately, the proofs of all the statements require an
extensive mathematical background which are beyond the scope. of this
thesis, so that this material (which is fully developed in the references,
in particular the book by Boothby [19861) is presented only as antecedent
of the following chapters, especially Chapter III.

Since the equations of flight of the helicopter can be related to a
dynamical system H in a known state X,, the following question can be
formulated: "What states can H attain at some future time T under the
action of inputs chosen from a specified set Q ? ". This is a statement of
the problem of reachability. A variation of this problem occurs when one
wants to transfer H from X, to a given state X, this problem is known as
controllability., It is evident that, the essence of the reachabiiity -
controllability question is to decide what can be done with H, considering
the control resources available.

Brockett [19731, [19761 explained the nonlinear reachability

(controllability) problem using the general system



X(t) = T u, £,00 , . X(0)= Xo € R, (1. 1),

dm

where the .vector functions f;(X) are C®. One can then formulate the
questioh: under what conditions does a smooth p-dimensional manifold M
contained in R™, with p ¢ n exist, such that the set {f,{X)} spans the
tangent space of M at each point ? The connection between this question
and the problem of  reachability (controllability) is that, if such a
manifold M exists, then the state can move anywhere within M but not out of
it.
An easy way to understand the problem is to proceed as follows
(Brockett [19761):
Making u;(t)= 1 for a particulgr i, 1 ¢ 1 ¢ m and uy;= 0 for j# {i.

Then the system (I.1) is reduced to

X(t)= £, (0 , X(0)= Xo (1.2).
The solution of the above equation can be denoted by ¢(t,Xo), that is:
X(t)= t,Xo).
Furthermore, if one considers a time interval Itl < € , such that ¢(t,Xs)
can be expanded in Taylor series around t= O, then

X(t)= ¢(0+t,Xs),

_ d o, X d2 g(t,Xg) =2
9€0,Xo) + e t o+ o 5
teQ +t=0
H.O.T

Also

9(0,X)= X(0)= Xo,



d olt,Xe)  _

= ;X = f;Xo?
d t ‘Lm0 trmQ tm=O ©
And
a* o (t,Xs) - d [ d o(t,Xs) ]
d t= dt d t
te=O t=Q
- d fy (XD
dt
EACle)
_ > fy :
= ( > X > X .
b le]
Therefore

t= [ fi
2 o X

Xty =¢I + tf; + + H.0.T ) Xo)

sometimes the above expression is defined as

X(t)= (exp tfy) (Xo) , (1.3
where (exp tf,) denotes the series in the brackets and I is the identity
function on R™. Note that (exp tf,) represents a funciion whose argument is
Xo. If one supposes the following control sequence for system (I.1), with
X(0)= X, 1s applied;
from 0 to t, u;= 1, uy= 0 for all j=# 1 ;
from t to 2t, ux= 1, u;= 0 for all j# 2 ;
from 2t to 3t, u,= -1, uy;= 0 for all j# 1 and

from 3t to 4t, ux= -1, u;= 0 for all j# 2



Also X,, Xz, Xz and X; can also be expressed in a Taylor series. Expanding

these terms to the second order one has

£2 > £,
Xy = Ko+t £y (o) + = £ (o) 1.4y,
b4
%, = X, 4t f2(Xy) + ; Z ;2 £4(X,) (1.5),
2 > £,
X;a = X2 -t f] (Xz) + 2 > X f1 (Xz) (1-6) and
2 -
X = Xa - t fo(Xa) + ; g ;x £ (Xa) (1.7

The function f; can also be developed in Taylor series:

v fy(Xs)

fy = fKo#8X) = £, Xp) + > X

83X + (H.0.T.) (Xo) (1.8)

These last equations can be manipulated and expressed to the second

order, so that X, may be written

> f > f

Xem (14420 228 f - == f, 1) X (1.9
where

[ -%—%2- £, - —%—%l— f21 = [f,, fal (1.10

is defined, as the Lie bracket of the vector fields f, and f.. Thus, if
[f,, f21 is not_ a linear combination of f,, i=1,.,..,m , then [f,, fol
represents a new direction in which the state can move. The problem of
finding M, whose tangent space is spanned by f,, i=1,...,m, cannot be
solved. With this example'Brockett [19731 [1976] showed the central role of
the Lie bracket operation in answering the question of reachability-
controllability.

From the above example it |is easy to consider the definition of

involutivity:



Definition. A set of vector fields f;, 1i=1,...m, 1is said to be
involutive if there exists a set of scalar functions c,;., such that

e

[fy, f21X) = 2 ciju fu (XD,

K=l

for every vector field f;, i=1,...m .

Considering the previous development of system (I.1) persuades one
that the property of involutivity is necessary in order to be able to
obtain a solution surface (manifold) whose tangent plane is described by
the system equation (I.1)>. The theorem of Frobenius establishes that this
condition is necessary and sufficient. This theorem plus the involutive
condition plays the central role in the development of the flight control
system designed in this thesis.

The results from nonlinear systems theory on which the present work
is based are included in the references by Casti [19851, Hirshon [19731,
Hermann et. al.[19771, and Sussmann et. al. [1972].

Considering a general nonlinear system

X (= fX,w , X(0= Xo (I.11) .
where u € Q , an admissible set of R™ valued input function; and X ¢ M, a
C=-connected manifold of dimension n. In order to simplify the notation, it
is assumed that M admits globally defined coordinates X=(x,,..., Xn),
allowing one to identify the points of M with their coordinate
representations and to write the control system in the usual engineering
form given by (I.11).

It is assumed that the vector field f(.,.) is C= with reséect to its
arguments and that (I.11) 1is complete, that 1is, for every bounded

measurable control u(t) and every Xo € M, there exists a solution of (I.11)

10



satisfying X(0)= X, and X(t) € M for all real positive t.
The controllability of nonlinear systems 1is expressed by the
following definitions and theorems (Hermann and Krenner [19771):

Definition I.1. Given a point X* € M, it is said that X* is reachable

from X, at time T if there exists a bounded measurable input u € Q, such
that, the trajectory of (I.11) satisfies X(0)= X, , X(T)= X* and X(t) € M
for all t € [0,T]. The set of reachable states from X, is denoted by

R(Xs)= v { X: X reachable from X, at time T}

OGT
It is said that (I.11) 1is reachable at X, if R(Xy)= M and reachable if
RX)= M for all X € M. B

The problem with definition 1.1 is that f(X,uw is nonlinear, it may be
necessary to travel either a long distance or for a long time to reach
points near X,. Thus, the property of reachability from X, may not always

be of practical use. This motivates the following restriction:

Definition 1.2. The system (I.11) is_locally reachable at X, if for every
neighbourhood U of X,, RXs) n U is also a neighbourhood of X, with the
trajectory from X, to R(Xo) n U lying entirely within U. The system (I.11)
is locally reachable if it is locally reachable for each X ¢ M. &

Given that the reachability given in definitions I.1 and 1.2 does not
guarantee the condition of symmetry, that is X* may be reachable from X**
but not conversely (in contrast with the case of constant linear systems).
A weaker definition is needed:

Definition I.3. Two states X* and X** are weakly reachable from each

other if and only if there exist states
Xo: xn ceey Xk €M

such that X, = X* and Xk= X**

11



and either X; 1is reachable from Xi_y or X;.y 1ls reachable from X;, i=
1,...,k. & |

The system (I.11) is weakly reachable if it is global reachable, so
that it is also possible to define a local version as shown in definition
I.2.

The condition of reachability-contirollability of a system |is
characterized by the following theorem.

Theorem J.1. System (I.11) is locally weakly reachable-controllable if

and only if for every X € M and every neighbourhood U of X the interior of
R(x) restricted to U is not empty.

Proof. (Hermann and Krenner [19771).

Assuming that system (I.11) is weakly reachable. Then given any X, € M
and any neighbourhéod U of X, one can choose u; € Q such thét

1= £, uy)

does not vanish at Xo.

If s 2 y'4(X) denotes the flow on f' that is, the solutions of the

differential equation

d ¥'s _ 1047 .X) )
ds

that satisfies the initial conditions
YP'olXd)= X,

then for scme 8§ > 0, the set
V= { y1.Ed): 0 (s <35

is a submanifold of U of dimension one.
Intuitively it is possible to define V4~ as

V7Y = g3 e s o ¥ et Sy, vau, Sy )

in some open subset of the positive orthant R:=' } ,

12



where "o" indicates the composition of functions and y*,, (X) is the "flow"

of f*(x)= f X,u,) for some u; € Q.
It can be observed that V¢—' c R,(X,)> (the space of reachable states from
Xod .

If § ¢ n, V¥ is constructed choosing an u; € Q and a X3! € VI—1,
This is always possible as if this is not the case, then every trajectory
of (I.11) starting on V*~' would remain on V="' for a while. This
contradicts the local weak controllability of (I.11).
It follows that it is also possible to select an open subset of the
positive orthant of R?, such that the map

(Syy vovy 850 2 (Wlay oy vy Yla) (Xo)

is an imbedding of the subset into U. This subset is called V3. Continuing
in this way until j = n , where V™ is a open subset of R,(X,), so that the
interior of R,(Xs) is not empty.

As for the converse, one can suppose that R,(X,) # © , then choosing a
control udt), t, ¢ t ¢ t, , such that the corresponding trajectory X(t) for
te € ¢ € t, , satisfies Xo(t)= X, and X(t,)= X, , with X, being an interior
peint of R,(Xy) and X(t) € U for all t € 1[to, t,1.

Letting y. (X, to) be generated by the time dependent vector field

fo(X)= £CX, udt)»,
that is

d ¥s (X te) _ fol yo(X, to) )
dt

with Y40 (X, to) = X

Then y. (., t,) is a diffeomorphism of a neighbourhood V of X, over a

13



neighbouhood of X,. Morover, one can choose V properly contained in R,{Xy)

and sufficiently small, so that y.,(V,t) is weakly locally reachable from

O |
The form of this proof is the commonplace in nonlinear system theory
proofs. In Chapter III a similar proof is developed which is more suited to
a practical application.
The characterization of the set R,(X,), depends on the following
definitions.

Definition I.4. (Boothby [1986]1). Let x(M) be the set of all the C*

vector fields over M, this is an infinite dimensional real vector field.
This space is a Lie algebra provided that

i) if x(M 1is a collection of vector fields on the manifold M, then (M is
a real vector space with respect to ordinary vector addition and scalar
multiplication

i1 furthermore if f, and f, belong to x(M) then the Lie bracket [f,, fz]
" also belongs to y(M. §

Let u denote each constant control u € Q, then f(X,u) defines a vector
field in xD. Assume also that F, denotes the subset of all such vector
flelds, for instance, the set of all vector fields generated from f(X,.)
through the use of constant inputs. Let F denote the smallest subalgebra
of y(M) containing F,, that is, the elements of F are linear combinations
of elements of the form:

[f,, fal,

[f,, [fz, fal 1,

[fy, [ fo {fy, a4l 1

14



0fy, fe o0 Ofy, f541 o000 11
where f;= f(X,u) for some constant u; € Q,

The representation of the system itself suggests the existance of a
space of tangent vectors spanned by the vector fields of F at .the point X
of the submanifold M. This tangent space is usually denoted by T(X).

Definition. 1.5, The system (I.11) 1is said to satisfy the
reachability-controllability rank condition at a point X, of M if the
dimension of T{X,) is n. If this is true for every X € M, then the system
(I.11) satisfies the reachability-controllability rank condition at M. B

Theorem 1.5. If (I.11) is locally weakly reachable-controllable, then
the reachability-controllability rank condition is satisfied on an open
subset of M, that is, the_rank condition is satisfied generally on M.

The proof of the above theorem, given by Hermann and Krenner [1977] is
very similar to theorem 1I.1, it 1{is constructed by a definition of
submanifolds over the different trajectories of the system through a given

point. The details are ommited here. I

The above results are related to the general system (I.11). 1In

practice it is more common to find systems of the form:

X(t) = f(x) + % u; g: (X0, X(0)= X, € M c R, (I.12).

immd

Hunt presented, in several publications ([1979]1, [19801, [1982.al and
[1982.b)1), a practical characterization of the rank condition for systems
given by equation (I1.12). This condition can be summarized by the main
result obtained in [1982.bl:

If every integral manifold N of the Lie algebra denoted L,, generated

by g+ 1= 1,..., m contained in M, contains a point X, where f(.) is tangent

15



to N, then the system (I.12) is controllable if the following conditions
hold for at least one such X in each submanifold N:

1) There exists a basis h,, ..., h, of L, near X and integers 1,
y+++y li, such that the space spanned by

{h, O, ..., h, X, f*, hy1 X, ..., [f* h1 X,

(ad'' f*, hy) X, ..., Cad'™ f*, ho) O )
has dimension n, where the vector function is defined as:

k
f*=f_zcihi

m= ]

and ¢y, i= 1, ..., k are constants. Also (ad® f*, hd)= [ f*, [f*, hll and so
on.

2) If the vector fields g;, i= 1 ,..., m are linearly independent and
involutive on M, the above condition is replaced by the span of

Cg X, vovy 820, [f, 811, vovy L[f, 8uly ooy
(ad*'f, gy) X), ..., (ad*™, g.) X)) .

This thesis shows the development of a practical application of these
results in the design of an Automatic Flight Control System for a single
rotor helicopter. The treatment of this theory, in order to obtain an
1nstrumen£ of design, is the topic of Chapter III, after the presentation

of a model of the system in Chapter II.

16



1.3 THE SYSTEM MODEL.

The application of the concepts presented in the previous section
require an appropriate representation of the system, in the present case, a
single main rotor helicopter. In this thesis a representation derived from
the model reported by Padfield [1981] and implemented in a simulation
package called "Helistab" has been used. This simulation package was
developed in the Royal Aircraft Establishment, Bedford. In general this is
considered a very well validated model.

The simulation package "Helistab" is a very helpful instrument in the
study of helicopter dynamics, but from the point of view of control system
design “Helistab" presents a serious limitation. There is no access to the
definition of the command inputs according to a control law defined by the
user. Moreover, the inputs can not be defined “on line",

In "Helistab" the helicopter is simulated according to an equation of

the form:

X(t)= £ + G, w (I.14)
That is, the rate of change of the state is the sum of a “"drift" term f(X)
€ C® and a “"driven" term G(X,u). This last term represents the forces and
moments exerted on the helicopter which depend on thé state X and the input
command vector u. As shown in section I.1, the "“driven" term must be

expressed in the form of a sum of the control commands, namely:

™

Zur; g (X, (1.15) .

i==7

Where u*, are the input commands and nonlinear relationships among them and

17



in this thesis, the terms g; are called the control vectors. That is, it is
necessary to express the forces and moments in function of the inputs.

The obtaining of such a function has not yet been reported. In chapter
two of this thesis a six degree of freedom model of a helicopter, where the
"driven" term is expressed according to equation (I.15) is obtained. In
this chapter it 1s shown that the "driven" term has the form:

Bo 8:1(X) + 8,4 g2(XD +.91c g3(X) + 85% g4 (XD + 85 644 8sCX) +

Bo 812 8a(X) + 8,5% 8-(X) + B35 8,2 8a(X) + 8,2 g5(X) + 8 816X
Where;

8o: is the collective main rotor command;

815 is the longitudinal cyclic main rotor command;

8,-.: is the lateral cyclic main rotor command and

8- 1s the tail rotor colléctive command.

The vector flelds g, X), i=1,..., 10, depend on the aerodynamic
characteristics of the helicopter.
- The details of the model used in this thesis are presented in chapter

two and in the appendices II.i, i=1,..., 3.
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I.4 NONLINEAR SYSTEM FEEDBACK EQUIVALENCE.

In section 1.1 of this introductory chapter the generalization of
controllability to "smooth" nonlinear systems was presented briefly. The
use of these ideas 1is treated extensively in chapter three in order to
design nonlinear control systems. These ideas were originally introduced
by Su [1982) and further developed by Hunt, Su and Meyer [1983]1. The same
results were independently published by Jackubzyk and Respondec [1980]1 and
Respondec [1985];

4 reader unfamiliar with differential geometry and differential
manifolds will find the above publications very difficult to follow,
between their abstract and the conclusion there is a body of mathematical
steps which are not presented in great detail. From the point of view of a
possible user of this theory, it is important to grasp the fundamentals of
the results to be applied. The purpose of chapter three is to develop in
detail the works by the authors mentioned above.

The aim is given a nonlinear system of the form of equation (I.12)
find a diffeomorphic transformation in function of its input to a linear
canonical form. That is obtaining a nonlinear control law such that the
original system behaves like a linear controllable canonical form. In this
chapter the nessesary and sufficient conditions required by a nonlinear
system in order to obtain the diffeomorphic map mentioned abave |is
presented. A constructive proof of the existance of this map 1s also

shown. All the relevant steps are presented.
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1.5 THE FLIGHT CONTROL SYSTEM DESIGN.

The application of Nonlinear Control Systems Theory to flight
mechanics is presented in the form of a Flight Control System in chapter
four.

The design is composed of several aspects. The complex nature of the
systém, force one to perform some simplifying assumptions, namely on the
input vectors and by considering the helicopter as a two time scale system.

It is shown that the simplification on the input vectors allows one to
apply a compensator, which performs a partial linearization and decoupling
of the system.

| The closed-loop system obtained by introducing this compensator is
analysed according to the theory developed in chapter three. A
diffeomorphic transformation of the closed-loop system to a linear
controllable canonical form is obtained. The development of Symbolic
Algebraic Manipulafion programmes required in the design are presented. The
relationship between the nonlinear system and the linear canonical form as
a function of the control inputs of the nonlinear system and the linear one
is also presented. Furthermore this relationship 1is solved for the
nonlinear system inputs, so that it is possible to calculate the inputs for
the nonlinear system equivalent to the inputs of the linear system. That
is, given a input in the linear system one can calculate an input that
would drive the nonlinear system in an equivalent way to the linear system.

The next step is to generate the control input of the linear system,

the pole assignment technique is used in this thesis.
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The Flight Control System is composed aof the compensator, the
diffeomorphic map of the closed-loop system obtained by applying the
compensator to the helicopter and a linear controller (pole placement
techniques).

The performance of the Flight Control System 1is investigated by a
series of simulations. According to the diffeomorphic map the nonlinear
system is mapped to four decoupled linear systems. The simulations are
intended to show that the Flight Control System divides the helicopter
state into four sub-systems, each one corresponding to the normal,

longitudinal, lateral and heading movements of the vehicle.
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A HELICOPTER MODEL.

Summary

In this chapter the equations of motion and orientation of a
single rotor helicopter are obtained in an (f,g) distribution form.

The interest in such models arises from the necessity to study
from the point of view of control systems, rather than design, the
dynamical behaviour of the helicaopter. The scope of the model presented
here is intended to be valid not only around a particular flight
condition, but over a set of manceuvres around a given operating point.

The model derived here 1is a modification of the equations of
motion used in HELISTAB, which is a simulation package developed in the
Royal Aircraft Establishment Bedford, for helicopter flight mechanic

studies.
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I1.1 INTRODUCTION

A model is formally defined in terms of the relations between general

systems, for instance ( Kramer, Smit de [19771):

" 1f a system M, epistemnlogically independent of a
system S, is used to obtain information about system

S, it is said that ¥ is a model of S ".

It is clear that helicopters require a set of models, each one
referring to a particular aspect, for example; design, operation or
stability and control. In particular, this thesis is concerned with flight
control, a topic that rests coﬁpletely on formal models. These models are
defined as symbolical sets of statements in logical terms about an
idealized, relétively simple, situation that represents the structural
characteristics of the original factual physical system. Within the scope
of the present study, only one kind of formal model is required, namely a
mathematical model. Entering more into the subject of flight control, this

is considered to be composed of (McRuer, Ashkenas, Graham [19731):

Guidance: The action of determining the course and
speed relative to some reference system

to be followed by the vehicle.

Control: The development and application of forces and moments
to a vehicle which:
1. Establish some equilibrium state of the
vehicle motion (operating point control).
2. Restore a disturbed vehicle to its

equilibrium state (operating point) and
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regulate, within desired limits, its
departures from operating point conditions

(stabilization).

With respect to control, two more points could be included, one
referring to the improvement of the facility to execute manoeuvres by the
pilot (handling qualities) and the other referring to the determination of
the set of manoeuvres that the vehicle can execute (agility).

The analysis of guidance, control, agility and handling qualities are
theoretically supported by formal models, from which the responses to
exogenous and control inputs, as well as stability can be estimated. The
importance of having an aircraft model directed to this study has been
considered since the begining of aeronautical science (MacRuer, Ashkenas,
Graham [1973]), such models according to the classification given by
Rosenblueth and Winer (Xramer, Smit de {18771), had been material and
formal. Nowadays it is more appropriate to consider formal models during
the first stage of flight mechanic studies. This is due mainly to the
developement of new mathematical tools and the enormous power of
calculation provided by computers. This is in contrast with the early
days of aeronautics in which prototypes of the vehicle (material models)
were used to investigate its flying qualities.

Most of the models wused in the analysis are mathematical
representations obtained via the theory of infinitesimal motions ar
perturbations around an operating point. This can be seen in any text on
stability and control, automatic control applied to aircraft and missiles,
and even in recent publications . This procedure involves the neglect of
second order terms. It also leads to a system of linear differential
equations as a representation of the system obtained, a fact that allows
exploitation of its homogenity and additivity features. 1In these

circunstances,assumptions valuable information about the behaviour of an

24



aircraft in a given flight condition can be obtained, in a significant
manner.

The approach usually followed 1in order to analyse the dynamic
characteristics of an aircraft is the linear system theory. This theory is
based on representations expressed as linear differential equations. The
results obtained are valid whenever the relationship between the physical
system and the model correspond to a homeomorphism, that is, the
relationship of model system entities correspond to an analog relationship
of equivalent entities of the physical system. Under the hypothesis of
small departures from the flight condition, it is possible to determine,
for example, the effect of the longitudinal cyclic or elevator command on
the pitch attitude of a helicopter or aeroplane respectively. In this case
the system is considered to be composed of Single Input- Single Output
(S8ISO) subsystems, so that the transfer function approach is adequate
(McRuer, Ashkenas and Graham [1973]1) and (Vanner). Given that the commands
of the helicopter are strongly coupled, the physical system is represented
better by Multi Input- Multi Output (MIMO) models, a fact that can be
confirmed by looking at the rotor dynamic equations (Bramwell [19761),
(Johnson [1980]1), (Gessow and Myres [19521) or a helicopter dynamic model
i1tself (Padfield [19811). The state space approach establishes the way in
which the problem can be reformulated and solved. These ideas were
formalized with the controllability and observability concepts in the
early 60's by Kalman.

The validity of the results obtained using the linear system theory
is restricted by the hypothesis of small perturbations or variations
around an operating point. In the case where the restrictions are
violated, the physical system and the model will not be related by a
homeomorphism, or in extreme conditions not related at all. This latter
point can be ilustrated by comparing the linear models of a helicopter at

hover and longitudinal flight, for example at 80 knots. This 1is an
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important limitation when large perturbations and manoeuvres are involved.
One possible solution is the use of several linear models for every
operating point. This technique requires an apriori schedule of the
manceuvres and a complicated logic should be incorporated to the flight
computer for switching the perturbation control gains and reference
control as the aircraft leaves the domain of validity of one perturbation
model and enters another. Even the procedure for choosing the set of
reference trajectories about which to perturb is unclear at present. This
solution is complex in concept and implementation (Meyer, Ciccolani
[19751).

These difficulties mentioned above have motivated the application of
nonlinear control theory for the future development of flight control
systemns.

The object of this chapter is to develop a helicopter model, which
will accomplish the fundamental condition of homeomorphism with respect to
the physical system, beyond the small perturbation assumption. This model
is essential to the development of this research. It will play the role of
system "M" in the contest of the definition of "model" given previously.

The following helicopter dynamic model was obtained according to the
notation and general development reported by Padfield (19811 and
implemented in "Helistab" which is a simulation package developed in the
Flight Systems Department of the Roygl Aircraft ©Establishment, Bedford.
This package is generally accepted as a well validated model of a six
degree of freedom single rotor helicopfer.

The model obtained here is restricted to the same assumptions of the
six degrees of freedom model used in "Helistab", and therefore its
validity can not exceed the limits of these restrictions. Nevertheless,

the following model considers the most important nonlinearities.
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11.2 NATURE OF THE MODEL.

As Babister {19801 pointed out, flight dynamics deals with the
motion of aircraft under the influence of forces, which can be of the
five types listed below (inertia "forces" have been eliminated, this

can be done if the principle of 4'Alembert is not used):

1. Aerodynamic damping forces and moments, depending on the
angular velocities of the aircraft.

2. Aerodynamic  forces aﬁd moments depending on  the
translational velocities of the aircraft.

3. Aerodynamic forces and moments due to the application of
controls.

4, Gravitational forces.

5. Propulsive forces, in the case of the helicopter these
forces are strongly related to the aerodynamic forces due fo

the application of controls.

The flying characteristics of an aircraft depend on its
responseA to the application of its commands which generate the
necessary forces of types 3 and 5 (given in the above list). These
balance the other forces, making the aircraft execute a desired
trajectory. Due to this fact, the problem can be formulated from the
system theory point of view. The helicopter will be referred to as
the system, in this case it will be associated with a deterministic
mathematical representation, specified by five sets; (T, U, Y, X,

Q) and two functions “o and fi, where:

T is the time set, a subset of the real numbers or natural

numbers.
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Vvis the input set, in this case composed of the helicopter
commands. |
Y is the output set. R®, P ¢ N.
X is the state set. R°, ne N n 2P,
Q is the set of admissible input functions, a subset of the set
of all functions T2V, which is closed under splicing, that is,
for all u: and uz in Q, for all times tz in T, there exists a
function u™ in Q such that:
I u1 if tt=
u*(t)= |
I uz if ta<t
g TxTx X x Q99X
The latter is the state transition function and satisfies the
conditions of consistency
‘2 to, to, x, W= x
and
"pltz, ti, "o( ti, to, x, W, W= "8 tz, to, %X, W,
for all times to, t: and t= all state x and all admissible
.input functions u.
The condition of causality is
"e(ti, to, x, u1)= "B( t1, to, X, u=z)
and 1f u:1(t)= u=(t) for tot¢ ti.

#: T x X Y is the output function.

The system is assumed to be stationary (constant or time

invariant): this implies that T is closed under addition, Q is closed

under the shift operator z= for every 1t in T and

“g(t:, to, x, W= "a( ti1t1, totr, X, ZTW

for all times to, ti, all delays T, all states x and all admissible

input functions u;
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i (to,x)= fi{t1, x)
for all times to, t: and all states x.

The above condition allows one fo remove one time variable,
replacing "¢ and fi by simpler o and n, where:

: TxXx Q23X
and

n X23Y

In physics, it is usually not &(.) that is given, but rather
the laws of motion. In other words, some differential equations are
given that must be solved in order to find the state transition
function. These equations of motion have the form:

dX/dt= § O, X(0)=Xo given

where § is a (possibly time dependent) vector field on X. This last
relationship allows the elaboration of a formal structure for the
model, for example; the function § can be a vector field on a
manifold M, an integral curve of § can be defined at some point.m of
M, defined as a curve c(.> at m such that 1its derivative
c'=f(c(\)) for each X in a subset of R. The obtaining of the
integral curve c()\) 1leads to a set of ordinary differential
equations. Their solution rests on the well-known existence and
uniqueness theorems for ordinary differential equations (Padulo,
Arbib 1[19741)>, (Thorpe [19851), <(Abraham, Marsden [1981]1). This
problem will be treated in detail in the next chapter: the present
chapter is dedicated to the development of a function § for the

helicopter.
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I1.3 AXES ,SYMBOLS AND EQUATIONS OF MOTION.

The general equations representing the motion of an atmospheric
flying vehicle are wusually referred to body axes system, which 1is
described as follows.

The body reference frame is represented by 0XYZ, where the origin O
lies on the centre of gravity of the helicapter; The axes 0X, 0Z, lie in
the plane of symmetry and the axis OY is perpendicular to it. The name of
the axes are:

0X: Longitudinal axis, positive forward.

0Y: Lateral axis, positive starboard.

0Z: Normal axils, positive toward the undercarriage of the vehicle.

The axes will be right handed.

The orientation of thé helicopter with respect to the inertial
frame, assumed fixed on earth will be specified by the vehicle Euler
angles 6, ¢ and y:

y: Rotation about the axis 0Z, carries the axes to 0X,YuZ;

8: Rotation about the axis OY, carries the axes to 0XeYeZe and

#: Rotation about the axis O0OX, carries the axes to their final
orientation.

In order to facilitate the analysis the following assumptions are
considered:

1) The Earth is a stationary plane in the inertial space.

2) The centripetal acceleration associated with the Earth's rotation

is neglected

3) The atmosphere is at rest relative to the Earth.

4) The helicopter is a rigid body.

The symbols used to represent the components of the velocity of the

centre of gravity of the helicopter and of its angular velocity, together
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with the components of the aerodynamic forces, and moments and products of

inertia of the helicopter are summarised in the following tables:

VELGCITY AND FORCE COMPONENTS

AXIS X Y YA
VELOCITY u : \4 W
FORCE Xe Y= Ze
POSITIVE forward starboard downwards
DIRECTION

NAME longitudinal lateral normal

ANGULAR VELOCITY AND MOMENT COMPONENTS

AXIS X Y z

MOMENT Lim M Nm
ANGULAR P q r
VELOCITY

POSITIVE starboard down nose up nose to starboard
DIRECTION

NAME rolling pitching yawing

MOMENTS AND PRODUCTS OF INERTIA

AXIS X Y vA
MOMENTS OF I.= S(y2+22) dn  I,= (=422 dm I.= ((x=+y®) dm
INERTIA
PRODUCT OF . Iy== {yz dm= 0  I.e= §xz dn L= (xy dm= 0
INERTIA

The general equations representing the motion of a rigid flying
vehicle referred to body axes are well known(Etkin [1972]1), (Seckel
[19641), (Johnson [19801), (Babister 19801), 1i. e.:

TRANSLATIONAL EQUATIONS

u= vr = wqg -~ G (sin 6) + (1/m) Xr
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v= wp -~ ur + G (cos 8) + (1/m) Ye

W= ugq - vp + G (cos 8) + (1/m Ze

ROTATIONAL EQUATIONS
Tocse é= (Iyy = Iz=) ar + Iz (f + pq) + Lm
Iy é= (Izz = I.odd rp + L= (= - p2) + M

j f: (Tocoe — Iyy) Pa + Toex (p - qr) + Nm

ORIENTATION (KINEMATIC EQUATIOND
}= P t q (sin g) (tan 8) + r (cos g) (tan 6)

8= q (caos ¢g) -~ r (sin ¢)

y= q (sin ¢) sec(8) + r (cos g) sec(B)

where G 1is the acceleration due to gravity.

The total forces and moments are the sum of the contribution of each
vehicle element. In the case of a single main rotor helicopter the
contributions afe due to the main rotor, tail rotor, tailplane, fin and
fuselage. Considering this, the forces can be expressed as reported by
Padfield [19811:

Ie= X + X7 + X9 + Xen + Xo

Ye= Y + Y7 + Yre + Yenu + Y

Zre= Zr t Zv + Zve t Zen t+ 2y
where the indices from left to right, are the contributions of the main
rotor, tail rotor, tail plane, fin and fuselage respectively. If the
vertical plane of the helicopter is considered to be a plane of symmetry

then the force equations are reduced to:
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Xe= Xr + X
Ye= Y= + Y7+ + Yen + Y+
Ze= Zr t+ Zve t+ Z+
In appendix A.II.1 it is shown that the rotor forces can be

expressed as:

= <Kex, Oma>
Y== {Kev, Bra2

Ze= <Krz, Or>

where the symbol <., .> indicates the inner product operation, the vector

O is a vector whose components are the main rotor commands and a

constant,
8r= [B0o, 81w, B1., 11
where
Bo: is the collective command,
01s: is the longitudinal cyclic command,
01c: is the lateral cyclic command
and t: indicates transpose.

On the other hand, the vector Ors is composed of the rotor commands and

its coupled and nonlinear terms:

Bra= [Bo, 014, B1c, B0%, B0 B1s, Bo Bi1c, 01s%, B1s 01, 013, 11*
The vectors Kex, Kev and Kez are vectors whose compopents are functions of
the aerodynamic parameters and the state, these functions are described in
Appendix II.1.
The fuselage forces X¢, Yr and Z+ and moments L¢, M¢ and N are
calculated from semiempirical forms using wind data tunnel (Padfield

[19811). These forces do not depend directly on the helicopter commands,

33



as can be seen in appendix II.3. Their expressions will not be expressed
as inner products.

The fin and tailplane forces are described in Appendix II.2. These
expressions are not changed to inner products also as they do not depend
directly on the input commands.

The tail rotor force Y+ is analysed in appendix II.4. Vhere it is

shown that this force can be expressed as:

Yr= {Krarr, BOrwr?

where

O-re= [Oor, 11*

and Bor is the tail rotor command.
Therefore the force equations can be expressed as
X== X¢ + <Kex, Ora>
Y= Y + Y + <Krair, B> + Kev, BOra’
Ze= Zve + Zr + {Kez, B> .

The moment equations can be written in a similar way

Lm= Lr + L+ + Ltr + Len + Le

)

e + M+ + ¥re + ¥ + NMs

Fm= Br + Nt + Nt + New + Ne

If the assumptions of symmetry are considered again then the moment

equations can be reduced to:

Lm= Le + L+ + Lewn
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M= M= + Mrr + Me

Nv= Nx + N+ + Bew + Ne

In appendix II.1 it is shown that the main rotor moments can be

expressed as inner products,

Lr= <{Kri, Bra>
Mr= <{Kem, Ora>

V= (KRN, BraY ’

where the vector functions Kmi, Kem, Ken are described in appendix II.1.

In appendix II1.2 it is found that the tail rotor moment can be written as

Lr= {Kt, Brwr>

N+= <{Ktn, O+w> .

The vector functions Kr. and K+n depend on the state and the aerodynamié
characteristics of the helicopter.

The description of the tail plane, fuselage and fin moments
contribution are described in appendix I1.3., As these moments do not
depend on the input commands they are not expressed as inner products.

Replacing the above expressions for the moment contributions of the

rotors in the moment equations we obtain

Lw= Lr + <Kto, Orr> + <Krm, Omra>
M= Mre + Me + <Krm, Bral

Hm= Nen + Ne + {Ktn, B> + <Krny, Orad

In order to achieve only one vector referring to the helicopter

commands, a general vector © is defined which is formed as follows:
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8= [Bo, B1a, B1c, B0%, Bo B1s, 8o B1c, 81s%, B1=c 01, 812, O, 11 %
Then the vector @ can be considered as the input command vector of the

helicopter, thus permitting the dynamic equations to be expressed as:

FORCE EQUATIORS
X== X¢ + <Kx, 0>
Ye= Yen + <Ky, 82

Ze= Zve + Z¢ + <K=, B> '

where the vectors Kx, Kv and Kz are defined as

Kx= (1/m) (Kexti,..., Kexg, 0, Kex102)*
Kv= (1/m) &evi,. .., Kevea, Krazni1, Kevio + Krazrz) *®
Ke= (1/m) Kezry oo, Kez=, 0, 0, 0, O, 0, 0, 0, Kezad) * .

MOMERT EQUATIONS

Lm= Len + <K, Orr>+ < Ko, 8

M= Mve + ¥ + <Km, 0>
Nw= New + Ne + <Kn, 6> ,

where the vectors K., Km and Kn are defined as

K= (1/Ixx) Kretyoo., Kres, Kriar, Keeio + Krezd ®
Km= (1/Ivvy) &rmiyeoo, Krms, 0, Kemia)
Kn= Kenityoovy, Krwns, Krni, Kenio + Krwz)

Finally, the equations of motion of the helicopter can be put in

terms of of the inner product as follows:

TRANSLATIONAL EQUATIONS

u= vr - wqg - G (sin 8) + (1/m) %= + <Kx, 8>
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v=wp - ur - G (cos 8) (sin g) + (1/m) Yew + (1/m) Y¢ + <Kv, 6>

w=ugq - vp - G (cas 8) (cos g) + (1/m) Z+= + (1/m) Z+¢ + <K=, 6>

ROTATIONAL EQUATIONS

(1/Ixx) { (Ivv = Ixx) gr + Ix= (r + pq) + Len ) + <Ko, 65

-
]

(1/Ivy) { (Izz - Ixx) rp + Ixz (r® - p*) + Mye + Mr )2 + <Km, OO

Qoo
1l

V.v: (1/I=z=) { (Ixx — Ivv) pq + Ix= (1') -qr) + Newn + Ne¢ )} + <Kn, 62

In this chapter the dynamic equations of the helicopter, in which
the input commands are associated in separate terms, have been obtained.
This allows the helicopter flight dynamic model to be expressed in the

following form

x(t)= £(x) + I us g:1(x)

im=

where x 1s in the R™ space, n= 9; ui are the elements of the vector 6;

k= [ u, v, w p, q, r, #§, 8, y1* the function f is
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vr - wq — g (sin 8) + (1/m) X¢ + Kx1:a
wp - ur + g (cas 8) (sin ) + (1/m) (Yen + Y¢) + Kyvrn
ug - vp + g (cas 8) (cas ¢) + (1/m) (Zvre + Z¢) + Kz
(1/7Ixx) {(Ivy - I=2) gr + Ixz (r° + pg) + Len}
fGo= (U/Ivy) {{Izz - Ixx) rp + Ixz (r® - p*) + Mre + M)
(1/1=z2) {(Ixx - Ixz) pq + Ixz (p° - qr) + Newn t+ Ne¢?
p + g (sin ¢) (tan 6) + r (cos g) (tan ©)
q (cos ¢) - r (sin ¢)

q (sin ¢g) (sec B) + r (cos g) (sec B)

and;

8= u = [U1, Uz o ooy Uial *

Finally

g1= [Kxi, Kvi, Keri, Kes, Kmsy, Kwsy 0, 0, 03*+; i=1,...,m m= 10,

The model presented here has the advantage of enabling the
functions f and g: to be considered as a distribution on a manifold U
contained in R™ (for this reason this equation will be referred to as the
£, distribution model form). In the following chapter an application
of nonlinear control theory based on differential geometry will ©be

presented;in this, it is necessary to have an (f,g) model of the system.

In table 1 the data for a representative transport helicopter are

presented. These are the data which are used in throughout thesis.
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Chapter IIT.

LINEAR EQUIVALENCE OF NONLINEAR SYSTEMS.
Summary .

This chapter deals with a direct application of differential geometry
to the nonlinear control system problem. The application is presented in
detail and some of the more important mathematical tools are discussed.
This application rests on the concept of the feedback equivalence theory of
nonlinear systems introduced by Respondeck [1985]1 and Brocket [1978].
However the essence of the method presented here was develobed by Su, Hunt
and Meyer [19831. The nonlinear system is assumed to be represented by an

(f,g) distribution model.
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ITI.1 INTRODUCTION.

In recent years there has been an Iincreasing interest in the
linearization problem of nonlinear control systems. In many circumstances
linear models of nonlinear systems do suffice for the design of
controllers and observers. However, as pointed out in the previous chapter,
in many other situations the intrinsic nonlinearities of the studied system
are of interest. To pose the problem in other words: is it possible to
transform the system into a linear form using such a transformation as a
change of coordinates in the state space, state-input space, output-
feedback and input injection?.

When studying smooth systems, differential geometry provides methods
and tools like Lie brackets of vector fields, the Lie derivatives of
functions, involutive distributions and integral manifolds which help to
answer the above questions and to distinguish those systems which may be
treated as linear ones.

Among all problems the most natural question 1s when does a
change of <coordinates exist?, in other words when 1is there a
diffeomorphism which carries the given nonlinear system into a linear one.
Studying such questions, Krener [19731 showed the importance of the Lie
algebra of vector fields generated by the system. He also showed when it
was possible to obtain such a change of coordinates. Later Brockett in
[19781 enlarged the studied claés of transformations by also allowing a
certain form of feedback to act: his paper has inspired the subsequent
research in the field. Among the works originated by Brockett's work are
Jakubczyk, Respondec [1980], Su [1982] and Hunt, Su [1981]; in these works,
the full feedback group was considered and gave necessary and sufficient

conditions for linearization.

In this chapter the system will be assumed to be of the form:
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L

x(t)= f(x) + T uy §.(x) ;  x € RO (ITI.NLS. 1)

1

where f, g,, &zy..+., 8w are smooth vector fields on R". The word smcoth
will always mean C.

In most cases the assumption of infinite differentiability is not
essential, but it is assumed in order to avoid having to count the'degree
of differentiability needed in some cases.

It 1s assumed that an initial state x, € R» around the operating point

is given. The linear equivalent system is required in the form:

m

y(t)= Ay + I vy by(x) ; ye€R" (I11.L.1)

ime?

Throughout this chapter it is considered that f(x,)= 0 . Without this
assumption the results still hold, but it is necessary to consider a
constant in the vector field Ay. This problem can be avoided if the
linearizing transformation maps xo to 0. Reboulet and Champetier [1984]
presented a pseudo-linearization which does not depend on the operating
point.

The results presented below are local. This means that the conditions
requied need to hold 1locally around the initial state =x,, and the
linearizing transformation exists locally around this point. Nevertheless
Hunt, Su and Meyer [19831 gave the necessary conditions for global
aspects. The same problem has been studied separately by Respondec [1985].

The spirit of the feedback linearization can be described with the aid
of an academic example. The example presented by Su [1982], which has been
used in subsequent publications, for clarification and comparation, for
example by Reboulet and Champetier {19841, is used here:

Consider the nonlinear system;

i, X cos(x,;)

] o= + u (ITL.AD

X 0 1

on R*, It is straigthforward to observe that if new coordinates of the
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following form are introduced:

Z2:= —X= + In 1 tan{k x, + 4% n) | ; (ITI.B. 1O
ZoT X2/ C0S(X4) ; (III.B.2)
Vo= X=2® tan(x,;)/cosix,) + u {x. sin(xy) + 1}/cos{x,?’ (I11.B.3) ,

then the above system takes the following linear form:

=1 |+ v (111.0)

This means that the nonlinearity of system (III.A) is not intrinsic
and occurs due td an unfortunate choice of coordinates. If the coordinates
are replaced according to equations (III.B), the linear system (III.C) is
obtained.

The above leads to the problem of finding a change of coordinates of
the state-input space, namely linearization by means of a diffeomorphism
expressed in terms of the control input, that is by feedback.

Consider a nonlinear control system of the form:

m

X()= £ + 2 ug g.(x) ;  xe RO (III.NLS. 1)

4omy

Where f, g:,...,8. belong to V=(R™), the family of vector flelds on a
manifold contained in R”. This problem leads to the generalization of the
linear feedback case, comprehensively studied by Brunovsky [1970]. Namely,

consider the linear system;

y()= A yt) +B v ; yeRy veRe (I111.L.2)
Its dynamics can be modified by the linear feedback v=F y + H w , where F

and H are matrices of appropriate dimensions and H is invertible:

yit)= (A+BF) y+ B w .
where w is the reference output.
For the nonlinear system (III.NLS.1) where u= (uy,...,u, % the

nonlinear feedback u= «(x) + B(x) v is applied, where o(.) and B(.) are
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(mx1> and. (mxm)> valued smooth functions respectively, and B() is

invertible. This gives the modified system

()= (F + G o) x + (GB) u,

where Zu; 8:.x)= G u s

1 vam

The nonlinear decoupling and noniterating control problems are
extensively studied by Isidori, Krener, Gori-Giorgi and Monaco [1981],
Isidori and Krener [19821, and Isidori [1985] in particular an answer to
the question : when can nonlinear systems of the form (III.NLS.1) be

transformed to linear systems of the form:

yitd)= Ay + T v, by(x) ;  ye R

iwm

under a change of coordinates and a feedback? The change of coordinates is
given as T= T(x) and the feedback is of the form v= alx) + B{(x) u . Here it
is convenient to remark that equation (III.B.3) has this form, can be
solved for u, and that then, is obviously a local result. In fact one of
the conditions necessary and sufficient for such a transformation to be
global 1s completeness. Equation (III1.B.3) s not defined for all R=.
Nevertheless for some practical purposes this condition does not 1mpedé the
application in a wide operating range of a certain kind of process, as can
be seen in the application presented by Liceaga-Castro and Bradley [1987].

The above questions give rise on the following concept. A C
distribution A(p) on a manifold M at p, of dimension I1=m + k, 1is a set of
m linearly independent vector fields g,,...,8. which form a basis and an m-
dimensional subspace of the taﬁgent space of M at p. It Is said that A(p)
is a C° n-plane distribution of dimension m on M and g4,...,8. 15 a local
basis of A. If A() is defined for all x € M, it is sald that A() 1is a

regular distribution.
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Using this definition, the geometrical interpretation
of the problem is in finding a manifold M such that its tangent space is
generated by the vector fields {f, g),...,8.) and that this state can only
be defined on this manifold and nowhere else. Then the problem is reduced
to finding a coordinate chart for this manifold, where the state-input
relationship is linear. Furthermore this change of coordinates can be
solved for the input u.

It is intuitiéely clear that the results and conclusions from systems
using the traditional approaches depend on the theorem of existence and
uniqueness of the solution of ordinary differential equations. This
dependence is very well presented and discussed from the point of view of
control systems by Padulo-and Arbib [1874]1. The Frobenius theorem plays an
equivalent role in the geometric approach. This theorem can be expressed in
many ways, and at different theoretical levels, as is evident in the
literature o% the subject, for instance Lang [1862], Abraham and Marsden
(19811, Boothby [1987]1, Choquet-Bruhat, DeWitt-Morette and Dillard-Bleck
[19771, Brickell and Clarck [1970]1. The version. (a crude one) used in
Nonlinear Control Systems 1is usually stated as: a distribution A |is
integrable if and only if it is involutive.

On the other hand, the Frobenius fheorem may be considered as the
generalization of the existeﬁce theorem (of ordinary differential
equations) to certain types of partial differential equations, namely
Pfaffian systems. Choquet-Bruhat, DeWitt-Morette and Dillard-Bleck [1977]
snalysed the parametric solution of the Pfaffian equations from this point
of view. The same method is applied in this chapter.

In the following sections of this chapter, the procedure proposed by
Hunt, Su and Meyer [1983] 1is presented in detail. This procedure |is
composed of some of the ideas mentioned in this section, and is synthesized
by the concept of linear feedback equivalence of systems which consists of

a change of coordinates of the input-output space and feedback.
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111.2 Preliminaries.

The purpose of this section is to present the most important concepts
and notation essential to the study of nonlinear systems and in particular
to the development of this chapter. The source of these concepts |is
differential geometry. The notation used in this chapter can be considered
as standard. On the other hand, only the strictly necessary concepts are
presented, nevertheless some proofs are included in the appendices.

Definition. Lie bracket.

Given two C f(.)> and g(.) on R”, the Lie bracket of f and g is

defined by
= 08 - 0of
[f,gl > % f > % g . (III.LD. DO
b g o f
where > x and > % ~ are the Jacobian matrices.

The Lie bracket operation can be applied successively, 1. e.,
(ad°f,g)= g
(ad’f,g)= [f, gl

(ad=f,g)= [f, [f,gl]

(ad*f,g)= [f, (ad“~'f,g)]
Let M be a manifold of dimension 1= m + k and assume that to each p €
M is assigned an m-dimensional subspace A(.) of the tangent space of M,

denoted T, (M). Furthermore suppose that in a neighbourhood U of each p
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there are m linearly independent C~-vector fields f,, f.,..., f, which form
a basis of A(.) for every q e U. Then A(ps is said to be a C® m-plane
distribution of dimension m on M and f,, f.,..., f,, form a local basis of
A,

A distribution A(.) is said to be involutive if there exists a local

basis f,, fz,..., f. in a neighbourhood of each point such that

[fy,f31=2 c*y; fu 1¢4, j2m.

fowmy

The Frobenius theorem can be expressed as follows:

Let {f,, fz,..., f,} be a set of involutive and linearly independent
vector fields in R and X, € R", then there exists a unique m dimensional
c- sﬁbmanifold S contained in R™ through x,, with the tangent space
generated by f,, f»,..., f,. The subset S of R" is defined as the unique
integral manifold of f,, fs,..., f, through xo.

The_Lie derivative of a function is defined as follows:

Given a C~ function h on R® and a (= vector field f on R™, the Lie
derivative of h with respect to f is expressed by

L¢ C(h)= <dh,f> (IT1.LD.2)
where <.,.> denotes the duality between one-forms and vector fields and dh
denotes the gradient of the function f.

Lie derivatives of one-forms:

If dT is a C= one-form on R", the Lie derivative of dT with respect

to a C= vector field f on R™ is defined by

(ITI.LD.3)

L, (T)= f* —2 iT o f

+ dT > %

d dT and o f
D x o x

where t denotes transpose and are Jacobian matrices.
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In Appendix III.1 it is shown that the gradient of the Lie
derivative with respect to a C» vector field f on R™ of a C= function h on
R is equal to the Lie derivative of the gradient of the function with
respect to f, 1. e.

dLs (h)= L, (dh) (ITI.LD.4)

In the Appendix III.1 above it 1s also shown that the three Lie
derivatives are related by the Leibnitz rule

L¢<dT,g>= <L,(dT),g> + <dT,[f,g1> (ITI.LD.%
with f and T as before and where g is a C= vector field.

The relations defined in this section are the tools used to define a
linear equivalent system for smooth nonlinear systems. The way in which

these relations can be handled is presented in the next section.
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I111.3 EQUIVALENCE OF SYSTEMS.

In the introduction to this chapter a philosophy allowing one to
tackle the problem of nonlinear control systems was presented. In the next
section some mathematical tools were introduced. In the remainder of this
chapter, the application of the ideas described in the first section, using
the mathematical concepts defined in the second, will be considered. The
ideas presented here were originally developed by Su [1982] and Hunt, Su
and Meyer [1983]. These ideas are presented in detail in order to display
the essence of this relatively new theory and to make easier its general
application.

In this section a transformation T is presented, which transforms a
nonlinear system into a linear canonical form. The characteristics of such
a transformation are obtained, after which, the transformation T between
the nonlinear system and the linear canonical form is presented as a
function of the control input. The condition needed in order to obtain the
transformation T for the control input is also given. Finally, provided
that this condition is accomplished a feedback linearization is def ined.

The following definitions and theorems give the grounds for the
development of this section.

Consider the inverse function theorem (Abraham, Marsden [18811) which
can be expressed as:

Theorem. II1I1.1. Let W and F be a subset of R™*™ and let T be a C=

mapping such that T:W4F. Let x, € W, and assuming that DT(x,) is a linear
isomorphism, then T is a C® diffeomorphism on some neighbourhood of x.
onto some neighbourhood of T(x,). # |

Now let x, be the origin of W, By the above theorem, it is clear that
if DT(xo) is an isomorphisﬁ, then T maps a neighbourhood of the origin of W
to some neighbourhood of T(x,). Furthermore, if T(x,) is the origin of the

image, then T can be classified according to the following definition:
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Definition IJI.1. Let W be an open neighbourhood of the origin in the

R™*™ gpace.

A_z-transformation T with domain w is a diffeomorphism onto an open

neighbourhood of the origin in R™™ which is nonsingular and maps the
origin to the origin. B

It follows that the set W is assumed to be of the form X x R™™, where
is an open neighbourhood of the origin in R™ and will be referred to as the
state space, so that

T: W=X x R**™ 3 Y x R™ ¢ Rowm

The nature of X x R and Y ¢ R” will be defined according to the model
structure given in the previous chapter, namely
CXyy vy Zmi Uy veey Ug) € Wand C ¥y, vovy Pmg Vi ooey V) € TN
denote the state-control variable in W and T(W) respectively.

Now let S, and S» be two different systems such that

S, is defined by §= a( Xy, vvvy Xpy Uy, ..y W), with state transfer

‘function ¢ and

S» Is defined by y= b( ¥4, ...y ¥i Vi, ..., V.), with state transfer
function y.

Definition II11.2. Let W be a subset of R ™. The system S, is 1I—

related to system S. if there exists a t-transformation T on W such that
for each state xo € X, and each admissible control u(t) € Q (the set of
admissible control functions), the following conditions are accomplished:
y(0)= TXe; ul0)) and TC @(t,xe;uw), ult)d= (ytd, v
whenever
e{t; Xo, W € W then yt)= y(t; yo, v . 1

Definition 1I1.3. If S, is 1-related to S- by the transformation T

with domain W it is said that S; is T-related to S.. &

Given the above definitions, the problem can be reduced to finding a

t—~transformation which maps the nonlinear system
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Y= f,t) + T ou, g (x(B)) ,  £(O= £, (III.NLS. 1)

L=

to a controllable linear system. In particular it can be mapped to &

Brunovsky canonical system

y(t)= Ay + B v, (111.1.2)
The matrix A is of the following form:

block diagl U,, ..., U,]
where the matrices U,, ..., U, are matrices of order K; x K;, i=1, ..., m
with the unity in their diagonal and zeros elsewhere. And the matrix B is

formed as follows:

8, Ikt

€ Loz
where e;, i= K,, ..., K., are the K;th standar basis vector of dimension
Kiy and I,, i=K,, ..., K,, are the unity matrices of order K, x Ky (i=1

y M) respectlively,
The indices K; in matrices A and B are the Kronecker indices and o0,=
Ky, 02= K,+Kz, ..., o,= Ky+...+K,, are the controllability indices.
In the work published by Hunt, Su and Meyer [19831, it is shown that

if a nonlinear system is equivalent to the Brunovsky canonical form then

a) The Jacobian matrix d T, _ o, 1= 1, ..., mand k=1, ..., m.
0 Uy

b) The m x m matrix o Ty , J= n+l, ..., ntm ‘and k= 1, ..., m
2 U

c) The foolowing partial differential equations hold on a set W

contained in Rr*™:
<dTy, g.>= 0, (III.PD. 1)

where 1= 1,..., o,-1, o,+1, ..., Op-y—1, Op-y*+l, ..., Dn-1.
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m

dTs,, f + 2 u () g, (x()00= Ty

4

(IT1.PD.2)

]

AT, £ + 2 u; (1) g, (x(1))>= T,

i

and
dTy, £>= Tiay

where 1 is the defined as in equation (III.PD.1).

Hunt, Su and Meyer showed that if the transformation T exists then
conditions a), b) and ¢) should be satisfied. This is shown in detail in
the three points below:

Condition a). Let Xo, U, Yo, ¢ and ¢ be defined as in system S; and
Sa. If yo= T(xo, uf0d)) and

TCo(t; %o, W)= (y(t), v(t)) so that

ys (W)= Ty (p(t; %xo,w), ult)), for j=1,..., n and

vy ()= T (o (t; %o, W, ult)), for i=1,..., n+tm .
By this hypothesis y= ( y,, ..., y.) is a state vector of S, with control
inputs v(t)='(v, yevey Vi),

If the linear state equation (III.1.2) is expressed in terms of the
transformation T and the partial derivatives with respect to time is taken,

then the following equation is obtained:

O V. - O Tilelt; %o, W, ultd))
ot >t

Using the properties of the state transfer function the above

equations can be written as:

= , i= 1 ,..., n.

0 Vi o T (x,w
> t >

Applying the chain rule to the last equation one can see that
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bli= ja bTi dx-r mbT1 dU. , _
5t~ ow at TRy ar ¢ kL.

The importance of having the transformation of the states T, i= 1,
.., n, indepedent of the control u, allows one to solve for the control
inputs u, in the transformed state-input space. Liceaga-Castro and Bradley
[1987], showed that in some cases it is possible to design a T
transformation for nonlinear discrete systems, whenever the transformation
of the state does not depend on the control inputs. The importance of this
characteristic will become apparent through this section.
The rows of the linear canonical system depend, by hipothesis, on the
transformation y;= T;(x,w, i=1,..., n, and v;= To.; &, W, = 1,..., m
It is obvious that the derivative of y depends on x and u, and not on
the derivative of u respect to time, as a consequence, T; i= 1 ,..., n do

not depend on the derivative of u respect to time either, therefore

.b....ll:O

> o ) i=1,..., n.

This proves condition a).

Condition b). The T transformation is defined as a diffeomorphism

therefore its Jacobian matrix

2 T > T, 0

—l e . 0

O X, b X

o Tn o Ty 0 L 0

Fo) X4 [} X

D Trws 0 Ty d Thas O Trus
D X4 e D Xn d u, T D U

b T‘I‘!""ﬂ b TY\“‘I’(I b Th"'fﬁ LR b Tn-‘-ﬂ'l
d X, 0 X, O U, 0 Uy
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is nonsingular. Therefore, if T exists, the matrix

D Tpes O T
O uy e d U,

D Trorm O Tham
b} U, e o} Uprtra

is also nonsingular. This proves necessity of condition b).

Condition c). The Brunovsky canonical form can be written as

VAR E



Yome1 =17 Yom—1
YJm_1: Vin—1

y0m~1+1= yﬂm~1+]

YN~1= Yn

YHz Vi

which can be expressed In terms of T:

%1: Tz

'i‘a"—-‘l= Tt}'
+u1= Tn—1

Ta1+1= T61+2



T"'rru*! -1 = T

Sm~—1

Tcr,-,,._ 1 = Trn-t-n+ 1

T"—"m—'l 1= T'»’m—‘l +2
Tn~~1 = Th
Tﬁz Tn+rn

From the above equations, one can select the following:

Ti= Taiws
where
1= 1,2, ..., 04y-1, o,+1, ..., 0=-1, Oxt+1l, ..., 0;_,-1, Cp—yt+l, ..., n-1 .
On the other hand, 1if the original nonlinear system (III.NLS.1) |Is
considered, then the above equations can be expressed as the Lie derivative

respect x.

™m

dTy, f + 2 vy 8:2= Tiar

iwmmy

where 1 is as defined previously, (the index 1 will have the same meaning
in this chapter) and the arguments have been eliminated for the sake of
simplicity.

The last equation can be rewritten as

LdT, > + E uy <dT;, g:2= Tyas

i=1
From condition a) previously shown, which establishes that T,., terms do
not depend on the input u, it is concluded that:
dT,, >= Ti.y

which are the partial differential equations (III.PD.3), and
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u; <dT,, g:>= 0 ; for every admissible u;, so that
1

3

i

T

T <dT,, g:>= 0

im=)

which are the partial differential equations (III.PD.1).

On the hand the states with indices ¢,, ..., o, are expressed by

Ta::'~|= Tn+1= vy

TC‘ = TT\’PTI‘I = Vl'l‘l

il

In this case v;, 1= 1, ..., m depends on u;, i= 1, ..., m then the

partial differential equations (III.PD.2) are obtained:

Tre1= < dTay, £ + 2 Uy 84

1=

Tasw= < dT, £ + 2 uy g4
i=1

This proves the condition ¢). 1

The three above conditions establish the basic mathematical structure
of the T transformation. This structure can be simplified according to its
the three Lie derivatives given In section two of this chapter. For
example, consider:

< dTy, 2= Tya, )
where
1= 1,2, ..., 04-1, o,+1, ..., Ox-1, O2*1, ..., Op-y=1, Cp-y*+l, ..., n-1 .
The Lie derivative of the one-form dT, with respect to f is
T1e1= L (Ty)

This allows the Leibnitz rule to be applied, i.e.
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{dT,, [f,gl>= < d<dT., g:>, f > - < d<dT,, >, g: > ,
where i= 1, ..., m
But as was shown 5efore, the first term of the right side of the last
equations is zero so that
< dTy, [f,g] >= < d< dT,, £>, g , 1= 1, ..., m
The last equations can be worked out as follows. Let the set
L= {l= 1,2,..., o0,-1, o.+1,..., ©0=-1, Oz%l,..., Op-i—-1, Oun-1+l,...,n-1},
and from equation (III.PD.3):
< dTy, [f,g)1 >= =< dTyuy, g2, 1=1 ,...,m.
If 1+1 € L then
< dT,, [f,g;1 >=0 (ITI.PD. 4
and if 1+1 is a controllability index then
< dT,, [f,gs1 #0
The equations whose index 1+1 € L can be modified as follows:
if < dT,, [f,g;]1 >=0
Then from (III.PD.1) and (III.PD.3) the equation
< ATiay, Uf,8:) >= < KdTyuyy g1, f > - € d< dTyay, 2, gi2
can be transformed to
< dTyaqy [f,841 5= < dTyun, 842
If the Leibnitz rule is applied succesively as follows:
< dTy, [f, [f.gy)] >= < d< dTy, [f,g8,10, > - <d <dT,, >, [f,g:1>
then
< dTy, adf=g;>= -< dTy.y, [f,g:1>
Then it is clear that
< dTy42, §:2= < dT,, adf=g,>
and if 1+2 € L then
< dT,, adfzg,>=0 .
This procedure can be repeated until the index of T takes the value of

a controllability index, for example

< dTe, [f,g:1 >= < d <Tocy, 8i2) £ = < <dTo—:, £2, g1
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I

- < d< dTeeyy £9, 8

- < dTs, gi>2
£ 0
Then
< dT,, (adf?, g;)> # 0
where j= 1,..., K;-2; i=1,..., mand K; is the first Kronecker index.
If the above procdure is applied to the differential equations

(ITI.PD.1), one can replace them by:

< dT,, (ad;f,gs) >=0 , for j=0,..., K4-2 and i=1,..., m.

< dToy4ry Cad;f,gyd >=0, for j=0,..., Kz-2 and i=1,..., m.

< dTeppy+1, Cad?f,gy) >= 0, for j=0,..., K,~2 and i=1,..., m .
(I11.PD.5) .

Equations (III.PD.2) can be transformed in a similar way. For example, they

can be written as:

Taer= <dTo,, > * I uy <dT.,,8:0

qemy

1+

2wy <dT., §i?

1y

Thaem= <dT,, >

The second term on the right hand side of the above equations can be
transformed using the Leibnitz rule and the partial differential equations
(ITI.PD.3) and (III.PD.5): the procedure is the same as the one applied to
equations (III.PD.1). After this procedure is applied, the partial

differential equations are transformed into
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3

vy= 4T, , > & T u; <dT,, (ad*f, gi)> , k= K,-1 , o= o4,
i=1
m
V= <dT, , > = 2 uy {dT,,, Cad*f, g;0> , k= K.~1 , ol= O0,17%1,
imat
0= On
where “+" applies if K; is odd and “-" if it is even, for i= 1,..., m

The partial differential equations (III.PD.6> involve the T
transformation of an (f,g) nonlinear system to a linear canonical Brunovsky
form. This relationship is a function of the control input u,;, i= 1, ...,
m. If these equations are solved for u;, one can obtain the control input
that makes a nonlinear system given by equations (III.NLS.1) behave like a
linear system represented by equation (III.L.2); 1. e. a feedback
linearization.

The condition required to solve for u; is that the matrix formed by

the vector columns
< dT,, (ad™" ', 8422

< dTayay, (@d“="", g,)>

< dTapoqw1y @A™, g,3>

be nonsingular.

Hence, the solution of the partial differential equations (1II1.PD.5)
and (III.PD.6), with the above matrix nonsingular, defines a transformation
from the nonlinear system (III.NLS.1) to the canonical linear system

(ITI.L.2>. In the following section the necessary and sufficient conditions
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for the existence of such a transformation given that the points a), b

and c¢) given in this section are satisfied are presented.
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I11.4.- EXISTENCE AND CONSTRUCTION OF THE T-TRANSFORMATION.

In the previous section, a T-transformation that maps a nonlinear
system to a linear canonical form was defined. It was also shown that if
this transformation exists, it possesses certain properties ( namely the
conditions a), b) and c) ). It remains to determine if this transformation
y T, exists for a nonlinear system and how it can be constructed, given that
the conditions established previously are accomplished.

In this section the necessary and sufficient conditions for the
existence of a T-transformation for a particular nonlinear system,
expressed in an (f,g) form are established. The manner in which this
transformation can be constructed is also given.

In order to show the necessary and sufficient conditions for the

existence of T, the following sets are defined:

C= { gy, [f, g1, ..., Cad“"7'f, g,), &=, [f, g2, ..., Cad"=""f, g.J,
ger [f, 8uly ooy @d7'f, g0 )
and
Cs= < gy, Lf, g1, ..., @d™*7™3f, gy), go, [f, g21, ..., (@d™*73f, g,
8wr Lfy 8uly ..., (@d™73f, g0 ) ,
for j= 1, ..., m

Theorem II1.2. The nonlinear system (III.NLS.1) is T-equivalent to the

linear canonical system (III.L.2) if and only if the following conditions

are satisfied in a neighbourhood about the origin:

1> The set C spans an n-dimensional space, that is, the elements of C
are linearly independent. Furthermore the dT, i= 1, ..., n+m gradients are
also linearly independent.

2) The sets C; are involutive for j= 1, ..., m

3) The span of C; is the same as the span of C n C; for j=1 ,..., m
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The proof of the theorem will be given by parts, first the necessary
conditions of point 1), 2) and 3) are checked, followed by the sufficiency

conditions which are given in a constructive form.
Nessesary conditions.

Proof of statement 1).

This condition is necessary and sufficient for dT; j= 1, ..., n+m to
be linearly independent. This proof consists of a comparision of the vector
fields in C and the dT, k= 1, ... n one-forms. Assuming that Ty, ..., Th
solve the partial differential equations (III.PD.5) and (III1.PD.6); and d,,
d»y ..., do € R be n arbitrary constants then the following linear

combinations can be obtained:

a= d, g, + dp (ad'f, g,) + ... + d,, (ad“'7'f,g,) +

oyv1 82 * doyvze @d'f, g2) + ... + do, (@d“="'f, gz) +

oz

+ dop_y+1 8w T dop_q+= @d'f, g0 + ... +d, <(ad“""'f, g

If it can be shown that the constants d; i; 1,..., n are all zero, it is
established that the elements in C are linearly independent:

The vector a is assumed to be zero in a neighbourhood about the
origin. If the <« , .> operation is realized with each dT; i= 1, ..., n,
then the n inner products <a , dTi> can be arranged in matrix form

M D=0 )
where
b= dy, ... , d.1°*

and the matrix M is comprises of rows of the form
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[ <dTy, &> ... <dT., @d“'7'f, g)> <dTy, g=2> ... <dT,., (ad“=""f, g.)>

oo KdTy, 8w> -.. dT., (ad“""'f, g.> 1 ;
for'k= 1, +.., n.

It has been shown that if T is a T-transformation, then it satisfies
the partial differential equations (III.PD.5) and (III.PD.6), where upon

the first row of the M matrix can be transformed to

o ... <dT,, (ad“'7'f, gy)> 0 ... <dT,, (ad"="'f, g)> cas
o ... <dT,, @d""7'f, g.> 1 ,
If Xy > K= > ... > K. then the only element different from zero in the

above row is the element associated with X,. Then the inner product of this
row and the vector D is:

{dT,, (ad"*~'f, g:,> ds = 0 ; for k= K, and o= o,
But as shown previously, the above inner product does not vanish,
therefore: d.= 0. If K, appears s times in the first row, then the inner
product will be

<dTy, (ad*='f, g,)> du, + ... + <dT,, (ad*~'f, gu)> d,_= O

In this case the constants d; j= oy, ... , o0, are all zero. It is then
possible to eliminate the first row of matrix M together with the columns
multiplied by the vanishing elements of vector D.

Applying the above procedure to the remaining rows, it is found that

the matrix M can be reduced to

dTsyy 812 <dTo,, 82> ... <dTs,, 8w
{dTas, 812 <dT,2, g2> .. LdTso, 8w

. . H
{dTe,s &1> <dTs,, 82> ... {dTs,.s 8w’

and the vector D is reduced to another vector whose components are those

63



<dT, , (ad“""'f, g,» R 4Ty, (ad"'7'f, g.)>
ATgy vy, @AF7'F, g)> ... dTsy a1, @A™, g0
(ITI.M. D

<dT,,,_,, @d“"7'f, g,)> ... dTs,_,, (@d™7'f,. g.>
is nonsingular.

The linear independence of the one-forms dT,, ..., dT, is determined
in a similar way by defining the following linear combination:

B= b] de + b2 dT‘_’Z + e + b\-, dTn = 0
where B= [ b, ... b,1* is an arbitrary constant vector.

In this case the inner product <B , . > is taken with each element of

C. Then it is possible to form the equation:
Mz B= 0 ,

where the matrix M, is



«dT,, &> <dTz, g:? N <dTn., g1?
<dT,, (adf,g.>> {dTz, (adf, g,,> ce <dT,., (adf, g.>
<dT,, (ad*'~'f, g12> <dTz, (ad<'~'f, g7 voo £dT,., (@d™“*™'f, g)>

<dT,, g=z> {dTz, 8= Ve <dTn, 8=
<dT,, (ad"="'f, g.)> <dTa, (ad“="'f, g)> voo £dTn, (ad™=""f, gu)>

<dT1’ 8«.> <dT:2) grn> AL <dTnD gm>
<dT,, (ad*""'f, g.)> <dTa, (ad“™"'f, g.)> v AT, (ad*™"'f, g.)>

Using the same procedure as before, it is possible to show that, if
the one-forms dT,, ..., dT, satisfy the partial differential equations

(ITI.PD.5) and (II1.PD.6) then the above matrix can be transformed to

<dT,, (ad™'7'f, g,)> <dTe,.q, (@d“2=7'f, g,)> ... <dTe,_y+1, @d“"7'f, g,;)>

. .

<dT,, (ad“'7'f, g.)> <dTa .1, @d“=7'f, g0 ... AT _, .1, C@d“™'f, g,0>

and that B is zero if the above matrix (which is the transpose of (M.1) is
nonsingular,
Finally, one can see that if
dT;y i= 1, ..., n are linearly independent T; j= 1, ..., n+m are the
solutions of the partial differential equations (III.PD.5) and (III.PD.6),

and the matrix (III.M.1) is nonsingular, then the one-forms dT;, ...,dTnsm

65



are linearly independent. This proves point 1). B
In the remainder of this chapter the proof of points 2) and 3) are
presented together with a method to construct the T-transformation which

involves the sufficiency of condition 1), 2) and 3)..
Necessity of conditions 2) and 3).

The conditions 2) and 3) will be analysed under the assumption that
the previous results are accomplished. That is, the partial differential
equations (III.PD.5) and (III.PD.86) hold and dT; j= 1, ..., ﬁ+m and the
elements of C are linearly independent.

Proof of conditions 2) and 3).
The first equations (III1.PD.5)
{dT,, (ad?f, g;>>=0 ; j=0,..., Ky-2 and 1i=1,..., m;

imply that dT, is perpendicular to all the elements of

Ci= { gy, [f, g1, ..., @d773f, g,
=X} [f’ 821) LRI (ad'<1—2f; 8'2)»
Eer [f, 8aul, .vv, @A77, g0 ) .

Now it was shown that dT, is perpendicular to all the elements of C,
except (ad*f, g,), for x= K,-1. One can also see that, (ad*f, g,) is the
only element of C that can not be contained in C,, provided that K,> K>
.> K.. Therefore if C spans an n-dimensional space, then G, obviousiy
will span at most an n—-1 dimensional space. Considering the above facts, it
is also clear that the span of C; is equal to the span of C n C,.
At this point it is possible to outline how to obtain the components
of the T-transformation, which are the solutions of the partial

differential equations (III.PD.5) and (IIL.PD.6). Consider in particular
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the equation
<dT,, (adf, g,2>=0 j=i,..., K,-2 and i=1,...,m.

Solving this equation is'the same as finding a function T, whose gradient
is perpendicular to the vector fields in C,, that is to the space generated
by the elements of C,, which is the same space generated by C n C,. It is
clear that the solution of the aﬁove equations can be reduced to the
process of finding a functioﬁ T, whose gradient is perpendicular to C; n C.
The answer to the exlstence of T; can be readily aswered by appealing to
the famous Frobenius theorem, which when tailored for this problem can be
expressed as:

Theorem I]I1.3 (Frobenius) Assuming that vector fields of C n C, pass

through a given point x, € R7, thén the vector fields in C n C;, generate
the tangent space of a unique sub-manifold N in R". The non-vanishing
function T, whose gradient dT, is perpendicular to the space generated by C
n C, 1is defined, if and only if, the vector fields in question are
involutive., N is said to be the integral manifold of the vector fields of C
n C, through x,.R

If K, appears s times in C then the following occurs. If s > 2 then K;=
K-= ... =K4, so that there are s terms in C that can not be contained in
Ci. In this case C; spans, at most, an n-s dimensional space. From the

partial differential equations

<dT,, (ad"f, g)>=0; 3=0,..., K;-2 ; i=1,..., m ,
dTo 41, (ad®f, g)>=0; j=0,..., K2-2 ; i=1,..., m ,
<dTo~._.5+1y (adef’ g422=0 5 Jj=0,..., Kg-2 =1l,..., ’
it is clear that if dT,, dTs,4+1,..., dTs,-y are linearly independent of

all the elements of C,, these one-forms are also linearly independent of

all the elements of C except of those terms whose Lie derivative order is
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Ky-1. Then C,; and C n C, span, at most, an n-s dimensional space.

Invoking again the Frobenius theorem, one can see that there exists a
unique n-s dimensional integral manifold through some point x, € R”, whose
tangent space is generated by C n C,, also the T;, j= 1, o,+1,..., Ou~1
escalar flelds, have their gradients perpendicular to the space generated
by C »n C, at %o if and only if C » C, is involutive.

The construction of the transformation T will depend on the partial

differential equations (III.PD.5),

£dT,, (ad*f, g;)>=0 ; j=0,..., Ky=-2 ; i= 1, , In
dTs,-1, (ad?f, g:0>= 03 j= 0,..., Kx—2 i=1,..., m
{dTspeq+r, Ca@df, gd>=0 ; 3J=0,..., K,-2 ; i=1,..., m

These equations can be transformed according to the Leibnitz rule

<dT,, (ad?f, gi2>= <dT,.,, (ad?~'f, g,)>

for 1= 1, ..., oy=-1, oy+1, ..., Oz=1, Ox+l, vy Om—1y Crvrr1seey, N
Therefore
<dT,, (ad*f, g;)>= 0 ; k= K4-2 ; i=1,..., mn.
dTs -1y §12= 0 i=1,..., m.
dTs,—y+1, Cad*f, gd>=0 ; k= K,-2 ; i= 1,..., m.
{dTw-1, 8:2= 0 iI=1,..., mn
According to point 1), the sets C and { dT,, dT., ..., dT.} have n

linearly independent elements. Comparing these sets with the above

equations, one can see that the number of linearly independent vector

68



fields in C n G4, j= 1,..., m is n-(p/m). Where p is the number of
equations in (III1.PD.5) whose Lie derivative order is equal to or greater

than K;-2. This is also the number of linearly independent vector fields in

¢ n Cy, j= 1,..., m Therefore there are n—-(n-p/m)= p/m elements in the
set {Ty, Tz, ..., Tan} whose gradients are linearly independent of the
integral manifold of ¢ n C; , j= 1,..., m (or C;). Note that the validity

of this argument depends entirely on the involutivity of the sets C n C;,
j=1,..., m Cor C;).

According to the above analysis the solution of the partial
differential equations (III.PD.5) is the solution of the partial

differential equations

<dT,, ¢,>= 0; Ve, €ECnCy |,
dT, —;, C€=2>= 0 YVce, €CnCs ,
1
(II1.PD. 7>
dTopwq+11 Cw?= 0 YVc. €CnC,

The necessity of conditions 2) and 3) becomes apparent from the above

process. &

Conditions of sufficiency. Construction of the Transformation.

Hunt, Su and Meyer [1983] presented a constructive proof for the
sufficiency of points 1), 2) and 3). This proof consists of the actual
construction of the T transformation. From the practical point of view, this
proof shows the method to such a transformation may be constructed. The
construction described by the above authors is presented as follows. Some
comments and a supporting theorem have been included in this proof in order
to clarify the procedure.

In the book by Choquet-Bruhat, DeWitt-Morette and Dillard-Bleick
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(19771, a treatise of analysis, manifolds and differential equations is
developed, in which the relationship among these topics is presented. In
fact all are considered as one subject. The solution of the type of partial
differential equations discussed above may also be found in this work
According to Choquet-Bruhat et al., equations (III.PD.7) form - an exteriork
differential system, and i{f the system is related to one—fdrms then it is
called a Pfaffian system.

Individually equations (III1.PD.7) are <called Pfaffian differential
equations.

The relationship between the Pfaffisn differential equations and the
Frobenius theorem 1is the same as the relationship between ordinary
differential equations and the Existence Theorems for their solutions. One
can observe that, in contrast to ordinary differential equations, the
solution of the Pfaffian equations is subject to a condition, namely its
involutivity. Up to this point, this section has been rdevoted to
establishing this condition before attempting to solve the partial
differential equations obtained in the previous section.

The procedure proposed by Hunt et al. for the solution of the partial
differential equations (III.PD.7), is now described. It is at once clear
that given the solution of these equations one can construct the T-
transformation with equations (III.PD.7) and the Leibnitz rule.

First the following constants and sets are deflned:

s;: the ﬁumber of times that K,~1 appears in C and

S;: the subset of C whose elements are the vector fields related to

K;-1th Lie derivative.

Sz: the number of times that K.-1 appears in C and
S=, the subset of C whose elements are the vector fields related to

the K,_5-th Lie derivative.
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St the number of linearly 1ﬁdependent vectors in

Sw= {gvs..., 8w}, which by hypothesis is m.
(Notice that sy + s + ... + s,,= n}

Then a parametric mapping

FAC IR P S L L TR S T TR 5 B #n(t1, tay covy £ D)
that maps the origin to the origin and passes though the s, integral curves
of the vector fields whose Lie derivative order is K,;-1 and are contained
in C is obtalined.

The above function is constructed considering that ( Choquet-Bruhat

et. al. (19771, Thorpe [19851):

Definition. A parametric curve in R™' is a C~ function o:I -+ R™7,
where 1 is some interval of R defined by oa(t)= (o; (L), ..., Cnei (E)) and
oy, i=1,...n+1 .

One also needs to state:

Theorem I11.4 (Thorpe [19851). Let X be a C® vector field on an open
set U c R™' and p € U. Then there exists an open interval I containing the
origin and an integral curve a:l 2 U such that

i). a(0)=q .

11> 1f B:J » U is any other integral curve of X with B(0)= q, then J ¢
I and a(t)= B> for all t € J. N

The above theorem, whosewproof can be found in the book by Thorpe
[1985]1, implies that the integral curve of a vector field through a fixed
point is unique.

The z mapping is constructed considering that it passes through the
integral curve of the (ad+f, g,) vector flield, which is given by the

solution of (Thorpe [19851):

dXG) | ae g

dt] - ; k= K'l-]' 1)

with %, (0)= 0.
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By the above theorem this integral curve is unique.
If s; ? 2 then by solving:

d x(ty, ts) .

with x{t,, 0)= x(t,),a second integral curve through the origin is found.

This procedure is repeated until the parameter t is introduced by

=1

d xCby, te, oo, 0
dt.

= (ad*f, g.) ; where r=s;, = X,-1 ,
with x{(ty, tz, .o, ta,-0, 0= xCty, to, o0, to,-9)

If one can solve the partial differential equations (III.PD.7) with
x4, ta, ...; try O, ...00)= x(ty, ts, ..., t.) as the initial condition,
then the solution will be contained in the intersection of the s, integral
curves obtained above. At this stage one can see that condition 1) is being
used to construct a diffeomorphism.

The solution of equations (IILI.PD.7) can be worked out considering the
existence of a function Z such that:
< dZ, (ad.f, g,)>=0 ; k= K,-2

Finding this function Z is equivalent to finding the solution of the

linear ordinary differential equations ( Choquet-Bruhant [18771, Thorpe

{19791, Elsgoltz [19771)

dx __ _ (age = K.-2 : 2z .
d teon (ad"f, g,) , k= K;-2 ; S taiay 0 ’
with xCty, ta, o0y ta,an, O)= x(by, b2, o0y ta a9)

If s 2 2 then the equation

<dZ, (ad“'"Ef, g,)>=0

with X(ty, ta, oovy tayer, 0= XCty, ta, oovy tayas)

If this integration process Is repeated s, times,the following equation is

foundi

<dzZ, (ad“""2f , g.)>=0



which can be solved as follows:

‘—gz———‘z 14 o = _ , bz _
d tg1+§ (ad-f, Ds) , k= ¥K,-2 — 0

=

Next, the s, partial differential equations associated with the

fields contained in Sz are integrated, starting with equation

<dz, (ad"“'"®f, g,)>= 0 ,
which is related to the equations

dx

d t51+52+1

= ad*f, g,) , k= K,-3 ; ——2F —— =0

b ts1+uz+l

and ending with

<dZ, (ad"'73f, g,.>>= 0 ,

related to

—___25___— = (adkf’ 89 ) . k=K1—3 ; ____EZ____ =0 ,

d t51+92+53 b tm1+m2+sa

with X(t1, tz, ey tg1*§2+53—1 3 0)= x<t1' tEQ AR | tB]+92+53—1)

This process ends when the n parameters t;, Jj= 1,..
introduced, that is, when
<dZ, g.>= 0

This equation Is associated with

dx  _ . 0Z  _ 0
d tn gm ) btn
satisfying x(t,y, ta, ..., tay, O)= x(t,, to, ...y taoy)

0

]

vector

n are

With the above process a map from R™ to R™ which maps the origin to

the origin given by
Gy vy BR) 2 GGy, coy B0), vy (s, oo t) )
may be constructed. Furthermore according to the method this

constructed its Jacobian matrix is

map was



bX1 bX1
o i, o t,
O Xy vvv O Ko
o i o t,

Note that when this matrix is evaluated at the origin, its columns are the
elements of the set C, and we know this set spans an n-dimensional space,
thus the above métrix is nonsingular. Therefore the map is a diffeomorphism
on an open neighbourhcod W of the origin in R”, and the image V of W, is
also a neighbourhood around the origin in R™. On the other hand according
to the inverse function theorem, one can solve this map for the parameters
tvy ..., %, as functions of x,, ..., %, This prooves the sufiency of

conditions 1), 2) and 3). K

At this stage it clear that a diffeomorphism of the state space of the
nonlinear system has been obtained. The problem which now arises, is how

one can use this diffeomorphism in the definition of the desired

functions;
TT) To’]*'l)"‘! To'm_.~|+1
By design, each map t;, J= 1,..., n is C* and takes the origin to the

origin on V.

If one surmises that

T,= t,
then one has to show that this T, satisfies the first set of equations
(IT1.PD.7)

{dT;, ¢4>=0 VY c, € C n C,.
According to the Frobenius theorem and the involutivity of C » C, ,it is
clear that the solution of these equations exists. Furthermore, for fixed
tiy vy ta

and varying t,, .y, ..., t, the integral manifold of C » C, is

1

obtained. Therefore the map T,= t, is constant in such a manifold, and it
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is quickly seen that

<dT,, ¢c4>= 0 Ve, € CnCy

Note that (ad * f¥§ g}) is associated with t,

To define the map T.,.:, one can proceed in the same way. That

is, one seeks for a T,,..= t such that:

<dTs 41, C2>= 0 Y co € C 0 Cy .

Keeping in mind the elements of C which are not contained in C »

a

C», one can appeal to <(ad*®' f, gz). According to the construction
of the diffeomorphism, the parameter associated with this vector field
originates a constant map in the integral manifold of C n C, (which one

knows exists if the vector fields in this set are involutive) by

keeping the parameter associated to <(ad“®™'f, g.) constant while the
parameters with higher index vary, as was previously done.

For similar reasons one can define T._., as the parameter‘associated

to the vector field (ad"="'f, ga).

The functions Tege1s +++y To,_,+1 can be defined in the same manner,

defines the solution of the partial differential equations (III.PD.7),
which is the same solution of that of equations (III.PD.5).

With this the sufficiency of points 1), 2) and 3) is demostrated N.

Finally, as described previously in this section, the rest of the T-
transformation componeﬁts can be evaluated from equations (III.PD.6) and
Leibnitz rule, at this stage the construction of T= (T,, Tz, ..., Th+wm) CaN0

be easily obtained.
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Before ending this chapter, it seems appropriate to rewrite the main

result obtained:

A nonlinear system expressed by equations (III.NLS.1) is T-equivalent
with the linear canonical form (I1I.L.2), where the variables X,,..., Xn
lie -on a neighbourhood around the origin of R”, if and only if:

1) The set C spans an n-dimensional space,

2) The sets C; j= 1,..., n are involutive and

3) The span of C; is equal to the span of C n C; for j= 1,..., n .

. In the following chapter the theory developed here is applied to a
helicopter, represented by the model structure given in chapter II, 1in

order to design a flight control system.
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CHAPTER IV.

FLIGHT CONTROL SYSTEM DESIGN.

Summary.

In this chapter the design of an automatic flight control System for
helicopters 'is developed. The helicopter is assumed to be represented by.
the model defined in Chapter II and the design of the automatic flight
control system is realized according to the theory of nonlinear feedback
demostrated in Chapter IIl. A series of simulations is presented in order

to investigate the performance of the design.
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IV.I. INTRODUCTIORN.

The object of the present chapter is to concatenate the helicopter
model described in Chapter II to the nonlinear feedback described in
Chapter III in the form of a flight control system. The link between these
two aspects is in principle straightforward, nevertheless the complexity
and the high order of the plant in question present enormous difficulties
in the implementation of the theory. These abstacles are overcome by

1), making use of the characteristics of the system, which allows one
to perform a partial linearization, using a nonlinear compensator, thus
reducing the complexity of the original plant substantially,

2), the use and development of Symbolic Algebraic Manipulation
programs to execute the calculations required in the design of the
nonlinear control law, and,

3), by the ubiquitous: simplifying assumptions, in this case they are
apropriate in obtaining a solution of the set of partial differential
equations involved in the definition of the nonlinear control law.

Thé three aspects mentioned above are used throughout this chapter to
link the helicopter model to the nonlinear control theory, resulting in a
flight control system. The process in which these aspects are joined
together is explained sequentially in each section of the chapter. First,
in section II the nonlinear compensator is introduced. This compensator is
the continuous +time version of the nonlinear control 1law presented
previously by Liceaga-Castro and Bradley [1987]. In the present application
it is shown that, by applying this nonlinear compensator, it is
possible to decouple the normal andangular velocities of the helicopter.

Furthermore, from the point of view of the feedback linearization theory,
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the resulting equivalent system has the normal and angular velaocity
references as inputs, while the state remains unchanged. The problem is
reduced to defining the sequence of references in order to control the
system. This is much easier than controlling the original plant.

In section III, a set of programmes which determine whether or not a
nonlinear system possesses a linear feedback equivalence system 1s
presented. These programmes are developed using the Algebraic Symbolic
Manipulation language Reduce. The linearizable helicopter properties are
obtained by using these programmes. These properties are also included in
section III. In the following section, nonlinear control systems is applied
.This is in order to find a diffeomorphic mapping between the Compensator-
Helicopter pair to a linear Brunovsky canonical form. In this section, one
can see the necessity for considering strong simplifying assumptions in the
system in order to find the components of the diffeomorphic map between the
plant considered and the linear canonical form. The state mapping and the
inverse of the input mapping which, define the control law for the
nonlinear system, are obtained in this section. According to the Feedback
Equivalence Theory, 1f a nonlinear system is r-equivalent to a 1linear
canonical form,the control law designed for the canonical form has an
equivalent effect on the nonlinear system. In other words, if the inverse
of the r-transformation is applied to the control inputs of the linear
system and then to the nonlinear one, the behaviour of the nonlinear system
will be equivalent to that of the canonical linear form.

In section V the Pole Placement Technique is used to set the
performance and control of the canonical linear system. It is shown that
the effects of the assumptions made in the previous sections are

compensated if the poles of the linear system are conveniently placed. This
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step completes the Flight Control System structure, represented in figure

(FIG., IV.I. DL

N X

e u
Tr 5 . A 3 COMPENSATOR HELICOP TER

R: Reference.

Tr: Transformation of reference.

Tv™': Inverse transformation of the linear input.
u: Nonlinear input.

x: State.

T..: Transformation of the state.

Figure (IV.I.1).- Flight control system structure.
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Finally, in the last section of the chapter, some simulation results
are presented and one can see that, for the manoeuvres considered here, the

performance of the flight control system is satisfactory.

81



1V.2. PARTIAL LINEARIZATION OF THE SYSTEM USING A COMPENSATOR.

According to the model described in Chapter two, the helicopter model

can be expressed by an equation of the form

B 1O
()= f(x) + T U, b,(x, B, W ,

1

where ¥ ¢ R'2, f{(.) and by are C® vector fields in R'® and the U, are
components of the input vector

[8o, B1my Bi1uy 8™, B Byay Bo 840, 8:5%, 0,4 85., 8.7, 8]
where 8., 8,5, 6,. and 8. are respectively the collective, longitudinal
cyclic, lateral cyclic and tail rotor collective pitch angles .f represents
the flapping motion and u the linear elements of U.

The purpose of this section is to modify the original plant in order
to achlieve a model which is easier to work with, and to perform a partial
linearization and decoupling of the plant by incorporating a compensator.

First, the simplification of the system is referred to the valued

vector fields by(.>, 1 =1, ... ,10, mentioned above. A new set of vector

valued input fields are defined as

8o [by () + 85 ba(.D1 = 8, §, )

81 [ba() + 85 bg() + 8,4 b,()] = 6;, g20.)

812 [baC) + 8, bsl.) + 8,4 bal) + 8, bs(.) 1 = 8,. §5¢)
8 [ba( )] = B, §16.)

If the above vector fields §i(.) , 1 =1, ..., 3 and §10 are
used, the number of vector is evidently reduced from 10 to 4. This
simplification is justified due to the fact that the must significant terms
in are by, i= 1,.;., 3, . In practice these terms can be identified on line

or, as pointed out later, linear robust techniques can be applied. In this
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thesis the values of input vectors have been updated.

Assuming the above fact the model can be rewritten as;

. 4
X(E) = £(x) + T uy 850

1o

or

X(6) = £ + 6()u

Liceaga-Castro and Bradley [1987] showed that it is possible to obtain
a feedback linearization for discrete nonlinear systems, in this‘case the
discrete nonlinear input state is mapped to a linear set of first order
discrete linear system. Furthermore, this set of linear systems are
decoupled with respect to each other and are stable. In foregioig paper it
ié shown that the condition required for this map to exist and to be a
diffeomorphism, is that the input matrix accomplishes the so called "ratio
condition", that is that the leading principal minors 4&,, .... ,4, of the

input matrix satisfies the following inequality uniformly;

ldet A1 3 g, _198F 8=l 0 ldet Al > e
ldet o1 " Tldet b1

for an arbitrary real number €.

It should now be clear that the control law obtained from this
diffeomorphic map is restricted to systems with the same number of inputs
and outputs. The continuous version of this feedback linearization control

is summarized as follows, for the nonlinear system described by

x(1) = £, (0 + By (x) w
where
x is the state contained in a set A contalned properly in R",

f,(x) is a C» m~-dimensional vector field,
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B, (x) is an mxm square matrix function and

w represents the system input.
If the matrix function B, (x) accomplishes the ratio condition around the
operating points of the system, then it 1is possible to obtain a
diffeomorphic transformation to the input state space (x, Ry}, by applying
the following control law;

w=1[B,(x)17" {-f,{x) + R, (t)} (IV.CM. 1D
where R; {(t) = (R, (), ... ,R,.(t))* is the reference vector.

It is evident that the linear input-state space is given by

%, () = Ry (1) i=1, ... ,m ,
by applying this control law as a compensator. The linearization and
decoupling of the normal and angular velocities of the helicopter with
respect to the commands can also be performed, for example including in the
helicopter model three more degrees of freedom, in this case the position
coordinate referred to body axes can be incorporated. These three new
degrees of freedom are waranties the involutivity of the distribution

generated by the system equations
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vr - wq -~ G sin® + Fx

wp — ur + G cosb sine + Fx

uqg - vp + G cos8 cose + Fz

I, qr + 1z pg + L,

I rp + 1, (r=-p=) + M,

Is pqg + Iz qr + N,

q cose - r sine

p t q sine tan® + r cose tan8

(q sine + r cose)/cose




by by2 bra b4

by bze baa bza

ba, b Daz baa

bas baz baz baa

bs;y bs=2 bgs bea fo

ben bez bea bea B1a
1z )

0 0 0 0 8

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

(IV.HE. 1)

if the commands are generated according to equation (IV.CM.1) as follows

o bs:1 Daz bas Dbas |77 ug - vp + G cos® cose + Fz We
81m bar Dbaz baz bas I, qr + Iz pq + L, Pw
. i bsy bse bsx bea ) Inrp + I4 (r= - p=) + M, i (s P
8 be1 Dbsz bszs bea Is pg + Ies qr + M, re| »

Here wWg, Pry Q= and ri are the reference values for the normal, rolling
pitching and yawing velocities respectively. The closed-loop system

resulting from incorporating the compensator is as follows;



ﬁ vr -~ wq - G sin6 + F,, + h;{(p, q, r, W)
v wq - ur + G cos® sine + F, + hz(p, q, r, W)
w 0
p 0
q 0
r 0
= +
8 q cose - r sine
0 p + q sine tan® + r cose tan®
@ (q sine + r cose) / cosf
X u
y v
z w

Wr €3 t Pr €4 t Qr € T I'n €¢ ’
(CH. 1D

where the functions h,(.) and h.(.) arise from the direct effect'of the
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commands in the forward and lateral velocities respectively. The fin,
fuselage and tail plane contributions are represented by the terms F. and
F.
The unitary vectors ez, e,, ez and eg are the 3th, 4*™, 5*" and 6*"
elements of the standard base of R'®., In obtaining these vectors it becomes
apparent that the G matrix satisfies the ratio condition. It should be
noted that the definition of the matrix B,(.) in the compensator is not
unique, in general any combination of four rows of the matrix G form a
nonsingular matrix. The selection of the rows which form matrix B;(), in
the synthesis of the former compensator, are chosen in order to control the
angular velocities. It 1is well known from experience that the flight
trajectory control of any aircraft depends on the control of the angular
velocities. Buckingham and Padfield [1986]1 reported this fact through a
series of piloted simulations directed to exploring and defining control
systems. In the simulations presented in this report, the existence of a
control law which decouples and transforms the angular responses into a
second order linear system has been assumed.
The control of the angular velocities using the nonlinear
compensator equvalent to the singular perturbation pproach applied to a
fixed wing aircraft. (Menon et al [19871)

VIn the work presented by Menon, Badget, Walker and Duke [1987] a
singular perturbation technique is applied in order to design a fixed wing
aircraft trajectory controller. The advantage presented by this approach
is the reduction in the order of the aircraft model in trim conditions and
during the the execution of manoeuvres, in order to separate the system
model into two sub-systems with different time scales. According to

Kokotovic's tutorial [19871, the singular perturbation model for finite
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dimensional dynamic systems is as an explicit state variable form in which

the derivatives of some of the states are multiplied by a small parameter

€, that is,
X = F,(x,z,u,¢6, 1) X € R® (IV.SP. 1)
£z = Fo(x,2,0,€,t) z € R® (IV.SP.2)
where u = u(t) is the control vector, F,{(.)> and F. are C~ vector fields

with respect to x, z, u, € and t, x and z form the state and the scalar ¢
represents the small parameters to be neglected.

In the control and system theory the model given by (IV.SP.1) and
(IV.SP2.) 1is a convenient tool for "Reduced Order Modeling". The order
reduction is converted into a parameter perturbation called singular. When
the value of € is set to zero the dimension of the state space of (IV.SP.1)
and (VI.SP.2) is reduced from 6 + s to 6 because the differential equation

(VI.SP.2) degenerates into the algebraic equation

0 =Fa(X, Z, u, g, tJ, (VI.SP.3)
where the bar indicates that the variables belong to the system when £ = O.
The model given by equations (IV.SP.1) and (IV.SP.2) is referred
to as the "standard form" if and only if, the following assumption
concerning (IV.SP.3) is satisfied.
Assumption 1. SP.1.
In a domain of interest equation (IV.SP.3) has k 2 1 distinct

("isolated") real roots.

2 = q)i(.i’ a! t)) ’ 1 = 1) LRI ;k . (IV.SP.4‘)
This assumption assures that a well defined 8-dimentional reduced model

(IV.SP.4) is substituted into (IV.SP.1)
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% =F, (%, ¢;(%, §, t), G, 6 t) (IV.SP.5)

In the sequel the subscript i can be omitted

% =F, (% G, t (IV.SP.6)

This model is sometimes called the "quasi-steady-state" model, because

z , whose velocity z = g/e is large when £ 1s small, may rapidly converge
to a root of (IV.SP.3), which is the quasi-steady-state form of (IV.SP.2).
This defines the two-time scale property of the system.

The convenience of using a parameter to achieve order reduction, in
general, also has a disadvantage; it is not always clear how to choose the
parameters which aré to be considered small. Fortunately, in many cases,
the knowledge of the physical processes and components of the system
suffice in the selection of the appropriate parameters. For example the
report by Menon et al [1987]1 considered the fast states for the fixed wing
alrcrafts as the rotational velocities. This assumption can be considered
as the natural choice for flyling vehicles. In the case of the helicopter,
the experience (Buckingham, Padfield [15861) shows that this assumption is
valid due to the fact that the evolution of the angular velocities is
reallyvfaster than the other velocities.

Applying the singular perturbation model criterion to the closed-loop
system (IV.CH.1) one can include the scale parameters e,, €z, €5 and €4 as

follows
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u -G sinb + Fx + g,(vr — wq) + €2 g1 (p, q, r, W)

v G cosB sinoe + Fx + €x(wq — ur) + €4 8=(p, q, ¥, W
W 0

p 0

q 0

r | = 0

6 q cose — r sine +
0 p + q sine tand + r cose tand

@ (q sine + r cose) / cos®

X u

y v

z w

Wz €x T Pr €4 + Qg €2 + ' €

. 4
or x(t) = f.,(x) + Z R;hy ,

is=y

(IV.C-H. 2>
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where R; = Wg, Rz = Prs Ra = Qry Ra = ey, hy = €3, hs = e4, hs = eg,

h4=e‘5

The coefficlents €y, €z, €5 and e, are zero if the angular velocities are
also zero and €. and £, are zero if the helicopter is in trim.
Equation (IV.C-H.2) coincides also with the model used by Meyer,
Hunt and Su (19821, in which model inverses are used. Finally, one can
assert that 1in the present case, the ‘ratio condition and assumption
(IV.SB.l) are equivalent, i. e., in this two conditions one has to solve
for the normal and angular velocities,
In the following section a nonlinear controller is developed using
the theory developed in Chapter III for the system given by equation

(IV.CH.2).
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IV.3. CLOSED-LOOP SYSTEM ANALYSIS.

In the last sectlon a nonlinear compensator was presented. It was
designed in order to perform a partial linearization of the helicopter
equation of motion. The closed-loop system resulting from the application
of this compensator is given by equation (IV.C-H.2)>. The object of the
present section is to analyse whether or not the input-state space of this
system can be transformed, through a diffeomorphic map, to a linear
Brunovsky canonical form.

According to the results obtalned in Chapter III, the nonlinear system

. 4
x{(t) = f.,x) + T R; hy » (IV.C-H.2)

il

is linear transformable if and only if the following conditions are

satisfiéd:

1. The set C = {R,, [f.,, Ry, ... , (ad“'"'f.,, Ry,

Ray [fcyy Ray oo, (adka_lfcx; Rs) 2

spans a l2-dimensional space.
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2. The sets C,

t
”~
p2s)

-
~—
—

o

-
s

-
—

y @d* ' TFrL,, Ry )

{Ra, Ufoy, RaY, ..., (@d"+73f_,, R )

Ca

are involutive and;

3. The span of C;, i =1, ..., 4 is equal to the span of C; C.

It is very difficult to investigate whether or not any nonlinear
system oforder greater than three satisfies these conditions. Furthermore,
during these calculations, errors are readily committed. For plants of the
order treated here it is practically impossible to calculate the sets C,
Cyy Czy Cs, and C, without the aid of Symbolic Algebraic Manipulation
(SAMD .

Since the late sixties, it has been known that computers are capable
of performing symbolic and algebraic manipulations. Nowadays, there are
applications of symbolic algebraic manipulatién systems in many fields of
scientific research, such as, physics, celestial mechanics, optics, applied
mathematics (Marino, Cesaro [1984], Hearn [19851, Fitch [19851) and now
helicopter flight control dynamics.

The basic features of every symbolic algebraic system are

a), the use of integer and rational arithmetics with infinite precision

and

b), the manipulation of polynomials, rational and elementary functions.



The symbolic élgebraic system used here, Reduce, also offers the following;

c), algebraic manipulation of matrices whose entries are polynomials,
rational and elementary functions or combinations of these mathematical
entities;

d>, calculus: derivatives, partial derivatives and integrals;

e), other types of manipulations, not included in the previous points,
new or special rules for specific needs can be added, and
f> the interactive use is also permitted, so that, one can manipulate
expressions in the same way as one can use pocket calculators for numbers.

The symbolic algebraic manipulation systems have, in general, very low
capabilities for numerical calculations. However the results obtained using
Reduce can be given as Fortran instructions and therefore can be directly
implemented.

The potential of Reduce in the present application relies mainly on the
possibility of performing partial derivatives. This feature makes the
computation of Lie brackets and Lie derivatives very easy, so that the
calculation of the sets C, C,, C., Cz and C, is facilitated. For example,
obtaining the Lie bracket of two vector fields of order n, can be done by
executing the procedure presented in figure (IV.RE.1)>. Using this programme
in conjunction with the iterative qualities of Reduce, the set C is easily
obtained.

Before presenting the calculation of the set C, the following aspects
are considered. Firstly the state is rearanged as follows,

{x, u, 8, q, y, v, ¢, p, 2, W, ¥y, rl*
so that the input is also changed to

dr €4) Pr €2y Wr €10 8nd rn eqaz,

in order to visualize that the pilot longitudinal stick commands correspond
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to pitch attitude, lateral stick to roll attitude, collective to normal
velocity and pedal position to yaw rate. These associations between the
commands and attitudes is the natural way to conceive the he}icopter
control from the point of view of the pilot. Yue et. al. [1987] assumed
also this relationship in the design of control laws using H”-optimization
and Buckingham et. al., [1S861 1in the research of advanced control systems
for helicopters. Considering this aspect and the rearangement of the state,
leads one to suggest that the controllability indices are 4, 4, 2 and 2.

Therefore the set C is

{eq, [fgr, 241, (ad®fg, es), (ad®*fwx, ey,
ez, [fx, esl, (ad®fx, ez, (ad¥fg, eg),
10, Lfr, €10],
€12, Lfx, €321}

where fx is the reordered version of f., appropriate to the new state.
These vector fields are presented in figure (IV.RE.2).

If the selection of the controllability indices is adequate then the
elements of C also form a set of linearly independent vector fields.
Following the ideas of Marino and Cesareo [19851, [19841, a programme for
determining whether or not a set of vector fields are linearly independent
has been developed under the following assumptions.

Given a set of m vector fields {V,, V., ... , V.}, V, ¢ R 1 = 1,

v P
find the rank r of the corresponding distribution and the spanning set of
vector fields. The method wused to sclve this problem is the

triangularization of the nxm matrix formed by the given vector fields. A
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Gaussian free fraction algorithm has been implemented, a listing of the
programme is presented in figure (IV.RE.3),

Using the programme described above, it is found that the rank of the
matrix formed with the elements of C as its columns is 12. It should be
noted that this programme is designed to be used for an arbitrary number of
vector fields. In this case the matrix formed by the vector fields Iis
square, so that, using the capabilities of Reduce one can also determine
whether or not if C spans a twelve dimensional space by calculating the
determinant of this matrix. Furthermore, one needs to know if this matrix
is nonsingular at the origin. The results which show this matrix Iis
nonsingular are presented in figure (IV.RE.2). This proves the first
condition required for the existence of the transformation.

In order to establish if a given set of vector fields is involutive or
not, the programme given in figure (IV.RE.4) has been developed. The inputs
of this programme are
1., the array G which is provided by the triangularization algorithm,

II., the dimension of the vector fields and

ITI., the dimension of the space spanned by the vector fields (which is an
output of the triangularization algorithm.

The output of the programme is simply “TRUE" if the vector fields are
involutive and "FALSE" if otherwise.

The wuse of the triangularized vector fields G facilitates the

determination of the output of this programme, since given a set of vector

fields (v,, ... , V.}
vy, V;1 ¢ span {V,, ... , Vo) if and only if [V,7, V;7]17 ¢ span
vV, oo, VYT P 2 q,

where the index T indicates triangularized. The sets are obviously



involutive if and only if

tv,™, v,;m1" =0 for all i, j§; 1 < J

Using the programmes "TRIAN" and "INVOLU" one can readily check that the
sets
Ciy = Cp = { ey [fe, e4], (@ad® fo, e4),

€a, [feor, exl, (ad® fo, es),

€10y [fer, €10, (ad® fo, €107,

ez [fer, €121, (@d® fe, ey2) )
are involutive. The éets C, and C, are trivially involutive. This shows
that the closed-loop system satisfies the condition II.

It is easier to confirm that the closed-loop system satisfies the
condition 11!l point due to the fact that (ad fers €702 vanishes and that
(ad® f., e,0) spans the same space as [f¢., e,0), so that every C; C, i=
1, ... , 4 is involutive.

Note that if the position coordinates were not included in equation
kIV.HE.l), the set C would not be involutive, and position deviations from
a reference state of the helicopter could not be controlled.

In this section it has been proved that if the closed-loop system is in
trim condition, that is when e;, { = 1, ... , 4 are zero, it can be
transformed through a diffeomorphic map'to a linear canonical system. The
construction of one of these possible maps is presented in the next

section.
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PROCEDURE LIE(P1,P2,NF};
b4
% THIS PROCEDURE CALCULATES THE LIE BRACKETT
% OF THE VECTOR FIELDS P1 AND P2.
X THE LIE BRACKETT (P1,P2]3 IS ASSIIGNED TO THE
% COLUMN MATRIX VET= (P1.,P2] .
X
BEGIN
MATRIX JAF1(12,12):
FOR 1:=1:NF DO
FOR J:=1:NF DO
JACB(I,J):=DF(P2(1,1),X{(J));
VET1:=JACB*P1;
FOR I:=1:NF DO
FOR J:=1:NF O
JAFL1(1,3):=DF(PI(I,1),X(J)):
VET2:=JAF1*P2;
VET:=VET1-VET2:
END:
END;

FIGURE IV.RE.1.- PROCEDURE USED TO CALCULATE THE LIE
BRACKETT OF TWO VECTOR FIELDS. GIVEN Pl AND P2 THEN
VET= [P1l,P2].
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SYSTEM VECTOR FIELD f:

F1{(1,1)

F1(2,1)

F1(7,1)

F1{(8,1)

F1(9,1) := (SIN(X8)*X5 + COS{X8)*X6)/COS(X7)$%

F1{18,1) := X1%
F1{(11,1) := X2%
F1(12,1) := X3%

INPUT VECTOR FIELD gl;
F2(3,1) := 1%
INPUT VECTOR FIELD g2;
F3(4,1) := 18
INPUT VECTOR FIELD g3;
F4{(5,1) := 1%
INPUT VECTOR FIELD g4
F5{(6,1) := 1%

ELEMENTS OF SET C.

THE COLOUMNS OF MATRIX
THE SET C.

ORIGEN({3,1) =1 = [
ORIGEN(4,2) := 1 := [
ORIGEN(5,3) := 1 := [
ORIGEN(6,4) := 1 := [

$ THE OPERATION [ ,gq1l
$ ORDER ZERO.

FIGURE IV.RE.Z2.- CONTINUES NEXT PAGE.

*

"ORIGEN"

glls

g2ls -’

g31s%
g4ls

- (SIN{X7)*GRAV - FX = FX2)$
SIN(X8)*COS(X7)*GRAV + FY + FYE€S$
~ {SIN(XB)*X6 - COS(X8)*X5)$
{{SIN{XB)*X5 + COS(X8)*X6)*SIN(X7)

ARE THE

+ COS(X7)*X4)/COS(X7)$

ELEMENTS OF

DENOTES THE LIE BRACKETT OF
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ORIGEN{12,5) := (-1) := [f, gl]S

ORIGEN(8.6) := (-1) := (f,g2]%

VECTOR FIELD [f,g3]

ORIGEN(7,71} : - COS(X8) &

{ = SIN(X7)*SIN(X8)})/COS{X7)S
ORIGEN(S,7) := ( - SIN(X8))/COS{X7)8$

VECTOR FIELD [f,g41]

ORIGEN(7,8) := SIN(XB)S

ORIGEN(8,7) :

ORIGEN(8,8) :
ORIGEN(9,8)

( = SIN{X7)*COS(X8})/COS(X?7)$
{ - COS(X8)}/COS{X7)s

VECTOR FIELD (f, [f,gl13]]

ORIGEN(2,9) := COS{X7)*COS(XB)*GRAVS

ORIGEN(7,9) := - (SIN{X8)*X5 + COS{XB8)*X6)S%

ORIGEN{8,9) := ( =~ (SIN(XB)*XE - COS(XB)*XBE)*SIN(X7) ) /COS(X7)%
ORIGEN(9,9) := { - (SIN(XB)*XE6 - COS(X8)*X5))/CO0S{X7)s

VECTOR FIELD [f,[f,g211]
ORIGEN(1,18) := - COS{X7)*COS{X8)*GRAVS
ORIGEN{(7,18) := SIN(XB8)*X4$

ORIGEN(8,18) := { ~ (SIN(X7)*COS(X8)*X4 ~ SIN{X8)**2*COS(X7)*X6 - COS{
X7)*COS(XB)**2*X6)*COS(X7))/COS{X7}1**2$%

ORIGEN{(9,18) := ( - COS{(XB)*X4)/COS(X7)$

FIGURE IV.RE.2.- CONTINUES NEXT PAGE.
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VECTOR FIELD [f,[f,[f,g1]13

ORIGEN{1.,11) == =~ (SIN(XB)*X5 + COS{X8)*X6)*COS(X7}*GRAVS
ORIGEN{2,11} := =~ {(2*SIN(X7)*X5 + SIN(X8)*COS(X7)*X4)*GRAVS
ORIGEN(7.11) == (SIN(XB)*X6 - COS(XE8)*X5)}*X4$

ORIGEN(8,11) == { = ({(SIN(XB)*X5 + COS(XB)*XE)*SIN(X7) + COS{X7)*X4)*
(SIN(XB)*X5 + COS(XB)*X6)*SIN{X7) + ((SIN(XB)*X6
- COS(XB)*X5)*SIN(X7) + SIN({X8)1*X5 + COS(Xs8
YXXE)I*({SIN(XB)*X6 - COSI{XBI*XS5)*SIN(X7) - SIN(
X8)*X5 - COS(XB)*X6) - (SIN(X8)*X6 - COS{(XB)*XS5
)**2))/COS(X7)**28

ORIGEN(9,11) == ( ~ (SINIX8)*X5 + COS{(XB)*X6)*X4)/COS(X7)8
ORIGEN(11,11) := - COS(X7)*COS{XB)*GRAVS

VECTOR FIELD [f,[f[f,g2]1]

ORIGEN(1.12) = {SIN(X7)*SIN(XB)**2*X5 + SIN(X7)*COS(XB)**2*X5 + 2*SIN
{X8)*COS...7)*X4)*GRAVS

ORIGEN{2,12) := ((SIN{X7)*X4 - SIN(XB)**2*COS(X7)I*COS{(XB)*X6 - COS(X7)
*COS(XB)**3*X6)*COS(X7)*GRAV)/COS{X7)%

ORIGEN(7,12) := ((SIN{XB)**3*X5*X6 + SIN{XB8)**2*COS{XB8)*X6**2 + SIN(XS8
Y*COS(X8)**2*X5*X6 + COS(XB)I**3I*X6**2 + COS(X8)*X4
**2)*COS{X7)**2)/COS(X7)**28

ORIGEN(8,12) := ({SIN(X7)*SIN{XE)I*X4**2 + SIN(X7)*SIN{XB)*X6**2 - SINI
X71*COS(XB)*X5*X6 ~ SIN(XB)**2*COS(X7)*X4*X5 - COS
{(X7)*COS(X8)**2*X4*X5)*COS{X7)**2)/COS(X7)**3s

ORIGEN(9,12) := ((SIN{XB)**3*XE6**2 - SIN(X8)**2*COS(X8)*X5*X6 + SIN(XB
Y*COS{XB)**2*XE6**2 + SIN{X8)*X4**2 ~ COS(X8)**3*X5
*X6)*COS(X7)**2)/COS{X7)**3%

ORIGEN(18,12) := COS{X7)}*COS(XB)*GRAVS

DETERMINANT OF MATRIX "ORIGEN".
DETORIGEN := COS{X7)**3*COS(X8)**4*GRAV**4S

FIGURE IV.RE.2 SYSTEM FUNCTION AND ELEMENTS OF THE SET "C*.
THE ELEMENTS OF "C" ARE THE COLUMNS OF MATRIX "ORIGEN".
THE VANISHING TERMS ARE NOT SHOWN:
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PROCEDURE TRI (RA,NF,MC,SPAN}):

THIS PROCEDURE TRIANGULARISES THE MATRIX FUNCTION "RA"

OF ORDER (NF,MC). THE TRIANGULARIZATION OF MATRIX "RA"

IS GIVEN BY MATRIX BB.

THE NUMBER OF INDEPENDENT COLUMNS IS GIVEN BY THE PARAMETER
"SPAN".

BEGIN X 1
INTEGER INE,KM1,J,K,KMM,LL,PR;
L2:=8;

.
K

N

nar
Pt 00 oo

c:

FOR J:=1:MC DO
FOR I:=1:NF DO
GG(R,I,J):=RA(1,J);
GG(A.L.8):=1;

WHILE ( KC < MC ) DO
BEGIN %2

X

L2:=KC~-13;
Li=L+1;
WHILE ( MC > L2 ) DO
BEGIN X3
L2:= L2+1;
IF (GG(R,L,L2) NEQ Z ) THEN
BEGIN X4
FOR I1:=1:NF DO

BEGIN

v(irl,
vil1l,

END:

BEGIN

GG{R,
GGI{R,

END;

INE:=L2;
L2:=MC;

LL:=KC+1:

FOR 99:

%5
KC):= GG(R,II,L2):
L2):= GG(R,II,KC)
%5

=1:NF DO
X6
JJ,KC):=V(JJI,KC):
JJ,L2}):=V{Jdd,L2);
X6

IF ( KC = MC ) THEN LL:=MC;

K:=R3
FM1:=R+1;
KMM:=R-1;

FIGURE IV.RE.3.~- CONTINUES NEXT PAGE.
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IF (GG{KMM,KMM,KMM) NEQ @) THEN
FU:=GG{KMM,KMM.KMM) ELSE FU:=1;
FU:=1:

FOR I:=LL:MC DO
BEGIN X71
IF (GG(K,L,I) NEQ @) THEN
RAQ:=GG(K,L,K) ELSE RAQ:=1;
FOR J:=1:NF DO
BEGIN %8

GG{KM1,J.1):= RAQ*GG(K,J,I1)-GG(K,J,K)*GG{K,L,I):

GG(KM1,Jd,1):=GG(KM1,J,1)/FU
END: X8
END: X71

R:=R+1;
KC:=KC+1;
NON:=4;

END %4
END; X3

END: X2

R OR RN

FOR I:=1:MC DO
FOR J:=1:NF DO
BB(1,d,1):=94;

RR:=0:
FOR 1:=1:MC DO
BEGIN %1
FOR JJ:=1:NF DO
VAX(JJ.1):=GG(I,3J9,1);:
PIN:=g};
FOR IK:=1:NF DO
PIN:=VAX{IK,1)*VAX{IK,1)+PIN;
IF (PIN = &) THEN <<PON:=3>>
ELSE <<RR:=RR+1; FOR IL:=1:NF DO BB{RR,IL.RR):=VAX(IL,1):
SPAN:=RR>>
END; X1
X
x .
ERD: R i

FIGURE IV.RE.3.- THIS PROCEDURE TRIANGULARISES A MATRIX FUNCTION
USING THE FREE FRACCTION GAUSSIAN ALGORITHM.
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PROCEDURE INVO (P,SPN,NFI);

THIS PROCEDURE DETERMINES IF "SPN" VECTOR FIELDS
(COLUMNS OF ARRAY P) OF DIMENSION “"NFI" ARE
INVOLUTIVE.

THE BOOLEAN {(FALSE OR TRUE) ANSWER 1S ASSIGNED
TO THE VARIABLE "INVOLUTIVE" .

BEGIN X1

INTEGER I;

MATRIX VOL(12,28), VACA(12,1):
I:=23

M:=SPN+1;

MAS :=SPN+2;

INVOLUTIVE:=TRUE}

WHILE ( 1 < MAS ) DO
BEGIN X2
H:=1;

WHILE ( H <1 ) DO
BEGIN %3
FCOR J:=1:NFI DO
BEGIN %4
Al(Jd,1
A2(Jd,1
END; X

Y:= P(H,J,H);
Y:= P(I,J,1)
4

LIE(A1,A2,NF1);

PINT:=4;
FOR I:=1:NFI DO
PINT:=PINT+VET(I.1)}*VET(I,1);

IF (PINT NEQ &) THEN

BEGIN

VET1:=VET;

VACA:=VETI1: -

FOR J:=1:NF1 DO

P(M.J,MY:e=VET(J,1):

FOR Kl:=1:11 DO
FOR K2:=1:NFI DO
VOL(K2,Kl):= P(K1,K2,K1):

TRI{VOL,.NF1,M);
DIN:=SPAN;

FIGURE IV.RE.4.- CONTINUES NEXT PAGE.
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PIN:=8;
FOR LA:=1:NFI DO
PIN:=PIN+GG(M,LA,M}*GG(M,LA,M)

END

ELSE << PIN:=8 >>:

IF ( PIN=g ) THEN
He=H+1
ELSE << COSA:=PIN; INVOLUTIVE:=FALSE; H:=1:
END; X3
T:=1+1
END; %2
IF (INVOLUTIVE = FALSE) THEN INVOLUTIVE:=FALSE
ELSE INVOLUTIVE:=TRUE;
RETURN INVOLUTIVE
END: X1 -

I:=MAS 3>

FIGURE IV.RE.4.- THIS PROCEDURE DETERMINES 1IF A DISTRIBUTION

OF VECTOR FIELDS IS INVOLUITIVE.
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IV. 4., CONSTRUCTION OF A Z-TRANSFORMATION.

At this point the existence of a diffeomorphic transformation of the
olosed—léop system has been established. The next step, according to the
sequence given at the beginning of this chapter, is the constructicn of one
of these +transformations. The way in which this can be done is now
considered.

The construction of the diffeomorphic map of a nonlinear system to a
linear Brunaovsky canonical form, described in Chapter III, where it is
shown that the components of the transformation in question are obtained by
solving a set of partial differential equations. Given that these equations
are linear, they can be reduced to a set of ordinary differential
equations, which given the nature of the problem, are obviously nonlinear.

For practical purposes, the problem of finding the diffeomofphic
relationship between the nonlinear system to the linear canonical form, is
that of obtaining the solution of the nonlinear ordinary differential
equations arising from the definition of the transformation itself. In
general, the solutions of these of equations tends to increase in
complexity with the number of equations. The algebraic problem involved is
usually analytically intractable. The previous simplifications performed in
the closed-loop system were intended to avoid such problems. This aspect is
not characteristic of every application of the theory used here. For
instance, R. Marino [1984] presented an application to a synchronus
generator connected to an infinite bus. The order of the model of the plant

used in was five, with two inputs. In this case the solution was obtained
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by assuming that the first component of the mapping depended on two
variables only.

Unfortunately, in the present <case one has to appeal *to
simplifications, for example the parameters €., €z, €=z and €a4 in the
closed-loop system are considered zero. This is equivalent to the
assumption that the helicopter is in a trim condition, posibly with small
angular velocities. Under this assumption, it is easy to obtain a solution
to the set o0f partial differential equations that define the map
coordinates.

The partial differential equations are

<dTy, (ad® fer, €a)> =0 )
{dT+, (ad® fecr, ead> =0 )
{4T:, [feu, eal> =0 )
{dT:, ea> =0 ;

{dTs, (ad® feL, ea> = 0 '
{dTs, (ad® fcr, e=> = 0 )

dTs, [fcL, ezl> =0 s

{dTs, ez> = 0 H

{dTa, [fc, €10l =0 )

{dTs, 10> =0 )

<dT+1, [fcr, €141> =0 and
<dT+1, 11> =0 )
where the Lie brackets involved in the equations are presented in figure

(IV.RE.2).
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One of the possible solutions of the system is, T:(x) = x1, Te(x) = Xs,
Ts(x) = x5 and T11(x) = %11 where x is the state vector.

By construction, the remaining components are immediately given by

T=(x) ATy, fcour,
T=(x) = 4Tz, fcu?,

Ta(x) = <dT:E:, fc:L_)}
Ta(x) = dTs, fCL>,
T7 (x> = {dTe, fecr>,

Ta(x) = <d4T», fc:t_.);

Tiolx) = £dTa, fou? and

Tiz{x) <dTv1, fear>
This transformation maps the states of the closed-loop system to a
Brunovsky canonical form. Explicit expressions for the components, Ti, are
presented in figure (IV.RE.5).

From the point of view of control synthesis, the interest in defining

the state transformation 1s the definition of the inverse of the input

mapping. In this case the inverse is



u = Gr~'{v-Fu) or

ur (dTa, ea> <dTa, es> <dTa, 10> <dTa, e1=) -1
Uz = {dTz, eqa> £dTz, ez ATz, €10 {dTe, er1z>
Uz {dT10, ea”> <dT10, ez> {dTiro, €10? {dTio, e€1z?
U {dT1z, ea> dT1z, ez?> <dTiz, e€1a” <dATio, €1z
\Al <dTa, fau?
vz - 4Tz, fou>
L >
Va dT1o, fou?
Va dTrz, fer?
(IV.C-H.3),

where v is the control input vector of the linear system. Equation (IV.C-
H.3) defines the nonlinear control input of the nonlinear system. This
control law will have the same effect in the nonlinear system as the input
v has in the linear canonical form. The matrix function G+~' and the vector
field F. are shown in figure (VI.RE.4).

In general, if v is the input of the linear equivalent system, it can
be defined aécording to any standard linear design. Here it is assumed that
the nonlinear system is mapped to a linear Brunovsky canonical form, so
that, the pole placement method would appear to be an appropriate approach
for the generation of v. This will be dealt with briefly in the next

section.
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Tl = X108

T2 := X18

T3 = =~ SIN(X7)*GRAV + FX + FXg$

T4 := COS(X7)*GRAV*{SIN(XE)*X6 - COS(X8)*X5)$

TS5 := X118

T := X2%

T7 := SIN(X8)*COS{X7)*GRAV + FY + FYZS$

T8 GRAV*{SIN(X7)I*SIN{X8)**2*X6 ~ SIN(X7)*SIN(XB)*COS{X8)*X5 + SIN(

XB)*COS(X?)*COS(XB)*TAN(X?)*XS + COS({X7)*COS(X8)**2*TAN{X7
1*X6 + COS(X7)*COS(¥8)*X4)S

T9 := X12%
T18 := X3%
Til := X983

T12 := (SIN(XB)*X5 + COS(X8)*X6)/COS(X71%

FIGURE IV.RE.S.- COMPONENTS OF THE DIFFEOMORPHIC TRANSFORMATION.
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GTINV(1,3) := 18
GTINV(Z,1)

f®

{ = SIN(X7)*SIN(X8))/{COS{X7})**2*COS{X8)*GRAV)S

GTINV(2,2) := 1/(COS{X7)*COS{X8)*GRAV)S
GTINV(2,4) := - SIN(X7)$

GTINV(3,1}) := { - COS{X8))/{COS{X7)*GRAV)S
GTINV{3,4) := SIN(XB)*COS{X7)$

GTINV(4.1) := SIN{X8)/{COS{X7)*GRAV)E
GTINV(4,4) := COS{X7)*COS(X8)S

FIGURE IV.RE.6.- TERMS RELATED TO NONLINEAR CONTROLLEF
DESCRIBED BY EQUATION IV.C-H.3 .
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SVECTOR FIELD FV OF EQUATION IV.C-H.3 :

FV(1,1) = {{{SIN({X8)*XS5 + COS{X8)1*X6)}*SIN(X7) + COS{X7)*X4)*{SIN(X8)*
X5 + COS{XB)}*X6) + {SIN(XB)*X6 - COS(XB)}*X5)**2*SIN(X7)
)*GRAVS

FV(2,1) = ( = ({X4**2 + X6**2)*SIN(XB)*COS(X7) + SINI{X7)*X4*X5 - COS(
X7 )*COS{X8)*X5*X6)*COS{X7)*GRAV)/COS(X7)8

FV(4,1) 2= ( = (2%(SIN(XB)*X5 + COS(XB)*XB)*SINIX7) + COS{X7)*X4)*(SIN
(X8)*X6 =~ COS(XB81*X5))/COS(X7)**28

FV(1,1) := LL{SIN(XB)*X5 + COS(XB)*XB)I*SINI(X7) + COSIX7)*X4)*(SIN(X8)*
X5 + COS(XB)*X6) + {(SIH(XB)*XE ~ COSI{XB)*X5)**2*SIN(X7)
)*GRAVS

FVI2,1) = ( = {((X4**2 + X6**2)*SIN(XB)*COS{X7) + SIN(X7)*X4*X5 - COS(
X7)1*COS{XB)*X5*X6)*COS{X7)*GRAV})/COS(X7)S

FV{4,1) 2= ( = (2*(SIN(¥B)*X5 + COS(XB)*XE)*SIN(X7) + COS(X7)*X4)*(SIN
{XB)*X6 - COS(X8)*X5))/COS(X7)**28

MATRIX GT OF EQUATION IV.C-H.3 .

GT(1,3) := =~ COS(X7)*COS(X5)*GRAVS
GT{1,4) := SIN(XB)*COS(X7)*GRAVS
GT(2,2) := COS{X7)*COS{X8)*GRAVS
GT(2,4) := SIN(X7)*GRAVS

GT(3,1) := 18

GT(4.3) = SIN{XB)/COS(X7)%

GT(4,4) := COS(X8)}/COS{(X7)%

DETRMINANT OF MATRIX GT.

DETGT := COS{X7)*COS(X8)*GRAV**2%

FIGURE IV.RE.6.- CONTINUES NEXT PAGE.
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INVERSE OF MATRIX GT.

GTINV{1,3) == 18
GTINV(2,1)}

{ = SIN(X7)*SIN({X8))/{COS(X7)**2*COS{X8)*GRAV)S

GTINV(2.2) := 1/{(COS{X7)*COS(X8)*GRAV)S
GTINV{Z2,4) := =~ SIN{(X7)$
GTINV(3,1) := { -~ COS(X8))/{COS{X7)*GRAV)S

GTINV(3,4) :

SIN(X8)*COS(X7)$
GTINVI4.1)

u

SIN{X8)/{COS{(X7}*GRAV)E

GTINVI4, 4) COS{X7)*C0S{X8)$

FIGURE IV.RE.6.- TERMS RELATED TO NONLINEAR CONTROLLEF
DESCRIBED BY EQUATION IV.C-H.3 .
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IV.5. LINEAR CONTROLLER.

In this section a possible way to generate the contreol input of the
linear equivalent system is treated briefly. The application of the inverse
of the diffeomorphic map to this input, given by equation (IV.C-H.6), will
lead the nonlinear system to behave as the linear canonical form, so that,
this completes the structure of the Flight Control System.

Nowadays, the analysis and design of linear control systems is very
well known, there are extensive and comprehensive treatises about the
subject. At this stage of the design presented here the nonlinear control
problem has been reduced to the use of very well established procedures.
The analysis of the most adequate linear control tecﬁnique to use is not
presented here, this section is restricted to the application of state
feedback in order to place the poles of the linear system in the stability
region.

The pole placement technique is therefore applied to linear systems

of the form;

e 01 0 0 ¥ 0
y= 0 0 1 0 V= 0
= + A )
Y= 0 0 0 1 N 0
Ya 0 0 0 0 Va 1
s 6 1 0 of |ys 0
ye 0 0 1 o |ye 0
= + Va )
y7 0 0 0 1| |y~ 0
ye 0 0 0 0 Ve 1
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Yo 0]

1 y-;: 0
. = + Vi and
Yia 6 0O Jio 1
VAR 0 1 VAR 0
= + Va
Viz 0 © Y1z 1

That is the Brunovsky canonical form.

The state feedback that performs the pole placement for the above
linear system is given by;

vi = Rv - Kz Yo ,

vz = Rz = Kzz Yi1,

vz = Re — Kz Yzzzx and

Va Ra - Krv Yzu.
Where;

Y:

Lyv, yz, y=, yalt,

Y1z = [ys, Ve, y7, yal®,

Yrzz = [y, yr10l®

Yiv = [yrr, yizl®,
R1, Rz, Rz and Rs are the references of the linear systems given by the
transformation of the reference of the nonlinear system, according to the
mapping coordinates presented in figure (IV.RE.6); and
K: = [-P1 Pz Pz Pa, P1 Pz Pz + P1v Pz Pa + Py Pz Pa + Pz Pz Pa,

~{P1 Pz + P1 P2 + Pv Pa + P= Pa + Pza + Pz Pa), (P71 + Pz + Pz + Pad1,

(6]
N

Kiz = [-81 Sz 8a Sa, S1 Sz Sz + Sq » Sa + S1 8z Sa + Sz Sz Sa,

=81 8z + 81 B8z + 81 Sa + Sz Sz + Sz Sa t+ Sza), (S + 8= + Sz + Sadl,

5]

Krzz = [-Vy Vz, Vi + Vz] and
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Kiv = [=Wy V=, Wi + Wzl

WVhere P, 1 =1, ... , 4 S, 1 =1, ..., 4 ; V:+ 1 =1, 2 and
Wi, 1 = 1, 2 are the desired poles for the linear system and therefore, for
the global closed-loop system.

The linear control technique, presented here, 1is expected to
compensate the simplifications performed during the initial stages of the
design. Obviously one cannot expect that the transformation presented in
the previous section maps the nonlinear system exactly to a linear
Brunovsky canonical form. UNevertheless, one can positively expect the
transformation to be "near" enough to the canonical form, consequently the
linear controller could cope with the discrepances arising from the
simplifications.

The conditions which achieve this are shown in the following section

by simulating the helicopter together with the flight control system.
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IV.6. SYSTEM SIMULATIONS.

In order to visualize the performance of the control law developed in
the previous sections, a series 0of simulations of a helicopter with the
flight control system is presented. The results consist of the time
responses 0f the helicopter state during the execution of basic manoeuvres.

The manceuvres simulated are intended to show that the global closed-
loop system is formed by four linear and decoupled sub-systems. It was
previously established that this set of sub-systems corresponds exactly to
the Brunovsky canonical form if the helicopter is in trim. In other
circumstances the» sub-systems still correspond to the canonical linear
form, but a "noise" is added due to the simplifications made in the
nonlinear controller design. One role of the linear controller in the
flight control system is to compensate for the effects of the noise added
to the system while it is not in trim,

bThe most elementary properties of the closed-loop system which need
to be considered are a),- non-coupling of the four sub-systems and b),
whether or not the controller allows the execution of manoceuvres. It should
be noted that the Flight Control System was designed referring the
position of the helicopter +to body axes, for instance §= u, y.= v and
é= w, which are of no use in the definition of trajectories or position of
the vehicle with respect to Earth. However, in the simulations presented
here, the helicopter position has been referred to a reference frame fixed

on Earth and expressed by
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§E= u (cosB cosy) + v (sine sin® cosy - cose siny) +
w (cosg sinb cosy + sine siny),

§E= u {cosB siny) + v (sine sin® siny + cose cosy) +
w (cose sinB siny - sins cosy) and

ze= u (-sinB) + v (sins cosB) + w (coss cosB8)

That when the flight control system is required to drive the helicopter to
a certain value of (xe, ye, 2e) these values represent the rectangular
coordinates of the position with respect to a reference frame fixed on
Earth.

The results presented below prove that the above two characteristics
a), and b) and also the robustness required to control position are
satisfied.

Before presenting the resulting simulations, it is appropriate to
recall that the four sub-systems are related to the longitudinal, lateral,
normal and heading movements. These sub-systems are:

1. Sub-system 1

state: [Xe, u, 6, 917,

input: 81s, longitudinal cyclic command.
2. Sub-system 2
state: [ye, v, o, P17,

input: 8., 1lateral cyclic command.

3. Sub-system 3

state: [z, W1T,
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input: 8-, main rotor collective command.

4., Sub-system 4
state: [y, rl7,

input: 8s. tail rotor collective command.

The following figures show the responses of the sub-systems during

the execution of a series of simple manoevres.

Simulation 1.

The results of the first simulation are presented in figures IV.S1.1i,
i=1, ..., 4. These figures show the dynamic characteristics of sub-system
1, which is related to the longitudinal movement of the helicopter, and its
influences on the other sub-systems.

In this simulation the fact that it 1is possible to demand a
longitudinal movement from hover to hover by simply defining the following

reference to the flight control system is demostrated

Ri= T Ew),
Rz= Te (Ym),
Rz= Tz (Zwx) and

Ra= Thr Gym),

where Ti, Ts, Ts and Ti: are the corresponding components of the state

diffeomorphic transformation; Xx, Yr and Zx are the desired helicopter
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position coordinates, referred to a reference frame fixed on Earth, and yw
is the heading reference.
The initial flight condition is hover on the origin of the reference
frame, which is maintained for one second before the manceuvre is started.
The - responses marked with the symbol "+" <correspond to the
theoretical equivalent system related to the helicopter position. The poles

of the linear equivalent system were set at;

The value of the reference given for this simulation was:

=50 m., Y= 0 m., Zrx= 0 m., ¥yr= 0 rad.

One can see that the helicopter forward displacement is practically
overlapped with the theoretical linear equivalent system. This indicates
that the linearization is accomplished for this particular operation. When
one considers the time history of u, it is clear from the beginning of its
response that it does not behave like a third order system with its poles
at -1, but that this mismatching does not affect the general performance of
the system. On the other hand, the effects of the simplifying assumptions
directly affect the three translational velocities.

On the contrary to the forward velocity, the pitch angle and the
pitch rate dynamics correspond very closely to second and first order
systems respectively. This 1s particulary obvicus for g, as can be seen in

its initial response in figure IV.S1.1.
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The only one of the remaining sub-systems which 1is significantly
affected is sub-system 3. This is not unexpected, given that the change in
attitude and the forward displacement will affect the height.vln this case
the maximum deviation from the reference is four metres, nevertheless the
final error is zero, as can be checked in figure IV.S1.3.

The outputs of sub-systems 2 and 4 are practically unaffected during
this manoeuvre, as is shown in the scales of the responses in figures
IV.S1.2 and IV.S51.4. In the same figures it can be seen that the decoupling

of this sub-system requires some action from its control commands.
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Simulations 2, 3 and 4.

These simulations are intended to show the influence of the selection
of poles of the equivalent linear system for sub-system 1.

It is clear that the previous simulation addresses an academic
problem rather than a practical ome, or at least that the kind of
manoeuvres simulated are restricted to small displacements. In fact, a
reference larger. than X== 50 m will generate, in the flight control
system, an initial position error such that, in order to compensate it an
unrealistic contrcl input is demanded.

In the following simulations the pole of the equivalent linear systenm
corresponding to Xe, Y and Ze is set at the origin and the system output
is considered to comprise the translational velocities u, v and w. This is

equivalent to defining the reference with

Ri= Tz (uw),
Rz= Tea (Vw),
Rz= Tiro (we) and
Ra= Trz (Yr);

Pi= 0, Si= 0, Ta= 0 and V.= 0.

where Tz, Te, Tio and Tiz are the corresponding components of the
diffeomorphic transformation of the state, ur, vk and wsk the reference
translational velocities and P:, S, T: and Vi the poles of the first mode
of the linear equivalent systems 1, 2, 3 and 4 respectively.

In order to avoid an umnecessary proliferation of figures, only the

responses of sub-system 1 are presented.
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The result of simulation 2 1s shown in figure 1IV.82.1. This
simulation is intended to show the response of sub-system 1 in a flight
condition other than hover. In this case the forward velocity u is changed
from 0 to 20 m/s and then returned to 0, while the other references are
kept equal to zero. From the response shown in figure IV.S2.1. it is clear
that the system response is symmetric with respect to the incréase or
decrease of the reference. This does not occur with the input command, the
changes from flight conditions other than hover require larger inputs to
realize a change from forward flight. Note that the values of the poles are
the same as in simulation 1.

The effect on the position of the equivalent system is shown in
figures IV.83.1 and IV.S4.1. In simulation 3 (figure IV.SS.li the poles
were set at Pz= -2,

Pz= -1, Pa= -1 and in simulation 4 at Pz= -0.5, P3= -0.5,
Pa= -1.0. The difference between these two responses is obviously the time
response and the input command dynamics. This shows that  the
charactefistics of the response of sub-system 1 relies on the selection of
the the linear controller and on the magnitude of the reference demand.
That is, 1f the time response of the system is reduced, larger inputs will
be required. For instance, in the case of simulation 3, if the reference is
changed from 0 m/s to 10 mw/'s, it will cause a large demand on the
longitudinal cyclic reéulting in instability in the calculation of the
rotor coefficients. On the other hand, by increasing the time response, it
is possible to increase the reference to 40 mw/s, as shown in figure

IV.S4.1.
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Simulation 5

This simulation i1s intended to show that sub-system 2 is linear and
decoupled from the remaining sub-systems.

The helicopter is initially in hover flight for one second, after

which, from this condition, the reference is generated by

with X== 0, Zr= 0, ya= 0 and Y== -30 m .The manoeuvre thus consists of
a side step displacement of 30 m amplitude, keeping the height and the
longitudinal displacement constant.

The poles of the sub-systems for this simulation were;

P:= —1, Po= *l, Pz= -l, Pa= —1,

Si= -1.5, Sz= -1.5, Szx= -1.5, Sa= -1,

The system response for simulation 5 is shown by figures IV.S5.1 to
IV.55.4. The response corresponding to‘sub—system 2 is presented in figure
IV.55.2, which shows that the response of the rolling rate p is a typical
response of a first order system and the roll angle o of a second order

system. In spite of the simplifying assumptions in the design, the response
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of the lateral position is very close to the linear equivalent system as
can be confirmed in figure IV.S5.2.

During this manoeuvre, the sub-system affected most, was sub-systenm
3. It suffered a maximum deviation in height of 4 metres, thus causing a
large demand on the collective command. On the other hand, the outputs of
sub-systems 1 and 4 were effectively decoupled: nevertheless some action
from the longitudinal cyclic and tail rotor collective command are

required, as can be seen in figures IV.S5.1 and IV.S5.4.
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Simulation 6.

The variables related to sub-systems 3 and 4 were obtained without
considering simplifying assumptions, so that to avoid a large quantity of
figures, the responses o0f these sub-systems are presented in same
simulations . Furthermore, in this simulation, sub-system 1 1is also
required to respond to a change in the reference, so that the four sub-
systems are involved in this manoeuvre.

The reference given to the Flight Control System is defined as
follows: |

at t= 0 s ,

Ri= Tz = O,
Rz= Te (ve= 0),
- Rz= Tio (Wa= 0),

Ra= T11 (yr= 0)

at t= 1 s,

Ri= Tz (ur= 20 m/s),
Rz= Te (V&= 0 Ww/'s),

Rz= Tio (Wr= -5 w/s),

Ra= Ti1 (yr= 0);
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and at t= 19 s,

Ri= Tz Wwr= 20 w/s),
Rz= Te (va= 0 w/s),
Rz= Tio (wr= -D m/s),

Ra= Ti1 {(yr= 8 “/s ).

The equivalent poles of the system are Pi1= 0, Pz= -1, Pa= -1, Pa= -1,
81= 0, Sz= -1, 8z= -1, Sa= -1, T1= 0, Tz= -2, V1= 0, V== -5,

The results of this simulation are presented in figures
1v.86.1 i= 1, ..., 4.

From figure 1IV.S6.3 it is clear that the normal velocity response
corresponds to that of the linear equivalent system. Nevertheless, to
achieve the time response shown, an initial high collective input is
required.

The response of sub-system 4 is shown in figure IV.86.4. In this
figure the bold line corresponds to the rate of change of yaw. From this
response it is clear that the yaw rate is sytrongly affected by changes in
the translational velocities u and w. Thus a large demand of tail rotor
collective 1is required to maintain the heading angle y at a prescribed
value. On the other hand a demand on the rate of change of y while the
vehicle is flying at u= 20 m/s and w= -5 m/s, does not involve such a large
tail rotor collective demmand. Here, a substantial demand of the lateral
cyclic command is required in order to achieve the heading rate reference.
In order to achieve the yaw rate of 8 °/s, sub-system 2 has been

substantially modified; for example, note the roll angle change from the
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hover condition to 17.2 °/s with respect to the response of y. It is clear
that this corresponds to its linear equivalent éystem response.

It is obvious from figure IV.S56.1 that sub-system 1 is not completely
decoupled from the collective command. The responses of g and 8 still
correspond to a first and second order system, meanwhile, the response of u
is not even similar to that of simulations 2 and 3. XNevertheless the
reference is practically reached at the same time as its that of linear
equivalent system.

The response of sub-system 2 shown in figure 1IV.S56.2 is a consequence
of the kinematic relationship of the vehicle. In order to maintain the side
slip velocity v equal to zero during this manoeuvre the bank angle has to
be increased. During the transient of the response of this sub-system, an
overshoot of 100% is observed, plus an oscilation around the reference
value. The characteristics of this response depend entirely on the value of
the poles of the equivalent linear system. For instance in figure IV.S7.2
the response of sub-system 2 is shown for the same manoeuvre, but with the
poles of the equivalent linear system changed to S:= 0, Sz= -0.5, 8Sz= -0.5
and Sa= -1.0, while the other sub-system equivalent system poles values are
as in simulation 6.

It is obvious that the change of the pole locations modifies the
characteristic of the response, the overshoot has been reduced to 65%.

Again, the effect of the collective command changes on sub-system 2
is shown during the period of 1 to 15 seconds in figures 1IV.S6.2 and
IV.87.2. These figures show how the value of the poles affect the sub-

system dynamics with respect to sub-system 3.
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CHAPTER V.
V.1, CONCLUSIONS AND FURTHER DEVELOPMENTS.

In the work comprising this thesis, a flight control system for
helicopters has been designed. The relevance of the procedures and results
presented here is that they have been obtained through the application of
nonlinear system theory, introducing a new approach to the problem of
helicopter control.

The advantages of the approach introduced here, over the conventional
techniques (linear systém theory), 1is the span of the validity of the
results, They are not restricted to a particular operating point thus
avoiding the use of several models and scheduled controllers. The design of
the control system, using this theory, does not rely on the modelé obtained
by linearizing the helicopter's equations of motion, which introduce a
large number of parameters (e.g. aerodynamics derivatives). The latter
representations require extensive identification procedures for validation.
On the contrary, the model proposed and obtained in this thesis, depends
directly on the forces and moments of the rotor in function of the
helicopter commands. Unfortunately the relafionship of forces and moments
cannot be expresed in closed form due to its complexity. Nevertheless, even
a representation of a particular flight condition requires fewer parameters
than the linearized model: only those coefficients related to the input
matrix are required.

The control structure designed here is composed of three different

elements, which according to the design, realize the following features:
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a) With the nonlinear compensator it is not possible to control the
whole system, but it is possible to simplify the model substantially.

b) The direct application of the nonlinear feedback equivalence
theory to the original model of the helicopter ‘will be extremely
complicated. On the other hand, the application of the present theory to
the helicopter-compensator closed-loop system facilitates the design. The
diffeomorphic transformation to a linear system of the helicopter-
compensator combination is obtained, but not without considering some
simplifying assumptions.

c) The effectiveness of the previous two steps is enhanced by a
linear controller, in this case pole placement. This shows that the design
of the flight control system for helicopters has been reduced to a linear
control prob}em via a diffeomorphic transformation of the state-input
space.

The work presented in this thesis can be summarised by the following
points:

1) The introduction of the nonlinear system theory as a new and
powerful technique for the development of flight control systems for
helicopters.

2) The obtaining of the meodel required in the application of
nonlinear system theory for the development of flight control systems.

3) A comprehensive review of the nonlinear feedback linearization
Theory, including mathematical tools and proofs.

4) The presentation of a flight control system design using the
results of nonlinear system theory. The symbolic algebraic computation
facilities required for the application of this theory are also included.

5) The simulation of a helicopter with the flight control system.
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From the results of the simulations, it is clear that the behaviour of the
global closed-loop system is very close to that of a canonical linear
system, showing that the performance of the control system is good.

The results obtained in this thesis suggest that there 1is a
possibility for further applications and developments of flight control
systems for helicopters, by use of the approach presented in this thesis.
Every aspect of the design presented here is a suitable topic for future
study and development, for instance:

17 We can consider the response of the system to wind perturbation,
that is adding a perturbation term to the velocity vector.

11> The section related to the linear controller can be developed to
further. Given that the equivalent linear system is affected by
perturbations Inherent in the design, it 1is reasonable to consider the
problem of determination of the "“best" 1linear control approach for
improvement the performance of this section of the flight control system.
One could venture to consider H®, model following or optimal control
techniques for this purpose.

111> The section concerning the compensator could also be developed
further. Given that the control matrix 1is not constant, it must be
calculated on line. This calculation can be avoided if the elements of the
control matrix involved in the compensator output are estimated on line
with an identification algorithm.

IV) The core of the flight control system design developed in this
thesis, relies on the generalization of the concept of controllability from
linear control systems to the nonlinear case. The application of this
concept to control systems depends on the accessibility of the state

which, in many cases is not physically realisable. If this is the case, the
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natural consequence is an investigation of the dual of controllability;
observability,

At present some results on observability and the design of observers
for nonlinear systems are availabie. Bestle and Beitz [19831 presented the
dual of the Brunovsky canonical form transformation of single output of
nenlinear systems. Research in the development of the multivariable case
originated from this work. Its application 1is substantially more
complicated and the conditions required for the syétem to be transformable
to a canonical observer form are more demanding than in the dual case,
these facts are established by C. W. Li and L. W. Tao [1986] and Xiao-Hua
Xia and Wei-Bin Gao [1988].

V) In future research, stability and robustness of the control system
could be studied. This aspect is of great interest, not only for control
systems but in a variety of applications, (see for instance Chapter 6
Stability Theory: Singularities, Bifurcations and Catastrophes by Casti
[18851). This topic by itself presents a good intellectual challenge.

An outline for the study of stability and robustness of the flight

control system developed in this thesis is given as follows:

Let X be an equilibrium state for the system of differential

equations

()= f(x) + I u; g: (0= h(x) V.1,
1

4 o

where h is C' in some set W of the state space which contains x.
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Definition V. 1.

The point % is a state equilibrium point, if for every neighbourhood

U, of X in U such that every sclution x(t) with x(0) in U, is defined in U

for all £ > 0. If U, can be chosen so that in addition
lim x(t)= X

Then X is asympotically stable.

Given a compact set k contalning X in its interior, X 1is said to

to beasymotically stable on k if it is stable and every solution starting

to beconverges to ¥.

Definition V.2.

Let V: U > R be a continuous function defined on a neighbourhood U of

%, differentiable on U - {%}

such that
a) V{X>= 0 and V(x> > O if x # ¥

b) V<O in U - {%)

The function V is defined as a strict Lyapunov function for X.
Suppose a linear feedback control is applied to the linear equivalent
system of V.1, to stabilize (asymtotacally) the system about the origin. In

the present content we have
y(t)= Ay + Bv

y(t)= Ay + Blyx - Ky)
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y(t)= (A - BK) y + B, ym ;

one can consider yxz as the origin and A - BK= C

y(t)= Cy
where the eigen values of C have a negative real part. Choosing a negative
definite matrix Q, the equation CP™ + PC= Q (T denotes transpose) yields a

unique, positive, definite solution P, and
Viy)= y* Py
is a strict Lyapunov function

Now given that y,= T,(x), y== T ), ... , yn= Tn(x) then V depends

on X so that;

= 3 v,
- I oy

which by condition b) of definition V.2. is known to be negative away from
the origin in the y space. Hence, V is a strict Lyapunov function for the
origin in the x-space, the system being V.1. with u corresponding to the

linear feedback control.
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Remembering that the relationship between u;, i= 1, ... , m and v;,
i=1, ... , m is glven by equation (III PDB), it is possible to express u in
function of v,.

Using the theorem of Lyapunov and substituting u;, i=1, ... , 4 into
system (V.1.), the origin is asympotically stable. Moreover, if k is a
compact subset of W containing the origin and the boundary of k is a level
set of V(G(k)), then the origin is asympotically stable on k.

This follows because T and T™' map level sets to corresponding level
sets, trajectories to corresponding trajectories and the origin to a
corresponding origin.

This, i{f the nonlinear system (V.1.) is mapped according to the
diffeomorphic function defined in chapter 1I1, around an open set W
containing the origin in the x-space and one uses a linear feedback in the
y—-space to stabilize asymptotically the linear system (eigenvalues having
negative real parts) any strict Lyapunov function viy(X>} for the linear
system is a strict Lyapunov function vIiy{(k)] for the nonlinear system with
the controls corresponding to those of linear feedback. Furthermore, this
nonlinear system has its origin as an asymptotically stable equilibrium
point on any compact set k whose boundary is a level set of viy(x)] and
with K contained in W (Williems, J. L. [19701).

As a final comment, one can consider that the object of this research
has been achieved. A new approach has been applied to flight mechanics,
and given the new advances in symbolic computing, the application of this
new approach to the several aspects of helicopter analysis introduces a new

powerful tool.



"Zer edo zer esan bearra badaukat".
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APPENDIX II.1 ROTOR FORCES AND MOMENTS.

In this appendix the equations which describe the force and moments
produced by a helicopter main rotor are developed . These equations were
originally reported by Padfield. They are modified here in order to obtain
an (f,g) model, in which the controls u: are the collective, lateral and
longitudinal commands of the helicopter.

The equations presented here, afe the same ones as implemented in
the six degrees of freedom version of Helistab. The terms appearing in
this version are extended to the first harmonic only and blade dynamics is
ignored. These assumptions 1limit the range of validity of the model,
nevertheléss the most important nonlinearities and coupled terms are not
neglected, so that the model obtained 1s a good starting point from the
nonlinear control point of view.

The equations are not presented in the same detalil as in the
references. Only the part of the theory which is necessary to obtain a

suitable model for the development of this thesis, is shown here.

The'flapping, forces and moment equations are expressed as an inner
product, one of the vectors involved is referred to the aerodynamic and
state variables and the other one to the control commands. The elements of
the vector referred to the commands can be linear and nonlinear with
respect to its elements. In the first case this vector is composed as
follows:

6r= [B0, B1s, B1c, 11t ,

or

0u= [Bow, Br1sw, Bicw, 117%,

where
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Bo: 1is the collective command,
B81s: 1is the cyclic longitudinal command, and
B81c: 1s the cyclic lateral command.
The above commands are expressed with respect to body axes, the
subindex "w" denotes that they are expressed with respect to wind axes.
The nonlinear terms in the commands arise from the multiplication of
two internal products, for example, let
Let v=lvi, vz, vz, val® and w=lw:, Wz, Wz, wWal® be two vectors whose
elements are functions of the helicopter state and let < . , . > denote the
inner product operation. In the development of the equations the product
() ()= <v,Br> <W,Br> ¢p)
is often encountered. If this product is developed, the result can be
expressed again as a inner product of the form
{U,0ra> , -
where:
Bra=l6a0, B1a, B1c, Bo®, Bo B1a, Bo B1c, B1s%, B1s B1c, B1c=, 11 %

and

U=lv: Wwatva Wi, V2 Wa+Va Wz, Va WatVa Wa,V1 Wi, V= WztVz Wi,
Vi WatVa Wi, Vz Wz, Vo Watvas walt .,

In the simulations and model programme wused im +this Thesis, a
subroutine that transforms all terms of type (1) to the terms of type (20
has been implemented. The equations of flapping forces and moments of the

main rotor are expressed as internal products, in order to obtain an (f,g)

model with respect ta the command inputs.

THRUST AND FLAPPING,
The main rotor downwash and thrust coefficients are calculated in

exactly the same way as reported in (Padfield [19811) and are executed as
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in Helistab. These equations are rewritten in the form of inner products
referred to body axes.

It is easier to describe the flapping angles with respect to wind
axes, but here it is necessary to change the reference frame to body axes.
This are first calculated with respect to wind axes and then transformed to

body axes, the relationship between these two different frames is

COS Yw (gin yuw) 0
X = -{sin yu) COS Yw 0 Xo
0 0 1

where X. and x= are vectors referred to wind and body axes respectively; uwm
and vw are the rotor longitudinal and lateral velocities respectively;

COS Yuw= M/ M, sin yu= Ner (U /) ,

M= U/ (Q R Hy= Vo /(Q R), M= (e ™)
and UYNci: indicates the main rotor rotation sense.

The above matrix which relates the body and wind axes frames will be

denoted as:

Kye Kvs 0
"Kvm ch 0 (3 )
0 0 1

The variables Q and R are the rotor revolutions per unit of time and
rotor radius respectively.

ROTOR THRUST COEFFICIENT.

The rotor thrust coefficient C+ is given by (Padfield (19811, equation
(E-10)):

Cr= (a0 s/2) (Bo (1/3 + p=/2 ) + % g Brsw + % Prw Ne1) + % Ra +
B Bew (1 + @)

where:

ao: 1s the 1ift slope of the blade section;

s: 1s the rotor solidity;
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{number of blades) (blade chord)/ (x R)= (b c)/(x R)
prw: Helicopter normalised roll rate with respect to wind axes;
Pw/Q
pw: helicopter roll rate with respect to wind axes.
Rmo: 1s equal to (p==Xo);
where o 1s the main rotor uniform downwash component;
P== w/{(Q R) and w~ is the helicopter normal velocity.
Btw: Is the blade twist.
The thrust coefficient equation can be rewriten as:
Cr= B0 {% (éo s) (1/83 + p®)} + B1sw ¥ H ac s} +
% (ao S) {% prw Ner + %8 Bew (1 + p=))
If one defines
Crwi= % (ao s) (1/3 + % p=)
Cruwz= ¥ (ac S) M
Crwzs= 0
Crwa= % (a0 ) {prw Ncar + % Bew (1 + p=D?
then 1t is possible to express the thrust coefficient as:
Cr= Crw, Buw?,
where the elements of the vector C+w are the coefficients Crwi, for
i=1,...,4. If the commands are referred to body axes then
Cr= {Ker, B=,
where:
Kers [Crwi, Grwz Kue, Cruz Kys, Grwal®

= [Ker1, Kerz, Kerz, Ketal ® .

Note that the thrust coefficient C+ and the downwash component Xo are

related by a nonlinear algebraic equation. In the simulation programme the
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values of Cr and o are calculated according to Padfield [1981]1 (appendix
E).
MAIN ROTOR FLAPPING ANGLES.
The rotor flapping angles are exbressed in function of the structural
and aerodynamic characteriétics of the rotor:
xg*: 1s the normalised rotating flapping frequency, given by;
AgE= 1+ Ke/(lp Q=) |
where Kz 1is the spring stiffness of the rotor blade assuming it is a
centrally sprung hinge; Iz is the blade moment of inertia, ie.
Ig= wme re® drp
ns: 1s the inertia number equal to ¥/8, where Y is the Lock number
¥= (p ¢ ao R*)/1p
where p is the air demsity and
Se: is the stiffness number; Sg= (A\s® -1)/ s
In Helistab, the flapping angles are obtained by calculating the terms
and coefficlients separately due to the complexity of the equations. These
terms are redefined here.
The longitudinal and lateral flapping angles are proportional to
Fer= -nx / { (1 + S - ¥ p*) Og) }
Longitudinal flapping Brcw
The influence of the blades twist is evaluated by:
Frewe= 2 p Bew { (1 + % p2) Ag/ns + (8/15) Sp (1 + (16/9) p=) 1},
The downwash effect is calculated by using
Trsw= R p { (16/9) Sg + 2 Ap/ne (1 + % p=) } + Op Spg Mcw)/De
where

Mecwi 1s the first lateral downwash component in hub wind axes
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ho {(tan y/2), if x< ¥n
A cw™
Yo (cot y/2), if x> ¥=n
and y is the wake angle, given by y= arctan( p/ O - p=).
The effect of the angular velocity is :
Fuwe= Wei prw { Op/oe) (1 + % g2 - 2 Sp/ne) + ( (16/18) Sg p=) ) -
Prw As/nDs { Sp + (2/ns) (1 + % p=d}

The following term is defined:

Faw= Fer (Frwe + Fuc + Fac)

The direct effect of the control commands is expressed in a similar
way.

Term due to the collective command:

Fro= For { (1 + 2 p®) + % p* Xp/ns + (16/9) Sp p® ) 6o

Term due to longitudinal cyclic:

Fzu= Fer { (1 + 2 p= + % p%) O\p=/np) + (16/9) S p= } Biasw

Term due to lateral cyclic:

Fauw= - { Fer Sp As/ng (1 + % p=) ) Bi1cw

The expression for Bicw can be written as:

Brcw= (Fu, B4 >,
where aobviously

Fu= [Fiw, Fzw, Faw, FauwlT .

Finally the lateral flapping in terms of 6. and 6. can be obtained
using the transformation matrix (3):

Brcw= <F , B>
where F= [Fiw, Fzu Kuu~ Fauw Kus, Fzu Kust Faw Kye, Faul?®

= [F1, Fz, Fz, Fal®

Lateral flapping equation B1o
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The equations for the lateral flapping are composed of the following
terms:
Term related to rotor downwash:
Ga= g R { (16/9) (1 - p®) - 2 Se/ns) - (Ag®/np) (b p= - 1) } Mew
Term related to the angular velocity:
Gw= prw Ne1 { OW\g®/np) (2/ng) (B p=-1) - Sg> + (16/18) p= +
grw AsZ*/ns { 2 Ss,np + % p= - 1
The influence of the twist is calculated with:
Gew= 2 H Bew { (1 + p®/3 - (5/12) p*) (8/15 - (Se/ns) Ag® }
The above terms can be associated as follows:
Gaw= Fer (Gx + Gu + Gew).
The terms related to the command inputs.
Collective command factor:
Giw= (4/3) p Fer {1 + % p= (1 - p=) - 2 Su <Ap,ng) }
Longitudinal cyclic factor:
Gzw= Fer { (16/9) p* (1 - % p=) — (1 + (3/2) p2) Sg (\g/np) ?
Lateral cyclic factor:
Gaw= = Fer \prne) (1 - % ) .
Proceeding as before the lateral flapping can be expressed as:
fisw= {Guw , BW> ,
where
Gw= [G1w, Gzw, Gaw, Gawl®* ,
Finally referring this angle to body axes using the transformation(3):
Brsw= <Gu , Br> ,
where

Gw= [G‘lw, szw K\pc - G:E!w K\ps, szw K\ﬁs + GSw Kwa;, Gaw]
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FLAPPING ANGLES REFERRED TO BODY AXES

The force and moment equations depend on the flapping angles referred
to body axes, so that it is necessary to apply the transformation (3) to
the flapping angles. The resulting equations are

B1e= <Kyc F + Ky G, B> or

Bie= <Fp , Br> ,
where Fg= Kuyc F + Kus G ; and

Fe= [Fg1, Fgz, Fpz, Fralt
and;

B1s= {Kue G - Kus F, Or> or

B1e= <Gg, Or?> ,
where Gg= Kye G - Kya F ; and

Geg= [Gg1, Gegz, Ge=z, Geal®

which can be substituted in the rotor torque equations to obtain a similar
expression for the rotor torque. These exp;essions are obtained as follows.

The main rotor torque coefficient 1s given by

Ca= = Cr (Rm = p Brcw) + % 6 s (1 + p=)
where §, is the main drag rotor coefficient, (assumed to be of the form 6=
8o + 8z C+=°. This parameter has not been considered as a function of <Ker
', Bx>, assuming that C+= does not have an important influence in the change
of the value of §.

By substituting the expressions of Cr and Bicw in the Cq equation it
is possible to obtain

Ca= —<Rmr. Ket, B=> + <~ p Ker, Br> <F, B> + % 6 s (1 + p=) .
If the vector

Q1= Ru. [Kerr, Kerz, Kets, Kera + 6 s (1 + pEI/ (8 Rdl ®

178



isvdefined, and if the product of the second term is realized according to
the procedure explained at the beginning of this appendix, then the torque
coefficient can be expressed as;

Ca= <Q1, Bma> + <Qz, Brad> ,
where

Qz, Bra?>= <- pu Ker, Br> <F, Or>.
Finally if Ke= Qi11Qz then

Ca= Ka, Brn>

The main rotor torque is defined as

Qz= p Qz Rs m Ca .
This equation can be transformed to an inner product

Qr= {Kar, Bra> ,
where Ker= p Q= Rs © Ke

By extending this procedure the force and moment equations can be
expressed in a similar way, as shown below.

MAIN ROTOR FORCES

In order to have a compact notation the variables

Rea= p Q= R* m;

Rrz= Re1 R:

Ruy= - % 6 s o
are defined.

The lopgitudinal force component is:

Xe= Fr1 {Cr (Brc + ¥) - % & s p} .
If the flapping and thrust coefficients are expressed as inner products,
this equation can be transformed to:

Xr= {Kcry, Or> <(Fr1 Fp , Or> + (FrL Y« Ker, B> + % 6§ s p Fr1
where ¥« 1s the shaft angle. It is possible to define a vector fuanction Kex

as for the Cq coefficient, such that
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X== {Kex, Ora’> .
The lateral force is expressed by:
Y= Re1 (- C7 B1s Nex -~ % 8§ s W
If the inner products are substituted then
Y== <-Rr1 Ket , Or> <WNe1 Gu> - % § s g Res
Proceeding as before this equation can be written as
Y= <Krev., Ora> ,
for some vector function Kev.
The normal force is:
Ze= - Rr1 Cr ,
which can easily be transformed to:
Zr= {Krz, Br> .
MAIN ROTOR MOMENTS
The rolling moment equation is:
Lr= Lu + bhr Y& ,
were hm 1s the height of the hub from the centre of gravity and Ln= - ¥s=
Ne1 Qr so that the rolling moment can be expressed by
Lr= <~ ¥= FNe1 Kar, Bra> + <br Kev, Bra?,
Which can easily be transformed to,
Lr= {Krr, Oma? ,
for some vector function Kew.
For the_pitching moment it is possible to obtain a similar expression
given that
¥== Rez (Mn — bhr Xr + Xeg Zr)
where Xcg 1s the horizontal distance between the hub and the centre of
gravity and
Ma= - % b Kg Br1s

were Kg is the hub stiffness.

180



8o, according to the development outlined here, the pitching moment
can be expressed as:

Mr= <~ % Rr= b K Gg, B> + <~ Rrz hr Krx, Orad + (Rrz Krz Xcg, Ora?
and again, this can be reduced to

¥r= Kam, Oma>
for a vector function

Krm= { “Rez hr + Rez Xcg ) Krz +

(- % Rez D Kee ) (¢ Ggry, .., Gg=, 0, 0, 0, 0, 0, O, 1% .

Finally the yawing moment is given by:

¥e= Qr Ne1 + ¥= Lr .
The terms on the right can also be written as inner products:

Fr= <FNe1 Kar + ¥r Kro, Omra?

If Ken= Nc: Kar + Y= Kee then

Ne= <{Krn, Ora>
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APPENDIX II.2 TAIL ROTOR FORCE AND MOMENTS.

This appendix is devoted to the equations of tail rotor force and
moments which are obtained in such a form that their contributions can be
expressed as inner products.

The thrust and power are expressed in terms of normalised velocities

pr= W* + (w = Kar Ao + @ (11 + X)) (Q R

and

pzr= (-v + (17 + Xeg) T = hr p) (Q RO,
where u, v and w are the aerodynamic velocitles at the helicopter centre of
gravify; P, q and r are the fuselage angular velocity components, \e is the
main rotor downwash, and lv and hr, the position of the tail rotor aft and
above the fuselage reference point, which is the point vertically below the
main rotor hub, lying on the fuselage reference line.

The tail rotor thrust coefficient is expressed as

Crr= % act st (Botr® (1/3 + % pr®) + % (=t - o)
where aot 1s the 1ift curve slope of the tail rotor blades, sr is the tail
rotor solidity, and 6.+* is the collective pitch, given by:

Bor¥= Bor + 6z Bor
where Bor is the tail rotor coning angle and 6§z represents the tail rotor
collective pitch reduction due to blade flapping and pitch reduction.
Finally \= is the uniform tail rotor downwash.

If the expression for Por is substituted in the collective pitch

expression, then

Bor™ = {Bar + 83 (nre/2g?) (4/3) (MzT-r2) 2/ {1 + 65 (nre/Xs=)z (1 + }12))
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where nrts and vy are the tail rotor inertia number and normalised flapping
frequency respectively, assuming that the tall rotor stiffness number is
Ss= 0.

If the following functions

Tri= {1 + 8= (re/Aeg™) =z (1 + pzd)—'

Trz= Tr1 Sz (nre/Xs®) (4/3) (gz=v-Xa) ,

Trz= aot ST (1 + 3pr=/2)/6 and

Tra=® aot ST (M=T-Aa)/6
are defined, then the thrust coefficient can be expressed as:

Cr7= Bar [Tr1 Tral ¥ + [Trz Tra + Tralt,
and if Xerv= [Tr1 Tre, Trz Tra + Tral® = [Crri, Crrzlt,
Brr= [Bov, 117 , this coefficient can be written as

Cvv= <{Kerr, Ormo

The tail rotor thrust is defined by

Yr= p Q= Rr* Fr Crr ,

where Fr is the empirical blockage factor given by

Fr= 1- % Sen/(m Rt®),

where Sen is the fin area.
The tail thrust can be expressed in te;ms of an inner product,
Yr= p Qr*® Rr* Fr {Ketr, Orrd>

and 1f the vector Krain= {p Qr® Rr* Fr} Kerr=[KitazL, Kzrar l* is defined,

Yr= <Kvaze, Ortx>
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The torque coefficient can be calculated as follows:

Cat= (=zt-ho) Krain, Brr> + % &+ sT (1 + 3 pr#

Defining Kar= (pz=t-Aa) [Kitarn, Kzraze + % v s+ (1 + 3 pr®)1*

KQT= [K1QT, KzQT]L

One can write the torque coefficient as

Cat= <Kar, B> ,

The tail rotor torque can be expressed in terms of the above inner

product as

Qr= p Qr® R+® Fr {Kar, Brr> and

Qr= KataiL, Brw>,

where KarazoL= P Q1= Rt® Fr [KQT]

The tail rotor force causes a rolling and yawing moment. The rolling

moment is given by
L+= hr Y,

where hr 1is the distance along the 1longitudinal axis (parallel to the

helicopter logitudinal axis) from the tail rotor hub to the centre of
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gravity of the helicopter. If the force is expressed as an inner product
the above equation is transformed to

Lv= <{Kre, Brw2
where Kir= hr Krv.

The yawing moment is calculated by

Nr= -(lv + Xeg> vr
where xcg 1s the centre of gravity distance, located forward of the
fuselage reference point and 1+ is tﬁe tall rotor location aft of the
fuselage reference point.
If the tail rotor force is expressed as an inner product the yawing moment
can be written as

Br= {Ktn, Brr? ,

where K+n= =1t + Xecg) Krv.
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APPERDIX 1I.3 FUSELAGE, TAIL PLANE AND FIN FORCES AND MOMENTS.

In this appendix the equations used in Helistab to calculate the
forces and moments applied to the helicopter by the fuselage, tail plane
and fin are described.

Fuselage

Let ar and Br denote the fuselage incidence and sideslip respectively.
These angles are calculated as follows:

If the rotor downwash o 1s negative,

o¢= arctan (w/u)
and the fuselage total velocity is

Ve<= we + u=

whereas, if the rotor downwash is positive then

arf= arctan (wx/u)
and the fuselage total velocity is;

VeZ= W= + u=
where u, and w are the longitudinal and normal aircraft total velocities
respectively and w, is defined as

we= W - Kur @ R do
where Kir¢: is a constant that depends on the increase in downwash over the

disc.

Q the rotor rate,

R the rotor radius.

The sideslip Br is given by
where fR¢= arctan (v/u),
and v denotes the lateral vehicle velocity.

Given the fuselage incidence and sideslip, it is possible to calculate
the fuselage forces and moments using the following equations

Xe= % p (Q R)2 Sp Ven® Cxrlar)

Ye= % p (Q B2 S Ven® Cve(Be)
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Ze= ¥ p (Q R)ZF Sp Ven® Czelae)

Me= % p (Q R)Z Sp len Ve® Cmrlar) and

Fe= % p (Q R)Z Sw lenn Vo= Cur (Be)
where S, and Ss are are the fuselage plan and side areas respectively, le
is a reference length and V¢. is the velocity normalised to QR. The
fuselage aerodynamic coefficients are described by the following polynomial
functions:

Cxs= (Fxo * Fx1 ar + Fxz ar® + Fxa o+®’/ (Ror Pre)

Cve= (Fvo + Fvi Be + Fvz B¢® + Fva RB¢®)/ (Ror Prs)

Czr= (Fzo + Fz1 o¢r + Fzz ar® + Fza a¢r®)/ (Ror Prs)

Cme= (Fnmo + For ot¢ + Fmz a¢® + Fma o¢®)/ (Ror Pre)

Cns= (Fno + Frun Be + Fuz Be® + Fua Be®)/ (Ror Pre) )
where the constants Fxi, PFvi, Fz, Fmi and Fn: for 1i=1,...,3 are
semiempirical constants depending on vehicle geometry.

Tailplane

It is assumed that the tallplane force acts on the vertical plane of
the vehicle. The equations that describe the forces and momentsare
summarised as follows: |

Tailplane force:

Zte= ¥ p (@ R)Z Vr Stp Czrelore>
where Str 1is the tail plane area, orer 1is the tail plaﬁe incidence. The
force coefficients are given by

Czre= —aot {Te1 are + Trz are® + Tes ore®)

aor= Aotpo t+ AotTri1 Br
where aot is the effective 1ift curve slope for small arr and where Te: for
i=1,3,5 and Aorr: for 1?0,1 are semiempirical coefficients;
Ste 1s a constant related to the aerodynamic section of the tailplane, for
the helicopter; in Helistab it is assumed to be 2.

The effect of the main rotor flow impinging on the tailplane is

incorporated in Vr and ar as follows:
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V2= { (W = Kare @ R Mod2 + u® )} (Q R)-=
and

or= B+ + arctan ( {(W = Kave QR Xo + (Ivp + Xeg) g } /u0)
where Kxtr 1is a constant when yx1{x<{xz, where x is the main rotor wake
angle, 1. e.:

x= arctan (u/ Qo= p=))

x1= arctan ({l+e - R/ (hr - hre)) and

x== arctan (lve/{(hr - hre)).
Otherwise Kunte= 0 .
In the above expressions, lrr is the location aft of the fuselage reference
point, hr is the negative coordinate of the rotor hub and hre is the
negative z component of the tail plane centre of pressure.

The moment produced by the tail plane force is

M‘TF'= (11’ + x:g) Z'T'F' 0

Similarly the_fin side force can be written as
Yen= % (Q R)Z Ven® Stn Cven(Bend)
where
Ven2= (u= + v2)/(Q R)=3;
and
BFn= —Ben + arctan(v - len 1),
where Orn 1is the fin cant angle positive nose starboard, 1len is the
location aft of fuselage reference point; u, v and w are the vehicle
velocities and r is the vehicle yawing rate. The aerodynamic coefficient is
defined by the functionmns
Aorn= Aorno + Aormt e
Cvin= —Born {Fint Berm + Fina Bern® + Fins Ben®)
where Acen: for i=1,2 and Finsi for i=1,3 5 are semiempirical coefficients.
The moments exerted on the helicopter by these forces are

Len= bhen Yen and
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New= —(len + Xeg) Yewn

where Xcg ls the distance ahead of the hub of the centre of gravity.
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APPENDIX III.1

The proof of equation (III.LD.4)

dL, <(h)= L, () (ITI.LD. &
encountered in sectioﬁ 2 of chapter III, will be presented in this
appendix.

Let h be a C® function on R and f a vector field on R™ . The operation
L¢(h) is defined as <{dh,f> so that:

dL¢ (h) = d<dh,f> ;

if dh = (dh,,...,dh,>*and f = (fy,...,f ) * then:
dL,(h) = d{dh; f, + dhp f> + ... + dh,, )
(fy d» dh, dh, o _f) . (f, o _dh, dh, d f,)
= + +
: > > %, ¥ > % > % ’
(f, d dh, + dhy, o f + - (f, o _dh, + dh,, o_f,» ’
O X O X O X O Xao
’ (f, d dh, + dh, » f, ) + 0y ( f. o _dh, + dh,, 2_f) ]
> Xn > Xn O Xn 0 X
Reordering the above expression we have
dL,¢h)= ( f, ©0_dh, fo o2dh,, ... , fy o dh, e fn 2_dhy)
—! 4 + — —' + +
d X, O X, d Xn O Xn
+ dh, ® f, R dh, ® f, PR dh, o f, + 0 g dh, o _f, )
0 X, 0 Xy D XA 0 Xn
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The two vectors of the right hand side of this last

factorised as follows :

o dh; ... d dh, f, o f, ... 0 f,

b X'] b X1 b Xy b X1
dL; (h) = . . . +

> dhy ... > dh, £, > f, > i

d % D X 0 %Xa D Xn

and this expression can be reduced to :

- odh . * f _o_f ,* dh
dLe () = 2-22 1 + 0 =3-0

which is the definition of L; (dh), so that

dL; (h) = L, (dh
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APPENDIX III.1 (Second part)

Proof of equation (III.LD.5)
Given two C® vector fields in R, f and g, and a C* one form dh on R™, then
the Lie derivatives defined in section 2 of Chapter III

Le(h), [f,g] and L, (dh)

are related by

L < dh, g> =< L, (dh), g > + < dh, [f, gl > (ITI.LD.5
Proof:
Let dh =T dhy, , ... , dhy 3% £ =10, , ... ,f, 1* and
g=0 & , ... , 817

Then the second term on the right hand side can be written as:

< dh, (f, g1 >

< {dhy , ... , dhy), o g .f > f g >
[ ] - [—5—1
0 X o g

n

< dh, [ > g ]f > = < dh, [ d f 1 8 ?
0 X 0 X

Extending the right hand term of the above equation, gives the following;

< dh, [ > g 1 f > = dW* [ > g 1 f
O X > X

which can be extended further to give;

dh 2 g, | Wwr bf g
4 o X
thus:
+ +
Cdn, 16,81 > = (287 AT t%—i—-) dn g (A TI1. 1)

the hand the left hand side term is by definition
L < dh, g > =< d < dh, g>, f>

Developing this term results in :
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Le Cdhy g > _ (& [bbdill oAb 2 g gy ., 8 (2.dhy , dh, [2 Eﬂ])
1 1

0 X, O X,
b Er2dhy Ay D By, oo, @eddhe L dh, D oga o, O
O Xn X " 0 Xn
= o dhy, ...y 2 dhy, 8y
L, < dh, g > ¢t 1320 +
poGioy ooy (2 d0oy Gy (2 Ray heees (2 By, ARy
O X, 0 X 0 Xn 0 Xn
+ ([b Sn] 1o ey [b gr’-]) dhrv [ f >
O X, O Xn
t t
=2t ey (2B, Ah L f S ) that
0 X 0 X
a4
LCdn, = (2P B (28,7 A, . (A.111.2)

With respect to the remaining term of the last equation It can be written
as:

<C Ly (dh), g > =< d <dh, f>, g >

and comparing this equation with the previous calculations it is easy to
see that:

_ b dh.* f o f .* dh
<Ly dhd, g =« [S—;-] + [b " ] ) g (A.I11.3)

Finally by substituting equations (A.III.1), (A.III.2) and (A.I11.3) into

equation (LD.2) the equality is easily checked.
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Table 1.

Helicopter data for simulation model.

Main rotor.

ao Blade 1iftv510pe. 6.0

c Blade chord. 0.%33 m

hr Negative Z coordinate of rotor hub. 1.795 m

Is Blade flapping moment of 1nertia. 1281.4 Xg w®

Ke Blade flapping stiffness-spring 1037.2 Nw m
constant.

R | Blade radius. 7.5 n

S Rotor solidity. 0.0906 m

Loy Centre of gravity forward of 0.0

fuselage reference point.

s Rotor shaft forward tilt. 0.087°

§o Blade profile drag coefficient. 0.009

Sz Blade 1ift dependent drag 5.333
coefficient.

Brw Linear blade twist. 5°

Tail rotor.

aoT Blade 1ift curve slope. 6.0
Fr Fin blockage factor. 0.87
hr Negative z coordinate of hub. - 0.366
ko Main rotor downwash factor. 1.5
1r Tail rotor location aft of fuselage 9.144
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Tailplane
aoTe
CazrL
K 1e

l+ve

S'T F

BT

Fin

hew

1w

Sernnt

8 FiM

reference point.

(inertia number)/{flap frequency)=.

Blade radius.

Tail rotor solidity.

Blade profile drag coefficient.
Blade 1ift dependent drag

coefficient.

Lift curve slope at zero incident.
Maximum normal force coefficient.
Main rotor downwash factor.
Location aft of fuselage reference
point.

Tailplane area.

Tailplane setting (positive nose up

relative to fuselage x axis).

Negative z component of fin centre
of pressure.

Location aft of fuselage reference
point.

Fin area.

Fin setting (positive nose starboard).
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1.5138

0.153

0.009

5.333

1.5

9.144m

1.347m*

3.5°

1.273m*

2.0°



Fuselage
CYE;
NS

1+

Helicopter

Aerodynamic sideforge coefficient.
Main rotor downwash factor.
Fuselage refereﬁce length.
Fuselage plan area.

Fuselage side area.

inertias

Moment of inertia.

"

Product of inertia.

Aircraft mass.

e
Q@L&Eﬁ@v

Iruven s
i) Eﬁig‘ﬁ{“
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-0.7%
1.9
13.106m
16, 723m=

23.226m=

5695 kg m*
34578
30239
2068 kg m=

5234.6 kg



